
Towards the Exhaustive Verification of
Real-Time Aspects in Controller Implementation

Carlo A. Furia, Marco Mazzucchelli, Paola Spoletini, Mara Tanelli

Abstract— In industrial applications, the number of final
products endowed with real-time automatic control systems that
manage safety-critical situations has dramatically increased.
Thus, it is of growing importance that the control system
design flow encompasses also its translation into software code
and its embedding into a hardware and software network. In
this paper, a tool-supported approach to the formal analysis of
real-time aspects in controller implementation is proposed. The
analysis can ensure that some desired properties of the control
loop are preserved in its implementation on a distributed
architecture. Moreover, the tool provides as output information
which can be used to approach straightforwardly some design
problems, such as hardware sizing in the final implementation.

I. INTRODUCTION AND MOTIVATION

In industrial applications, the number of final products
endowed with real-time automatic control systems has dra-
matically increased in the last few years. Most of such
systems, moreover, are responsible of managing critical
situations as far as human safety is concerned, see e.g., in
the aeronautical and the automotive industries. Thus, it is of
growing importance to complete the control system design
flow taking care also of formally tackling its translation
into real-time software code and its embedding in a larger
hardware and software network, with particular attention to
timing properties. As such, it seems particularly useful and
promising to try and bridge the gap between system-theoretic
and information-theoretic skills, devising new tools which
allow one to carry out the whole design flow and provide
new information to optimize the final system both in the
controller design phase and in its code and hardware realiza-
tion. Recently, in the control community, some preliminary
considerations about the possible role for formal methods to
tackle control software dependability properties have started
to appear, see e.g., [1], [2]. In [1], the authors discuss
how probabilistic model checking can be used to analyze
faults in controller-based systems. [2] offers a discussion
on how formal methods may help to develop dependable
manufacturing control systems. In [3], algebraic equivalence
is used to verify the correct operation of control systems.
In the formal methods community, a vast gamut of tech-
niques, methods, and tools has been studied by computer
scientists for over two decades, [4]. In particular, since the
early 1990’s, several techniques have been developed to
analyze real-time systems with respect to both behavioral

C. A. Furia and M. Tanelli are with the Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133
Milano, Italy. E-mail: {furia, tanelli}@elet.polimi.it. M. Tanelli is also with
the Dipartimento di Ingegneria dell’Informazione e Metodi Matematici,
Università degli studi di Bergamo, Via Marconi 5, 24044, Dalmine (BG),
Italy. M. Mazzucchelli is with the Dipartimento di Matematica, Università
di Pisa, Italy. E-mail: mazzucchelli@mail.dm.unipi.it P. Spoletini is with
Università dell’Insubria, Como, Italy. E-mail: paola.spoletini@uninsubria.it.
The work of M. Tanelli has been partially supported by MIUR project ”New
methods for Identification and Adaptive Control for Industrial Systems”.

and timing properties [5]. In particular, model-checking tech-
niques for real-time systems, [6] have become a very popular
solution to the system verification problem. Note that, in this
context, full automation must always be heavily traded-off
with expressiveness. In particular, it is usually impossible (or
exceedingly complicated) to formalize complex properties
that have to be analyzed in the design flow of embedded
systems towards their implementation. In the same vein,
formal techniques are usually mostly focused on a posteriori
analysis, and provide instead little or no support to design.
Some recent work addressing this problem is [7], which
proposes mathematical models for embedded software that
allow one to incorporate constraints and specifications at a
high level of abstraction and to formally derive semantics-
preserving software implementations.
In this paper, we propose a tool-supported approach to the
formal analysis of real-time aspects in controller implementa-
tion. Our methodology builds upon an automated algorithmic
enumeration technique of system behavior to pursue a guided
examination of such real-time aspects. The analysis can
ensure that some desired properties of the control loop are
preserved in its implementation on a distributed architecture.
Moreover, the information extracted automatically from the
model can also be used to approach some design issues,
such as hardware sizing in the final implementation. Our
tool uses timed Petri nets as abstract system modeling
paradigm. For illustration purposes, however, we employ the
more abstract and essential model of state/transition systems
(STSs). Specifically, we introduce an analysis technique to
enumerate all possible timed behaviors of some considered
STS, grouping them into equivalent classes, which share
the same behavior. Afterward, we show how to extend the
analysis technique for STS to timed Petri nets and how the
results can be used proficiently in the iterative development
of controller implementations.

