
A Compositional World
a survey of recent works on compositionality in formal methods

Carlo Alberto Furia

March 2005

Abstract

We survey the most significant literature about compositional tech-
niques for concurrent and real-time system verification. We especially
focus on abstract frameworks for rely/guarantee compositionality that
handles circularity, but also consider different developments.

1



Contents

1 Definitions of Compositionality 3

2 Early Works on Compositional Methods 6

3 General Circular Rely/Guarantee Compositional Rule 7

4 Abstract Frameworks for Rely/Guarantee Compositionality 8
4.1 Abadi and Lamport, 1993 [2] . . . . . . . . . . . . . . . . . . . . 8
4.2 Abadi and Lamport, 1995 [4] . . . . . . . . . . . . . . . . . . . . 10
4.3 Abadi and Plotkin, 1993 [6] . . . . . . . . . . . . . . . . . . . . . 12
4.4 Abadi and Merz, 1995 [5] . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Xu, Cau, and Collette, 1994 [85] . . . . . . . . . . . . . . . . . . 14
4.6 Cau and Collette, 1996 [18] . . . . . . . . . . . . . . . . . . . . . 15
4.7 Jonsson and Tsay, 1996 [51] . . . . . . . . . . . . . . . . . . . . . 16
4.8 Tsay, 2000 [82] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.9 Namjoshi and Trefler, 2000 [71] . . . . . . . . . . . . . . . . . . . 19
4.10 Viswanathan and Viswanathan, 2001 [84] . . . . . . . . . . . . . 21
4.11 Maier, 2001 [62] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.12 Maier, 2003 [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13 Amla, Emerson, Namjoshi, and Trefler, 2003 [10] . . . . . . . . . 26

5 Abstract Non-Rely/Guarantee Methods 29
5.1 A Compositional Proof Method for Assertion Networks . . . . . 29
5.2 The Lazy Approach to Compositionality . . . . . . . . . . . . . . 29
5.3 Decomposition of Real-Time Transition Systems . . . . . . . . . 32
5.4 A Semantic Framework for Compositionality . . . . . . . . . . . 33

6 Compositionality in Model Checking 35

7 Compositionality for Your Own Formalism 38
7.1 Reactive Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 TTM/RTTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.3 Interval-Based Logics . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



This report surveys the most significant works about compositional formal
techniques and methods for concurrent and real-time systems which have been
published, approximately, during the last decade. In particular, the focus is
on abstract frameworks for rely/guarantee compositionality for temporal logic
languages, although other contributions are also considered.

The report is organized as follows. Section 1 introduces compositionality by
providing some definitions of the term and by exposing the most relevant aspects
of the problem of compositional verification. Section 2 briefly reports about the
papers which have introduced the idea of compositionality, and especially the
rely/guarantee paradigm, for the verification of concurrent systems. Section 3
presents an abstract general circular rely/guarantee compositional rule which is
the template for most rely/guarantee compositional rules proposed in the liter-
ature on the subject. Section 4 reviews the contribution in the recent literature
about abstract frameworks for rely/guarantee compositionality, showing simi-
larities and common traits of the various inference rules, trying to fit them to the
previously introduced template rule. Section 5 reviews some approaches to com-
positional verifications that are alternative to the (widely used) rely/guarantee
method. Section 6 presents the essential traits of the compositional methods
for model checking. Finally, Section 7 presents a (short) selection of compo-
sitional methods embedded in some disparate formalisms (in particular, other
than temporal logics).

1 Definitions of Compositionality

The term compositionality and the idea of composition encompass a large variety
of methods and techniques that aim at describing how to compose systems to
form larger systems, and how to manage the resulting complexity of the overall
system. Clearly, this broad objective can be considered from several, disparate,
very different perspectives. In order to understand this better, and to focus
on the issue that are of our interest, let us try to identify the dimensions that
characterize the compositionality problem.

Let us first attempt a very general (and hence necessarily, to some extent,
vague) definition of compositionality. In lay terms, the Merriam-Webster Dictio-
nary of English [66] defines the verb compose as “to form by putting together”.
This basic definition encloses the idea at the root of compositionality: forming
a system by putting together smaller subsystems.

A more technical definition reflecting this idea is that usually adopted in the
philosophy of language, as reported by Janssen [48]:

“The meaning of a compound expression is a function of the mean-
ings of its parts and of the rule by which the parts are combined”.

This compositionality principle is also called Frege’s principle, from the name
of the author who first formulated the principle [32].

This very same idea can be adapted to program verification: de Roever et
al. [26, pg. 48] define compositionality as:

“That a program meets its specification should be verified on the
basis of specifications of its constituent components only, without
additional need for information about the interior construction of
those components”.

3



Therefore, in compositional verification we aim at verifying the global specifica-
tion of a system by composing the specifications which are local to the various
components of the system.

Adopting a rather liberal — but still technical — definition, compositionality
consists in bringing the well-known engineering (and software engineering in
particular) practices of modularization and abstraction from the specification
to the verification domain. Hence, we propose the following general definition
of compositionality:

“The techniques and methods that permit the modularization of the
verification process of a large system”.

As it is simple to realize, a huge number of different techniques and methods
can be classified under the label “compositionality”. In order to discern among
the members of this large variety, and to focus on those which are of more
interest to us, let us list the relevant aspects to be considered when analyzing a
compositional method.

Time Model This aspect considers continuous or discrete time, real-time (i.e.
metric) or untimed (i.e. without metric) time models, the linear or branch-
ing nature of time, etc.

Computational Model This aspect considers issues such as whether we adopt
a semantics based on states, on transition systems, an agent-based view,
etc.

Model of Concurrency Choosing the model of concurrency involves consid-
ering issues such as synchronous vs. asynchronous, interleaving semantics,
lower-level models of concurrency such as shared-variables concurrency
and message passing systems.

Methodology Basically, we have the two aspects of refinement (a.k.a. compo-
sitionality in strict sense [87, 25], decomposing [4], a priori or top-down
development) and module composition/reuse (a.k.a. modularity [25] or
modular completeness [87], composing [4], a posteriori or bottom-up de-
velopment).

Specification Model This aspect refers to the abstraction mechanisms intro-
duced in the model that constitutes the specification. For example we may
use an assertional (a.k.a. denotational) approach, or an operational one,
or a dual-language one (which combines an operational formalism with an
assertional one), etc.

Implementation Language This aspect is only relevant if we are verifying
implemented programs. In such case, the formal framework should give a
formal semantics to the programming language.

Syntax vs. Semantics This refers to the general approach of the composi-
tional method we are considering. We say it is syntactic if it is defined in
terms of the language used in the formal description of the model, using
rules that refers to the syntactic structure of the formulas, without ref-
erence to semantic concepts such as safety/liveness characterization, clo-
sures, etc. On the contrary, we label a method semantic if its applicability

4



and justification are based on these latter concepts, usually expressed in
terms of set-theoretic concepts.

Approach to Managing Complexity To the extremes, we can identify two
ways in which a compositional method can mitigate the complexity of
verification of a composite system. The first approach tries to restrict the
model sacrificing expressiveness for simplicity. In other words, the user
cannot specify all kind of modules with this approach, but when he/she
can do so, the method brings a provable simplification in the complexity
of verification. The other approach instead leaves the user with more
expressiveness, generality and freedom, but in some cases the method may
be of no practical usefulness, if not even detrimental. Obviously, what we
encounter in practice in most methods is usually a trade-off between these
two approaches, so that the distinction is really a fuzzy one.

How to Make a Module Compositional This aspect chooses among the
rely/guarantee paradigm (dating back to Jones [50] and Misra and Chandi
[67]), or the lazy methodology proposed by Shankar [79], or other original
approaches such as the ones by Hooman [46], Manna et al. [16], etc.

Semantics of Composition The choice made by most authors is to take com-
position as conjunction of specifications for denotational formalism, and
parallel composition for operational ones. Other, less common, variants
are possible.

Table 1 schematically summarizes the above aspects. In italic are shown the
choices we focused on in our own contribution to compositionality in [34]. There,
we present a framework which works equally well for continuous and discrete
time, and relies on no assumptions about the computational and concurrency
model. Moreover, it is primarily syntactic, considers linear time and abstract
specifications, that is no implementation aspect is considered.

Issue Possible choices

Time Model continuous, discrete, real-time, untimed, linear,
branching, etc.

Computational Model state-based, agent-based, transition system, etc.
Concurrency Model synchronous, asynchronous, interleaving, mes-

sage passing, shared variables, etc.
Methodology refine or compose
Specification denotational, operational, dual-language, etc.

Implementation language used for implementation
Syntax vs. Semantics language vs. (semantic) model
Manage Complexity restrict vs. guide

Compositionality Model rely/guarantee, lazy, hybrid, etc.
Composition Semantics conjunction, parallel, etc.

Table 1: Dimensions of the Compositional World

As a final remark, note that compositionality is not always effective in re-
ducing the complexity of specification and verification. In particular, as noted
in [26], noncompositional methods are more effective in some scenarios, and in
particular when a high coupling between modules is present, so that it is difficult

5



to encapsulate the modules with adequate abstractions. An important example
of such situation is the case with mutual-exclusion protocols and algorithms; in
such cases global methods such as that by Owicki and Gries [77]1, coupled with
heuristics for simplifications as in the work by Feijen and van Gasteren [28],
usually give the best practical results.

2 Early Works on Compositional Methods

The first attempts at the formal verification of programs date back to the ori-
gins of computer science itself, with the pioneering works of Goldstine and von
Neumann [36], and Turing [83], in the second half of the ’40s. According to de
Roever et al. [26], a constant trend in developing methods for proving program
correctness has been from a posteriori nonstructured methods to structured
compositional techniques. For a detailed historical account of compositional
and noncompositional methods and techniques for program verification, we re-
fer the reader to the aforementioned book by de Roever et al. [26], and to the
surveys by de Roever and Hooman [24, 47, 25].

This development is rather easy to sketch for sequential program verification,
where the first method is due to Floyd in 1967 [30] and is noncompositional,
whereas Hoare reformulated the method in an axiomatic compositional style in
1969 [41].

On the other hand, the first practical noncompositional methods for the ver-
ification of concurrent programs are due to Ashcroft [13], Owicki and Gries [77],
and Lamport [56], during the mid ’70s. Concurrency raises several technical dif-
ficulties which render the development of methods, as well as their compositional
extensions, harder than in the sequential case. Indeed, the first compositional
methods for concurrent program verification appeared at the end of the ’70s, in
the contributions by Francez and Pnueli [31], Jones [50] and Misra and Chandy
[67].

In particular, the works by Jones [50] and by Misra and Chandy [67] intro-
duced the rely/guarantee paradigm to specify open reactive systems. It was
Jones who introduced the terminology rely/guarantee in [49, 50], where he pro-
posed a method for the shared-variable model of concurrency. His work was
based on the previous work by Francez and Pnueli [31].

On the other hand, Misra and Chandy proposed in [67] a similar paradigm
for concurrency models based on synchronous communication, and called it
assumption/commitment.

Later, Abadi and Lamport proposed to call both compositional paradigms
assume/guarantee [2], since they embody the same idea. Several of the works
reviewed in Section 4 show in detail how the two paradigms of rely/guarantee
and assumption/commitment can be unified. Because of this reason, in all of
this paper we will not distinguish in the terminology between rely/guarantee,
assumption/commitment and assume/guarantee: we choose to use only the term
“rely/guarantee”, in accordance with the name given to the first formulation of
the principle [49].

Finally, in this short recount of first works on compositionality for concurrent
systems, it is worth mentioning the work by Stark, who formulated the first

1Similar methods for different formal models of concurrency are for example [56] for in-
ductive assertion networks and [12, 61] for synchronous message passing models.

6



theory of refinement for concurrent processes in 1988 [80].

3 General Circular Rely/Guarantee Composi-

tional Rule

We present a general “template” compositional inference rule which:

• treats composition (rather than decomposition and refinement);

• uses specifications in the rely/guarantee style;

• is circular (when a compositional rule treats circularity is also called
“strong”, according to [4]).

We are considering the following setting. We have two abstract connectives,
represented by the symbols v and u, to describe entailment and composition.
More precisely, the compose connective u permits to put together two specifi-
cations to form one. For example, the formula A uB represents a specification
obtained by putting together the specifications A and B. On the other hand,
the entail connective v links two specifications in a manner that represents
some form of realization or implication relation. So, for example, a formula
A v B represents the fact that A “satisfies” (in a certain sense) the specifica-
tion B. In this section we give no formal meaning to these connectives and to
the idea of module and specification, since we are only introducing a syntactic
characterization to express certain formulas and inference rules.

Let us now compose n > 0 modules to form a larger system. Each module
i has a specification which consists of an assumption Ei and a guarantee Mi,
for i = 1, . . . , n. Moreover, the composite global system also has a global as-
sumption E and a global guarantee M . We formulate an inference rule that
deduces the validity of the global specification as a consequence of the local
specifications. More precisely, we have the following.

Proposition 1 (General Composition Inference Rule). If:

1. for all i = 1, . . . , n: Ei vMi

2. E u
dn

i=1
Mi v

dn

i=1
Ei

3. E u
dn

i=1
Mi vM

then: E vM .

The informal meaning of the hypotheses of Proposition 1 is as follows:

1. every component satisfies its rely/guarantee local specification;

2. the composition of the guarantees of all the components satisfies (i.e. dis-
charges) the assumptions of all the components, under the hypothesis that
the global assumption also holds;

3. the composition of the guarantees of all the components satisfies (i.e. im-
plements) the global guarantee.

7



Under these hypotheses, the proposition concludes that the global rely/guaran-
tee specification E vM holds.

In general, the deduction of Proposition 1 is unsound, because of the cir-
cularity between the discharging of assumptions in hypothesis 2 and the lo-
cal specifications in hypothesis 1. In order to build a sound rule, we have to
strengthen the proposition by introducing some additional assumptions, of some
kind. Usually, the various works introduce semantic assumptions about the un-
derlying computational model, about the time model, or about the class of the
formulas representing the assumptions and guarantees.

4 Abstract Frameworks for Rely/Guarantee Com-

positionality

This section surveys several works about abstract compositional frameworks
based on rely/guarantee inference rules that handle circularity. We try to show
how all of these frameworks are fundamentally based on an inference rule which
is a particular instance of the general rule of Proposition 1, to which each
framework adds specific additional hypotheses for soundness.

The works are presented roughly in chronological order, but listing sequen-
tially works by the same authors which can be considered successive develop-
ments over the same ideas.

