
Dense-Time MTL Verification Through Sampling

Carlo A. Furia, Matteo Pradella, and Matteo Rossi

April 2007

Abstract

This paper presents a verification technique for dense-time MTL based
on discretization. The technique reduces the validity problem of MTL
formulas from dense to discrete time, through the notion of sampling in-
variance, introduced in previous work [FR06]. Since the reduction is from
an undecidable problem to a decidable one, the technique is necessarily
incomplete, so it fails to provide conclusive answers on some problem in-
stances. The paper discusses this shortcoming and hints at how it can be
mitigated in practice. The verification technique has been implemented
on top of a tool for discrete-time bounded validity checking; the paper
also reports on in-the-small experiments with the tool, which show some
promising results.

1

Contents

1 Introduction 3
1.1 Related Works . 4

2 Preliminaries 8
2.1 Yet Another MTL Variant . 9

2.1.1 MTL Syntax and Semantics 9
2.1.2 MTL+/∗ Syntax and Semantics 11
2.1.3 Granularity . 11

2.2 Sampling Invariance . 12
2.3 Discrete-Time Bounded Validity Checking 15

3 Discretization of Dense-Time MTL Through Sampling 17
3.1 Over Approximation . 17
3.2 Under Approximation . 19
3.3 System Approximations . 20
3.4 Validity Checking Procedure . 20

3.4.1 Approximation Checking Algorithm 21
3.4.2 Incompleteness of the Algorithm 21

4 Examples and Experiments 23
4.1 Examples . 23

4.1.1 The Controlled Reservoir 23
4.1.2 The Coffee Machine . 24

4.2 Experiments . 28

5 Conclusions 31

2

1 Introduction

When modeling the behavior of real-time systems, the nature of the time do-
main plays a prominent role, and it must be carefully chosen. In particular,
modelers must decide whether to use a dense set (possibly continuous) or a
discrete one [FMMR07]. From a purely modeling viewpoint, dense time offers
advantages in terms of naturalness and completeness of description (being of the
same quality as “physical time”)1, in particular in describing the composition of
purely asynchronous processes (that can occur at any instant in time), and it is
usually strictly more expressive [AH93]. Conversely, in practice, discrete-time
models are in general more amenable to (automated) verification than dense-
time ones. In fact, dense-time formalisms are often undecidable or with highly
complex decidability problems [AH93]; in addition, while verification methods
for discrete-time models can often be built upon existing techniques (e.g., for
LTL, automata, and untimed formalisms), the native native treatment of dense
time requires novel, more ingenuous, solutions.

In the literature, various techniques have been proposed to mitigate this
problem; a significant category of such approaches rely on some notion of dis-
cretization. In a nutshell, discretization techniques consist in reducing the veri-
fication problem from dense to discrete time; therefore, they permit the re-use
of existing techniques (and tools). Of course, for formalisms that are strictly
more expressive in their dense-time variant, discretization techniques are neces-
sarily incomplete; that is, they fail to give conclusive results on some instances
of the verification problem. In the following sub-section, we survey briefly some
discretization techniques.

Most — nearly all — of these techniques are grounded on the notion of digiti-
zation, first introduced by Henzinger, Manna, and Pnueli [HMP92], or variations
thereof. The digitization framework usually considers semantics based on timed
state sequences, it assumes a weakly monotonic time, and it focuses on discrete-
time verification. In general, it is not easy to characterize the digitizability of
(syntactic) classes of languages, such as metric temporal logics.

In [FR06], we introduced a different framework for discretization, based on
the notion of sampling, which is an idealization of physical sampling processes.
The framework targets R

ZTRIO, a metric temporal logic interpreted over behav-
iors, that is total functions of time. It defines an R

ZTRIO subset that is sampling
invariant ; informally, this means that formulas in this language subset can be
interpreted consistently whether over dense-time behaviors, or over discrete-
time samplings thereof. While the results of [FR06] were derived for R

ZTRIO,
it is immediate to translate them for the well-known Metric Temporal Logic
(MTL); hence, in this paper we always refer to MTL rather than R

ZTRIO, also
when citing results from [FR06].

The framework of [FR06] naturally opens the door to interesting applications
in the field of formal verification of logic specifications. In this paper, we provide
techniques to reduce the validity problem for (flat) dense-time MTL formulas

1At least declined in its classical flavor [Smo01].

3

to the validity problem of discrete-time MTL formulas. The latter problem
is known to be decidable [AH93], and therefore it can be solved with known
techniques (which have been implemented in a number of automatic tools);
in particular, the experiments in this paper exploit a tool based on bounded
validity checking techniques [BHJ+06].

More precisely, our verification technique builds two approximations (φ+ and
φ−) of the formula representing the instance of the verification problem. These
approximations represent a (simple) mapping of the problem to the discrete-
time domain; in other words, they encode information about the samplings of
the original dense-time behaviors. Approximations are built parametrically with
respect to a chosen length of the sampling period for these samplings. Then,
the validity of φ+ over discrete time implies the validity of the original formula
over dense time; conversely, the non-validity of φ− over discrete time implies
the non-validity of the original formula over dense time. As we have discussed
above, the technique must be incomplete; in particular, it may happen that
the validity check of the approximations yields inconclusive results. In the
paper, we discuss how this can be mitigated in practice, and especially how the
choice of the sampling period (when building the approximations) impacts the
completeness coverage.

Finally, we report briefly about some experimental results we obtained with
a tool implemented to perform the discretization, based on top of a discrete-time
tool called Zot [PMS]. Although limited to a small set of examples, our tests
show interesting results, and they are a first assessment of the feasibility of our
discretization techniques. In particular, they show that the incompleteness is
not often a practical hurdle (especially because other limitations, such as the
inherent scalability even of discrete-time methods, are more prominent).

The paper is organized as follows. Section 1.1 surveys some related works on
discretization techniques, with particular focus on those that are closest to ours.
Then, Section 2 introduces the ingredients of our techniques; that is, the MTL
subset we consider in this paper is formally introduced, the notions of sampling
(and sampling invariance) from [FR06] are recalled, and the Zot tool we used
in the experiments is briefly presented. Section 3 is the core of the paper, as
it introduces the technical results that permit discretization according to the
notion of sampling. Section 4 reports on the experiments we performed with
our techniques. Finally, Section 5 concludes.

1.1 Related Works

The problem of reducing the dense-time verification problem to the discrete-
time one was first explicitly studied in the seminal paper by Henzinger, Manna,
and Pnueli [HMP92]. Their discretization techniques are based on the notion
of digitization; a (semantic) property (that is, a set of timed state sequences) is
digitizable if it is both closed under digitization and closed under inverse dig-
itization. Roughly speaking, a property is closed under digitization if all the
timed state sequences obtained by digitizing the real-timed state sequences are
already also integer-timed state sequences of the property; conversely, a prop-

4

erty is closed under inverse digitization if all its integer-timed state sequences
can be obtained by digitizing some real-timed state sequences of the property.
The digitization of a timed state sequence is built by considering all possible
roundings, with respect to any threshold 0 ≤ ε < 1, of the timestamps in the
timed state sequence. Note that the timestamps are weakly monotonic, so that
more than one state value can share the same timestamp.

For digitizable properties, discrete-time verification completely captures dense-
time verification; more precisely, if a system formalization is closed under dig-
itization, and a property is closed under inverse digitization, the problem of
determining if the system complies with the property is perfectly reducible to
the discrete-time case. Although the framework of [HMP92] is semantic, the
paper then focuses on determining the digitizability for formal languages, and
namely timed transition systems and the logic MTL. We refer the reader to
[Fur07, Chapter 9] for a detailed comparison of the notion of digitization with
our notion of sampling invariance (recalled in Section 2.2). In particular, we
recall that in [Fur07, Chapter 9] it is shown that the notions of sampling in-
variance and digitizability are orthogonal: there are digitizable properties that
are not sampling invariant, and there are sampling invariant properties that
are not digitizable. This may imply that the use of these notions for practical
discrete-time verification of dense-time properties would also yield orthogonal
results; that is each approach has its own practical benefits. The comparison of
the results of this paper with those listed below goes in the direction of assessing
this prediction.

Many subsequent works have applied the notion of digitization introduced
in [HMP92] to specific classes of formalisms. In the remainder of this section
we report on some of these works.

Digitization for automata formalisms. Göllü, Puri, and Varaiya [GPV94]
apply the notion of discretization to Alur and Dill’s timed automata [AD94].
More precisely, they define two discrete semantics for timed automata, where
clocks are restricted to vary in a discrete state-space. For these semantics,
they show that the untimed language of any (dense-timed) timed automaton
coincides with that generated by applying the untime operation to the discrete
semantics. This may lead to simpler verification algorithms through analysis in
the discrete semantics.

Krčál and Pelánek’s work [KP05] is in the same vein, as it studies the rela-
tions between (standard) continuous semantics for timed automata and discrete
semantics with a fixed time step. In particular, they investigate relations with
respect to different behavioral equivalences, and they study the decidability of
reachability for an extension of timed automata known as stopwatch automata
[HKPV98].

Bouajjani, Echahed, and Robbana [BER94] extend the notion of digitizabil-
ity to deal with timed graphs with duration variables; some of their results im-
pact indirectly the digitization of timed automata. On the other hand, Bošnački
[Boš99] studies directly how the notion of digitizability applies to timed au-

5

tomata, by determining sufficient conditions for a timed automaton to be closed
under (inverse) digitization. More precisely, it is shown that the following classes
of timed automata are closed under digitization: (1) weakly constrained timed
automata (i.e., automata with no clock constraints with a < or a >); and (2)
timed automata where all edges forming a cycle are weakly constrained. Dually,
strongly constrained timed automata (i.e., automata with no clock constraints
with a ≤ or ≥) are closed under inverse sampling. Another, more complex, con-
dition for closure under inverse sampling is also given; it is based on an ordering
of clock constraints, which basically requires that the “maximum” or “mini-
mum” constraint element in the ordering does not use a ≤ or a ≥. Finally, it is
discussed how digitizability could be checked on-the-fly with suitable heuristics,
and the usage of automata relaxations for incomplete integer-time verification.
It is also remarked that the results on the digitizability of timed automata imply
some results for formalisms that are of similar expressive power. In particular,
[GD00] shows that MTL formulas that contain only intervals of the form [0, d],
for some integer d, can be translated — through a tableau construction — to
timed automata which satisfy the more complex condition for closure under in-
verse digitization; therefore, they are suitable properties to be checked through
discretization.

There have been several other works on discretization techniques to ease the
verification of timed automata. Without reporting about them in full, for the
sake of brevity, let us cite [MP95, BMT99, BLN03, OW03, CLT07].

Digitization for descriptive formalisms. Ouaknine [Oua02] studies the
notion of digitizability for timed CSP [Sch00]. This requires to extend the defi-
nition of digitizability to handle (timed) failures, which are at the basis of the
denotational semantics of (timed) CSP; failures allow a behavioral expression
of liveness properties. The main result of Ouaknine’s paper is the proof of the
closure under digitization of timed CSP; as a consequence, properties that are
closed under inverse digitization can be checked over dense-time timed CSP
through reduction to the discrete-time case. On the other hand, notice that
it is not simple to characterize the closure under inverse digitization of timed
CSP. Two other important technical contributions of [Oua02] are the notion of
integral multiplication on processes, and the characterization of full abstraction.
The former consists in scaling all time constants in a CSP by an integer multi-
ple. It may happen that a process becomes closed under inverse digitization if
scaled by a large enough constant; thus, scaling may render verification through
discretization possible. The results on abstraction, instead, show that proper-
ties that are closed under inverse digitization cannot separate processes that
are equivalent in the discrete-time semantics; this shows that the discretization
techniques based on reduction through digitizability are not only sufficient, but
also necessary.

The digitizability of duration calculus [CHR91] is studied by Hung and Gi-
ang [HG96]. Besides the standard real-time semantics of duration calculus,
they introduce a sampling semantics where the time model is a discrete set of

6

evenly-spaced steps. They relate this semantics to the standard semantics, by
introducing a number of inference rules that derive formulas in the standard
semantics from formulas in the sampling semantics, and vice versa. Note that
some of them introduce the requirement that predicates hold their true values
over intervals of length (at least) δ. This is similar to the notion of χ-regular
behaviors, to be introduced in Section 2.2, except that it is asymmetric (i.e., it
constraints the true value only). From these inference rules, they also derive
refinement rules that allow one to relate valid duration calculus formulas in
the sampling semantics from valid formulas in the standard semantics. These
results are generalizations of the notion of digitizability to the case of arbitrary
clock-step (where in the case of digitization the clock-step has always a length
of one), although one can always scale time constants to accomplish the same
results. The paper also shows that the sampling semantics coincides with the
standard semantics “in the limit”, that is for arbitrarily small clock-steps.

Chakravorty and Pandya [CP03] apply the notion of digitization to Inter-
val Duration Logic (IDL) [Pan02], a duration calculus variant where formulas
are interpreted over timed state sequences (finite ones, in that work). Over-
all, they introduce a technique to reduce the validity problem for dense-time
IDL formulas to that of discrete-time IDL; this is possible for all IDL formulas
that are closed under inverse digitization. However, it is hard to characterize
closure under inverse digitization for such formulas; to lessen the problem, a
new notion of strong closure under inverse digitization (SCID) is introduced.
It is much simpler to determine if a formula is SCID, and SCID formulas are
also closed under inverse digitization. For formulas that are not SCID, they
give approximations to stronger and weaker formulas that are SCID. Finally,
the validity problem for discrete-time IDL is decidable (and notice that so is
duration calculus over bounded-variable behaviors [Frä96]). Using these tech-
niques, Sharma, Pandya, and Chakravorty [SPC05] report experimental trials
through a variety of discrete-time verification tools (namely, automata-based
and bounded validity checking based on SAT [Frä02]), as well as comparison
with a bounded validity checking technique that directly encodes IDL formulas
into lin-sat formulas (that is, Boolean combinations of propositional variables,
and linear constraints over real variables that can be solved by linear program-
ming techniques).

Other approaches to discretization. Asarin, Maler, and Pnueli in [AMP98]
tackle the problem of discretizing the behavior of digital circuits in a way that
preserves the qualitative behavior of the circuit in a strict sense, that is such
that the ordering of events in continuous time must be unchanged in the dis-
cretized behavior. In particular, this implies that events occurring at different
times, however close, must occur at distinct discrete time instant, in the same
order. This is a stronger notion than — in particular — that by Henzinger et
al. [HMP92], where a strictly monotonic sequence is allowed to be discretized
into a weakly monotonic one. More precisely, the authors are basically consid-
ering Boolean signals, that is interval-based behaviors over infinite time (i.e.,

7

the time domain is R≥0). The same authors have shown in [MP95] that the
subclass of signals that are definable by their digital circuits can also be ac-
cepted by timed automata. The results about digitizability are demonstrated
by geometric arguments about polyhedra. While for the simpler acyclic circuits
digitizability is always possible for some suitable choice of discretization step
δ, for general cyclic circuits the distance between state changes can become ar-
bitrarily small; in this case, discretization is impossible for any choice of step
δ > 0. On the contrary, the same cyclic circuits are discretizable according to
the weaker notion of discretization introduced in [HMP92].

De Alfaro and Manna [dM95] approach the problem of discretization with
reference to the temporal logic TL of [MP93], a particular flavor of predicative
modal logic, and to the timed trace semantics (as well as an extension of it to
represent hybrid behaviors). As usual in this kind of works, the goal is to relate
the discrete-time and the continuous-time semantics for the logic. To this end,
the authors first introduce the notion of sample invariance (not to be confused
with our notion of sampling invariance, see Section 2.2): a temporal logic is
sample invariant if the formulas of the logic do not distinguish between timed
traces that are sample equivalent. In turn, the notion of sample equivalence
for two timed traces requires the existence of a (sufficiently fine-grained) trace
that refines both. Then, a translation function Ω from continuous to discrete
traces that preserves refinement is introduced. Finally, the notion of finite
variability is introduced: roughly speaking, a formula φ is of finite variability
if, for each timed trace, one can find a refinement (called ground trace) such
that any subformula of φ has a constant truth value within any interval of the
refined trace. For finitely variable formulas over ground traces, the satisfaction
relation of a formula φ in the continuous semantics corresponds to that of Ω(φ)
in the discrete semantics. Similarly, the validity of finitely variable formulas
over discrete time implies the validity of the same formulas over continuous
time (but the converse implication does not hold in general). The paper states
some sufficient syntactic condition for a formula to achieve the finite variability
requirement. Based on this, a methodology for continuous-time verification
is proposed; it is based on refinement of continuous-time formulas to finitely-
variable formulas, which can then be verified in discrete time. Finally, the
same results are extended to hybrid systems under the phase transition system
semantics [MP93].

2 Preliminaries

This section introduces the syntax and semantics of the variant of the MTL
language we use in this paper (Section 2.1); it recalls the notion of sampling
invariance [FR06] and some related results that will be used in Section 3 (Section
2.2); and it briefly presents the discrete-time verification tools that we will
experiment with in Section 4 (Section 2.3).

8

2.1 Yet Another MTL Variant

In this paper, we consider a variant of purely propositional Metric Temporal
Logic (MTL, [AH93]) as our reference specification language. For brevity, we
refer to this variant simply as “MTL”.

2.1.1 MTL Syntax and Semantics

Syntax. We consider MTL endowed with past, as well as future, operators.
The basic temporal operator of this language is the bounded until UI , and its
past counterpart bounded since SI .

