
Compositionality Made Up

Carlo Alberto Furia

December 2006

Abstract

This paper develops some methods and techniques for the practical
use of compositionality to prove the correctness of modular systems, with
reference to the metric temporal logic TRIO. It advocates a “lightweight”
approach to compositionality, driven by the specifics of the system under
development, where methodology is as important as technical solutions.

1

Contents

1 Framing the Compositionality Problem 3
1.1 Compositionality: A Definition 3
1.2 Compositionality for the Common Man 4

2 A Taxonomy of Compositional Rules 6
2.1 Definition of (Compositional) Inference Rule 7

2.1.1 Inference Rules . 7
2.1.2 Compositional Inference Rules 8

2.2 Dimensions for a Compositional Taxonomy 13

3 Non-Circular Compositional Inference Rules 17
3.1 Non-Circular Inference Rules . 17
3.2 Completeness of the Non-Circular Rules 18
3.3 Summary of Non-Circular Rules 19

4 Circular Compositional Inference Rules 19
4.1 The Time Progression Compositional Operator and Its Compo-

sitional Rules . 19
4.1.1 The Time Progression Operator 19
4.1.2 Circular Inference Rules for the Time Progression Operator 20
4.1.3 Locally Initialized Circular Inference Rules 23

4.2 Other Compositional Operators and Compositional Rules 25
4.2.1 A Stronger Time Progression Operator 25
4.2.2 Implication as a Compositional Operator 26
4.2.3 A Circular Inference Rule Without Compositional Operator 28

4.3 Completeness of Circular Inference Rules 29
4.4 Summary of Circular Rules . 36

5 Generalization to More Than Two Modules 38
5.1 Non-Circular Inference Rules . 38
5.2 Circular Inference Rules . 39

6 An Illustrative Example: the BitTorrent Protocol 44
6.1 Protocol Basics . 46
6.2 System Specification . 47
6.3 Rely/Guarantee Specifications . 50

6.3.1 Global Specification . 50
6.3.2 Local Specifications for a Predefined Inference Rule . . . 50
6.3.3 Making Up a New Inference Rule 51

6.4 Application of the Compositional Rule 53
6.4.1 Using a Predefined Inference Rule 53
6.4.2 Using a Made Up New Inference Rule 58

2

1 Framing the Compositionality Problem

This paper develops some methods and techniques for the practical use of com-
positionality to prove the correctness of modular systems specified with (metric)
temporal logic.

At their core, compositional techniques consist in the application of a com-
positional inference rule which allows one to infer facts about the composition
of some formulas from other — usually simpler — facts about the individual
modules in isolation. There is a certain amount of work available in the liter-
ature about such compositional inference rules [Fur05]. The goal of this paper
is to develop a practical approach to the problem, according to the guidelines
that we are now going to lay down.

First, we provide a general definition of what we mean by compositionality
(Section 1.1). Then, we summarize what are — from a practical viewpoint —
some shortcomings of the compositional techniques that have been developed
in a large part of the literature, and we correspondingly list the features of our
approach to compositionality, in response to these shortcomings (Section 1.2).
The approach is then developed in the remaining sections (2 through 6).

We point out that some parts of this general “plan” for compositionality
have been developed elsewhere [FRMM06]; therefore, we refer the reader to
[FRMM06] for such aspects that are not developed here.

1.1 Compositionality: A Definition

Our ultimate goal is pursuing a rather broad approach to the verification of
modular systems. Therefore, we start from a definition of compositionality
which is generic and of wide spectrum. More precisely, we recall the informal
definition of compositionality that we provided in [Fur05].

“Techniques and methods that permit the modularization of the
verification process of a large system”.

Some general aspects of what it means to “specialize” such a general defi-
nition have been presented and discussed in [Fur05], so we do not repeat them
here.

Let us instead consider the problem from a slightly different perspective.
To wit, compositionality according to the above definition prescribes two main
areas of investigation: techniques and methods.

• The technical aspects of compositionality consist in the study of the rules
of composition for the chosen formal language; in particular, we are inter-
ested in temporal logics, and real-time extensions of them.

Even more concretely, studying the technical aspects of compositionality
means formulating a number of compositional inference rules. These are
logic inference rule whose hypotheses state some facts about modules of
the system in isolation, and whose conclusions state some facts about the
composite system working as a whole.

3

We remark that the technical aspect is the aspect that has been more
deeply studied in the literature, in particular in the form of compositional
inference rules.

• The methodological aspects of compositionality consist in the study of
how compositional techniques can be successfully applied in practice to
(models of) modular systems.

Therefore, a compositional method should suggest how to organize the
local specifications of each module so that they can be composed through
a compositional inference rule. Moreover, it should also describe a general
“attitude” in formalizing and reasoning about composite systems, one
which helps in managing the complexity of formalizing systems composed
of several modules, and of the resulting correctness proofs.

Some parts of the methodological aspects of compositionality have been
tackled in [FRMM06], where we described general guidelines to follow
in modularizing a large specification, and in organizing the correctness
proofs. In this paper, we focus on the aspects more related to the choice
of the compositional rules to be used in the correctness proofs, and on the
interplay between such methodological aspects and the technical aspects.

1.2 Compositionality for the Common Man

Let us now summarize some important aspects of the compositional problem.
We point out what are some typical features that are often associated with
several of the approaches to compositionality pursued so far [Fur05], with respect
to the aspects we elicit.1 Correspondingly, we lay out the general guidelines for
our approach to compositionality.

• The first aspect is the “compose vs. decompose”. In the literature, we find
both decompositional and compositional approaches. Decompositional ap-
proaches are basically refinement techniques where a single module is re-
fined into the composition of several smaller modules; compositional tech-
niques ensure that the composition of the refined modules retains some
properties of the original single module. Compositional approaches, in-
stead, start from a set of individual modules and provide ways of inferring
properties about the composition of these individual modules into a larger
system.

In this paper, we are mostly interested in the compositional approach.
First, a decompositional approach would by definition involve refinement
techniques, and thus aspects that are simply out of the scope of this paper,
as they would require a different framing and a different focus. Second,
compositionality allows one to reuse the specifications of single modules
in different systems that instantiate the modules. Therefore, we argue

1Another interesting critique to compositionality is the one by Lamport [Lam98]. Indeed,
some of the points raised by Lamport are also relevant to the content of this paper.

4

that compositionality is mostly useful in such contexts, where the possi-
ble additional burden introduced by the construction of a compositional
specification [Lam98] is then amortized by reusing the same specification
in multiple proofs for multiple different systems.

• Most of the literature deals with the technical aspects of compositionality,
whereas methodological aspects are often neglected.

In this paper (as well as in [FRMM06]) we try to develop not just some
compositional inference rules, but also a general methodological approach
to the issue of compositional verification. We already pointed out in
[FRMM06] how the traditional practices of modularization, abstraction,
and information hiding can be successfully applied also to the formal speci-
fication and verification of modular systems. This is integrated with a suit-
able notation such as TRIO, which gives to the user suitable constructs
to implement these practices.

• Most works in the literature provide one unique compositional inference
rule, with the tacit assumptions that all facts about the composition of
modules should be inferred using the rule. This is often not very practical:
the verification process is often a complex task that requires much flexibil-
ity on how it should be carried out. Therefore, constraining it to develop
according to some prescribed “recipe” may lead to needless complications.

On the contrary, we provide several different rules, we give a possible
taxonomy according to which different rules can be categorized, and we
discuss how the dimensions of the taxonomy mirror aspects of real sys-
tems. Our goal is not only to provide a variety of rules among which the
user can choose, but also — and most importantly — to illustrate the at-
titude to reverse the usual approach to applying compositionality. Rather
than having a rule (or a set of rules) and describing the system in a way
which is amenable to the use of the rule, we suggest to first formalize the
system according to the general modularization methods we discussed in
the previous point. Then, after the system is formalized, one tries to find
a suitable rule that fits the system in question; possibly, the user should
also develop a new rule, based on the “lessons” learned from the existing
rules and the formalization of the system, to suitably fit the system itself
and its verification goals. Therefore, our catalog of compositional rules is
also meant to provide an illustration on how compositional rules can be
built and modified according to one’s needs. In Section 6 we will provide
an example of how this can be done in practice.

• Since, as we discussed in the previous point, one single rule is often as-
sumed to be used to handle all possible cases, its completeness is usually
regarded as an important feature [NT00, Fur05]. However, as we also dis-
cussed in [FRMM06], compositional rules are complete in a trivial way,
with respect to compositionality. This means that there exist global prop-
erties which — although provable with the rule in question thanks to

5

completeness — cannot be usefully “split” among properties local to dif-
ferent modules, but require a trivial partitioning of the system where one
module behaves as the whole system.

Therefore, we claim that completeness is not an non-renounceable fea-
ture of a compositional rule. More specifically, completeness must not
be traded off with simplicity of a compositional rule or with its practical
applicability. Compositional reasoning cannot ease all problems of mod-
ular verification: it is important that it solves effectively some of them,
those likely to happen in practice. Therefore, in this paper we develop
both complete and incomplete rules with equal interest, and we try to
understand what features may render a rule (in)complete.

• Most, if not all, of the compositional rules in the literature are circular, i.e.,
informally, the property of some module references circularly (in general,
indirectly) to itself. Circular reasoning is clearly unsound, in general, so
developing circular rules is a much more challenging task than developing
non-circular ones.

Nonetheless, we claim that circularity is not always needed in practice,
and indeed most compositional reasoning can be carried out with non-
compositional rules. Formulating non-circular inference rules is technically
not very challenging, as they are simple consequences of the basic logic
rules of conjunction and implication [Lam98]. Nonetheless, we develop
some of them in this paper, together with circular ones. In fact, we believe
that the technical challenges involved in developing the latter rules should
not make us favor them over non-circular rules. Realizing what is the role
of non-circular rules in practice should help framing the compositionality
problem from the right perspective, and with the right objectives, that is
practical usefulness rather than purely technical appeal.

We conclude this section by stressing that we advocate a “lightweight” ap-
proach to compositionality. The approach is driven by the specifics of the system
we are considering. Method comes first, as it gives general guidelines on how
the system should be specified and organized. Then, according to the peculiar
verification needs that arise, one should be able to pick a suitable technical
solution to it, possibly developing new ones according to the problem at hand.

2 A Taxonomy of Compositional Rules

This section defines the notion of inference rule in general, and of compositional
inference rule in particular. Then, it introduces some dimensions along which
a variety of compositional inference rules can be characterized; in doing so, it
tries to link the dimensions of the taxonomy to features of “real” systems they
mirror.

6

2.1 Definition of (Compositional) Inference Rule

2.1.1 Inference Rules

Inference rules. Let us start by defining what is an inference rule, generally
speaking. An inference rule [Men97] is defined by a relation between pairs of
sets of formulas: Π = {π1, . . . , πm} and Ξ = {ξ1, . . . , ξn} and usually denoted
by:

Π = {π1, . . . , πm}

Ξ = {ξ1, . . . , ξn}

Elements of Π are called the premises (or antecedents, or hypotheses) of the
inference rule, while elements of Ξ are called the conclusions (or consequents,
or theses). Π and Ξ are usually thought of as ordered sets, as our notation
suggests.

Intuitively, whenever a set of premises Π̃ and a set of conclusions Ξ̃ belong
to the relation defined by the inference rule, it means that the truth of Π̃ entails
the truth of Ξ̃.

Soundness and completeness. An inference rule is sound (or correct) if:

for any pair Π̃, Ξ̃ that belongs to the relation defined by the rule, if the premise
Π̃ is true, then the conclusion Ξ̃ is also true.

We usually only care about sound inference rules, since the intuitive purpose
behind defining and using an inference rule is exactly that of deducing true facts
from other known true facts. Therefore, if we establish a proposition of the
following form:

Proposition 1 (Soundness of an inference rule). If:

1. π1

2. π2
...

m. πm

then:

1. ξ1

2. ξ2
...

n. ξn

we have in practice proved the soundness of the corresponding inference rule.
On the other hand, an inference rule is complete if: for any conclusion Ξ̃

which is true, there is some premise Π̃ such that the pair Π̃, Ξ̃ belongs to the
relation defined by the rule, and Π̃ is true. In other words, a complete rule
allows the proof of any true fact.

7

If our reference logic language is an intrinsically incomplete one — as it is
the case with TRIO, which includes arithmetic — then we cannot have a fully
complete inference rule, that is one which is complete for any formula in the
language. In such cases, when we speak about completeness we actually mean
relative completeness [Coo78], that is, in a nutshell, completeness with respect
to an oracle for the truth of arithmetic formulas.

While soundness is an indispensable property for an inference rule, com-
pleteness (even relative one) is a feature which is not strictly required, but may
be desirable in some contexts.

2.1.2 Compositional Inference Rules

Let us now focus on compositional inference rules. The full practical significance
of these rules is apparent with the compositional methodology presented in
[FRMM06]. However, while introducing the technicalities necessary to discuss
compositional inference rules, in this section we also try to illustrate the meaning
of the inference rules, and their overall rationale.

Generally speaking, the goal of a compositional inference rule is to provide
a way to prove some facts about the composition of some modules, from other
known facts about each of the modules. Let us assume that we are dealing with
systems made of some N ≥ 2 modules.

Local rely/guarantee specifications. The starting point for the applica-
tion of a compositional inference rule is given by a set of local specifications,
one for each of the modules in the system. This means that we have some for-
malization of the elementary significant behavior of each module, in terms of a
formula.

In general, the local specifications could be any kind of formula. In prac-
tice, a very natural way to specify a module is according to the rely/guarantee
paradigm.With the rely/guarantee paradigm one makes some assumptions on
the behavior of the environment of the module under specification, and he/she
links these assumptions to the guaranteed behavior of the module itself: the
module behaves as expected only if its environment does the same.

In order to formalize this in the inference rules, we associate to each module
1 ≤ i ≤ N two formulas: Ei and Mi. Ei is called the local assumption of
module i, while Mi is called the local guarantee of module i. Therefore, the
local specification of module i consists of some formula linking Ei to Mi.

In the simplest case, this link consists in logical implication: Ei ⇒ Mi is a
local specification describing a module that respects formula Mi as long as its
environment respects formula Ei. For instance, let us consider a simple adder
module which takes an integer a and returns it increased by 2 units: b = a + 2.
A rely/guarantee local specification for such a module could be the following:
if a is an even number, then so is b.

More generally — and in particular when dealing with the description of tim-
ing behavior — the link between assumption and guarantee is defined through
a binary operator which we generically denote as �. We call it compositional

8

operator. So, implication is a simple example of compositional operator, but in
general different inference rules use different compositional operators. We will
provide several examples of compositional operators in the following sections.

Global specifications. As we said, the goal of a compositional inference rule
is to infer some facts about the composition of modules. In the most general
case, the N modules are composed into an open system, which can therefore also
be characterized by a global rely/guarantee specification. The global rely/guar-
antee specification can be of the same form of the local specifications, or of a
different form.

Anyway, we characterize it through two formulas called global assumption
and global guarantee, denoted as E and M , respectively. As it is simple to
understand, they play similar roles as the local formulas, but with reference
to the whole system: E formalizes assumptions about the expected behavior
of the system’s environment, and M formalizes the guaranteed behavior of the
composite system.

Parts of a compositional inference rule. Let us now illustrate the typical
components of a compositional inference rules, through a simple example.

Recall the module “adding 2” described above; let us introduce a predicate
eve(k) to denote the fact that k is even. Thus, the rely/guarantee specification
of this module can take the form eve(a) ⇒ eve(b). Let us now connect two
instances 1, 2 of this module such that the input of module 1 is the output of
module 2, and vice versa. The rely/guarantee specification of module 2 would
then be eve(b) ⇒ eve(a). We now illustrate the components of compositional
inference rules through this simple system.

Global specification. Let us start from the conclusion of the inference
rule. In a nutshell, it consists of the global specification: E � M . In other
words, the overall goal of the inference rule is to deduce the truth of the global
specification.

For our simple example, let us assume that the global guarantee is eve(a) ∧
eve(b), that is both values exchanged by the two modules are even numbers.
Since the system is a closed one, we need not care about a global assumption;
equivalently, we assume E to be identically true.

Local specifications. Let us now consider the formulas that appear among
the antecedents of the rule. Obviously, we have the local specifications, as the
ultimate goal of the rule is to infer the truth of the global specification from
the truth of all the local specifications. Therefore all the local specifications
Ei � Mi for all 1 ≤ i ≤ N appear as antecedents of a compositional inference
rule.

In our example, we have both eve(a) ⇒ eve(b) and eve(b) ⇒ eve(a) among
the antecedents.

9

Assumption discharging formulas. Since we are considering local spec-
ifications in rely/guarantee form, we cannot say anything about the truth of the
local guarantees unless we are able to prove the truth of the local assumptions.
In other words, in order to use local guarantees as descriptions of the mod-
ules’ behavior, we must first show that the modules’ environments behave as
required by the guarantees. But the system is made by the composition of the
various modules; therefore, for each module i, the other modules constitute i’s
environment.

This suggests to introduce an hypothesis in the inference rule that allows
one to show that the truth of the environment assumptions of the various mod-
ules follows logically from that of the modules’ guarantees. Since the verb
“discharge” is typically used to mean “prove an assumption”, we call these hy-
potheses (one for each module) assumption discharging formulas. They are in
the form M1 ∧ M2 ∧ · · ·MN ⇒ Ei for each module 1 ≤ i ≤ N ; notice that,
in the most general case, we allow one to use any module j, including itself,
to discharge the assumption. Later, we discuss how this gives rise to different
kinds of rules.

The global environment E may take part in determining the properties of
the environment of each module i. Therefore, in the most general case it may
be required to use the global assumption E to discharge some local assumption
Ei: the discharging formula becomes E ∧ M1 ∧ M2 ∧ · · ·MN ⇒ Ei in this case.
In other words, the local environment of module i “inherits” some properties of
the global environment.

