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Abstract When a method throws an exception—its exception precondition—is a cru-
cial element of the method’s documentation that clients should know to properly use
it. Unfortunately, exceptional behavior is often poorly documented, and sensitive to
changes in a project’s implementation details that can be onerous to keep synchronized
with the documentation.

We present wit, an automated technique that extracts the exception preconditions
of Java methods and constructors. wit uses static analysis to analyze the paths in a
method’s implementation that lead to throwing an exception. wit’s analysis is precise,
in that it only reports exception preconditions that are correct and correspond to
feasible exceptional behavior. It is also lightweight: it only needs the source code of the
class (or classes) to be analyzed—without building or running the whole project. To
this end, its design uses heuristics that give up some completeness (wit cannot infer all
exception preconditions) in exchange for precision and ease of applicability.

We ran wit on the JDK and 46 Java projects, where it discovered 30 487 excep-
tion preconditions in 24 461 methods, taking less than two seconds per analyzed public
method on average. A manual analysis of a significant sample of these exception pre-
conditions confirmed that wit is 100% precise, and demonstrated that it can accurately
and automatically document the exceptional behavior of Java methods.
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1 Introduction

To correctly use a method, we must know its precondition, which specifies the valid
inputs: those that the method’s implementation can handle correctly. In programming
languages like Java, a method’s implementation may throw an exception to signal that
a call violates its precondition. If it does so, knowing the method’s exceptional behavior
is equivalent to knowing (the complement of) its precondition. Ideally, a method’s ex-
ceptional behavior should be described in the method’s documentation (for example, in
its Javadoc comments) and thoroughly tested. In practice, it is known that a method’s
documentation can be incomplete or inconsistent with its implementation [30,54], and
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that only a fraction of a project’s test suite exercises exceptional behavior [26]. This
ultimately limits the usability, in a broad sense, of insufficiently documented methods:
without precisely knowing its precondition, programmers may have a hard time calling
a method; test-case generation may generate invalid tests that violate the method’s
precondition; program analysis may have to explicitly follow the implementation of
every called method, which does not scale since it is not modular.

To alleviate these problems, we present wit (What Is Thrown? ): a technique to
automatically infer the exception preconditions—the input conditions under which an
exception is thrown—of Java methods. As we discuss in Section 7, extracting pre-
conditions and other kinds of specification from implementations is a broadly studied
problem in software engineering (and, more generally, computer science). Our wit ap-
proach is novel because it offers a distinct combination of features. First, wit is precise:
since it is based on static analysis, it reports preconditions only when it can deter-
mine with certainty that they are correct. It is also lightweight, as it is applicable
to the source code of individual classes of a large project without requiring to build
the project (or even to have access to all project dependencies), and can combine its
analysis of multiple projects in a modular fashion.

A key assumption underlying wit’s design is that a significant fraction of a method’s
exceptional executions are usually simpler, shorter, and easier to identify than the
other, normal, executions. Therefore, wit’s analysis (which we describe in detail in
Section 3) relies on several heuristics that drastically limit the depth and complexity
of the program paths it explores—for example, it bounds the length of paths and
number of calls that it can follow. Whenever a heuristics fails, wit gives up analyzing
a certain path for exceptional behavior. In general, this limits the number of exception
preconditions that wit can reliably discover. However, if our underlying assumption
holds, wit can still be useful and effective, as well as lightweight and scalable.

We implemented wit in a tool with the same name, which performs a lightweight
static analysis of Java classes using JavaParser for parsing and the Z3 SMT solver
for checking which program paths are feasible. Section 4 describes an experimental
evaluation where we applied wit to several modules of Java 11’s JDK, and 46 Java
projects—including several widely used libraries—to discover the exception precondi-
tions of their public methods. wit inferred 30 487 exception preconditions of 24 461
methods—running for 1.9 seconds on average on each of the 460 032 analyzed public
methods.

A manual analysis of a significant random sample of the inferred preconditions
confirmed that wit is precise: all manually checked preconditions were correct. It also
revealed that it could retrieve 9–83%1 of all supported exception preconditions in
project Apache Commons IO—achieving even higher recall on projects that use few cur-
rently unsupported Java features. Our empirical evaluation also indicates that wit can
be useful to programmers: 38% of the exception preconditions in the JDK’s sample
and 72% in the other projects’ were not already properly documented; and 7 pull
requests—extending the public documentation of open-source projects with a selection
of wit-inferred preconditions—were accepted by the projects’ maintainers.

1 The range depends on which features and which output of wit we consider; see Section 5.2
for all details.
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1.1 Contributions

In summary, the paper makes the following contributions:

– wit: a technique to automatically infer the exception preconditions of Java meth-
ods based on a novel combination of static analysis and heuristics that trade-off
exhaustiveness for high precision.

– An implementation of wit and an experimental evaluation targeting five JDK 11
modules and 46 open-source Java projects (including popular ones like Apache
Commons Lang, and the h2database), which demonstrates wit’s effectiveness, prac-
tical applicability to real-world projects, and usefulness.

– For reproducibility, wit’s implementation and the detailed experimental outputs
are available.2

1.2 Extended Version

This article extends our previous work What Is Thrown? Lightweight Precise Automatic
Extraction of Exception Preconditions in Java Methods, published at the ICSME 2022
conference [27] with improvements to the wit technique and its implementation, as
well as a substantial extension to the experimental evaluation, which now includes
a significant fraction of Java 11’s JDK libraries. Correspondingly, the experimental
evaluation also explicitly investigates the impact of one of wit’s new features: modular
analysis (introduced in Section 3.4).

URL References

In the paper, we refer to several URLs in order to document specific parts of a project’s
source code. We introduce these references by means of superscript numeric marks,
and list them at the end of the paper after the usual bibliographic references. These
superscripts are in blue between curly braces{2} so that they can be easily distinguished
from regular footnotes.

2 Showcase Examples of Using wit

We briefly present examples of applying wit to detect the exception preconditions of
library functions in two Apache projects: Dubbo{3} and Commons Lang.{4} The examples
showcase wit’s capabilities and practical usefulness: wit could automatically extract
exception preconditions in many methods of these two projects, including some that
were not documented (Section 2.1) or incorrectly documented (Section 2.2). Section 5.6
reports further empirical evidence that wit’s exception preconditions can be useful as
a source of documentation.

To better gauge wit’s capabilities, let us stress that the two Apache projects dis-
cussed in this section are widely used Java libraries; for instance, Dubbo’s GitHub
repository{5} has over 24 thousand forks and 36 thousand stars. As a result, they are
particularly well documented and tested [52,30]. The fact that wit could find some of
their few missing or inconsistent pieces of their documentation indicates that it has the
potential to be practically useful and widely applicable.

2 A replication package is available.{1}
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Listing 1: Excerpts of the implementation of two methods in Apache Dubbo’s class Bytes.
1 public static String bytes2base64(byte[] b, char[] code)
2 { return bytes2base64(b, 0, b.length, code); }
3

4 public static String bytes2base64(final byte[] bs, final int off, final int len, final
char[] code) {

5 if (off < 0) throw new IndexOutOfBoundsException();
6 if (len < 0) throw new IndexOutOfBoundsException();
7 if (off + len > bs.length) throw new IndexOutOfBoundsException();
8 if (code.length < 64) throw new IllegalArgumentException();
9 //...

10 }

2.1 Missing Documentation

Listing 1 shows an excerpt of two overloaded implementations of method bytes2base64,
which takes a byte array and represents it as a string in base 64. As we can see from
the initial lines in bytes2base64’s second implementation, the two methods have fairly
detailed preconditions; furthermore, since the first method calls the second with addi-
tional fixed argument values, the first’s precondition is a special case of the second’s.
Unfortunately, the documentation of these methods does not mention these precondi-
tions: for example, the second method’s Javadoc comment vaguely describes off and
len as simply “offset” and “length”, without clarifying that they should be non-negative
values. This lack of documentation about valid inputs decreases the usability of the
methods for users of the library.

Running wit on class Bytes automatically finds the preconditions of these (as well
as many other) methods, thus providing a useful form of rigorous documentation. For
instance, one of the exception preconditions found by wit for Listing 1’s second method:

throws: IndexOutOfBoundException
when: off >= 0 && len >= 0 && bs.length < len + off

example: [off=0, len=1, bs.length=0]

corresponds to the path that reaches line 7 in Listing 1. wit also understands that the
first method never throws this exception, but it can still throw others such as:

throws: IllegalArgumentException
when: b.length >= 0 && code.length < 64

example: [b.length=0, code.length=0]

In fact, wit only reports exception preconditions that correspond to feasible paths.
Each precondition comes with an example of argument values that make the precondi-
tion true. These are not directly usable as test inputs, since they describe the input’s
properties without constructing them; but they are useful complements to the precon-
dition expressions, and help users get a concrete idea of the exceptional behavior.

2.2 Inconsistent Documentation

Listing 2 shows the complete Javadoc documentation and a brief excerpt of method min

in the latest version of Apache Commons Lang’s class NumberUtils, which computes the
minimum of an array of integers. Unlike the previous example, min’s documentation
is detailed and clearly expresses the conditions under which an exception is thrown.
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Listing 2: Excerpt of the Javadoc comment and implementation of a method in Apache Commons
Lang’s class NumberUtils.

1 /** Returns the minimum value in an array.
2 * @param array an array, must not be null or empty
3 * @return the minimum value in the array
4 * @throws IllegalArgumentException if array is null
5 * @throws IllegalArgumentException if array is empty */
6 public static int min(final int... array) {
7 { validateArray(array); /* ... */ }

Java source CFG Local Expaths Global Expaths Feasible Paths Exception
Preconditions

�
a1 → a2 → · · · → aA
b1 → b2 → · · · → bB

· · ·

a1 → γ2 → γ3 → · · · → aA
a1 → δ2 → δ3 → · · · → aA
b1 → b2 → θ3 → · · · → δB

b1 → κ2 → b3 → λ4 → · · · → δB
· · ·

a1 → δ2 → δ3 → · · · → aA

throws: Error
when: x > 0

example: [x=1]

parsing

JavaParser

simple
paths

JGraphT

inlining SMT encoding
Z3

backward
substitution

SymPy

Fig. 1: An overview of how wit works. wit parses the source code of the Java classes to be ana-
lyzed, and builds a control-flow graph (CFG) of every method. It enumerates the simple paths
in every method’s CFG that may end with an exception (expaths). It then transforms these
expaths local to a specific method into global expaths by inlining method calls or previously
extracted exception preconditions (if they are available); this may transform a single local ex-
path into multiple global expaths. To determine which expaths are feasible, wit encodes their
constraints as an SMT problem and uses the Z3 SMT solver to check if they are satisfiable. It
finally transforms all feasible paths into exception preconditions.

Unfortunately, the documentation is partially incorrect: when array is null, min throws
a NullPointerException, not an IllegalArgumentException, as precisely reported by
wit: throws: NullPointerException when: array == null

This inconsistency is due to a change in the implementation of validateArray,
which is called by min to validate its input and uses methods of class Validate to
perform the validation. In version 3.12.0 of the library, validateArray switched{6} from
calling Validate.isTrue(a!=null) (which throws an IllegalArgumentException when
the check fails) to calling Validate.notNull(a) (which throws a NullPointerException

instead) to check that a is not null.
To help locate the source of any exceptional behavior, wit also outputs the line

where the exception is thrown, and possibly the triggering method call. In this ex-
ample, it would clearly indicate that the exceptional behavior comes from a call to
Validate.notNull.