The results of sampling invariance, recalled in Section 2.2, as well as the
discretization techniques introduced in Section 3 require MTL formulas to be
in a normal form where negations are pushed on (Boolean combinations of)
atomic propositions, and not to nest temporal operators. Therefore, in order
to ease the discussion, we introduce directly the MTL syntax for this normal
form; hence, we have the operators bounded release RI and bounded trigger TI
— dual to the until and since, respectively — as primitive.

Let P be a finite (non-empty) set of atomic propositions, and I the set of all
(possibly unbounded) intervals of the time domain T with rational endpoints.2

Usually, one considers intervals with nonnegative endpoints, but we permit neg-
ative endpoints to render the presentation more uniform and straightforward.
In this paper T coincides with either the reals R (dense time) or the integers
Z (discrete time) — or with some subset of them. More precisely, we call bi-
infinite the sets R and Z, and mono-infinite their subsets R≥0 and N = Z≥0.
The following grammar defines the syntax of MTL, where p ∈ P and I ∈ I.

β ::= p | ¬β | β1 ∧ β2

φ ::= β | φ1 ∨ φ2 | φ1 ∧ φ2 |
UI(β1, β2) | SI(β1, β2) | RI(β1, β2) | TI(β1, β2)

It is customary to define a number of abbreviations, such as ⊥,>,⇒,⇔, and
derived operators; Table 1 lists the derived temporal operators we use in the
remainder.3

Semantics. Let us now define the semantics of MTL as defined above, para-
metrically with respect to the choice of the time domain T. The semantics is
defined over behaviors, that is total mappings b : T → 2P that assign to every
instant t ∈ T the set of propositions b(t) ⊆ P that are true at t. We denote as
BT the set of all behaviors over T. The semantics is then defined as follows:

2That is any I 3 I = 〈l, u〉 for some l ≤ u where l ∈ T ∩Q and u ∈ (T ∩Q) ∪ {±∞}, 〈 is
one of (and [, and similarly for 〉.

3© and
←−
© denote the nowon and uptonow operators, whose definition will be justified

later.

9

Operator ≡ Definition
♦I(β) ≡ UI(>, β)
←−
♦ I(β) ≡ SI(>, β)
�I(β) ≡ RI(⊥, β)
←−
� I(β) ≡ TI(⊥, β)
©(β) ≡ U(0,+∞)(β,>) ∨ (¬β ∧ R(0,+∞)(β,⊥))
←−
©(β) ≡ S(0,+∞)(β,>) ∨ (¬β ∧ T(0,+∞)(β,⊥))

Table 1: MTL derived temporal operators

b(t) |=T p iff p ∈ b(t)
b(t) |=T ¬p iff p 6∈ b(t)
b(t) |=T UI(φ1, φ2) iff there exists d ∈ I such that: b(t+ d) |=T φ2

and, for all u ∈ [0, d] it is b(t+ u) |=T φ1

b(t) |=T SI(φ1, φ2) iff there exists d ∈ I such that: b(t− d) |=T φ2

and, for all u ∈ [0, d] it is b(t− u) |=T φ1

b(t) |=T RI(φ1, φ2) iff for all d ∈ I it is: b(t+ d) |=T φ2 or there exists
a u ∈ [0, d) such that b(t+ u) |=T φ1

b(t) |=T TI(φ1, φ2) iff for all d ∈ I it is: b(t− d) |=T φ2 or there exists
a u ∈ [0, d) such that b(t− u) |=T φ1

b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

b(t) |=T φ1 ∨ φ2 iff b(t) |=T φ1 or b(t) |=T φ2

b |=T φ iff for all t ∈ T: b(t) |=T φ
|=T φ iff for all b ∈ BT: b |=T φ

Whenever |=T φ we say that φ is T-valid.
Notice that our MTL variant uses operators that are non-strict in their

first argument, i.e., the future and past include the present instant. More-
over, until and since are in their matching versions: this means that UI(φ1, φ2)
requires φ2 to hold together with φ1 (at some instant in I); conversely, re-
lease and trigger are in their non-matching versions. These small variations
introduce an asymmetry under complement in the language. In fact, one can
check that UI(φ1, φ2) (resp. SI(φ1, φ2)) is equivalent to ¬RI(¬φ1,¬(φ1 ∧ φ2))
(resp. ¬TI(¬φ1,¬(φ1 ∧ φ2))). Discussing how these variations, as well as the
restriction to nesting-free formulas, impact the expressiveness of the language is
outside the scope of the present paper. While we refer to other works, we also
second Maler et al.’s remark [MNP06, Section 5] that:

[. . .] giving preference to results proved with respect to the most
general existing definitions is a mathematicians attitude that should
not be adopted without a critical examination. Such an attitude
can be counter-productive in young domains where “classical” re-
sults and definitions are only decades old, and the most appropriate
formalization has not yet stabilized.

10

2.1.2 MTL+/∗ Syntax and Semantics

In order to express the discretization relations in Section 3, we have to introduce
variations of the four basic temporal operators until, since, release, and trigger,
denoted as U↑

I , S↑I , R↓
I , and T↓

I , respectively. Notice that they are not part
of the language in which dense-time specifications, and properties, are to be
expressed, but they are needed only to illustrate the discretization techniques.
We call “MTL+” the extension of MTL with these operators, and “MTL∗” the
MTL variant where we replace the operators UI , SI , RI , TI with the variants U↑

I ,
S↑I , R↓

I , and T↓
I , respectively. Their purpose will become clear in the following

sections.
Let us define the semantics of the non-matching variants of basic until and

since, and of the matching variants of basic release and trigger.
b(t) |=T U↑

I(φ1, φ2) iff there exists d ∈ I such that: b(t+ d) |=T φ2

and, for all u ∈ [0, d) it is b(t+ u) |=T φ1

b(t) |=T S↑I(φ1, φ2) iff there exists d ∈ I such that: b(t− d) |=T φ2

and, for all u ∈ [0, d) it is b(t− u) |=T φ1

b(t) |=T R↓
I(φ1, φ2) iff for all d ∈ I it is: b(t+ d) |=T φ2 or there exists

a u ∈ [0, d] such that b(t+ u) |=T φ1

b(t) |=T T↓
I(φ1, φ2) iff for all d ∈ I it is: b(t− d) |=T φ2 or there exists

a u ∈ [0, d] such that b(t− u) |=T φ1

It is now apparent that UI(φ1, φ2) (resp. RI(φ1, φ2)) is equivalent to ¬R↓
I(¬φ1,¬φ2)

(resp. ¬U↑
I(¬φ1,¬φ2)), and similarly for their past counterparts.

2.1.3 Granularity

For an MTL formula φ, let Iφ the set of all non-null, finite interval bounds
appearing in φ. More explicitly, if φ contains exactly n intervals: 〈li/Li, ui/Ui〉4
for i = 1, . . . , n, let Iφ =

⋃
i=1,...,n{li/Li, ui/Ui}∩Q6=0 = {γi/Γi |i = 1, . . . ,m}.5

Given a formula φ, its granularity ρφ is a pair of values (rφ, Rφ) where r
is the greatest common divisor of the integers {γi}i=1,...,m and R is the least
common multiple of the integers {Γi}i=1,...,m. Formally:

ρφ = (rφ, Rφ) =
(

gcd
i=1,...,m

γi, lcm
i=1,...,m

Γi

)
In the remainder we will employ the notion of set Dφ for a formula φ: Dφ

is the set of positive values δ such that any interval bound in φ is an integer if
divided by δ:6

Dφ =
{
δ ∈ Q>0

∣∣∣∣ Z 3 γi
Γi

1
δ

for i = 1, . . . ,m
}

4ui/Ui can be +∞, and li/Li can be −∞.
5Clearly, m ≤ 2n.
6We assume naturally that ±∞/x = ±∞ for any finite, positive x.

11

It is not difficult to show that Dφ is the set of all fractions d/D such that: (1) D
is a common multiple of all denominators Γi; and (2) d divides all numerators
γi. Therefore, any element d/D of Dφ can be expressed as a divisor d of rφ over
a multiple D of Rφ; in formulas:

Dφ =
{
d

D

∣∣∣∣ d|rφ and D = kRφ for some k ∈ N
}

Notice that Dφ has a maximum (given by rφ/Rφ) but no minimum.

2.2 Sampling Invariance

The discretization technique that will be introduced in Section 3 is based on the
notion of sampling invariance [FR06]. In this section, we recall the basic defini-
tions and results about sampling invariance that are needed in the remainder;
we refer to [FR06, FR05] for details.

The notion of sampling invariance characterizes formulas whose truth value
is “consistent” whether they are interpreted over dense-time or discrete-time
behaviors. Informally, a formula φ is sampling invariant if the discrete-time
behaviors that satisfy φ coincide with those obtained by “sampling” all the
sufficiently slow dense-time behaviors that satisfy another formula φ′, where φ′

is obtained from φ by suitably relaxing its interval bounds.
Below, we recall the precise definition of sampling invariance, after briefly

formally introducing the basic notions that are needed.

χ-regular behaviors. As we hinted above, sampling invariance requires be-
haviors to be “sufficiently slow”, with respect to a chosen period δ ∈ R>0.
Informally, the truth value of any atomic proposition must change at most once
every δ time units; in other words, the change rate is bounded above by 1/δ.
This is why this requirement is sometimes called bounded variability [Wil94].

More precisely, given a set of atomic proposition P and a positive real δ, we
can express the regularity constraint by the following formula χ:

χ ≡ ∀s ∈ 2P :
(
s⇒

←−
♦ [0,δ]

(
�[0,δ](s)

))
where s ∈ 2P denotes any possible Boolean combination of atomic propositions.

We denote the set of all dense-time behaviors satisfying χ by Bχ ⊂ BR, and
we call them χ-regular behaviors. A formula φ is called χ-valid if b |=R φ for
all b ∈ Bχ, and χ-satisfiable if b |=R φ for some b ∈ Bχ. Notice that a χ-regular
behavior (for some δ) is also non-Zeno a fortiori [GM01].

Zeno and Berkeley. The name “Zeno” was introduced by Abadi and Lam-
port [AL94], with reference to Zeno’s paradoxes on time advancement; in fact, a
Zeno behavior is one where time progresses only by infinitesimal amounts, and

12

thus it “stops”, instead of diverging. In this vein, we refer to χ-regular behav-
iors as non-Berkeley behaviors [Fur07]. The name is from another philosopher7

who argued against the notion of infinitesimal in his investigations. In fact, a
behavior is “Berkeley” when it does not obey the constraint χ for any values
of δ; thus the minimum distance in time between consecutive state changes is
infinitesimal. Zeno behaviors are a special case of this; more generally, in a
Berkeley behavior time can diverge, but with the system becoming arbitrarily
“fast”. See [Fur07] for more details.

Sampling of a behavior. Let b ∈ BR be a dense-time behavior. Its sampling,
with sampling period δ ∈ R>0, is a discrete-time behavior b′ = σδ [b] ∈ BZ that
agrees with b at all integer multiples of δ. Formally: b′(k) = b(kδ) for all k ∈ Z.8

Let us point out two straightforward properties of the sampling function
σδ [·] with respect to the set of behaviors Bχ.

Lemma 1 (Properties of σδ [·]). For any δ ∈ R>0:

• σδ [·] is onto, that is: for all b ∈ BZ there exists a b′ such that b′ ∈ Bχ and
σδ [b′] = b.

• σδ [·] is total, that is: for all b ∈ Bχ there exists a b′ ∈ BZ such that
σδ [b] = b′.

Adaptation functions. To “switch” from the discrete-time to the dense-time
interpretation of a formula φ, in a way that preserves the truth value of φ, one
has to “adapt” the bounds of intervals appearing in φ. This adaptation is formal-
ized by two functions ηRδ {·} and ηZδ {·}: the former adapts dense-time formulas
to be discrete-time ones, while the latter performs the converse adaptation.

Let us recall the exact definition of ηRδ {·} and ηZδ {·} in Tables 2 and 3,
respectively. We point out that: if φ is an MTL formula: (1) ηRδ {φ} is an MTL∗

formula; and (2) ηZδ {φ} is an MTL formula.

Sampling invariance. Let us introduce precisely the notion of sampling in-
variance.

Definition 2 (Sampling Invariance [FR06]). Given a formula φ and a sampling
period δ:

• φ is closed under sampling iff for any dense-time behavior b ∈ Bχ:

b |=R φ ⇒ σδ [b] |=Z ηRδ {φ}

• φ is closed under inverse sampling iff for any discrete-time behavior b ∈
BZ:

b |=Z φ ⇒ ∀b′ ∈ Bχ :
(
σδ [b′] = b ⇒ b′ |=R ηZδ {φ}

)
7See e.g., http://www-groups.dcs.st-and.ac.uk/∼history/Biographies/Berkeley.html
8The original definition in [FR06] also introduced a basic offset z ∈ R, but since it does

not play any role in the present discussion we simply take it to be zero.

13

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Berkeley.html

ηRδ {β} ≡ β
ηRδ {φ1 ∧ φ2} ≡ ηRδ {φ1} ∧ ηRδ {φ2}
ηRδ {φ1 ∨ φ2} ≡ ηRδ {φ1} ∨ ηRδ {φ2}
ηRδ

{
U〈l,u〉(φ1, φ2)

}
≡ U↑

[bl/δc,du/δe]
(
ηRδ {φ1} , ηRδ {φ2}

)
ηRδ

{
S〈l,u〉(φ1, φ2)

}
≡ S↑[bl/δc,du/δe]

(
ηRδ {φ1} , ηRδ {φ2}

)
ηRδ

{
R〈l,u〉(φ1, φ2)

}
≡ R↓

〈l′,u′〉
(
ηRδ {φ1} , ηRδ {φ2}

)
where l′ =

{
bl/δc if 〈 is (
dl/δe if 〈 is [

and u′ =

{
du/δe if 〉 is)
bu/δc if 〉 is]

ηRδ

{
T〈l,u〉(φ1, φ2)

}
≡ T↓

〈l′,u′〉
(
ηRδ {φ1} , ηRδ {φ2}

)
where l′ =

{
bl/δc if 〈 is (
dl/δe if 〈 is [

and u′ =

{
du/δe if 〉 is)
bu/δc if 〉 is]

Table 2: The adaptation function ηRδ {·}.

ηZδ {β} ≡ β
ηZδ {φ1 ∧ φ2} ≡ ηZδ {φ1} ∧ ηZδ {φ2}
ηZδ {φ1 ∨ φ2} ≡ ηZδ {φ1} ∨ ηZδ {φ2}
ηZδ

{
U[l,u](φ1, φ2)

}
≡ U〈(l−1)δ,(u+1)δ〉

(
ηZδ {φ1} , ηZδ {φ2}

)
ηZδ

{
S[l,u](φ1, φ2)

}
≡ S〈(l−1)δ,(u+1)δ〉

(
ηZδ {φ1} , ηZδ {φ2}

)
ηZδ

{
R[l,u](φ1, φ2)

}
≡ R[(l+1)δ,(u−1)δ]

(
ηZδ {φ1} , ηZδ {φ2}

)
ηZδ

{
T[l,u](φ1, φ2)

}
≡ T[(l+1)δ,(u−1)δ]

(
ηZδ {φ1} , ηZδ {φ2}

)
Table 3: The adaptation function ηZδ {·}.

14

• φ is sampling invariant iff it is closed under sampling (when interpreted
in the dense-time domain) and it is closed under inverse sampling (when
interpreted in the discrete-time domain).

We have the following, a straightforward corollary of [FR06, Th. 1].

Theorem 3 (Sampling invariance of MTL). All MTL formulas are sampling
invariant.

2.3 Discrete-Time Bounded Validity Checking

Overall, our technique reduces the validity-checking problem for MTL formulas
over dense time to that over discrete time; the latter is known to be decidable
and EXPSPACE-complete [AH93]. Recently, validity-checking techniques based
on the use of propositional satisfiability (SAT) checkers have been developed for
discrete-time verification, and they have yielded very encouraging performances
in practical tests.

In order to assess the practical outcomes of our discretization technique, we
verified some examples using the tool Zot. We enhanced Zot to accept MTL+

formulas, as well as with a module to perform the discretization routine on
formulas. This section briefly describes the salient features of the tool.
Zot [Pra07] is an agile and easily extensible bounded satisfiability checker.

Zot is available for download together with the examples described in Section 4.
The tool supports different logic languages through a multi-layered approach:
its core uses PLTL, and on top of it a decidable predicative fragment of TRIO
is defined. An interesting feature of Zot is its ability to support different en-
codings of temporal logic as SAT problems. Indeed, the user can choose a
particular encoding to carry out verification, while the tool automatically loads
the corresponding plug-in. This approach encourages experimentation, as plug-
ins are usually quite simple, compact (usually around 500 lines of code), easily
modifiable, and extensible. At the moment, a few variants of some of the en-
codings presented in [BHJ+06] are supported, together with the encoding over
Z presented in [PMS]. Figure 1 shows Zot’s internal architecture.

At present, Zot essentially adapts bounded model checking techniques to
purely descriptive TRIO specifications. This means that both the model and
the property are expressed as TRIO formulas, like in [MPSS03], and unlike
typical model checking.
Zot offers two basic usage modalities:

1. Bounded satisfiability checking (BSC): given as input a specification for-
mula, the tool returns a (possibly empty) history (i.e., an execution trace
of the specified system) which satisfies the specification. An empty history
means that it is impossible to satisfy the specification.

2. History checking and completion (HCC): The input specification file can
also contain a partial (or complete) history H. In this case, if H complies
with the specification, then a completed version ofH is returned as output,
otherwise the output is empty.

15

Figure 1: Zot’s architecture (external tools are shadowed in grey).