In our running example, notice that the assumption of module 1 is the
guarantee of module 2, and vice versa. Therefore, the assumption discharging
formula for module 1 (resp. 2) coincides with the local specification of module
2 (resp. 1).

Circularity breaking and initialization. As it should be clear even
from our trivial example, rely/guarantee compositional inference rules may in-
volve a circularity between assumptions and guarantees of some modules. In
our running example, this is apparent by the fact that each module relies on
the other module’s guarantee in order to behave correctly (i.e., according to its
own guarantee). Circular reasoning is in general unsound, therefore we need to
introduce an additional hypothesis in the inference rule to make the deduction
sound. We call this additional hypothesis initialization condition.

Even if the rule does not involve a circularity, some form of initialization
condition is required as “starting point” to apply the chain of inferences implied
by the local specifications. In other words, if we have no circularities between
specifications and dischargings, we nonetheless have to start from the truth of
some local assumption or guarantee to exploit the rely/guarantee specifications.
Therefore, the existence of some initialization condition does not depend on the
circularity of the rule.

The actual form of the initialization condition can vary a lot from inference
rule to inference rule, and it might even be implicit (i.e., subsumed by some

10

assumptions on the semantics of the language). In our simple example, it might
simply consists of an assertion about a being even a priori : eve(a). This clearly
breaks the circularity as it holds regardless of any assumption. In fact, in this
case the application of the inference rule amounts to the application of the well-
known modus ponens logic inference rule [Men97]: from the truth of eve(a) and
eve(a) ⇒ eve(b) we deduce eve(b), so overall we have eve(a) ∧ eve(b). Although
compositional inference rules will be much more complicated than this, being
able to deal with temporal properties, our trivial example shows that the very
basics of compositional reasoning are grounded in basic logic inference.

Global implementation. Combining the local specifications with the dis-
chargings, and through the initialization condition, one should be able to infer
the truth of some (or all) of the local guarantee formulas Mi’s. One final in-
gredient is usually required: an hypothesis should link the truth of the local
guarantees to that of the global guarantee; the latter is in fact the ultimate
goal. Therefore, in general we have a formula M1 ∧ M2 ∧ · · ·MN ⇒ M among
the antecedents of a compositional inference rule. We call this hypothesis global
implementation.

In our simple running example, the global implementation is trivially true,
as M = M1 ∧ M2 = eve(b) ∧ eve(a).

As with the local dischargings, it may be necessary to exploit the assump-
tions about the global environment to infer the truth of the global guaran-
tee. Therefore, a more general form of the global implementation formula is:
E ∧ M1 ∧ M2 ∧ · · ·MN ⇒ M

Time and initialization. Although the notions of compositionality and
compositional inference rules is grounded in basic logic languages, our interest
is about compositionality for temporal logic formalisms. Therefore, our compo-
sitional inference rules must deal with temporal descriptions of the behavior of
systems.

In such cases, it happens often that the rely/guarantee behavior of a module
involves a temporal relationship between the assumption and the guarantee
of the module. For instance, consider a functional module that takes some
input and returns an output after some time T . Our running example may be
refined to have such a temporal behavior: the local specification would now be
expressible through the TRIO formula eve(a) ⇒ Futr(eve(b), T).

In accordance, we may need to restrict the “temporal scope” of the an-
tecedents, or of the consequent, or both. Formally, this can be achieved by
making each formula of the inference rule the consequent of an implication,
whose antecedent is a (temporal) formula that holds if and only if we are within
the desired “temporal scope”. We denote such antecedents with the letter I.
In general, we may have a different I for each hypothesis or conclusion of the
inference rule. We denote them by adding subscripts and superscripts according
to the formula to which that I is to be applied.

Returning one more time to our simple example, let us assume that both

11

modules have a predicate s which is true exactly when the system is started.
Then, for instance, the local rely/guarantee specification for module 1 would
now be in the form s ⇒ (eve(a) ⇒ Futr(eve(b), T)), and similarly for the other
formulas. The initialization condition would be naturally expressed by specify-
ing that at when the system is started, a is even: s ⇒ eve(a).

More generally, we observe that the need for a notion of “initialization” (or
“system start”) arises especially when one uses bi-infinite time domains (such
as

�
and � , which are the default choices for TRIO); otherwise, with mono-

infinite domains, the infimum element of the time domain conventionally denotes
an absolute time instant at which the system starts. Indeed, most compositional
inference rules in the literature [Fur05] adopt a mono-infinite time domain, and
therefore do not use initialization predicates (at least in the form we have just
presented).

General form of a rely/guarantee compositional inference rule. Ac-
cording to our explanations, the form of a rely/guarantee compositional infer-
ence rule is summarized in Table 1.

∧
1≤i≤N (Isp

i ⇒ (Ei � Mi)) local specifications

∧
1≤i≤N

(
Idsc
i ⇒

(
E ∧

∧
j Mj ⇒ Ei

))
(assumption) discharging formulas

I imp ⇒
(
E ∧

∧
j Mj ⇒ M

)
global implementation

I init ⇒ init initialization (condition)

Iglb ⇒ E � M global specification

Table 1: The components of a generic compositional inference rule.

The observant reader may argue that the general form is not really a spe-
cialization of a generic inference rule, as the initialization condition allows any
formula among the antecedents, and the global specification allows any for-
mula as consequent through an adequate choice of compositional operator and
of E,M . This is technically true, but the goal of the above schema is not to
strictly characterize all compositional rules, but simply to give an (partly intu-
itive) idea of what a form a compositional rule should have, and to serve as a
yardstick for the following developments, taxonomy, and explanations.

Syntactically-restricted completeness. For compositional inference rules
one is usually interested in a notion of completeness that is slightly narrower
than the one introduced previously for general inference rules. Namely, it is
common to consider only formulas expressible as a global specification, that

12

is through a compositional operator. Then, a compositional inference rule is
complete — according to this syntactically-restricted notion of completeness —
if: for any conclusion ξ̃ that is expressible as ξ̃ ≡ Iglb ⇒ E � M and is true,
there is some set of premises Π̃ such that the pair Π̃, ξ̃ belongs to the relation
defined by the rule, and Π̃ is true. The difference between this definition and the
more general one given above is in the fact that we now consider only formulas
expressible according to the syntactic restrictions given by the statement of the
compositional inference rule.

Notice that the syntactic restrictions may not impact semantic expressive-
ness at all: in such cases, when any formula can be written as a global spec-
ification, the two definitions coincide. This happens often in practice, as we
will see with the compositional operators that we will introduce in the following
sections. In the most general case, however, such a narrower notion of com-
pleteness is adopted since it is totally irrelevant to discuss the completeness of
a compositional inference rule for formulas that are not expressible as specifica-
tions of a modular systems: in such cases compositionality is useless, and one
should resort to traditional “flat” inference rules and standard deduction.

2.2 Dimensions for a Compositional Taxonomy

This section considers some common choices according to which the general
compositional inference rule of Table 1 is instantiated into actual rules, and
classifies the dimensions along which these instantiations are made. We stress
again the fact that we do not aim at exhaustiveness — which would probably
be of little practical interest anyway — but simply at giving a useful taxonomy
which may guide the development of some actual rules.

Let us first list the dimensions we consider; afterward, we comment them.

• First, we distinguish between circular and non-circular (or circle-free)
rules. A rule is circular if there are circularities between the discharging
formulas and the local specifications: in other words, when the assumption
of some module is discharged (directly or indirectly) through the guarantee
of the same module.

• A self-discharging rule is one where the guarantee Mi of some module i

appears on the left-hand side of the implication that discharges the as-
sumption Ei of the same module. Notice that this is a different notion
than circularity, as we discuss below.

• A rule is fully compositional when the global assumption E does not ap-
pear in any of the discharging formulas.

• A rule is globally initialized iff all of the formulas I
sp
i , Idsc

i , I imp are iden-
tically true; in other words, the truth of the corresponding formulas is not
dependent of the occurrence of the start predicate. Otherwise, we call the
rule locally initialized.

13

• Finally, another dimension along which to classify a compositional rule is
the choice of the compositional operator : every choice of the compositional
operator gives rise to a different “flavor” of inference rule.

Let us now give an idea of how the various features of inference rules may
be related those of the systems whose correctness they are used to prove.

Circular vs. non-circular rules. This is a major feature according to which
compositional inference rules can be classified. Circular rules are needed in prac-
tice when modeling systems whose components circularly rely on one another
to function correctly when put together. For instance, the simple example of
the two “adding 2” modules (shown previously) exhibits an obvious circularity,
manifest by the fact that the guarantee eve(b) of module 1 coincides exactly
with the assumption of module 2, and vice versa.

Indeed, our experience has shown that this is often not the case: designing
a system whose components circularly rely on one another is most of the times
an overly complicated choice, so it is not likely to be taken often. Of course,
exceptions exist: for instance the dining philosophers example of [FRMM06],
and the BitTorrent example of Section 6, are examples of systems that exhibit
circularities. However, they have been chosen especially with this criterion in
mind: to show circular inference rule in action. Therefore, in the remainder we
also discuss non-circular inference rules, and argue that these are very commonly
used in practice.

In general, the soundness of non-circular rules relies on very minimal (and
simple) assumptions about the various elements of the rule. Indeed, their cor-
rectness is often a simple consequence of the elementary properties of the im-
plication and of the conjunction, as we will show in Section 3.

On the other hand, showing the soundness of circular rules is in general
more involved, in particular when dealing with the specification of temporal
properties. In fact, circular reasoning is in general not sound, so that one has to
show that there is some circularity breaking mechanism that resolves the issue
(this is usually a result of the interplay between the initialization conditions and
the properties of the compositional operator). This probably explains why most,
if not all, the compositional rules that have been studied in the literature are
circular [Fur05]: demonstrating their soundness has been deemed a sufficiently
challenging problem to be of interest.2

Self-discharging rules. Whereas circularity is mostly a semantic property,
self-discharging rules have a clear syntactic characterization.

In order to motivate the use of self-discharging rules, let us sketch a very
simple example of a timed system where self-discharging is the natural way to
go. For the sake of simplicity let us assume a discrete time domain, and let
us just consider one single thermostat module.3 Now, let us assume that the

2Indeed, Abadi and Lamport [AL95] call “strong” inference rules which are circular.
3Clearly, this would make us lose the point of compositional reasoning, but we do this for

illustration purposes only.

14

thermostat is capable of influencing the temperature of a room. In particular,
whenever the temperature is within a given “safe” range, the device is capable
of guaranteeing that the temperature is also within the range in the next time
instant. Thus, if we introduce a time-dependent predicate ok to indicate that
the temperature is within the desired range, the rely/guarantee behavior of the
module may be described with the formula ok ⇒ NowOn(ok). Notice that in
this case E = M = ok for the module. Therefore, the tautology ok ⇒ ok would
naturally be a self-discharging assumption discharging formula for the system.

As this little example suggests, self-discharging rules may be needed in de-
scribing the behavior of modules with some form of feedback. In such modules,
the functionality itself of the module (represented by the guarantee) may con-
tribute directly, together with the other modules in the system, to make the
environment of the module behave as in the assumption. On the other hand,
when there is no feedback, then the module relies directly solely on the other
modules to have a “correct” environment, while its actions contribute to guar-
anteeing that the other modules’ environments are “correct”. Another, more
realistic, example of a system where self-discharging is useful is the controlled
reservoir example presented in [Fur03, Chap. 7].

Let us remark that self-discharging and circular are two distinct properties
of a rule. More precisely, a self-discharging rule is always also a circular rule:
this is apparent from our definition of circular rules. On the other hand, a
rule may be circular without being self-discharging: in this case the circularity
between assumption and guarantee of some module is not direct (i.e., within
the same implication), but it requires some levels of indirection. The canonical
example is that of two modules 1, 2 whose local specifications are E1 ⇒ M1 and
E2 ⇒ M2, and whose discharging formulas are M2 ⇒ E1 and M1 ⇒ E2. Then,
the discharging formulas show that the rule is not self-discharging. However, the
discharging of assumption E1 (resp. E2) relies on the guarantee M2 (resp. M1),
which in turn depends on the assumption E2 (resp. E1) to hold, which relies on
the guarantee M1 (resp. M2); thus all in all E1 (resp. E2) circularly depends on
M1 (resp. M2) to be discharged.

Fully compositional rules. According to the stricter definition of composi-
tionality, which we presented in Section 1.1, in a compositional rule the truth of
some global fact should be inferred “on the basis of its constituent components
only”. This suggests that the discharging of the assumptions should not depend
on anything which is “outside” the system, such as the global assumption E.
This is why we call a rule “fully compositional” if this is the case.

Closed systems — such as our “adding 2” example of the previous section —
are a particularly relevant class of systems for which fully compositional rules
clearly suffice. In fact, closed systems do not communicate with any exter-
nal environment, so that the global assumption E is identically equal to true.
In general, controlled systems are usually modeled as closed systems, as the
physical system under control and the controller constitute each other’s envi-
ronment. From this viewpoint, modeling a complete system in a rely/guarantee

15

style often results in a closed system, as one endeavors to include a model of
the environment itself, according to the control standard paradigm.

On the contrary, when the modules are not “autonomous” in determining
one other’s environment, but they rely on some additional property of the global
environment, one needs non-fully compositional rules. Notice also that an open
system does not necessarily require a non-fully compositional inference rule, as
the global assumption may be required only in the global implementation or in
the global specification.

In the literature, several compositional inference rules are non-fully compo-
sitional [Fur05]. This is often driven more by an effort toward generality (and
completeness), rather than by specific requirements of the systems of interests.
In our analysis, we will consider both fully and non-fully compositional rules.

Globally vs. locally initialized rules. As we discussed in the previous Sec-
tion 1.1, initialization predicates I are needed only when dealing with specifi-
cations describing the temporal behavior of a system. This is the focus of the
present work, thus the notion of globally and locally initialized rules is needed.

If a system has a notion of “start” or initialization, then it may be that it
behaves differently before than after it has started. Let us illustrate this on the
thermostat example: let us postulate that the module can be started, and let
us model this fact through a predicate s becoming true. Then, it may be that
the rely/guarantee behavior ok ⇒ NowOn(ok) holds only after the system has
started, that is after s has been true at least once (for simplicity, let us assume
that further starts are ignored). Then, the initialization predicate I sp for the
local specification should be Isp = SomP(s), and the full local specification
would become: SomP(s) ⇒ (ok ⇒ NowOn(ok)). Notice that this would also
probably require to introduce the same initialization predicate for the other
hypotheses and for the conclusion of the inference rule we would like to use.
This corresponds to completely disregarding the behavior of the system before
it has started.

Locally initialized rules subsume globally initialized ones, as in globally ini-
tialized rules one does not have to deal with initialization conditions except
that in the initialization formula. Nonetheless, globally initialized rules usually
present the local specifications in a simpler form, for modules whose rely/guar-
antee behavior does not depend on any initialization. Finally, notice that, in
globally initialized rules, the initialization formula is only required for circular-
ity breaking, in order to guarantee the soundness of the rule, but it does not
influence the behavior of the single modules or the way they interact.

Plan of the following sections. The following Section 3 presents some com-
positional inference rules that are non-circular. Next, Section 4 presents several
circular compositional inference rules, according to the taxonomy we have just
introduced. Notice that Sections 3 and 4 present the rules in the simple case of
systems composed on just two modules, in order for the presentation to be as
terse as possible. Then, Section 5 shows how the previously introduced inference

16

rules can be generalized to handle the case of N > 2 modules as well.

3 Non-Circular Compositional Inference Rules

This section presents two non-circular compositional inference rules, and proves
their soundness and completeness.

3.1 Non-Circular Inference Rules

For the sake of simplicity, let us first consider simple systems consisting of two
modules only. The extension to the general case of N ≥ 2 modules will be
discussed separately, in Section 5.

First of all, the non-circular rules that we present here use regular implication
as a compositional operator, as they are simple consequences of the logical rules
of implication and conjunction. Even more generally, we are able to present their
proofs in terms of two generic logical connectives denoted as v and u. v repre-
sents any operator which is an order relation (i.e., it is reflexive, anti-symmetric
and transitive), while the u connector represents an associative, commutative
and idempotent operation which respects the order relation (i.e., such that if
A v C and B v D, then also AuB v CuD for any A,B,C,D). It is immediate
to realize that logical implication ⇒ and conjunction ∧ respectively satisfy such
properties.

Therefore, we have the two following proposition, that establish the sound-
ness of the corresponding two compositional inference rules.

Proposition 2 (Non-Circular Rely/Guarantee Inference Rule 1). If:

1. E2 v M2

2. E u M1 v E2

3. E u M1 u M2 v M

4. E v M1

then, E v M

Proof. The following formal derivation proves the proposition.
∗) E u M1 v M2 by 2, 1 and transitivity of v

∗∗) E v E by reflexivity of v
E u E v M1 u E by 4, the previous one and the order-preservation of u

E v M1 u E by the previous one and the idempotence of u
E v E u M1 by the previous one and the commutativity of u

E v M2 by the previous one, ∗) and the transitivity of v
E u E v M1 u M2 by 4, the previous one, and the order-preservation of u

E v M1 u M2 by the previous one and the idempotence of u
E u E v E u M1 u M2 by ∗∗), the previous one and the order-preservation of u

E v E u M1 u M2 by the previous one and the idempotence of u
E v M by the previous one, 3 and transitivity of v

17

Notice that the rule of Proposition 2 is non fully compositional; instead, the
following is.

Proposition 3 (Non-Circular Rely/Guarantee Inference Rule 2). If:

1. (a) E1 v M1

(b) E2 v M2

2. M1 v E2

3. E u M1 u M2 v M

4. E v E1

then, E v M

Proof. The proof is very similar to that of Proposition 2. In brief, just assume
E holds; then, E1 by 4, M1 by 1a, E2 by 2, M2 by 1b, M by 3.