This information can help detect and debug such inconsistencies, which would be
quite valuable to project developers and users. As we discuss in Section 5.6, maintainers
of Apache libraries were appreciative of our pull requests which extended the projects’
documentation with some of wit’s exception preconditions.

3 How wit Works

Figure 1 overviews how wit’s analysis works. This section details each step and discusses
some features of its current implementation.

wit inputs the source code of some Java classes; it analyzes the methods and con-
structors of those classes to determine their exception preconditions, that is the condi-
tions on the methods’ input that lead to the methods throwing an exception. It then
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Listing 3: Excerpt of method ArrayUtils.insert in Apache Commons, and some of the methods
it calls.

1 public static boolean[] insert(final int k, final boolean[] a, final boolean... v) {
2 if (a == null) { return null; }
3 if (isEmpty(v)) { return clone(a); }
4 if (k < 0 || k > a.length)
5 { throw new IndexOutOfBoundsException(); }
6 // ...
7 }
8

9 public static boolean isEmpty(boolean[] x)
10 { return getLength(x) == 0; }
11

12 public static int getLength(boolean[] y)
13 { if (y == null) { return 0; } return y.length; }

outputs the exception preconditions it could find, together with their matching excep-
tion class, as well as examples of inputs that satisfy the exception preconditions. wit’s
analysis only needs the source code of the immediate classes to be analyzed: it does
not need a complete project’s source code, nor to compile or build the project.

wit can analyze both regular methods and constructors of a class. Thus, for brevity,
we use the term “methods” to collectively refer to both methods and constructors.

3.1 Parsing and CFG

wit parses the source code given as input using JavaParser,{7} and constructs a control-
flow graph (CFG) of the methods in the input classes using library JGraphT.{8} More
precisely, we build a CFG for each method m individually; and annotate branches in
the CFG with each branch’s Boolean condition.

Listing 3 shows excerpts of 3 methods of class ArrayUtils{9} in Apache Commons

Lang. Method insert puts some values v into an array a of Booleans at a given index k.
The initial part of its implementation calls another method, isEmpty, of the same class
to determine if v is empty; in turn, isEmpty calls method getLength. wit builds CFGs
for insert, isEmpty, and getLength, since they are all part of the input source code.

3.2 Local Exception Paths

When analyzing a method m, wit collects its local exception paths (“expaths” for short).
These are all simple directed paths3 on m’s CFG that end with a node corresponding to
a statement that may throw an exception—either explicitly with a throw or indirectly
with a a call (which may return exceptionally).

In Listing 3’s example, one of insert’s local expaths p goes through the else branch
on lines 2–3 and through the then branch on line 4, ending with the throw on line 5:

p : if2
a!=null−−−−−−→ if3

!isEmpty(v)−−−−−−−−−→ if4
k<0 || k>a.length
−−−−−−−−−−−−−−→ throw5

3 A simple path is one where any one node appears at most once. We compute them using
JGraphT’s AllDirectedPaths method.{10}
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3.3 Global Exception Paths

After collecting expaths local to each method, wit converts them into global expaths
by inlining calls to other methods.

Given a local expath ℓ, for each node nx in ℓ that calls some other method x, wit

checks whether x’s CFG is available (that is, whether x’s implementation was part of
the input). If it is, wit enumerates all simple paths that go through the CFG of x, and
splices each of them into ℓ at nx. In other words, it transforms the local path ℓ so
that it follows inter-method calls. Since a method usually has multiple paths, one local
expath may determine several global expaths after inlining. wit inlines calls recursively
(with some limits that we discuss in Section 3.7).

When a called method x’s CFG is not available in the current run, wit first looks
whether it analyzed x’s source code in some of its previous runs. If this is the case,
wit replaces the call to x with x’s exception preconditions it extracted in the previous
runs—following the modular analysis procedure we explain in Section 3.4. Otherwise, if
no information about x is available or the user deliberately disabled modular analysis,
wit doesn’t inline calls to it and marks them as “opaque”.

wit inlines the call to isEmpty in local expath p (Listing 3’s example) since isEmpty

is part of the same analyzed class ArrayUtils. Inlining the call replaces p’s edge

if3
!isEmpty(v)−−−−−−−−−−→ if4 with getLength’s only path: if3

!(getLength(v)==0)−−−−−−−−−−−−−−−−→ if4.
Since the implementation of getLength is available too, wit recursively inlines its two
paths, which finally gives two global expaths p1, p2 that inline insert’s local expath
p’s calls:

p1 : if2 → if3 → if13
v==null, 0 != 0−−−−−−−−−−−−→ if4 → throw5

p2 : if2 → if3 → if13
v!=null,v.length != 0−−−−−−−−−−−−−−−−−−→ if4 → throw5

3.4 Modular Analysis

By default, wit saves all exception preconditions it extracts—together with their asso-
ciated global exception paths—in a database, so that they can be reused to perform a
modular analysis. This is useful whenever a method m in some project A calls another
method n in some other project B. If we provide A and B in a single run, wit’s analysis
has access to all the source code; thus, in principle, it can inline the code of B’s n when
analyzing A’s m. However, this may not scale, as the number of paths to be considered
grows like the product of m’s and n’s paths. To perform modular analysis, we instead
first run wit on B alone; then, we run it on A alone. When wit analyzes m in A, it finds
that it calls an external method n in B; thus, it reuses n’s saved exception precondition
information to analyze the exceptional behavior of m when analyzing A without having
to analyze n again (or without treating it like an opaque method, which may miss
information).4

4 “Modular analysis” simply refers to wit’s capability of reusing the exception preconditions
of previously analyzed projects. The user controls how this capability is applied: wit will always
access the complete source code of the project or projects given to it as input; if the user wants
to analyze a project B separately from another project A, they will have to run wit twice (once
on B, and then once on A) with modular analysis enabled.
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Listing 4: An example of code that can benefit from modular analysis: method
RandomStringGenerator.generate() in project Commons Text calls method Validate.isTrue() in
another project Commons Lang.

1 // In project Commons Text, class RandomStringGenerator
2 public String generate(final int length) {
3 if (length == 0) {
4 return StringUtils.EMPTY;
5 }
6 Validate.isTrue(length > 0, "Length // ...
7 }
8

9 // In project Commons Lang, class Validate
10 public static void isTrue(final boolean expr, final String msg, final long value) {
11 if (!expr) {
12 throw new IllegalArgumentException(String.format(msg, Long.valueOf(value)));
13 }
14 }

More precisely, if modular analysis is enabled, whenever a node nx in a local expath
ℓ calls a method x that was analyzed in a previous run, wit replaces the call to x by
inlining any global exception path associated with x’s exception preconditions (and
replacing, as usual, x’s formal parameters with the actual call arguments). Just like
regular inlining (Section 3.3), this may introduce multiple global expaths for a single
call to x. It is necessary, in general, to consider all available global expaths for a called
method, so that all possible side effects of the call are accounted for. wit can use
both expres and maybes for modular analysis.5 Since maybes are not guaranteed to
be correct, any global expath that includes a maybe is automatically also classified as
maybe.

As an example of where modular analysis can improve wit’s capabilities, consider
Listing 4. Method generate{11} of class RandomStringGenerator in project Commons

Text calls method Validate.isTrue{12} in another project Commons Lang. If we run
wit on project Commons Text alone, the call to isTrue is marked as opaque, and hence
no exception precondition would be reported for this path. We could run wit on both
projects Commons Text and Commons Lang together; this would take a considerable
amount of time, and it would not scale to combining even more projects. Instead,
we can use wit’s modular analysis and first analyze Commons Lang in isolation; this
would report the exception precondition !expr for method validate.isTrue. Then,
when wit runs on Commons Text, it would replace the call to isTrue in generate with
if (!(length > 0)) throw new IllegalArgumentException(), which leads to infer-
ring exception precondition length <= 0 for this path in method generate.

As we will demonstrate in Section 5, modular analysis can boost wit’s output
and help achieve a better scalability. Implementation-wise, wit persists JSON objects
into a MongoDB{13} instance. For JSON serialization and deserialization, we combine
JavaParser’s serialization package{14} with the Moshi JSON library.{15}

5 “Expres” and “maybes” are precisely introduced in Section 3.5. In a nutshell, expres come
from expaths that are provably feasible, and hence they are correct by constructions; maybes
come from expaths with inconclusive feasibility analysis, and hence they are just educated
guesses that may be incorrect.
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Listing 5: Excerpt of the SMT encoding corresponding to global expath p1 of method insert
in Listing 2.

1 # logic variables
2 k = Int(’k’)
3 a_null = Bool(’a==null’)
4 a_length = Int(’a.length’)
5 c = [a_length >= 0, v_length >= 0] # implicit
6 c += [Not (a_null)] # a != null
7 x_null, x_length = v_null, v_length # call isEmpty
8 y_null, y_length = x_null, x_length # call getLength
9 c += [y_null] # y == null

10 getLength = 0 # return 0
11 isEmpty = (getLength == 0) # return getLength(x)==0
12 c += [Not(isEmpty)] # !isEmpty(v)
13 c += [Or(k < 0, k > a_length)] # k < 0 || k > a.length

3.5 Path Feasibility

wit builds global expaths only based on syntactic information in the CFGs; therefore,
some paths may be infeasible (not executable). To determine whether a global expath
is feasible, wit encodes it in logic form as an SMT (Satisfiability Modulo Theory)
formula [2], and uses the Z3 SMT solver [13] to determine whether the expath’s induced
constraints are feasible.

To this end, it first transforms the path into SSA (static single assignment) form,
where complex statements are broken down into simpler steps, and fresh variables
store the intermediate values of every expression. We designed a logic encoding of
Java’s fundamental types (int, boolean, byte, arrays, strings) with their most common
operations (including arithmetic, equality, length, contains, isEmpty), as well as of
a few widely used JDK library methods (such as Array.getLength). wit uses this
encoding to build an SMT formula ϕ corresponding to each global expath p: if ϕ is
satisfiable, then the global expath p is feasible, and hence it corresponds to a possible
exceptional behavior of method m.

wit encodes ϕ as a Python program using the Z3 SMT solver’s Z3Py Python API.6

Listing 5 shows a simplified excerpt of the SMT program encoding the feasibility of
insert’s global expath p1. First, it declares logic variables of the appropriate types to
encode program variables (e.g., k), their basic properties (e.g., a_length, which corre-
sponds to the Java expression a.length), and the values passed via method calls (e.g.,
getLength is an integer variable storing getLength()’s output). Then, it builds a list
c of constraints that capture the path constraints and the semantics of the statements
along the path. For example, a_length must be nonnegative, since it corresponds to
array a’s length (line 5); the properties of array v are copied to those of x, since insert’s
argument v is the actual argument for isEmpty’s formal argument x (line 7); and path
constraint !isEmpty(v) corresponds to the complement of Boolean variable isEmpty

(line 12). In this case, Z3 easily finds that the constraints in c are unsatisfiable, since
Not(0 == 0) is identically false. In contrast, the constraints corresponding to path p2
are satisfiable, and thus Z3 outputs a satisfying assignment of all variables in that case.

6 wit’s Z3 ad hoc encoding also handles aliasing by explicitly keeping track of possible aliases
along each checked path. Thanks to the other heuristics that limit path length (Section 3.7),
this approach is feasible in practice.
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Sometimes wit does not have sufficient information to determine with certainty
whether a path is feasible. When a path includes a call to an opaque method (whose
implementation is not available or when the analysis fails) wit’s feasibility check is
underconstrained. In these cases, wit still performs a feasibility check but reports any
results as maybe, to warn that the output may not be correct.