The provided output histories have always temporal length ≤ k, the bound
given by the user, but may represent infinite behaviors thanks to the loop se-
lector variables, marking the start of the periodic sections of the history. The
BSC modality can be used to check if a property prop of the given specification
spec holds over every periodic behavior with period ≤ k. In this case, the input
file contains spec ∧ ¬prop, and, if prop indeed holds, then the output history
is empty. If this is not the case, the output history is a useful counterexample
which explains why prop does not hold.
Zot also supports completeness checks, through a logic-based variant of some

of the algorithms described in [SSS00]. This has nothing to do with the incom-
pleteness of our discretization techniques, and it refers to the bound given to
the validity checker. In other words, the completeness check consists in deter-
mining whether a given time bound of k > 0 steps is sufficient to determine with
certainty the unsatisfiability of a given formula (i.e., if k is greater than the di-
ameter of the formula). To avoid ambiguities with the problem of completeness
of our discretization techniques, in this paper we refer to Zot’s completeness
check as bound completeness check. Essentially, the bound completeness encod-
ing considers only the finite component of the temporal structure. To assure
bound completeness, constraints are added asserting that it is impossible to
have two states Si and Sj , such that Si = Sj , for any i 6= j. Therefore, we are
considering all the possible finite behaviors of the system under analysis. For
systems described using pure logic, this check can be very expensive, because
they usually contain a high degree of nondeterminism, and the bound complete-
ness check is by its very nature exhaustive. We will see some consequences of
this behavior when discussing the tests of Section 4.

16

3 Discretization of Dense-Time MTL Through
Sampling

This section presents a discretization technique to check the validity of MTL
formulas.

Given a dense-time MTL formula φ and a sampling period δ > 0, we de-
fine two functions Oδ (·) ,Ωδ (·) that approximate φ through the discrete-time
formulas Oδ (φ) and Ωδ (φ); basically, these retain some properties of the sam-
plings of the dense-time behaviors satisfying φ, in a way that allows us to infer
the validity of φ from the validity of its approximations. For reasons that will
become apparent, we name Oδ (φ) the over-approximation of φ, and Ωδ (φ) the
under-approximation. These approximations are presented in Sections 3.1 and
3.2, respectively.

In general, the verification problem consists in checking whether a system,
described by a specification formula φsys, satisfies a given property φprop; in
other words, whether b |=R φprop holds for any behavior b for which b |=R φsys

holds. Therefore, in Section 3.3 we show how to build two discrete-time formulas
φ+, φ− that both embed suitable approximations of φsys and φprop. Namely:

• the validity of φ+ over discrete-time implies that the system φsys satisfies
the property φprop over dense-time behaviors satisfying the constraint χ
(see Section 2.2);

• the non-validity of φ− over discrete-time implies that the system φsys fails
to satisfy the property φprop over some dense-time behaviors satisfying the
constraint χ.

Finally, Section 3.4 shows how the previously introduced approximations
techniques can be put into use in an algorithm to verify a system specified in
dense-time. The resulting approximation technique is however incomplete, in
that we can get inconclusive results from the validity checking of the approxi-
mations of a formula; therefore the algorithm can fail. The incompleteness may
be partially mitigated by suitably choosing the sampling period δ, but it cannot
be entirely avoided. This is somewhat inevitable, since the approximation is
a simplification of the dense-time verification problem, which cannot be fully
captured by discrete-time reasoning only, for a number of well-known reasons
[AH93, Hen98].

3.1 Over Approximation

The approximation function Oδ (·) maps dense-time MTL formulas to discrete-
time MTL formulas such that the validity of the latter implies the validity of
the former, over behaviors in Bχ. More precisely, Oδ (·) is defined as follows,
for MTL formulas such that the chosen sampling period δ is in Dφ (see Section

17

2.1.3).

Oδ (β) ≡ β
Oδ (φ1 ∨ φ2) ≡ Oδ (φ1) ∨Oδ (φ2)
Oδ (φ1 ∧ φ2) ≡ Oδ (φ1) ∧Oδ (φ2)
Oδ

(
U〈l,u〉(φ1, φ2)

)
≡ U[l/δ+1,u/δ−1](Oδ (φ1) ,Oδ (φ2))

Oδ

(
S〈l,u〉(φ1, φ2)

)
≡ S[l/δ+1,u/δ−1](Oδ (φ1) ,Oδ (φ2))

Oδ

(
R〈l,u〉(φ1, φ2)

)
≡ R[l/δ−1,u/δ+1](Oδ (φ1) ,Oδ (φ2))

Oδ

(
T〈l,u〉(φ1, φ2)

)
≡ T[l/δ−1,u/δ+1](Oδ (φ1) ,Oδ (φ2))

The following lemma justifies the name over-approximation.

Lemma 4 (Over approximation). For any MTL formula φ, for any δ ∈ Dφ,
and for any b ∈ BZ: if b |=Z Oδ (φ) then for all b′ ∈ Bχ such that σδ [b′] = b it
is b′ |=R φ.

Proof. Oδ (φ) is an MTL formula, which is therefore sampling invariant accord-
ing to Theorem 3, and in particular closed under inverse sampling. Therefore,
let b ∈ BZ such that b |=Z Oδ (φ). Then the definition of closure under inverse
sampling implies that all b′ ∈ Bχ such that b = σδ [b′] satisfy b′ |=R ηZδ {Oδ (φ)}.
According to the definition of ηZδ {·} given in Table 3, one can check that
ηZδ {Oδ (φ)} ⇒ φ is valid. More precisely, ηZδ {·} allows one to choose arbi-
trarily if any interval 〈l, u〉 of until and since should be closed or not, so that it
is possible to match the original intervals in φ. Moreover, ηZδ {·} always yields
a closed interval in instances of release and trigger ; therefore, it gives either
the same subformula as in φ, or a strengthening of it, when it replaces an open
interval with its closure. It is easy to check that this property is lifted to whole
formulas. All in all, b′ |=R ηZδ {Oδ (φ)} implies b′ |=R φ.

Non-monotonicity of Oδ (·). The notation for the over-approximation stresses
the fact that the function depends on the parameter δ. We also note the fact
that the satisfiability of the approximation of a formula is not monotonic with
δ. In other words, it may happen that the satisfiability of a formula Oδ (ψ) over
some discrete-time behavior b keeps on switching as δ decreases (or increases).

For instance, let ψ be the formula p⇒ ♦[1,2](q); notice that Dψ = {1/k |k ∈
N>0}. Then O1/k (ψ) = p ⇒ ♦[lk,uk](q), with lk = k + 1 and uk = 2k − 1; let

Ik = [lk, uk]. Then, let us consider the following discrete-time behavior b̃: p
holds at 0 and nowhere else; q holds at all integer instants 2h for h = 1, 2,
For any positive h, let us determine what values of k satisfy 2h ∈ Ik. From
k + 1 ≤ 2h ≤ 2k − 1, we get 2h−1 + 1 ≤ k ≤ 2h − 1, after some manipulations.
Also, for each positive j, the interval [2j + 1, 2j+1 − 1] does not contain any
instant in which q holds. As a consequence, b̃ 6|=Z O1/k (ψ) for all k = 2h, and
b̃ |=Z O1/k (ψ) for all other positive integer values of k. In other words, the
Boolean-valued function f(1/k) ≡ b̃ |=Z O1/k (ψ) is non-monotonic in 1/k = δ.

18

3.2 Under Approximation

The approximation function Ωδ (·) maps dense-time MTL formulas to discrete-
time MTL∗ formulas such that the non-validity of the latter implies the non-
validity of the former, over behaviors in Bχ. More precisely, Ωδ (·) is defined, as
follows, for MTL formulas such that the chosen sampling period δ is in Dφ (see
Section 2.1.3).9

Ωδ (β) ≡ β
Ωδ (φ1 ∧ φ2) ≡ Ωδ (φ1) ∧ Ωδ (φ2)
Ωδ (φ1 ∨ φ2) ≡ Ωδ (φ1) ∨ Ωδ (φ2)
Ωδ

(
U〈l,u〉(φ1, φ2)

)
≡ U↑

[l/δ,u/δ](Ωδ (φ1) ,Ωδ (φ2))

Ωδ
(
S〈l,u〉(φ1, φ2)

)
≡ S↑[l/δ,u/δ](Ωδ (φ1) ,Ωδ (φ2))

Ωδ
(
R〈l,u〉(φ1, φ2)

)
≡ R↓

〈l/δ,u/δ〉(Ωδ (φ1) ,Ωδ (φ2))

Ωδ
(
T〈l,u〉(φ1, φ2)

)
≡ T↓

〈l/δ,u/δ〉(Ωδ (φ1) ,Ωδ (φ2))

The following lemma justifies the name under-approximation.

Lemma 5 (Under approximation). For any MTL formula φ, for any δ ∈ Dφ,
and for any b ∈ BZ: if b 6|=Z Ωδ (φ) then for all b′ ∈ Bχ such that σδ [b′] = b it
is b′ 6|=R φ.

Proof. Since φ is an MTL formula, it is sampling invariant, and in particular
closed under sampling, as mentioned in Section 2.2. Therefore, for any dense-
time behavior b ∈ Bχ, if b |=R φ then σδ [b] |=Z ηRδ {φ}; by taking the contra-
positive we have that for any dense-time behavior b ∈ Bχ, if σδ [b] 6|=Z ηRδ {φ}
then b 6|=R φ. It is straightforward to check that, for all δ ∈ Dφ, Ωδ (φ) = ηRδ {φ}
(where ηRδ {·} is defined as in Table 2) by construction. Therefore, for any b ∈ BZ
such that b = σδ [b′] for some b′ ∈ Bχ and b 6|=Z Ωδ (φ), it is b′ 6|=R φ. All in all,
we have b′ 6|=R φ as required.

Non-monotonicity of Ωδ (·). Similarly as for the over-approximation, the
notation for the under-approximation stresses the fact that the function de-
pends on the parameter δ. We also note the fact that the satisfiability of the
approximation of a formula is not monotonic with δ. In other words it may
happen that the satisfiability of a formula keeps on switching as δ decreases (or
increases). We omit a full demonstration of this fact, which can however be
built from the over-approximation example: just take ψ as before and b̃ such
that p holds at 0 and nowhere else, and q holds at all integer instants 22h for
h = 1, 2,

9We stress the fact that the parentheses in the interval of the under-approximation for the
release and trigger operators must match those in the original formula.

19

3.3 System Approximations

Let us now consider a system formally described by an MTL formula φsys,
and a putative property described by another MTL formula φprop. Verifica-
tion amounts to proving (or disproving) that all behaviors that satisfy φsys also
satisfy φprop.

Let us abbreviate by Alw(φ) the MTL formula φ∧�[0,+∞)(φ)∧←−� [0,+∞)(φ);
notice that b |=T Alw(φ) iff b |=T φ, for any behavior b. Then, the verification
problem can be reduced to that of determining the validity of the MTL formula
Alw(φsys)⇒ Alw(φprop). To this end, we prove the following.

Proposition 6 (Approximations). For any MTL formulas φ1, φ2, and for any
δ ∈ Dφ1,φ2 :

10

1. if Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) is Z-valid, then Alw(φ1) ⇒ Alw(φ2) is
χ-valid;

2. if Alw(Oδ (φ1))⇒ Alw(Ωδ (φ2)) is not Z-valid, then Alw(φ1)⇒ Alw(φ2)
is not χ-valid.

Proof. Let δ ∈ Dφ1,φ2 .

Proof of (1). Assume that φ+ = Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) is Z-
valid. That is, for all b ∈ BZ it is b |=Z φ+; equivalently: either b 6|=Z Ωδ (φ1) or
b |=Z Oδ (φ2). From Lemmas 4 and 5, this implies that: for all b ∈ BZ, for all
b′ ∈ Bχ such that σδ [b′] = b, it is either b′ 6|=R φ1 or b′ |=R φ2. Thus, let b′ be
any dense-time behavior in Bχ; from Lemma 1, there exists a b ∈ BZ such that
σδ [b′] = b. We conclude that for all b′ ∈ Bχ, either b′ 6|=R φ1 or b′ |=R φ2. All
in all, Alw(φ1)⇒ Alw(φ2) is χ-valid.

Proof of (2). We note that the proof of (2) can be obtained from the proof
of (1) by duality. Thus, assume that φ− = Alw(Oδ (φ1))⇒ Alw(Ωδ (φ2)) is not
Z-valid. That is, for some b ∈ BZ it is b 6|=Z φ−; equivalently: b |=Z Oδ (φ1) and
b 6|=Z Ωδ (φ2). From Lemmas 4 and 5, this implies that: there exists a b ∈ BZ
such that, for all b′ ∈ Bχ such that σδ [b′] = b, it is b′ |=R φ1 and b′ 6|=R φ2.
Next, Lemma 1 states that, for all b ∈ BZ, there exists some b′ such that b′ ∈ Bχ
and σδ [b′] = b. We conclude that there exists a b′ ∈ Bχ such that: σδ [b′] = b,
b′ |=R φ1 and b′ 6|=R φ2. All in all, Alw(φ1)⇒ Alw(φ2) is not χ-valid.

3.4 Validity Checking Procedure

Let us finally present the validity checking algorithm based on the approximation
techniques described above. The algorithm is presented in Section 3.4.1, whereas
Section 3.4.2 discusses its incompleteness.

10The definition of D is extended to sets of formulas as obvious; for instance one can take
D{φj}j∈J

≡ DV
j∈J φj

.

20

3.4.1 Approximation Checking Algorithm

The algorithm takes as input a set of MTL formulas φ1
sys, . . . , φ

m
sys, φprop, where

φisys are the formulas describing the system, and φprop is the property to be
verified.

The algorithm checks the validity of φ =
∧
i=1,...,m Alw

(
φisys

)
⇒ Alw(φprop)

as follows.

1. Input φ1
sys, . . . , φ

m
sys, φprop.

2. Input a δ such that δ ∈ Dφ1
sys,...,φ

m
sys,φprop

.

3. For each formula γ ∈ φprop ∪
⋃
i=1,...,m φ

i
sys, compute:

• the over approximation Oδ (γ); let oi = Oδ

(
φisys

)
and O = Oδ (φprop);

• the under approximation Ωδ (γ); let ωi = Ωδ
(
φisys

)
and Ω = Ωδ (φprop).

4. Compute:

• φ+ =
∧
i=1,...,m Alw(ωi)⇒ Alw(O);

• φ− =
∧
i=1,...,m Alw(oi)⇒ Alw(Ω).

5. If φ+ is Z-valid, then print “φ is χ-valid for sampling period δ”.

6. Otherwise: if φ− is not Z-valid, then print “φ is not χ-valid for sampling
period δ”.

7. Otherwise: print “Cannot decide the validity of φ through sampling with
sampling period δ”.

The correctness of the algorithm follows directly from Proposition 6, keeping
in mind that b |=T Alw(ψ1) ∧Alw(ψ2) iff b |=T Alw(ψ1) and b |=T Alw(ψ2).

3.4.2 Incompleteness of the Algorithm

The incompleteness of the algorithm in determining the validity of MTL for-
mulas is two-fold. First, the algorithm does not check all dense-time behaviors
for satisfaction of an MTL formula φ, but only those “sufficiently slow”, i.e.,
obeying the constraint χ for the chosen sampling period δ. Choosing a smaller
δ may mitigate this shortcoming, as this amounts to choosing a finer sampling
of behaviors or, equivalently, to allowing faster behaviors. However, this may
also not bring better results. In fact, as δ decreases, not only do we change
the approximation formulas, but we also allow more behaviors (namely, faster
ones); thus the effects of shortening the sampling periods are subtle and they
may become difficult to predict. We leave an accurate study of this phenomenon
to future work.

The second source of incompleteness lies in the technique itself, that is based
on two different approximations for the formula φ. Therefore, it is possible that
φ+ is non-valid and φ− is valid; from this case we could draw no conclusion
about the validity of φ.

21

An incompleteness example. Let us build a trivial example to convince
ourselves that the second incompleteness scenario can actually take place; then,
in Section 4 we will discuss the effects of incompleteness from a more practical
viewpoint, through examples of system specification.

Let us consider a system described by the following formulas.

p ∨ ♦[0,+∞)(p) ∨
←−
♦ [0,+∞)(p) (1)

p ⇒ �(0,+∞)(¬p) ∧←−� (0,+∞)(¬p) (2)

p ⇒ ♦[1,1](q) (3)

In practice, p is required to happen exactly once, and q holds exactly one instant
after p does. Let us also notice that the set of Formulas (1–3) is unsatisfiable for
non-Berkeley behaviors, as Formula (2) forces p to have a punctual behavior.
Nonetheless, we now show that our approximation technique fails to solve the
trivial problem of verifying that (3) is also a property of the system described
by Formulas (1–3).

Let δ = 1/k for some positive k; these are the only possible values for δ for
the above formulas. After computing the approximations, we get the formulas
in Table 4.11

γ Oδ (γ) Ωδ (γ)

(1) o1 = p ∨ ♦
[1,+∞)

(p) ∨
←−
♦ [1,+∞)(p) ω1 = p ∨ ♦

[0,+∞)
(p) ∨

←−
♦ [0,+∞)(p)

(2) o2 = p⇒ �
[−1,+∞)

(¬p) ∧
←−
� [−1,+∞)(¬p) ≡ ¬p ω2 = p⇒ �

[1,+∞)
(¬p) ∧

←−
� [1,+∞)(¬p)

(3) o3 = p⇒ ♦
[k+1,k−1]

(q) ≡ ¬p ω3 = p⇒ ♦
[k,k]

(q)

Table 4: Approximations of Formulas (1–3)

Now, consider the formulas φ+ and φ−, for any choice of k.