We remark again that, however simple the two above non-circular rules may
seem, they are those used in practice in a lot of formal reasoning about com-
posite systems. Indeed, their simplicity and wide applicability show that what
we call “compositional reasoning” is naturally embedded in mathematical logic
reasoning [Lam98].

3.2 Completeness of the Non-Circular Rules

Let us show that the inference rules of Propositions 2 and 3 are relatively com-
plete. We need an extra assumption on the set of formulas over which the order
relation v is defined: we require that there exists a maximum element in the
ordered set, indicated as >, that is a formula such that for any formula P ,
P v > is true.4 Moreover, > must be an identity element for the u operation,
that is for any formula P , P u > = > u P = P .

Notice that these assumptions are obviously satisfied by the logical value
true, with respect to the logical implication ⇒ and conjunction ∧ respectively.

Theorem 4 (Completeness of Non-Circular Inference Rules). The non-
circular inference rules in Proposition 2 and in Proposition 3 are relatively com-
plete.

Proof. Let us first consider Proposition 2. Assume E v M holds. Hence choose
M1 = M and E2 = M2 = >. Hypotheses 1 and 2 are trivially true because of
the definition of > as maximum element of the order. Hypothesis 4 is E v M1,
which follows from E v M , M v M1 (since M = M1) and transitivity of v.
Finally, hypothesis 3 is EuM1uM2 v M , which corresponds to EuMu> v M

because of the equivalences, and to EuM v M because of definition of identity.
Now, since E v M and M v M , the last hypothesis 3 also holds.

Let us now consider Proposition 3 and assume E v M . If you choose
E1 = E, M1 = M and M2 = E2 = >, conditions 1–4 correspond to:

4Recall that P = Q iff P v Q and Q v P

18

1. (a) E v M , assumed true.

(b) > v >, trivially true.

2. E u M v >, trivially true.

3. E u M u > v M , equivalent to E v M , assumed true.

4. E v E, true by reflexivity of v.

3.3 Summary of Non-Circular Rules

Table 2 summarizes the two non-circular compositional inference rules we have
presented above; for uniformity with the results of the following sections, we use
implication and conjunction in place of the generic v and u operators.

Rule 1 (Prop. 2) Rule 2 (Prop. 3)
E2 ⇒ M2 E1 ⇒ M1, E2 ⇒ M2

E ∧ M1 ⇒ E2 M1 ⇒ E2

E ∧ M1 ∧ M2 ⇒ M E ∧ M1 ∧ M2 ⇒ M

E ⇒ M1 E ⇒ E1

E ⇒ M E ⇒ M

Table 2: Non-circular compositional inference rules for two modules.

4 Circular Compositional Inference Rules

This section presents several circular compositional inference rules, proves their
soundness, and discusses their completeness. More precisely, we are going to
start in Section 4.1 by introducing a compositional operator � and present
fully and non-fully compositional rules that use this operator. Then, Section 4.2
explores variations of the � that may be more suited to model certain classes of
systems; inference rules for these variations are derived from the analogous ones
in Section 4.1. Finally, Section 4.3 studies the completeness of the previously
introduced compositional rules.

4.1 The Time Progression Compositional Operator and
Its Compositional Rules

4.1.1 The Time Progression Operator

Let us introduce a simple compositional operator that allows us to define sound
circular inference rules. It is called time progression operator, and it is denoted
by the symbol �. Informally, P � Q is true for two time-dependent formulas
P,Q if, whenever P has been true in the immediate past, then Q has also been

19

true in the immediate past, is true now, and will continue to hold for some time
in the immediate future. This is formalized by the following definition.

P � Q ≡

{
UpToNow(P) ⇒ UpToNow(Q) ∧ Q ∧ NowOn(Q) if time is dense

UpToNow(P) ⇒ UpToNow(Q) ∧ Q if time is discrete

Thus, the rely/guarantee specifications in our inference rules are in the form
E � M . Notice that this is a reasonable way to express a rely/guarantee
specification: in fact, we say that the behavior of the module in the immediate
future is influenced only by the behavior of the environment in the immediate
past, so that if the environment stops behaving correctly, then the module can
also stop behaving correctly only after “a while”.

From a technical viewpoint, notice that the semantics of the time progression
operator allows us to build a sort of “temporal induction” over the timeline,
where the inductive step is allowed by the Q ∧ NowOn(Q) part that “makes
time progress” past the current instant (hence, the name). This will become
apparent in the soundness proofs of the inference rules that use this operator.

Finally, let us also remark that a different operator was also named time
progression and denoted with the same symbol in [FRMM06]. In Section 4.2
below we will show how the inference rule for that operator, also presented
in [FRMM06], can be derived from those for the time progression operator
introduced here.

In the remainder, recall that all TRIO formulas are implicitly universally
quantified over time, that is closed with an Alw operator. In particular, this is
the case for the hypotheses and conclusions of the rules that we are presenting.

4.1.2 Circular Inference Rules for the Time Progression Operator

Let us now present and prove the soundness of two circular inference rules for the
time progression operator. The first rule is given in the following proposition;
according to our taxonomy, it is a fully-compositional, non self-discharging,
globally initialized, circular inference rule.

Let us also remark that, in practice, the initialization predicate S would be
modeled in TRIO as a unique event, i.e., an event which happens exactly once
in time. This is rendered by the two formulas Som(S) and S ⇒ AlwP(¬S) ∧
AlwF(¬S). However, the soundness of this inference rule, as well as that of the
others that we present in the remainder of this section, do not depend on S

being a unique event.

Proposition 5 (Rely/Guarantee Circular Inference Rule 1). If:

1. (a) E1 � M1

(b) E2 � M2

2. (a) M1 ⇒ E2

(b) M2 ⇒ E1

20

3. M1 ∧ M2 ⇒ M

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for some i ∈ {1, 2}

then SomPi(S) ⇒ (E � M).

Proof for dense time domains. Let t be the current instant, and let us assume
that SomPi(S) holds at t; thus, let t′ ≤ t be (any) instant at which S held. We
have to show that E � M holds at t.

First of all, let us prove that UpToNow(M1 ∧ M2), M1 ∧ M2, and
NowOn(M1 ∧ M2) hold at t. To this end, we know that at t′ we have UpToNow(Ei)
or UpToNow(Mi) for some i, because of (4). Let us assume that UpToNow(Ei);
this is without loss of generality, as if UpToNow(Mi), then (2) lets us conclude
immediately that also UpToNow(Eî) at t′, where we adopt the convention of

denoting by î the “other” index {1, 2} \ {i} 3 î. Then, let us consider the
consequences of (1) at t′: since UpToNow(Ei), then UpToNow(Mi), Mi, and
NowOn(Mi) also at t′. Thus, let us consider (1) and (2) again and see that also
UpToNow(Eî), UpToNow(Mî), Eî ∧ Mî, NowOn(Eî), and NowOn(Mî).

Therefore, we have that M1 ∧ M2 holds until some instant t′′ > t′ in the
future w.r.t. t′; in other words, we can say that UpToNow(M1 ∧ M2) holds at
t′′. But then, UpToNow(E1 ∧ M2) holds at t′′, because of (2). It is not difficult
to see that we can repeat everything that we did at t′ again at t′′. Thus, we
will have a strictly monotonic sequence of points t′ < t′′ < t′′′ < · · · such that
M1 ∧ M2 holds throughout.

Next, we have to show that the sequence gets (at least) until a point u > t.
We show this by contradiction: assume to the contrary that M1 ∧ M2 holds
until point t ≤ t only; that is NowOn(M1 ∧ M2) is false at t. Therefore,
UpToNow(M1 ∧ M2) holds at t. Then, (2) lets us deduce that also
UpToNow(E1 ∧ E2) holds at t. But then we consider (1) twice, once for mod-
ule 1 and once for module 2, to conclude in particular that NowOn(M1 ∧ M2).
This is in contradiction with the hypothesis that M1 ∧ M2 held up until t, as
expected.

All in all, we have shown that M1 ∧M2 hold from before t′ until some u > t.
Therefore, in particular UpToNow(M1 ∧ M2), M1 ∧M2, and NowOn(M1 ∧ M2)
all hold at t.

Finally, from (3) we easily infer that UpToNow(M) ∧ M ∧ NowOn(M) at
t.

Proof for discrete time domains. We present a proof along the lines of the one
for dense time domains. Alternatively, one could use induction to prove the
same result for discrete time.

Let t be the current instant, and let us assume that SomPi(S) holds at t;
thus, let t′ ≤ t be (any) instant at which S held. We have to show that E � M

holds at t.
First of all, let us prove that UpToNow(M1 ∧ M2) and M1 ∧ M2 hold at t.

To this end, we know that at t′ we have UpToNow(Ei) or UpToNow(Mi) for
some i, because of (4). Let us assume that UpToNow(Ei); this is without loss

21

of generality, as if UpToNow(Mi), then (2) lets us conclude immediately that
also UpToNow(Eî) at t′, where we adopt the convention of denoting by î the

“other” index {1, 2} \ {i} 3 î. Then, let us consider the consequences of (1)
at t′: since UpToNow(Ei), then UpToNow(Mi) and Mi also at t′. Thus, let us
consider (1) and (2) again and see that also UpToNow(Eî), UpToNow(Mî), Eî,
and Mî.

Therefore, we have that M1 ∧ M2 holds until t′′ = t′ + 1 included; in
other words, we can say that UpToNow(M1 ∧ M2) holds at t′′ + 1. But then,
UpToNow(E1 ∧ M2) holds at t′′ + 1, because of (2). It is not difficult to see
that we can repeat everything that we did at t′ again at t′′ + 1. Thus, we will
have a strictly monotonic sequence of points t′ < t′ + 1 < t′ + 2 < · · · such that
M1 ∧ M2 holds throughout.

Next, we have to show that the sequence gets (at least) until a point u > t.
We show this by contradiction: assume to the contrary that M1 ∧ M2 holds
until point t ≤ t included only; that is NowOn(M1 ∧ M2) is false at t. There-
fore, UpToNow(M1 ∧ M2) holds at t + 1. Then, (2) lets us deduce that also
UpToNow(E1 ∧ E2) holds at t + 1. But then we consider (1) twice, once for
module 1 and once for module 2, to conclude in particular that M1 ∧M2. This
is in contradiction with the hypothesis that M1∧M2 held up until t, as expected.

All in all, we have shown that M1 ∧ M2 hold from t′ − 1 until some u > t.
Therefore, in particular UpToNow(M1 ∧ M2) and M1 ∧ M2 all hold at t.

Finally, from (3) we easily infer that UpToNow(M) ∧ M at t.

Notice that in the above proofs we never actually introduced any fact about
the value of E; in other words it is as if we had proved the conclusion true � M .
Indeed, in this rule — and in some of the following ones — the global assumption
E is introduced in the conclusion only in conformance with the other rules;
in other words we make no assumptions on the global environment. On the
contrary, other rules actually require E to hold in order to be sound; this is the
case, for instance, of the rules of Proposition 8 and Proposition 12, which we
will present in the following sections.

The second rule we present is non fully compositional, self-discharging, glob-
ally initialized, and circular. Notice that our choice of compositional operator,
combined with the fact that the rule is non fully compositional, requires to add
a term in the conclusion that requires the global assumption E to hold “always
in the past”. Otherwise (i.e., if E was false somewhere in the past), it would be
impossible, in general, to carry out the discharging of local assumptions, since
the rule is non fully compositional. We prove the soundness of the rule only for
dense time models; the proof for discrete time models can be developed along
the same lines.

Proposition 6 (Rely/Guarantee Circular Inference Rule 2). If:

1. (a) E1 � M1

(b) E2 � M2

22

2. E ∧ M1 ∧ M2 ⇒ E1 ∧ E2

3. M1 ∧ M2 ⇒ M

4. S ⇒ UpToNow(E1 ∧ E2) ∨ UpToNow(M1 ∧ M2)

then SomPi(S) ∧ AlwPe(E) ⇒ (E � M).

Proof for dense time domains. Let t be the current instant, and let us assume
that SomPi(S) and AlwPe(E) hold at t. We show that E � M holds at t; to this
end, let us first show that UpToNow(M1 ∧ M2), M1∧M2, and NowOn(M1 ∧ M2)
hold at t.

Let t′ ≤ t be an instant at which S holds. From (4), let us assume that
UpToNow(E1 ∧ E2) holds at t′. This is without loss of generality, since if
UpToNow(M1 ∧ M2), then also UpToNow(E1 ∧ E2) at the same time, from (2)
and the fact that AlwPe(E) at t ≥ t′.

Then, let us consider (1) at t′. We can infer that UpToNow(M1 ∧ M2),
M1 ∧M2, and NowOn(M1 ∧ M2) all hold at t′. Therefore, M1 ∧M2 holds until
some t′′ > t′. If t′′ > t, we are done proving the current goal; otherwise, we can
iterate the reasoning and get to a new point t′′′ > t′′.

The sequence of points t′ < t′′ < t′′′ < · · · must eventually reach a point
u > t. The proof by contradiction goes just as in the case of the proof of
Proposition 5.

So, finally we have that UpToNow(M1 ∧ M2), M1∧M2, and NowOn(M1 ∧ M2)
hold at t. The final step infers that also UpToNow(M), M , and NowOn(M)
from (3). Thus, we have shown that E � M holds at t.

4.1.3 Locally Initialized Circular Inference Rules

Let us now provide locally initialized variations of the two circular inference
rules introduced above. They will be useful in discussing the completeness of
the inference rules (see Section 4.3). Recall that, in locally initialized rules, the
use of the predicate S “simulates” an origin on the time axis.

Notice that, in order to retain soundness, we have to introduce two small
changes, other than local initializations. First, the initialization predicate in the
conclusion excludes the current instant for S to occur; second, the initialization
condition now requires an interval in the future where a local assumption or
guarantee holds. This is required to ensure that all predicates are evaluated after
the system has started, so that the locally initialized specification, dischargings,
and global implementation formulas hold there.

Proposition 7 (Rely/Guarantee Circular Inference Rule 1(bis)). If:

1. (a) SomPe(S) ⇒ (E1 � M1)

(b) SomPe(S) ⇒ (E2 � M2)

2. (a) SomPe(S) ⇒ (M1 ⇒ E2)

(b) SomPe(S) ⇒ (M2 ⇒ E1)

23

3. SomPe(S) ⇒ (M1 ∧ M2 ⇒ M)

4. S ⇒ NowOn(Ei) ∨ NowOn(Mi), for some i ∈ {1, 2}

then SomPe(S) ⇒ (E � M).

Proof for dense time domains. Let t be the current instant, and let us assume
that SomPe(S) holds at t. To show that E � M holds at t, let us first show
that UpToNow(M1 ∧ M2), M1 ∧ M2, and NowOn(M1 ∧ M2) hold at t.

Let t′ < t be an instant at which S holds. From (4), let us assume that
NowOn(Ei) holds at t′. This is without loss of generality, since if NowOn(Mi),
then also NowOn(Eî) at the same time, from (2) and the fact that in the right-
neighborhood of t′ SomPe(S) holds. Since NowOn(Ei) at t′, then equivalently
UpToNow(Ei) holds at some t′ + ε, for some ε > 0.

Then, let us consider (1) at t′ + ε. We can infer that UpToNow(Mi), Mi,
and NowOn(Mi) all hold at t′ + ε. Then, also UpToNow(Eî) holds at t′ + ε from
(2); but then, by (1) again, also UpToNow(Mî), Mî, and NowOn(Mî) all hold
at t′ + ε.

At this point, the proof goes on exactly as for Proposition 5. In particular,
we infer that UpToNow(M1 ∧ M2), M1 ∧ M2, and NowOn(M1 ∧ M2) are true
at t, and we conclude that E � M by applying (3).

Similar modifications are done to get a locally initialized circular inference
rule analogous to that of Proposition 6. We omit the proof, which is however
all similar to the one we have just provided.

Proposition 8 (Rely/Guarantee Circular Inference Rule 2(bis)). If:

1. (a) SomPe(S) ∧ AlwPe(E) ⇒ (E1 � M1)

(b) SomPe(S) ∧ AlwPe(E) ⇒ (E2 � M2)

2. SomPe(S) ∧ AlwPe(E) ⇒ (E ∧ M1 ∧ M2 ⇒ E1 ∧ E2)

3. SomPe(S) ∧ AlwPe(E) ⇒ (M1 ∧ M2 ⇒ M)

4. S ⇒ NowOn(E1 ∧ E2) ∨ NowOn(M1 ∧ M2)

then SomPe(S) ∧ AlwPe(E) ⇒ (E � M).

Finally, we present one more variation of the rule of Proposition 5. In this
case, we write the global implementation formula in terms of the � operator,
rather than using simple implication. We may argue that the original Propo-
sition 5 is probably in a form which is more likely to be applicable in practice,
whereas the following rule overloads one hypothesis with a large share of the
complexity involved in compositional reasoning. Nonetheless, we will show that
the following strengthening allows us to have a complete inference rule, and in
any case it may be useful in practice with systems where the link between local
and global guarantees is more involved than simple implication.

Proposition 9 (Rely/Guarantee Circular Inference Rule 1(ter)). If:

24

1. (a) E1 � M1

(b) E2 � M2

2. (a) M1 ⇒ E2

(b) M2 ⇒ E1

3. E ∧ M1 ∧ M2 � M

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for some i ∈ {1, 2}

then SomPi(S) ⇒ (E � M).

Proof. The proof is exactly the same as the one of Proposition 5 until we have
established that UpToNow(M1 ∧ M2) and M1∧M2 all hold at the current instant
t. Then, if also UpToNow(E) then clearly we infer that UpToNow(M) ∧ M at
t, from (3). This concludes the proof.

4.2 Other Compositional Operators and Compositional
Rules

This sections provides other circular compositional inference rules, exploring
different compositional operators and other different features.