4.1 Abadi and Lamport, 1993 [2]

This work presents a purely semantic analysis of compositionality, independent
of any particular specification language or logic. This permits a general analy-
sis of compositionality. However, the approach also has some drawbacks, which
arise mainly from two aspects. On the one hand, the analysis is probably too
abstract, that is it is far from immediate applicability with a given formalism.
This is also briefly acknowledged by the authors themselves in [4]. By “too ab-
stract” we also imply that its theoretical results have mostly intellectual (rather
than practical) interest. In fact, we consider compositionality a practical sim-
plification of difficult problems. On the other hand, the analysis done by Abadi
and Lamport still requires a number of focused semantic assumptions, which
mimic the features of the semantics of some specification formal language. As a
result, mapping this general framework onto a given specification language may
introduce additional complications and intricacies, due to the fact that a given
language usually comes with its own semantics, which may be difficult to adapt
or circumvent to match the general hypotheses of the paper.

Let us briefly outline the main semantic hypotheses of the model.

• Behaviors of described systems are infinite discrete sequences of states
from a certain (unspecified) finite set.

• Any state change is triggered by agents. Agents can be divided into sets,
which reflect their “nature”. Notice that agents are an abstraction which
typically translates to separated input and output variables, in a lower
level formalism.

• An interleaving semantics for composition of behaviors is assumed.

8



• Stuttering-equivalence is also required, that is two behaviors are consid-
ered equivalent if they are equal after replacing every maximal sequence
composed entirely of the same state with one single instance of that state.

• Fairness conditions (also known as progress properties) are usually intro-
duced in a specification.

• Initialization predicates are also considered, so that the system has a no-
tion of “start”.

Let us now see how the general inference rule of Proposition 1 is modified
by introduction of additional hypotheses.

• Each module is characterized by a set of agents that perform the state
transition the module is responsible of. The agent sets for the various
modules are assumed to be disjoint.

• Each environment assumption must be a safety property, constraining only
agents which do not belong to any module (i.e. they belong to the envi-
ronment). The authors note that, since it is well known that any property
in temporal logic can be expressed as the intersection of a safety and a
liveness property, it is possible to move the liveness part of the environ-
ment assumption to the guarantee part of the rely/guarantee specification.
However, this consideration is of intellectual interest only, as the authors
themselves admit in [4]. In fact, again, we must bear in mind that compo-
sitionality only has its strengths in being a practically usable technique,
which is not the case if it forces one to write specifications in an unnat-
ural and obfuscated manner. Moreover, notice that the requirement on
safety is not immediately extensible to metric temporal logic, where the
classification safety/liveness should be extended and/or reconsidered.

• The operators v and u of the abstract rule of Proposition 1 are mapped
to the set-theoretic operators ⊆ and ∩. This is the most natural choice,
since we are dealing with a semantic model where properties are sets.

• A rely/guarantee specification is written using the operator ⇒, where
P ⇒ Q is a shorthand for the set-theoretic expression (B−P )∪Q, where
B denotes the set of all behaviors.

• Condition 1 is replaced by one involving the realizable part of the rely/guar-
antee expression Ei ⇒Mi, denoted as R(Ei ⇒Mi). Without introducing
too many technical details, let us just say that this requires the property
to be implementable, that is to be the outcome of a deterministic strategy.

• In condition 2, we consider the safety closure C(Mi) of the Mi. Moreover,
we assume that the safety closure of each Mi does not constrain any agent
outside the agent set for the module i.

• Condition 3 is not applied, since the rule actually proves E v
dn

i=1
Mi

instead of E vM .

To sum up, the soundness is based on a discrete state structure, on which
to perform induction, on the safety of the environment assumptions and on the
distinction between input and output variables. Here it is the inference rule
given in [2], after removing explicit mentions to the agents.

9



Proposition 2 (Abadi and Lamport, 1993 [2]). If:

1. for all i = 1, . . . , n: R(Ei ⇒Mi)

2. E ∩
⋂n

i=1
C(Mi) ⊆

⋂n

i=1
Ei

3. E and Ei, for all i = 1, . . . , n, are safety properties.

then: R(E ⇒
⋂n

i=1
Mi).

The rule was given some (partial) tool support in [37], using the theorem
prover HOL.

4.2 Abadi and Lamport, 1995 [4]

With reference to the specification language TLA, Abadi and Lamport propose
in [4] a sound composition theorem. As it is customary, the compose operator
u is embodied by logical conjunction ∧, and the entail operator v is embodied
by logical implication ⇒. The following assumptions are introduced to render
the deduction rule sound.

First, general restrictions are implicit in the use of TLA as a specification
language, and namely:

• Although time variables can take values over a continuous domain (i.e.
the reals R), the semantic of the language is defined in terms of discrete
sequences of states, where a state is an assignment of values to the set
of variables. Therefore, there is a considerable, and intrinsic, “amount of
discreteness” in the description of a system with TLA. This is also shown
by the important role given to invariance under stuttering.

• In TLA, there is the notion of initialization of variables, and therefore of
“beginning” of the life of a system.

• Usually, it is assumed that the set of all variables can be partitioned into
two subsets e and m of input and output variables. The specification is
such that the assumption formulas only modify variables in e, while the
guarantee formulas only modify variables in m. Actually, how to treat
the more general case is discussed briefly in [4], although it still has some
limitations.

• It is usually assumed that a specification is written in a preferred “canon-
ical” form. Although the results usually hold also for non-canonical spec-
ifications, the use of canonical form is often required to render the proofs
practically feasible.

• Although TLA can handle both interleaving and non-interleaving compo-
sition, the two cases must usually be treated separately in the correctness
proofs.

Second, the following additional assumptions are introduced in the rule.

• The local specifications are written using an ad hoc operator, the +−.
“while-plus” operator. Quoting [4], a specification

10



“is expressed by the formula E +−. M , which means that, for
any n, if the environment satisfies E through “time” n, then
the system must satisfy M through “time” n+ 1”.

Notice that such an operator requires the notion of discrete “time” and
permits some form of induction on such a discrete structure with a begin-
ning.

• Condition 2 is strengthened by requiring it to hold for the safety closures
of the involved formulas. The safety closure of a formula F is denoted as
C(F ) and is the strongest (i.e. smallest) safety property which is implied
by F . So, condition 2 is modified by replacing E with C(E) and each Mi

with the corresponding C(Mi). The authors introduce some lemmas that
permit to get rid of the closures in the formulas, under additional technical
conditions.

• Condition 3 is coupled with a similar one, where the safety closures of the
formulas are considered. More precisely, the Mi’s and M are replaced by
the C(Mi)’s and C(M), respectively. Moreover, E is replaced by C(E)+v,
a formula which asserts that, if C(E) ever becomes false, then the values
of all the specification variables v stay unchanged always in the future.
As for the previous condition, rules for handling the closures and the +
operator are proposed.

To sum up, the soundness in the compositional rule is gained by considering
specifications written in a canonical form, exploiting an induction (using the +−.
operator) over a discrete structure of states with a beginning, and considering
safety characterizations of some of the assumptions and guarantees formulas of
the specification, handling these safety characterizations with ad hoc rules and
“tricks”. More explicitly, here it is the composition rule.

Proposition 3 (Abadi and Lamport, 1995 [4]). If:

1. for all i = 1, . . . , n: Ei
+−. Mi

2. C(E) ∧
∧n

i=1
C(Mi) ⇒

∧n

i=1
Ei

3. (a) E ∧
∧n

i=1
Mi ⇒M

(b) C(E)+v ∧
∧n

i=1
C(Mi) ⇒ C(M)

then: E +−. M .

Finally, Abadi and Lamport also show how a decomposition theorem, to
be used with a refinement methodology, can be derived from their composition
theorem. The framework was given some tool support in developing the case
study described in [55].

We notice how the rule proposed by Abadi and Lamport introduces several
assumptions on the computational model, and on how a specification, and the
corresponding proof, “should be written”. These restrictions, together with the
necessary methodology, reduce generality and immediacy of use.

11



4.3 Abadi and Plotkin, 1993 [6]

This work is an abstract study of compositionality, in two frameworks based on
intuitionistic and linear logics. The work treats compositionality at the semantic
level, and considers safety properties only.

Let us first consider the analysis based on intuitionistic logic. The framework
and the results closely resemble those of [2], with restriction to safety properties
for both the assumptions and the guarantees. With respect to [2], an additional
theoretical result is the reduction of the compositional inference rule to the the
case for just one module. Let us state this result more explicitly. The semantic
model is the same as that of [2], with the restriction to safety properties only.
It can be shown that such a model is an intuitionistic one, where a suitable
implication → can be defined. This implication maps the entail operator v,
whereas the compose operator u is mapped to the conjunction ∧, as usual. With
these definitions and semantic assumptions, the following very simple circular
inference rule is proved sound.

Proposition 4 (Abadi and Plotkin, 1993 [6]). If:

1. E →M

2. M → E

3. E and M are safety properties

then M holds.

Note that the rule of Proposition 4 is actually not compositional, since it
involves one module only; alternatively, we could consider it as a degenerate
compositional rule. An interesting fact is that we can derive the general compo-
sitional rule of [2], restricted to the intuitionistic framework, from Proposition
4, using only propositional reasoning and induction. This result is interesting
per se, since it basically shows that the only catch in this kind of compositional
reasoning with safety properties lies in disentangling the circularity in the dis-
charging of assumptions: doing so with one module suffices. However, it has no
practical impact, since it is a specialization of previously seen results by other
means.

Let us now consider the other framework based on linear logic. Let us just
sketch the main results, skipping several details. In this framework, the be-
haviors of a module are represented by a process, which is a prefix-closed set of
sequences of state transitions. A property is a set of processes. The composition
of (safety) properties is defined by the tensor product operator ⊗, defined in
terms of parallel composition of processes (although the relation in this case is
not simply logical conjunction). It is the tensor product that maps the com-
pose operator u. Instead, the v operator maps to the connective −¦, where
the formula E−¦IM represents those processes which cannot be distinguished
from those in M whenever the environment process is taken from E and the
initialization condition is in the set I. We do not discuss these definitions with
more detail. The composition rule for linear logic goes as follows.

Proposition 5 (Abadi and Plokin, 1993 [6]). If:

12



1.
⊗n

i=1
(Ei−¦Ii

Mi)

2. for all i = 1, . . . , n, the property E ⊗
⊗n

i6=j=1
Mj subsumes the property

Mi−¦Ii
Ei

3. I ⊆
⋂n

i=1
Ii

4. E, M , and for all i = 1, . . . , n Ei and Mi are safety properties

then E−¦I

⊗n

i=1
Mi.

Although it introduces several technicalities, we can recognize that the rule is
structurally similar to the one for intuitionistic logic, and to those of other works
on compositionality. Similarly to what is done in the intuitionistic framework,
the rule of Proposition 5 can be deduced from the case of just one module. We
do not discuss variations of this result discussed in the paper.

The paper by Abadi and Plotkin shows quite clearly these basic facts about
compositional reasoning:

• technical problems arise in proving the soundness because of the presence
of circularity;

• these problems can be solved by restricting our attention to safety proper-
ties, since proving soundness reduces to proving a sort of “initial validity”,
which can be regarded as an implicit way of breaking the circularity;

• finally, induction is used to “propagate” the initial validity to any instant
in the future.

These basic facts basically apply to most works on compositionality for temporal
logics, since the seminal works by Misra and Chandy [67] and Jones [50, 49].

4.4 Abadi and Merz, 1995 [5]

This work introduces an abstract syntactic framework in which to express com-
positional rules. Actually, even if it is based on an intuitionistic logic, it un-
derlines some of the assumptions about the computational model which were
also shared by other works such as [2, 4], so that the statement that the logic
is independent of particular computational models is not absolutely true.

The framework consists of a propositional intuitionistic logic, with the usual
logic connectives, plus a new connective +→ which clearly represents TLA’s +−.
and similar ones. Even if the framework should be primarily syntactic, it actu-
ally introduces some assumptions on the structures on which the logic is to be
interpreted. More precisely, these assumptions are:

• a pre-order relation ⊆ is given on the sets of behaviors;

• the relation is such that atomic propositions are true on downward-closed
sets of behaviors; that is, for any atomic proposition π and behaviors σ, σ′

such that σ ⊆ σ′, if σ′ |= π then also σ |= π.

• the relation ⊂ obtained from ⊆ by removing reflexivity is well-founded on
the set of all behaviors; notice that this permits induction along compu-
tations, similarly to the aforementioned models.

13



Moreover, notice that these assumptions are satisfied whenever the interpreta-
tion structures are Kripke models (which are standard models for intuitionistic
logic).

Under these assumptions, Abadi and Merz prove a number of basic properties
of the operators of the logic. However, a sound compositional rule on the model
of Proposition 1 cannot be proved without further semantic assumptions and
specializations. More specifically, the authors choose to instantiate the abstract
framework with two temporal logics, namely TLA and a fragment of CTL*.
Sound compositional rules can be proved only after such instantiations are done.
Hence, the idea of an abstract framework is appealing in its syntactic approach,
but is not detailed enough to implement a sound circular rule.

The rule for TLA is basically an illustration of the one of [4] using the new
formalism. In fact, the corresponding additional semantic notions are introduced
beforehand. Also notice that the relation ⊆ of the intuitionistic logic corresponds
to the prefix order on the set of sequences of states.

The rule for the subset of CTL* tries instead to mimic the rule for TLA
with the branching-time logic, by replacing the prefix order between sequences of
states with the subtree relation between trees of states. In particular, the notion
of safety and suitable operators are introduced for CTL*, so that properties
which are syntactically very similar to those of TLA are retained. It must be
said that the treatment of compositionality with branching time is peculiar,
very different from that of linear time and somewhat more problematic. For
example, composition of modules is in general not the logic conjunction of the
specifications. This is out of the scope of the present survey, and is only tentative
in the work of Abadi and Merz. We notice however, that it is the object of very
recent work by other authors (e.g. [70]).

To sum up, Abadi and Merz present an abstract framework to present com-
positional rules for some languages. The soundness of those rules is only proved
within the languages themselves (using their own semantic assumptions), since
the framework is too weak in this respect. However, one advantage of this ap-
proach is that it is not limited to temporal logics. The authors briefly discuss
this aspect in the conclusion. Under this aspect, the approach is indeed more
general than most others.

4.5 Xu, Cau, and Collette, 1994 [85]

This work introduces yet another variation of the compositional circular rule.
The rule is introduced to show that it subsumes two families of compositional
rules, that is those for models of concurrency based on shared variables, and
those for message passing models. The earliest works on composition for these
models are the well-known contributions by Misra and Chandy [67] for message
passing concurrency and by Jones [50, 49] for shared variables. For our purposes,
we will not account for the two specific models of concurrency, but we will just
discuss and present the unifying rule of [85].