• φ+ = Alw(ω1) ∧Alw(ω2) ∧Alw(ω3)⇒ Alw(o3).
o3 requires p to be always false, but ω1, ω2, ω3 force p to happen exactly
once. Therefore, φ+ is not Z-valid.

• φ− = Alw(o1) ∧Alw(o2) ∧Alw(o3)⇒ Alw(ω3).
o1, o2, o3 are not satisfied by any model, as o1 requires p to happen at
least once, while o2, o3 force it to be always false. Therefore, φ− is Z-
valid, being an implication with identically false antecedent.

Thus, in this case incompleteness arises and prevents us from concluding an
obvious fact. We will see more concrete examples of these problems in Section
4, and how to mitigate them in practice.

11Recall that �
[−1,+∞)

(p) ≡
←−
� [0,1](p) ∧�

[0,+∞)
(p).

22

4 Examples and Experiments

This section presents two system verification problems (Section 4.1) and reports
the results obtained in solving them using the tool presented in Section 2.3
(Section 4.2).

4.1 Examples

It was not possible to satisfactorily perform the same experiments as in other
approaches to discretization (see Section 1.1), as every formal notation has
its own peculiarities; thus, often the literal translation of a specification into
another, different, notation results clumsy. In particular, this was the case in
translating the examples in duration calculus of [SPC05], so we preferred to
devise examples of our own.

4.1.1 The Controlled Reservoir

The first example is a simple model of a controlled reservoir, a similar example
of which has also been presented in [FR06].

System specification. The system consists of a reservoir and a controller.
The reservoir can nondeterministically leak (predicate L) and being filled with
new liquid by the controller (predicate F). The level of fluid in the reservoir is
described by two predicates ` ≥ thres and ` ≥ min: the latter holds when the
lever of fluid is above a minimum level, and the former holds if the level is above
a control threshold, assumed to be higher than the minimum.12

The system is formally described by the following formulas, where ν > 0 is
a parameter of the system description.

` ≥ min ∧�(0,ν)(F) ⇒ �[ν,ν](` ≥ min) (4)

` ≥ thres ⇒ �[ν,ν](` ≥ min) (5)

` ≥ min ∧�(0,ν)(¬F ∧ ¬L) ⇒ �[ν,ν](` ≥ min) (6)

` ≥ thres ⇒ ` ≥ min (7)
` < thres ⇒ F (8)

Formulas (4–6) describe the behavior of the fluid level under all combinations
of filling and leaking; in particular, Formula (5) corresponds to the assumption
that the level, even when leaking at the maximum rate, cannot drop from above
the control threshold to below the minimum in ν time units. On the other hand,
Formula (8) describes the control action: filling is triggered as soon as the level
goes below the control threshold. Finally, Formula (7) simply expresses the
assumption that the control threshold is higher than the minimum.

12For notational convenience, we abbreviate ¬(` ≥ min) and ¬(` ≥ thres) by ` < min and
` < thres, respectively.

23

Notice that we put to good use the rule of thumb that emerged from the
example in Section 3.4.2: all exact time distances are written with a � opera-
tor if unnegated (in normal form, that is representing ⇒ with ∨ and ¬), and
with a ♦ otherwise. This avoids degenerate intervals in computing the over-
approximation. Another thing we notice is that choosing an open or a closed
interval in duration sub-formulas such as �(0,ν)(F) makes no difference in this
case, as they are under negation; therefore, they correspond to U sub-formulas in
normal form, whose approximations do not distinguish between open or closed
intervals.

System property. The overall goal of the controller is to maintain the level
above the minimum, that is to keep ` ≥ min always true. Therefore, we would
like to verify the following property: after the system is “initialized” by setting
the level above the control threshold, the level stays above the minimum forever.

` ≥ thres ⇒ �[ν,+∞)(` ≥ min) (9)

Notice that the stronger property ` ≥ thres ⇒ �[0,+∞)(` ≥ min) does not hold
for the above axiomatization. In fact, Formulas (4–8) relate the value of the
level after ν time units with that at the current instant; nothing is said explicitly
about what happens in between the current instant and ν. Obviously, one could
work around this by modifying the property or the specification; for brevity we
omit discussing these variations.

Verification. For any given ν, Formula (9) is a property of the system if and
only if we pick the sampling period δ = ν. Otherwise the property does not hold
since the sampling period is “too short” with respect to ν. In fact, if δ = ν, the
predicates are allowed to change their values at most once every two discrete
time steps; thus, Formulas (4–6) can be applied as any behavior satisfies one
of their antecedents. On the contrary, if δ 6= ν it must be δ < ν; in this case,
the predicates can change more than once every two discrete time steps. Thus,
there exist behaviors that fail to satisfy all of the antecedents of Formulas (4–6);
then, the system description is too weak to force the invariance of the level in
this case.

4.1.2 The Coffee Machine

The second example consists in the description of a coffee machine, in opera-
tional fashion.

States and events in dense time. In order to render an operational speci-
fication with a descriptive formalism, we introduce some ontological constructs
known as states and events; their use simplifies the system description and the
reasoning about the system in dense time, as discussed extensively in [GM01].
Let us briefly recall their definitions; in the remainder, we will use them in the
coffee machine specification.

24

First of all, let us notice the following: for behaviors that are non-Zeno, the
definitions of the © and

←−
© operators coincide with that of the TRIO NowOn

and UpToNow operators. Namely, ©(p) holds iff there exists a positive length
ε > 0 such that p is true on the (relative) open interval (0, ε);

←−
© is the dual

for the past. χ-regular behaviors are in particular non-Zeno, as discussed in
Section 2.2; therefore the definitions for © and

←−
© we introduced in Table 1 are

well-founded with respect to our needs.
A state is a predicate whose truth value holds over non-empty intervals of

time; formally, p is a state when it obeys the following.

(
←−
©(p)∧p∧©(p)) ∨ (

←−
©(¬p)∧¬p∧©(¬p)) ∨ (

←−
©(¬p)∧©(p)) ∨ (

←−
©(p)∧©(¬p))

(10)
An event is instead a predicate that holds only at isolated time instants;

formally p is an event when it obeys the following.

←−
©(¬p) ∧ ©(¬p) (11)

Typically, in a system description with states and events, events trigger
states to change. However, if we consider χ-regular behaviors, it is appar-
ent that Formula (11) is satisfied only by predicates that are identically false,
whereas Formula (10) is identically true for any predicate. Therefore, a “classic”
description based on states and events does not fit our techniques, and in par-
ticular the restriction to χ-regular behaviors. We will show how to work around
this shortcoming and produce acceptable specifications under this assumption.

System description with states and events. Let us forget for a moment
the restriction to χ-regular behaviors, and let us produce a formalization of the
coffee machine based on states and events. We introduce the events: prepare cup,
press button, start pour, end pour, get cup. They represent, respectively, the
actions of inserting a new cup in the coffee machine, pressing the button to start
the brewing process, beginning and ending of the pouring of coffee, retrieving
a cup (presumably filled with coffee) from the machine. We also introduce the
states: pour, cup present, coffee ready, and key in. They are meant to hold when,
respectively, the coffee is pouring into the cup, a cup is inserted in the machine,
the coffee has been completely brewed, and a key (to operate the machine, say
by recording the coffee credits of the user) is inserted in the machine. Finally,
we introduce three constants T1,T2,T3 to describe the various delays in the
operations.

The following are the formulas describing (part of the behavior) of the coffee
machine. For simplicity, we introduce only those that are needed to verify the
properties we are interested in. It is not difficult, however, to extend them to
get a “complete” (in some sense) specification.

25

prepare cup ⇒
←−
♦ (0,T1)(press button) (12)

start pour ⇒
←−
♦ (0,T2)(prepare cup) (13)

end pour ⇒ ←−
� [T3,T3](start pour) ∧←−� [0,T3)(pour) (14)

press button ⇒ key in (15)
¬pour ∧©(pour) ⇔ start pour (16)

�(0,T3)
(pour) ⇒ start pour ∧�[T3,T3]

(end pour) (17)

start pour ⇒ cup present ∧ ¬coffee ready (18)
cup present ∧©(¬cup present) ⇔ get cup (19)

get cup ⇒ coffee ready (20)
start pour ⇒ �[T3,T3]

(end pour) ∧�(0,T3]
(pour) (21)

The properties that we prove from the above formulas are the following

end pour ⇒
←−
♦ [T3,T1+T2+T3](key in) (22)

pour ⇒ cup present (23)

In practice, (22) states that the pouring ends only if a key was inserted in the
past (between T3 and T1 +T2 +T3 time units ago); and (23) asserts that a cup
is present while the coffee is being poured. It can be shown that from (12–15)
alone one can prove (22), and from (16–21) one can prove (23).

System description for χ-regular behaviors. Let us now modify Formulas
(12–23) to make them a suitable system description still over dense time, but for
χ-regular behaviors; at the same time we also make them amenable to applying
our discretization technique.

Formulas (15), (18), (20), (22), and (23) make no peculiar use of the state
and event properties, and therefore they need not be changed. Therefore, they
are repeated unchanged as Formulas (24), (25), (26), (27), and (28), respectively.

press button ⇒ key in (24)
start pour ⇒ cup present ∧ ¬coffee ready (25)

get cup ⇒ coffee ready (26)

end pour ⇒
←−
♦ [T3,T1+T2+T3](key in) (27)

pour ⇒ cup present (28)

Next, let us consider Formula (16); similar considerations apply to the struc-
turally similar Formula (19) mutatis mutandis. Formula (16) describes a transi-
tion of state pour from false to true, triggered by event start pour: pour becomes
true left-continuously, whenever start pour happens. We can render a similar

26

state transition over χ-regular behaviors as follows: pour is false and becomes
true “after some time” whenever start pour happens. In other words, we do
not make the state transition instantaneous, but we allow “some time” for it
to happen. We do this in practice by introducing a positive constant ν in our
specification that quantifies this notion of “some time”. Then, Formula (16)
can be rewritten as ¬pour ∧ ♦[ν,ν](pour) ⇔ start pour; more precisely we split
the double implication into two and specify the exact distance of ν with a �
when unnegated, and with a ♦ otherwise. The resulting Formulas (29–30) are
listed below (together with Formulas (31–32) replacing Formula (19))

¬pour ∧ ♦[ν,ν](pour) ⇒ start pour (29)

start pour ⇒ ¬pour ∧�[ν,ν](pour) (30)

cup present ∧ ♦[ν,ν](¬cup present) ⇒ get cup (31)

get cup ⇒ cup present ∧�[ν,ν](¬cup present) (32)

Finally, we have to deal with the remaining Formulas (12), (13), (17), (14),
and (21), and more precisely with the open (or half-open) intervals appearing
in them, such as (0,T1) in Formula (12).

There are two separate issues to be tackled here. One is simply a feature
of our implementation of the algorithm: it requires all intervals to be expressed
as closed ones. This is without loss of generality, as an open interval over
discrete time can always be expressed as closed. Thus, when dealing with open
intervals of release or trigger operators, and more precisely when computing
under-approximations of them, we subtract ν time units on each open side of
an open interval, changing it to a closed one. For instance, the interval [0,T3)
is changed to [0,T3 − ν] in Formula (14). The second problem, instead, is
still linked to the state/event description of the system that we rely upon in
dense time. In particular, consider Formula (17): there, in normal form, the
open interval (0,T3) would belong to an until operator, and therefore its being
open would make no difference in computing the approximations. However, the
resulting approximation would be one with too strong (i.e., with too long an
interval) an antecedent, in that it would be false in all but trivial cases. This
would weaken the overall specification, and would lead us more often to hit
into the incompleteness of the verification technique (in particular, in proving
Formula (23)). Therefore, we change the open interval (0,T3) to the closed
interval [ν,T3 − ν], thus achieving better verification results. Informally, this
corresponds to a strengthening of the resulting discretized specification. Finally,
for uniformity we do the same with the open intervals of Formulas (12–13),
even if in this case experiments have shown that we have basically the same
performances whether we shift the end-points or not. All the resulting formulas

27

are as follows.

prepare cup ⇒
←−
♦ [ν,T1−ν](press button) (33)

start pour ⇒
←−
♦ [ν,T2−ν](prepare cup) (34)

�[ν,T3−ν](pour) ⇒ start pour ∧�[T3,T3]
(end pour) (35)

end pour ⇒ ←−
� [T3,T3](start pour) ∧←−� [0,T3−ν](pour) (36)

start pour ⇒ �[T3,T3]
(end pour) ∧�[ν,T3]

(pour) (37)

Verification. When the parameters are chosen to be all integer-valued, if
δ = 1, then the verification is successful, that is (27–28) are properties of the
specified system. If δ 6= 1, then the properties may not hold, also depending
on the particular values for the constants T1,T2,T3 (and if they may yield
degenerate intervals). Notice however that the choice δ = 1 is natural, in the
sense that we take a sampling period which is of the same size (or smaller) as
the “change delays” in the system.

4.2 Experiments

The following Tables 5–10 report the results obtained in an array of tests with
the discretization techniques and Zot. For each test we report: the value k of
the bound given to Zot (in other words, the size of the explored space); the
value of the parameter ν in the models; the value of δ, according to which
the discretizations are built; the value of other parameters in the models (in
the case of the coffee machine, they are T1,T2,T3); the outcomes of (1) the
bound completeness test (for the given k) on the systems (i.e., if the check is
exhaustive for the system), and (2) the validity check for the properties to be
checked (namely, Formula (9) for the reservoir example, and Formulas (22–23)
(denoted in the tables as th1 and th2, respectively) for the coffee machine
example. Each test is done both over mono-infinite domain, and over bi-infinite
domain. For each test we report the outcome (> means valid, ⊥ means non-
valid, ∼ means that the approximation technique has been inconclusive, ∞
means that the process was killed after running for more than 24 hours), the
real time (“wall-time”) and the total (maximum) amount of memory taken in
the whole verification process.

The tests have been performed on a PC equipped with an AMD Athlon64
x2 4600+ processor, 2 Gb of RAM, and Ubuntu GNU/Linux. Zot used GNU
CLisp v. 2.39, and Minisat v. 1.14 as SAT-solving engine. Below, we briefly
comment on the outcomes with the two examples.

Reservoir example. Tables 5–6 report the results obtained with the reservoir
example.

The example is a simple one, and in fact the results are highly predictable
and satisfactory. The diameter of the example is small, and it is reached already
with k ≥ 10. We never obtain inconclusive results in applying our discretization

28

k ν δ complete (time / mem) outcome (time / mem)

5 1 1 ⊥ (0.4 s / 2.1 Mb) > (0.5 s / 2.2 Mb)
5 1 1/3 ⊥ (0.9 s / 4.3 Mb) ⊥ (0.7 s / 5.8 Mb)
5 5 5 ⊥ (0.2 s / 2.1 Mb) > (0.2 s / 2.2 Mb)
5 5 5/3 ⊥ (0.4 s / 4.3 Mb) ⊥ (0.7 s / 5.8 Mb)
5 10 10 ⊥ (0.2 s / 2.1 Mb) > (0.2 s / 2.2 Mb)
5 10 10/3 ⊥ (0.4 s / 4.3 Mb) ⊥ (0.7 s / 5.8 Mb)
5 20 20 ⊥ (0.2 s / 2.1 Mb) > (0.3 s / 2.3 Mb)
5 20 20/3 ⊥ (0.5 s / 4.3 Mb) ⊥ (0.8 s / 5.8 Mb)

10 1 1 > (0.6 s / 2.9 Mb) > (0.6 s / 3.2 Mb)
10 1 1/3 > (2.3 s / 6 Mb) ⊥ (1.6 s / 12.1 Mb)
10 5 5 > (0.6 s / 2.9 Mb) > (0.6 s / 3.2 Mb)
10 5 5/3 > (2.3 s / 6 Mb) ⊥ (1.6 s / 12.1 Mb)
10 10 10 > (0.6 s / 2.9 Mb) > (0.6 s / 3.2 Mb)
10 10 10/3 > (2.2 s / 6 Mb) ⊥ (1.6 s / 12.1 Mb)
10 20 20 > (0.6 s / 2.9 Mb) > (0.6 s / 3.2 Mb)
10 20 20/3 > (2 s / 6 Mb) ⊥ (1.2 s / 12.1 Mb)

50 1 1 > (4.1 s / 25.6 Mb) > (2.8 s / 15.3 Mb)
50 1 1/3 > (12.4 s / 53.3 Mb) ⊥ (8.5 s / 110.8 Mb)
50 5 5 > (4.3 s / 25.6 Mb) > (2.6 s / 15.3 Mb)
50 5 5/3 > (11 s / 53.3 Mb) ⊥ (8.6 s / 110.8 Mb)
50 10 10 > (4.2 s / 25.6 Mb) > (2.8 s / 15.3 Mb)
50 10 10/3 > (11.1 s / 53.3 Mb) ⊥ (8.6 s / 110.8 Mb)
50 20 20 > (3.8 s / 25.6 Mb) > (2.9 s / 15.3 Mb)
50 20 20/3 > (11.1 s / 53.3 Mb) ⊥ (8.6 s / 110.8 Mb)

100 1 1 > (20.7 s / 83.4 Mb) > (9.6 s / 30.4 Mb)
100 1 1/3 > (52.6 s / 171.6 Mb) ⊥ (30.6 s / 361.9 Mb)
100 5 5 > (21.3 s / 83.4 Mb) > (9.6 s / 30.4 Mb)
100 5 5/3 > (50.3 s / 171.6 Mb) ⊥ (30.6 s / 361.9 Mb)
100 10 10 > (21.2 s / 83.4 Mb) > (9.5 s / 30.4 Mb)
100 10 10/3 > (50 s / 171.6 Mb) ⊥ (29.9 s / 361.9 Mb)
100 20 20 > (21.6 s / 83.4 Mb) > (9.4 s / 30.4 Mb)
100 20 20/3 > (49.5 s / 171.6 Mb) ⊥ (30.1 s / 361.9 Mb)

200 1 1 > (150.9 s / 297.4 Mb) > (33.9 s / 60.7 Mb)
200 1 1/3 > (344.9 s / 604.6 Mb) ⊥ (106.9 s / 1240.1 Mb)
200 5 5 > (152.1 s / 297.4 Mb) > (33.9 s / 60.7 Mb)
200 5 5/3 > (345.6 s / 604.6 Mb) ⊥ (107.9 s / 1240.1 Mb)
200 10 10 > (153 s / 297.4 Mb) > (33.3 s / 60.7 Mb)
200 10 10/3 > (346.1 s / 604.6 Mb) ⊥ (108.6 s / 1240.1 Mb)
200 20 20 > (154.2 s / 297.4 Mb) > (33.4 s / 60.7 Mb)
200 20 20/3 > (342.3 s / 604.6 Mb) ⊥ (111.8 s / 1240.1 Mb)

Table 5: Results of the reservoir example over mono-infinite.

