
Comments on “Temporal Logics

for Real-Time System Specification”

Carlo A. Furia1, Matteo Pradella2, Matteo Rossi1
1Dipartimento di Elettronica e Informazione, Politecnico di Milano

2CNR IEIIT-MI
{furia, pradella, rossi}@elet.polimi.it

Abstract

The article “Temporal Logics for Real-Time System Specification” [3]
surveys some of the relevant literature dealing with the use of temporal
logics for the specification of real-time systems. Unfortunately, [3] intro-
duces some imprecisions that might create some confusion in the reader.
While a certain degree of informality is certainly useful when addressing
a broad audience, imprecisions can negatively impact the legibility of the
exposition. We clarify some of the remarks of [3] on a few topics, in an
effort to contribute to the usefulness of the survey for the reader.

1

The article “Temporal Logics for Real-Time System Specification” (ACM
Computing Surveys, March 2000 [3]) surveys some of the relevant literature
dealing with the use of temporal logics for the specification of real-time systems.
Such a topic is of great importance and interest to a large community of both
researchers and practitioners, especially during recent years — when substantial
successful developments in the formal verification of embedded and real-time
systems have occurred. However, while presenting the survey results, [3] also
introduces some imprecisions that might create some confusion in the reader.
While a certain degree of informality is certainly useful when addressing a broad
audience such as the readership of the Computing Surveys, imprecisions can
negatively impact the legibility of the exposition. Hence, this correspondence
clarifies some of the remarks of [3] on a few selected topics, in an effort to
contribute to the usefulness of the survey for the reader.

1 Completeness and Soundness

Section 2.1 of [3] introduces the definitions of completeness and soundness of a
deductive system. According to [3], a deductive system is complete when:

“It is possible to construct a demonstration for all theorems of the
theory”

And a deductive system is sound when:

“Each theorem that can be demonstrable with the logic is a theorem
of the logic”

The above statements are not correct, since they define soundness and com-
pleteness independently of the semantic concept of truth (or, more precisely,
validity). In a deductive system a theorem is, by definition [2], a well-formed
formula that has a proof (i.e., that can be demonstrated); so the two statements
above are tautologies.

Instead, a deductive system F is sound when:

“every theorem of F is valid” [2, pg. 80]

and it is complete when:

“every valid well-formed formula of F is a theorem” [2, pg. 94].

Also, in Section 3.8 of [3] it is said the following about complete deductive
systems:

“It should be noted that it is never possible to build a complete
deductive system”

The above statement is not specialized nor clarified in any manner in the text,
and implies that all deductive systems are necessarily incomplete. This is how-
ever false, as there exist numerous complete deductive systems for several logic
languages, such as propositional logic [2] or, as [3] itself suggests elsewhere, PTL
(propositional temporal logic).

2

2 Expressiveness

Let us point out two meanings that are associated, in different scientific fields,
with the word “expressiveness”. This is necessary since they are both used in
[3], but without distinguishing precisely between them. Thus, it is not always
evident which is the intended meaning when “expressiveness” is mentioned in
[3], as Section 7 further discusses.

The first meaning of the word “expressiveness” refers to the technical capa-
bility of a formalism to describe extensive classes of properties (e.g., [1, 5]). For
instance, the property “A until B” is not expressible with a logic that just uses
the unary modalities eventually 3 and always 2 (as first proved by Kamp [15]).
In the large majority of literature about temporal logics this is the meaning that
is implicitly given to the notion of expressiveness. In this case, the meaning of
the word “expressiveness” is precise and mathematically-based.

The second meaning, instead, has an informal, subjective nature, and refers
to the ease, naturalness, and simplicity with which one can formalize some prop-
erty with the given formalism. For instance, with reference to programming
languages (e.g., [8]), one may say that Pascal is more expressive than Assembly
language since it abstracts many details away and allows programmers to ex-
press algorithms in a more compact form. This notion has been formalized in
programming languages [9].

In the rest of this paper, when using the word “expressiveness” (without
further qualifications), we will refer to the first, formal meaning. Whenever we
will need to refer to the second, informal meaning, instead, we will explicitly
point it out.

3 Metric on Time

Section 3.4 of [3] discusses the issue of metric on time. It is said that

“The temporal operators [of temporal logic] presented in Section 2.4
are qualitative, since it is not possible to give an exact measure (i.e.,
duration, timeout) for events and among events.”

It is also said that

“A typical way to add a metric for time is to allow the definition of
bounded operators – for example [...] 3≤5A, which means that A is
eventually true within 5 time units.”