II. STATE/TRANSITION SYSTEMS

In this section, the notion of state/transition system (STS)
and a technique to represent and analyze the behavior of
a given STS are introduced, see also [8]. STSs are an
abstract modeling paradigm suitable for a large variety of
timed systems, based on the notions of state and transition.
Informally, the evolution of an STS is characterized by an
alternation between residences in states, where time elapses,
and instantaneous occurrences of transitions, which trigger
the system to a new state. At any instant of time, the current
state of the system determines which transitions are enabled,
i.e., can fire; conversely, any fired transition triggers a change
of state in the system.
As a simple example, consider a producer and a consumer
which communicate through a (bounded) buffer, where the
producer puts new items and the consumer takes them away.



An STS modeling such a system would introduce a transition
c which occurs whenever the consumer takes an item from
the buffer. Note that c would be enabled only when the
system is in a state where at least one item is in the buffer.
Also, when c is taken and the buffer has some n > 0 items
in it, the state of the buffer changes to represent the fact that
n− 1 items are now stored in the buffer (see also Figure 1).
When modeling real-time systems as STSs, the notion of
state must include timing information about when the cur-
rent state has been entered. Consequently, the triggering of
transitions depends also on the time elapsed in the current
state. Therefore, transitions are decorated with a lower bound
and an upper bound denoting, respectively, the minimum and
maximum time that should be consumed in a state enabling
the transition before the transition is taken.
Analyzing the behavior of STSs. A fully formalized STS
can be seen as an implicit, complete description of a set
of timed behaviors, namely all those which are compatible
with all the constraints included in the STS. For several
analysis purposes, it would be extremely useful to have a
characterization of the same behaviors which is explicit,
rather than implicit. In other words, we would like to possess
a representation which allows answering rather directly ques-
tions about the overall behavior of the system. For instance,
going back to the example of the producer and consumer,
one may consider questions such as:
• given certain producing and consuming rates, is it true

that the buffer never overflows?
• is it true that every item stays in the buffer for at least

10 time units before it is consumed?
• if we double the consuming rate, can we halve the buffer

size without risking overflow?
Simulation techniques are a way to answer such questions.
However, simulation gives necessarily incomplete answers,
as it considers only a finite subset of all possible behaviors of
the system. Model-checking techniques, on the other hand,
are exhaustive verification techniques where temporal logic
formulas are checked against all behaviors of a finite-state
system [6]. In this paper, we develop a third approach, in
some sense intermediate between simulation and automated
model-checking. On the one hand, we show how to extract
and represent succinctly all possible behaviors of a given
STS. On the other hand, we trade-off full automation with
greater flexibility for the designer. In our method, in fact,
rather than providing a priori a property in some (restricted)
temporal logic language, the designer has to inspect the
generated exhaustive behavioral representation of the system,
looking for desired (or undesired) behaviors. In this sense,
the designer can possibly make up for the algorithmic
unfeasibility of verifying complex properties with his/her
intuition and ingenuity. Finally, we believe that Petri net
models are especially suitable to represent naturally systems
with asynchronous components like those considered in our
case study.

A. Definition of Transition Systems

The essential features of STSs can be further abstracted
by representing explicitly only transitions, and by leaving the
notion of state only implicit: such models are called transition
systems (TSs). As the name suggests, TSs are based on the
notion of transition, which are defined as follows.

Definition 2.1: A transition τ is a triple 〈[α, β], E,D〉
where: [α, β] is an interval of time called static firing
interval, here α and β are named respectively (static) earliest
firing time and (static) latest firing time. They denote the
lower and upper bound on the transition firing time, after it
has become enabled; E (resp. D) is the set of transitions
which become enabled (resp. disabled) when τ fires.
Note that, at a given time, more than one occurrence of the
same transition can be enabled, each with its own enabling
time. To represent this fact we introduce the following.