The general framework is actually very similar to the well-known Abadi and
Lamport’s [2, 4]. More precisely, the following choices are made.

• The compose u and entail v operators are embodied by conjunction ∧
and implication ⇒, respectively.

14



• Rely/guarantee specifications are written using the spiral operator ↪→,
which has basically the same semantics as the +−. of Abadi and Lamport.

• The assumptions are taken to be safety properties.

• The guarantees are expressed by the conjunction of a safety part MS and
a non-safety part MR.

• We do not detail the treatment of agents, which is however very similar
to that of [2].

Therefore, the inference rule goes as follows.2

Proposition 6 (Xu, Cau, and Collette, 1994 [85]). If:

1. for all i = 1, . . . , n: (Ei ↪→MS
i ) ∧ (Ei ⇒MR

i )

2. E ∧
∧n

i=1
MS

i ⇒
∧n

i=1
Ei

3. (a)
∧n

i=1
MS

i ⇒MS

(b) E ∧
∧n

i=1
MR

i ⇒MR

4. E ⇒
∧n

i=1
Ei at the initial time (i.e. 0)

then: (E ↪→MS) ∧ (E ⇒MR).

As it can be clearly seen, the rule has the structure we are familiar with.
Therefore, the main contribution of this work is indeed the unification frame-
work for the two different models of concurrency. In particular, it is shown
that the general semantic framework, and the usual requirements on safety
and “progression” operators can account for independently developed models
of parallelism. Finally, it is speculated that a unifying rule may be useful in
integrating the two models of concurrency in a single specification.

4.6 Cau and Collette, 1996 [18]

This paper is basically a revision and extension of the work already presented
in [85] to unify compositional rely/guarantee inference rules for the two models
of shared variables and message passing concurrency.

More precisely, the presentation relies on a purely semantic framework where
a computation is a sequence σ = χ0

l1−→ χ1
l2−→ χ2

l3−→ · · · of configurations
connected by labeled transitions. Clearly, the configurations would correspond
to states and messages, respectively in the shared variables (a.k.a. state-based)
and message passing formalisms. On the other hand, the label of each transition
would represent the agent which is responsible for that transition.

With these basic concepts, specifications and properties are represented as
sets of computations. Safety sets are those which are closed under prefixes and
limit, according to the standard definitions (see e.g. [7]). Being in a set-theoretic
framework, we represent v as the subset relation ⊆.

Composition (that is the u operator in our abstraction) is represented with
the abstract semantic ⊗ operator, that merges two behaviors into one (repre-
senting the composition of the behaviors). The ⊗ operator is assumed to respect
simple properties, namely that if σ = σ1 ⊗ σ2:

2Actually, [85] presents the rule for the case of two modules only (i.e. n = 2). Instead, we
present here its most natural generalization to arbitrary n.

15



• |σ1| = |σ2|, that is only behaviors of equal length can be composed

• the result of the composition is a behavior with the same length of those
composed, that is |σ| = |σ1| = |σ2|;

• any prefix of length k of σ is the composition of the prefixes of length k
of σ1 and σ2, for all k.

The operator ⊗ is generalized to sets of behaviors (i.e. properties) as obvious:
given properties P1, P2, we define their composition P1 ⊗ P2 as the set of be-
haviors {σ|σ = σ1 ⊗ σ2 ∧ σ1 ∈ P1 ∧ σ2 ∈ P2}. This abstract merge operator
encompasses various models of composition, and in particular conjunction as
well as disjunction.

Finally, rely/guarantee specifications are assumed to be characterized by a
triple of properties, which we indicate as E, MS and MR. As in the other
work [85], E is assumed to be a safety property, MS is the safety part of the
guarantee, and MR is its non-safety part. We denote by M the set of behaviors
which are both in MS and in MR, that is M = MS ∩MR. The link between
the assumption and guarantee of a given module is formalized using an ad hoc
operator, denoted as @→. Its semantics is basically the same as that of Abadi
and Lamport’s +−., abstracted in the present framework.

We are now ready to present the abstract semantic inference rule of [18],
which is proved sound in the abstract setting. As usual, we do not represent
some details in order to fit the rule to the setting of our general rule of Propo-
sition 1, and to convey only the very general intuition behind the rule.

Proposition 7 (Cau, and Collette, 1996 [18]). If:

1. (a) E1 @→M1

(b) E2 @→M2

2. E ⊗MS
1 ⊗MS

2 ⊆ E1 ⊗E2

3. (a) MS
1 ⊗MS

2 ⊆MS

(b) E ⊗MR
1 ⊗MR

2 ⊆MR

then: E @→M .

Afterwards, the authors demonstrate how the rule can be instantiated into
the two settings of shared variables and message passing concurrency, which are
therefore reduced to special cases of this general rule. We do not present in
more detail the results in [18], as the same comments and considerations made
for the previous work [85] hold for this one as well.

4.7 Jonsson and Tsay, 1996 [51]

This paper analyzes compositionality with linear temporal logic from a syntac-
tic perspective. The outcome is a compositional inference rule which, although
similar in principle to that of Abadi and Lamport [4], is presented using a syn-
tactic formulation, which has the advantage of being simpler to use in practice,
over purely semantic approaches.

16



The basic idea of the approach is still to rely on safety properties to render
sound the compositional circular reasoning, but to enforce the safety character-
ization by requiring that the formulas of the specification are written according
to some syntactic restrictions. In fact, in LTL it is possible to syntactically char-
acterize safety. In principle, the same syntactic approach could be pursued with
TLA as well, but probably with poor results, from the perspective of practical
usefulness. On the other hand, the syntactic characterization in LTL is often
more viable.

The syntactic characterization requires the specifier to write the formulas
for assumptions and guarantees in a canonical form, to enforce the underlying
semantic hypotheses. The requirements for the canonical form are the following
ones.3

• Assumptions E are expressed with a LTL formula of the form ¤(∃x :
¤−HE), where:

– HE is a past formula, that is a formula without future operators;

– x is a tuple of flexible variables, considered as internal variables (i.e.
non-visible, existential quantification representing hiding);

– ¤HE must be stuttering extensible, another technical requirement
we do not discuss in detail.

Under these conditions, the formula E is a safety formula. Actually, the
requirement of HE being a past formula could be relaxed to the require-
ment to be a historical formula, but with some additional complications.

• Guarantees M are expressed with a LTL formula of the form ∃y : ¤HM ∧
LM , where:

– HM is a past formula;

– y is a tuple of flexible, internal variables;

– ¤HM must be stuttering extensible;

– LM is a liveness property;

– (HM , LM ) is machine-closed, that is C(¤HM ∧ LM ) ⇔ ¤HM .

• Rely/guarantee specifications are expressed using the operator B, where
E BM is defined as ¤(©−

∼
(∃x : ¤−HE) ⇒ (∃y : ¤−HM )) ∧ (E ⇒M).

Under these conditions, we can calculate syntactically the safety closures of
the specification formulas. In fact it turns out that:

• C(∃x : ¤−HE) = ¤(∃x : ¤−HE)

• C(∃y : ¤HM ∧ LM ) = ¤(∃y : ¤−HM )

Finally, assuming as usual that the operators v and u of the template Propo-
sition 1 are mapped to implication ⇒ and conjunction ∧ respectively, we can
formulate Jonsson and Tsay’s compositional rule.

3The temporal operators are LTL’s usual ones, and namely ¤, ¤−, ©−
∼

for, respectively,
always in the future, always in the past, in the previous instant (if it exists). Moreover, C(F )
represents the safety closure of a formula F .

17



Proposition 8 (Jonsson and Tsay, 1996 [51]). If:

1. for all i = 1, . . . , n: Ei BMi

2. ¤ ((∃x : ¤−HE) ∧ (∃y1, . . . , yn : ¤−
∧n

i=1
HMi

) ⇒ (∃x1, . . . , xn : ¤−
∧n

i=1
HEi

))

3. (a) ¤ (©−
∼

(∃x : ¤−HE) ∧ (∃y1, . . . , yn : ¤−
∧n

i=1
HMi

) ⇒ (∃x1, . . . , xn : ¤−HM ))

(b) E ∧
∧n

i=1
Mi ⇒M

then: E BM .

Discussions on how to actually discharge the hypotheses of the inference rule
are introduced, with reference to the usual proof methodologies for temporal
logics. Moreover, the same example of a queue of [4] is done, resulting in a
simpler compositional proof. The work presented in this paper was slightly
extended in a later work by Tsay [82], and given some tool support with PVS
in [81].

To sum up, Jonsson and Tsay try to identify general conditions under which
the semantic assumptions of the earlier works on compositionality can be ex-
pressed syntactically in LTL, resulting in inference rules which are simpler to
apply and require less ad hoc methodology. Actually, not all semantic assump-
tions are rendered syntactically (for example machine closure and stuttering
extensibility conditions are still required explicitly). Moreover, the syntactic
restrictions may render the specifications harder to write. However, it is true
that some aspects are indeed simplified and the application of the rule in some
cases promises to be practically simpler.

4.8 Tsay, 2000 [82]

This paper is an extension of [51]. Therefore, we just analyze the novelties. Be-
fore doing that, we highlight the fact that the analysis is deliberately simplified,
namely by not allowing shared variables (i.e. variables that can be modified by
more than one module) and not considering quantification over flexible variables
(e.g. hiding).

First of all, the author considers what he calls weak form of rely/guarantee
specifications. A weak form uses a weaker form of the B operator. Informally,
a weak rely/guarantee specification, that we denote as E Bw M , says that if
E holds for some prefix of the computation, then M also holds for the same
prefix. If E and M are written in canonic form (see [51]), then E Bw M is
defined syntactically as ¤(¤−HE ⇒ HM ) ∧ (E ⇒ M). However, this weak
operator cannot be used with circular rules; on the other hand a very simple
non-circular verification rule is proposed, which is not even compositional.

Another issue briefly touched upon is the use of liveness properties also in
the assumption formulas. For this case, and with the same definitions of [51], an
asymmetric (i.e. where only one module is allowed to have a liveness property)
circular rule for the composition of two modules is given. Note that we are now
using the standard progression operator B, not its weak form. It is assumed
that:

• the local assumption for module 1 is strictly a safety property in the
canonical form E1 = ¤HE1

, where HE1
is a past formula;

18



• the local assumption for module 2 can have a liveness property in the form
E2 = ¤HE2

∧ LE2
;

• the local guarantees are in the form Mi = ¤HMi
∧ LMi

for i = 1, 2;

• the global assumption and guarantee are in the form E = ¤HE ∧LE and
M = ¤HM ∧ LM .

Note that the only property that must strictly be a safety property is the as-
sumption of module 1. The rule is therefore the following.

Proposition 9 (Tsay, 2000 [82]). If:

1. for all i = 1, 2: Ei BMi

2. (a) ¤ (¤−HE ∧¤− (HM1
∧HM2

) ⇒ HE1
∧HE2

)

(b) E ∧M1 ⇒ E2

3. (a) ¤ (©−
∼
¤−HE ∧¤− (HM1

∧HM2
) ⇒ HM )

(b) E ∧M1 ∧M2 ⇒M

then: E BM .

Besides being an extension of [51], this paper points out certain interesting
facts about circularity, and its relationship with the requirement of a “progres-
sion” operator in a nice way.

4.9 Namjoshi and Trefler, 2000 [71]

Namjoshi and Trefler present an interesting analysis concerning the complete-
ness of the compositional inference rules found in the literature, with specific
reference to that of Abadi and Lamport [4], and McMillan [65]. Since those
rules are the basis for most other existing rules in the literature, the analysis
can draw rather general results. Moreover, in doing so they tackle the problem
of circularity from yet another perspective, showing a reason why circular rules
are not needed, at least in principle.

First of all, we have to state formally what are the compositional rules
considered in the paper. To render the comparison simpler, let us stick to the
case of just two modules. The first rule is the circular one by Abadi and Lamport
[4], which we already know of. The second one is a very simple non-circular rule,
which we can state as follows.4

Proposition 10 (Non-Circular Rule, [71]). If:

1. for all i = 1, 2: Ei ⇒Mi

2. (a) E ⇒ E1

(b) M1 ⇒ E2

3. M1 ∧M2 ⇒M

4Actually, the exact formulation of the rules of [71] would require a notion of computational
model and several semantic notions. For simplicity, we present here only a crude abstraction
of a slight modification of that rule.

19



then: E ⇒M .

The formulas M1 and E2 are called auxiliary assertions in this framework,
since they serve to break the proof into two suitable parts, in a way that permits
a sound deduction.

The third rule we consider is the one by McMillan [65]. Even if in [71] a
generalization of the rule to handle n modules is presented, the generalization
has a rather convoluted formulation. Therefore, for the sake of simplicity, we
present here the original version of [65] for two modules only, in a minimal
setting (that is, without reference to the computational model). Note that
the rely/guarantee specifications are now written using the B operator, called
constrains in that paper. As usual, E BM is true iff, if E is true up to step
i of a computation, then M is true at step i + 1. It can be defined in linear
temporal logic, using the until operator as ¬(E U ¬M), using the dual release
operator as ¬E R M , and can be thought as meaning “¬E precedes M”, that
is E is falsified before M is. The circular rule is then as follows (î represent the
index “other than” i, that is î ∈ {1, 2} \ {i}).

Proposition 11 (McMillan, 1999 [65]). If:

1. for all i = 1, 2: E ⇒ (Mî BMi)

2. M1 ∧M2 ⇒M

then: E ⇒ ¤M .

Namjoshi and Trefler first show that, while the non-circular rule of Propo-
sition 10 is complete, the other rules of Abadi and Lamport [4] and McMillan
(Proposition 11 and [65]) are incomplete, even for simple properties. The incom-
pleteness in McMillan’s rule is due to the absence of auxiliary assertions, that is
local assumptions Ei’s, different than the other module’s guarantee Mi. In fact,
in a rather different setting, Maier [63] has shown that the use auxiliary asser-
tions is a necessary condition for completeness. Still, it is not sufficient, since
Abadi and Lamport’s rule [4] does use auxiliary assertions but is nonetheless
incomplete, as Namjoshi and Trefler also show in their paper.