In Listing 3’s example, suppose that getLength’s implementation wasn’t available.
In this scenario, based on its signature, wit would only know that getLength returns
an integer without any constraints; therefore it would classify path p as feasible but
mark it as maybe since it is just an educated guess without correctness guarantees.

3.6 Exception Preconditions

A feasible path p identifies a range of inputs of the analyzed method m that trigger an ex-
ception. In order to characterize those inputs as an exception precondition, wit encodes
p’s constraints as a formula that only refers to m’s arguments, as well as to any mem-
bers that are accessible at m’s entry (such as the target object this, if m is an instance
method). To this end, it works backward from the last node of exception path p; it col-
lects all path constraints along p, while replacing any reference to local variables with
their definition. For example, method void f(int x){int y=x+1; if(y > 0)throw;}

has a single feasible expath with path condition y > 0, which becomes x + 1 > 0 af-
ter backward substitution through the assignment to variable y. Since x + 1 > 0 only
mentions argument x, it is a suitable exception precondition for method m.

Sometimes wit cannot build an exception precondition expression that only men-
tions arguments and other visible members. A common case is when a path includes
opaque calls: since the semantics or implementation of these calls is not available, any
expressions including them may not make sense in a precondition. In all these cases,
wit still reports the exception expression obtained by backward substitution, but marks
it as a maybe to indicate that it may not be correct. Another, more subtle case occurs
when the exception precondition Boolean expression includes calls to methods (as op-
posed to just variable lookups). If these methods are not pure (that is, they do not
change the program state), the precondition may be not well-formed. For instance, a
precondition x.inc() == 0, where calling inc increments the value of x. Here too, wit

is conservative and marks as maybe any exception precondition that involves calls to
methods that are not known to be pure.

Before outputting any exception preconditions to the user, wit simplifies them
to remove any redundancies and display them in a form that is easier to read. To
this end, it uses SymPy [28],{16} a Python library for symbolic mathematics. Java’s
syntax is sufficiently similar to C’s that we can also enable SymPy’s pretty printing
of expressions using C syntax, and then additionally tweak it to amend the remain-
ing differences with Java. While conceptually simple, the simplification step is cru-
cial to have readable exception preconditions. For example, SymPy simplifies the ugly
expression (!(x==null))&&(!(x==null))&&(0+1==1)&&(y<0||y>x.length) into the
much more readable (y > x.length || y < 0) && null != x, which doesn’t repeat
x != null and omits the tautology 0 + 1 == 1.

wit’s final output consists of a series of tuples with: (a) an exception precondition,
(b) whether it is a maybe, (c) the thrown exception type, (d) and an example of
inputs that satisfy the precondition (given by Z3’s successful satisfiability check). For
debugging, wit can also optionally report the complete throw statement (including any
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exception message or other arguments used to instantiate the exception object), the line
in the analyzed method m where the exception is thrown or propagated, and a sequence
of method calls starting from the analyzed method and ending in the throwing method.
Moreover, wit reports the generated Z3 and SymPy Python programs’ source code.

3.7 Heuristics and Limitations

Let us now zoom in on a few details of how wit’s implementation works, which clarify its
capabilities and limitations. To put these details into the right perspective, let us recall
wit’s design goals: it should be precise and lightweight; it’s acceptable if achieving these
qualities loses some generality—as long as a sizable fraction of exception preconditions
can be precisely determined.

Using maybes. As discussed in Section 3.5, wit provides two disjoint sets of
exceptional preconditions as output: expres and maybes. In practice, reporting both
gives users more flexibility in how to use wit’s output according to different use cases.
If correctness is crucial (for example, if one uses wit’s output as formal specification),
then users should only consider expres and ignore maybes. On the other hand, if some
degree of uncertainty in the correctness of an exception precondition is acceptable in
exchange for a higher recall, then users may also consider maybes. The snag is that they
may have to spend extra effort to validate the maybes, but this may be acceptable if
there exist practical validation means (for example, an extensive test suite). Any kind
of hybrid approach is also possible; for instance, one may first only use expres, but
consider using maybes selectively for a few methods where wit’s feasibility analysis
struggled due to the features used there.

Implicit exceptions. wit only tracks exceptions that are explicitly raised by a
throw statement; it does not consider low-level errors—such as division by zero, out-
of-bound array access, and buffer overflow—that are signaled by exceptions raised by
the JVM. This restriction is customary in techniques that infer exceptional behav-
ior, since implicitly thrown exceptions are “generally indicative of programming errors
rather than design choices [48]” [4], and usually do not belong in API-level docu-
mentation [15] and are best analyzed separately. Extending wit to also track implicit
exceptions would not be technically difficult; for example, one could first instrument
the code to be analyzed with explicit checks before any statement that may thrown
an implicit exception.7 However, indiscriminately considering all exceptions that are
thrown implicitly would produce a vast number of boilerplate exception preconditions
that are not specific to a method’s explicitly programmed behavior; hence, they would
be outside wit’s current focus.

Java features. wit’s CFG construction currently does not fully support some Java
features: instanceof operators, for-each loops, switch statements, and try/catch

blocks. When these features are used, the CFG may omit some paths that exist in
the actual program. (Supporting the latter three features is possible in principle, but
would substantially complicate the CFG construction.)8 The SMT encoding used for
path feasibility (Section 3.5) is limited to a core subset of Java features and standard

7 As a simple example, as done for testing [16], before every array access such as x := a[k]
add a guard if (!(0 <= k && k < a.length)) throw new IndexOutOfBoundsException(), so that
the implicitly thrown exception becomes explicit.

8 Even mature static analysis frameworks such as Spoon have only partial/experimental
support for features such as try/catch.{17}
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library methods. As a result, wit won’t report exception preconditions that involve
unsupported features (or will report them as maybe, that is without correctness guar-
antee).

Path length and number. In large methods, even some local expaths can be too
complex, which bogs down the whole analysis process. Therefore, wit only enumerates
paths of up to N = 50 nodes, which have a much higher likelihood of being manageable.
Complex methods may have thousands of local paths. Therefore, wit analyzes up to
N = 500 paths of a given method or constructor.

Inlining limits. Inlining can easily lead to a combinatorial explosion in the number
and length of the expaths; therefore, a number of heuristics limit inlining. First, a path
can be inlined only if it is up to N = 50 nodes—the same limit as for local expaths.
Second, wit stops inlining a call in a path after it has reached a limit of I = 100 inlined
paths—that is, it has branched out the call into I different ways. It can still inline other
calls in the same path, but this limit avoids recursive inlinings that are likely to blow
up. Third, wit enumerates the inlinings of a call in random order; in cases where the
limit I is reached, this increases the chance of collecting a more varied set of inlined
paths instead of getting stuck in some particularly complex ones (if the limit I is not
reached, the enumeration order is immaterial).

Maybes heuristics. The feasibility of exception preconditions reported as maybes
could not be verified; hence, they are educated guesses. Consequently, wit deploys
two simple heuristics that filter out maybes that are overwhelmingly unlikely to be
correct. First, wit does not report any maybe assertion that consists of more than six
conjuncts or disjuncts; we found that the constraints of such large maybes are usually
unsatisfiable. Second, wit drops any maybe that includes constraints over private fields
of the JDK’s String and StringBuilder classes. This heuristic only applies when wit

uses modular analysis: these two JDK classes have a complex implementation involving
native code and JVM internals. Thus, wit’s analysis of String and StringBuilder can
only retrieve a few correct maybes; as a result, using them in the modular analysis of
other client classes is likely to introduce a large number of spurious maybes—which
this heuristic avoids.

Timeouts. Z3’s satisfiability checks (to determine if a path is feasible) may occa-
sionally run for a long time. wit limits each call to Z3 to a Z = 15-second timeout;
when the timeout expires, Z3 is terminated and the path is assumed to be infeasible.
There is also an overall timeout of T = 10 minutes per analyzed class. If wit’s analysis
still runs after the timeout, it probably means that the class’s methods are particularly
intricate and hard to process;to remain lightweight, wit skips to the next class.

Configurable options. The parameters regulating these heuristics can be easily
changed if one needs to analyze code with peculiar characteristics, when a large running
time is not a problem. wit also offers two slightly different Z3 logic encodings of some
Java features. By default, it employs a conservative encoding that ensures that all
expressions used in an exception precondition are well defined (for example, a.length
implicitly requires that a != null). In some complex cases, this encoding may be
overly conservative, leading to marking as unsatisfiable exception preconditions that are
actually correct. To accommodate these unusual cases, wit also offers a less conservative
logic encoding of the same features, which trades off correctness for recall; users can
switch to this alternative encoding when analyzing software where a high recall is more
important than an absolute correctness guarantee.

Modular analysis. wit’s modular analysis (Section 3.4) is also configurable to fit
each application scenario. By default, wit performs modular analysis: if it encounters a
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call to a method that it analyzed in a previous run, it uses the called method’s exception
preconditions to determine the exception preconditions of the caller. In contrast, if
the user explicitly disables modular analysis, wit analyzes each project in isolation.
Section 5.4 describes experimental data that we collected to better understand the
practical impact of using wit’s modular analysis. When modular analysis is enabled,
wit can reuse only expres or both expres and maybes. This is another parameter that
one can choose according to how important a high recall is: reusing also maybes can
only increase the number of maybes inferred by wit, which come with no guarantee of
being correct. In general, modular analysis is an additional option made available by
wit, which need not be used in all situations: whether enabling it is beneficial depends
on the projects under analysis and on the user’s requirements.

4 Experimental Evaluation

This section describes the empirical evaluation of wit, which targets the following
research questions.

RQ1 (precision): How many of the exception preconditions detected by wit are correct?
RQ2 (recall): How many exception preconditions can wit detect?
RQ3 (features): What are the most common features of the exception preconditions

detected by wit?
RQ4 (modularity): How do the exception preconditions detected by wit change if mod-

ular analysis is disabled?
RQ5 (efficiency): Is wit scalable and lightweight?
RQ6 (usefulness): Are wit’s exception preconditions useful to complement programmer-

written documentation?

4.1 Experimental Subjects

In our evaluation, we ran wit on two groups of projects: several standard libraries in
Java’s JDK and 46 open-source Java projects surveyed by recent papers investigating
the (mis)use of Java library APIs [49,52,20] and the automatic generation of tests for
some of these libraries [30]. Table 1 lists all our experimental subjects.

JDK modules. The JDK (Java Development Kit) includes arguably Java’s most
widely used and mature libraries, featuring virtually in every Java project [30,21] and
abundantly documented. We selected JDK 11{18} to run our experiments, since it’s
the most recent LTS (Long Term Support) release that JavaParser can handle at the
time of writing. Given the JDK’s gargantuan size and complexity, we selected five of
its modules (subdirectories of java.base/share/classes) and ran wit on all of them
as if it were a regular Java project: modules com/sun, java, javax, sun, and jdk.

Other projects. The other group of 46 experimental subjects includes several
projects that are also large, widely-used, mature Java projects in various domains
(base libraries, GUI programming, security, databases)—especially the 26 projects
from the Apache Software Foundation, which recent empirical research has shown
to be extensively documented and thoroughly tested [52,30]. On the other hand, a
few projects taken from [20] are smaller, less used, or both. For instance, projects
gae-java-mini-profiler, visualee, and AutomatedCar are no longer maintained. This
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minority of projects makes the selection more diverse, so that we will be able to evaluate
wit’s capabilities in different scenarios.