Definition 2.2: An occurrence or instance of a transition
τ is a triple 〈id, x, [α̂, β̂]〉 where: id is a unique identifier,
to distinguish different instances of the same transition τ ; x
is the (absolute) enabling time; [α̂, β̂], with α̂ = x + α and
β̂ = x + β, is the dynamic firing interval within which the
transition must fire if it is not disabled.
In the following, we freely use the term “transition” to denote
indifferently a transition or an instance thereof, whenever
the actual meaning will be clear from the context. Also, we
distinguish relative firing times from absolute ones by putting
a hat over the latter. Finally, we introduce the notion of TS.

Definition 2.3: A transition system S is a pair 〈T, T0〉
where: T is a set of transitions; T0 ⊆ T is the set of
transitions which are enabled initially.
Any TS is an implicit representation of a set of behav-
iors, namely all those which respect the enabling/disabling
relations and the firing time intervals. More precisely, we
introduce the following.

Definition 2.4: An evolution e (or trace) of a TS S =
〈T, T0〉 is given by two finite sequences: the sequence
〈τ1, τ2, . . . , τk〉 of instances of fired transitions; and the se-
quence 〈τ̂1, τ̂2, . . . , τ̂k〉 of firing times of the transitions. The
two must respect all constraints arising from the transition
firing semantics.
If we want to stress the fact that the number of taken
transitions in e is bounded by some natural k > 0, we call
e an NT-evolution (i.e., “Number of Transitions”).
Equivalence classes of evolutions. From the definitions
above, it is clear that the number of NT-evolutions of a TS
are, in general, infinite, when the time domain is a dense
set. In practice, this is the case whenever there is at least
one enabled transition whose firing time is non-deterministic,
that is whose firing interval is not a singleton. To overcome
this unpleasantness, we introduce a notion of equivalence
between evolutions: two evolutions are equivalent if they
have the same sequence of fired transitions, in the same order.
Consequently, we introduce a notion of equivalence class as
follows.

Definition 2.5: For a natural k > 0, a k-NT-class is an
equivalence class over the set of all NT-evolutions of length
k.
A k-NT-class can be represented as a tuple 〈τ1, . . . , τk〉 of
the ordered sequence of transitions. It is not difficult to show
that, regardless of the nature of the time domain, and in
particular even if it is dense, the quotient set of the NT-
evolutions of a TS by the equivalence relation is finite.

Theorem 2.6: Given a transition system S, for each inte-
ger k > 0, the number of k-NT-classes is finite.
In the rest of the paper, we assume the time domain to be the
nonnegative rational numbers Q+. Intuitively, this restriction
is necessary to ensure that all different time bounds have



a common multiple, or, in other words, that a notion of
“minimum time granularity” is definable. This would not
be possible over the whole real domain, where rational
and irrational numbers are incommensurate. For all practical
purposes, however, the restriction to rational numbers is
irrelevant, as any irrational number can be approximated by
rational numbers with arbitrary precision. Note that the same
choice was taken in [9].

B. Exhaustive Enumeration of TS Behavior
Theorem 2.6 suggests that an exhaustive enumeration of

NT-classes may be feasible. The rest of this section presents
an algorithm to build such an enumeration. The algorithm
is based on techniques similar to those introduced in [9] for
timed Petri nets. However, while [9] only provides enumer-
ation techniques for NT-classes, we extend those techniques
to build real-time profiles that characterize each enumerated
NT-class. All NT-classes together with their real-time profiles
provide a complete succinct description of all NT-evolutions
of the system; this description can be usefully analyzed by
the designer. Our technique has been implemented in a very
prototypal tool used in analyzing the case study of Section
III. In what follows, for brevity, we omit most technical
details of the algorithm, focusing on its intuitive explanation.
Let us consider a TS S = 〈T, T0〉. It is convenient to
represent the NT-classes of S as a tree, named relative tree.
Roughly, nodes represent states of the system evolutions, and
every node is connected to all its children, which correspond
to states that are reachable from the parent state by firing
an enabled transition. More precisely, every node in the
tree hosts a triple of the form 〈ET j

i , D
j
i ,mM

j
i 〉, where the

subscript i denotes the depth of the node within the tree;
the superscript j denotes that the node has been reached by
firing transition τj ; ET j

i is the set of the transitions that
are currently enabled; Dj

i is the set of firing constraints
of transitions in ET j

i , described as a set of inequalities;
mM j

i is the least upper bounds among the transition times
of transitions enabled in the current node, i.e., mM j

i =
min

{
βx|(αx ≤ τx ≤ βx) ∈ Dj

i

}
. In extreme summary, the

tree represents all NT-classes of the systems.