Next, the authors show how to strengthen McMillan’s circular rule in order to
get a complete rule, obviously still keeping soundness and circularity. In order to
do that, we have to write the assumptions and guarantees in a (simple) canonical
form, where the parts representing the auxiliary assertions are conjoined to the
remainder of the specification. So, each assumption Ei is written as Ei = Hî∧Gî

and each guarantee Mi as Mi = (Hî ⇒ Gi)∧Hi, for some formulas Hi, Gi. The
rule is finally as follows.

Proposition 12 (Namjoshi and Trefler, 2000 [71]). If:

1. for all i = 1, 2: E ⇒ ((Hî ∧Gî)B ((Hî ⇒ Gi) ∧Hi))

2. G1 ∧G2 ⇒M

then: E ⇒ ¤M .

Notice that Proposition 12 reduces to Proposition 11 if we take H1 = H2 =
true.

20



The last aspect of compositionality considered by Namjoshi and Trefler is the
translation between circular and non-circular proofs. Since both the non-circular
rule of Proposition 10 and the circular rule of Proposition 12 are complete, every
compositional proof can be carried out with any of the two, at least in principle.
Hence, it is shown how one can translate the application of a rule into the
application of the other rule; in other words, it is shown how one should pick the
local assumptions and guarantees (possibly including the auxiliary assertions)
so that the applicability of one rule follows from the application of the other one
to the same system. It is also briefly discussed how this translation is efficient
in both directions, that is the translation process builds formulas that are of the
same order of magnitude as the formulas from which it translates (i.e. the ones
of the original application of the rule). This formalizes an important conclusion:
circularity is not needed, at least in principle. Actually, this is no big surprise,
since, once again, it is well understood that compositional techniques are only
useful in practice, while cannot reduce the worst-case complexity of verification.
Therefore, a more complicated rule (and namely a circular one) can bring some
benefits in some concrete cases, but is not more efficient than another equally
complete rule in the general case.

4.10 Viswanathan and Viswanathan, 2001 [84]

This paper is another attempt at unifying different compositional rules found
in the literature under a common framework. More precisely, a rely/guarantee
semantics is given in a model based on fixed points; then, an inference rule for
such a rely/guarantee model is given. Finally, it is shown how the rules for
two different computational models, and namely traces and trace trees, can be
expressed as specializations of the given rule for fixed points.

The proposed model is rather non-standard, if compared to the traditional
temporal logic frameworks. Let us introduced its essential features. Let Σ be the
(uninterpreted) set of all computations σ, σ1, . . . ∈ Σ, also called behaviors. A
specification S is then a set of computations S ⊆ Σ. In particular, we consider
specifications which are expressible as fixed points. Let F be a (monotonic)
operator that maps sets of computations to sets of computations, that is F :
2Σ → 2Σ. We denote the greatest fixed point of F as ν(F ), the least fixed point
as µ(F ) and any of the two as ρ(F ). The kth approximation (i.e. application)
of the fixed point ρ(F ) is indicated as [ρ(F )]k. For example, using this notation,
the greatest fixed point is defined recursively as:

[ν(F )]0 = Σ [ν(F )]k+1 = F ([ν(F )]k) [ν(F )]ω =

∞⋂

k=1

[ν(F )]k

Under rather general conditions, the applications converge to their fixed points.
This is the case with all examples in the paper. Moreover notice that, in order
to simplify the presentation, we remove explicit mention to the computations.
For example, instead of σ |= [ρ(F )]k, we will write simply [ρ(F )]k, considering
a computation σ implicitly defined. Although this renders the notation less
precise, it is acceptable since we only aim here at conveying the general “flavor”
of the rule.

First of all, let us note that we consider the simple case of two modules only.
A generalization would probably be feasible, but let us now give the rule exactly

21



as it is in the paper. Let us now consider the conditions introduced with the
inference rule.

• Once again, v is implication ⇒ and u is conjunction ∧.

• Assumptions are written as fixed points ρ(E), whereas guarantees are
written as fixed points ρ′(M). ρ and ρ′ may or may not be the same kind
of fixed point.

• Rely/guarantee specifications are written using the B operator, which
is defined similarly to the usual “progression” operators, but with the
relaxation that, when the assumption has been satisfied in the past, the
guarantee must be satisfied in some future approximation (not necessarily
the next one). Formally, ρ(E)B ρ(M) is satisfied iff:

∀k ≥ 0 : [ρ(E)]k ⇒ ∃k′ > k : [ρ′(M)]k
′

• The inference rule, basically requires the following conditions:

– if the global assumption is satisfied currently and one of the local
guarantees is satisfied eventually, then the other local assumption is
satisfied eventually;

– if the local guarantee holds then the global guarantee holds eventu-
ally;

– if the global assumption is satisfied, then one of the local guarantees
holds eventually. This last requirement is an explicit circularity-
breaking condition, which was not present in all the other works,
where circularity is broken only implicitly. Notice that this explicit
requirement is needed to have a rule which is more general than the
other ones.

Hence, the rule can be formalized as follows.

Proposition 13 (Viswanathan and Viswanathan, 2001 [84]). If:

1. for all i = 1, 2: ρ(Ei)B ρ
′(Mi)

2. for all i = 1, 25: ∀k : ∀k′ ≥ k : [ρ(E)]k ∧ [ρ′(Mi)]
k′

⇒ ∃k′′ ≥ k : [ρ(Eî)]
k′′

3. ∀k : [ρ′(M1)]
k ∧ [ρ′(M2)]

k ⇒ ∃k′ ≥ k : [ρ′(M)]k
′

4. ∀k : [ρ(E)]k ⇒ ∃k′ ≥ k : [ρ′(M1)]
k′

∨ [ρ′(M2)]
k′

then: ρ(E)B ρ′(M).

As we discussed, the framework is specialized for two different models of
concurrency, showing that it can encompass well-known compositional rules,
independently developed. More precisely, the first model is the one for trace
semantics, that is the one for linear temporal logic we are familiar with. In par-
ticular, with reference to propositional logic, the rule of “weak until” presented
in [71, 65] is derived from the fixed-point one, with a suitable choice for fixed-
point operators to represent the usual safety properties. The other model is

5As usual î denotes the “other” index î ∈ {1, 2} \ {i}.

22



the one of trace trees for Moore machines with synchronous composition, whose
compositional rules were presented in [40], as well as for reactive modules in [8].
We do not give the details of these reductions.

Two other issues presented in the paper still deserve discussion. The first
one is the idea of a subsumption rule to derive certain variations of the infer-
ence rule, and namely those that use an operator different than B to express
rely/guarantee. If the different operator satisfies certain conditions, it is pos-
sible to derive a formula for B from the formula with the other operator, thus
permitting the applicability of the rule.

The other application consists in specializing the rule for greatest fixed
points. If all the ρ are taken to be ν, the explicit circularity-breaking con-
dition 4 of Proposition 13 can be removed, since it is implicit in the semantics
of the greatest fixed point operator. This shows how other rules can achieve
soundness without explicit circularity-breaking rules.

All in all, the paper by Viswanathan and Viswanathan [84] is interesting in its
generalization effort, and in elucidating how some basic facts about circularity-
breaking for compositional circular rules come into play and are treated in the
most common rules found in the literature.

4.11 Maier, 2001 [62]

This paper introduces another simple compositional framework, and then shows
that it can be instantiated to some concrete computational models. The frame-
work is based on set theory, and in this sense it is similar to [2]. However,
with respect to [2] it is simpler and based on fewer semantic assumptions, and
therefore more abstract.

In a nutshell, the framework is based on downward-closed sets. More pre-
cisely, a system is defined by a set of behaviors from a universe set B, which
is partially ordered (with order relation denoted as ¹), well-founded (i.e. it
has a bottom element ε), and downward-closed, that is for all b, b′ if b ∈ B
and b′ ¹ b then b′ ∈ B. Every property (or module) is identified with some
downward-closed subset B ⊆ B, with certain properties.

Structures called chains are introduced to describe the evolution of behav-
iors. A sequence of behaviors bi ∈ B for i ∈ N is called a chain whenever:

• it ascends from the bottom, i.e. b0 = ε and for all i ∈ B: bi ¹ bi+1;

• it converges to some limit in B, that is the upper bound b of the set
{bi|i ∈ N} exists and is in B.

With a little abuse of notation, we will denote a chain (bi)i∈N simply as bi.
We need two more notions to introduce the compositional inference rule of

the framework in detail. One is the idea of extension: given two sets B1, B2 ⊆ B
and a chain bi, we say that B1, B2 extend along bi iff, for all i ∈ N, if bi ∈ B1∩B2

then bi+1 ∈ B1 ∪ B2. The other notion, more familiar, is that of closure: a set
B ⊆ B is closed with respect to a chain bi if, whenever bi ∈ B for all i ∈ N, the
limit of bi is also in B.

Finally, as it is natural in a set-theoretic framework, composition u is rep-
resented by intersection ∩ and entailment v by the subset relation ⊆.

We are now ready to introduce the abstract compositional rule of the frame-
work. We note that it is proposed in a narrower form than that of the general

23



rule of Proposition 1: it considers the simple case of two modules only; it directly
introduces the circularity by putting the guarantee of each module among the
assumptions in the specification of the other module; it considers composition
into a closed, rather than open, overall system. Here it is the inference rule.

Proposition 14 (Maier, 2001 [62]). If:

1. (a) E1 ∩M2 ⊆M1

(b) E2 ∩M1 ⊆M2

2. for every b ∈ B, there exists a chain bi (for i ∈ N) such that:

(a) bi converges to b

(b) M1,M2 extend along bi

(c) M1,M2 are closed with respect to bi

then: E1 ∩ E2 ⊆M1 ∩M2.

Notice that the requirement 2c on the closure of M1,M2, together with
downward-closure, is a strict analogous of requiring the guarantees to be safety
properties, as done in other compositional frameworks. Moreover, the extension
condition 2b recalls the idea of a spiral operator such as Abadi and Lamport’s
while-plus. This, combined with the well-foundedness of the set of behaviors B,
permits the application of the usual induction in proving the soundness of the
rule.

The remainder of the paper [62] shows how to instantiate the framework
for familiar models of computation. More precisely, it is instantiated to the
synchronous models of Moore machines, Mealy machines, and Kripke structures.

The proposed framework is simple enough to be interesting as a general
framework. Its major contribution is, in our opinion, to explicitly pin down
some basic facts about compositional reasoning at the semantic level. These
facts constitute the basis of most works on compositionality and therefore they
can be understood better. In this sense, we believe that this work is similar in
spirit to [10].

4.12 Maier, 2003 [63]

This paper considers compositional rely/guarantee inference rules in a very ab-
stract setting, in order to draw general conclusions about soundness and com-
pleteness of such rules. Contrarily to the other papers considered above, it does
not introduce any new inference rule, but it considers the inherent limitations of
circular compositional rely/guarantee reasoning in a given abstract framework.
Let us first describe such framework and then show the results drawn by Maier.

In this framework, systems (or modules) and modules properties are modeled
uniformly as elements of a generic meet-semilattice with one. A meet-semilattice
with one S = 〈S,∧, 1,≤〉 is a partial order 〈S,≤〉 with greatest element 1 ∈ S
and such that for any two elements x, y ∈ S there exists their greatest lower
bound, denoted as x∧ y ∈ S. Intuitively x∧ y indicates the composition of two
modules, or the conjunction of two properties; in other words, it corresponds to
the compose operator u of our abstract setting. The entailment relation v is
instead represented by the refinement relation x ≤ y (x refines y); equivalently

24



it represents the fact that module x satisfies property y. In other words, the
model assumes only a refinement order relation ≤, an associative commutative
and idempotent operation ∧ which respects the order, and a discrete structure
S over which to interpret (in particular, no computational model is required).

In this setting, we define an inference rule as any rule R in the form:

R :
φ1 · · ·φn

ψ
if Γ

where Φ = {φ1, · · · , φn} is a set of formulas called premises, ψ is a formula
called conclusion and Γ is a relation called side condition. The meaning of R
is as expected: if the premises and the side condition are true, then the truth
of the conclusion follows logically. Notice that the language in which one can
express the formulas is rather restricted in the given setting, so that the side
condition is needed to express more powerful constraints (relations are strictly
more expressive than formulas in the given setting).

Given a inference rule R, we say that R is:

sound iff for all evaluations α, α |= Φ and α |= Γ implies α |= ψ, i.e. the rule
draws true facts from true premises;

complete iff for all evaluations α, α |= ψ and α |= Φ implies α |= Γ, i.e. the
rule is applicable whenever premises and conclusions hold (in other words,
the side condition is not “too restrictive”);

assume-guarantee iff for all premises φ ∈ Φ, the left-hand side of ψ and
the right-hand side of φ do not share any variables, i.e. we can identify
“assumptions” and “guarantees” without ambiguities;

circular iff it is assume-guarantee and in general Φ 2 ψ, i.e. the side condition
is strictly needed to guarantee soundness;

compositional iff it is assume-guarantee and (informally) it never consid-
ers the system composition (i.e. the conjunction of all modules) in the
premises and in the side-condition (in other words, we can consider each
module independently of the others).

Assuming the aforementioned definitions and structures, the author shows
that if the semilattice S contains forks (which are certain special structures) of
sufficient width (and, in particular, of infinite width), then any compositional
circular assume-guarantee rule is either unsound or incomplete. Since soundness
is obviously indispensable, we must either give up completeness or composition-
ality. In the case of automatic verification, compositionality is probably more
important, since it permits to really divide the burden of verification among
modules, whenever possible, thus lowering the required computational effort.
The author argues that in the case of manual verification, completeness may be
more important, since the human user can always, at least in principle, invent
a suitable system decomposition to correctly carry out the verification task.

Since the proposed framework is a very abstract one, it is important to un-
derstand if and how the results drawn for it can be extended to more concrete
frameworks. The author claims that most rely/guarantee inference rule pre-
sented in the literature can be transformed into rules over meet-semilattices
with forks of infinite width, while preserving properties such as soundness and

25



compositionality. Hence, the limitation of completeness must hold also for the
original rule.

Brief examples are shown of rules for Moore or Mealy machines, such as those
in [40, 62], or for temporal logics, such as those in [4, 5, 51]. In particular, the
presence of forks of infinite width follows quite naturally from the fact that the
aforementioned frameworks are interpreted over sets of strings of infinite length:
such structures provide such forks in all non-trivial cases. However, notice
that more expressive formalisms cannot be interpreted over meet-semilattices
in all circumstances. For instance, as far as we understand correctly, metric
temporal logics over a continuous time domain cannot be fully (i.e. without
any lessening of expressive power) translated using the simple formalism of [63],
since such translation is possible only for interpretations over algebraic (and
discrete) structures.