4.2.1 A Stronger Time Progression Operator

Let us provide a compositional inference rule very similar to that discussed and
introduced in [FRMM06]. The rule exploits another compositional operator —
also called “time progression” in [FRMM06] — that we denote with the symbol
� here. Its semantics is the following.

P � Q ≡

{
AlwPe(P) ⇒ AlwPi(Q) ∧ NowOn(Q) if time is dense

AlwPe(P) ⇒ AlwPi(Q) if time is discrete

Notice that � is stronger than � in the following sense: if P � Q holds over
the whole time axis, then P � Q also holds, while the converse is not true,
in general. In fact, if for instance P holds exactly over (0, 10) and Q is always
false, then it is true that P � Q everywhere, as AlwPe(P) is trivially false, but
P � Q is false, as Q should hold over some set (0, 10 + ε), for some ε > 0.

Despite � being stronger than � in the above sense, we cannot develop a
valid inference rule for the new operator by simply replacing the time progression
operator in Proposition 5 or 6 with the new compositional operator. In fact,
in general we also have to change the initialization condition with one which
“triggers” the application of the new operator. In particular, the � operator
requires its left-hand argument to hold over always in the past from the current
instant; therefore, we require that at the system initialization either some local
assumption or some local guarantee are true always in the past. Thus, we obtain
an inference rule which is a slight variation of the one presented in [FRMM06]
for the � operator.

25

Proposition 10 (Rely/Guarantee Circular Inference Rule 3). If:

1. (a) E1 � M1

(b) E2 � M2

2. (a) M1 ⇒ E2

(b) M2 ⇒ E1

3. M1 ∧ M2 ⇒ M

4. S ⇒ AlwPe(Ei) ∨ AlwPe(Mi), for some i ∈ {1, 2}

then SomPi(S) ⇒ (E � M).

Proof sketch for dense time domains. Let us just sketch the beginning of the
proof: the remainder is all similar to the previous proofs, as well as to that
presented in [FRMM06].

Let t be the current instant and t′ ≤ t be an instant at which S held. Then,
without loss of generality we can assume that AlwPe(Ei) at t′; otherwise, it
would be AlwPe(Mi), but then AlwPe(Eî) would follow from (2). Then, from
(1) we infer that AlwPi(Mi) and NowOn(Mi) at t′. Moreover, from (2) and (1)
it is simple to deduce that also AlwPi(Eî ∧ Mî) and NowOn(Eî ∧ Mî). All in
all we have “advanced” until some time t′′ > t′.

Then, the proof proceeds by the usual non accumulation argument. When
we have finally shown that AlwPi(M1 ∧ M2) ∧ NowOn(M1 ∧ M2) at t, then
E � M follows straight from (3).

4.2.2 Implication as a Compositional Operator

As we also discussed elsewhere [FRMM06], there are basically two ways to make
a circular inference rule sound. One relies on writing specifications using an ad
hoc operator that allows one to “propagate” the validity of some predicate over
time, thus allowing a sort of temporal induction; this is the way we have followed
with the time progression operator or, more generally, with other compositional
operators. The other way to achieve soundness in presence of circularity is
to rely on semantic properties of the underlying model or, equivalently, of the
formulas that describe that model.

We follow this second way with the following inference rule. Rather than
using an ad hoc compositional operator, we simply write rely/guarantee guar-
antee specifications using implication ⇒ to link assumption and guarantee of a
module. On the other hand, we introduce assumptions on the behavior of the
local assumptions and guarantee. More precisely, let us recall the definition of
right-continuous and left-continuous states.

Definition 11 (States). A time-dependent predicate P is:

• A state iff P ⇒ UpToNow(P) ∨ NowOn(P) and ¬P ⇒ UpToNow(¬P) ∨
NowOn(¬P); we denote this by writing P ∈ ST−−.

26

• A left-continuous state iff it is a state and moreover P ⇔ UpToNow(P);
we denote this by writing P ∈ ST−−•.

• A right-continuous state iff it is a state and moreover P ⇔ NowOn(P);
we denote this by writing P ∈ ST•−−.

Notice that a state which is both left-continuous and right-continuous is
constant over time.

The inference rule of the following proposition requires that a module has
a local assumption or local guarantee that behaves as a left-continuous state,
whereas the other module has a local assumption or local guarantee that behaves
as a right-continuous state. These two facts combined allows us to substitute
an “alternation” of left- and right-continuous predicates to the use of a time
progression operator, in order to set up an induction over time. In a sense, the
interplay between left- and right-continuous states and the way they are logically
implied in the local specifications results in a constancy over time of the local
specifications. Notice that the rule is similar to the one in Proposition 5, except
for the use of ⇒ a compositional operator and for the semantic assumption on
the local formulas.

Proposition 12 (Rely/Guarantee Circular Inference Rule 4). If:

1. (a) E1 ⇒ M1

(b) E2 ⇒ M2

2. (a) M1 ⇒ E2

(b) M2 ⇒ E1

3. E ∧ M1 ∧ M2 ⇒ M

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for some i ∈ {1, 2}

5. E1 ∈ ST•−− or M1 ∈ ST•−−
5

6. E2 ∈ ST−−• or M2 ∈ ST−−•

then SomPi(S) ⇒ (E ⇒ M).

Proof for dense time domains. Let t be the current instant, and let us assume
that SomPe(S) holds at t. To show that E � M holds at t, let us first show
that UpToNow(M1 ∧ M2), M1 ∧ M2, and NowOn(M1 ∧ M2) hold at t.

Let t′ < t be an instant at which S holds. From (4), let us assume that
NowOn(Ei) holds at t′. This is without loss of generality, since if NowOn(Mi),
then also NowOn(Eî) at the same time, from (2) and the fact that in the right-
neighborhood of t′ SomPe(S) holds. Since NowOn(Ei) at t′, then equivalently
UpToNow(Ei) holds at some t′ + ε, for some ε > 0.

5Obviously, fixing which module is described by a right-continuous state is without loss of
generality.

27

Then, let us consider (1) at t′ + ε. We can infer that UpToNow(Mi), Mi,
and NowOn(Mi) all hold at t′ + ε. Then, also UpToNow(Eî) holds at t′ + ε from
(2); but then, by (1) again, also UpToNow(Mî), Mî, and NowOn(Mî) all hold
at t′ + ε.

At this point, the proof goes on exactly as for Proposition 5. In particular,
we infer that UpToNow(M1 ∧ M2), M1 ∧ M2, and NowOn(M1 ∧ M2) are true
at t, and we conclude that E � M by applying (3).

Since in the above proof we never evaluated hypothesis (3) at instants in
which SomPi(S) is false, we can actually strengthen that hypothesis and get
the following variation. By doing this, the rule becomes complete, as we will
show in Section 4.3.

Proposition 13 (Rely/Guarantee Circular Inference Rule 4(bis)). If:

1. (a) E1 ⇒ M1

(b) E2 ⇒ M2

2. (a) M1 ⇒ E2

(b) M2 ⇒ E1

3. SomPi(S) ⇒ (E ∧ M1 ∧ M2 ⇒ M)

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for some i ∈ {1, 2}

5. E1 ∈ ST•−− or M1 ∈ ST•−−

6. E2 ∈ ST−−• or M2 ∈ ST−−•

then SomPi(S) ⇒ (E ⇒ M).

We conclude this section by pointing out that the notion of states (and right-
continuous or left-continuous ones) is a meaningful one only when dealing with
dense time models [GM01]. Therefore, the above rules are applicable to such
time models only, and have no discrete-time counterparts.

4.2.3 A Circular Inference Rule Without Compositional Operator

Let us present one more circular inference rule. This rule differentiates itself
from the other ones, in that it does not use a compositional operator and it
does not make any assumptions on the behavior of the assumption and guar-
antee items. Moreover, it is substantially different than all the previous rules
because it does not assert the validity of some global guarantee over a time
interval that goes from the system initialization to the current time. Instead, it
asserts that the system always responds in a timely manner by making true the
global guarantee, provided the global assumption holds continuously for some
time, and some of the local assumption or guarantee are periodically initialized.
Thus, in a sense, it describes a system with a fixed bounded response time to

28

periodic initializations. In such systems the circularities are resolved periodi-
cally, rather than once for all at the beginning. Therefore, the rule is suitable to
prove properties about systems composed of modules periodically responding to
stimuli. In Section 6 we will demonstrate how to use the rule with an example
of communication protocol.

According to our taxonomy, the rule is circular, non self-discharging, fully
compositional, globally initialized (actually, not initialized at all), without com-
positional operator. Its soundness proof is rather simple, and requires no tem-
poral induction, contrarily to the other rules we have presented.6

Proposition 14 (Rely/Guarantee Circular Inference Rule 5). If, for
some fixed duration TB > 0:

1. (a) E1 ⇒ M1

(b) E2 ⇒ M2

2. (a) M1 ⇒ E2

(b) M2 ⇒ E1

3. E ∧ M1 ∧ M2 ⇒ M

4. ∃i ∈ {1, 2} : WithinF(Ei,TB) ∨ WithinF(Mi,TB)

then Lasts(E,TB) ⇒ WithinF(M,TB).

Proof. Let t be a generic time instant at which Lasts(E,TB) holds, and prove
that WithinF(M,TB). Notice that the same proof works for both dense and
discrete time domains.

From (4), let us assume that WithinF(E1,TB) at t. This is without loss
of generality: in fact, if WithinF(M2,TB), then WithinF(E1,TB) from (2b); if
WithinF(E2,TB), then WithinF(M2,TB) from (1b); if WithinF(M1,TB), then
WithinF(E2,TB) from (2a).

Thus, there exists a t′ such that t < t′ < TB and E1 holds at t′. Therefore,
E1 ∧ M1 ∧ E2 ∧ M2 holds at at t′ by (1) and (2). Moreover, since t < t′ < TB

and Lasts(E,TB) at t, then E also holds at t′. But then, M holds at t′ by (4).
Since t < t′ < TB, this implies that WithinF(M,TB) at t.

4.3 Completeness of Circular Inference Rules

This section analyzes the completeness of the circular inference rules presented
above.

Theorem 15. The rely/guarantee circular inference rule 1 of Proposition 5 is
incomplete.

6Notice that the conclusion formula Lasts(E, TB) ⇒ WithinF(M, TB) is a weaker version
of the bounded release operator Releases<T (P, Q). The operator is usually defined as ∀0 <

t < T : Futr(Q, t) ∨ WithinF(P, t). Therefore Releases<TB
(M,¬E) implies Lasts(E, TB) ⇒

WithinF(M, TB), but not vice versa, as the latter is true whenever E holds only over intervals
of length less than TB.

29

Proof. Let σ, ε, µ be three Boolean basic time-dependent items; let us take S =
σ, E = ε, and M = µ. Then, in order to show incompleteness, we provide a
history for σ, ε, µ such that the conclusion of the inference rule holds, but no
choice of Ei,Mi makes true all the premises of the rule.

The history is as follows. µ and ε are false everywhere, whereas σ is true only
at some point s internal to the time domain (and it is false everywhere else).
Notice that this history is definable in TRIO by the two formulas Alw(¬µ ∧ ¬ε)
and Som(σ ∧ AlwP(¬σ) ∧ AlwF(¬σ)).7

Let us now realize that E � M is always true, since E is always false;
therefore the conclusion of the inference rule holds a fortiori.

Let us now consider what happens at s. In order to make (4) true, let us
assume that it is UpToNow(E1) at s. As usual, this is without loss of gen-
erality, since if UpToNow(M2) then UpToNow(E1) in order to satisfy (2b); if
UpToNow(E2) then UpToNow(M2) in order to satisfy (1b); if UpToNow(M1)
then UpToNow(E2) in order to satisfy (2a).

Then, UpToNow(E1) at s implies UpToNow(M1) at s to satisfy (1a), and
therefore also UpToNow(M2) at s to satisfy (1b, 2). Since UpToNow(M1 ∧ M2)
at s, then (3) requires that UpToNow(M) at s as well. But M = µ is false every-
where by assumption, so there is no choice of E1, E2,M1,M2 that is compatible
with all the premises of the rule.

Theorem 16. The rely/guarantee circular inference rule 2 of Proposition 6 is
incomplete.

Proof. Let σ, ε, µ be three Boolean basic time-dependent items; let us take S =
σ, E = ε, and M = µ. Then, in order to show incompleteness, we provide a
history for σ, ε, µ such that the conclusion of the inference rule holds, but no
choice of Ei,Mi makes true all the premises of the rule.

The history is as follows. µ is false everywhere, whereas σ is true only at
some point s internal to the time domain (and it is false everywhere else). At s,
ε is true on a non-empty interval on the left which is strictly contained within
the time domain; that is, let us say that ε holds exactly on the interval (s−γ, s)
for some suitable γ > 0. Notice that the history is definable in TRIO.

Let us now realize that AlwPe(E) is always false, since (s − γ, s) is strictly
contained in the time domain by hypothesis. Therefore, the conclusion of the
inference rule coincides with an implication with false antecedent, and it is
therefore trivially true.

Let us now consider what happens at s. In order to make (4) true, it
must be either UpToNow(E1 ∧ E2) or UpToNow(M1 ∧ M2) at s. However, if
UpToNow(E1 ∧ E2) then also UpToNow(M1 ∧ M2) by (1), so let us assume the
latter without loss of generality.

Finally, notice that it is also UpToNow(E) at s, therefore it must be UpToNow(M)
at s. But M = µ is false everywhere, thus we have a false premise.

7For simplicity, assume a bi-infinite time domain such as � or � , so that there are no
(finite) boundaries. Extensions to mono-infinite or even infinite time domains are routine.

30

If we look carefully at the above incompleteness proofs, we notice that the
main obstacle to achieving completeness is the impossibility of choosing suitable
values for Ei,Mi before the system is initialized, that is when SomPi(S) is false.
As a consequence, by switching to locally initialized inference rules, it may
be possible to achieve completeness. Nonetheless, having a locally initialized
inference rule is neither a sufficient nor a necessary condition for completeness.
Indeed, in the remainder we show that the locally initialized inference rule
1(bis) of Proposition 7 is incomplete, whereas the locally initialized inference
rule 2(bis) of Proposition 8 is complete. Moreover, we show that the globally
initialized rule 1(ter) of Proposition 9 is also complete. Therefore, in general the
relationship between the features of a compositional rule and its completeness
is subtle and non straightforward.

Theorem 17. The rely/guarantee circular inference rule 1(bis) of Proposition
7 is incomplete.

Proof. As we did above, let σ, ε, µ be three Boolean basic time-dependent items;
let us take S = σ, E = ε, and M = µ. In order to show incompleteness, we
provide a history for σ, ε, µ such that the conclusion of the inference rule holds,
but no choice of Ei,Mi makes true all the premises of the rule.

The history is as follows. µ and ε are false everywhere, whereas σ is true
only at some point s internal to the time domain (and it is false everywhere
else). Notice that the history is definable in TRIO.

Let us now realize that E � M is always true, since E is always false;
therefore the conclusion of the inference rule holds a fortiori.

Let us now consider what happens at s. In order to make (4) true, let us
assume that it is NowOn(E1) at s. As usual, this is without loss of generality,
since if NowOn(M2) then NowOn(E1) in order to satisfy (2b); if NowOn(E2)
then NowOn(M2) in order to satisfy (1b); if NowOn(M1) then NowOn(E2) in
order to satisfy (2a).

Then, NowOn(E1) at s implies NowOn(M1) at s to satisfy (1a), and therefore
also NowOn(M2) at s to satisfy (1b, 2). Since NowOn(M1 ∧ M2) at s, then (3)
requires that NowOn(M) at s as well. But M = µ is false everywhere by
assumption, so there is no choice of E1, E2,M1,M2 that is compatible with all
the premises of the rule.

Notice that in the proofs of the following Theorem (18) we assume to deal
only with non-Zeno items. We conjecture that the theorem holds also for Zeno
items, but the proof would be even more involved — and not practically very
interesting, as Zenoness is anyway a source of incompleteness on its own [GM01]
— so we omit it for simplicity.

Theorem 18. The rely/guarantee circular inference rule 1(ter) of Proposition
9 is complete.

Proof. Let us assume that the conclusion SomPi(S) ⇒ (E � M) holds. Then,

31

let us define M1 as follows.

M1 ≡





E � M if SomPi(S)

true if Until(M,S) ∨ Until(¬M ∧ ¬E,S) and AlwPi(¬S)

false otherwise

Equivalently, we can express the definition above with the TRIO formula:

(SomPi(S) ⇒ (M1 ⇔ (E � M))) ∧

(AlwPi(¬S) ∧ (Until(M,S) ∨ Until(¬M ∧ ¬E,S)) ⇒ M1) ∧

(AlwPi(¬S) ∧ ¬Until(M,S) ∧ ¬Until(¬M ∧ ¬E,S) ⇒ ¬M1)

or, more concisely, with the equivalent formula:

M1 ⇔ (SomPi(S) ∧ (E � M))

∨ (AlwPi(¬S) ∧ (Until(M,S) ∨ Until(¬M ∧ ¬E,S)))

Similarly, let us choose M2 = E1 = E2 as follows.

M2 = E1 = E2 ≡

{
true if Until(M,S) or Until(¬M ∧ ¬E,S) or SomPi(S)

false otherwise

Then:

• Let us consider hypothesis (1a) at some instant t. We distinguish the
following cases:

– If SomPe(S) holds at t, then notice that the three formulas:
UpToNow(E � M), NowOn(E � M), and UpToNow(E1) also hold
at t. This is because SomPe(S) implies UpToNow(SomPe(S)) and
NowOn(SomPe(S)). Therefore, (1a) is equivalent to UpToNow(E1) ⇒
UpToNow(E � M)∧ (E � M)∧NowOn(E � M), and it does hold
at t.