C. Real-Time Profiling of TS Behavior
We now build upon the relative tree an algorithm to create

the real-time profile of any NT-class. In other words, we
sketch how to construct intervals—of absolute time—for
every transition in an NT-class, which describe the minimum
and maximum absolute firing times that every evolution in
the chosen NT-class may have. Once the relative tree has
been built, real-time profiling is a two-phase process. First,
the absolute tree for the TS is built; then the actual profiling
is performed for a chosen NT-class of the TS. These two
phases are succinctly described in the rest of this subsection.
Absolute Tree. For any TS S, the absolute tree is a tree
isomorphic to the relative tree, but where every node hosts
information about the absolute—rather than relative—firing
times of transitions. To avoid ambiguities between the rela-
tive and absolute trees, and in accordance with the notation
introduced in Subsection II-A, we decorate every symbol
appearing in the absolute tree with a hat sign. As in the
relative tree, every node in the absolute tree hosts a triple
〈ÊT

j

i , D̂
j
i , m̂M

j

i 〉, where ÊT
j

i is the same as ET j
i in the

relative tree; D̂j
i is a set of absolute time constraints for

the transitions in ÊT
j

i , in the form α̂x ≤ τ̂x ≤ β̂x, with
τ̂x ∈ ÊT

j

i ; m̂M
j

i = min
{
β̂k|(α̂i ≤ τ̂i ≤ β̂i) ∈ D̂j

i

}
.

Properties of the Absolute Tree. The following theorem
establishes the fundamental properties of the absolute tree
construction.

Theorem 2.7: Let 〈τ1, . . . , τk〉 be any k-NT-class of some
TS S, whose absolute tree T hosts the inequality α̂ ≤ τ̂k ≤ β̂
for τk in D̂k−1. Then, for all (real) times t, there exists some
NT-evolution in the chosen NT-class where τk fires at t if
and only if t ∈ [α̂f , m̂Mk−1] .
Combining the Relative and Absolute Tree. The infor-
mation hosted by the relative and absolute trees can be
combined into a data structure called class list. This gives a
complete real-time profiling of any NT-class. We introduce
the operator ] such that ](τ) = i iff τ is the i-th transition
firing in the considered NT-class.
The Class List. Let us consider some TS S, its relative and
absolute trees T r, T a, and some k-NT-class 〈τ1, . . . , τk〉.
The class list has size k, and every element is a triple
〈τf , DF f

i , DV
f
i 〉, with i = ](τf ), where τf is the i-th

transition in the NT-class; DF f
i is a set of constraints on the

absolute firing time of τf , in the form mi
f ≤ τ̂f ≤M i

f , with
mi

f and M i
f rational constants; DV f

i is a set of constraints
on the absolute firing times of pairs of transitions, in the
form: τ̂x +mi

x ≤ τ̂f ≤ τ̂x +M i
x, with mi

x and M i
x rational

constants, and τx such that ](τx) < ](τf ).
Building an NT-evolution. Any NT-evolution can be built
relying on the information the class list provides. Starting
from the first element in the list, where τ̂f1 is the only free
variable in the inequalities in DF 1

1 , we pick a firing time τ̂f1

which respects all such inequalities. Then, any occurrence
of τ̂f1 in all inequalities in all DV sets in the class list is
replaced with the chosen value, and the resulting inequality
moved to the corresponding DF sets. Next, we move to the
second element of the class list, and so on until we have
built a complete set of firing times for our NT-evolution.
The correctness of the class list construction is summarized
in the following.

Theorem 2.8: Let L be the class list for a k-NT-class of
a TS S. Any NT-evolution is valid for the chosen NT-class
if and only if it respects all constraints in L.

D. Timed Petri Nets

Timed Petri Nets (TPNs) [10] are a popular real-time
extension of the classical Petri Nets [11], introduced by
C. A. Petri in 1962 as a modeling tool for discrete event
systems. TPNs are devoted to deal with real time systems
and they can be seen as a form of STSs.
From TSs, to STSs, to TPNs. To represent TPNs semantics,
TSs can be extended by introducing explicitly the concept
of state.