The first statement above is too strong, and distinctions should be made. In
fact, the © next operator (one of those listed in Section 2.4 of [3]) can actually
be used, under suitable conditions, to introduce a metric on time.

More precisely, whether one can express metric properties using the © oper-
ator depends also on the structures on which the temporal logic is interpreted.
Whenever the underlying structure of time is isomorphic to the natural num-
bers with their usual ordering, every natural k can be associated with a state

3

(in some sense) sk. If one assumes that the time elapsed between any pair of
consecutive states sk and sk+1 is one time unit, “next” simply stands for “next
time instant”. With this assumption one can define, for instance,

3≤5A , ©(A ∨©(A ∨©(A ∨©(A ∨©A))))

which shows that, however cumbersome, it is indeed possible to give an exact
measure of the elapsing time. Then, operators such as 3≤α (with α a constant)
are introduced to simplify writing temporal constraints, but they do not add
expressive power to the logic (e.g., [6] shows this for RTCTL and CTL). Of
course, different assumptions are possible (e.g., [4]).

Indeed, if the only metric operator available is ©, it may be clumsy or even
impossible to express some complex quantitative constraints. However, bounded
durations and timeouts (which are still real-time properties of great interest [16])
can be expressed using only the © operator, possibly at the price of sacrificing
conciseness. In other words, it is often a matter of convenience, rather than of
possibility.

4 Logic Executability

Section 3.9 of [3] presents the problem of executability of temporal logic spec-
ifications. It is stated that “there are at least three different definitions of
executability”.

The first definition is said to correspond “to that of decidability of the valid-
ity problem”, and the reference [21] is given. The second corresponds to what
is also called history checking [7]. About the third, it is written in [3] that it

“consists of using the system specification itself as a prototype or
implementation of the real-time system, thus allowing, in each time
instant, the on-line generation of system outputs on the basis of
present inputs and its internal state and past history.”

It is also remarked that

“there exists [sic] only few executable temporal logics that can be
used to build a system prototype according to meaning (iii) of exe-
cutability.”

This is further stressed in Table 7 of [3], where a column labeled “Logic exe-
cutability” summarizes the status of this feature for the temporal logics pre-
sented in the paper. According to the caption, the executability of each logic is
classified under one of the following five labels: “N=No, (N)=no in the general
case, Y=yes, (Y)=yes in some specific case, NA=not available”. Only two of
the logics listed in Table 7 carry a “Y”; four carry a “(Y)”, and the rest (the
vast majority) carry a “NA”. In fact, of many of the logics surveyed in Section
4 of [3], it is said that “no known results (about executability) are available”.

However, most temporal logics can be easily restricted to a proper subset
that is isomorphic to basic temporal logic with finite domains only (except for

4

the temporal domain, which is usually assumed denumerable). This subset is
clearly executable, since it is reducible to PTL, which is indeed executable (as
shown in the seminal work by Gabbay [11] and in accordance with Table 7 of
[3]). Under this respect, most (if not all) of the logics that are tagged “NA”
in [3, Table 7] in the “executability” column are in fact “executable in some
specific case” (hence, “(Y)”), regardless of whether an actual implementation
of the execution algorithm for the specific subset has been provided.

In addition, while [3] mentions the issue of the “computational complexity
of the algorithms” to execute temporal logics, it does not point out that this
is precisely what distinguishes the third definition from the two previous ones,
i.e., the possibility of implementing an efficient algorithm for the execution of a
logic specification (that is, building a model for that specification [10]). In other
words, executability according to the third definition is a property regarding the
complexity of an execution (i.e., model-building) algorithm that is available for a
logic language [10]. Indeed, the limitations to the executability of logic languages
lie in problems of complexity and incompleteness. Therefore, as Merz indicates
[20], “the design of a temporal logic-based programming language involves a
trade-off between expressiveness and (efficient) implementability”.

5 Past and Future

The availability of past operators is one of the features of temporal logics ana-
lyzed in [3]. In this respect, some contradictory statements are introduced; this
section aims at clarifying them.

On the one hand, some passages of [3] state that, whenever a temporal logic
does not explicitly provide past operators, it is impossible to express require-
ments about the past in that logic. For example, discussing PTL, [3] states
that

“The asymmetry of the logic [. . .] and the absence of the operator
since does not permit specification of requirements about the order
of events in the past.”