– If S at t (and ¬SomPe(S)), then without loss of generality let us
assume that UpToNow(E1) holds as well; if not, (1a) is trivially true
since UpToNow(¬E1) would follow for properties of Zeno items. But
from the definition of M1 notice that whenever UpToNow(E1) and
S, then also UpToNow(M1). Moreover, after t it is SomPe(S), and
thus M1 = (E � M) holds there by assumption. Thus, at t it is also
M1 and NowOn(M1). This establishes (1a) in this case.

– Otherwise AlwPi(¬S) at t. Again, without loss of generality we can
assume that UpToNow(E1). But then, whenever AlwPi(¬S), M1

holds iff E1 holds. So, if also NowOn(¬S), (1a) holds at t. Otherwise,
it must be NowOn(S) and ¬S at t. In this case, NowOn(SomPi(S))
holds at t, and thus NowOn(M1) also holds at t (from the assumed
conclusion of the inference rule and the definition of M1). Thus
finally, (1a) holds at t in this case as well.

32

• The reasoning for hypothesis (1b) is similar to that for hypothesis (1b),
only a bit simpler since E2 and M2 are everywhere equal. We omit the
details which are the same as in the previous step.

• Let us consider hypothesis (2a): if it is evaluated when SomPi(S), then
is reduces to (E � M) ⇒ true, which is true by hypothesis. If instead
AlwPi(¬S), then either Until(M,S) ∨ Until(¬M ∧ ¬E,S) or not. In the
former case, (2a) reduces to an implication with true consequent; in the
latter case it reduces to an implication with false antecedent. Both are
tautologies.

• A similar reasoning goes for hypothesis (2b), which reduces to either
true ⇒ true or to false ⇒ false.

• Let us consider hypothesis (3) when SomPi(S). Then, it can be rewritten
as E ∧ (E � M) � M . Now, notice that if E � M then a fortiori
E ∧ (E � M) � M , since the latter can be written as an implication
with the same consequent but a more demanding antecedent. Since we
are assuming that E � M , we are done in this case.

Otherwise, AlwPi(¬S), and let t be the instant at which we are evaluating
(3). Now the analysis gets more involved. First of all, let us consider the
case in which AlwFe(¬S). Thus S is always false; therefore, Until(M,S)∨
Until(¬M ∧ ¬E,S) is also false (since we are dealing with strong until),
and thus M2 = E1 = E2 = false everywhere. Therefore UpToNow(M2) is
always false, which implies that E ∧ M1 ∧ M2 � M is always true.

Otherwise S is true somewhere in the future. Without loss of generality,
since we are assuming non-Zeno items, let s > t be the next time instant
at which S or NowOn(S) holds. Now we further consider two cases:

– If Until(M,S) at t, then in particular M holds over the interval (t, s).
Let us now consider the next point in the past from t at which M

becomes false; let u ≤ t be this instant. Thus, M holds continuously
over the interval (u, s) and is false before u (the value of M exactly
at u is not relevant now). Notice that for all instants in (u, s), the
formula UpToNow(M)∧M ∧NowOn(M) holds, since we are within
an open interval. This implies that (3) can be rewritten as an impli-
cation with true consequent (by considering the definition of the �

operator), which is therefore true throughout (u, s).

We still have to evaluate (3) in the interval (−∞, u]. Notice that in
all these instants, the formula UpToNow(M1 ∧ M2) is false; in fact,
M1 and M2 are true at most at u and after it, but false before it
since Until(M,S) no longer holds (recall that AlwPi(¬S) holds at
t ≥ u). Therefore, a fortiori UpToNow(E ∧ M1 ∧ M2) is false at
these instants. But then E ∧ M1 ∧ M2 � M is equivalent to an
implication with false antecedent, which is trivially true.

33

– If instead Until(¬M ∧ ¬E,S) at t, then let us repeat the above
reasoning for ¬M ∧ ¬E in place of M . So, assume that M and
E are false throughout (u, s) for some u ≤ t. As a consequence,
UpToNow(M)∧M ∧NowOn(M) is now false throughout (u, s), and
so is UpToNow(E). Therefore, a fortiori UpToNow(E ∧ M1 ∧ M2)
is false at these instants. But then E ∧ M1 ∧ M2 � M is equivalent
to an implication with false antecedent, which is trivially true.

Similarly as the previous case, in the interval (−∞, u] the formula
UpToNow(M1 ∧ M2) is false. Thus, E ∧M1 ∧M2 � M is equivalent
to an implication with false antecedent, which is trivially true.

– Notice that we have no other cases to consider. In particular if both
Until(M,S) and Until(¬M ∧ ¬E,S) are false at t, then UpToNow(E ∧ ¬M)
holds at s. But this contradicts the assumption that the conclusion
of the inference rule is true there.

• Finally, hypothesis (4). Let us consider any instant s at which S holds.
At s, either UpToNow(M) or UpToNow(¬M), since we are dealing with
non-Zeno items. If UpToNow(M), then UpToNow(M2 ∧ E1 ∧ M1), since
Until(M,S) holds in a left-neighborhood of s. If UpToNow(¬M) then
it must also be UpToNow(¬E), otherwise the conclusion SomPi(S) ⇒
(E � M) would be false at s. Therefore, UpToNow(M2 ∧ E1 ∧ M1),
since Until(¬M ∧ ¬E,S) holds in a left-neighborhood of s.

Theorem 19. The rely/guarantee circular inference rule 2(bis) of Proposition
8 is complete.

Proof. The proof is all the same as the previous one: let us assume that the
conclusion SomPe(S) ∧ AlwPe(E) ⇒ (E � M) holds. Then, let us define M1

as M1 = E � M , and let M2 = E1 = E2 = true be all identically equal to true.
Therefore:

• Hypothesis (1a) is equivalent to SomPe(S)∧AlwPe(E) ⇒ (E � M) which
is exactly the conclusion.

• Hypotheses (1b,2) are all equivalent to SomPe(S) ∧ AlwPe(E) ⇒ true,
which is trivially true.

• Let us consider hypothesis (3). Without loss of generality, let us take
any instant at which SomPe(S) and AlwPe(E) hold. Then, we have to
establish that (E � M) ∧ true ⇒ M . Clearly, this is the same as just
M , since E � M holds from the conclusion. Now notice that AlwPe(E)
implies a fortiori that UpToNow(E) .8 Therefore, the conclusion allows us
to assert that UpToNow(M)∧M∧NowOn(M), so that M is, in particular,
true.

8We are skipping a little technicality here: we are tacitly assuming that we are at a
point internal to the time domain, otherwise it could be that AlwPe(E) is trivially true, but
UpToNow(E) is false since there is no non-empty interval to the left of the boundary. However,
this is not a problem, as we just have to notice that SomPe(S) being true implies that we are
indeed in an internal point.

34

• Hypothesis (4) is trivially satisfied for E1 = E2 = true.

The following result has been already proved in [FRMM06].

Theorem 20. The rely/guarantee circular inference rule 3 of Proposition 10
is incomplete.

Proof. Let σ, ε, µ be three Boolean basic time-dependent items; let us take S =
σ, E = ε, and M = µ. Then, in order to show incompleteness, we provide a
history for σ, ε, µ such that the conclusion of the inference rule holds, but no
choice of Ei,Mi makes true all the premises of the rule.

The history is as follows. µ and ε are false everywhere, whereas σ is true
only at some point s internal to the time domain (and it is false everywhere
else). Notice that the history is definable in TRIO.

Let us now realize that E � M is always true, since AlwPe(E) is always
false; therefore the conclusion of the inference rule holds a fortiori.

Let us now consider what happens at s. Without adding details (as they are
all similar as in the other proofs), one realizes that in order for (4) to be true,
we must have AlwPe(E1 ∧ E2 ∧ M1 ∧ M2) at s.

Then, (3) requires that AlwPe(M) at s. But M = µ is false everywhere by
assumption, so there is no choice of E1, E2,M1,M2 that is compatible with all
the premises of the rule.

Theorem 21. The rely/guarantee circular inference rule 4 of Proposition 12
is incomplete, whereas the rule 4(bis) of Proposition 13 is complete.

Proof. The incompleteness proof is along the usual lines. Let S be true exactly
at some time s, M false everywhere, and E be true on some open interval (s −
ε, s), and false everywhere else (in particular, this implies that UpToNow(E) ∧
¬E holds at s). Notice that this implies that whenever SomPi(S), then E is
false, so E ⇒ M holds; thus the conclusion of the inference rule holds every-
where. Then, by (4) and (1–2) it must be UpToNow(E1 ∧ E2 ∧ M1 ∧ M2) at s.
Moreover, by (3) UpToNow(M) must also hold at s, a contradiction.

The completeness proof instead is as follows. Let us assume that the conclu-
sion SomPi(S) ⇒ (E ⇒ M) holds. Then, let us define M1 as M1 = SomPi(S) ⇒
(E ⇒ M), and let M2 = E1 = E2 = true be all identically equal to true.

(1a) is the same as SomPi(S) ⇒ (E ⇒ M), which holds by assumption.
(1b) is trivially true, being an implication with true consequent. (2) are both
trivially true, also being implications with true consequents. (3) can be rewritten
as SomPi(S) ⇒ (E ⇒ M), again true by assumption. (4) is satisfied everywhere
by E1 = E2 = true. Finally, notice that a constant Boolean time-dependent
item is both a right-continuous and a left-continuous state, so (5–6) is satisfied
by E1, E2.

Theorem 22. The rely/guarantee circular inference rule 5 of Proposition 14
is complete.

35

Proof. Let us assume that the conclusion Lasts(E,TB) ⇒ WithinF(M,TB)
holds. Then, let us define E1 = E2 = M1 = M2 implicitly as follows.

(Lasts(E,TB) ⇒ Lasts(E1 = E2 = M1 = M2 = M,TB)) ∧

(WithinF(¬E,TB) ⇒

Until(E1 = E2 = M1 = M2 = ¬E,Lasts(E,TB) ∧ E1 = E2 = M1 = M2 = ¬E)∨

AlwFe(WithinF(¬E,TB) ∧ E1 = E2 = M1 = M2 = ¬E))

Thus clearly (1–2) all reduce to propositional tautologies of the form A ⇒ A,
since E1 = E2 = M1 = M2 everywhere.

Then, let us consider (4) first, and let t be any instant. At t, either Lasts(E,TB)
or WithinF(¬E,TB). In the former case, the conclusion lets us deduce that
WithinF(M,TB). But since also Lasts(E1 = E2 = M1 = M2 = M,TB) at t,
then WithinF(E1 ∧ E2 ∧ M1 ∧ M2,TB), which satisfies (4). Otherwise, we have
a t < t′ < t + TB such that ¬E holds at t′. Then, it is either
AlwFe(E1 = E2 = M1 = M2 = ¬E ∧ WithinF(¬E,TB)) at t, or not. In the for-
mer case, we have E1 = E2 = M1 = M2 at t′, and thus (4) is satisfied. In the
latter case, there exists an instant t′′ > t such that E1 = E2 = M1 = M2 = ¬E

holds until t′′ included. If t′′ ≥ t′, then (4) is implied; otherwise t′′ < t′,
Lasts(E,TB) holds at t′′, which contradicts the fact that E is false at t′.

Next, let us discuss hypothesis (3), at a generic time instant t. If E is false
at t, then the implication holds trivially.

Otherwise E is true at t. Let us distinguish two cases: (a) if there exists an
interval (p, p+TB) such that t ∈ (p, p+TB) and E is true throughout (p, p+TB);
(b) if this is not the case. Notice that if (b), then in particular there must exist
an instant t − TB < q < t such that WithinF(¬E,TB) holds at q.

Thus, if (a) is the case, then let us consider the instant p. At p Lasts(E,TB)
holds, therefore Lasts(E1 = E2 = M1 = M2 = M,TB) also holds at p. Thus at
t ∈ (p, p + TB): if M , then also M1 ∧ M2, thus (3) holds; if ¬M , then also
¬M1 ∧ ¬M2, thus (3) also holds, being an implication with false antecedent.

Otherwise, (b) is the case, and WithinF(¬E,TB) holds at q. Let us dis-
tinguish whether Lasts(WithinF(¬E,TB) , t − q) holds at q or not. If it does,
then surely E1 = E2 = M1 = M2 = ¬E at t, and therefore (4) reduces to
E ∧ ¬E ⇒ M , which is trivially true having a contradiction in the antecedent.
If it does not, then there exists some q < q′ < t such that Lasts(E,TB) holds
at q′. But this corresponds to case (a), a contradiction which concludes this
branch as well.

4.4 Summary of Circular Rules

Table 3 summarizes the various circular compositional inference rules we have
presented above; an I/C letter after before the proposition number denotes if
the rule is incomplete/complete.

36

Rule 1 (Prop. 5 I) Rule 1(bis) (Prop. 7 I) Rule 1(ter) (Prop. 9 C)

E1 � M1, E2 � M2 SomPe(S) ⇒ (E1 � M1) ∧ (E2 � M2) E1 � M1, E2 � M2

M1 ⇒ E2, M2 ⇒ E1 SomPe(S) ⇒ (M1 ⇒ E2) ∧ (M2 ⇒ E1) M1 ⇒ E2, M2 ⇒ E1

M1 ∧ M2 ⇒ M SomPe(S) ⇒ (M1 ∧ M2 ⇒ M) E ∧ M1 ∧ M2 � M

S ⇒ UpToNow(Ei) ∨ UpToNow(Mi) S ⇒ NowOn(Ei) ∨ NowOn(Mi) S ⇒ UpToNow(Ei) ∨ UpToNow(Mi)

SomPi(S) ⇒ (E � M) SomPe(S) ⇒ (E � M) SomPi(S) ⇒ (E � M)

Rule 2 (Prop. 6 I) Rule 2(bis) (Prop. 8 C) Rule 3 (Prop. 10 I)

E1 � M1, E2 � M2 SomPe(S) ∧ AlwPe(E) ⇒ (E1 � M1) ∧ (E2 � M2) E1 � M1, E2 � M2

E ∧ M1 ∧ M2 ⇒ E1 ∧ E2 SomPe(S) ∧ AlwPe(E) ⇒ (E ∧ M1 ∧ M2 ⇒ E1 ∧ E2) M1 ⇒ E2, M2 ⇒ E1

M1 ∧ M2 ⇒ M SomPe(S) ∧ AlwPe(E) ⇒ (M1 ∧ M2 ⇒ M) M1 ∧ M2 ⇒ M

S ⇒ UpToNow(E1 ∧ E2) ∨ UpToNow(M1 ∧ M2) S ⇒ NowOn(E1 ∧ E2) ∨ NowOn(M1 ∧ M2) S ⇒ AlwPe(Ei) ∨ AlwPe(Mi)

SomPi(S) ∧ AlwPe(E) ⇒ (E � M) SomPe(S) ∧ AlwPe(E) ⇒ (E � M) SomPi(S) ⇒ (E � M)

Rule 4 (Prop. 12 I) Rule 4(bis) (Prop. 13 C) Rule 5 (Prop. 14 C)

E1 ⇒ M1, E2 ⇒ M2 E1 ⇒ M1, E2 ⇒ M2 E1 ⇒ M1, E2 ⇒ M2

M1 ⇒ E2, M2 ⇒ E1 M1 ⇒ E2, M2 ⇒ E1 M1 ⇒ E2, M2 ⇒ E1

E ∧ M1 ∧ M2 ⇒ M SomPi(S) ⇒ (E ∧ M1 ∧ M2 ⇒ M) E ∧ M1 ∧ M2 ⇒ M

S ⇒ UpToNow(Ei) ∨ UpToNow(Mi) S ⇒ UpToNow(Ei) ∨ UpToNow(Mi) WithinF(Ei ∨ Mi, TB)
E1 or M1 ∈ ST•−−, E2 or M2 ∈ ST−−• E1 or M1 ∈ ST•−−, E2 or M2 ∈ ST−−•

SomPi(S) ⇒ (E ⇒ M) SomPi(S) ⇒ (E ⇒ M) Lasts(E, TB) ⇒ WithinF(M, TB)

Table 3: Circular compositional inference rules for two modules.

37

5 Generalization to More Than Two Modules

This section discusses how the compositional inference rules presented in Section
3 and 4 can be generalized to handle a system with any number N ≥ 2 of
modules.

Let us point out that these generalizations are not strictly necessary to
apply our compositional rules to systems with more than two modules. In
fact, the rules can be applied by recursively partitioning the set of modules
into two suitable sets, and apply the compositional rules by considering the
two subsets as two (macro) modules. Nonetheless, the structure of a multi-
modular system is often best exploited by considering the composition of all the
modules at the same level. In fact, a well-designed system often has a modular
partitioning where it is “natural” to associate some local properties to each
of its modules. Therefore, we extend our compositional rules to handle such
commonly encountered cases.

Throughout this section N is an integer greater than one, that represents
the number of modules.

5.1 Non-Circular Inference Rules

The non-circular inference rules of Propositions 2 and 3 can be extended to han-
dle any number of modules by introducing a way to describe a set of discharging
formulas where the local assumption of each module is discharged by the local
guarantee of another module, and no circularities are introduced. To this end,
it is sufficient to describe a permutation of the set of modules where the local
assumption of each module is discharged by the local guarantee of the module
which follows in the permutation.

Thus, let us denote by πN permutations of the set {1, . . . , N}. By πN (i) we
mean the ith element of the permutation, for i ∈ {1, . . . , N}. For example if
N = 3 and π3 = [3, 1, 2], then π3(1) = 3, π3(2) = 1 and π3(3) = 2.

Let us first consider the extension of rule 1 of Proposition 2.

Proposition 23 (Non-Circular Rely/Guarantee Inference Rule 1N). If
there exists a permutation πN such that:

1. for all i ∈ {1, . . . , N}: Ei v Mi

2. for all i ∈ {1, . . . , N − 1}: E u MπN (i) v EπN (i+1)

3. E u M1 u · · · u MN v M

4. E v MπN (1)

then E v M

Proof sketch. Let us just provide a sketch, since the proof is easily derivable
from that of Proposition 2. Assume that E holds, then MπN (1) by (4). Then,
by successively applying (1) and (2) for i = πN (1), πN (2), . . . , πN (N), we get
that all EπN (2), MπN (2), . . . , MπN (N) hold. Therefore, M holds by (3).