Definition 2.9: A state/transition system (STS) S is a
quadruple 〈T,Q, q0, δ〉, where T is the set of transitions of
the system; Q is the set of states of the system (possibly
infinite); q0 ∈ Q is the initial state of the system, i.e., the
state of the system at time t = 0; δ : Q × T × Q+ → Q is
the (partial) transition function; δ(q, τ, t) = q′ denotes that
the system in state q, with transition τ firing at time t moves
instantaneously to state q′.



The system evolves from a current state qn to the next state
qn+1 as a result of the firing of some transition τf , enabled in
qn. The firing time must be feasible, i.e., it must be included
in the dynamic firing interval of τf and it must be less than
or equal to the minimum of the maximum firing times of
the transitions enabled in qn. The firing will disable τf , and
possibly some other transitions enabled in qn, and it will
enable some new transitions.
Now, we introduce timed Petri nets and hint at how to
describe them as STSs.

Definition 2.10: A timed Petri net is a tuple
〈P, T,B, F,M0,SIM〉, where P is a finite non-empty
set of places (a.k.a. locations); T is a finite non-empty set
of transitions; B : P × T → N is the backward incidence
function (BIF); F : T × P → N is the forward incidence
function (FIF); M0 : P → N is the initial marking;
SIM : T → Q+×Q+ ∪ {∞} is the static interval function.

M(L0)=1

p

L1

c

[Ap,Bp]

[Ac,Bc]

L0

B(L0, p)=1

F(p, L1)=1

Fig. 1. TPN model of the producer/consumer example.

Figure 1 provides some intuition about the graphical repre-
sentation of a TPN for the producer/consumer example. To
formalize a TPN by means of an STS, for each transition
τi ∈ T , the static interval function gives the static firing
interval, i.e., SIM(τi) = [α, β]. If xi is the enabling instant
of a transition τi, the dynamic firing interval is [α+xi, β+xi].
Correspondingly, we can associate introduce a notion of state
to describe the evolution of TPNs.

Definition 2.11: A state s of a TPN is defined as a pair
〈M, I〉, where: M : P → N is the current marking function;
I is the set of firing intervals of the transitions that are
enabled in the current state, described as α̂i ≤ τi ≤ β̂i.
These intervals are relative to the instant at which the TPN
reached the current state; α̂i and β̂i are the earliest and the
latest firing time, respectively.
Correspondingly, a suitable notion of transition can be intro-
duced to represent TPN state changes. As a consequence, the
analysis technique of Section II-B can be applied to TPNs,
with minimal modifications.

III. CASE STUDY

In this section we employ the proposed technique to
analyze the behavior of a TPN, modeling the implementation
of an active braking control system. The idea is that, once
the structural properties of the closed-loop system have been
formally proved via control theory methods, before moving
to the industrialization of such control system several other
issues need to be taken into account. In our case, the control

code would be sufficiently simple to guarantee that, once the
controller is turned into control code, no structural problems,
such as deadlocks, occur. In more complex cases this imple-
mentation step could be validated through techniques such as
Model Checking. Then, it is necessary to fix the hardware
lay-out of the Electronic Control Unit (ECU) which hosts
the control code, and to design the whole vehicle network,
i.e., the physical connection between the sensors, the ECU
itself and the actuators. Usually, in Automotive applications,
a CAN bus is used for signal transmission.
Note that, when a controller has been proved to ensure
stability and robustness of the closed-loop system in a
control-theoretic sense, these properties hold with the im-
plicit assumption that the inputs and outputs of the control
system are available synchronously at each sampling time,
and that the controller can performs all the computations
in a nominal predefined time interval. Thus, as both signal
transmission and ECU processing can only be quantified
to happen within a certain time interval, the TPN-based
formal verification can provide crucial information on all
the possible system behaviors. First of all it provides the
equivalence classes to which the nominal behavior belongs.
By looking at these classes in terms of upper-bounds on
the time intervals, the designer is given a formal indication
which may guide hardware sizing. If cost-constraints are
tight, as it is usually the case in Automotive applications, the
idea is to seek for the cheapest hardware which is capable
of guaranteeing the needed performance level. Further, it
is important to ensure that, when the control code routine
starts, all the data provided as inputs refer to the same
measurement interval (input consistency) and that the output
sent to the actuators is also read with correct timing (output
consistency).