Finally, the author considers a different definition of completeness than that
introduced in the paper. Such other definition is named backward completeness,
since it is useful to characterize rules which enable backward reasoning. It is
used, among others, in [71]. Indeed, we must point out the fact that the notion
of completeness introduced in this paper is a non-standard one, as also briefly
pointed out in [10], while backward completeness is what is usually considered a
standard definition of completeness. A rule R : Φ/ψ if Γ is backward complete
iff for all evaluations α, if α |= ψ then α′ |= Φ and α′ |= Γ, for some evaluation
α′ which agrees with α on all the variables of ψ. In other words, backward
complete rules admit the use of auxiliary variables, i.e. variables appearing in
the premises but not in the conclusion, and of assertions on them; such auxiliary
variables increase the expressive power of the inference rules. Backward com-
pleteness implies completeness; therefore, every sound and backward complete
compositional circular assume-guarantee rule necessarily employs some auxil-
iary variables. Notice that the presence of auxiliary variables also increases the
complexity of the proofs, since one also needs to “guess” the value of auxiliary
assertions about the system.

All in all, this paper brings forward an interesting analysis of some basic
issues concerning rely/guarantee inference rules. In order to be able to apply
the conclusions of the paper to concrete formalisms, it is important to always
carefully consider, case by case, if and how the definitions characterizing the
framework can express suitably in less abstract settings. More precisely, things
should probably be reconsidered with more expressive frameworks (in particular
with continuous time formalisms) or with different definitions for inference rules
and for completeness.

4.13 Amla, Emerson, Namjoshi, and Trefler, 2003 [10]

This paper constitutes an attempt to build a generic (i.e. sufficiently abstract)
sound and complete compositional inference rule, following an approach which
is different from those of most previous works. In fact, nearly all methods
render the circular reasoning of Proposition 1 sound by introducing some sort
of progression operator, which justifies an induction on the set of behaviors
prefixes. On the other hand, this paper does not rely on any ad hoc operator, but
rather it introduces some precise semantic assumptions among the conditions
on the rules. These additional constraints also permit a well-founded induction
on the set of behaviors prefixes, thus rendering the inference rule sound.

26



Actually, the focus of the paper is on refinement, so the setting is different
than that of the other works we considered. However, since the approach is
novel, we review it anyway, briefly detouring from our basic setting. Actually,
refinement (and decomposition) can be regarded as a special case of composition,
under reasonable conditions; for example, Abadi and Lamport in [4] derive their
decomposition theorem as a corollary of the composition theorem. However,
the differences in the two settings are such that the terminology and notational
conventions of the composition setting, which we have considered thus far, sound
strange and do not provide intuition in the decomposition setting. Therefore,
we are going to introduce some new notations, in order to provide the intuition
needed to understand the core results of this paper.

The first difference of the decomposition setting is that we do not have
rely/guarantee specifications of modules, but rely/guarantee only refers to the
style of reasoning employed by the inference rule. For simplicity, let us consider
the simple case of two modules, as it is done in [10]. The goal of decomposition
reasoning is to show that the composition of the two low-level specifications
ML

1 and ML
2 of the modules (e.g. their implementations), implements a certain

property M , possibly under a certain global environment specification E. In
general, the composition of the two low-level specifications is very complicated,
therefore the direct proof of the above is unfeasible or too costly (usually, we
consider automated verification, but the same holds for manual verification).
On the contrary, rely/guarantee reasoning gives conditions under which we can
consider only the composition of the high-level specifications M1 and M2 of the
modules, which is in general simpler than its low-level counterpart, together
with one low-level specification at a time, that is avoiding to consider directly
the composition of the two low-level specifications. The reasoning is rely/guar-
antee since we usually require that ML

1 refines M1, assuming M2 holds, and
vice versa for the other module. Notice that it is not sufficient to just require
that ML

i refines Mi, since this is in general not the case: usually, the refinement
relation holds only when the other module is a proper environment to the former
one.

The reduction to the composition framework can be understood by taking
the Mi’s of the composition setting as the ML

i ’s of the decomposition setting,
and the Ei’s as the Mi’s of the decomposition setting. However, notice that
the Ei’s now represent the assumption of one module about the behavior of the
other, which is needed for the refinement relation to hold, and not a condition
under which the module behaves properly. We believe this brief recount is
enough to give the general idea that lies beneath the link between composition
and decomposition.

We are now ready to introduce the abstract framework of [10]; as usual we
introduce only the relevant aspects, while avoiding some details for simplicity.
We consider the set of all behaviors (i.e. computations) B. The following
assumptions characterize the set of behaviors:

• B is partitioned into the two non-empty subsets of finite and infinite be-
haviors;

• B is partially ordered by an order “prefix” relation ¹;

• the set of finite behaviors is downward closed under ¹ (i.e. every prefix
of a finite behavior is also a finite behavior);

27



• ≺ is well-founded on the set of finite behaviors; notice that this implies
the existence of an initial condition, that serves as base for inductions.

As usual, a specification is a subset of B, that is a set of behaviors, with the
additional condition that every finite prefix of a behavior in the specification is
also a (finite) behavior in the specification. This requirement basically extends
downward closure to specifications. We overlook the requirement of behavior
equivalence and the non-blocking condition, for the sake of simplicity. Notice
that all these conditions are semantic, and consider algebraic (and discrete)
structures; in fact, the classical framework of state sequences is a straightforward
realization of these assumptions.

Finally, the usual choice of representing composition u as conjunction ∧ of
specifications, and entailment v as implication ⇒ is made; notice that in this
case entailment represents refinement.

We are now ready to state the decomposition rule of [10]. In a nutshell,
the rule aims at showing that E ∧ML

1 ∧ML
2 refines M , without considering

explicitly the conjunction ML
1 ∧ML

2 in the hypotheses of the rule. In order to
do that, we require:

1. that the low-level specification of each module, when composed with the
high-level specification of the other, refines the high-level specification of
the former module;

2. that the composition of the high-level specifications refines M , under the
assumption E;

3. that the composition of one (anyone will do) of the low-level specifications
with the (safety) closure of M refines one of the high-level specifications,
or M itself. Notice that this last condition is the semantic requirement
that allows to break the circularity, giving a base case for the induction,
since it requires that one low-level specification refines a high-level one,
without assuming anything about the other module.

The formal statement of the rule, using our notation, follows. The authors prove
in [10] that the rule is both sound and complete for the given setting.

Proposition 15 (Amla, Emerson, Namjoshi, and Trefler, 2003 [10]).
If:

1. (a) ML
1 ∧M2 ⇒M1

(b) ML
2 ∧M1 ⇒M2

2. E ∧M1 ∧M2 ⇒M

3. for some i ∈ {1, 2}: E ∧ML
i ∧ C(M) ⇒M ∨M1 ∨M2

then: E ∧ML
1 ∧ML

2 ⇒M .

All in all, the proposal of Amla et al. is, to the best of our knowledge,
the first example of compositional rely/guarantee reasoning which presents an
abstract framework not relying on an ad hoc operator for expressing rely/guar-
antee specifications, but only exploiting semantic assumptions. Moreover, the
proposed rule is a complete one.

28



5 Abstract Non-Rely/Guarantee Methods

This section considers some examples of compositional method that adopt par-
adigms other than the rely/guarantee one, and therefore cannot be reduced to
the general scheme of Proposition 1. In particular, we are considering abstract
methods, rather than those tailored for a very specific formal language, some of
which are instead described in Section 7.

5.1 A Compositional Proof Method for Assertion Net-
works

A compositional proof method based on an abstract semantic setting is inves-
tigated by de Boer and de Roever in [23], with reference to assertion networks.
Assertion networks are transition diagrams that represent programs and they
were first proposed by Floyd [30] for sequential programs. The work presented
in [23] considers the extension of such diagrams to the treatment of concurrent
programs.

More precisely, [23] considers state-based reasoning about concurrent pro-
grams that have synchronous communication. The method relies on two ingre-
dients:

• compositional inductive assertion networks, that are used to describe the
sequential parts of the system;

• compositional proof rules, to deduce global properties of the system, re-
sulting from the concurrent interaction of the local networks.

The basic idea is to introduce auxiliary variables in the assertional description
of a network that represent logical histories. A logical history simulates the local
communication history of some component.

Each component is specified by a Hoare-like triple such as {φ}P{ψ}, where
φ, ψ are predicates over the logical histories variables, representing properties
of such histories respectively before and after the program P (represented by a
synchronous transition diagram) is executed. Finally, the compositional method
is based on an inference rule for the parallel composition P1 ‖ P2 of two programs
P1, P2. Under certain conditions on the predicates φi, ψi and on the variables
involved in the communication channels, the following inference rule is sound
and complete for synchronous transition diagrams.

{φ1}P1{ψ1}, {φ2}P2{ψ2}

{φ1 ∩ φ2}P1 ‖ P2{ψ1 ∩ ψ2}

Finally, the paper discusses some modifications to the rule to handle nested
parallelism.

Various other modifications and extensions of the method, to handle different
models of concurrency, as well as other methodologies, are thoroughly discussed
in the book [26].

5.2 The Lazy Approach to Compositionality

The lazy paradigm is an approach to compositionality alternative to the rely/guar-
antee one, proposed by Shankar in [79].

29



The motivation for the study of an alternative paradigm stems from the fact
that, according to Shankar, the rely/guarantee approach is often difficult to
apply in practice, since it requires to anticipate several details of the guarantees
of a component so that they are strong enough to permit the discharging of the
assumptions of the other modules. On the contrary, one would often prefer to
produce a weak compositional specification, adding the necessary details only
in later phases of development. Lazy compositionality proposes to solve this
problem by simply lazily postponing the discharging of the assumptions to later
phases of development, when all the necessary details naturally come into the
picture.

Under this respect, the lazy approach is more liberal than the rely/guarantee
approach, since it does not enforce a pre-defined way of performing verification,
but simply allows for the use of conventional techniques and methods. More-
over, lazy composition is mainly a methodological approach to compositional-
ity, whereas rely/guarantee has a strong technical connotation. In a nutshell,
lazy compositionality combines a refinement methodology with a compositional
methodology. The result is an approach which is quite general and can be ap-
plied to a large variety of formal specification languages and models. At the
same time, its generality can also be a weakness, since the verification burden
is implicitly subsumed to other aspects of system analysis, rather than exposed
and dealt with directly.

In a hypothetical classification of methods for the verification of large sys-
tems, the lazy approach has an “intermediate” degree of compositionality, in
between truly compositional approaches (and namely the rely/guarantee ap-
proach), and non-compositional (a.k.a. “global”) approaches (namely the Owicki-
Gries method [77] and derived methods). Indeed, we claim that several “non-
strictly-compositional” methods fall in this intermediate region, and in partic-
ular those described in this section (i.e. Section 5).

Shankar elicits the differences between lazy compositionality and rely/guar-
antee compositionality in five points, namely:

1. components are not treated as black-boxes;

2. composition is not necessarily conjunction;

3. environment assumptions are specified as abstract components (rather
than properties);

4. no rely/guarantee proof obligations are generated;

5. composition can yield inconsistent specifications.

Actually, we note that these differences apply only in a typical setting where we
specify both a computational model and a formal language to express properties
of computations in the model. For example, the “black-box” view referred to in
point 1 implies a distinction between the implementation of a module (that is
its description in the computational model) and some of its properties (which
are described in some logic language). Similarly, “composition as conjunction”
of point 2 is, in this case, a characteristic of the computational model, and
an “abstract component” (in point 3) is, again, the implementation (in the
computational model) of an abstract specification.

30



On the contrary, in this survey we are mainly interested in more abstract
works that focus solely on the logical aspects, independently of any computa-
tional model (such as our own contribution [34]). In such models, only the
points 4–5 apply. Therefore, let us describe those in some more detail.

No rely/guarantee proof obligations are generated. In fact, in lazy com-
positionality the discharging of assumptions is simply lazily postponed to
when the necessary specification details are present. More precisely, the
environment assumption is embedded in the specification by means of a
component that represents explicitly the abstract environment. The goal
of the following refinement steps is to show that the overall system sub-
sumes the abstract environment of that component, thus showing that the
explicit environment is superfluous and can be eliminated without affect-
ing the functionality of the component (in fact, the rest of the system does
play the role of the assumed environment).

Composition can yield inconsistent specifications. This feature is a con-
sequence of the previous characteristic: since we lazily postpone the dis-
charging of the assumptions, tentatively assuming that they are indeed dis-
chargeable, it may happen that our suppositions show to be false according
to any possible refinement of the system. In such cases, the specification
is globally inconsistent and we must emend some previous specification
choice.

We now finally describe how lazy compositionality is actually carried out,
with reference to two modules (the generalization to an arbitrary number of
modules is rather straightforward). Let us consider two modules with specifi-
cations P1 and P2. Note that we do not say anything about how these local
specifications should be written; in particular they could also be rely/guarantee
specifications, even if we will not use the rely/guarantee methodology to treat
them. When composing these two modules, we explicitly add to the specification
of each module the assumptions that the other module makes on its environ-
ment. So, if the two modules assume an environment with properties E1 and
E2, respectively, then we strengthen P1 to P1 ∧E2 and P2 to P2 ∧E1. Then, we
compose these two strengthened modules; in doing so, it is clear that the envi-
ronment assumptions of each module are satisfied by its actual environment, by
construction. More explicitly, in a setting where composition is conjunction, we
end up with the system (E2 ∧ P1) ∧ (E1 ∧ P2), which simply assumes explicitly
the validity of the environment assumptions.

Then, the goal of lazy compositional verification, is to show that (E2∧P1)∧
(E1 ∧ P2) can be refined to simply P1 ∧ P2: this would show explicitly that the
environment assumptions are satisfied in the system which thus guarantees its
functionalities. A drawback of this approach is that a module cannot be refined
independently of the others, since each module is enlarged to comprehend the
environment assumptions of the other modules, which must also be preserved
in the refinement.

[79] also shows some examples and details on how the lazy approach can
actually be pursued in a semantic setting similar to that of TLA [57]. This
requires familiar inductive proof techniques that we do not discuss here.

All in all, we believe that the liberal lazy approach can be a useful alternative
to rely/guarantee compositionality in some cases, even if it basically amounts

31



to shifting the burden of compositional verification to other, standard, method-
ologies and techniques for verification.