38

The extension of Proposition 3 is very similar, the only difference being that
we now have a fully compositional rule. For brevity, we omit the (obvious)
proof.

Proposition 24 (Non-Circular Rely/Guarantee Inference Rule 2N). If
there exists a permutation πN such that:

1. for all i ∈ {1, . . . , N}: Ei v Mi

2. for all i ∈ {1, . . . , N − 1}: MπN (i) v EπN (i+1)

3. E u M1 u · · · u MN v M

4. E v EπN (1)

then E v M

Completeness. Let us remark that the completeness results about the two
rules of Propositions 2 and 3 clearly carry on to Propositions 23 and 24, which
therefore define complete inference rules. In fact, if we assume E v M , then
both Propositions 23 and 24 define a complete rule if we choose MπN (1) = M ,
EπN (1) = E, and all other Ei’ s and Mi’s equal to >.

Summary. Table 4 summarizes the two above non-circular inference rules.

Rule 1N (Prop. 23 C) Rule 2N (Prop. 24 C)
∀i ∈ {1, . . . , N} : (Ei ⇒ Mi) ∀i ∈ {1, . . . , N} : (Ei ⇒ Mi)

∀i ∈ {1, . . . , N − 1} : (E ∧ MπN (i) ⇒ EπN (i+1)) ∀i ∈ {1, . . . , N − 1} : (MπN (i) ⇒ EπN (i+1))
E ∧ M1 ∧ · · · ∧ MN ⇒ M E ∧ M1 ∧ · · · ∧ MN ⇒ M

E ⇒ MπN (1) E ⇒ EπN (1)

E ⇒ M E ⇒ M

Table 4: Non-circular compositional inference rules for N ≥ 2 modules.

5.2 Circular Inference Rules

Let us now generalize the circular compositional inference rules of Section 4 to
the case of more than two modules. There are basically two modifications to
introduce in each rule to generalize it; the underlying rationale for these two
changes is common.

The first change is to the discharging formulas. Whereas in the two module
case each module’s assumption was usually discharged by means of the other
module’s guarantee, with N > 2 modules it is simpler and more natural to
specify that the conjunction of all the modules’ guarantees discharges the con-
junction of all the modules’ assumptions: this makes the rules self-discharging,
but simpler to state as we do not have to specify complicated discharging re-
lations. Clearly, variations are possible, but they may render the statement of
the rule more involved. According to our general approach to compositionality,

39

we recommend the formulation of such variations to be driven by the particular
systems being modeled, rather than a priori for the sake of exploring different
rules.

The second change is related to the first one. In fact, if the discharging of
the assumptions depends on all the guarantees being true, we have to modify
the initialization condition so that one can infer from S being true that all the
guarantees are also true at the same time. In practice, this can be usually
implemented by requiring that the guarantee or the assumption of each module
holds when S holds.

In the remainder of this section we presents generalizations of the inference
rules of Section 4 along these lines. We provide proofs for just a few of the
propositions, the other proofs being routine. In the remainder, we denote the
finite set {1, . . . , N} as IN .

Circular inference rules for the time progression operator.

Proposition 25 (Rely/Guarantee Circular Inference Rule 1N). If:

1. for all i ∈ IN : Ei � Mi

2.
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei

3.
∧

i∈IN
Mi ⇒ M

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for all i ∈ IN

then SomPi(S) ⇒ (E � M).

Proof. Let t be the current instant, and let us assume that SomPi(S) holds at t;
thus, let t′ ≤ t be (any) instant at which S held. We have to show that E � M

holds at t.
For any i ∈ IN , either UpToNow(Ei) or UpToNow(Mi). In particular, let

I ⊆ IN the set of modules’ indexes for which UpToNow(Ei) holds. Then,
from (1) we can infer that also UpToNow(Mi) for all i ∈ I. Therefore, all
in all we have that UpToNow

(∧
i∈IN

Mi

)
at t′. From (2) this implies that

UpToNow
(∧

i∈IN
Ei

)
also holds at t′. Therefore, we exploit (1) to deduce that∧

i∈IN
Mi and NowOn

(∧
i∈IN

Mi

)
both hold at t′ as well.

This provides the usual “temporal inductive step” as in all the other proofs
for two modules. Therefore, we omit the remainder of the proof which amounts
to the usual “non accumulation” argument, which is unaffected by the fact that
we are now dealing with N ≥ 2 modules.

Since we now introduced self-discharging in the rule of Proposition 25, the
only difference between Proposition 25 and the following is that we now have
a non-fully compositional rule. Also notice that hypothesis (4) below could
actually be relaxed to the same as in Proposition 25; however, we leave as it is
to conform with the original rule 2 of Proposition 6.

Proposition 26 (Rely/Guarantee Circular Inference Rule 2N). If:

40

1. for all i ∈ IN : Ei � Mi

2. E ∧
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei

3.
∧

i∈IN
Mi ⇒ M

4. S ⇒ UpToNow
(∧

i∈IN
Ei

)
∨ UpToNow

(∧
i∈IN

Mi

)

then SomPi(S) ⇒ (E � M).

The following rules 1N(bis), 1N(ter), and 2N(bis) are all straightforward
extensions, so we introduce them without any comment or proof.

Proposition 27 (Rely/Guarantee Circular Inference Rule 1N(bis)). If:

1. for all i ∈ IN : SomPe(S) ⇒ (Ei � Mi)

2. SomPe(S) ⇒ (
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei)

3. SomPe(S) ⇒ (
∧

i∈IN
Mi ⇒ M)

4. S ⇒ NowOn(Ei) ∨ NowOn(Mi), for all i ∈ IN

then SomPe(S) ⇒ (E � M).

Proposition 28 (Rely/Guarantee Circular Inference Rule 2N(bis)). If:

1. for all i ∈ IN : SomPe(S) ∧ AlwPe(E) ⇒ (Ei � Mi)

2. SomPe(S) ∧ AlwPe(E) ⇒ (E ∧
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei)

3. SomPe(S) ∧ AlwPe(E) ⇒ (
∧

i∈IN
Mi ⇒ M)

4. S ⇒ NowOn
(∧

i∈IN
Ei

)
∨ NowOn

(∧
i∈IN

Mi

)

then SomPe(S) ∧ AlwPe(E) ⇒ (E � M).

Proposition 29 (Rely/Guarantee Circular Inference Rule 1N(ter)). If:

1. for all i ∈ IN : Ei � Mi

2.
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei

3. E ∧
∧

i∈IN
Mi � M

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for all i ∈ IN

then SomPi(S) ⇒ (E � M).

41

A stronger time progression operator. The extension of rule 3 of Propo-
sition 10 is also straightforward, and gives a rule which is very similar to that
introduced in [FRMM06].

Proposition 30 (Rely/Guarantee Circular Inference Rule 3N). If:

1. for all i ∈ IN : Ei � Mi

2.
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei

3.
∧

i∈IN
Mi ⇒ M

4. S ⇒ AlwPe(Ei) ∨ AlwPe(Mi), for all i ∈ IN

then SomPi(S) ⇒ (E � M).

Implication as a compositional operator. The circular rule 4 of Propo-
sition 12 requires some more work to be generalized. In this case, in fact, the
soundness of the rule relies on a mutual interplay between the two modules,
where one is required to have an assumption (or guarantee) behaving as a left-
continuous state, and the other module to have it behaving as a right-continuous
state.

The idea to generalize this is thus to implement the same interplay between
two sets of all modules in the system. More precisely, we can assume that the
set of all modules IN can be partitioned into two non empty subsets L,R ⊂ IN

such that any module i ∈ L (resp. i ∈ R) has its assumption Ei or its guarantee
Mi which is a left-continuous (resp. right-continuous) state. Then, we require
that the guarantees of the modules in L can discharge all the assumptions of
the modules in R, and vice versa. All in all, we have the following inference
rule.

Proposition 31 (Rely/Guarantee Circular Inference Rule 4N). If, for
two non empty subsets L,R ⊂ IN that partition IN :

1. for all i ∈ IN : Ei ⇒ Mi

2. (a)
∧

i∈L Mi ⇒
∧

i∈R Ei

(b)
∧

i∈R Mi ⇒
∧

i∈L Ei

3. E ∧
∧

i∈IN
Mi ⇒ M

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for all i ∈ IN

5. Ei ∈ ST•−− or Mi ∈ ST•−−, for all i ∈ R

6. Ei ∈ ST−−• or Mi ∈ ST−−•, for all i ∈ L

then SomPi(S) ⇒ (E ⇒ M).

42

Proof for dense time domains. Let t be the current instant, and let us assume
that SomPi(S) holds at t; thus, let t′ ≤ t be (any) instant at which S held. We
have to show that E � M holds at t.

As usual, we focus on showing one “temporal inductive step”, the non ac-
cumulation argument being all similar to that of the previous proofs. More
precisely, let us show that

∧
i∈IN

(Ei ∧ Mi) and NowOn
(∧

i∈IN
(Ei ∧ Mi)

)
hold

at t′.
First of all, let us show that

∧
i∈L UpToNow(Mi). In fact, let i be any

index i ∈ L; from (4) it is either UpToNow(Ei) or UpToNow(Mi) at t′. But, if
UpToNow(Ei) for some i, then also UpToNow(Mi) from (1).

Next, from
∧

i∈L UpToNow(Mi) and (2a) it follows that
∧

i∈R UpToNow(Ei).
Then, we consider (1) to deduce that

∧
i∈R UpToNow(Mi). Thus, from (2b),

also
∧

i∈L UpToNow(Ei). So, all in all we have that
∧

i∈IN
UpToNow(Ei ∧ Mi)

holds at t′.
For all i ∈ L, (6) lets us infer that also Ei ∨Mi at t′. Moreover, from (1) we

can actually state that
∧

i∈L Mi at t′, and from (2a) it also follows that
∧

i∈R Ei

at t′.
But then, for all i ∈ R, (5) — combined with (1) — lets us infer that also

NowOn(Mi) at t′. Thus, also
∧

i∈L NowOn(Ei) from (2b). (1) then implies that
also

∧
i∈L NowOn(Mi), and (2a) that

∧
i∈R NowOn(Ei).

All in all, we have shown that Ei∧Mi and NowOn(Ei ∧ Mi) both hold at t′,
for all i ∈ IN . The remainder of the proof is as for the other propositions.

Proposition 32 (Rely/Guarantee Circular Inference Rule 4N(bis)). If,
for two non empty subsets L,R ⊂ IN that partition IN :

1. for all i ∈ IN : Ei ⇒ Mi

2. (a)
∧

i∈L Mi ⇒
∧

i∈R Ei

(b)
∧

i∈R Mi ⇒
∧

i∈L Ei

3. SomPi(S) ⇒ (E ∧
∧

i∈IN
Mi ⇒ M)

4. S ⇒ UpToNow(Ei) ∨ UpToNow(Mi), for all i ∈ IN

5. Ei ∈ ST•−− or Mi ∈ ST•−−, for all i ∈ R

6. Ei ∈ ST−−• or Mi ∈ ST−−•, for all i ∈ L

then SomPi(S) ⇒ (E ⇒ M).

A circular inference rules without compositional operator. The ex-
tension of rule 5 of Proposition 14 is along the same lines of those we have just
discussed. Moreover, as it was the case for other rules, the initialization for-
mula could be made less restrictive at the price of complicating the discharging
formulas. Indeed, in the version we present, the discharging formulas are not
needed at all in the soundness proof.

43

Proposition 33 (Rely/Guarantee Circular Inference Rule 5N). If, for
some fixed duration TB > 0:

1. for all i ∈ IN : Ei ⇒ Mi

2. E ∧
∧

i∈IN
Mi ⇒ M

3. WithinF
(∧

i∈IN
(Ei ∨ Mi),TB

)

then Lasts(E,TB) ⇒ WithinF(M,TB).

Proof. Let t be a generic time instant at which Lasts(E,TB) holds, and prove
that WithinF(M,TB).

From (3), let us assume that WithinF
(∧

i∈IN
Mi,TB

)
at t. This is with-

out loss of generality: in fact, if WithinF(Ei,TB) for some i ∈ IN , then
WithinF(Mi,TB) from (1). Thus, there exists a t′ such that t < t′ < t + TB

and
∧

i∈IN
Mi holds at t′. Moreover, since t < t′ < t + TB and Lasts(E,TB) at

t, then E also holds at t′. But then, M holds at t′ by (3). Since t < t′ < TB,
this implies that WithinF(M,TB) at t.

Notice the following: the above rule works for any variation of the Lasts
and WithinF operators, provided the two variations coincide. In other words,
the above rule works for any choice of Lastslr and WithinFlr operator, where
l, r ∈ {e, i}, provided l and r are the same in the two operators.

Completeness. For the sake of brevity, we do not repeat the (in)completeness
analysis performed in Section 4.3 on the generalized rules for N ≥ 2 modules.
Nonetheless, it is not difficult to realize that the very same results can be lifted
from the two module to the N module case. In fact, firstly an incompleteness
proof for a two module system implies the incompleteness of the generalization
of the same rule (i.e., of the rule which reduces to the two module one if we
choose N = 2). Secondly, the completeness proofs can be extended to the N

module case by suitably instantiating all the Ei’s and Mi’s for i > 2 with the
same values of E2,M2 in the two module case.

Summary. Table 5 summarizes the circular inference rules for N modules.

6 An Illustrative Example: the BitTorrent Pro-
tocol

This section illustrates our practical approach to compositionality through an
example: the compositional verification of the peer to peer communication pro-
tocol BitTorrent (BT) [Coh01, Coh03]. Actually, we model and verify only a
very small part of the behaviors allowed by the complex protocol, in a specific
situation — which is nonetheless likely to happen in practice —, and we provide

44

Rule 1N (Prop. 25 I) Rule 1N(bis) (Prop. 27 I) Rule 1N(ter) (Prop. 29 C)
∀i ∈ IN : (Ei � Mi) SomPe(S) ⇒ ∀i ∈ IN : (Ei � Mi) ∀i ∈ IN : (Ei � Mi)V
i∈IN

Mi ⇒
V

i∈IN
Ei SomPe(S) ⇒ (

V
i∈IN

Mi ⇒
V

i∈IN
Ei)

V
i∈IN

Mi ⇒
V

i∈IN
EiV

i∈IN
Mi ⇒ M SomPe(S) ⇒ (

V
i∈IN

Mi ⇒ M) E ∧
V

i∈IN
Mi � M

S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi)) S ⇒ ∀i ∈ IN : (NowOn(Ei) ∨ NowOn(Mi)) S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi))
SomPi(S) ⇒ (E � M) SomPe(S) ⇒ (E � M) SomPi(S) ⇒ (E � M)

Rule 2N (Prop. 26 I) Rule 2N(bis) (Prop. 28 C) Rule 3N (Prop. 30 I)
∀i ∈ IN : (Ei � Mi) SomPe(S) ∧ AlwPe(E) ⇒ ∀i ∈ IN : (Ei � Mi) ∀i ∈ IN : (Ei � Mi)

E ∧
V

i∈IN
Mi ⇒

V
i∈IN

Ei SomPe(S) ∧ AlwPe(E) ⇒ (E ∧
V

i∈IN
Mi ⇒

V
i∈IN

Ei)
V

i∈IN
Mi ⇒

V
i∈IN

EiV
i∈IN

Mi ⇒ M SomPe(S) ∧ AlwPe(E) ⇒ (
V

i∈IN
Mi ⇒ M)

V
i∈IN

Mi ⇒ M

S ⇒ UpToNow
“V

i∈IN
Ei

”
∨ UpToNow

“V
i∈IN

Mi

”
S ⇒ NowOn

“V
i∈IN

Ei

”
∨ NowOn

“V
i∈IN

Mi

”
S ⇒ ∀i ∈ IN : (AlwPe(Ei) ∨ AlwPe(Mi))

SomPi(S) ⇒ (E � M) SomPe(S) ∧ AlwPe(E) ⇒ (E � M) SomPi(S) ⇒ (E � M)

Rule 4N (Prop. 31 I) Rule 4N(bis) (Prop. 32 C) Rule 5N (Prop. 33 C)
∀i ∈ IN : (Ei ⇒ Mi) ∀i ∈ IN : (Ei ⇒ Mi) ∀i ∈ IN : (Ei ⇒ Mi)V

i∈L
Mi ⇒

V
i∈R

Ei,
V

i∈R
Mi ⇒

V
i∈L

Ei

V
i∈L

Mi ⇒
V

i∈R
Ei,

V
i∈R

Mi ⇒
V

i∈L
Ei

V
i∈IN

Mi ⇒
V

i∈IN
Ei

E ∧
V

i∈IN
Mi ⇒ M SomPi(S) ⇒ (E ∧

V
i∈IN

Mi ⇒ M) E ∧
V

i∈IN
Mi ⇒ M

S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi)) S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi)) WithinF
“V

i∈IN
(Ei ∨ Mi), TB

”

∀i ∈ R : Ei or Mi ∈ ST•−−, ∀i ∈ L : Ei or Mi ∈ ST−−• ∀i ∈ R : Ei or Mi ∈ ST•−−, ∀i ∈ L : Ei or Mi ∈ ST−−•

SomPi(S) ⇒ (E ⇒ M) SomPi(S) ⇒ (E ⇒ M) Lasts(E, TB) ⇒ WithinF(M, TB)

Table 5: Circular compositional inference rules for N ≥ 2 modules.