However, it is a well-established result that PTL (interpreted over time models
isomorphic to the natural numbers, as it is customary) with both past and
future operators is (initially) equivalent in expressive power to PTL with future
operators only [13, 11, 5, 12]. Obviously, the presence of explicit past operators
does facilitate [18] the writing of formulas about the past, and enhance their
conciseness, but it is not strictly necessary.

As a simple example, consider the specification “A can happen only if B took
place 2 time instants before”, which is written in PTL with past operators as
A→ B. This formula involves both past and metric operators; nonetheless
it is expressible in PTL with future operators only as: ¬B → ©© ¬A.

On the other hand, other passages in [3] maintain that the availability of past
operators is not necessary — as far as the expression of requirements about the

5

past is concerned — whenever the past is bounded. For instance, at the end of
Section 2, [3] states that

“If the temporal logic has the begin property (e.g., stating that the
temporal domain is bounded in the past [. . .]), the operator until
is enough to complete the logic’s expressiveness: when the past is
limited, the operator since is not necessary.”

However, this is also not true in general, as there exist temporal logics that are
strictly more expressive when endowed with past operators even when they are
interpreted over structures with a bounded past.

This is the case also of “classical” temporal logic PTL, when interpreted
over the non-negative real numbers as time domain with a bounded past. Since
Kamp’s seminal work [15], the expressiveness of several PTL variants — with
both past and future temporal operators, with only future ones, with a discrete
time domain, with a dense/continuous one, etc. — has been thoroughly studied.
In particular, we already remarked above that it has been long known [13] that
PTL with future operators only is as expressive (with respect to initial satisfi-
ability) as its variant with both past and future operators, when the temporal
domain is the set of natural numbers. On the contrary, it has never been conjec-
tured that the same holds when the temporal domain is the set of non-negative
reals. In fact, more recently Hirshfeld and Rabinovich proved [14] that PTL
with until only is strictly less expressive than its variety with until and since,
over the non-negative reals. Another example is the (metric) temporal logic
MTL with the qualitative since operator, which is strictly more expressive than
its future-only variety, even if structures with a bounded past are adopted [22].

In summary, the relationship between the availability of past operators and
the expressiveness of a temporal logic is subtle and depends on several different
semantic aspects.

6 A Running Example

To demonstrate the use of temporal logics, [3] informally introduces a simple
example of real-time specification (Figure 6 of [3]), which is then formally spec-
ified with each of the considered metric temporal logics. The example is that of
a predicate E whose occurrence triggers predicates startA and endA within te
time units, thus marking an interval in which A is true.

[3] in some cases presents formulas that are claimed to be equivalent (i.e., to
have the same models). For instance, consider the two TRIO formulas for the
example presented in Section 4.14 of [3] (similar considerations can be made for
the MTL formulas of Section 4.15):

Alw(E → ∃t((0 < t < te) ∧ Futr(endA, t) ∧WithinF (startA, t))) (1)

6

and1

Alw(E →WithinF (endA, te) ∧ ¬Until(¬startA, endA)) (2)

It is said that they represent the “same specification”, while they do not. In fact,
Formula (2) is stronger than Formula (1), since (2) forces the first occurrence
of endA after E to be preceded by an occurrence of startA, while (1) does not.

7 Point- vs. Interval-Based Logics

In Section 3.3 of [3], the differences between logics based on time points and
logics based on time intervals are discussed. The following is stated:

“Interval-based temporal logics are more expressive [than point-
based logics], since they are capable of describing events in time
intervals, and a single time instant is represented with a time inter-
val of one.”

As discussed in Section 2, there are two different meanings that can be given
to the word “expressiveness”, but it is not apparent what is the intended one in
the sentence above.

If expressiveness in the formal sense is meant, the claim that interval-based
logics are more expressive is not correct. For example, over discrete time, ev-
ery finite interval can be represented by a finite union of discrete points. More
specifically, there exist point-based temporal logics that are strictly more ex-
pressive than others based on intervals. For instance, the MTL logic [16] (a
point-based formalism according to the taxonomy of [3, Table 7]) is strictly
more expressive than the interval-based TILCO logic [19], since only the former
allows explicit quantification over time variables. In general, the introduction
of temporal logics based on intervals, rather than points, has been supported
essentially by claims of simplification in writing specifications, not for reasons
of expressiveness [5, 17].