5.3 Decomposition of Real-Time Transition Systems

Finkbeiner, Manna and Sipma present in [29] a framework for the modular spec-
ification and verification of concurrent systems, based on the formalism of fair
transition systems. In particular, verification does not rely on ad hoc compo-
sitional proof rules, such as those of the works presented in Section 4. On the
contrary, rely/guarantee formulas can be simply expressed using implications
in linear temporal logic, and assumptions are discharged either by properties of
other components, using standard deduction techniques, or by (future) refine-
ments of the system. Until then, assumptions are simply carried over without
being discharged. Therefore, this framework falls in the category of lazy method-
ology, discussed above in Section 5.2. More precisely, the lazy methodology is
applied to a complex formalism that permits code reuse, composition, and in-
formation hiding. Note that the framework encompasses both composition and
decomposition in its liberal approach, although the focus is mainly on the latter.

The basic computational model that is considered is fair transition systems
[64]: a fair transition system describes a closed concurrent system. A transition
module is a variation of a transition system to describe open components in an
overall closed system: when composing transition modules to create a transition
systems, visible transitions of the various modules which share the same label
synchronize. Since in general a module can have an arbitrary environment, we
say that a property (expressed, in this framework, in linear temporal logic) is
modularly valid whenever it holds for the module in any environment. More
precisely, the environment is only constrained not to modify the private and
output variables of the module and not to synchronize on the internal transitions
of the module.

Even if the requirement for modular validity is clearly a strong one, we can
still have non trivial properties to be modularly valid by, for example, formulat-
ing them using the rely/guarantee form in temporal logic. For instance, using
implication to represent the link between the assumption and the guarantee, if
a module guarantees the property M whenever the environment guarantees the
property E, then the property E ⇒ M is clearly true of any environment: in
particular it is true of all environments that do not satisfy E.

Then, a transition system can be declared as a collection of modules. More
precisely, the formalism permits to compose modules by parallel composition,
and to modify them using operations such as conditional implementation, hiding
and renaming of variables, restricting and augmenting of the visible variables
(thus providing a form of inheritance in the declarations of modules). All these
operations can also be declared recursively (i.e. recursive definitions are al-
lowed), and permit specification code reuse.

The verification of properties of a composite system applies standard tech-
niques, plus their extensions and generalizations to handle modules. In par-
ticular, a set of simple inference rules to handle inheritance and refinement is
provided; they rely on the known theory of simulation and refinement mappings
(see e.g. [1]). In particular, as briefly discussed above, the framework permits
to discharge assumptions of a module lazily, using those standard techniques.
Another interesting notion is that of interface (i.e. modular) abstraction. Infor-

32



mally speaking, a module M modularly simulates another module N whenever
M is simpler than N , and they have the same behavior at the interface. There-
fore, in any global proof, M can be substituted for N , yielding an equivalent
but simpler system. Even more, the simplest (with respect to the simulation
preorder) element which modularly simulates a given module is well defined and
can be generated automatically in the transition system formalism; it is called
the interface abstraction. This is useful in simplifying composite systems and
global proofs of properties.

Finally, the formalism is exemplified with the aid of the example of a multi-
level arbiter.

Bjørner, Manna, Sipma and Uribe in [16] discuss what is basically an exten-
sion of the framework discussed above to treat real-time. Namely, transition
modules are augmented with a variable representing (continuous) time to yield
clocked transition modules. This approach to real-time is similar to that of
Abadi and Lamport [3], among others.

A technical feature which must be considered in real-time modeling is that of
Zenoness (see [35, 3]). The problem is that non-Zenoness is not preserved under
parallel composition of clocked modules: it may happen that the composition
of two modules is Zeno even if each module is non-Zeno. Therefore, the paper
introduces the notion of receptiveness: roughly speaking, a module is receptive
if it is non-Zeno whenever it acts in a “reasonably cooperative” environment.
Receptiveness is preserved under parallel composition.

The formalism is illustrated with the classical example of the Generalized
Railroad Crossing (see e.g. [38]).

Both formalisms (i.e. clocked [16] and unclocked [29] transition modules) are
supported by the STeP (Stanford Temporal Prover [15]) tool, expressly designed
to support specification and verification of these modular systems adopting var-
ious techniques (in particular, both theorem proving and model checking).

Finally, Cau proposes in [17] a composition and refinement framework some-
what similar to that presented above, but with reference to dense time temporal
logics. The resulting framework is rather complicated and convoluted, and uses
some of the ideas about compositionality presented in [18].

5.4 A Semantic Framework for Compositionality

Hooman presents in [46] a framework to support the top-down design of dis-
tributed real-time systems. The framework is based on assertions (i.e. it is
denotational) and also mixed, that is a specification in the framework can con-
tain both assertions and programming constructs (namely computations).

The framework is semantic, in that it is based on descriptions given by simple
semantic primitives. Moreover, it is parametric with respect to the time model,
which can be, in particular, discrete or continuous. More precisely, the only
assumption on the time model is that it is a strictly ordered set. The basic
semantic primitive used to describe the behavior of a system (or of a module)
is the observation function, which is simply a function from the time domain to
a set of events: thus, it associates each time instant to the primitive facts that

33



occur at that instant. A computation represents a history of a module, and it
is constituted by a pair (α,OBS). α is a set of observable events, which are the
events that may be observed during the behavior of the component. OBS is a
set of observation functions of the events in α, that is a set of mappings from
time to subsets of α (note that we have more than a single observation function,
since we allow for nondeterminism).

Two different definitions of parallel composition of two computations are
given. Consider two computations (α1,OBS1) and (α2,OBS2). According to
the first definition, the composition of the two computations is obtained by tak-
ing the union α1 ∪ α2 of the observable events, and the pointwise (i.e. at all
time points) union of the observation functions, requiring that these functions
agree on the events shared by both components (i.e. which are in α1 ∩ α2).
The second definition of parallel composition allows for “open” computations
where the observed events can also be not in α: this means that they include
arbitrary environment behaviors or, in other words, that OBS is now a map-
ping from time to subsets of all the possible events. In this case, the parallel
composition is defined simply by the union α1∪α2 of the observable events, and
the (pointwise) intersection of the observation functions. The two definitions of
parallel composition, although different, are strictly related, and simple condi-
tions, basically involving the removal of the environment observables, permit to
pass from a representation to the other. We indicate parallel composition with
the operator //.

In Hooman’s framework, a specification is a particular form of computation,
defined by a pair (α,A). A is an assertion, that is a predicate over observa-
tion functions. Thus, the specification is a computation which has α as set of
observable events, and all observation functions which satisfy the assertion A.
Note that no particular structure is given to a specification, and in particular
the rely/guarantee paradigm is not adopted. Therefore, parallel composition
basically reduces to set intersection, without allowing for mutual dependencies
between components. On the other hand, refinement between specifications is
indicated by the operator V.

Now, the core of the framework consists in formulating a composition rule
that permits to deduce soundly the specification of a parallel composition of two
specifications. Let us consider two specifications (α1,A1) and (α2,A2). Then,
their parallel composition is a refinement of the specification given by the union
of the α’s and the logical conjunction of the assertions, under a simple condition.
Exactly, the soundness condition is that the assertion Ai only depends on the
events in αi, for i = 1, 2; this amounts to requiring that the two specifications
are decoupled, and one does not predicate about the behavior of the events
that belong to the other. Under this simple condition, the following refinement
relation holds:

(α1,A1)//(α2,A2)V (α1 ∪ α2,A1 ∧ A2)

The paper also briefly discusses the hiding operation to selectively remove
observable events from a specification or computation.

As it is clear even from this short presentation, Hooman’s framework is
very simple and quite general. Nonetheless, even if the semantic primitives
are very basic notions, they naturally refer to semantic models such as those
based on sequences of events and interleaving semantics (e.g. such as Abadi
and Lamport’s [4]). One advantage of the simplicity of the framework is that it

34



can be easily implemented in a theorem prover. In fact, the paper completely
formalizes the framework in PVS [78], and uses the formalization in proving
properties of a hybrid system. A less formal version of a very similar framework
was proposed by the same author in [44].

Finally, this framework, or variations closely related to it (such as those
described in [42, 44]), have been used in the development of some significant
case studies, namely an arbitration protocol [43] and a bus protocol [45].

6 Compositionality in Model Checking

The problem with the scalability of formal methods does not affect only de-
ductive methods, such as those that we focused on elsewhere in this report,
but also automata-based automated methods, and namely model checking tech-
niques. The limitations of scalability of model checking manifest themselves in
the state explosion problem: under conditions that happen often in practice, the
size of the representation of the parallel composition of modules is exponential
in the size of the individual components. Hence, composing modules of man-
ageable sizes yields a global system whose size in unmanageable and cannot be
verified automatically.

Compositional techniques try to soothe this problem by permitting the ver-
ification of components in isolation, while allowing to infer global properties of
the overall system. For a thorough analysis of compositional model checking
techniques we refer the reader to the work by Kupferman and Vardi [54], which
is especially focused on rely/guarantee techniques and algorithmic and complex-
theoretical aspects. [54] also contains several pointers to related literature on
compositionality for model checking. Another in-depth analysis of recent com-
positional techniques for automata-based verification is the book by Juan and
Tsai [52]. In particular, besides briefly surveying a large spectrum of compo-
sitional techniques for automata-based formalisms, it especially focuses on the
models of Multiset Labeled Transition Systems and Timed Petri Nets. The book
also considers experimental aspects, practically comparing some model checking
tools on a set of common verification problems.

On the other hand, in this section, we just briefly present in a very plain
manner some directions in applying compositional techniques to model checking,
not limited to the rely/guarantee approach. The exposition follows mainly the
nice survey by Berezin, Campos and Clarke [14] which, of course, contains much
more details.

Let us present very shortly the essential elements of the model checking prob-
lem for a generic system. Consider a system whose state is an assignment of
values to the (Boolean) variables from a set V . Let V ′ be a duplicated set of
variables, corresponding to the variables in V at the next step, that is after the
next transition is taken. The behavior of a component can be fully specified
by a transition function N(V, V ′) that describes all the constraints that each
variable must satisfy in a legal transition of the system. Note that a transition
function can be expressed as a Boolean propositional formula (over variables in
V and V ′).

Now, let us consider a composite system, and denote by V the set of all
variables in the system. Moreover, let N1, . . . , Nn be the transition functions for

35



its n modules. The modules can be composed synchronously or asynchronously.
In synchronous composition, the global transition function can be expressed as
the conjunction of all transition functions of the n modules. In asynchronous
composition, the global transition function can be expressed as a disjunction
of terms, each of which represents the case of just one transition taken, while
all the other variables remaining unchanged. (This is the interleaving model of
asynchronous composition).

A fundamental operation in model checking consists in computing the image
(or pre-image) of a set of states. Given a set of states S, the image of S is the
set of all successors of the states in S. S can also be expressed as a Boolean
formula, representing the truth assignments to the variables. Thus, the image
of S can be represented by the formula:

{V ′ | ∃V (S(V ) ∧N(V, V ′))}

In fact, it represents all the assignments to variables in V ′ (i.e. states) such that
there exists another assignment V which is a state and a transition to the as-
signments in V ′ exists. In general, when N is given as the composition of (local)
transition functions, finding the image has a complexity which is exponential
in the size of the local transition functions. Thus, compositional methods must
aid to reduce this complexity in most practical cases.

We can group the most important techniques for doing so into four main
categories: partitioning, lazy composition, interface abstraction, and rely/guar-
antee techniques. Roughly speaking, we can say that they are listed from the
simplest to the hardest, where simple means “largely automatable”, whereas
hard means “requiring substantial human assistance”; due to the trade-off be-
tween automation and efficiency, they also are from the least efficient to the
most efficient, the latter meaning bringing the best results in terms of complex-
ity reduction. Also notice that the terminology used in this section is slightly
different than that used for deductive methods, which was illustrated at the
beginning of this report.

Partitioning Partitioning consists in distributing the existential quantifica-
tion of the image relation over several independent subformulas, the value of
each of which can be computed independently of the others, thus reducing the
verification effort.

This is especially simple for asynchronous composition, since existential
quantification distributes over disjunctions. More explicitly, if the relation we
must evaluate is ∃V (S(V )∧ (N1(V, V

′)∨ · · · ∨Nn(V, V ′))), we can rewrite it as:

∃V (S(V ) ∧N1(V, V
′)) ∨ · · · ∨ ∃V (S(V ) ∧Nn(V, V ′))

each of whose terms can be evaluated independently.
On the other hand, in synchronous composition the transition function is

a conjunction of transition functions in the form ∃V (S(V ) ∧ (N1(V, V
′) ∧ · · · ∧

Nn(V, V ′))), and in general existential quantification does not distribute over
conjunctions. However, partitioning is often still possible in practice since tran-
sition functions often exhibit locality, that is most Nis depend only on a small
number of variables in V and V ′. Thus, we can partition into independent
quantifications over subsets of variables which only appear in some terms. Vari-
ous techniques have been devised to implement efficiently such partitioning. As

36



it is expected, in general finding an efficient partitioning is a computationally
intractable problem, even if many heuristics which perform well in practice have
been developed and successfully used.

Lazy Composition Lazy parallel composition is a method, alternative to
that described in the previous paragraph, for partitioning the global transi-
tion relation into subformulas which can be evaluated independently and more
efficiently. However, lazy composition is not an exact method, since it relies
on a simplified transition relation to compute the partitioning. The simplified
(a.k.a. restricted) transition relation agrees with the “real” transition relation
on “most important” states, but may disagree on other ones. However, the
simplified transition relation is simpler to partition, and can be computed more
efficiently. Then, the discrepancies between the simplified and real relations can
be checked a posteriori, to verify that they are irrelevant for the specific instance
of the problem. Of course, it may happen that this check fails: in such cases the
lazy technique has been unsuccessful. However, efficient lazy techniques, which
behave well on most problem instances, have been developed.

Interface Abstraction This technique is based on the observation that pro-
cesses often communicate only through a small number of shared variable. For
example, consider two processes P1 and P2 with transition functions N1 and
N2, respectively, and which communicate using a set σ ⊂ V of variables. P1

observes the behavior of P2 only through variables in σ. Thus, for verification
purposes, we can replace P2 by an equivalent, but simpler, process A2 which
is indistinguishable from P2 with respect to the variables in σ. Then, verify-
ing the parallel composition of P1 and A2 in general involves a much simpler
global transition function, but yields results which are equivalent to verifying
the parallel composition of P1 and P2, for properties involving only variables in
σ. When using this technique, the most important thing is to define an effective
notion of interface equivalence, which is both easy to compute and yields good
results in terms of verification complexity. Extensively studied examples of such
equivalences are bisimulation equivalence and stuttering equivalence.