We used the latest commit/stable release in every project, at the time of writing,
with two exceptions: Apache lucene-solr was recently split into two separate projects,
and thus we used the last version before the split; we analyzed version 2.6 of Apache

Commons IO to match [30]’s thorough manual analysis—which we used as ground truth
to answer RQ2.

4.2 Experimental Setup

We ran wit on the source code of all projects, after excluding directories that usually
contain tests (e.g., src/test/) or other auxiliary code. All experiments ran on a Win-
dows 11 Intel i9 laptop with 32GB of RAM. By default, wit only infers the exception
preconditions of public methods; if a public method calls a non-public one, wit will also
analyze the latter , but will report only public exception preconditions. wit analyzes
each class in isolation; then, it combines the results for all classes in the same project
and outputs them to the user.

Unless we explicitly state otherwise, wit ran with default options in the experiments.
In particular, it performed modular analysis (described in Section 3.4); therefore, we
first ran wit on the JDK modules, then on the Apache Commons libraries (lang, io,
text, math, configuration, in this order) followed by all other projects in alphabet-
ical order. Since practically all projects use some JDK libraries, and several projects
also use Apache Commons libraries, this execution order maximizes the chances that
wit can reuse the results of one of its previous runs to perform an effective modular
analysis. In contrast, client-of dependencies between projects other than the JDK and
Apache Commons libraries are more sparse; therefore, the alphabetical order is some-
what arbitrary, but even following a different order is unlikely to significantly affect
wit’s capabilities.

To answer RQ1 (precision), we performed a manual analysis of a sample of
all exception preconditions reported by wit to determine if they correctly reflect the
exceptional behavior of the implementation. The first author tried to map each inferred
exception precondition to the source code of the analyzed method. In nearly all cases,
the check was quick and its outcome clear. The few exception preconditions whose
correctness was not obvious were analyzed by the other author as well, and the final
decision was reached by consensus. We were conservative in checking correctness: we
only classified an exception precondition as correct if the evidence was clear and easy
to assess.

To answer RQ2 (recall), we used Nassif et al. [30]’s dataset—henceforth, DSc—as
ground truth. DSc includes 844 manually-collected exception preconditions9 (expressed
in structured natural language, e.g. “if offset is negative”) for all public methods in
Apache Commons IO’s base package collected from all origins (package code, libraries,
tests, documentation, . . . ). We counted the exception preconditions inferred by wit

that are semantically equivalent to any in DSc. Matching DSc’s natural-language pre-
conditions to wit’s was generally straightforward, as we didn’t have to deal with subtle
semantic ambiguities: since wit only reports correct exception preconditions as ex-

9 We exclude 6 innacurate cases.
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pres, we only had to match (usually simple) natural-language expressions to their Java
Boolean expression counterparts.

Using DSc as ground truth assesses wit’s recall in a somewhat restricted context:
(i) DSc targets exclusively the Commons IO project, whose extensive usage of I/O op-
erations complicates (any) static analysis; (ii) DSc describes all sorts of exceptional
behavior, including the “not typically documented” runtime exceptions [30]. To as-
sess wit’s recall on a more varied collection of projects, we also considered Zhong et
al. [52]’s dataset—henceforth, DPa—which includes 503 so-called “parameter rules” of
public methods in 9 projects (a subset of our 46 projects described in Section 4.1).
A parameter rule is a pair ⟨m, p⟩, where m is a fully-qualified method name and p is
one of m’s arguments; it denotes that calling m with some values of p may throw an
exception. Important, parameter rules do not express the values of p that determine
an exception, and hence they are much less expressive than preconditions; however,
they are still useful to determine “how much” exceptional behavior wit captures. We
counted the exception preconditions inferred by wit that match DPa: a precondition c

matches a parameter rule ⟨m, p⟩ if c is an exception precondition of method m that
depends on the value of p. This is a much weaker correspondence than for DSc, but it’s
all the information we can extract from DPa’s parameter rules.

To better characterize the exception preconditions that wit could not infer, we
performed an additional manual analysis of: (a) 746 of DSc’s exception preconditions
among those that wit did not infer and (b) 218 exception preconditions reported by wit

as “maybe” (that is, which may be incorrect). These 964 additional cases help assess
what it would take to improve wit’s recall.

To answer RQ3 (features), during the manual analysis of precision we also clas-
sified the basic features of each exception precondition r of a method m. We determine
whether r corresponds to an exception that is thrown directly by m or propagated by
m (and thrown by a called method). We count the number of Boolean connectives ||

and && in e, which gives an idea of r’s complexity. Then, we determine if each subex-
pression e of r constraints m’s arguments, or m’s object state; and we classify r’s check
according to whether it is: (a) a null check (whether a value is null), (b) a value check
(whether a value is in a certain set of values), (c) a query check (whether a function call
returns certain values). For example, here are expressions of each kind for a method m

with arguments int x and String y, whose class includes fields int[] a, int count,
and method boolean active():

void m(int x, int[] y) argument state

null y == null this.a != null
value x == 1 this.count > 0
query y.isEmpty() !this.active()

An exception precondition may combine expressions of different kinds; for instance,
a != null && a.length > 0 combines a null and a value check.

To answer RQ4 (modularity), we ran wit again on 5 projects with modular anal-
ysis disabled, and compared wit’s output on these projects with and without modular
analysis. We selected the 5 projects from diverse domains, which demonstrate using
different JDK libraries and methods. Besides comparing the number of reported ex-
ception preconditions with and without modular analysis, we manually inspected 75
maybes: (a) For each project, among methods for which both the modular and non–
modular analysis reported some maybes, we randomly picked 6 maybes reported by
the non-modular analysis and 6 maybes reported by the modular analysis for the same
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methods;10 this sample of 60 maybes (6×5×2) gives us an idea of how maybes change
when modular analysis is enabled. (b) For each project, among methods for which
only the modular analysis reported some maybes, we randomly picked 3 maybes; this
sample of 15 maybes (3 × 5) demonstrates cases where the modular analysis strictly
outperforms the non-modular one.

To answer RQ6 (usefulness), we first inspected the source code documentation
(Javadoc and comments) of all methods with exception preconditions analyzed to an-
swer RQ1, looking for mentions of the thrown exception types and of the conditions
under which they are thrown. We focused on Javadoc documentation: while we also
considered non-structured comments a priori, all cases of documented exceptional be-
havior that we found used at least some Javadoc syntax. We also selected 90 inferred
exception preconditions among those that were not already documented, and submit-
ted them as 8 pull requests in 5 projects: Accumulo,{19} Commons Lang,{20},{21},{22}

Commons Math,{23},{24} Commons Text,{25} and Commons IO.{26} We selected these five
projects as they are very active and routinely spend effort in maintaining a good-quality
documentation. Each pull request combines the exception preconditions of methods in
the same class or package, and expresses wit’s exception preconditions using Javadoc
@throws tags. To compile each pull request, we sometimes complemented the Javadoc
with a brief complementary natural-language description, and possibly some tests (ex-
pressing wit’s example inputs in the form of unit tests). We also tried to adjust the
Javadoc syntax to be consistent with each project’s style (for example, expressing
a != null as either a not null or @code a != null). In all cases, reformulating wit’s
output was a trivial matter.

5 Experimental Results

As described in Section 3.6, wit produces two kinds of exception preconditions. The
main output are those whose feasibility was fully checked (Section 3.5); others are
marked as maybe and can still be correct but have no guarantee. As done in previous
sections, we call “expres” the former and “maybes” the latter. Unless explicitly stated
otherwise, the term “project” denotes any of the 51 experimental subjects (Section 4.1):
one of the 5 JDK modules or one of the 46 open-source projects we analyzed.

5.1 RQ1: Precision

Overall, wit reported 30 487 expres and 31 043 maybes in 40 263 methods (24 461 meth-
ods with some expres and 17 564 with some maybes)—out of a total of 460 032 analyzed
public methods from 59 733 classes in 51 projects.

In order to validate wit’s feasibility check, we manually analyzed a sample of 742
expres to determine if they are indeed correct. This sample size is sufficient to estimate
precision with up to 5% error and 99% probability with the most conservative (i.e.,
50%) a priori assumption [12]; thus, it gives our estimate good confidence without
requiring an exhaustive manual analysis [54,30]. We applied stratified sampling to pick
the 742 expres: we randomly sampled 10 instances in each of the 49 projects where

10 To ensure a more varied sample, we targeted 3 + 3 methods that use the JDK and 3 + 3
that do not.
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expres maybes
project hash kloc time # m p ?# ?p

com/sun – 30 – 55 48 1.0 78 –
sun – 128 – 566 474 1.0 1 068 –
java – 209 – 3 420 2 578 1.0 1 666 –
javax – 8 – 190 145 1.0 41 –
jdk – 52 – 847 742 1.0 598 –

overall JDK da75f3c4ad5 428 765 5 078 3 987 1.0 3 451 0.36

accumulo 7db0561cac 33 311 995 908 1.0 1 335 0.3
Activiti 31024bc756 103 150 685 543 1.0 212 0.2
asm 72e8ec49 28 130 203 126 1.0 428 0.8
asterisk-java 5c56735c 30 27 27 24 1.0 46 0.4
AutomatedCar c137e56a 4 2 2 2 1.0 4 0.5
Baragon 10660b41 15 6 10 10 1.0 50 0.2
bigtop ee28ba88 6.5 4 9 9 1.0 6 0.2
byte-buddy 4c57c80aab 57 974 356 348 1.0 374 0.8
camel 0a735ae926c 972 2 626 1 558 1 276 1.0 1 111 0.4
closure-compiler fe0cebacd 287 538 158 157 1.0 654 0.2
commons-bcel f1a1459f 35 137 76 74 1.0 896 0.4
commons-configuration 1b406c17 20 12 170 139 1.0 53 0.4
commons-io 2ae025fe 9.5 23 240 187 1.0 186 0
commons-lang 90e0a9bb2 29 55 611 484 1.0 230 0.8
commons-math 674805c64 61 264 1 078 612 1.0 573 0.8
commons-text 21fc34f 10 32 235 156 1.0 138 0.6
Confucius e375cb9 0.5 1 45 18 1.0 14 0.4
curator 9aafdec9 26 35 192 116 1.0 126 0.6
dubbo b5e65a6d2 99 274 413 341 1.0 225 0.4
flink db248b2176 568 1 245 5 661 4 059 1.0 5 201 0.8
gae-java-mini-profiler 9cb1ba6 0.5 1 0 0 – 0 –
h2database 0ee51f54a 150 229 526 507 1.0 834 0.6
httpcomponents-client 29ba623eb 32 37 27 24 1.0 90 0.4
itext7 ae78654a5 145 880 681 522 1.0 702 0.7
jackrabbit 35d5732bc 260 300 1 224 1 111 1.0 1 595 0.8
jackrabbit-oak f8c7b551a4 26 334 502 493 1.0 667 0.4
jackson-databind 972d5a28a 63 57 180 166 1.0 153 0.6
jfreechart 5aac9ae4 84 133 1 387 1 149 1.0 800 1.0
jmonkeyengine 499e73ab0 19 376 634 569 1.0 1 220 0.2
joda-time 27edfffa 29 58 250 228 1.0 355 0.6
logging-log4j2 59f6848b7 99 159 472 304 1.0 392 0.2
lucene-solr 7ada4032180 685 1 545 3 380 2 755 1.0 4 132 0.6
pdfbox 01bce4dde 106 230 255 239 1.0 362 0.2
poi 270107d9e 260 403 710 624 1.0 1 851 0.2
santuario-xml-security-java 86179876 35 38 167 142 1.0 131 0.6
shiro 0c0d9da2 27 39 154 141 1.0 145 0.2
spoon 34c23fc7 75 86 272 268 1.0 357 0.4
spring-cloud-gcp 6c95a16f 20 20 13 13 1.0 10 0.8
spring-data-commons 4acd3b70 28 24 31 29 1.0 123 0.4
swingx 9e33bc0 72 108 157 149 1.0 217 0.8
traccar eac5f4889 54 60 2 2 1.0 76 0
visualee 88732d9 1.8 3 0 0 – 3 0
weiboclient4j 80556b1 7.8 10 6 6 1.0 9 0.2
wicket 7c0009c8df 109 1 069 930 811 1.0 656 0.6
wildfly-elytron 3457737d98 80 128 340 316 1.0 233 0.2
xmlgraphics-fop 7edce5dd5 165 940 385 318 1.0 617 0.6