29

k ν δ complete (time / mem) outcome (time / mem)

5 1 1 ⊥ (0.2 s / 2.2 Mb) > (0.3 s / 2.6 Mb)
5 1 1/3 ⊥ (0.6 s / 4.8 Mb) ⊥ (1.2 s / 9 Mb)
5 5 5 ⊥ (0.3 s / 2.2 Mb) > (0.3 s / 2.6 Mb)
5 5 5/3 ⊥ (0.6 s / 4.8 Mb) ⊥ (1.2 s / 9 Mb)
5 10 10 ⊥ (0.3 s / 2.2 Mb) > (0.4 s / 2.6 Mb)
5 10 10/3 ⊥ (0.6 s / 4.8 Mb) ⊥ (1.2 s / 9 Mb)
5 20 20 ⊥ (0.3 s / 2.2 Mb) > (0.5 s / 2.6 Mb)
5 20 20/3 ⊥ (0.5 s / 4.8 Mb) ⊥ (1 s / 9 Mb)

10 1 1 > (0.5 s / 3.3 Mb) > (0.7 s / 4.9 Mb)
10 1 1/3 > (1.9 s / 7.3 Mb) ⊥ (2.2 s / 18.1 Mb)
10 5 5 > (0.5 s / 3.3 Mb) > (0.8 s / 4.9 Mb)
10 5 5/3 > (2.2 s / 7.3 Mb) ⊥ (1.8 s / 18.1 Mb)
10 10 10 > (0.5 s / 3.3 Mb) > (0.7 s / 4.9 Mb)
10 10 10/3 > (1.9 s / 7.3 Mb) ⊥ (2 s / 18.1 Mb)
10 20 20 > (0.5 s / 3.3 Mb) > (0.7 s / 4.9 Mb)
10 20 20/3 > (2.2 s / 7.3 Mb) ⊥ (2.5 s / 18.1 Mb)

50 1 1 > (4.2 s / 27.7 Mb) > (6.1 s / 23.5 Mb)
50 1 1/3 > (12.4 s / 59.7 Mb) ⊥ (18.8 s / 149.5 Mb)
50 5 5 > (4.1 s / 27.7 Mb) > (5.5 s / 23.5 Mb)
50 5 5/3 > (12.6 s / 59.7 Mb) ⊥ (19 s / 149.5 Mb)
50 10 10 > (4.1 s / 27.7 Mb) > (5.3 s / 23.5 Mb)
50 10 10/3 > (12.3 s / 59.7 Mb) ⊥ (19.5 s / 149.5 Mb)
50 20 20 > (4.4 s / 27.7 Mb) > (5.4 s / 23.5 Mb)
50 20 20/3 > (12.4 s / 59.7 Mb) ⊥ (18.9 s / 149.5 Mb)

100 1 1 > (22.2 s / 87.3 Mb) > (19.8 s / 46.7 Mb)
100 1 1/3 > (58.3 s / 183.6 Mb) ⊥ (66.2 s / 470.6 Mb)
100 5 5 > (21.9 s / 87.3 Mb) > (20.5 s / 46.7 Mb)
100 5 5/3 > (56.9 s / 183.6 Mb) ⊥ (65.4 s / 470.6 Mb)
100 10 10 > (21.6 s / 87.3 Mb) > (20.2 s / 46.7 Mb)
100 10 10/3 > (56.6 s / 183.6 Mb) ⊥ (66.1 s / 470.6 Mb)
100 20 20 > (22.5 s / 87.3 Mb) > (19.9 s / 46.7 Mb)
100 20 20/3 > (57.5 s / 183.6 Mb) ⊥ (65.7 s / 470.6 Mb)

200 1 1 > (158.9 s / 304 Mb) > (71.2 s / 93.1 Mb)
200 1 1/3 > (374.3 s / 626.1 Mb) ⊥ (245.1 s / 1588.3 Mb)
200 5 5 > (158.8 s / 304 Mb) > (70.6 s / 93.1 Mb)
200 5 5/3 > (374 s / 626.1 Mb) ⊥ (244.8 s / 1588.3 Mb)
200 10 10 > (159.7 s / 304 Mb) > (72.6 s / 93.1 Mb)
200 10 10/3 > (370 s / 626.1 Mb) ⊥ (245.1 s / 1588.3 Mb)
200 20 20 > (159.2 s / 304 Mb) > (71.4 s / 93.1 Mb)
200 20 20/3 > (367 s / 626.1 Mb) ⊥ (244.2 s / 1588.3 Mb)

Table 6: Results of the reservoir example over bi-infinite.

30

technique, and Formula (9) is confirmed to be valid if and only if ν = δ. The
times and spaces required to obtain the results (or to check the bound complete-
ness) are always relatively small, and they scale rather well with the increase of
the bound. This is also a predictable result, as the complexity of the validity
check is relatively insensitive to the increase of k, whereas it strongly depends on
the timing constants in the formulas (always small in the case of the reservoir,
as they are either 1 or 3, i.e., ν/δ). Finally, notice that it usually takes a shorter
time to check the validity than to check the non-validity; this is also obvious, as
the latter requires to submit two formulas to the validity checker (φ+ and φ−),
while the former just checks one formula.

Coffee machine example. Tables 7–10 report the results obtained with the
coffee machine example; they are more variegated than the simple reservoir.

First of all, notice that the validity of Formula (22) is robust with respect
to the choices of parameters. Indeed, Formula (22) (tagged th1 in the tables)
is shown to be valid for all the choices of parameters that we made in the
experiments. The times needed to get this result are rather short, and scale
with the length of k. This is reasonable, as the main factor in determining the
length of the check are the parameters T1,T2,T3 that however stay within a
short span of values in our tests.

The outcomes of the validity check of Formula (23) are, on the other hand,
more varied. First of all, as we asserted in presenting the example, if δ = 1
then Formula (23) is valid for the system; this is confirmed by all our tests. If,
instead, δ 6= 1, then the results timing constants interact more subtly, and it is
more difficult to predict the outcome of the verification. In some cases we fall
in the incompleteness area of our method, and we get inconclusive results from
analyzing the approximations. Notice that this tends to happen a bit more often
with the bi-infinite tool, probably due to (the absence of) some border effects.

Finally, let us consider the bound completeness check. Unfortunately, but
inevitably, the time required for the completeness check grows very quickly with
the value of k. In practice, it tends to diverge for values of about 40 (or less,
in the bi-infinite case, where it is usually more complex). Of course, this is a
feature inherent to the bound completeness check itself, which is orthogonal to
our discretization techniques. Experiments with the same specification but with
a different discrete-time verification tool, such as [MPSS03, Spo05], belong to
future work.

5 Conclusions

We presented a technique to reduce the validity problem for dense-time MTL
formulas to the corresponding validity problem over discrete-time models. The
technique is based on the notions of sampling and sampling invariance, intro-
duced in [FR06]. In a nutshell, we perform simple syntactic transformations
on the MTL formulas that we want to check for validity; the resulting formu-
las retain properties of discrete-time samplings of the dense-time behaviors the

31

k ν δ T1, T2, T3 complete (time / mem) TH1 outcome (time / mem) TH2 outcome (time / mem)

5 1 1 4,4,4 ⊥ (1.2 s / 5.8 Mb) > (1.9 s / 6.2 Mb) > (0.7 s / 5.2 Mb)
5 1 1 7,6,5 ⊥ (0.6 s / 6.9 Mb) > (1.3 s / 7.6 Mb) > (0.8 s / 6 Mb)
5 1 1 10,7,8 ⊥ (0.9 s / 8.8 Mb) > (1.7 s / 9.6 Mb) > (1 s / 7.4 Mb)
5 1 1/3 4,4,4 ⊥ (0.9 s / 9.9 Mb) > (2.2 s / 11.8 Mb) > (1.3 s / 8.9 Mb)
5 1 1/3 7,6,5 ⊥ (1.1 s / 14 Mb) > (2.8 s / 15.8 Mb) > (1.6 s / 11.2 Mb)
5 1 1/3 10,7,8 ⊥ (1.7 s / 20.7 Mb) > (5.3 s / 21.9 Mb) > (2.8 s / 15.4 Mb)
5 2 1 4,4,4 ⊥ (0.5 s / 5.5 Mb) > (1.1 s / 6.1 Mb) > (0.7 s / 5 Mb)
5 2 1 7,6,5 ⊥ (0.7 s / 6.2 Mb) > (1.3 s / 7.4 Mb) > (1 s / 5.8 Mb)
5 2 1 10,7,8 ⊥ (0.9 s / 8.7 Mb) > (1.7 s / 9.5 Mb) > (0.9 s / 7.2 Mb)
5 2 1/3 4,4,4 ⊥ (0.8 s / 8.6 Mb) > (1.9 s / 11.3 Mb) > (1.2 s / 8.3 Mb)
5 2 1/3 7,6,5 ⊥ (1.1 s / 12.4 Mb) > (3.4 s / 15.3 Mb) > (1.7 s / 10.7 Mb)
5 2 1/3 10,7,8 ⊥ (1.4 s / 19 Mb) > (5.3 s / 21.3 Mb) > (2.4 s / 14.8 Mb)
5 3 1 4,4,4 > (0.4 s / 3.7 Mb) > (0.8 s / 5.9 Mb) > (0.8 s / 4.8 Mb)
5 3 1 7,6,5 > (0.7 s / 4.2 Mb) > (1.3 s / 7.2 Mb) > (0.7 s / 5.6 Mb)
5 3 1 10,7,8 ⊥ (0.7 s / 7.8 Mb) > (1.2 s / 9.3 Mb) > (0.9 s / 7 Mb)
5 3 1/3 4,4,4 > (0.7 s / 5.3 Mb) > (1.8 s / 10.7 Mb) > (1.1 s / 7.8 Mb)
5 3 1/3 7,6,5 > (1.1 s / 6.7 Mb) > (3 s / 14.6 Mb) > (1.5 s / 10 Mb)
5 3 1/3 10,7,8 ⊥ (1.4 s / 18.5 Mb) > (5.4 s / 20.8 Mb) > (2.3 s / 14.3 Mb)

10 1 1 4,4,4 ⊥ (1.1 s / 13.7 Mb) > (1.8 s / 11.7 Mb) > (1.3 s / 9.8 Mb)
10 1 1 7,6,5 ⊥ (1.2 s / 15.1 Mb) > (2.2 s / 14.3 Mb) > (1.6 s / 11.2 Mb)
10 1 1 10,7,8 ⊥ (1.7 s / 22.1 Mb) > (3.4 s / 18 Mb) > (2.1 s / 13.8 Mb)
10 1 1/3 4,4,4 ⊥ (1.8 s / 26.8 Mb) > (5.3 s / 22.1 Mb) > (2.8 s / 16.6 Mb)
10 1 1/3 7,6,5 ⊥ (2.4 s / 41.8 Mb) > (9 s / 29.5 Mb) > (4.5 s / 20.9 Mb)
10 1 1/3 10,7,8 ⊥ (3.5 s / 64.3 Mb) > (17.1 s / 40.5 Mb) > (8.7 s / 28.6 Mb)
10 2 1 4,4,4 ⊥ (1 s / 12.9 Mb) > (1.7 s / 11.4 Mb) > (1.4 s / 9.5 Mb)
10 2 1 7,6,5 ⊥ (1.2 s / 14.7 Mb) > (2.2 s / 14 Mb) ∼ (3.5 s / 30.1 Mb)
10 2 1 10,7,8 ⊥ (1.4 s / 20.1 Mb) > (3.3 s / 17.7 Mb) ∼ (4.4 s / 40 Mb)
10 2 1/3 4,4,4 ⊥ (1.7 s / 21 Mb) > (4.9 s / 21.1 Mb) > (2.6 s / 15.6 Mb)
10 2 1/3 7,6,5 ⊥ (2.3 s / 32.3 Mb) > (8.5 s / 28.5 Mb) > (4.1 s / 19.9 Mb)
10 2 1/3 10,7,8 ⊥ (3.3 s / 50.1 Mb) > (16.2 s / 39.5 Mb) > (8.1 s / 27.6 Mb)
10 3 1 4,4,4 > (1 s / 7.3 Mb) > (1.6 s / 11 Mb) > (1.3 s / 9.1 Mb)
10 3 1 7,6,5 > (1 s / 8.2 Mb) > (2 s / 13.5 Mb) > (1.5 s / 10.5 Mb)
10 3 1 10,7,8 ⊥ (1.4 s / 18.2 Mb) > (3.1 s / 17.4 Mb) ∼ (4.2 s / 35.7 Mb)
10 3 1/3 4,4,4 > (1.4 s / 10.3 Mb) > (4.2 s / 20 Mb) > (2.5 s / 14.5 Mb)
10 3 1/3 7,6,5 > (1.9 s / 12.8 Mb) > (8 s / 27.2 Mb) > (3.8 s / 18.6 Mb)
10 3 1/3 10,7,8 ⊥ (3.4 s / 46.4 Mb) > (15.7 s / 38.5 Mb) > (7.8 s / 26.6 Mb)
20 1 1 4,4,4 ⊥ (2.6 s / 38.2 Mb) > (5.1 s / 22.7 Mb) > (3.6 s / 18.9 Mb)
20 1 1 7,6,5 ⊥ (2.9 s / 44.5 Mb) > (7.9 s / 27.6 Mb) > (4.6 s / 21.7 Mb)
20 1 1 10,7,8 ⊥ (3.9 s / 59 Mb) > (12.6 s / 34.8 Mb) > (7.4 s / 26.7 Mb)
20 1 1/3 4,4,4 ⊥ (4.8 s / 77.2 Mb) > (17.8 s / 42.6 Mb) ⊥ (22.1 s / 151.7 Mb)
20 1 1/3 7,6,5 ⊥ (7.5 s / 105.1 Mb) > (30.6 s / 56.8 Mb) ⊥ (33.3 s / 173.1 Mb)
20 1 1/3 10,7,8 ⊥ (12 s / 201.5 Mb) > (55.5 s / 77.7 Mb) > (28.5 s / 55 Mb)
20 2 1 4,4,4 ⊥ (2.5 s / 36.4 Mb) > (4.9 s / 22 Mb) > (3.3 s / 18.3 Mb)
20 2 1 7,6,5 ⊥ (3 s / 41.7 Mb) > (7.4 s / 27 Mb) ∼ (9.4 s / 65.6 Mb)
20 2 1 10,7,8 ⊥ (3.6 s / 56.8 Mb) > (11.8 s / 34.2 Mb) ∼ (14.6 s / 80.3 Mb)
20 2 1/3 4,4,4 ⊥ (4.3 s / 58 Mb) > (16.5 s / 40.7 Mb) ∼ (17.7 s / 92.3 Mb)
20 2 1/3 7,6,5 ⊥ (6.3 s / 93.2 Mb) > (28.9 s / 54.9 Mb) ⊥ (31.2 s / 168.6 Mb)
20 2 1/3 10,7,8 ⊥ (11.5 s / 179 Mb) > (53.4 s / 75.8 Mb) > (27.4 s / 53.1 Mb)
20 3 1 4,4,4 > (2.3 s / 16.8 Mb) > (4.9 s / 21.3 Mb) > (3.1 s / 17.6 Mb)
20 3 1 7,6,5 > (2.7 s / 18.4 Mb) > (6.7 s / 26.1 Mb) > (4 s / 20.2 Mb)
20 3 1 10,7,8 ⊥ (3.4 s / 51.7 Mb) > (11.6 s / 33.6 Mb) ∼ (13.8 s / 78.3 Mb)
20 3 1/3 4,4,4 > (3.6 s / 22.4 Mb) > (15.2 s / 38.6 Mb) > (8.5 s / 28 Mb)
20 3 1/3 7,6,5 > (5.2 s / 27.2 Mb) > (27.1 s / 52.4 Mb) > (13.2 s / 35.9 Mb)
20 3 1/3 10,7,8 ⊥ (12.2 s / 152.9 Mb) > (51.5 s / 73.9 Mb) > (25.8 s / 51.2 Mb)
25 1 1 4,4,4 ⊥ (3.7 s / 56.9 Mb) > (7.7 s / 28.1 Mb) > (5.4 s / 23.5 Mb)
25 1 1 7,6,5 ⊥ (4.2 s / 67.4 Mb) > (11.5 s / 34.3 Mb) > (7.2 s / 27 Mb)
25 1 1 10,7,8 ⊥ (5.8 s / 92.9 Mb) > (18.5 s / 43.2 Mb) > (11.1 s / 33.1 Mb)
25 1 1/3 4,4,4 ⊥ (8.2 s / 118.2 Mb) > (26.2 s / 52.9 Mb) ⊥ (33 s / 211.3 Mb)
25 1 1/3 7,6,5 ⊥ (11.9 s / 151.8 Mb) > (45.8 s / 70.4 Mb) ⊥ (50.1 s / 273.6 Mb)
25 1 1/3 10,7,8 ⊥ (18.2 s / 310.1 Mb) > (82.8 s / 96.3 Mb) ⊥ (93.5 s / 524.8 Mb)
25 2 1 4,4,4 ⊥ (3.6 s / 52.9 Mb) > (7.5 s / 27.4 Mb) > (5.2 s / 22.7 Mb)
25 2 1 7,6,5 ⊥ (4.1 s / 61.3 Mb) > (11.2 s / 33.5 Mb) ∼ (14.3 s / 86.1 Mb)
25 2 1 10,7,8 ⊥ (5.3 s / 71.9 Mb) > (17.9 s / 42.4 Mb) ∼ (22.5 s / 118.9 Mb)
25 2 1/3 4,4,4 ⊥ (7.1 s / 83.5 Mb) > (24.6 s / 50.5 Mb) ∼ (27.1 s / 128.5 Mb)
25 2 1/3 7,6,5 ⊥ (10.5 s / 125.2 Mb) > (43.3 s / 68.1 Mb) ⊥ (47 s / 242.2 Mb)
25 2 1/3 10,7,8 ⊥ (17.6 s / 247.5 Mb) > (80.3 s / 94 Mb) ⊥ (85.4 s / 374 Mb)
25 3 1 4,4,4 > (3.1 s / 22.7 Mb) > (7.1 s / 26.5 Mb) > (4.7 s / 21.8 Mb)
25 3 1 7,6,5 > (3.8 s / 24.6 Mb) > (10.7 s / 32.4 Mb) > (6.2 s / 25.1 Mb)
25 3 1 10,7,8 ⊥ (5.1 s / 72.8 Mb) > (17.5 s / 41.7 Mb) ∼ (20.6 s / 105.1 Mb)
25 3 1/3 4,4,4 > (5.5 s / 29.5 Mb) > (22.8 s / 47.9 Mb) > (12.7 s / 34.7 Mb)
25 3 1/3 7,6,5 > (8.3 s / 35.5 Mb) > (39.9 s / 64.9 Mb) > (19.7 s / 44.5 Mb)
25 3 1/3 10,7,8 ⊥ (16.6 s / 270.1 Mb) > (77.2 s / 91.6 Mb) ⊥ (81.1 s / 337.1 Mb)
30 1 1 4,4,4 ⊥ (5.5 s / 78.9 Mb) > (11 s / 33.6 Mb) > (7.7 s / 28.1 Mb)
30 1 1 7,6,5 ⊥ (6.8 s / 95.5 Mb) > (16.4 s / 40.9 Mb) > (10.1 s / 32.2 Mb)
30 1 1 10,7,8 ⊥ (7.8 s / 122.7 Mb) > (25.6 s / 51.6 Mb) > (15.1 s / 39.6 Mb)
30 1 1/3 4,4,4 ⊥ (10.6 s / 148.2 Mb) > (37 s / 63.1 Mb) ⊥ (45.9 s / 303.2 Mb)
30 1 1/3 7,6,5 ⊥ (15.4 s / 225.2 Mb) > (63.4 s / 84.1 Mb) ⊥ (70 s / 362.1 Mb)
30 1 1/3 10,7,8 ⊥ (27.3 s / 424.1 Mb) > (116.3 s / 114.9 Mb) ⊥ (129.8 s / 1043.3 Mb)
30 2 1 4,4,4 ⊥ (87.3 s / 72.9 Mb) > (10.4 s / 32.7 Mb) > (7.1 s / 27.2 Mb)
30 2 1 7,6,5 ⊥ (6 s / 84.7 Mb) > (15.5 s / 40 Mb) ∼ (20.7 s / 129 Mb)
30 2 1 10,7,8 ⊥ (7.4 s / 108.4 Mb) > (24.6 s / 50.7 Mb) ∼ (30.2 s / 152.3 Mb)
30 2 1/3 4,4,4 ⊥ (9.5 s / 112.5 Mb) > (34 s / 60.3 Mb) ∼ (37.4 s / 162.7 Mb)
30 2 1/3 7,6,5 ⊥ (14 s / 178.5 Mb) > (60 s / 81.3 Mb) ⊥ (64.6 s / 334.6 Mb)
30 2 1/3 10,7,8 ⊥ (24.7 s / 339.4 Mb) > (111.5 s / 112.1 Mb) ⊥ (118.4 s / 477.6 Mb)
30 3 1 4,4,4 > (4.3 s / 29.2 Mb) > (9.7 s / 31.6 Mb) > (6.8 s / 26.1 Mb)
30 3 1 7,6,5 > (5 s / 31.6 Mb) > (14.4 s / 38.8 Mb) > (8.8 s / 30.1 Mb)
30 3 1 10,7,8 ⊥ (7.2 s / 101.6 Mb) > (24.2 s / 49.7 Mb) ∼ (28.6 s / 153.3 Mb)
30 3 1/3 4,4,4 > (7.8 s / 37.3 Mb) > (31.2 s / 57.2 Mb) > (17.3 s / 41.4 Mb)
30 3 1/3 7,6,5 > (11.5 s / 44.5 Mb) > (55.4 s / 77.5 Mb) > (27.2 s / 53.2 Mb)
30 3 1/3 10,7,8 ⊥ (22.9 s / 305.2 Mb) > (106.7 s / 109.3 Mb) ⊥ (110.9 s / 418 Mb)