45

a high-level description which abstracts away from most implementation details,
focusing on timing aspects.9

The overall goal of this example is not only to show the application of the
inference rules in practice, but also to demonstrate our general approach to
compositionality, as laid out in the previous sections and in [FRMM06]. To
this end, we provide two different, alternate verifications of the protocol. The
first approach is the most straightforward and standard: we select a suitable
inference rule, among those provided in the previous sections, and we apply it to
verify the system. Although compositionality succeeds in shifting the most part
of the verification burden from global to local, the application of the inference
rules is nonetheless highly nontrivial, and requires some considerable ingenuity.

The second approach is instead more unconventional, in that it does not use
any previously defined inference rule. On the contrary, it builds a new inference
rule by varying the existing rules in a way which fits the particular specification
we are trying to verify. In this case the verification effort required in applying
the new rule is minimal, although this is of course traded-off against ingenuity
required in designing the new inference rule, and in verifying its correctness.

Then, we conclude this section with a brief comparison between the two ap-
proaches that highlights the advantages and disadvantages of both. We believe
that our example, however small, constitutes an evidence of the importance of
having a flexible approach to compositionality, and of the necessity of focusing
on real examples of applications on a case-by-case basis, rather than looking for
a “one-size-fit-all” compositional rule.

In practice, the example is carried out as follows. After providing suitable
axiomatic specification of the classes involved in describing the protocol, we state
a global theorem that we want to prove about the composition of the various
classes. Then, we provide two different proofs of the theorem, both according to
the general methodology of [FRMM06]. The first proof is an application of the
inference rule 5N of Proposition 33, that we have discussed above. The second
proof, instead, pursues in full the practical approach to compositionality that
we have advocated in Section 2.2. Therefore, instead of figuring out how to fit
our system specification within a predefined inference rule, we develop a new
rule, combining the known results about the previously introduced rules with
the specific structure of the formulas that model our system.

6.1 Protocol Basics

Let us describe the basic features of the BT protocol, namely those that we are
going to specify and use for verification.

BT is a peer-to-peer communication protocol for distributing files over net-
works among a number of hosts. Hosts are partitioned among seeds and peers.
Let Ns be the number of seeds, and Np be the number of peers in the system.

9For another, completely different example of verification of the BitTorrent protocol, based
on the approximation of process algebras through differential equations, we refer the reader
to [Dug06].

46

Usually, it is Np � Ns, although this is not necessary for the correct functioning
of the protocol.

When the protocol is started, each seed possesses an entire copy of the file to
be distributed; let us represent the file as split into P packets, numbered from 0
to P−1. The peers, instead, do not initially have any part of the file; their goal is
to get it. In order to do that, each peer sends periodically a (random) packet to
any peer it is connected to. After a peer has received (and thus stored) at least
a packet, it also periodically sends a packet to any other peer it is connected to.
The connections among peers and between seeds and peers change dynamically
and are coordinated by a dedicated host called tracker. For simplicity, we do
not represent explicitly the tracker in our model, but simply specify minimal
assumptions about the dynamics of connections between hosts.

Let us describe how the connections between hosts are managed in our model;
recall that this is a special case of the real BT protocol. At any time, the set
of all peers is partitioned into a number of clusters. In each cluster, the peers
are connected in a circle, and there is at least one peer which is connected
to a seed and can receive data from it. Moreover, the connections change only
periodically. More precisely, we will ensure that, before the clusters are changed,
every peer in the cluster has received at least a packet (that is there has been
at least a “passing around” of packets over the circle of peers in the cluster).

Notice that the connections do not represent physical connections, which
would hardly be dynamic; instead, they represent coordination between peers.
Moreover, we neglect the transmission time over the connections, which are
considered instantaneous (this is acceptable, since the transmission times can
be modeled directly in the specification of each host as re-transmission delays).

6.2 System Specification

Let us now introduce the classes of our BT specification. Notice that in the
remainder we describe a real-time strengthening of the real BT protocol; the
latter does not have any hard real time constraint built in, as it relies on the
TCP/IP protocol which is “best-effort”.

The seed class. The seeds in the system are represented by instances of the
seed class, which is pictured in Figure 1. This class is parametric with respect
to the number P of packets of the file, and the send time Ts. Moreover, it has
a single event item send(i), which is true whenever the seed sends the packet
number i ∈ {0, . . . , P − 1} over its connections. The axiomatization of the class
is very simple: every Ts time units (at most), a packet is nondeterministically
sent over the connections. This is represented by the following axiom.10

Axiom 1 (seed.sending). ∃i : WithinF(send(i) , Ts)

10In the remainder of the specification, we do not mention explicitly the types of the predi-
cates arguments whenever this is unambiguous. For example, we simply write send(i) assuming
implicitly that i ∈ {0, . . . , P − 1}.

47

seed
send(i)

Figure 1: Interface of the seed class

The peer class. The peers are represented by instances of the peer class,
pictured in Figure 2. The peer class is also parametric with respect to the
number P of packets of the file, and the send time Ts. It has a send event, rep-
resenting its sending a packet over its connection, and a recv event, representing
the receiving of a packet (from another peer or from a seed). Moreover, the
class has a non-visible stored state: stored(i) being true represents the fact that
the packet i has been received and is therefore stored locally; this is formalized
by the following axioms (i is a variable of type {0, . . . , P − 1}).

Axiom 2 (peer.sending). stored(i) ⇔ SomPi(recv(i))

peer send(i)

recv(i)stored(i)

Figure 2: Interface of the peer class

The send and recv actions happen according to axioms peer.recv to send
and peer.send to recv: the former states that a recv triggers a send of a (nonde-
terministically chosen) packet within Ts time units; the latter conversely states
that a send only happens if a packet has been received in the past, and the
packet is stored locally.

Axiom 3 (peer.recv to send). ∃i : recv(i) ⇒ ∃j : WithinF(send(j) , Ts)

Axiom 4 (peer.send to recv). send(i) ⇒ stored(i) ∧ ∃j : WithinP(recv(j) , Ts)

The system class. Now, let us describe how the modules are composed into
a global system, representing the network. The seeds are Ns instances of the
seed class that populate an array named Se, and the peers are Np instances of
the peer class that populate an array named Pe.

To represent the connections among hosts in the system, we cannot exploit
TRIO connections which are static. On the contrary, we introduce two state
predicates connectedp(p1, p2) and connecteds(s, p) to indicate connections be-
tween two peers, and between a seed and a peer, respectively. The meaning of
the two predicates is obvious: whenever i is connected to j, it means that what

48

i sends, it is received by j. This is stated by the global axioms sp connections
and pp connections.

Axiom 5 (sp connections). connecteds(s, p) ⇒ (Se[s].send(i) = Pe[p].recv(i))

Axiom 6 (pp connections). connectedp(p1, p2) ⇒ (Pe[p1].send(i) = Pe[p2].recv(i))

Finally, we have to define how the connections change over time. This is an
important part of the specification, and requires some nontrivial details.

Let K = {0, . . . , Np − 1} be the set of all peers. We postulate that, at any
time, there exist k (time-dependent) sets K1, . . . ,Kk, named clusters, such that:

1. The clusters form a partition of K;

2. Each cluster is such that all its peers are connected to form a ring;

3. For each cluster, there is at least a peer in the cluster which is connected
to some seed.

Conditions C(1–3) are formalized by axiom clustering below. In order to
present it, we first introduce the following notation.11

• The successor of index p modulo m (i.e., over a set of m elements numbered
from 0 to m − 1) is denoted by nextm(p) ≡ (p + 1) mod m.

• We denote a permutation of the m-element set {0, . . . ,m−1} as a function
πm : {0, . . . ,m − 1} → {0, . . . ,m − 1}.

• We associate to every cluster Ki its size ki ≡ |Ki|.

Axiom 7 (clustering).

∃0 < k ≤ Np : ∃K1, . . . ,Kk :

(C1)



∀i ∈ {1, . . . , k} : Ki ⊆ K ∧

⋃

i=1,...,k

Ki = K

∧ ∀i, j ∈ {1, . . . , k} : i 6= j ⇒ Ki ∩ Kj = ∅


 ∧

(C2)

(
∀i ∈ {1, . . . , k} :∃π̃ki

: ∀j ∈ {0, . . . , ki − 1} :

connectedp(π̃ki
(j), π̃ki

(nextki
(j)))

)
∧

(C3)

(
∀i ∈ {1, . . . , k} : ∃j ∈ {0, . . . , ki − 1} :

∃s ∈ {0, . . . , Ns − 1} : connecteds(s, j)

)

Notice that, from now on, with a little abuse of notation, we will treat the
Ki’s as globally available items, that is we will be able to reference them in
any module of the system; notice that this is only a shortcut to represent easily
the sets, whose precise formalization in TRIO would not be difficult but would
introduce some additional notational overhead.

11In the following axiom, we slightly abuse TRIO notation by using higher-order quantifi-
cations, namely on the functions/sets Ki and πki

. Notice, however, that the same meaning
can be retained with suitable first-order predicates and quantifications, but with a much more
cumbersome notation, which we prefer to avoid for clarity.

49

6.3 Rely/Guarantee Specifications

Let us now describe a global specification property of the system. Then, we
also provide suitable specifications local to each peer module, from which the
correctness of the global specification can be inferred compositionally.

The form of the local specifications depends on the inference rule that we
intend to use. Therefore, in this section we first of all introduce the global
specification, and then we provide two different sets of local specifications: Sec-
tion 6.3.2 describes those suitable to apply the inference rule of Proposition 33,
whereas the following Section 6.3.3 introduces a new ad hoc inference rule, and
shows how the basic specification of the system can be seen as a local rely/guar-
antee specification suitable to be used with this new inference rule.

6.3.1 Global Specification

Our overall verification goal is to show a liveness property about the peers, that
is that every peer eventually sends a packet, within an upper bound equal to
the value NpTs. We choose this particular property as it allows us to focus on
temporal properties, and thus to demonstrate best the use of our inference rules
for temporal logic. An orthogonal concern, which we omit for brevity, would
be the proof of the the correctness of the protocol. However, let us notice that
similar, compositional techniques could be used for this purpose as well.

Intuitively, such a property cannot be guaranteed without introducing con-
straints on how the connections among peers vary. Basically, we need that the
connections do not change “too often”, if we want the system to actually con-
verge towards some goal. More precisely, let us introduce a predicate const(p, t)
which holds whenever its first argument keeps its current value over an interval
of given length given by its second argument. Therefore, for any time-dependent
predicate F with domain D, we have the following definition (as usual, bb can
be any of ee, ei, etc.).

constbb(F, T) ≡ ∃d ∈ D : Lastsbb(F (d), T)

Through this notation, we formulate the following global specification in a
rely/guarantee form: if the connections stay unchanged over a time interval of
length NpTs, then every peer eventually sends a packet.

Theorem 8 (global send liveness).

constie(connectedp(p1, p2) ∧ connecteds(s, p), NpTs) ⇒

WithinFie(∃i : Pe[p].send(i) , NpTs)

6.3.2 Local Specifications for a Predefined Inference Rule

In order to apply the inference rule 5N of Proposition 33, we now set up suitable
rely/guarantee specifications, local to each peer class.

50

The following theorem peer.bounded send recv provides such a specifica-
tion. As usual, i, j ∈ {0, . . . , P − 1} and k indicates the size of the cluster the
current module is in.

Theorem 9 (peer.bounded send recv).
∃j : WithinF(recv(j) , kTs) ⇒ ∃j : WithinF(send(j) , kTs)

This formula is probably a bit counterintuitive, since it establishes a relation-
ship between two events that are both in the future. However remember that
we are dealing with an abstract specification, and this description is therefore
logically acceptable.

Now that we have introduced the local rely/guarantee specification through
theorem peer.bounded send recv, we have to prove it by means of the other
formulas of the peer class, to show that it is indeed a valid local specification.
In order to do that, we introduce an assumption formula which we will discharge
by means of axioms of other peer classes. The formula, named peer.late recv,
states that if a late (i.e., later than (k− 1)Ts time units) recv is received, a send

is also present within the overall kTs time period.

Assumption 10 (peer.late recv).
∃j : Futr(WithinF(recv(j) , Ts) , (k − 1)Ts) ⇒ ∃j : WithinF(send(j) , kTs)

The need for this assumption will be clear in the following proof.

Proof of Theorem peer.bounded send recv. For simplicity, let 0 be the current
time instant. Assume the antecedent of the implication holds, that is that recv(i)
holds at a time instant 0 < t < kTs from the current time instant, for any i.
We distinguish two cases: whether t > (k − 1)Ts or not.

In the former case, recv(i) holds at a time instant (k − 1)Ts < t < Ts. This
means that at (k − 1)Ts the formula WithinF(recv(i) , Ts) holds, which corre-
sponds to the antecedent of formula peer.late recv. Therefore the consequent
holds, which is what we have to prove.

The latter case is the one in which the time instant in which recv(i) holds
is t ≤ (k − 1)Ts. Let us consider axiom peer.recv to send at time t. We can
infer that WithinF(send(j) , Ts) at t, for some j. In other words, there is a
time instant t < u < t + Ts such that send(j) at u. It is simple to realize that
u < (k − 1)Ts + Ts = kTs, in this branch of the proof. Therefore, it is true that
WithinF(send(j) , kTs) at the current time.

6.3.3 Making Up a New Inference Rule

In accordance with the guidelines we have proposed in the previous sections, let
us find suitable rely/guarantee inference rule and local specifications according
to try to the goal of our verification, stated in Section 6.3.1.

Local specifications. Let us seek a suitable formula to serve as local specifi-
cation of the modules. More precisely, we need a specification for each peer, as
we have many of them in each cluster. We notice that axiom peer.recv to send

51

is a local specification about the behavior of the send item in response to a be-
havior of the recv. Therefore, it is a suitable rely/guarantee local specification.

A suitable compositional inference rule. Let us now build a suitable infer-
ence rule to prove the truth of the global specification theorem
global send liveness from the truth of the local specifications axioms
peer.recv to send. Let us summarize the characteristics that it should possess.

• it should be a rely/guarantee rule, as we have both a global specification
and the local specifications that are in rely/guarantee form;

• the link between the assumptions and the guarantees of the formulas
should be given by a temporal relationship expressed through the WithinF
operator;

• the rule must be circular, as this mirrors the circular nature of the con-
nections among the peers in each cluster, each of whose assumption can
be satisfied by the preceding peer;

• the rule need not be self-discharging, as the assumption of each module is
discharged solely by the guarantee of the module that precedes it;

• it must be non fully compositional, as the global assumption about the
constancy of the connections over time defines what is the state of the
connections, and thus it is required in discharging local assumptions;

• there is no notion of initialization required, since we are proving a “live-
ness” property, similarly as in the inference rule of Proposition 33.

All in all, let us introduce — and prove the soundness of — the following
circular inference rule, whose structure of assumptions and guarantee mirrors
closely the one of the local and global specification formulas in our example.

Proposition 34. If, for some fixed duration TB > 0:

1. for all i ∈ IN : Ei ⇒ WithinF(Mi,TB)

2. for all i ∈ IN : E ∧ Mi ⇒ Eif i<N then i+1 else 1

3.
∧

i∈IN
WithinF(Mi, NTB) ⇒ M

4. WithinF(Ei,TB), for some i ∈ IN

then Lasts(E,NTB) ⇒ M .

Proof. Let us assume that Lasts(E,NTB) holds at the current time t, that is E

holds throughout the interval (t, t+NTB). By (4), there exists a t < t1 < t+TB

such that Ei holds at t′ for some i. Without loss of generality, let i = N : this
amounts just to a re-numbering of the modules.

Next, let us show that there exists N instants t1, t2, . . . , tN such that Mi

holds at ti, and t < ti < t + iTB, for all i ∈ IN . The proof goes by (finite)

52

induction. The base case i = 1 is obvious: since EN at t1, then also M1 at t1
by (2), and t < t1 < t + TB by assumption.

For the inductive step, assume that Mi−1 holds at t < ti−1 < t + (i− 1)TB;
notice that E holds at ti−1 as well. Therefore, Ei holds at ti−1 from (2). Let
us evaluate (1) at ti−1; it follows that there exists a ti−1 < ti < ti−1 + TB such
that Mi holds at ti. Given the bounds on ti−1, it is clear that t < ti−1 < ti <

ti−1 + TB < t + (i − 1)TB + TB = t + iTB. This concludes the induction.
All in all we have shown that

∧
i∈IN

WithinF(Mi, NTB) holds at t. (3) lets
us conclude that M holds at t.

6.4 Application of the Compositional Rule

In this section, we provide the proof of theorem global send liveness through
the applications of compositional inference rules with the local rely/guaran-
tee specifications we have presented in the previous subsection. As we already
mentioned, we provide two such proofs. The first one is the object of Section
6.4.1 and uses inference rule 5N of Proposition 33; the second one is the object
of Section 6.4.2 and exploits the inference rule of Proposition 34 introduced
beforehand. We warn the reader that the very final part of the proof in Section
6.4.1 will actually be also used in the other proof of Section 6.4.2, so we do not
repeat this part in the latter section.

6.4.1 Using a Predefined Inference Rule

Our goal is to compose the various theorems peer.bounded send recv (one
for each instance of the peer class) using the compositional inference rule of
Proposition 33 to deduce the validity of the global specification.

In our system, we can identify two levels at which to prove the liveness
property for the peers: intra-cluster and inter-cluster. To wit: since at any time
the set of all peers is divided into clusters, we can perform the global proof in
two steps:

• first, prove the liveness property within each cluster, independently of the
others;

• then, show that the composition of the intra-cluster liveness properties
yields the overall desired liveness property of the system.

Therefore, we are going to first apply the inference rule to each cluster sep-
arately.

Intra-cluster proofs. Consider the (generic) cluster of size k and the the
following choices for assumption and guarantee formulas. Notice that modules
in the inference rule are numbered from 1, while peers (and seeds) are numbered
from 0. However, for simplicity, we now assume to have a 0-based numbering
in the modules: filling the gap is straightforward.12

12We add the superscript k for notational clarity.