Rely/Guarantee Techniques In rely/guarantee reasoning, each component
is verified separately. In order to do so, we assume that the environment behaves
in a certain manner, described by a logic formula (rather than a component,
as in interface abstraction). Then, suitable inference rules permit to infer the
global validity of the overall system, as discussed extensively in this survey. The
peculiarity of rely/guarantee for model checking is that it is usually based on a
preorder relations between models that captures the notion of “more behaviors”.
In our framework of Section 3, the preorder would implement the abstract en-
tailment relation v, so that discharging the assumptions correspond to checking
a preorder relation. Conversely, the relation must be suitable for algorithmic
verification if one wants to facilitate model checking. Still, the method is only
semi-automated, since the user has to provide a suitable choice for assumptions
and guarantees, which cannot be completely automated.

37



7 Compositionality for Your Own Formalism

In the last decade (or more), the need for compositionality, to allow the scala-
bility of formal methods, has become indisputable in the research community.
As a consequence of that, almost every new formal language encompasses some
form of compositional technique or permits compositional verification. At the
same time, much work has also been devoted to the introduction of composi-
tional techniques and methods for existing formalisms, possibly modeling these
methods on some of the general frameworks discussed in Section 4.

An extensive report of all these developments is definitely out of the scope
of this paper, which focuses on general frameworks. Therefore, this section
just briefly samples a few examples of applications of compositionality to some
formalisms. More references can be found, for example, in [27] and in [26].

7.1 Reactive Modules

Alur and Henzinger present in [8] a formal model for concurrent systems: the re-
active modules. This model is suitable for representing concurrent systems with
both synchronous and asynchronous components. It is especially tailored to the
specification and verification of digital components; in fact it allows for descrip-
tions of components which resemble those of a hardware description language
(e.g. VHDL or System C).

Each module is a collection of variables (possibly including a tick variable to
model time lapsing), divided into the three classes private, interface (variables
visible to the environment), and external (variables updated by the environ-
ment). Various models of (a)synchrony are also supported, in order to allow for
the translation of different programming languages and hardware description
languages into reactive modules.

The semantics of a reactive module is defined in terms of traces of obser-
vations. First, a meaning for module execution is defined by imposing some
restrictions on the ordering of the variables of a module with respect to their
reciprocal dependencies when being updated (in particular, the order relation
must be asymmetric). Then, the semantics of a module is defined in terms of
states (a set of variables values) and transitions between states (when a state
can be the result of an update execution of another state).

A refinement relation (called implementation relation) is defined in terms of
trace equivalence restricted to observable variables. Special classes of modules
can also be defined according to certain characteristics of the definition (e.g.
stuttering invariance, reactive behavior, etc.).

Reactive modules can be composed both spatially and temporally. Spatial
composition involves the usual operations of variable renaming and hiding, and
parallel composition. Simple proof rules for compositional rely/guarantee rea-
soning are provided, especially for proving refinement of composite modules.
Temporal composition involves the operations of round abstraction and trigger-
ing. Round abstraction means that several temporally consecutive rounds are
combined into a single “scaled” one. Triggering, on the other hand, splits a
round into intermediate rounds so that the module sleeps through them until
some predefined variables change their values.

Finally, some typical issues of transition modules, namely fairness, safety
and receptiveness, are discussed and applied to the framework of reactive mod-

38



ules. This completes the presentation of this unified, modular and hierarchical
framework for describing reactive components.

The framework is definitely interesting and efficient for describing hardware
components, where one familiar with a hardware description language can rather
easily transfer its experience to the use of reactive modules.

Henzinger, Qadeer and Rajamani present in [39] a commented case study of
application of the reactive modules framework [8] with the Mocha tool [9],
consisting of a hardware pipeline. The case study offers the opportunity to
introduce some methodological remarks and some “learned lessons” about the
practical applicability of rely/guarantee reasoning and refinement checking (i.e.
model checking of refined modules). The bottom line is twofold. On the one
hand, the success of rely/guarantee reasoning depends crucially on the construc-
tion of suitable abstraction modules. The modules must be neither too complex
(otherwise modular verification is no simpler than unstructured verification) nor
too abstract (otherwise we cannot exploit the composition rules to deduce the
validity of the global specification from the local specifications). On the other
hand, the success of refinement checking depends crucially on the construction
of suitable witness modules (which are roughly the analogous of refinement
mappings to show the correspondence of variables between a module and its
refinement). The careful application of both principles permits the automatic
verification of otherwise untreatable models, as in the example presented in the
paper.

7.2 TTM/RTTL

Ostroff presents in [76] a structured compositional design method for discrete
real-time systems. The method is based on the TTM/RTTL framework [73, 74],
where modules are described as TTM transition systems, and specifications are
written using the real-time temporal logic RTTL. The framework also supports
model checking and theorem proving techniques embedded in the toolset State-
Time [75], based on the STeP [15] tool.

First, the TTM/RTTL framework is introduced. RTTL (Real-Time Tempo-
ral Logic) is obtained from (untimed, i.e. without a metric) linear-time temporal
logic by adding a fair tick transition. Then, states (defined as mappings from the
set of system variables to values) are linked by transitions (which model events
occurrences or time lapsing). Properties are expressed using variations of the
usual temporal logic operators that include quantitative bounds on time (i.e.
number of occurrences of tick transitions), similarly to, for example, Koymans
[53]. TTMs (Timed Transition Models) are an extension of Fair Transition
Systems [64] for real-time modeling. As usual, their semantics is defined in
terms of trajectories satisfying some fairness constraints. Modules are defined
as compositional extensions of TTMs. Notice that this extension is different
from [19], where the focus is on deductive methods and different restrictions are
imposed on the definition of a module (in particular, the transitions must be
self-disabling). A module is made of an interface stub (consisting of all the vari-
ables shared with the environment), a body (a TTM whose statements are not
visible outside the module) and a specification (a RTTL formula in the interface
variables, expressing the required visible behavior of the module).

39



The parallel composition of two modules gives a new module, whose interface
contains some of the variables of the interfaces of the two composed modules
(while some other variables may be hidden in the composite module). The body
is given by ordinary composition between TTMs (i.e. similar to that of Fair
Transition Systems [64]). The specification is given by the logical conjunction
of the specifications of the two composed modules. Modules of this framework
are compositional. A composition rule is given to infer the validity of a global
specification for a composite module from the validity of the specifications that
are local to the composing modules. The composition rule can be used both
bottom-up (to reuse preexisting modules) and top-down (by devising a suitable
decomposition to split the verification burden among submodules). The paper
also sketches a methodology that suggests the use of model checking to verify the
modular validity of the composed modules, and of deductive methods to prove
that the global system requirement follows from the specification of the modules.
As an aside, when model checking a module, it may be useful to constrain the
evolution of the variables of its environment according to the description of
the modules that will actually constitute its environment, provided they are
fixed. This reduces the state-space of the model to be checked, thus reducing
the complexity of the automatic procedure.

The analysis of module refinement aims at formulating conditions under
which we can replace a module’s body by another one, without affecting the
observed behavior at the interface. The notion of program equivalence devel-
oped for Fair Transition Systems [64] is not suitable for real-time modules,
since it considers as equivalent modules whose timed behavior is instead differ-
ent (in other words, the tick transition is not handled properly). Therefore, the
author develops a state-event notion of observational equivalence, taken from
[59, 58, 60]. The notion of (weak) state-event bisimulation is introduced, where
sequences of pairs (state, transition) are considered. Two pairs, one referring to
the first module and one to the other, are considered bisimilar if either they lead
directly to equal next pairs, or they lead to equal next pairs after a sequence of
transitions which do not involve visible variables (these are called “unobservable
moves”). Finally, if the similarity between pairs holds for all the (state, transi-
tion) pairs of both modules, then the modules can be considered equivalent with
respect to the refinement relation. Whenever two modules are equivalent, the
modular validity of any formula for one module implies the modular validity
of the same formula for the other module; in other words, all the properties
shown to hold for a module also hold for the refinement of that module. This
equivalence is also compositionally consistent, in that we can replace a module
with an equivalent one without affecting the behavior of the other module being
composed with it.

Finally, a case study is described to show in practice the applicability of the
proposed framework and methodology. In particular, the author points out the
fact that the design of composite real-time systems often requires a combination
of top-down and bottom-up approaches, since an inherently composite system
has no “top” function and involves properties which are “emergent” from the
whole system, rather than being easy to partition.

Ostroff’s methodology is rather comprehensive and encompasses various
techniques in a unified framework. The proposed framework for composition
and decomposition is similar, under several aspects, to other well-known frame-
works for rely/guarantee compositional reasoning, such as [4, 64], with the im-

40



portant addition of quantitative real-time. Its main limitations are the fact that
it considers only discrete time and that the use of a tick transition to model time
lapsing may be considered unnatural and bring a description of the evolution of
the state of the system which is not intuitively very appealing.

7.3 Interval-Based Logics

Compositionality for the interval-based logic ITL (Interval Temporal Logic [68])
is discussed by Moszkowski in [69]. The paper introduces a compositional
methodology based on the rely/guarantee paradigm, combined with a technique
based on fixpoints.

Duration Calculus [20, 22, 21] is basically an extension of Interval Temporal
Logic to dense time domains. Compositionality is introduced in Duration Cal-
culus by Xu and Swarup in [86]. They adopt the rely/guarantee paradigm, and
precisely they introduce a rule modeled after that of [85, 18].

Another work focusing on compositionality for Duration Calculus is that
by Olderog and Dierks [72], where they show how a specification written in an
implementable subset of Durations Calculus can be decomposed into an untimed
(i.e. non real-time) part in parallel composition with a set of (real-time) timers.

References

[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings.
Theoretical Computer Science, 82(2):253–284, 1991.

[2] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM Trans-
actions on Programming Languages and Systems, 15(1):73–132, 1993.

[3] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–
1571, 1994.

[4] Mart́ın Abadi and Leslie Lamport. Conjoining specifications. ACM Trans-
actions on Programming Languages and Systems, 17(3):507–535, 1995.

[5] Mart́ın Abadi and Stephan Merz. An abstract account of composition.
In Jiŕı Wiedermann and Petr Hájek, editors, Proceedings of the 20th In-
ternational Symposium on Mathematical Foundations of Computer Science
(MFCS’95), volume 969 of Lecture Notes in Computer Science, pages 499–
508. Springer-Verlag, 1995.

[6] Mart́ın Abadi and Gordon D. Plotkin. A logical view of composition. The-
oretical Computer Science, 114(1):3–30, June 1993.

[7] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Pro-
cessing Letters, 21(4):181–185, 1985.

[8] Rajeev Alur and Thomas A. Henzinger. Reactive modules. Formal Methods
in System Design, 15:7–48, 1999.

41



[9] Rajeev Alur, Thomas A. Henzinger, Freddy Y. C. Mang, Shaz Qadeer,
Sriram K. Rajamani, and Serdar Tasiran. MOCHA: Modularity in
model checking. In Alan J. Hu and Moshe Y. Vardi, editors, Proceed-
ings of the 10th International Conference on Computer Aided Verification
(CAV’98), volume 1427 of Lecture Notes in Computer Science, pages 521–
525. Springer-Verlag, 1998.

[10] Nina Amla, E. Allen Emerson, Kedar Namjoshi, and Richard Trefler. Ab-
stract patterns of compositional reasoning. In Roberto M. Amadio and
Denis Lugiez, editors, Proceedings of the 14th International Conference on
Concurrency Theory, volume 2761 of Lecture Notes in Computer Science,
pages 431–445. Springer-Verlag, 2003.

[11] Ignacio Angelelli, editor. Gottlob Frege. Kleine Schriften. George Olms,
1967.

[12] Krzysztof R. Apr, Nissim Francez, and Willem-Paul de Roever. A proof
system for Communicating Sequential Processes. ACM Transactions on
Programming Languages and Systems, 2(3):359–385, 1980.

[13] Ed A. Ashcroft. Proving assertions about parallel programs. Journal of
Computer and System Sciences, 10:110–135, 1975.

[14] Sergey Berezin, Sérgio Campos, and Edmund M. Clarke. Compositional
reasoning in model checking. In de Roever et al. [27], pages 81–102.

[15] Nikolaj S. Bjørner, Anca Browne, Edward Y. Chang, Michael Colón, Ar-
jun Kapur, Zohar Manna, Henny B. Sipma, and Tomás E. Uribe. STeP:
deductive-algorithmic verification of reactive and real-time systems. In Ra-
jeev Alur and Thomas A. Henzinger, editors, Proceeding of the 8th Interna-
tional Conference on Computer Aided Verification (CAV’96), volume 1102
of Lecture Notes in Computer Science, pages 415–418. Springer-Verlag,
1996.

[16] Nikolaj S. Bjørner, Zohar Manna, Henny B. Sipma, and Tomás E. Uribe.
Deductive verification of real-time systems using STeP. Theoretical Com-
puter Science, 253:27–60, 2001.

[17] Antonio Cau. Composing and refining dense temporal logic specifications.
Formal Aspects of Computing, 12(1):52–70, 2000.

[18] Antonio Cau and Pierre Collette. Parallel composition of assumption-
commitment specifications: A unifying approach for shared variable and
distributed message passing concurrency. Acta Informatica, 3(2):153–176,
1996.

[19] Edward Chang. Compositional verification of reactive and real-time sys-
tems. Ph.D. Thesis CS-TR-94-1522, Stanford University, Department of
Computer Science, 1993.

[20] Zhou Chaochen, Charles Anthony Richard Hoare, and Anders P. Ravn. A
calculus of duration. Information Processing Letters, 40(5):269–276, 1991.

42



[21] Zhou Chaochen, Dang Van Hung, and Li Xiaoshan. A duration calcu-
lus with infinite intervals. In Horst Reichel, editor, Proceedings of the
10th International Symposium on Fundamentals of Computation Theory
(FCT’95), volume 965 of Lecture Notes in Computer Science, pages 16–41.
Springer-Verlag, 1995.

[22] Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An extended
duration calculus for hybrid real-time systems. In Robert L. Grossman, Anil
Nerode, Anders P. Ravn, and Hans Rischel, editors, Hybrid Systems 1992,
volume 736 of Lecture Notes in Computer Science, pages 36–59. Springer-
Verlag, 1993.

[23] Frank S. de Boer and Willem-Paul de Roever. Compositional proof methods
for concurrency: A semantic approach. In de Roever et al. [27], pages 632–
646.

[24] Willem-Paul de Roever. The quest for compositionality — a survey of
assertion-based proof systems for concurrent programs (part 1: concurrency
based on shared variables). In Proceedings of the IFIP Working Conference
on The Role of Abstract Models in Computer Science. North-Holland, 1985.