Table 7: Results of the coffee machine example over mono-infinite for k ≤ 30.
32

k ν δ T1, T2, T3 complete (time / mem) TH1 outcome (time / mem) TH2 outcome (time / mem)

35 1 1 4,4,4 NO (7.4 s / 103.6 Mb) YES (14.2 s / 39.1 Mb) YES (10.1 s / 32.7 Mb)
35 1 1 7,6,5 NO (8.6 s / 126.1 Mb) YES (21.2 s / 47.6 Mb) YES (13.5 s / 37.5 Mb)
35 1 1 10,7,8 NO (10.5 s / 160.5 Mb) YES (33.9 s / 60 Mb) YES (19.9 s / 46 Mb)
35 1 1/3 4,4,4 NO (14.4 s / 194.8 Mb) YES (48.4 s / 73.4 Mb) NO (61 s / 399.7 Mb)
35 1 1/3 7,6,5 NO (21.9 s / 272.3 Mb) YES (84.3 s / 97.7 Mb) NO (92.8 s / 529.4 Mb)
35 1 1/3 10,7,8 NO (34.6 s / 497.6 Mb) YES (154.8 s / 133.5 Mb) NO (167.2 s / 784.4 Mb)
35 2 1 4,4,4 ∞ > (13.7 s / 38.4 Mb) > (9.5 s / 31.6 Mb)
35 2 1 7,6,5 ∞ > (20.4 s / 47 Mb) ∼ (26.6 s / 137.3 Mb)
35 2 1 10,7,8 ∞ > (32.8 s / 59.3 Mb) ∼ (39.8 s / 165.4 Mb)
35 2 1/3 4,4,4 ∞ > (45.5 s / 70.5 Mb) ∼ (50 s / 200.5 Mb)
35 2 1/3 7,6,5 ∞ > (78.9 s / 94.8 Mb) ⊥ (85.4 s / 402.7 Mb)
35 2 1/3 10,7,8 ∞ > (149.1 s / 130.6 Mb) ⊥ (157.7 s / 711.9 Mb)
35 3 1 4,4,4 ∞ > (13.1 s / 37.2 Mb) > (9 s / 30.4 Mb)
35 3 1 7,6,5 ∞ > (19 s / 45.5 Mb) > (11.7 s / 35 Mb)
35 3 1 10,7,8 ∞ > (32.3 s / 58.2 Mb) ∼ (37.4 s / 161.5 Mb)
35 3 1/3 4,4,4 ∞ > (41.3 s / 66.8 Mb) > (23.2 s / 48.2 Mb)
35 3 1/3 7,6,5 ∞ > (73.1 s / 90.5 Mb) > (36.3 s / 61.8 Mb)
35 3 1/3 10,7,8 ∞ > (142 s / 127.3 Mb) ⊥ (147.6 s / 603 Mb)
40 1 1 4,4,4 ∞ > (18.4 s / 45 Mb) > (12.9 s / 37.3 Mb)
40 1 1 7,6,5 ∞ > (27.2 s / 54.7 Mb) > (16.8 s / 42.8 Mb)
40 1 1 10,7,8 ∞ > (42.5 s / 68.8 Mb) > (25.3 s / 52.5 Mb)
40 1 1/3 4,4,4 ∞ > (62.2 s / 84 Mb) ⊥ (77.5 s / 496.7 Mb)
40 1 1/3 7,6,5 ∞ > (107.7 s / 111.7 Mb) ⊥ (118.5 s / 564.6 Mb)
40 1 1/3 10,7,8 ∞ > (198.4 s / 152.4 Mb) ⊥ (211.2 s / 896.1 Mb)
40 2 1 4,4,4 ∞ > (17.8 s / 43.8 Mb) > (12.3 s / 36.1 Mb)
40 2 1 7,6,5 ∞ > (26.1 s / 53.5 Mb) ∼ (33.2 s / 163.6 Mb)
40 2 1 10,7,8 ∞ > (40.9 s / 67.6 Mb) ∼ (52.5 s / 215.8 Mb)
40 2 1/3 4,4,4 ∞ > (57.9 s / 80.3 Mb) ∼ (62.8 s / 239.1 Mb)
40 2 1/3 7,6,5 ∞ > (102.3 s / 108 Mb) ⊥ (111.5 s / 585.6 Mb)
40 2 1/3 10,7,8 ∞ > (190.4 s / 148.7 Mb) ⊥ (201.7 s / 911.6 Mb)
40 3 1 4,4,4 ∞ > (16.5 s / 42.3 Mb) > (11.6 s / 34.6 Mb)
40 3 1 7,6,5 ∞ > (24 s / 51.8 Mb) > (14.7 s / 39.9 Mb)
40 3 1 10,7,8 ∞ > (40.6 s / 66.3 Mb) ∼ (47.8 s / 200 Mb)
40 3 1/3 4,4,4 ∞ > (52.8 s / 76.1 Mb) > (29 s / 55 Mb)
40 3 1/3 7,6,5 ∞ > (93.5 s / 103 Mb) > (45.9 s / 70.4 Mb)
40 3 1/3 10,7,8 ∞ > (182.5 s / 145 Mb) ⊥ (188.4 s / 805.7 Mb)
45 1 1 4,4,4 ∞ > (22.9 s / 50.5 Mb) > (15.7 s / 41.9 Mb)
45 1 1 7,6,5 ∞ > (34 s / 61.4 Mb) > (21.3 s / 48.1 Mb)
45 1 1 10,7,8 ∞ > (53 s / 77.2 Mb) > (31.5 s / 59 Mb)
45 1 1/3 4,4,4 ∞ > (77.1 s / 94.2 Mb) ⊥ (95.8 s / 540.4 Mb)
45 1 1/3 7,6,5 ∞ > (133.9 s / 125.3 Mb) ⊥ (148.7 s / 671.2 Mb)
45 1 1/3 10,7,8 ∞ > (246.3 s / 171 Mb) ⊥ (266.7 s / 1044.8 Mb)
45 2 1 4,4,4 ∞ > (21.8 s / 49.1 Mb) > (15.3 s / 40.5 Mb)
45 2 1 7,6,5 ∞ > (32.2 s / 60 Mb) ∼ (42 s / 195.6 Mb)
45 2 1 10,7,8 ∞ > (52.4 s / 75.8 Mb) ∼ (63.9 s / 292.3 Mb)
45 2 1/3 4,4,4 ∞ > (71.7 s / 90.1 Mb) ∼ (77.8 s / 285.2 Mb)
45 2 1/3 7,6,5 ∞ > (127.2 s / 121.1 Mb) ⊥ (139.3 s / 619.4 Mb)
45 2 1/3 10,7,8 ∞ > (237 s / 166.8 Mb) ⊥ (252.7 s / 1054.7 Mb)
45 3 1 4,4,4 ∞ > (20.5 s / 47.5 Mb) > (14.5 s / 38.9 Mb)
45 3 1 7,6,5 ∞ > (30.5 s / 58.2 Mb) > (18.9 s / 44.8 Mb)
45 3 1 10,7,8 ∞ > (50.4 s / 74.4 Mb) ∼ (60.1 s / 233.8 Mb)
45 3 1/3 4,4,4 ∞ > (65.5 s / 85.4 Mb) > (36 s / 61.8 Mb)
45 3 1/3 7,6,5 ∞ > (116.5 s / 115.5 Mb) > (57 s / 79.1 Mb)
45 3 1/3 10,7,8 ∞ > (227.8 s / 162.6 Mb) ⊥ (236.5 s / 1199 Mb)
50 1 1 4,4,4 ∞ > (27.7 s / 56 Mb) > (19.4 s / 46.5 Mb)
50 1 1 7,6,5 ∞ > (40.9 s / 68.1 Mb) > (25.4 s / 53.3 Mb)
50 1 1 10,7,8 ∞ > (63.4 s / 85.6 Mb) > (38.2 s / 65.4 Mb)
50 1 1/3 4,4,4 ∞ > (93.8 s / 104.5 Mb) ⊥ (116.5 s / 704.6 Mb)
50 1 1/3 7,6,5 ∞ > (162.9 s / 138.9 Mb) ⊥ (184.6 s / 1016.1 Mb)
50 1 1/3 10,7,8 ∞ > (300.7 s / 189.5 Mb) ⊥ (331.2 s / 1791.3 Mb)
50 2 1 4,4,4 ∞ > (26.6 s / 54.5 Mb) > (18.4 s / 45 Mb)
50 2 1 7,6,5 ∞ > (39.9 s / 66.6 Mb) ∼ (50.7 s / 230.3 Mb)
50 2 1 10,7,8 ∞ > (61.8 s / 84.1 Mb) ∼ (76.9 s / 273.9 Mb)
50 2 1/3 4,4,4 ∞ > (87.5 s / 99.9 Mb) ∼ (94.3 s / 322.9 Mb)
50 2 1/3 7,6,5 ∞ > (154.9 s / 134.3 Mb) ⊥ (168.2 s / 741.3 Mb)
50 2 1/3 10,7,8 ∞ > (290.6 s / 184.9 Mb) ⊥ (307.9 s / 1397.1 Mb)
50 3 1 4,4,4 ∞ > (24.6 s / 52.7 Mb) > (17 s / 43.2 Mb)
50 3 1 7,6,5 ∞ > (36.3 s / 64.5 Mb) > (22.3 s / 49.7 Mb)
50 3 1 10,7,8 ∞ > (60.8 s / 82.6 Mb) ∼ (71.8 s / 272.1 Mb)
50 3 1/3 4,4,4 ∞ > (79.8 s / 94.7 Mb) > (43.7 s / 68.5 Mb)
50 3 1/3 7,6,5 ∞ > (141.5 s / 128.1 Mb) > (69.9 s / 87.8 Mb)
50 3 1/3 10,7,8 ∞ > (279.2 s / 180.2 Mb) ⊥ (289.5 s / 1200.1 Mb)

Table 8: Results of the coffee machine example over mono-infinite for k > 30.