A. Application Description
The considered application is an ABS controller based

on a Hydraulic Braking System (HAB) actuator, which is
the standard braking system on most commercial cars. ABS
controllers are indeed a safety critical application, as they
have to take care of managing panic-brakes which cannot be
handled by common drivers. The design of an appropriate
controller for these systems has been presented in [12], where
it has been shown that the closed loop system has the desired
stability properties.
System and Actuator Model. The braking dynamics have
been modeled based on a quarter car model, [12]. The
considered actuator is an HAB, which, according to its
physical characteristics, is only capable of providing three
control actions: Increase the brake pressure; Hold the brake
pressure and Decrease the brake pressure. A static brake-
pads friction model is assumed, i.e., the braking torque
Tb is computed from the measured brake pressure pb as
Tb = rd χApb, where rd is the brake disk radius; χ is the
(constant) brake pad friction coefficient; A is the brake piston
area and pb is the measured brake pressure. The increase
and decrease pressure actions are physically limited by the
actuator rate limit, i.e., dTb

dt = k, where the rate limit k ∈ R+

is a known parameter. Accordingly, the controller design is
based on the hybrid system made of the connection between
the wheel dynamics and the hydraulic actuator, namely

λ̇ = −1− λ
Jω

(Ψ(λ)− Tb) ; Ṫb = u, (1)



Fig. 2. Finite State Machine description of the hybrid controller.

where u = {−k, 0, k} and Ψ(λ) is given by Ψ(λ) =
[r+(J/rm)(1−λ)]Fzµ(λ), where λ is the longitudinal slip,
which—during braking— is defined as λ = (v−ωr)/v, λ ∈
[0, 1], ω [rad/s] is the angular speed of the wheel, v [m/s]
is the longitudinal speed of the vehicle body, the function
µ(λ) describes the tire-road friction conditions, Tb [Nm] is
the braking torque, Fz [N ] is the vertical load, J [kgm2],
m [kg] and r [m] are the moment of inertia of the wheel,
the quarter-car mass, and the wheel radius, respectively.
Note that u = −k corresponds to the Decrease control
action, u = 0 to the Hold control action and u = k to
the Increase control action. As shown in [12], a controller
which guarantees closed-loop stability of the braking system
is that shown in Figure 2. By analyzing Figure 2 one can
see that we employ the braking torque Tb and the wheel slip
λ as switching variables and that the switching conditions
change according to the current discrete controller state
q = {0, 1, 2, 3}. The thresholds values TbMin, TbMax, λMin,
and λMax which enable the transitions between the different
states are chosen by the designer to guarantee a good trade-
off between performance and safety in all driving conditions.

B. Formalization and Analysis

Let us now briefly describe the hardware/software lay out
in the final vehicle implementation. The vehicle is equipped
with 5 sensors, i.e., 4 encoders to measure the wheel speeds,
by means of which the wheel slip λ is obtained, and
a pressure sensor to compute the braking torque Tb. By
processing such sensor measurements, the control algorithm
can be executed. As far as computational resources are
concerned, the vehicle is equipped with an ECU which
processes sensor outputs and executes the controller routine.
Finally, the controller output is sent to the HAB which
actuates it. Signal communication is managed by the vehicle
bus. As for nominal performance — stated in terms of timing
of the different actions — generally on car networks the CAN
bus works with a nominal time interval which is either of 5 or
10 ms (100-200 Hz of sampling frequency), and the braking
controller should complete the computations accordingly.
TPN Model. Considering the description of the hard-
ware/software lay out of the vehicle and of the controller,
the introduced case study can be modeled using the TPN
shown in Figure 3. The TPN is composed of 11 places

S1

[At1,Bt1]

[Ac,Bc]

S5S4S2

[At5,Bt5][At4,Bt4][At2,Bt2]

t1 t5t4t2

V1 V5V4V2

c

AV

[Aa,Ba]
a

S3

[At3,Bt3]

t3

V3

Fig. 3. TPN modeling the case study.