overall other projects – 5 720 14 116 25 409 20 474 1.0 27 592 0.5

overall – 6 148 14 881 30 487 24 461 1.0 31 043 0.5

Table 1: Exception preconditions inferred by wit. For each analyzed project: the short git
commit hash; the size of the analyzed source code in thousands of lines (kloc); wit’s total run-
ning time in minutes; the number # of inferred exception preconditions (expres), the number
m of methods and constructors with some inferred exception preconditions, the precision p
based on a manual analysis of a sample, the number ?# of maybes exception preconditions,
and the percentage ?p of these that are correct based on a manual analysis of a sample.
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all supported

dataset project # E% E+M% E% E+M%

DSc [30] commons-io 844 9 12 57 72

DPa [52]
asm 54 6 23 25 75
commons-io 65 77 78 94 96
jfreechart 42 80 85 84 89

overall 1,345 13 23 48 84

Table 2: wit’s recall using two datasets DSc and DPa (described in Section 4.2) as ground
truth. For each project, # is the dataset’s total number of exception preconditions (DSc) or
parameter rules (DPa); the other columns reports the percentage correctly inferred by wit: E
only considers expres, E+M expres and maybes; all considers all exception items; supported
only those with features wit supports.

wit detected some expres.11 This manual analysis found that all expres were indeed
correct, that is 100% precision.

As we explained in Section 3, wit’s maybes still have a chance of being correct
exception preconditions, but they remain educated guesses in general. We randomly
picked 218 maybes uniformly in the 50 projects that report some12 and manually
checked them as we did for the expres. We found that 47% (102) of them are indeed
correct; thus, wit’s precision remains high (88% = (102 + 742)/(218 + 742)) even if
we consider all maybes. As we further discuss in Section 5.2, in most cases, wit could
not confirm the maybes as correct because they involve unsupported Java features (see
Section 3.7).

Manually analyzing a significant sample of exception preconditions (expres)
confirmed that wit is 100% precise.

5.2 RQ2: Recall

We compute the recall on both datasets DSc and DPa in four ways: considering only ex-
pres or also maybes; and considering only wit’s supported features or all Java features.
Table 2 summarizes the results that we detail in the following.

5.2.1 Dataset DSc

Out of DSc [30]’s 844 manually identified exception preconditions, wit detected 77 ex-
pres in 6 classes of Commons IO (1 in FileNameUtils, 4 in LineIterator, 15 in IOUtils,
8 in FileCleaningTracker, 44 in FileUtils, 3 in HexDump, and 2 in ByteOrderMark),
that is a recall of 9% (77/844). However, 708 out of DSc’s 844 exception precondi-
tions are of kinds unsupported by wit (see Section 3.7). After excluding unsupported
exception precondition kinds,13 wit’s recall estimate becomes 57% (77/(844− 708)).

11 We pick all expres for 7 projects with less than 10 expres in total.
12 To keep the manual analysis manageable, this sample size (218) is sufficient to estimate

the precision of maybes with up to 5% error and 95% probability but with a stronger (i.e.,
83%) a priori assumption.
13 Excluding unsupported annotation kinds is a common practice in the empirical evaluation

of tools that infer annotations [54].
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Listing 6: Excerpt from class FileUtils in project Commons IO.
1 static void copyToDir(File src, File destDir) {
2 if (src == null) { throw new NullPointerException(); }
3 if (src.isDirectory()) { copyDirToDir(src, destDir); }
4 else if (src.isFile()) { copyFileToDir(src, destDir); }
5 else { throw new IOException("Source does not exist"); }
6 }
7

8 static void copyDirToDir(File srcDir, File destDir) {
9 if (srcDir == null) { throw new NullPointerException(); }

10 if (srcDir.exists() && !srcDir.isDirectory())
11 { throw new IllegalArgumentException(); }
12 if (destDir == null) { throw new NullPointerException();}
13 if (destDir.exists() && !destDir.isDirectory())
14 { throw new IllegalArgumentException(); }
15 // ...
16 }

To better understand wit’s recall, we analyzed the 708 Commons IO exception pre-
conditions from DSc that wit didn’t report as expres. We can classify these missed
preconditions in two groups.

Unsupported features: As mentioned, the largest group of missed preconditions (547 or
77% of the missed preconditions) involve Java language features that wit does not
support.

Implicit exceptions: Another group of missed preconditions (161 or 23% of the missed
preconditions) correspond to implicit exceptions that are thrown by the Java run-
time (e.g., when a null pointer is dereferenced), which we deliberately ignore (as dis-
cussed in Section 3.7). A significant case is class EndianUtils{27} for which DSc re-
ports 48 exception preconditions involving ArrayIndexOutOfBounds or NullPointer
exceptions thrown implicitly.

5.2.2 Dataset DPa

Using 175 parameter rules14 of DPa [52]’s dataset as reference suggests that wit’s recall
varies considerably depending on the characteristics of the analyzed project. Overall,
wit inferred 85 matching expres and 8 matching maybes, corresponding to a recall
of 49% (expres only) and 53% (expres+maybes). If we exclude the parameter rules
involving features unsupported by wit, the recall becomes 71% (expres only) and 78%
(expres+maybes). wit struggles the most on projects like asm, which extensively uses
features and coding patterns{28} that wit currently doesn’t adequately support: as a
result, wit’s recall is fairly low (considering all parameter rules, 6% with expres only and
23% with expres+maybes; considering only supported ones, 25%/75%). In contrast,
more “traditional” Java projects like JFreeChart{29} extensively follow programming
practices such as validating a method’s input, which are a better match to wit’s current
capabilities: as a result, wit’s recall is quite high (considering all parameter rules,
80% with expres only and 85% with expres+maybes; considering only supported ones,
84%/89%).

14 The dataset contains 503 parameter rules for 9 projects; we manually analyzed 175 from
projects asm, Commons IO, and jfreechart.
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wit inferred 9–83% of the exception preconditions in Commons IO. Its recall varies
considerably (6–96%) depending on the analyzed project’s characteristics.

5.3 RQ3: Features

Section 5.2’s comparison of wit’s preconditions with those in DSc [30]’s extensive collec-
tion confirmed what also reported by other empirical studies [3,54]: exception precon-
ditions are often concise and structurally simple. This was also reflected in a manual
sample of 412 expres inferred by wit,15 which we manually inspected to determine
their features. In terms of size, 74% of them are simple expressions without Boolean
connectives &&/||; and only 7% include more than one connective. In terms of control-
flow complexity, 68% of wit’s expres involve exceptions that are thrown directly by the
analyzed method (as opposed to propagated from a call).

Over 70% of all expres constrain a method’s arguments (65% constraint only the
arguments), whereas about 24% predicate over object state. null checks are more fre-
quent (49% of expres), followed by value checks (40% of expres); and 81% of expres
have either or both. In contrast, query checks are considerably less frequent (11% of
expres include one). These features are a combination of the intrinsic characteristics of
exception preconditions, and wit’s capability of detecting them. If we look at maybes,
they tend to include query checks more frequently (50%), which is to be expected since
a method call can be soundly used in a precondition only when it is provably pure
(Section 3.6).

Up to 12% of the expres in the sample are the simplest possible Boolean expres-
sion: true. Nine of 13 expres of spring-cloud-gcp are of this kind. These usually
correspond to methods that unconditionally throw an UnsupportedOperation excep-
tion to signal that they are effectively not available;16 see project lucene-solr’s class
ResultSetImpl for an example.{31} In Java, this is a common idiom to provide “place-
holders,” which will be replaced by actual implementations through overriding in sub-
classes. While this is a common programming pattern that leverages polymorphism, it
nominally breaks behavioral substitutability [24,31]: a method’s precondition should
only be weakened [29], but no Boolean expression is weaker than true.

Some of the exception preconditions that we manually inspected revealed interest-
ing and non-trivial features. wit could infer expres embedded in complex expressions,
such as in the case{32} of an empty string that triggers an exception in the “else” part
e of a ternary expression. c ? t : e. It also followed method calls collecting com-
plex conditions and presenting them in a readable, simplified form. For example, for a
ConcurrentModification exception,{33} or after collecting constant values from other
classes.{34} We also found examples of exceptional behavior documented in Javadocs
in a way that mirrors wit’s output, such as “IndexOutOufBoundsException if i < 0 or
i > array.length”.{35} In all, wit’s output is often concise and to the point—and thus
readable and useful.

The exception preconditions inferred by wit are
usually succinct and mainly involve checks of method arguments.

15 A subset of the 742 expres we checked for correctness in Section 5.1.
16 A common instance of this programming pattern occurs when implementing im-

mutable data structures. For example, state-modifying List interface methods such as
add in class UnmodifiableList,{30} which is instantiated by method unmodifiableList in
java.util.Collections.
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5.4 RQ4: Modularity

To answer RQ4 (the impact of modular analysis), Section 5.4.1 first discusses how the
output of wit changes when modular analysis is disabled vs. when it is enabled; then,
Section 5.4.2 presents the results of a manual comparison of a sample of exception
preconditions obtained with and without modular analysis.

5.4.1 Exception Preconditions in Modular vs. Non-Modular

Table 3 presents the results of the comparison between wit running with and with-
out modular analysis (Section 3.4) on five of the projects used in our experimental
evaluation.

Running time. In terms of running time, modular analysis usually leads to an
increase of running time (32% longer on average); this is to be expected, since modu-
larity generally increases the number of paths that are analyzed by wit, as it “extends”
them with information about methods analyzed in a different run.

Effectiveness. Modular analysis usually brings a modest (but non-trivial in abso-
lute numbers) increase in the number of expres reported by wit (2% more on average).
These cases correspond to exceptional paths that include calls to external methods:
in the non-modular analysis, these paths may only lead to maybes; in contrast, in the
modular analysis, wit has enough information to completely and correctly reconstruct
the exceptional behavior about these paths, thus reporting expres.

Modular analysis usually brings a much bigger increase in the number of maybes
(156% more on average): since maybes have no guarantee of correctness, using a maybe
in a library to reason about a call within a caller method is quite likely to determine
an additional maybe in the caller—which also may or may not be correct.

When modular analysis is counterproductive. However, modular analysis
does not always lead to detecting more expres; for example, wit reported 1–2% fewer
expres in projects jfreechart and pdfbox when enabling modular analysis. This hap-
pens because modular analysis replaces a call to an opaque method with whatever ex-
ception path wit extracted from the called method. In some cases, the called method’s
exception precondition may be a very partial approximation of the callee’s full excep-
tional behavior; therefore, using it in place of the call may be counterproductive to
obtain a provably feasible exception precondition in the caller. In fact, this is a com-
mon problem of modular reasoning [44]: if the callee’s specification is weak, there is
very little we can conclude about the caller’s behavior.