33

k ν δ T1, T2, T3 complete (time / mem) TH1 outcome (time / mem) TH2 outcome (time / mem)

5 1 1 4,4,4 ⊥ (0.6 s / 6.6 Mb) > (1.5 s / 9.4 Mb) > (1.1 s / 7.8 Mb)
5 1 1 7,6,5 ⊥ (0.7 s / 7.6 Mb) > (1.9 s / 11.5 Mb) > (1.3 s / 9 Mb)
5 1 1 10,7,8 ⊥ (0.8 s / 9 Mb) > (2.3 s / 14.6 Mb) > (1.6 s / 11.2 Mb)
5 1 1/3 4,4,4 ⊥ (1 s / 10.4 Mb) > (3.4 s / 17.7 Mb) ∼ (4.5 s / 34 Mb)
5 1 1/3 7,6,5 ⊥ (1.3 s / 13.4 Mb) > (6.3 s / 23.5 Mb) ∼ (6.3 s / 44.1 Mb)
5 1 1/3 10,7,8 ⊥ (1.8 s / 18.7 Mb) > (11.3 s / 32.4 Mb) ∼ (12.1 s / 54.9 Mb)
5 2 1 4,4,4 ⊥ (0.6 s / 6.7 Mb) > (1.3 s / 9.3 Mb) > (1.4 s / 7.7 Mb)
5 2 1 7,6,5 ⊥ (0.7 s / 7.5 Mb) > (1.9 s / 11.3 Mb) ∼ (2.5 s / 21.4 Mb)
5 2 1 10,7,8 ⊥ (0.8 s / 8.8 Mb) > (2.3 s / 14.4 Mb) ∼ (3.4 s / 26.5 Mb)
5 2 1/3 4,4,4 ⊥ (1.2 s / 10 Mb) > (3.7 s / 17.2 Mb) > (1.9 s / 13 Mb)
5 2 1/3 7,6,5 ⊥ (1.2 s / 13.9 Mb) > (5.7 s / 23 Mb) ∼ (6.2 s / 38.8 Mb)
5 2 1/3 10,7,8 ⊥ (2 s / 16.5 Mb) > (11 s / 31.9 Mb) ∼ (11.5 s / 60.1 Mb)
5 3 1 4,4,4 > (0.6 s / 4.4 Mb) > (1.2 s / 9 Mb) > (1 s / 7.5 Mb)
5 3 1 7,6,5 > (0.6 s / 4.9 Mb) > (1.8 s / 11 Mb) > (1.2 s / 8.5 Mb)
5 3 1 10,7,8 ⊥ (0.8 s / 8.5 Mb) > (2.5 s / 14.3 Mb) ∼ (3.2 s / 25.9 Mb)
5 3 1/3 4,4,4 > (0.9 s / 6.8 Mb) > (3 s / 16.6 Mb) > (1.9 s / 12.4 Mb)
5 3 1/3 7,6,5 ⊥ (1.2 s / 13.2 Mb) > (6 s / 22.1 Mb) > (2.7 s / 15.5 Mb)
5 3 1/3 10,7,8 ⊥ (1.7 s / 15.2 Mb) > (10.8 s / 31.4 Mb) ∼ (11 s / 52.7 Mb)

10 1 1 4,4,4 ⊥ (1.3 s / 16.2 Mb) > (3.5 s / 17.9 Mb) > (2.6 s / 14.9 Mb)
10 1 1 7,6,5 ⊥ (1.4 s / 18.7 Mb) > (4.8 s / 21.8 Mb) > (3 s / 17.1 Mb)
10 1 1 10,7,8 ⊥ (2.1 s / 22.5 Mb) > (7.7 s / 27.7 Mb) > (4.6 s / 21.2 Mb)
10 1 1/3 4,4,4 ⊥ (2.3 s / 28.6 Mb) > (11.5 s / 33.5 Mb) ∼ (13.9 s / 72.6 Mb)
10 1 1/3 7,6,5 ⊥ (2.7 s / 33.6 Mb) > (19.5 s / 44.2 Mb) ∼ (21.6 s / 95.7 Mb)
10 1 1/3 10,7,8 ⊥ (4.4 s / 47.4 Mb) > (36.1 s / 60.7 Mb) ∼ (39.5 s / 109.1 Mb)
10 2 1 4,4,4 ⊥ (1.3 s / 15.7 Mb) > (3.4 s / 17.6 Mb) > (2.2 s / 14.6 Mb)
10 2 1 7,6,5 ⊥ (1.5 s / 17.8 Mb) > (4.7 s / 21.5 Mb) ∼ (5.8 s / 43.3 Mb)
10 2 1 10,7,8 ⊥ (1.8 s / 21.6 Mb) > (7.9 s / 27.3 Mb) ∼ (9.1 s / 53.7 Mb)
10 2 1/3 4,4,4 ⊥ (2.2 s / 24.4 Mb) > (10.8 s / 32.5 Mb) > (6.2 s / 24.7 Mb)
10 2 1/3 7,6,5 ⊥ (2.8 s / 30.3 Mb) > (18.9 s / 43.3 Mb) ∼ (20.2 s / 86.9 Mb)
10 2 1/3 10,7,8 ⊥ (4.5 s / 43.4 Mb) > (35.5 s / 59.8 Mb) ∼ (37.6 s / 107.2 Mb)
10 3 1 4,4,4 > (1.1 s / 8.8 Mb) > (3.1 s / 17.2 Mb) > (2.1 s / 14.2 Mb)
10 3 1 7,6,5 > (1.3 s / 9.7 Mb) > (4.3 s / 20.9 Mb) > (2.7 s / 16.2 Mb)
10 3 1 10,7,8 ⊥ (1.7 s / 21.8 Mb) > (7.3 s / 27 Mb) ∼ (8.6 s / 52.5 Mb)
10 3 1/3 4,4,4 > (1.9 s / 13.3 Mb) > (10 s / 31.4 Mb) > (5.6 s / 23.5 Mb)
10 3 1/3 7,6,5 > (2.5 s / 16 Mb) > (17.4 s / 41.6 Mb) > (8.7 s / 29.4 Mb)
10 3 1/3 10,7,8 ⊥ (4.1 s / 40.8 Mb) > (33.8 s / 58.8 Mb) ∼ (36.2 s / 105.2 Mb)
20 1 1 4,4,4 ⊥ (3.5 s / 47 Mb) > (11.6 s / 34.7 Mb) > (8 s / 28.9 Mb)
20 1 1 7,6,5 ⊥ (3.7 s / 55.1 Mb) > (17.1 s / 42.3 Mb) > (10.6 s / 33.1 Mb)
20 1 1 10,7,8 ⊥ (4.4 s / 65.4 Mb) > (27.2 s / 53.7 Mb) > (16.4 s / 41.1 Mb)
20 1 1/3 4,4,4 ⊥ (6.6 s / 78.4 Mb) > (39 s / 64.9 Mb) ∼ (47.6 s / 141 Mb)
20 1 1/3 7,6,5 ⊥ (9.6 s / 116.7 Mb) > (66.8 s / 85.6 Mb) ∼ (72.4 s / 171.4 Mb)
20 1 1/3 10,7,8 ⊥ (15.2 s / 152 Mb) > (124.3 s / 117.3 Mb) ∼ (134.3 s / 235.2 Mb)
20 2 1 4,4,4 ⊥ (3.2 s / 43.9 Mb) > (10.9 s / 34.1 Mb) > (7.6 s / 28.3 Mb)
20 2 1 7,6,5 ⊥ (3.4 s / 50.6 Mb) > (16.5 s / 41.7 Mb) ∼ (20.6 s / 99.2 Mb)
20 2 1 10,7,8 ⊥ (4.3 s / 61.6 Mb) > (26.5 s / 53.1 Mb) ∼ (32 s / 115.9 Mb)
20 2 1/3 4,4,4 ⊥ (5.9 s / 65.9 Mb) > (36.2 s / 63.1 Mb) > (21.8 s / 48 Mb)
20 2 1/3 7,6,5 ⊥ (8.9 s / 98.9 Mb) > (63.4 s / 83.8 Mb) ∼ (68.4 s / 176.3 Mb)
20 2 1/3 10,7,8 ⊥ (14.2 s / 139.9 Mb) > (119.2 s / 115.5 Mb) ∼ (129.4 s / 231.3 Mb)
20 3 1 4,4,4 > (3 s / 19.7 Mb) > (10.2 s / 33.4 Mb) > (7.2 s / 27.6 Mb)
20 3 1 7,6,5 > (3.1 s / 21.5 Mb) > (15.2 s / 40.7 Mb) > (9.2 s / 31.5 Mb)
20 3 1 10,7,8 ⊥ (4.3 s / 59.1 Mb) > (25.6 s / 52.5 Mb) ∼ (30.4 s / 114.3 Mb)
20 3 1/3 4,4,4 > (5.1 s / 28.3 Mb) > (34.2 s / 60.9 Mb) > (19.5 s / 45.7 Mb)
20 3 1/3 7,6,5 > (7.3 s / 33.6 Mb) > (58.4 s / 80.6 Mb) > (29.9 s / 57.1 Mb)
20 3 1/3 10,7,8 ⊥ (14.2 s / 146.6 Mb) > (117.9 s / 113.7 Mb) ∼ (122.8 s / 227.7 Mb)
25 1 1 4,4,4 ⊥ (4.4 s / 67.5 Mb) > (17 s / 43.2 Mb) > (12 s / 36 Mb)
25 1 1 7,6,5 ⊥ (5.4 s / 79.9 Mb) > (25.3 s / 52.6 Mb) > (15.9 s / 41.2 Mb)
25 1 1 10,7,8 ⊥ (7 s / 95 Mb) > (39.7 s / 66.7 Mb) > (23.9 s / 51 Mb)
25 1 1/3 4,4,4 ⊥ (10 s / 114 Mb) > (57.7 s / 80.6 Mb) ∼ (71.1 s / 197.6 Mb)
25 1 1/3 7,6,5 ⊥ (13.9 s / 170.8 Mb) > (100.4 s / 106.3 Mb) ∼ (108.7 s / 225.7 Mb)
25 1 1/3 10,7,8 ⊥ (22.4 s / 238.6 Mb) > (184.8 s / 145.6 Mb) ∼ (200.2 s / 379.2 Mb)
25 2 1 4,4,4 ⊥ (4.5 s / 63.8 Mb) > (16.3 s / 42.4 Mb) > (11.3 s / 35.2 Mb)
25 2 1 7,6,5 ⊥ (4.9 s / 75.6 Mb) > (24.8 s / 51.9 Mb) ∼ (31 s / 126.5 Mb)
25 2 1 10,7,8 ⊥ (6.7 s / 96.6 Mb) > (39.6 s / 66 Mb) ∼ (47.6 s / 158.4 Mb)
25 2 1/3 4,4,4 ⊥ (10 s / 111.2 Mb) > (54.5 s / 78.4 Mb) > (32 s / 59.6 Mb)
25 2 1/3 7,6,5 ⊥ (12.9 s / 149.7 Mb) > (93.9 s / 104.1 Mb) ∼ (102.6 s / 251.1 Mb)
25 2 1/3 10,7,8 ⊥ (22.5 s / 227 Mb) > (178.3 s / 143.4 Mb) ∼ (187.5 s / 360.3 Mb)
25 3 1 4,4,4 > (4 s / 26.3 Mb) > (16.3 s / 41.5 Mb) > (11.2 s / 34.3 Mb)
25 3 1 7,6,5 > (4.5 s / 28.5 Mb) > (23.1 s / 50.5 Mb) > (14.1 s / 39.1 Mb)
25 3 1 10,7,8 ⊥ (6.8 s / 83.9 Mb) > (38.4 s / 65.2 Mb) ∼ (46.9 s / 155.5 Mb)
25 3 1/3 4,4,4 > (7.9 s / 36.9 Mb) > (49.7 s / 75.6 Mb) > (29.6 s / 56.8 Mb)
25 3 1/3 7,6,5 > (12.3 s / 43.4 Mb) > (87.3 s / 100.1 Mb) > (45.2 s / 70.9 Mb)
25 3 1/3 10,7,8 ⊥ (21.4 s / 196.2 Mb) > (173 s / 141.2 Mb) ∼ (185.7 s / 356.5 Mb)

Table 9: Results of the coffee machine example over bi-infinite for k ≤ 25.

34

k ν δ T1, T2, T3 complete (time / mem) TH1 outcome (time / mem) TH2 outcome (time / mem)

30 1 1 4,4,4 ⊥ (6.8 s / 93.2 Mb) > (24 s / 51.6 Mb) > (16.7 s / 43 Mb)
30 1 1 7,6,5 ∞ > (34.9 s / 63.2 Mb) > (21.6 s / 49.3 Mb)
30 1 1 10,7,8 ∞ > (55.3 s / 80 Mb) > (33 s / 61 Mb)
30 1 1/3 4,4,4 ∞ > (82.3 s / 96.6 Mb) ∼ (101.5 s / 248.5 Mb)
30 1 1/3 7,6,5 ∞ > (142.7 s / 127.3 Mb) ∼ (156.1 s / 343 Mb)
30 1 1/3 10,7,8 ∞ > (274.2 s / 174.2 Mb) ∼ (287.8 s / 476.1 Mb)
30 2 1 4,4,4 ∞ > (23.7 s / 51.1 Mb) > (16.1 s / 42.2 Mb)
30 2 1 7,6,5 ∞ > (34.5 s / 62.3 Mb) ∼ (43.9 s / 159.6 Mb)
30 2 1 10,7,8 ∞ > (56.2 s / 79.2 Mb) ∼ (68.1 s / 193.7 Mb)
30 2 1/3 4,4,4 ∞ > (78.2 s / 94 Mb) > (45.5 s / 71.2 Mb)
30 2 1/3 7,6,5 ∞ > (135.3 s / 124.7 Mb) ∼ (149.3 s / 315.1 Mb)
30 2 1/3 10,7,8 ∞ > (261.6 s / 171.6 Mb) ∼ (274.4 s / 443.5 Mb)
30 3 1 4,4,4 ∞ > (22.3 s / 50 Mb) > (15.5 s / 41 Mb)
30 3 1 7,6,5 ∞ > (33.3 s / 60.8 Mb) > (19.6 s / 46.8 Mb)
30 3 1 10,7,8 ∞ > (55.5 s / 78.3 Mb) ∼ (65.3 s / 189.2 Mb)
30 3 1/3 4,4,4 ∞ > (72.9 s / 90.7 Mb) > (41.3 s / 67.9 Mb)
30 3 1/3 7,6,5 ∞ > (124.5 s / 119.9 Mb) > (63.5 s / 84.7 Mb)
30 3 1/3 10,7,8 ∞ > (250.4 s / 168.9 Mb) ∼ (268.1 s / 377 Mb)
35 1 1 4,4,4 ∞ > (31.2 s / 60.4 Mb) > (21.6 s / 50.1 Mb)
35 1 1 7,6,5 ∞ > (46.1 s / 73.5 Mb) > (28.2 s / 57.3 Mb)
35 1 1 10,7,8 ∞ > (73.3 s / 93 Mb) > (43.5 s / 71 Mb)
35 1 1/3 4,4,4 ∞ > (105.7 s / 112.3 Mb) ∼ (129.7 s / 305 Mb)
35 1 1/3 7,6,5 ∞ > (182.9 s / 148 Mb) ∼ (199.4 s / 378.8 Mb)
35 1 1/3 10,7,8 ∞ > (344.2 s / 202.5 Mb) ∼ (369.4 s / 608.9 Mb)
35 2 1 4,4,4 ∞ > (29.9 s / 59.4 Mb) > (21.1 s / 49.1 Mb)
35 2 1 7,6,5 ∞ > (45.2 s / 72.5 Mb) ∼ (56.4 s / 199.5 Mb)
35 2 1 10,7,8 ∞ > (71.9 s / 92 Mb) ∼ (87.6 s / 234.7 Mb)
35 2 1/3 4,4,4 ∞ > (100.2 s / 109.3 Mb) > (58.2 s / 82.8 Mb)
35 2 1/3 7,6,5 ∞ > (175.8 s / 144.9 Mb) ∼ (189.2 s / 360.7 Mb)
35 2 1/3 10,7,8 ∞ > (338.1 s / 199.4 Mb) ∼ (351.4 s / 543.2 Mb)
35 3 1 4,4,4 ∞ > (28.6 s / 58.1 Mb) > (19.6 s / 47.7 Mb)
35 3 1 7,6,5 ∞ > (42 s / 70.7 Mb) > (25.8 s / 54.5 Mb)
35 3 1 10,7,8 ∞ > (69.7 s / 91 Mb) ∼ (83.7 s / 235.3 Mb)
35 3 1/3 4,4,4 ∞ > (93.4 s / 105.4 Mb) > (53.2 s / 79 Mb)
35 3 1/3 7,6,5 ∞ > (161.1 s / 139.4 Mb) > (82.3 s / 98.5 Mb)
35 3 1/3 10,7,8 ∞ > (320.4 s / 196.3 Mb) ∼ (339.6 s / 517.7 Mb)
40 1 1 4,4,4 ∞ > (39.6 s / 68.9 Mb) > (27.6 s / 57.1 Mb)
40 1 1 7,6,5 ∞ > (59.6 s / 83.8 Mb) > (36.4 s / 65.4 Mb)
40 1 1 10,7,8 ∞ > (94.3 s / 106.1 Mb) > (55.5 s / 81 Mb)
40 1 1/3 4,4,4 ∞ > (135.6 s / 128 Mb) ∼ (167.2 s / 341.8 Mb)
40 1 1/3 7,6,5 ∞ > (244.7 s / 168.6 Mb) ∼ (255.4 s / 442.7 Mb)
40 1 1/3 10,7,8 ∞ > (446.2 s / 230.7 Mb) ∼ (472.8 s / 755.3 Mb)
40 2 1 4,4,4 ∞ > (38.3 s / 67.7 Mb) > (26.4 s / 56 Mb)
40 2 1 7,6,5 ∞ > (57.4 s / 82.7 Mb) ∼ (72 s / 232.6 Mb)
40 2 1 10,7,8 ∞ > (93.1 s / 104.9 Mb) ∼ (112.1 s / 294.8 Mb)
40 2 1/3 4,4,4 ∞ > (127.5 s / 124.5 Mb) > (74.6 s / 94.5 Mb)
40 2 1/3 7,6,5 ∞ > (224.6 s / 165.2 Mb) ∼ (240.6 s / 400 Mb)
40 2 1/3 10,7,8 ∞ > (431.4 s / 227.2 Mb) ∼ (452.9 s / 761.2 Mb)
40 3 1 4,4,4 ∞ > (36.3 s / 66.2 Mb) > (25.5 s / 54.5 Mb)
40 3 1 7,6,5 ∞ > (53.3 s / 80.6 Mb) > (32.3 s / 62.2 Mb)
40 3 1 10,7,8 ∞ > (89.3 s / 103.8 Mb) ∼ (106.7 s / 284.8 Mb)
40 3 1/3 4,4,4 ∞ > (118.6 s / 120.1 Mb) > (67.6 s / 90.1 Mb)
40 3 1/3 7,6,5 ∞ > (207.2 s / 158.8 Mb) > (104.9 s / 112.3 Mb)
40 3 1/3 10,7,8 ∞ > (420.4 s / 223.7 Mb) ∼ (439.5 s / 630.8 Mb)
45 1 1 4,4,4 ∞ > (50.1 s / 77.4 Mb) > (34.2 s / 64.2 Mb)
45 1 1 7,6,5 ∞ > (73.5 s / 94.1 Mb) > (45.2 s / 73.5 Mb)
45 1 1 10,7,8 ∞ > (116.5 s / 119.1 Mb) > (69.1 s / 91 Mb)
45 1 1/3 4,4,4 ∞ > (169.4 s / 143.7 Mb) ∼ (209 s / 409 Mb)
45 1 1/3 7,6,5 ∞ > (294.6 s / 189.3 Mb) ∼ (321.7 s / 603.8 Mb)
45 1 1/3 10,7,8 ∞ > (575.1 s / 258.9 Mb) ∼ (592.8 s / 963.7 Mb)
45 2 1 4,4,4 ∞ > (48 s / 76.1 Mb) > (32.9 s / 62.9 Mb)
45 2 1 7,6,5 ∞ > (72 s / 92.8 Mb) ∼ (90.1 s / 276 Mb)
45 2 1 10,7,8 ∞ > (114.5 s / 117.8 Mb) ∼ (140 s / 332.7 Mb)
45 2 1/3 4,4,4 ∞ > (161 s / 139.8 Mb) > (94.1 s / 106.2 Mb)
45 2 1/3 7,6,5 ∞ > (283.6 s / 185.4 Mb) ∼ (302.4 s / 551 Mb)
45 2 1/3 10,7,8 ∞ > (544.1 s / 255 Mb) ∼ (566.2 s / 652.6 Mb)
45 3 1 4,4,4 ∞ > (45.6 s / 74.4 Mb) > (31.2 s / 61.2 Mb)
45 3 1 7,6,5 ∞ > (66.8 s / 90.5 Mb) > (40.8 s / 69.8 Mb)
45 3 1 10,7,8 ∞ > (112.2 s / 116.5 Mb) ∼ (133.8 s / 340.1 Mb)
45 3 1/3 4,4,4 ∞ > (149.2 s / 134.9 Mb) > (85.3 s / 101.3 Mb)
45 3 1/3 7,6,5 ∞ > (260.2 s / 178.3 Mb) > (131.9 s / 126.2 Mb)
45 3 1/3 10,7,8 ∞ > (525.9 s / 251.1 Mb) ∼ (549.1 s / 755.2 Mb)
50 1 1 4,4,4 ∞ > (60.8 s / 85.8 Mb) > (42.1 s / 71.2 Mb)
50 1 1 7,6,5 ∞ > (89.8 s / 104.4 Mb) > (54.4 s / 81.6 Mb)
50 1 1 10,7,8 ∞ > (143 s / 132.1 Mb) > (84 s / 101 Mb)
50 1 1/3 4,4,4 ∞ > (208 s / 159.4 Mb) ∼ (254.9 s / 461.5 Mb)
50 1 1/3 7,6,5 ∞ > (360.4 s / 209.9 Mb) ∼ (390.9 s / 603.7 Mb)
50 1 1/3 10,7,8 ∞ > (684.2 s / 287.2 Mb) ∼ (741.3 s / 907.5 Mb)
50 2 1 4,4,4 ∞ > (57.9 s / 84.4 Mb) > (39.9 s / 69.8 Mb)
50 2 1 7,6,5 ∞ > (86.4 s / 103 Mb) ∼ (108.4 s / 334.5 Mb)
50 2 1 10,7,8 ∞ > (140.9 s / 130.7 Mb) ∼ (169.2 s / 386.5 Mb)
50 2 1/3 4,4,4 ∞ > (195.6 s / 155.1 Mb) > (114 s / 117.9 Mb)
50 2 1/3 7,6,5 ∞ > (344.4 s / 205.6 Mb) ∼ (368.9 s / 626.2 Mb)
50 2 1/3 10,7,8 ∞ > (665.5 s / 282.8 Mb) ∼ (692.2 s / 796.8 Mb)
50 3 1 4,4,4 ∞ > (54.9 s / 82.5 Mb) > (37.6 s / 67.9 Mb)
50 3 1 7,6,5 ∞ > (80.8 s / 100.4 Mb) > (49 s / 77.5 Mb)
50 3 1 10,7,8 ∞ > (136.2 s / 129.3 Mb) ∼ (160.3 s / 389.1 Mb)
50 3 1/3 4,4,4 ∞ > (183 s / 149.7 Mb) > (103.3 s / 112.4 Mb)
50 3 1/3 7,6,5 ∞ > (314.3 s / 197.7 Mb) > (160.4 s / 140.1 Mb)
50 3 1/3 10,7,8 ∞ > (642.5 s / 278.5 Mb) ∼ (663.9 s / 815.3 Mb)

