
Empirical Software Engineering manuscript No.
(will be inserted by the editor)

Agile vs. Structured Distributed Software Development:
A Case Study∗

H.-Christian Estler · Martin Nordio ·
Carlo. A. Furia · Bertrand Meyer ·
Johannes Schneider†

Published online: 15 August 2013

Abstract In globally distributed software development, does it matter being
agile rather than structured? To answer this question, this paper presents
an extensive case study that compares agile (Scrum, XP, etc.) vs. structured
(RUP, waterfall) processes to determine if the choice of process impacts aspects
such as the overall success and economic savings of distributed projects, the
motivation of the development teams, the amount of communication required
during development, and the emergence of critical issues.

The case study includes data from 66 projects developed in Europe, Asia,
and the Americas. The results show no significant difference between the out-
come of projects following agile processes and structured processes, suggesting
that agile and structured processes can be equally effective for globally dis-
tributed development. The paper also discusses several qualitative aspects of
distributed software development such as the advantages of nearshore vs. off-
shore, the preferred communication patterns, and the effects on project quality.

Keywords Distributed software development · Outsourcing · Agile ·
Empirical study

CR Subject Classification D.2.9 · K.6.1 · K.6.3 · K.6.4

∗ A preliminary version of this paper featured at the 7th International Conference on Global
Software Engineering (Estler et al, 2012).

† Work conducted while affiliated with ETH Zurich.

H.-C. Estler · M. Nordio · C. A. Furia · B. Meyer
Chair of Software Engineering, ETH Zurich, Switzerland
E-mail: firstname.lastname@inf.ethz.ch

J. Schneider
IBM Research, Zurich, Switzerland
E-mail: joh@zurich.ibm.com

1 Introduction and Overview

The importance of choosing the right development process to ensure the suc-
cessful and timely completion of distributed software projects cannot be under-
stated. . . Or can it? This paper presents an extensive case study analyzing the
impact of different development processes on the success of software projects
carried out by globally distributed development teams.

Empirical Analyses of Globally Distributed Software Development

Globally distributed software development has become a common practice in
today’s software industry; companies cross the barriers introduced by distance,
cultural differences, and time zones, looking for the most skilled personnel and
the most cost-effective solutions. Globally distributed software development
may exacerbate several of the criticalities already present in traditional lo-
cal software development, and it often generates its own peculiar challenges
originating in the difficulty of carrying out the traditional parts of a software
development project—requirements elicitation, API design, project manage-
ment, team communication, etc.—in environments where members of the same
team live and work in different countries, or even in different continents.

Given the challenges and peculiarities introduced by globally distributed
software development, it is interesting to peruse the standard methods and
practices that have been successful in traditional local software development,
determining if they can be applied with positive results also in globally dis-
tributed settings. From the perspective of empirical research in software engi-
neering, this general line of inquiry materializes in questions of the form “What
is the impact of X on the quality of globally distributed software development
projects”, where “X” is a practice, method, or technique, and “quality” may
refer to different aspects such as timeliness, customer satisfaction, cost effec-
tiveness, or the absence of problems. Examples of globally distributed software
development issues investigated empirically along these lines include the us-
age of contracts for API design (Nordio et al, 2009), the effect of time zones
on various phases of development (Herbsleb et al, 2000; Espinosa et al, 2007;
Nordio et al, 2011a) and on productivity and quality (Ramasubbu and Balan,
2007; Bird et al, 2009), and the impact of geographic dispersion on several
quality metrics (Ramasubbu et al, 2011).

Goals of This Study: Impact of Development Processes

The case study presented in this paper focuses on development processes
(Ghezzi et al, 2002; Pressman, 2009; Pfleeger and Atlee, 2005) to find out
whether the choice of process has a significant impact on qualities such as
programmer productivity and development cost-effectiveness in globally dis-
tributed software development. To our knowledge, this is one of very few em-

2

pirical studies that explicitly investigates the impact of development processes
on globally distributed software development.

Software Development Processes: Structured vs. Agile

A software development process is a scheme to structure and manage the
various aspects of development: requirements elicitation, design, implementa-
tion, verification, maintenance, etc. Software engineering (Ghezzi et al, 2002;
Pressman, 2009; Pfleeger and Atlee, 2005) has traditionally targeted so-called
structured processes1, such as the Rational Unified Process (RUP), the water-
fall model, or the spiral model. Structured processes are characterized by a
focus on rigorously defined practices, extensive documentation, and detailed
planning and management. More recently, a surge of agile development pro-
cesses have been introduced to overcome some of the limitations and unsat-
isfactory aspects of structured processes. Agile processes (Beck et al, 2001;
Cohen et al, 2004), such as Scrum or eXtreme Programming (XP), empha-
size the importance of effective informal communication among developers,
and of iterative improvement of implementations driven by use-case scenarios,
and they champion small cohesive development teams over large structured
units. The relative merits and applicability of structured vs. agile processes
in local software development are fairly well-understood (Müller and Tichy,
2001; Hulkko and Abrahamsson, 2005; Begel and Nagappan, 2008; Nawrocki
et al, 2002; Boehm and Turner, 2004): for example, for applications whose re-
quirements are accurately known and not subject to radical changes, a struc-
tured development may offer more controllability and better scalability; on the
other hand, agile processes may be preferable when requirements are subject
to frequent change and achieving a formal and structured communication with
stakeholders is difficult or unrealistic.