Our manual analysis indicates that the overwhelming majority of cases where
using modular reasoning led to fewer expres involved methods calling string meth-
ods such as String.length() and String.equals(). For example, when wit analyzes
String.equals()’s implementation in the JDK,{36} it encounters several features and
special cases that limit its effectiveness, such as different string encodings{37} and
compacted strings;{38} furthermore, the Java runtime represents a String as a byte
array,{39} a type that wit does not currently support. As a result, wit only reports some
very narrow, overly complex exception paths for String.equals(), corresponding to
the few paths within its implementation that do not depend on any of those com-
plex language features. What happens when wit processes a method such as the one
in Listing 7, which makes numerous calls to String.equals(), with modular analysis
enabled? Replacing the calls with the previously extracted exception paths leads to an
overly narrow, needlessly complex path condition, which bogs down the SMT solver

21



Listing 7: Method setHighlightingMode{41} in class PDAAnnotationWidget of project pdfbox in-
cludes numerous calls to JDK’s String.equals(), which complicate modular analysis.

1 public void setHighlightingMode(String highlightingMode)
2 {
3 if ((highlightingMode == null) || "N".equals(highlightingMode)
4 || "I".equals(highlightingMode) || "O".equals(highlightingMode)
5 || "P".equals(highlightingMode) || "T".equals(highlightingMode))
6 {
7 this.getCOSObject().setName(COSName.H, highlightingMode);
8 }
9 else

10 {
11 throw new IllegalArgumentException("Valid values for highlighting mode are "
12 + "’N’, ’N’, ’O’, ’P’ or ’T’");
13 }
14 }

expres maybes
project ∆time ∆# ∆m ∆?#

camel 1.17 1.04 1.03 3.51
commons-io 0.65 1.03 1.06 1.81
commons-lang 2.30 1.05 1.05 6.21
jfreechart 1.70 0.99 1.01 0.91
pdfox 2.67 0.98 0.97 2.71

overall 1.32 1.02 1.02 2.56

Table 3: Impact of using wit’s modular analysis (Section 3.4) for five projects. For each
project, we consider the same measures as Table 1: the overall running time, the number #
of reported expres, the number m of methods for which wit reported at least one expre, and
the number ?# of reported maybes. Each column ∆X reports the ratio between X measured
with modular analysis and X measured without modular analysis; for example, wit reports
4% more expres (1.04) in project camel when modular analysis is enabled.

and does not lead to any provably feasible path in the caller. In contrast, if modular
analysis is disabled, wit simply encodes the calls to String.equals() as Boolean vari-
ables with basic constraints, which is sufficient in some cases to get to a working proof
of feasibility—and hence to an expre correctly characterizing setHighlightingMode’s
exceptional path.

5.4.2 Correctness of Maybes in Modular vs. Non-Modular

We first sampled 30 methods where both the non-modular and modular analysis re-
ported some maybes, and inspected one maybe in each case (for a total of 30+30 = 60
maybes). In the non-modular analysis, 27 (90%) of the 30 maybes were correct; in the
modular analysis, 16 (53%) of the 30 maybes were correct. Then, we sampled 15 other
methods where only the modular analysis reported some maybes, and inspected one
maybe in each case (for a total of 15 maybes). Only 4 (27%) of the 15 maybes were
correct.

These results suggest that wit’s modular analysis is usually less reliable at inferring
(correct) maybes. This is in contrast to the inference of expres, which are correct by
construction. In all, unless one wants to maximize the output of reported maybes, it
may be preferable to only perform modular analysis for expres, excluding maybes.
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Listing 8: Excerpt of class IntersectionResult’s constructor in project Commons Text.
1 public IntersectionResult(final int sizeA, final int sizeB, final int inters) {
2 if (sizeA < 0) {
3 throw new IllegalArgumentException("Set size |A| is not positive: " + sizeA);
4 }
5 if (sizeB < 0) {
6 throw new IllegalArgumentException("Set size |B| is not positive: " + sizeB);
7 }
8 if (inters < 0 || inters > Math.min(sizeA, sizeB)) {
9 throw new

10 IllegalArgumentException("Invalid intersection of |A| and |B|: " + inters);
11 }
12 // ...

This inferior performance of the non-modular analysis is usually due to complex
language features used in the JDK or other called libraries that wit does not adequately
support; in these cases, the non-modular analysis’s approach of treating these calls as
black boxes is more likely to avoid generating incorrect maybes than the modular
approach that reuses probably inconsistent or mismatched maybes extracted when
analyzing the called libraries.

Let us discuss a few concrete examples of language features that led to incorrect
maybes with the modular analysis. One is the complex behavior of floating-point arith-
metic (type Double in Java); wit’s simple encoding of numbers cannot deal with special
values such as NaN{42} and Inf (obtained, for example, when dividing 1.0 by 0.0{43}).
Another one is the JDK’s Collections Framework, which would require a suitable (non-
trivial) logic encoding in Z3 to work in wit.

A different kind of problem occurred when analyzing data-structure methods such
as the JDK’s Stack.pop,{44} which throws an exception when the stack is empty. wit

reports a correct exception precondition for pop; however, the precondition expression
mentions a protected field17 used in Stack’s internal representation.{45} As a result,
the exception precondition is not usable correctly to analyze clients of the Stack class,
such as in one of the maybes we inspected for project pdfbox.{46} To handle such
cases [50], one could try to convert any references to private members into calls to
public getter methods—if they are available.

It remains that wit’s modular analysis increases the number of expres in most
projects. We found a few cases where some exception preconditions reported as maybe
by the non-modular analysis became an expre in the modular analysis. One such cases
was class IntersectionResult’s constructor{47} in project Commons Text. As you can
see in Listing 8, the exception path that ends at line 10 involves a call to the JDK’s
Math.min function. Without modular analysis, wit can only report the whole condi-
tional expression inters < 0 || inters > Math.min(sizeA, sizeB) as a maybe. In
contrast, wit’s modular analysis can recover Math.min’s behavior from its previous
analysis of the JDK; thus, it reports two correct expres for the same exceptional path:

– sizeB >= 0 && (inters < 0 || inters > sizeB) && sizeB > sizeA

– sizeA >= 0 && sizeA <= sizeB (inters < 0 || inters > sizeA)

17 Remember that wit targets only top-level public methods, but may follow paths that go
into private members.
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Using wit’s modular analysis tends to moderately increase the number
of detected expres. It also usually increases the number of detected maybes,

while also lowering their correctness rate.

5.5 RQ5: Efficiency

Thanks to the heuristics it employs (Section 3.7) and to the nature of exception precon-
ditions wit can infer (which tend to be simpler compared to general program behavior),
wit’s analysis is quite lightweight and scalable. As shown in Table 1, its running times
are generally short: it processed the entire Apache Commons Lang in just 55 minutes—
17 seconds on average for each of the project’s 200 top-level classes. It also scales well
to very large projects: it analyzed the 9 780 classes of Apache Camel (the largest project
in our collection) in 44 hours—just 16 seconds per class on average. Key to this per-
formance is wit’s capability of analyzing each class in isolation, without requiring any
compilation or build of the whole project.

Take method ASMifier.appendAccess(){48} as an example of how wit’s heuristics
are useful. It is from project ASM and embedded under the internal subdirectory of the
JDK. The method has several nested if-else branches, that lead to millions of paths.
wit’s heuristics are crucial to avoid getting bogged down analyzing such complex pieces
of code.

wit’s analysis is lightweight: on average, it takes 15 seconds per class;
30 seconds per exception precondition.

5.6 RQ6: Usefulness

This section discusses to what extent wit’s exception preconditions and the documented
exceptional behavior of methods overlap. We first look into all projects except the JDK
modules (Section 5.6.1), and then analyze the JDK separately (Section 5.6.2); finally,
we discuss how we submitted some of wit’s inferred exception precondition as pull
requests (Section 5.6.3).

5.6.1 Usefulness: Regular Projects

Let us first focus on the 46 projects in Table 1 excluding the JDK modules. We analyzed
a subset sample of 517 expres and maybes that wit correctly inferred for these projects;
72% (374) of them are not documented; precisely, 242 of them belong to methods
without any Javadoc, and 120 to methods with some Javadoc that does not describe
that exceptional behavior. In contrast, 27% (138) of wit’s exception preconditions are
properly documented; and 6% (29) of them are only partially documented (usually
with a @throws Exception tag that does not specify the conditions under which an
Exception is thrown).

wit’s inferred preconditions can substantially improve even the cases of partial
documentation. An example is Apache Curator’s method validatePath(String),{49}

whose Javadoc just says that “@throws IllegalArgumentException if the path is in-
valid”. wit detects several different exception preconditions for when an exception of
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Listing 9: Implementation of copyURLToFile() in Commons IO’s class FileUtils.
1 public static void copyURLToFile(final URL source,
2 final File destination,
3 final int connectionTimeout,
4 final int readTimeout)
5 throws IOException {
6

7 final URLConnection connection = source.openConnection();
8 connection.setConnectTimeout(connectionTimeout);
9 connection.setReadTimeout(readTimeout);

10 copyInputStreamToFile(connection.getInputStream(), destination);
11 }

class IllegalArgumentException is thrown: a path is invalid when it is null, empty,
not starting or ending with a /, etc.

Scenarios (such as the one in Section 2.2) where a method propagates an exception
thrown by one of its callees may be hard to characterize precisely (especially when
the callees’ exceptional behavior is not documented); wit’s analysis can be particularly
valuable in these cases. Indeed, 36% (187) of wit’s 517 exception preconditions analyzed
in this section involve nested exception preconditions; only 24% (47) of these 196
exception preconditions are documented. This corroborates [4]’s finding that Javadocs
rarely mention exceptions thrown by called methods.

Section 5.2’s manual analysis of recall further surfaced evidence of wit’s prac-
tical usefulness. Even though the DSc dataset (which we used as ground truth to
assess recall) is a paragon of comprehensiveness, wit’s modular analysis still man-
aged to detect exception preconditions that were missed by DSc’s painstaking man-
ual analysis. Listing 9 shows Commons IO’s method FileUtils.copyURLToFile(),{50}

which calls methods from JDK class URLConnection{51},{52}. Commons IO’s documen-
tation of this method mentions five conditions under which the method will throw an
IOException. The DSc dataset reports another two exception preconditions that trig-
ger implicitly a NullPointerException. However, only wit found that that the calls to
setConnectTimeout and to setReadTimeout will throw an IllegalArgumentException

if their argument is a negative integer. This is yet another example that manually de-
tecting and documenting exception preconditions is tedious, time-consuming, and error
prone; thus, the kind of automation provided by wit can be very useful.

5.6.2 Usefulness: JDK Modules

We analyze the JDK separately, since it is arguably Java’s most thoroughly documented
library [54,21]; therefore, it is natural to expect that a higher fraction of wit’s inferred
exception preconditions will also feature in the JDK’s official Javadoc documentation.

We analyzed a subset sample of 361 expres and maybes that wit correctly inferred
for the JDK; 38% (136) are not documented. We also found that 48% (172) of the 358
preconditions occur in nested calls (when an exception is propagated from a method
call); and 61% (106) of them are documented, which is significantly higher than the
ratio for the other projects.