and 7 transitions. Each place labeled with Si represents a
sensor and a marking in Si means that the correspondent
sensor has just collected a datum. Each place Si is connected
with a transition ti, enabled with a firing interval [Ati , Bti ],
which models the datum transmission to the control system;
once the datum is collected, ti must fire after Ati

time units
and within Bti

time units. When ti fires, a fresh token is
placed both in place Si and in place Vi. Notice that we do
not distinguish among different tokens. Thus, if a token is
already present in Vi, once ti fires and a new token reaches
Vi, the two tokens in Vi are undistinguishable.
Transition c represents the control routine computation and
this is why it needs a token in all Vi’s to be enabled. The
firing of c generates a token in place AV , meaning that the
actuation value is ready and will be actuated when transition
a fires. The static firing intervals are treated as symbolic
variables where, for each transition k, Ak ≤ Bk.
TPN Analysis. As we cannot distinguish among tokens
in a place according to their arrival time, the temporal
behavior of the braking system components influences the
correctness of its implementation. We now carry out a
guided analysis of such correctness features by discussing
the results of various runs of our enumeration algorithm on
the presented TPN model. In what follows, all time units
are in milliseconds, unless otherwise specified. Consider
for example the following values for the marking function
M(V1) = M(V2) = M(V3) = 1, M(V4) = 1, M(V5) = 2
and M equal to 0 for all the other places. In this case,
when transition c fires, it consumes the single tokens in V1,
V2, V3 and V4, and one of the two tokens in V5. However,
these tokens correspond to two different data acquisitions,
whereas the calculation performed by c would be coherent
only if using the more recent one. As such, there is a need
to introduce requirements on the firing intervals so that the
following properties are met by all evolutions: (1) once a
datum is collected, the control action is either performed
or the datum is discarded and the actuation is eventually
performed within a fixed amount of time; (2) the calculation
of the value to be actuated is performed on coherent data
(input consistency) and using the most recent ones.
A very simplified hypothesis that meets these requirements
considers only deterministic firing intervals. Determinism is



[Ac,Bc]
c

AV

[Aa,Ba]
a

bin

[0,0]
b

2

Fig. 4. A part of the TPN modified to implement the bin technique.

obtained by defining, for each interval, the lower bound equal
to the upper bound. If, moreover, we let all sensors intervals
to be equal, and set Ati

≥ Ac + Aa, that is we assume
sensors produce data more slowly than the whole sequential
process of computing and performing the actuation, we can
see that practically there is only one equivalence class where
all the sensors fire at the same time instant.
However, while the hypothesis of identical sensors is real-
istic, that of determinism is not, as it implies that all the
elements of the system are flawless instruments that always
perform with exact timing. Hence, consider the case in which
all the sensors and actuators behave equally with [8.5, 10]
as firing interval (the CAN bus works nominally at 100 Hz),
and the computation (transition c) occurs within the time
interval [4, 5] (the control routine is assigned a nominal time
slice of 5 ms by the operating system). We find NT-traces of
length 8 such as 〈t1, t2, t3, t4, t5, c, t1, t2〉, consuming from
17 to 18 time units overall. The absolute firing intervals for
these example traces are: [8.5, 9.5] (for t1), [8.5, 9.5] (for
t2), [8.5, 10] (for t3), [8.5, 10] (for t4), [9, 10] (for t5),
[14, 15] (for c), [17, 18] (for the second occurrence of t1),
and [17, 18] (for the second occurrence of t2). In these cases,
we have to guarantee that the accumulated extra (old) tokens
are discarded. In terms of TPN, this solution can be modeled
as shown in Figure 4. We call this approach bin technique,
since the stale data is discarded through a new transition b
which acts as a bin. This additional transition b is devoted
to consuming the extra tokens in AV : the idea is to leave a
enabled by one token in AV but, at the same time, additional
tokens should be consumed by b as soon as possible. In fact,
whenever a new token is produced by transition c, two copies
of it simultaneously go in AV and bin. Then, the weight 2
on the arc that connects bin with b means that transition
bin is enabled by, and consumes when it fires, exactly two
tokens from bin. Since every token produced by c is in both
bin and AV , b is enabled if and only if there are (at least)
two tokens in both places bin and AV . When this is the
case, b fires immediately, consumes two tokens from bin
and one from AV , and puts one new token in bin. Overall,
AV is left with one token and so is bin, so the two places
always have the same number of tokens, and always contain
at most two tokens. Hence, the bin technique guarantees a
bound for the number of tokens in every place. Additional
numeric experiments on the modified TPN show clearly that
the desired properties of consistency are guaranteed in a
system where Bti = Btj = Ba > Ac for all i, j = 1, . . . , 5,
as long as we adopt the bin technique. This means that a
realistic scenario, where: (1) the time needed to read data
from sensors is roughly the same as that needed to send the

control variable to the actuators, and (2) the time to compute
one cycle of control action is smaller than the latter times,
is compatible with a correct implementation of the control
algorithm.