If, on the other hand, [3] referred to expressiveness in its informal sense, the
statement above is too vague and needs clarification. To compare meaningfully
the informal expressiveness of formalisms one should first establish that they
have “similar” formal expressiveness. Otherwise, the comparison is irrelevant
because the classes of properties they are capable of representing are too differ-
ent. Since, as we remarked above, the relationship between the expressiveness
(in the formal sense) of a point-based logic and that of an interval-based one
depends crucially on the specific formalisms considered, the statement above
should be further qualified.

1Notice that in Formula (2) we have swapped the arguments of the Until to conform with
TRIO’s usual syntax (which is different than that used in the paper).

7

8 Implicit and Explicit Time

Section 3.6 of [3] introduces the concepts of implicit and explicit time. It is said
that

“The explicit specification of time allows the specification of expres-
sions that have no sense in the time domain — e.g., the activation
of a predicate when the time is even.”

On the contrary, a property such as “predicate P occurs at all time instants
that are multiple of a constant n” is of interest in timed systems (consider
for instance the behavior of a counter, or the clock signal of a synchronous
integrated circuit), and the impossibility of expressing such a property in PTL
[23] spawned a number of PTL extensions. However, this limitation of PTL
does not depend on the fact that time in that logic is implicit. In fact, [5, Sec.
6.1.1] shows that a second-order extension of PTL, in which it is possible to
quantify over propositions and where time is still implicit, precisely allows one
to express the property above.

In summary, the possibility of expressing formulas that describe particular
temporal patterns — such as a property holding at all even instants of time
— is not a consequence of adopting explicit, rather than implicit, time, as the
statement above suggests.

References

[1] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expres-
siveness. Information and Computation, 104:35–77, 1993.

[2] P. B. Andrews. An Introduction to Mathematical Logic and Type Theory.
Academic Press, 1992.

[3] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system
specification. ACM Computing Surveys, 32(1):12–42, March 2000.

[4] E. Y. Chang, Z. Manna, and A. Pnueli. Compositional verification of real-
time systems. In Proceedings of LICS’94, pages 458–465, 1994.

[5] E. A. Emerson. Temporal and modal logic. In Handbook of Theoretical
Computer Science, pages 996–1072. 1990.

[6] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative
temporal reasoning. Real-Time Systems, 4(4):331–352, 1992.

[7] M. Felder and A. Morzenti. Validating real-time systems by history-
checking TRIO specifications. ACM Transactions on Software Engineering
and Methodology, 3(4):308–339, October 1994.

[8] M. Felleisen. On the expressive power of programming languages. In Pro-
ceedings of ESOP’90, volume 432 of LNCS, pages 134–151, 1990.

8

[9] M. J. Fischer. Lambda-calculus schemata. Lisp and Symbolic Computation,
6(3/4):259–288, 1993.

[10] M. Fisher and R. Owens. An introduction to executable modal and tem-
poral logics. In Proceedings of the Workshop on Executable Modal and
Temporal Logics, 1993.

[11] D. M. Gabbay. The declarative past and imperative future. In Proceeding
of TLS’87, volume 398 of LNCS, pages 409–448, 1987.

[12] D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic (vol. 1):
mathematical foundations and computational aspects. Oxford University
Press, 1994.

[13] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis
of fairness. In Proceedings of POPL’80, pages 163–173, 1980.

[14] Y. Hirshfeld and A. M. Rabinovich. Future temporal logic needs infinitely
many modalities. Information and Computation, 187(2):196–208, 2003.

[15] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,
University of California at Los Angeles, 1968.

[16] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[17] R. Koymans. (Real) Time: a philosophical perspective. In Real-Time:
Theory in Practice, volume 600 of LNCS, pages 353–370, 1992.

[18] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with for-
gettable past. In Proceedings of LICS’02, pages 383–392, 2002.

[19] R. Mattolini and P. Nesi. An interval logic for real-time system specifica-
tion. IEEE Transactions on Software Engineering, 27(3):208–227, March
2001.

[20] S. Merz. Efficiently executable temporal logic programs. In M. Fisher and
R. Owens, editors, Proceedings of the Workshop on Executable Modal and
Temporal Logics (IJCAI’93). Springer-Verlag, 1993.

[21] B. Moszkowski. Executing temporal logic programs. Cambridge University
Press, May 1986.

[22] P. Prabhakar and D. D’Souza. On the expressiveness of MTL with past
operators. In Proceedings of FORMATS’06, volume 4202 of LNCS, pages
322–336, 2006.

[23] P. Wolper. Temporal logic can be more expressive. Information and Con-
trol, 56(1):72–99, 1983.

9