Even though the JDK’s documentation is generally outstanding, we found incon-
sistencies in when and how it documents exceptional behavior. For example, it some-
times only documents a subset of all possible unchecked exceptions a method may
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throw;{53} or occasionally uses the throws keyword to declare (unchecked) runtime
exceptions.{54},{55} JDK’s package Time{56} uses a distinctly different style of docu-
menting NullPointerExceptions, which betrays the package’s origins as a derivative of
project joda-time; to declare that a method thows a null pointer exception when one
of its parameters p is null, it writes: @param p <description of p>, not null.{57}

Incidentally, project JFreechart uses a similar style of documentation.
Another interesting finding in the JDK is that older modules are more likely to

neglect using exception messages—which, however, can provide valuable debugging
information [26]. For instance, classes introduced in versions 1.0{58} and 1.1{59} always
instantiate NullPointerException without arguments (i.e., no message). Despite these
outliers, the JDK generally tries to use expressive exception messages, and to improve
their clarity. For example, Integer.parseInt throws a null pointer exception with an
uninformative message "null" in JDK 11;{60} in JDK 17, however, the maintainers
changed it to the more informative "Cannot parse null string".{61}

In a manually analyzed sample, 38–72% of wit’s exception
preconditions were not documented.

5.6.3 Improving Project Documentation Using wit

While there may be situations where documenting every source code method is not
needed or recommended, properly documenting public methods of APIs (remember that
all of wit’s exception preconditions refer to public methods) is an accepted best prac-
tice [54,30]. Indeed, there is evidence that several of the projects used in our evaluation
(Section 4.1) routinely improve their Javadoc documentation of exceptions,{62},{63}

and often recommend{64} or even require{65},{66} accurate Javadocs in any code con-
tributions. To determine whether wit’s inferred preconditions can be a valuable source
of API documentation, we collected 90 exception preconditions extracted by wit in 5
Apache projects and submitted them as 8 pull requests (as described in Section 4.2).
At the time of writing, maintainers accepted (without modifications) 6 pull requests
containing 81 preconditions—63 (78%) of them occurring in nested calls. Two pull
requests to project Commons Math have not been reviewed yet. Interestingly, one to
project Commons Lang was on hold for several months because the project maintainers
realized that the 10 methods whose exceptional behavior we document are inconsistent
in using IllegalArgumentException vs. NullPointerException, and they preferred to
fix this inconsistency before updating the documentation.

When submitting our improvements to project Commons Lang, we opened a JIRA
issue{67} sharing our findings. Several months after our initial pull request, a GitHub
user submitted four Javadoc modifications in a new pull request{68} that mentioned
our JIRA issue. Shortly afterwards, a Commons Lang maintainer asked us to review the
modifications in the new pull request, and suggested that we submit all our findings
(i.e., all the exception preconditions that could be included in the documentation) in
order to close the JIRA issue. In the end, we worked together with the author of the
latest pull request to submit 89 wit exception preconditions (27 new pieces of Javadoc
documentation and 62 fixing existing documentation), as well as tests for 9 classes. All
of the exceptions from the additions and fixes occur in nested calls, which may explain
why they went undetected for a long time. The pull request was accepted in the same
day and merged ten days later.
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Overall, our 9 pull requests (8 initial ones, plus the latest one suggested by the main-
tainers) include 189 exception preconditions (90 in the initial batch, and 89 in the latest
one). These pull requests contain 157 (88%) preconditions occurring in nested calls;
61 (34%) that refer to missing documentation, and 118 (66%) that target a wrongly
documented exception. A total of 170 preconditions (81 in the initial batch, and 89 in
the latest one—or 95% of all those submitted) were merged into the projects’ official
documentation. It is significant that the projects that accepted these pull requests are
known for their extensive and thorough documentation practices [52,30]. The fact that
wit could automatically detect several exception preconditions that were missing from
their documentation, and promptly added following our pull requests,18 indicates that
wit’s output can be quite useful. We expect that wit’s precise output can have an even
bigger impact on scarcely documented projects.

wit’s precise exception preconditions can be useful to improve also large
and mature projects: maintainers from 4 Apache projects accepted
95% of a sample of wit preconditions submitted as pull requests.

6 Threats to Validity

The main threat to the internal validity of our assessment of wit’s precision (Sec-
tion 5.1) comes from the fact that it is based on manual inspection of Java code and
documentation. Like all manual analyses, we cannot guarantee that no mistakes were
made. Nevertheless, various evidence corroborates the claim that wit’s precision is
high. First, wit’s precision follows from its design; therefore, the manual analysis was
primarily a validation of wit’s implementation, checking that no unexpected source
of incorrectness occurred in practice. Second, we inspected not only the source code
but also any official documentation, tests, as well as the datasets of related studies
of Java exceptions [26,30]. Third, the authors extensively discussed together the few
non-obvious cases, and were as conservative as possible in the assessment. We followed
similar precautions to mitigate threats to our assessment of wit’s recall (Section 5.2),
where we relied on [30]’s and [52]’s manual analyses as ground truth. As customary [54],
we assume that the implementations of all analyzed methods are correct: wit’s goal is
to capture an implementation’s exceptional behavior as faithfully as possible; detecting
bugs in such implementations is out of its (current) scope.

Our selection of 46 Java projects includes several very popular Java open source
libraries, which were used in recent related work, and in addition several modules in
Java’s official JDK; this helps reduce threats to external validity. It remains that the
exceptional behavior of libraries may be different than that of other kinds of projects.
Since library APIs tend to perform more input validity checks [37], it is possible that
wit would report fewer exception preconditions simply because fewer are present in
other kinds of software. Indeed, a handful of the projects with the smallest number of
reported expres turned out not to be libraries (see Table 1).

As one of the ground truths to estimate recall, we used a recent survey [30] that
extensively manually analyzed a single project (Commons IO). As we discuss in Sec-
tion 5.2, the nature of this project makes it especially challenging for wit, which im-

18 One maintainer from Accumulo remarked that ours “are nice fixes to the javadoc, thanks
for finding them.”
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plies that its recall may be higher on other projects (as the experiments using the other
dataset DPa [52] suggest).

wit’s implementation has a number of limitations; some reflect deliberate trade-offs,
while others could simply be removed by extending its implementation. In its current
state, wit has demonstrated to produce useful output and to be precise and scalable.

7 Related Work

We first discuss general related work in assertion inference; and then zoom in on a few
recent papers that deal specifically with exceptional behavior of Java methods.

Assertion Inference. Automatically inferring preconditions and other specifica-
tion elements from implementations is a long-standing problem in computer science,
which has been tackled with a variety of different approaches. Historically, the first ap-
proaches used static analysis and thus were typically sound (the inferred specification
is guaranteed to be correct, that is 100% precision) but incomplete (not all specifica-
tions can be inferred, that is low recall), and may be not applicable to all features of a
realistic programming language [7,9,25,8,39]. For example, inferring specifications in
the form of numeric ranges of values [9] or linear relations between variables [25] is a
widespread application of abstract interpretation [7]. Daikon [14] was the first, widely
successful approach that used dynamic analysis, which offers a different trade-off: it is
unsound (the “inferred” specifications are only “likely” to be correct) but it is applicable
to any program that can be executed. Daikon approach’s practicality also yielded a lot
of follow-up work aimed at improving its precision and its flexibility [10,22,47], or at
combining it with static techniques [10,22,47,11,43,32]. wit is fundamentally based on
static analysis, which can be very precise but incomplete [23]; its heuristics further
make it lightweight, and hence applicable to real-world Java projects.

More recently, approaches based on natural language processing (NLP) have gained
traction [3,41,33,53,45,45]—in no small part thanks to the major progress of machine
learning techniques on which they are often based. A clear advantage of NLP is that it
can analyze artifacts other than program code (e.g., comments and other documenta-
tion); on the other hand, machine learning is usually based on statistical models, and
hence it cannot guarantee correctness and may be subject to overfitting [34,19].

The work on Toradocu [17] and its later extension Jdoctor [3] is a relevant rep-
resentative of the capabilities of natural language processing techniques to extract
(exception) preconditions of Java methods. Toradocu/Jdoctor’s preconditions are Java
Boolean expressions; thus, they can be directly used to generate test oracles or other
kinds of executable specification. In its experimental evaluation on widely used Java li-
braries, Jdoctor achieved a recall of 83% and a precision of 92%. These high-level results
highlight how wit’s and Toradocu/Jdoctor’s approaches are complementary: (a) wit an-
alyzes source code and uses static analysis, which prioritizes accuracy (all expres are
correct) at the expense of a lower recall; (b) Toradocu/Jdoctor analyzes Javadoc com-
ments written in (structured) natural language, which cannot provide absolute correct-
ness guarantees, but is often practically effective and achieves a good recall. Another
complementary aspect follows from Section 5.6’s observation that only a fraction of the
exception preconditions reported by wit are already properly documented—and hence
can be automatically extracted with tools like Jdoctor.

Like the “classic” work on static assertion inference, wit extracts preconditions by
directly analyzing the behavior of a method’s implementation. An alternative, com-

28



plementary approach is extracting assertions indirectly by analyzing the clients of a
method [31,35,46,36,42,51,40]: the patterns used by many clients of the same API are
likely to indicate suitable ways of using that API’s methods [37].

Exception Preconditions. Buse and Weimer’s work [4]—which is a refinement
of Jex [38]—shares several high-level similarities with wit: it specifically targets the
documentation of exceptional behavior, uses static analysis, and can often improve
or complement human-written documentation. Nevertheless, ours and their approach
differ in several important characteristics: (a) their approach works on instrumented
bytecode, which requires a full compilation of a project to be analyzed (wit only needs
the source code of the class to be analyzed); (b) they do not exhaustively check path
satisfiability or that only pure method expressions are used in expressions, and hence
they may report exception preconditions that are not valid; (c) their evaluation is solely
based on a qualitative comparison with human-written documentation, whereas wit’s
evaluation quantitatively estimates precision and recall.

SnuggleBug [5] is a technique to infer weakest preconditions that characterize the
reachability of a goal state from an entry location. Like wit, SnuggleBug is sound and
scales to real-world Java projects (even though it works on bytecode and hence re-
quires full project compilation). SnuggleBug’s analysis is more general than wit’s, as it
is not limited to exception preconditions, and handles calls (including recursion) by syn-
thesizing over-approximated procedure summaries instead of inlining. This approach
achieves a different trade-off than wit, which more aggressively gives up on long paths
or complex, unsupported language features. SnuggleBug’s evaluation demonstrates one
of its main usage scenarios: validating implicit exception warnings.

PreInfer [1] infers preconditions of C# programs using symbolic execution (through
the Pex white-box test-case generator) by summarizing a set of failing tests’ paths.
Compared to wit, PreInfer explores a different part of the assertion inference design
space: where wit aims to infer simple preconditions with high precision and scalabil-
ity, PreInfer focuses on complex preconditions that involve disjunctive and quantified
formulas over arrays. These differences in aim are also reflected by the different ex-
perimental evaluations: we applied wit to 460 032 methods in 59 733 classes over 46
projects of diverse characteristics and five JDK modules, where it inferred 30 487 pre-
conditions (expres); PreInfer’s evaluation targets 1 143 methods in 147 classes over 4
projects mainly consisting of algorithm and data structure implementations, where it
inferred 178 preconditions. Since it relies on Pex, PreInfer’s inferred predicates are only
“likely perfect because Pex may not explore all execution paths” [1].

A direct, quantitative comparison with these approaches [4,5,1] is not possible,
since their implementations or experimental artifacts are not publicly available.

Exceptional Behavior Documentation. Other recent work uses static analysis
to extract API specification with a focus on extending and completing programmer-
written documentation. PaRu [52] is an automated technique that analyzes source code
and Javadoc documentation to link method parameters to exceptional behavior. PaRu’s
goal is to “identify as many parameter rules as possible [...] it does not comprehend or
interpret any rule” [52]; hence, unlike wit, PaRu does not infer preconditions but just a
mapping between parameters and the throw statements that depend on them. PaRu’s
empirical evaluation matches this mapping to the available documentation to assess its
completeness; it found that 86% of the parameters linked to exceptional behavior are
not documented in Javadoc.