[25] Willem-Paul de Roever. The need for compositional proof systems: A
survey. In de Roever et al. [27], pages 1–22.

[26] Willem-Paul de Roever, Frank de Boer, Ulrich Hannemann, Jozef Hooman,
Yassine Lakhnech, Mannes Poel, and Job Zwiers. Concurrency Verification:
Introduction to Compositional and Noncompositional Methods. Cambridge
University Press, 2001.

[27] Willem-Paul de Roever, Hans Langmaack, and Amir Pnueli, editors. Pro-
ceedings of the International Symposium: “Compositionality: The Signifi-
cant Difference” (COMPOS’97), volume 1536 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

[28] Wim H. J. Feijen and A. J. M. van Gasteren. On a Method of Multipro-
gramming. Springer-Verlag, 1999.

[29] Bernd Finkbeiner, Zohar Manna, and Henny B. Sipma. Deductive verifi-
cation of modular systems. In de Roever et al. [27], pages 239–275.

[30] Robert W. Floyd. Assigning meanings to programs. In J. T. Schwartz, ed-
itor, Mathematical Aspects of Computer Science, volume 19 of Proceedings
of Symposia in Applied Mathematics, pages 19–32. American Mathematical
Society, 1967.

[31] Nissim Francez and Amir Pnueli. A proof methods for cyclic programs.
Acta Informatica, 9:133–157, 1978.

[32] Gottlob Frege. Logische Untersuchungen. Dritter Teil: Gedankengefüge,
volume 3, chapter Beiträge zur Philosophie des Deutschen Idealismus, pages
36–51. 1923. Reprinted in [11, pp. 378–394]. English translation in [33].

[33] Gottlob Frege. Compound thoughts. In P. Geach and N. Black, editors,
Logical Investigations, Oxford, 1977. Blackwells.

43



[34] Carlo A. Furia, Matteo Rossi, Dino Mandrioli, and Angelo Morzenti.
Automated compositional proofs for real-time systems. In Maura Ceri-
oli, editor, Proceedings of Fundamental Aspects of Software Engineering
(FASE’05), volume 3442 of Lecture Notes in Computer Science, pages 326–
340. Springer-Verlag, 2005.

[35] Angelo Gargantini and Angelo Morzenti. Automated deductive require-
ments analysis of critical systems. ACM Transactions on Software Engi-
neering and Methodology, 10(3):255–307, 2001.

[36] H. H. Goldstine and John von Neumann. Planning and coding problems
for an electronic computer. In A. H. Taub, editor, Collected Works of John
von Neumann, volume Volume 5, pages 80–235. Pergamon Press, 1963.
Original publication year: 1947.

[37] Mark R. Heckman, Cui Zhang, Brian R. Becker, Dave Peticolas, Karl N.
Levitt, and Ronald A. Olsson. Towards applying the composition princi-
ple to verify a microkernel operating system. In Joakim von Wright, Jim
Grundy, and John Harrison, editors, Proceedings of the 9th International
Conference on Theorem Proving in Higher Order Logics (TPHOLs’96), vol-
ume 1125 of Lecture Notes in Computer Science, pages 235–250. Springer-
Verlag, 1996.

[38] Constance Heitmeier and Dino Mandrioli, editors. Formal Methods for
Real-Time Computing. John Wiley & Sons, 1996.

[39] Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. You as-
sume, we guarantee: Methodology and case studies. In Alan J. Hu and
Moshe Y. Vardi, editors, Proceedings of the 10th International Conference
on Computer-Aided Verification (CAV’98), volume 1427 of Lecture Notes
in Computer Science, pages 440–451. Springer-Verlag, 1998.

[40] Thomas A. Henzinger, Shaz Qadeer, Sriram K. Rajamani, and Serdar
Tasiran. An assume-guarantee rule for checking simulation. ACM Trans-
actions on Programming Languages and Systems, 24(1):51–64, 2002.

[41] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[42] Jozef Hooman. Specification and Compositional Verification of Real-Time
Systems, volume 558 of Lecture Notes in Computer Science. Springer-
Verlag, 1991.

[43] Jozef Hooman. Compositional verification of a distributed real-time arbi-
tration protocol. Real-Time Systems, 6(2):173–206, 1994.

[44] Jozef Hooman. Correctness of real time systems by construction. In Pro-
ceedings of the 3rd International Symposium on Formal Techniques in Real-
Time and Fault-Tolerant Systems, volume 863 of Lecture Notes in Com-
puter Science, pages 19–40. Springer-Verlag, 1994.

[45] Jozef Hooman. Verifying part of the ACCESS.bus protocol using PVS.
In P. S. Thiagarajan, editor, Proceedings of the 15th Conference on
Foundations of Software Technology and Theoretical Computer Science

44



(FSTTCS’95), volume 1026 of Lecture Notes in Computer Science, pages
96–110. Springer-Verlag, 1995.

[46] Jozef Hooman. Compositional verification of real-time applications. In
de Roever et al. [27], pages 276–300.

[47] Jozef Hooman and Willem-Paul de Roever. The quest goes on: a sur-
vey of proof systems for partial correctness of CSP. In J. W. de Bakker,
Willem-Paul de Roever, and Grzegorz Rozenberg, editors, Current Trends
in Concurrency, volume 224 of Lecture Notes in Computer Science, pages
343–395. Springer-Verlag, 1986.

[48] Theo M. V. Janssen. An overview of compositional translations. In
de Roever et al. [27], pages 327–349.

[49] Cliff B. Jones. Development Methods for Computer Programs Inclusing a
Notion of Interference. PhD thesis, Oxford University Computing Labora-
tory, 1981.

[50] Cliff B. Jones. Tentative steps towards a development method for interfer-
ing programs. ACM Transactions on Programming Languages and Systems,
5(4):596–619, 1983.

[51] Bengt Jonsson and Yih-Kuen Tsay. Assumption/guarantee specifications in
linear-time temporal logic. Theoretical Computer Science, 167(1–2):47–72,
1996.

[52] Eric Y. T. Juan and Jeffrey J. P. Tsai. Compositional Verification of Con-
current and Real-Time Systems. Kluwer Academic Publishers, 2002.

[53] Ron Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[54] Orna Kupferman and Moshe Y. Vardi. An automata-theoretic approach to
modular model checking. ACM Transactions on Programming Languages
and Systems, 22(1):87–128, January 2000.

[55] Robert P. Kurshan and Leslie Lamport. Verification of a multiplier: 64
bits and beyond. In Costas Courcoubetis, editor, Proceedings of the 5th In-
ternational Conference on Computer-Aided Verification (CAV’93), volume
697 of Lecture Notes in Computer Science, pages 166–179. Springer-Verlag,
1993.

[56] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143, 1977.

[57] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, 1994.

[58] Mark S. Lawford, Jonathan S. Ostroff, and W. M. Wonham. Model reduc-
tion of modules for state-event temporal logics. In IFIP Joint International
Conference on Formal Description Techniques (FORTE-PSTV’96), pages
263–278. Chapman & Hall, 1996.

45



[59] Mark S. Lawford and W. M. Wonham. Equivalence preserving transforma-
tions for timed transition models. In Proceedings of the 31st IEEE Confer-
ence on Decision and Control (CDC’92), pages 3350–3356, 1992.

[60] Mark S. Lawford, W. M. Wonham, and Jonathan S. Ostroff. State-event
labels for labelled transition systems. In Proceedings of the 33rd IEEE
Conference on Decision and Control (CDC’94), pages 3642–3648, 1994.

[61] Gary M. Levin and David Gries. A proof technique for Communicating
Sequential Processes. Acta Informatica, 15:281–302, 1981.

[62] Patrick Maier. A set-theoretic framework for assume-guarantee reason-
ing. In Fernando Orejas, Paul G. Spirakis, and Jan van Leeuwen, editors,
Proceedings of the 28th International Colloquium on Automata, Languages
and Programming (ICALP’01), volume 2076 of Lecture Notes in Computer
Science, pages 821–834. Springer-Verlag, 2001.

[63] Patrick Maier. Compositional circular assume-guarantee rules cannot be
sound and complete. In Andrew D. Gordon, editor, Proceedings of the 16th
International Conference on Foundations of Software Science and Compu-
tational Structures (FOSSACS’03), volume 2620 of Lecture Notes in Com-
puter Science, pages 343–357. Springer-Verlag, 2003.

[64] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systme:
Safety. Springer-Verlag, 1995.

[65] Ken McMillan. Circular compositionl reasoning about liveness. In Lau-
rence Pierre and Thomas Kropf, editors, Proceedings of the 10th IFIP WG
10.5 Advanced Research Working Conference on Correct Hardware Design
and Verification Methods (CHARME’99), volume 1703 of Lecture Notes in
Computer Science, pages 342–345. Springer-Verlag, 1999.

[66] Merriam-Webster, editor. Merriam-Webster’s Collegiate Dictionary.
Merriam-Webster Inc., 10th edition edition, 1998.

[67] Jayadev Misra and K. Mani Chandy. Proof of networks of processes. IEEE
Transactions on Software Engineering, 7(4):417–426, 1981.

[68] Ben C. Moszkowski. A temporal logic for multilevel reasoning about hard-
ware. IEEE Computer, 18(2):10–19, 1985.

[69] Ben C. Moszkowski. Compositional reasoning using interval temporal logic
and tempura. In de Roever et al. [27], pages 439–464.

[70] Kedar S. Namjoshi and Richard J. Trefler. Branching time compositional
reasoning. Unpublished draft (as of 2004).

[71] Kedar S. Namjoshi and Richard J. Trefler. On the completeness of com-
positional reasoning. In E. Allen Emerson and A. Prasad Sistla, editors,
Proceedings of the 12th International Conference on Computer Aided Ver-
ification (CAV’00), volume 1855 of Lecture Notes in Computer Science,
pages 139–153. Springer-Verlag, 2000.

[72] Ernst-Rüdiger Olderog and Henning Dierks. Decomposing real-time spec-
ifications. In de Roever et al. [27], pages 465–489.

46



[73] Jonathan S. Ostroff. Temporal Logic for Real-Time Systems. Advanced
Software Development Series. Research Studies Press, 1989.

[74] Jonathan S. Ostroff. Deciding properties of timed transition models. IEEE
Transactions on Parallel and Distributed Systems, 1(2):170–183, 1990.

[75] Jonathan S. Ostroff. A visual toolset for the design of real-time discrete-
event systems. IEEE Transactions on Control Systems Technology,
5(3):320–337, 1997.

[76] Jonathan S. Ostroff. Composition and refinement of discrete real-time
systems. ACM Transactions on Software Engineering and Methodology,
8(1):1–48, January 1999.

[77] Susan Owicki and David Gries. An axiomatic proof technique for parallel
programs. Acta Informatica, 6:319–340, 1976.

[78] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A Prototype
Verification System. In Proceedings of the 11th International Conference on
Automated Deduction (CADE-11), volume 607 of Lecture Notes in Com-
puter Science, pages 748–752. Springer-Verlag, 1992.

[79] Natarajan Shankar. Lazy compositional verification. In de Roever et al.
[27], pages 541–564.

[80] Eugene W. Stark. Proving entailment between conceptual state specifica-
tions. Theoretical Computer Science, 56(1):135–154, 1988.

[81] Jei-Wen Teng and Yih-Kuen Tsay. Composing temporal-logic specifica-
tions with machine assistance. In Keijiro Araki, Stefania Gnesi, and Dino
Mandrioli, editors, Proceedings of the 12th International Symposium of For-
mal Methods Europe (FME’03), volume 2805 of Lecture Notes in Computer
Science, pages 719–738. Springer-Verlag, 2003.

[82] Yih-Kuen Tsay. Compositional verification in linear-time temporal logic.
In Jerzy Tiuryn, editor, Proceedings of the 3rd International Conference
on Foundations of Software Science and Computation Structures (FOS-
SACS’00), volume 1784 of Lecture Notes in Computer Science, pages 344–
358. Springer-Verlag, 2000.

[83] Alan Turing. On checking a large routine. In Report of a conference on
high-speed automatic calculating machines. University Mathematical Lab-
oratory, Cambridge, 1949.

[84] Mahesh Viswanathan and Ramesh Viswanathan. Foundations for circu-
lar compositional reasoning. In Jos C. M. Baeten, Jan Karel Lenstra,
Joachim Parrow, and Gerhard J. Woeginger, editors, Proceedings of the
28th International Colloquium on Automata, Languages and Programming
(ICALP’01), volume 2719 of Lecture Notes in Computer Science, pages
835–847. Springer-Verlag, 2001.

[85] Qiwen Xu, Antonio Cau, and Pierre Collette. On unifying assumption-
commitment style proof rules for concurrency. In Bengt Jonsson and
Joachim Parrow, editors, Proceedings of the 5th International Conference

47



on Concurrency Theory (CONCUR’94), volume 836 of Lecture Notes in
Computer Science, pages 267–282. Springer-Verlag, 1994.

[86] Qiwen Xu and Mohalik Swarup. Compositional reasoning using the
assumption-commitment paradigm. In de Roever et al. [27], pages 565–
583.

[87] Job Zwiers. Compositionality, Concurrency and Partial Correctness —
Proof theories for networks of processes, and their relationship, volume 321
of Lecture Notes in Computer Science. Springer-Verlag, 1989.

48


	Definitions of Compositionality
	Early Works on Compositional Methods
	General Circular Rely/Guarantee Compositional Rule
	Abstract Frameworks for Rely/Guarantee Compositionality
	Abadi and Lamport, 1993 AL93
	Abadi and Lamport, 1995 AL95
	Abadi and Plotkin, 1993 AP93
	Abadi and Merz, 1995 AM95
	Xu, Cau, and Collette, 1994 XCC94
	Cau and Collette, 1996 CC96
	Jonsson and Tsay, 1996 JT96
	Tsay, 2000 Tsa00
	Namjoshi and Trefler, 2000 NT00
	Viswanathan and Viswanathan, 2001 VV01
	Maier, 2001 Mai01
	Maier, 2003 Mai03
	Amla, Emerson, Namjoshi, and Trefler, 2003 AENT03

	Abstract Non-Rely/Guarantee Methods
	A Compositional Proof Method for Assertion Networks
	The Lazy Approach to Compositionality
	Decomposition of Real-Time Transition Systems
	A Semantic Framework for Compositionality

	Compositionality in Model Checking
	Compositionality for Your Own Formalism
	Reactive Modules
	TTM/RTTL
	Interval-Based Logics