53

• Ek
i = ∃j : WithinF(Pe[i].recv(j) , kTs);

• Mk
i = ∃j : WithinF(Pe[i].send(j) , kTs);

• Lastsie
(
Ek, Ts

)
= constie(connectedp(p1, p2) ∧ connecteds(s, p), kTs), for all

p1, p2, p in the cluster and some seed s;

• Mk =
∧

i=1,...,k Mk
i ;

• N = k and T k
B = kTs.

Let us now apply the inference rule of Proposition 33 for the Lastsie and
WithinFie operators. Therefore, the we split the proof into lemmas, each corre-
sponding to a condition of the inference rule.

Lemma 35 (Proof step 1).
∃j : WithinF(Pe[i].recv(j) , kTs) ⇒ ∃j : WithinF(Pe[i].send(j) , kTs)

Lemma 36 (Proof step 2).
Ek ∧

∧
i ∃j : WithinF(Pe[i].send(j) , kTs) ⇒

∧
i ∃j : WithinF(Pe[i].send(k) , kTs)

Lemma 37 (Proof step 3).
WithinFie(

∧
i((∃j : WithinF(Pe[i].recv(j) , kTs)) ∨ (∃j : WithinF(Pe[i].send(j) , kTs))), kTs)

Let us now consider the proofs of the lemmas. Notice that, in proving each
lemma, we can safely assume that we are in a time interval where Lastsie

(
Ek, kTs

)

holds, that is where the connections are constant. In fact, the conclusion of the
whole compositional proof holds under the condition Lastsie

(
Ek
)
kTs. Now, for

the proofs.

Proof of Lemma 35. For every i in a cluster of size k, this lemma is equivalent
to theorem peer.bounded send recv.

Proof of Lemma 36. Trivial, since the consequent is immediately subsumed by
the antecedent.

Modular distance and properties. The proof of Lemma 37 is more
complicated than the others, and requires an additional definition for a distance
between two peers in the cluster, together with a property of this new item.
The property is not hard to prove, but it requires a somewhat involved case
discussion.

Let us first define the distance between two peers p1, p2 in a cluster as:
distN (p1, p2) ≡ (p2 − p1) mod N . Then, we have the following property.

Lemma 38.

distN (p1,nextN (p2)) =

{
0 if nextN (p2) = p1

distN (p1, p2) + 1 otherwise

54

Proof. Let us first consider the simple case nextN (p2) = p1. We then conclude,
by the definition of distance, distN (p1,nextN (p2)) = distN (p1, p1) = 0.

Let us now take the other case nextN (p2) 6= p1. Considering the definitions
of distance and next element, we have to prove

(((p2 + 1) mod N) − p1) mod N = ((p2 − p1) mod N) + 1. (1)

The proof is split into two branches, whether p2 + 1 < N or not.

1. p2 + 1 < N . In this case, (1) rewrites to

((p2 + 1) − p1) mod N = ((p2 − p1) mod N) + 1 (2)

Let us distinguish whether p2 − p1 + 1 ≥ 0 or not.

(a) p2 − p1 ≥ −1. Notice that p2 − p1 = −1 iff nextN (p2) = p1, so we
have p2−p1 ≥ 0 in this branch of the proof. Hence, (2) is established

p2 − p1 = (p2 − p1) mod N = p2 − p1

(b) p2 − p1 < −1. Notice that, for any natural number k ∈ [1..N − 1],
we have −k mod N = N − k. So, we can rewrite (2) as

N − (−p2 + p1 − 1) = (N − (−p2 + p1)) + 1

which concludes this branch of the proof.

2. p2 + 1 ≥ N . It is simple to realize that it must be p2 + 1 = N , since
p2 < N . Hence, (1) becomes

(0 − p1) mod N = N − p1 = ((N − 1 − p1) mod N) + 1

It is also obvious that N − 1 − p1 ≥ 0, so we finally conclude

N − p1 = (N − 1 − p1) + 1

To simplify the notation, we also introduce a notion of distance among peers
in a cluster that refers to the permutation of the indexes induced by the connec-
tions. Namely, the distance between two peers with respect to a permutation
is given by the distance between their indexes in the permutation and denoted
as: distπN

(p1, p2) ≡ distN (π−1
N (p1), π

−1
N (p2)). Consequently, a similar notion

for the next peer is introduced. That is, the next of a peer with respect to a
permutation is given by the element next to the peer in the permutation, and it
is denoted as: nextπN

(p) ≡ πN (nextN (π−1
N (p))). Notice that Lemma 38 can be

shown to hold also for the functions distπN
(p1, p2) and nextπN

(p) we have just
defined; we omit the straightforward proof of this fact.

55

Proof of Lemma 37. We still need to prove an intermediate lemma,
before actually performing the proof of Lemma 37. Notice that, for the sake of
brevity, we now write simply dist(p1, p2) and next(p) instead of disteπk

(p1, p2)
and nexteπk

(p) respectively, whenever the permutation π̃k is understood to be
the one defined by axiom clustering at a given time instant.

Lemma 39 (futr recv). Pe[p1].recv(i) ⇒ ∀0 < d < ki : ∀p2 : (dist(p1, p2) =
d ⇒ ∃j : WithinF(Pe[p2].recv(j) , dTs))

Proof. The proof goes by induction on the distance d > 0.
The base case d = 1 requires us to show that, for all p2 such that dist(p1, p2) =

1, Pe[p1].recv(i) ⇒ ∃i : WithinF(Pe[p2].recv(i) , Ts). Now, as a consequence of
axiom peer.recv to send, it follows from Pe[p1].recv(i) that
WithinF(Pe[p1].send(j) , Ts) for some packet j. It is not hard to realize that,
if dist(p1, p2) = 1, then p2 = next(p1). Moreover, we are considering a time
interval in the future where the connections are stable, so in particular we have
that connectedp(p1, p2), that is Pe[p1].send(j) is equivalent to Pe[p2].recv(j). In
other words, we have shown that WithinF(Pe[p2].recv(j) , Ts), concluding the
base step.

Now, let us consider a d > 1. The inductive step requires us to assume that
the property holds for d and to show that it holds for d + 1 as a consequence.
So, let us consider two generic peers such that dist(p1, p2) = d + 1, and assume
that Pe[p1].recv(i) for some packet i. Let us also consider the peer p3 such
that next(p3) = p2, that is the peer immediately preceding p2 in the ring of
connections. We can apply Lemma 38 to show that either dist(p1,next(p3)) =
dist(p1, p2) = 0 or dist(p1, p2) = dist(p1, p3) + 1. However, it is not the case
that p2 = p1, otherwise it would be dist(p1, p2) = 0 < 1. Hence dist(p1, p3) = d.

The inductive step lets us imply that ∃j : WithinF(Pe[p3].recv(j) , dTs), as-
suming Pe[p1].recv(i). Considering the definition of the WithinF operator, and
assuming 0 as the current time, this means that there exists a time instant
0 < t < dTs time units in the future,when Pe[p3].recv(j) holds. With a proof
similar to that of the base case, considering the fact that connectedp(p3, p2)
we can show that there exists a time instant q, occurring no later than Ts

time units after t, when Pe[p2].recv(l) for some packet l. Since q − t < Ts, then
0 < q < (d+1)Ts and therefore we can write WithinF(Pe[p3].recv(l) , (d + 1)Ts),
thus establishing the property for d+1 and concluding the inductive proof.

We are now ready for the final proof.

Proof of Lemma 37. We are actually going to prove ∃i : WithinF(Pe[j].recv(i) , kTs)
for all j in the cluster, which subsumes the statement of the lemma.

Let us start by noting that axiom clustering implies that there exist a peer
p and a seed s such that connecteds(s, p), and the connections stays stable over
the next kTs time units, because of the usual assumption. In the remainder, let
us assume 0 as the current instant. As a consequence of axiom seed.sending
for the seed s, it is true that WithinF(Se[s].send(i) , Ts) for some packet i, that

56

is there exists a time instant 0 < t < Ts in the future when Se[s].send(i) holds.
Therefore, because of the connection, Pe[p].recv(i) at the same time t.

Let us consider any generic peer j in the cluster. We can assume that
dist(p, j) > 0 without loss of generality. In fact, if dist(p, j) = 0, then it
is simple to realize that p = j and therefore the proof is concluded. Other-
wise, we can apply lemma futr recv, substituting p, j and dist(p, j) for p1, p2

and d respectively and considering t as the base time instant. We infer that
Futr(WithinF(Pe[j].recv(l) ,dist(p, j)Ts) , t) for some packet l. Considering the
definitions of the corresponding TRIO operators, this means that there exists a
time instant t < q < dist(p, j)Ts + t in the future when Pe[j].recv(l) happens.
It is simple to realize that dist(p, j) < k, since this is true of any pair of peers
in a cluster of size k. So c = dist(p, j) + 1 ≤ k, t < q < cTs and q < kTs. This
is the same as saying that WithinF(Pe[j].recv(i) , kTs) for the generic peer j in
the cluster, what we had to prove.

Conclusion of intra-cluster proofs. So far, we have proved that, for
each cluster Ki of size ki:

constie(connectedp(p1, p2) ∧ connecteds(s, p), kiTs)

⇒ WithinFie



∧

j∈Ki

∃l : WithinF(Pe[j].send(l) , kiTs) , kiTs




Actually, an analysis of the performed proofs shows that all the considered
events occurred within a time bound of kiTs time units, that is, equivalently, the
outermost WithinF is always instantiated at the current time. In other words,
we can actually claim a strengthening of the above formula, and namely

constie(connectedp(p1, p2) ∧ connecteds(s, p), kiTs)

⇒
∧

j∈Ki

∃l : WithinFie(Pe[j].send(l) , kiTs)

Finally, we also notice that we can discharge the Assumption peer.late recv
intra-cluster. The proof of it is similar to that of Lemma 37, and is therefore
not discussed here. Moreover, notice that the discharging does not involve any
circularity, as it ought to be.

Inter-cluster proofs. We are now ready to put together the various intra-
cluster proofs to deduce the validity of theorem global send liveness.

Before doing that, let us state simple proper of the operators const(·, ·) and
WithinF. The proofs are very simple and are therefore omitted.

57

Lemma 40. For any n predicates P1, . . . , Pn, time distances T1, . . . , Tn and
T ≥ maxi=1,...,n Ti:

constbb




∧

i=1,...,n

Pi, T


⇒

∧

i=1,...,n

constbb(Pi, Ti)

Lemma 41. For any nm predicates P
j
i for i = 1, . . . , n and j = 1, . . . ,m, time

distances T1, . . . , Tn and T ≥ maxi=1,...,n Ti:

∧

i=1,...,n

∧

j=1,...,m

WithinFbb

(
P

j
i , Ti

)
⇒

∧

i=1,...,n
j=1,...,m

WithinFbb

(
P

j
i , T

)

Finally, we prove the global liveness theorem.

Proof of theorem global send liveness. Assume the antecedent

constie(connectedp(p1, p2) ∧ connecteds(s, p), NpTs)

By axiom clustering, it is obvious that ki ≤ Np, for every i and at any time.
Therefore, maxi kiTs ≤ NpTs, and we can apply Lemma 40, so∧

i=1,...,k constie(connectedp(p1, p2) ∧ connecteds(s, p), kiTs) holds.
This means that the antecedents of every intra-cluster result is satisfied.

Therefore, we have that:

∧

i=1,...,k

∧

j∈Ki

∃l : WithinFie(Pe[j].send(l) , kiTs)

Now, we apply Lemma 41 and finally conclude:

∧

p=1,...,Np

∃l : WithinFie(Pe[p].send(l) , NpTs)

where the last rearrangement of indices is justified by the fact that the Ki’s are
a partition of the set of all Np peers (axiom clustering).

6.4.2 Using a Made Up New Inference Rule

We have all the ingredients to apply the compositional inference rule of Propo-
sition 34 in order to prove theorem global send liveness.

As we did in the previous proof, let us split the proof between intra-cluster
and inter-cluster proofs. Actually, the inter-cluster proof is simple, and it is just
like as it was done in Section 6.4.1, the only difference being that we now deal
with ee variations of the constee(·, ·) and WithinFee operators. This is however
immediately reducible to the previously seen case, as it is simple to check that
constie(·, ·) implies constee(·, ·) for the same arguments, and WithinFee implies
WithinFie, for the same argument. Thus, let us just carry out the intra-cluster
proof.

58

Intra-cluster proof. Let us consider a generic cluster of size k; let us instan-
tiate the inference rule of Proposition 34 as follows. Notice that modules in the
rule are numbered from 1, while peers (and seeds) are numbered from 0. Thus,
we associate the number i + 1 in the rule to peer number i.

• Ei = ∃j : Pe[i − 1].recv(j);

• Mi = ∃j : Pe[i − 1].send(j);

• E = constee(connectedp(p1, p2) ∧ connecteds(s, p), kTs), for all p1, p2, p in
the cluster, and some seed s;

• M =
∧

i∈IN
WithinF(Mi, kTs);

• N = k and TB = Ts.

Applying the inference rule of Proposition 34 amounts to the following steps:

1. Prove that: ∃j : Pe[i − 1].recv(j) ⇒ WithinF(∃j : Pe[i − 1].send(j) , Ts),
for all i ∈ {1, . . . , k}.

2. Prove that:
E∧∃j : Pe[i−1].send(j) ⇒ ∃j : Pe[if i − 1 < k − 1 then i else 0].recv(j),
for all i ∈ {1, . . . , k}.

3. Prove that:∧
i∈IN

WithinF(∃j : Pe[i − 1].send(j) , kTs) ⇒
∧

i∈IN
WithinF(∃j : Pe[i − 1].send(j) , kTs).

4. Prove that: WithinF(∃j : Pe[i − 1].recv(j) ,TB), for some i ∈ {1, . . . , k}.

We now orderly provide the proof justifications.

1. For any i ∈ {1, . . . , k}, this is exactly axiom peer.recv to send for module
i − 1.

2. For any i ∈ {1, . . . , k}, this is immediately implied by the connection
axiom clustering, together with the definition of the connection predi-
cate in axiom pp connections, for module i − 1 and its successor in the
clustering.

3. This is trivial as the left-hand side of the implication is identical to the
right-hand side.

4. This is a direct consequence of axiom clustering again, together with
axiom seed.sending.

59

Discussion. Let us compare the two different verification processes we have
detailed in this section.

The first approach used a previously defined inference rule, namely that of
Proposition 33. As we have seen, the application of the rule has been non-
trivial, and has required some considerable ingenuity, as well as the proof of
several details. On the other hand, the application of the inference rule in the
second verification has been straightforward and with little technical complica-
tions. This does not mean that in this case the complexity of verification has
“disappeared”; in fact, we had to invest considerable ingenuity in devising a new
compositional inference rule, one that was simple to apply for the system be-
ing verified. So, the two different solutions have resolved the trade-off between
difficulty in building a rule and difficulty in applying it in two different ways.

In general, it is difficult — and perhaps highly subjective as well — to assess
which of the two approaches is preferable. Ideally, one should consider both
approaches, and choose according to the particular features of the system under
consideration, as well as his/her specific skills and attitudes. All in all, the most
important “lesson” that we can draw from this example is about the importance
of flexibility in pursuing compositional verification, in accordance with what we
have extensively advocated in the previous sections.

References

[AL95] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM
Transactions on Programming Languages and Systems, 17(3):507–
535, 1995.

[Coh01] Bram Cohen. BitTorrent. http://www.bittorrent.org, 2001.

[Coh03] Bram Cohen. Incentives build robustness in BitTorrent. In Proceed-
ings of the 1st Workshop on Economics of Peer-to-Peer Systems,
May 2003.

[Coo78] Stephen A. Cook. Soundness and completeness of an axiom system
for program verification. SIAM Journal on Computing, 7(1):70–90,
1978. Corrigendum in [Coo81].

[Coo81] Stephen A. Cook. Corrigendum: Soundness and completeness of an
axiom system for program verification. SIAM Journal on Comput-
ing, 10(3):612, 1981.

[Dug06] Adam Duguid. Coping with the parallelism of BitTorrent: Con-
version of PEPA to ODEs in dealing with state space explosion.
In Eugene Asarin and Patricia Bouyer, editors, Proceedings of the
4th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS’06), volume 4202 of Lecture Notes in
Computer Science, pages 156–170. Springer-Verlag, 2006.

60

http://www.bittorrent.org

[FRMM06] Carlo A. Furia, Matteo Rossi, Dino Mandrioli, and Angelo Morzenti.
Automated compositional proofs for real-time systems. Theoretical
Computer Science, 2006. To appear.

[Fur03] Carlo Alberto Furia. Compositional proofs for real-time modular
systems. Master’s thesis, Politecnico di Milano, December 2003.
(Tesi di Laurea).

[Fur05] Carlo Alberto Furia. A compositional world: a survey of recent
works on compositionality in formal methods. Technical Report
2005.22, Dipartimento di Elettronica e Informazione, Politecnico di
Milano, March 2005.

[GM01] Angelo Gargantini and Angelo Morzenti. Automated deductive re-
quirement analysis of critical systems. ACM Transactions on Soft-
ware Engineering and Methodology, 10(3):255–307, 2001.

[Lam98] Leslie Lamport. Composition: A way to make proofs harder. In
Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli, edi-
tors, Proceedings of the International Symposium: “Composition-
ality: The Significant Difference” (COMPOS’97), volume 1536 of
Lecture Notes in Computer Science, pages 402–423. Springer-Verlag,
1998.

[Men97] Elliott Mendelson. Introduction to Mathematical Logic. Chapman
& Hall, 4th edition, 1997.

[NT00] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of
compositional reasoning. In E. Allen Emerson and A. Prasad Sistla,
editors, Proceedings of the 12th International Conference on Com-
puter Aided Verification (CAV’00), volume 1855 of Lecture Notes
in Computer Science, pages 139–153. Springer-Verlag, 2000.

61