Drone [54] compares the exceptional behavior of source code to that described in
Javadoc in order to find inconsistencies. Similarly to wit, Drone analyzes a program’s
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Listing 10: Excerpt of a method and its Javadoc from class Conversion{70} in project Commons
Lang.

1 * @throws IllegalArgumentException if {@code src} is empty,
2 * {@code src.length > 8} or {@code src.length - srcPos < 4}
3 * @throws NullPointerException if {@code src} is {@code null}
4 */
5 static char binaryToHexDigitMsb0_4bits(boolean[] src, int srcPos) {
6 if (src.length > 8) {
7 throw new IllegalArgumentException("src.length > 8");
8 }
9 if (src.length - srcPos < 4) {

10 throw new IllegalArgumentException("src.length - srcPos < 4");
11 }
12 if (src[srcPos + 3]) {
13 // ...

control flow statically and uses constraint solving (i.e., Z3)—but to find inconsisten-
cies rather than to analyze feasibility. wit and Drone also differ in some of the Java
features they support; for example, Drone keeps track of try/catch blocks (wit misses
some paths) but does not follow calls inside conditionals (wit supports them). The
several differences between wit’s and Drone’s capabilities reflect their different goals
(and, correspondingly, the different research questions of their respective evaluations):
Drone aims at finding inconsistencies in whole projects, whereas wit infers precondi-
tions with high precision and nimbly on individual classes. As a result, Drone is run on
projects with some existing documentation to improve and extend it: the tool “takes
API code and document directives as inputs, and outputs repair recommendations for
directive defects” [54, §3]; wit can run on projects without documentation and reliably
find exception preconditions (Section 5.6 showed that many of the manually analyzed
exception preconditions found by wit are undocumented).

DScribe [30] generates unit tests and documentation from manually written tem-
plates, which helps keep them consistent. An extensive manual analysis of the excep-
tional behavior of Apache Commons IO—which we used as ground truth in Section 5.2’s
experiments—found that 85% of exception-throwing methods are not documented, not
tested, or both, which motivated their template-based approach. wit’s output could be
used to write the templates, thus improving the automation in DScribe’s approach.

8 Discussion of Applications

This section outlines possible applications of wit’s technique that take advantage of its
characteristics. wit’s precision is especially handy when generating documentation (dis-
cussed in Section 8.1) or tests (Section 8.2). wit’s other key feature (that it’s lightweight)
helps apply it to different scenarios. For research in mining software repositories, not
requiring complete project builds enables scaling analyses to a very large number (e.g.,
several thousands) of projects—whereas building all of them would be infeasible [18].
Using wit as a component of a recommender system that runs in real-time is another
scenario where speed/scalability would be of the essence.
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8.1 Documentation

As we demonstrated in Section 5.6.3, the output of wit’s analysis can be useful to
extend, complement, and revise the documentation of public methods’ exceptional
behavior. Accurately documenting exceptions is crucial for developers [54], but writing
documentation is onerous [30,31]; as a result, APIs often lack documentation [37],
especially for exceptions [4]. wit’s high precision ensures that its output can generally
be trusted without requiring manual validation, and hence it can directly help the job
of developers writing documentation (or tests).

In most cases, wit’s exception preconditions are in a form that can be easily trans-
formed into method documentation—for example by expressing them in natural lan-
guage using pattern matching [54,3,17]. In fact, since it uses precise static analysis,
we found several cases where wit’s exception preconditions provide more rigorous in-
formation than what is available in programmer-written documentation. For example,
Listing 10 shows the programmer-written exceptional behavior documentation and the
initial part of the implementation of a method from class Conversion in project Apache
Commons Lang. wit outputs two exception preconditions for the method:

src.length > 8 (1)

src.length <= 8 && srcPos - src.length > -4 (2)

both corresponding to an IllegalArgument exception. At first sight, it may seem that
wit’s output is incomplete (it doesn’t mention the preconditions “src is empty” and
“src is null” in the Javadoc) and needlessly verbose (isn’t src.length <= 8 redun-
dant?). A closer look, however, reveals that several aspects of the natural-language
documentation are questionable or inconsistent. First, it mixes explicitly and implic-
itly thrown exceptions: a NullPointer exception is thrown by the Java runtime when
evaluating the expression on line 6, not by the method’s implementation. wit ignores
such language-level exceptions by design; as we mentioned in Section 3.7, not includ-
ing implicit exceptions in API documentation may be preferable [15,4]. A second issue
with Listing 10’s documentation is that it is incorrect: if src is empty, the method
does not throw an IllegalArgument exception; instead, the Java runtime throws an
IndexOutOfBounds exception at line 12 (another system-level implicit exception). Fi-
nally, Listing 10’s documentation is inconsistent regarding the order in which the var-
ious exception preconditions are checked: whether src is null is checked first (implic-
itly), followed by src.length > 8 (explicitly), src.length - srcPos < 4 (explicitly),
and whether src is empty (implicitly)—in this order. Thus, predicate src.length <= 8

in wit’s second inferred preconditions is not redundant but rather useful to ensure
that the precondition precisely captures the conditions under which a certain path is
taken. Admittedly, wit may sometimes present preconditions in a form that is harder
to understand for a human; for example, it is questionable that the “simplification” of
src.length - srcPos < 4 into srcPos - src.length > -4 improves readability. How-
ever, these are just pretty-printing details that are currently left to SymPy; changing
them to generate constraints that follow certain preferred templates could be done
following Nguyen et al.’s [31] approach. In fact, one could even let the user decide the
output format according to their preference. Overall, this example demonstrates that
wit’s output often has all the information needed to generate accurate documentation
that avoids ambiguities or other inconsistencies.
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Listing 11: Simplified excerpt of method Fraction.getFraction{72} from in project Commons Lang.
1 Fraction getFraction(final int whole, final int num, final int den) {
2 if (den == 0) throw new ArithmeticException("The denominator must not be zero");
3 if (den < 0) throw new ArithmeticException("The denominator must not be negative");
4 if (num < 0) throw new ArithmeticException("The numerator must not be negative");
5 final long nv;
6 if (whole < 0) { nv = whole * (long) den - num; }
7 else { nv = whole * (long) den + num; }
8 if (nv < Integer.MIN_VALUE || nv > Integer.MAX_VALUE)
9 throw new ArithmeticException("Numerator too large to represent as an Integer.");

10 // ...
11 }

8.2 Generating Tests

Automatically generating tests that exercise a method’s exceptional behavior is another
natural applications of wit. Fully pursuing it is outside this paper’s scope; nevertheless,
we briefly discuss this directions on a few concrete examples that we encountered while
carrying out Section 4’s empirical evaluation.

As mentioned in Section 3, each exception precondition reported by wit also comes
with an example of inputs that satisfy it; for instance, for exception precondition
(2), wit outputs the example [src.length=2, srcPos=0]. Writing a test that ini-
tializes an array with two elements, calls the method in Listing 10, and checks that
an IllegalArgumentException is thrown (and that it contains a specific message) is
straightforward. In fact, one could even try to automate the generation of tests and
oracles from wit’s examples and preconditions. For example, using property-based test-
ing [6]: after expressing (2) (or even the specific example) as an input property, let a
tool like jqwik{73} randomly generate inputs that satisfy it.

The information captured by wit can support increasing the level of automation
and generally make programmers more productive. It can also improve the quality
of the tests that are written, as demonstrated by the following example. Listing 11
shows a (simplified) excerpt of method Fraction.getFraction in Apache Commons Lang,
which takes three integers whole, num, den, and returns an object representing the
fraction whole + num/den. As we can see in Listing 11, getFraction has 4 exception
preconditions: (a) (line 2) when den is 0; (b) (line 3) when den is negative; (c) (line 4)
when num is negative; (d) (line 8) when the resulting numerator nv exceeds the largest
integer in absolute value. Commons Lang is a thoroughly tested project [30], and in fact
all four exceptional behaviors are tested.{74} The 4 behaviors are not evenly tested
though: 3 calls cover (a), 6 calls cover (b) (including three identical calls, which is
likely a copy-paste error), 1 call covers (c), and 4 calls cover (d). Comments in the
test method which refer to the four categories are sometimes misplaced (for example,
two calls under “zero denominator” actually cover (d)). In contrast, wit’s example
inputs correspond one-to-one and uniquely to each exception precondition: (a) den=0;
(b) den=-1; (c) num=-1, den=1; (d) whole=2147483648, num=0, den=1. If we wanted
multiple example inputs for the same precondition, we could just ask Z3 to generate
more. In all, wit’s output can be quite useful to guide a systematic test-case generation
process.

Another situation where wit’s output helps write tests that exercise exceptional
behavior is when this requires a combination of inputs for different arguments. One

32



Listing 12: Documentation of StringSubstitutor.replace() submitted as pull request in project
Commons Text.

1 * @throws StringIndexOutOfBoundsException if {@code offset} is not in the
2 * range {@code 0 <= offset <= chars.length}
3 * @throws StringIndexOutOfBoundsException if {@code length < 0}
4 * @throws StringIndexOutOfBoundsException if {@code offset + length > chars.length}

example is Commons Text’s method FormattableUtils.append(),{75} which takes 6 ar-
guments and comes from Java’s Formatter interface.{76} FormattableUtils.append()’s
exception precondition involves the negation of a disjunction of three Boolean pred-
icates: !(e == null || p < 0 || e.length() <= p). wit suggests an example input
where e.length() is 1, and p is 0, which is easy to implement as a test. Another ex-
ample is method StringSubstitutor.replace(){77} in the same project, which takes
three arguments (one character array and two integers) and may throw an exception
in a nested call. As regularly seen in Apache Commons projects, the method accepts
null or empty arrays; however, when the array is non-null, the exception precondition
gets quite complex. wit provides exception triggering inputs for the three arguments,
including that the character array must not be null and could be empty. In cases like
this, we could reuse parts of wit’s extracted precondition to document the complex
exception condition. The complexity of the precondition, together with it being in a
nested call, may be the reason why the documentation and tests were missing in the
project.

9 Conclusions

We presented wit: a static analysis technique to extract exception preconditions of Java
methods. wit focuses on precision: it only reports correct preconditions.

An evaluation on 46 open-source Java libraries and five JDK 11 modules demon-
strated also that it is lightweight (under two seconds per analyzed public method on
average), precise (all inferred preconditions are correct), and can recover a significant
fraction of the known exception preconditions (9–83% of the supported exception pre-
conditions using [30]’s manual analysis as ground truth).

While the exception preconditions detected by wit tend to be syntactically simple,
they often complement the available documentation of a method’s exceptional behavior,
as we demonstrated by merging a selection of 170 inferred exception precondition as
pull requests in the projects’ open source repositories.

In order to combine scalability and applicability, wit can perform a modular analy-
sis: after inferring the exception preconditions of a project A, it can use them to analyze
the behavior of another project B whenever it calls out to any methods in A. Our em-
pirical analysis suggested that modular analysis is a bit of a mixed bag: it does increase
the number of exception precondition wit can detect, but it may also decrease the pre-
cision for the so-called “maybes”—exception preconditions that are reported separately,
as wit could not conclusively establish that they are correct. Accordingly, wit can be
configured to use modular analysis selectively, according to what is the main goal of
its users. Investigating heuristics to help the automatic selection of these configuration
options is an interesting direction for future work.
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