Table 10: Results of the coffee machine example over bi-infinite for k > 25.
35

original formulas represent.
The technique has a three-fold incompleteness: it considers only a subset of

generic MTL formulas, it verifies only “sufficiently slow” dense-time behaviors
(although the “speed” of the behaviors can be modulated), and the analysis of
the discretized formulas may yield inconclusive results.

The technique is simple to implement in practice, and we performed some ex-
periments with it, through a bounded validity checker for discrete-time formulas.
The results are promising in that they show that the effects of incompleteness
can be mitigated in practice, and the computational effort required to check the
discretized formulas is usually acceptably small.

Future work in this line of research will follow three main directions. First,
advances and generalizations in the notion of sampling invariance will yield
extensions of the discretization techniques, both in terms of classes of MTL
formulas that can be handled (for instance a relaxation of the nesting-freeness
requirement) and in the strength and form of the χ constraint that restricts
the behaviors we consider. Second, heuristics and methods will be developed
to guide the writing of dense-time specifications in a form that is amenable to
the application of the discretization techniques. Third, the tool support can
be extended and enhanced, through the use of additional engines, as well as in
supporting the aforementioned methods.

Acknowledgments

We thank Paritosh Pandya for discussions suggesting to apply the notion of
sampling invariance to dense-time verification through discretization, and Mario
Arrigoni Neri for providing a sketch of the coffee machine example.

References

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AH93] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and
expressiveness. Information and Computation, 104(1):35–77, 1993.

[AL94] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real-time.
ACM Transactions on Programming Languages and Systems, 16(5):1543–
1571, 1994.

[AMP98] Eugene Asarin, Oded Maler, and Amir Pnueli. On discretization of de-
lays in timed automata and digital circuits. In Davide Sangiorgi and
Robert de Simone, editors, Proceedings of the 9th International Conference
on Concurrency Theory (CONCUR’98), volume 1466 of Lecture Notes in
Computer Science, pages 470–484. Springer-Verlag, 1998.

[BER94] Ahmed Bouajjani, Rachid Echahed, and Riadh Robbana. Verifying invari-
ance properties of timed systems with duration variables. In Proceedings
of the 3rd International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems (FTRTFT’94), volume 863 of Lecture Notes
in Computer Science, pages 193–210. Springer-Verlag, 1994.

36

[BHJ+06] Armin Biere, Keijo Heljanko, Tommi Junttila, Timo Latvala, and Viktor
Schuppan. Linear encodings of bounded LTL model checking. Logical
Methods in Computer Science, 2(5:5):1–64, 2006.

[BLN03] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A tool for
BDD-based verification of real-time systems. In Warren A. Hunt Jr. and
Fabio Somenzi, editors, Proceedings of the 15th International Conference
on Computer Aided Verification (CAV’03), volume 2725 of Lecture Notes
in Computer Science, pages 122–125. Springer-Verlag, 2003.

[BMT99] Marius Bozga, Oded Maler, and Stavros Tripakis. Efficient verification
of timed automata using dense and discrete time semantics. In Lau-
rence Pierre and Thomas Kropf, editors, Proceedings of the 10th Correct
Hardware Design and Verification Methods Advanced Research Working
Conference (CHARME’99), volume 1703 of Lecture Notes in Computer
Science, pages 125–141. Springer-Verlag, 1999.

[Boš99] Dragan Bošnački. Digitization of timed automata. In Proceedings of the
4th International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’99), pages 283–302, 1999.

[CHR91] Zhou Chaochen, Charles Anthony Richard Hoare, and Anders P. Ravn. A
calculus of duration. Information Processing Letters, 40(5):269–276, 1991.

[CLT07] Edmund M. Clarke, Flavio Lerda, and Muralidhar Talupur. An abstrac-
tion technique for real-time verification. In Proceedings of the GM R&D
Workshop on Next Generation Design and Verification Methodologies for
Distributed Embedded Control System, 2007.

[CP03] Gaurav Chakravorty and Paritosh K. Pandya. Digiziting interval dura-
tion logic. In Warren A. Hunt, Jr. and Fabio Somenzi, editors, Proceed-
ings of the 15th International Conference on Computer Aided Verification
(CAV’03), volume 2725 of Lecture Notes in Computer Science, pages 167–
179. Springer-Verlag, 2003.

[dM95] Luca de Alfaro and Zohar Manna. Verification in continuous time by
discrete reasoning. In Vangalur S. Alagar and Maurice Nivat, editors,
Proceedings of the 4th International Conference on Algebraic Methodology
and Software Technology (AMAST’95), volume 936 of Lecture Notes in
Computer Science, pages 292–306. Springer-Verlag, 1995.

[FMMR07] Carlo A. Furia, Dino Mandrioli, Angelo Morzenti, and Matteo Rossi. Mod-
eling time in computing: a taxonomy and a comparative survey. Technical
Report 2007.22, Dipartimento di Elettronica e Informazione, Politecnico
di Milano, January 2007.

[FR05] Carlo A. Furia and Matteo Rossi. When discrete met continuous: on
the integration of discrete- and continuous-time metric temporal logics.
Technical Report 2005.44, Dipartimento di Elettronica e Informazione,
Politecnico di Milano, October 2005.

[FR06] Carlo A. Furia and Matteo Rossi. Integrating discrete- and continuous-
time metric temporal logics through sampling. In Eugene Asarin and Pa-
tricia Bouyer, editors, Proceedings of the 4th International Conference on
Formal Modelling and Analysis of Timed Systems (FORMATS’06), vol-
ume 4202 of Lecture Notes in Computer Science, pages 215–229. Springer-
Verlag, September 2006.

37

[Frä96] Martin Fränzle. Decidability of duration calculi on restricted model
classes. Technical Report Kiel MF 21/1, Institut für Informatik und Prak-
tische Mathematik, Christian-Albrechts Universität Kiel, July 1996.

[Frä02] Martin Fränzle. Take it NP-easy: Bounded model construction for Du-
ration Calculus. In Werner Damm and Ernst-Rüdiger Olderog, editors,
Proceedings of the 7th International Symposium on Formal Techniques
in Real-Time and Fault-Tolerant Systems (FTRTFT’02), volume 2469 of
Lecture Notes in Computer Science, pages 245–264. Springer-Verlag, 2002.

[Fur07] Carlo Alberto Furia. Scaling up the formal analysis of real-time systems.
PhD thesis, Dipartimento di Elettronica e Informazione, Politecnico di
Milano, May 2007.

[GD00] Marc Geilen and Dennis Dams. An on-the-fly tableau construction for
a real-time temporal logic. In Proceedings of the 6th International Sym-
posium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’00), volume 1926 of Lecture Notes in Computer Science, pages
276–290. Springer-Verlag, 2000.

[GM01] Angelo Gargantini and Angelo Morzenti. Automated deductive require-
ment analysis of critical systems. ACM Transactions on Software Engi-
neering and Methodology, 10(3):255–307, 2001.

[GPV94] Aleks Göllü, Anuj Puri, and Pravin Varaiya. Discretization of timed au-
tomata. In Proceedings of the 33rd Conference on Decision and Control,
pages 957–958, 1994.

[Hen98] Thomas A. Henzinger. It’s about time: Real-time logics reviewed. In Da-
vide Sangiorgi and Robert de Simone, editors, Proceedings of the 9th Inter-
national Conference on Concurrency Theory (CONCUR’98), volume 1466
of Lecture Notes in Computer Science, pages 439–454. Springer-Verlag,
1998.

[HG96] Dang Van Hung and Phan Hong Giang. Sampling semantics of Dura-
tion Calculus. In Joachim Parrow Bengt Jonsson, editor, Proceedings of
the 4th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (FTRTFT’96), volume 1135 of Lecture Notes in
Computer Science, pages 188–207. Springer-Verlag, 1996.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya.
What’s decidable about hybrid automata. Journal of Computer and Sys-
tem Sciences, 57(1):94–124, 1998.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What good
are digital clocks? In Werner Kuich, editor, Proceedings of the 19th
International Colloquium on Automata, Languages and Programming
(ICALP’92), volume 623 of Lecture Notes in Computer Science, pages
545–558. Springer-Verlag, 1992.

[KP05] Pavel Krčál and Radek Pelánek. On sampled semantics of timed systems.
In R. Ramanujam and Sandeep Sen, editors, Proceedings of the 25th In-
ternational Conference on Foundations of Software Technology and Theo-
retical Computer Science (FSTTCS’05), volume 3821 of Lecture Notes in
Computer Science, pages 310–321. Springer-Verlag, 2005.

38

[MNP06] Oded Maler, Dejan Nickovic, and Amir Pnueli. From MITL to timed au-
tomata. In Eugene Asarin and Patricia Bouyer, editors, Proceedings of the
4th International Conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’06), volume 4202 of Lecture Notes in Computer Sci-
ence, pages 274–289. Springer-Verlag, 2006.

[MP93] Zohar Manna and Amir Pnueli. Models for reactivity. Acta Informatica,
30(2):609–678, 1993.

[MP95] Oded Maler and Amir Pnueli. Timing analysis of asynchronous circuits
using timed automata. In Paolo Camurati and Hans Eveking, editors, Pro-
ceedings of the Advanced Research Working Conference on Correct Hard-
ware Design and Verification Methods, volume 987 of Lecture Notes in
Computer Science, pages 189–205. Springer-Verlag, 1995.

[MPSS03] Angelo Morzenti, Matteo Pradella, Pierluigi San Pietro, and Paola Spo-
letini. Model-checking TRIO specifications in SPIN. In Keijiro Araki,
Stefania Gnesi, and Dino Mandrioli, editors, Proceedings of International
Symposium of Formal Methods Europe (FME’03), volume 2805 of Lecture
Notes in Computer Science, pages 542–561. Springer-Verlag, 2003.

[Oua02] Joël Ouaknine. Digitisation and full abstraction for dense-time model
checking. In Joost-Pieter Katoen and Perdita Stevens, editors, Proceed-
ings of the 8th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’02), volume 2280 of Lec-
ture Notes in Computer Science, pages 37–51. Springer-Verlag, 2002.

[OW03] Joël Ouaknine and James Worrell. Revisiting digitization, robustness,
and decidability for timed automata. In Proceedings of the 18th Annual
IEEE Symposium on Logic in Computer Science (LICS’03), pages 198–
207. IEEE Computer Society Press, 2003.

[Pan02] Paritosh K. Pandya. Interval Duration Logic: expressiveness and decid-
ability. In Proceedings of the Workshop on Theory and Practice of Timed
Systems (TPTS’02), volume 62(6) of Electronic Notes in Theoretical Com-
puter Science. Elsevier, 2002.

[PMS] Matteo Pradella, Angelo Morzenti, and Pierluigi San Pietro. The sym-
metry of the past and of the future: Bi-infinite time in the verification of
temporal properties. Submitted.

[Pra07] Matteo Pradella. Zot. http://www.elet.polimi.it/upload/pradella,
March 2007.

[Sch00] Steven Schneider. Concurrent and Real-Time Systems: The CSP Ap-
proach. John Wiley & Sons, 2000.

[Smo01] Lee Smolin. Three roads to quantum gravity. Basic Books, 2001.

[SPC05] Babita Sharma, Paritosh K. Pandya, and Supratik Chakraborty. Bounded
validity checking of interval duration logic. In Nicolas Halbwachs and
Lenore D. Zuck, editors, Proceedings of the 11th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’05), volume 3440 of Lecture Notes in Computer Science, pages
301–316. Springer-Verlag, 2005.

[Spo05] Paola Spoletini. Verification of Temporal Logic Specification via Model
Checking. PhD thesis, Dipartimento di Elettronica e Informazione, Po-
litecnico di Milano, May 2005.

39

[SSS00] Mary Sheeran, Satnam Singh, and Gunnar St̊almarck. Checking safety
properties using induction and a SAT-solver. In Warren A. Hunt Jr. and
Steven D. Johnson, editors, Proceedings of the 3rd International Confer-
ence on Formal Methods in Computer-Aided Design (FMCAD’00), vol-
ume 1954 of Lecture Notes in Computer Science, pages 108–125. Springer-
Verlag, 2000.

[Wil94] Thomas Wilke. Specifying timed state sequences in powerful decidable
logics and timed automata. In Hans Langmaack, Willem P. de Roever,
and Jan Vytopil, editors, Proceedings of the 3rd International Sympo-
sium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTFT’94), volume 863 of Lecture Notes in Computer Science, pages
694–715. Springer-Verlag, 1994.

40

	Introduction
	Related Works

	Preliminaries
	Yet Another MTL Variant
	MTL Syntax and Semantics
	MTL+/* Syntax and Semantics
	Granularity

	Sampling Invariance
	Discrete-Time Bounded Validity Checking

	Discretization of Dense-Time MTL Through Sampling
	Over Approximation
	Under Approximation
	System Approximations
	Validity Checking Procedure
	Approximation Checking Algorithm
	Incompleteness of the Algorithm

	Examples and Experiments
	Examples
	The Controlled Reservoir
	The Coffee Machine

	Experiments

	Conclusions