IV. LESSONS LEARNED

Some remarks in the form of a critical summary of the
overall analysis tools and of their expressiveness are in order.
First of all it is worth noticing that, to the best of our
knowledge, this is one of the first attempts to use formal
methods (in the software-engineering sense) with the aim
of supporting a real design step, rather than providing only
yes/no answers on some specific properties of a system, or
on the satisfaction of some requirements. Using the proposed
tool, the information it provides may induce to reconsider the
control design if certain timing constraints are proved to be
more or less severe than others or if they need higher priority
in the final system. Moreover, as it was shown by means of
the case study analysis, it is rather straightforward to exploit
the information provided by the analysis tool as a guide to
hardware sizing. Section III revealed, in fact, that for the
considered application the nominal controller behavior can
be guaranteed by choosing an ECU which guarantees that the
control routine executes in a shorter time with respect to the
sensor and actuators signal transmission. This would suggest
that more resources should be devoted to the microprocessor
selection, while a cheaper (hence slower) bus can be selected.
Of course, the final aim is that such tools can find place in
industrial practice. To this end, a crucial step will be to work
on the development of software interfaces which can provide
the possibility of performing formal analysis of the control
code at a high level of abstraction.

REFERENCES

[1] M. Kwiatkowska, G. Norman, and D. Parker, “Controller dependabil-
ity analysis by probabilistic model checking,” Control Engineering
Practice, vol. 15, pp. 1427–1434, 2007.

[2] T. Johnson, “Improving automation software dependability: A role for
formal methods?” Control Engineering Practice, vol. 15, pp. 1403–
1415, 2007.

[3] M. Lawford and W. M. Wonham, “Equivalence preserving transforma-
tions for timed transition models,” IEEE Transactions on Automatic
Control, vol. 40, no. 7, pp. 1167–1179, 1995.

[4] E. M. Clarke and J. M. Wing, “Formal methods: State of the art and
future directions,” ACM Computing Surveys, vol. 28, no. 4, pp. 626–
643, 1996.

[5] C. Heitmeier and D. Mandrioli, Eds., Formal Methods for Real-Time
Computing. John Wiley & Sons, 1996.

[6] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine, “Symbolic
model checking for real-time systems,” Information and Computation,
vol. 111, no. 2, pp. 193–244, 1994.

[7] L. Mangeruca, M. Baleani, A. Ferrari, and A. Sangiovanni-Vincentelli,
“Semantics-preserving design of embedded control software from
synchronous model,” IEEE Transactions on Software Engineering,
vol. 33, no. 8, pp. 497–509, 2007.

[8] S. Cigoli, P. Leblanc, S. Malaponti, D. Mandrioli, M. Mazzucchelli,
A. Morzenti, and P. Spoletini, “An experiment in applying UML 2.0 to
the development of an industrial critical application,” in Proceedings
of CSDUML’03, 2003.

[9] B. Berthomieu and M. Diaz, “Modeling and verification of time
dependent systems using time Petri nets,” IEEE Transactions on
Software Engineering, vol. 17, no. 3, pp. 259–273, 1991.

[10] P. Merlin and D. Farber, “Recoverability of communication protocols
– implications of a theoretical study,” IEEE Transactions on Commu-
nications, pp. 1036–1043, 1976.

[11] W. Reisig, Petri Nets: An Introduction, ser. EATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1985.

[12] M. Tanelli, G. Osorio, M. di Bernardo, S. Savaresi, and A. Astolfi,
“Limit cycles analysis in hybrid anti-lock braking systems,” in Pro-
ceedings of the 46th Conference on Decision and Control, CDC 2007,
New Orleans, Louisiana, USA, 2007, pp. 3865–3870.