The Role of Processes in Distributed Development

The present paper’s study re-considers the “structured vs. agile” dichotomy
in the context of globally distributed software development, and tries to un-
derstand whether one of the two development approaches emerges as more ap-
propriate to organize software development carried out by globally distributed
teams. The facts learned about non-distributed contexts may not apply to dis-
tributed settings, where it is not obvious how to enforce some of the principles
underlying structured or agile methods. Agile processes, in particular, often
require that (Beck et al, 2001):

– all project phases include communication with customers;

1 Other names for such processes are: heavyweight, plan-driven, disciplined. In this arti-
cle, we will consistently use the term “structured” to denote “non-agile” processes; this is
merely a terminological convention and does not entail that agile processes have no structure
whatsoever, or that structured processes are completely inflexible.

3

– face-to-face exchanges be preferred as the most efficient and effective meth-
od of communicating.

In contrast, structured processes often emphasize the importance of main-
taining accurate documentation, which can be problematic when cultural and
language differences are in place. Correspondingly, effectively applying the
principles of agile rather than structured development in a distributed setting
has been the subject of much software engineering research (Sureshchandra
and Shrinivasavadhani, 2008; Paasivaara et al, 2009, 2010).

The question remains, however, of what are the relative merits of structured
and agile processes for globally distributed software development, and whether
one of them is more likely to be effective. The present paper targets this ques-
tion with a study involving over 31 companies (of size from small to large)
for a total of 66 software projects developed in Europe, Asia, and the Ameri-
cas. The degree of distribution ranges from merely outsourced projects—where
management remains in the company’s headquarters while the actual develop-
ment team operates in a different country—to highly distributed development
projects—where members of the same team reside in different countries.

According to the answers collected through questionnaires and interviews,
we have classified the development process used in each project into agile
or structured, and we have analyzed the correlation between process type
and measures of achieved overall success, importance for the customer, cost-
effectiveness, developer motivation, amount of personal communication, and
emerge of several problematic aspects. As we discuss in detail in the rest of
the paper, the data collection was designed so as to reduce potential threats
to validity, and specifically the intrinsic fuzziness of ordinal-answer question-
naires (see Section 3) and the interviewer effect of structured interviews (see
Section 7):

– The questionnaire (see Table 1) included, as much as possible, quantitative
descriptions of the possible answers on a scale (for example, “answer 3
corresponds to 3–5 hours per week”). This helps align answers coming
from different participants to a common gauge, so that comparing them is
meaningful.

– All participants to the study have considerable experience (managers or
senior engineers) and reported data about a recently completed single
project. This gives us confidence that the participants were aware of the
possible pitfalls of reliably reporting complex data, and that they could re-
port on completed projects, where the differences in process and outcome
were sufficiently well defined (as opposed to ongoing projects with unclear
developments).

– The quantitative analysis only uses data from the questionnaires. We still
rely on the interviews to report qualitative and anecdotal data (see Sec-
tion 5), which corroborate and enrich the overall picture about distributed
development.

4

– The number of projects about which we collected data is fairly large for this
type of study (see a comparison with related work in Section 8); therefore,
correlations should easily emerge if present at all.

Summary of Results

The bulk of the results show that the differences in any of these measures
between agile and structured processes are negligible and with no statistical
significance. Therefore, our study suggests that agile and structured processes
can be equally effective (or ineffective) for globally distributed software devel-
opment, and the sources of significant differences in project outcome should
be sought in other project characteristics.

These results should not be misread as suggesting that development pro-
cesses are irrelevant and bear no impact on project outcome. The real take-
home lesson is that the development process is not an independent variable,
and hence its choice cannot single-handedly determine the successful or un-
successful outcome of a project. Single experiences include both great success
stories and utter failures with either structured or agile practices. The choice
of development process is thus something to be considered with great care,
but based on the characteristics of a project and of the development team
working on it, as well as on its overall goals—not in a vacuum based on a
priori expectations for one-size-fits-all blue-sky solutions.

Outline

The rest of the paper is organized as follows. Section 2 presents the research
questions investigated in the case study. Section 3 describes the data collec-
tion process and the research methodology. Section 4 presents the quantitative
results of the study, whereas Section 5 is devoted to a somewhat informal dis-
cussion of other aspects for which only qualitative data is available. Section 6
draws the big picture of the study from a practical standpoint. Sections 7 and
Section 8 respectively describe threats to validity and related work. Section 9
summarizes and describes future work.

2 Research Questions

While the benefits of deploying structured vs. agile processes have been ex-
tensively studied in the context of traditional local development, their appli-
cability to and impact on globally distributed development are still largely
unknown. This paper contributes to filling this knowledge gap by investigat-
ing the impact of using different processes—structured rather than agile—on
the outcome of software projects carried out in distributed settings. This leads
to two overall research questions, the first focusing on project outcome and
the second focusing on the emergence of problematic aspects.

5

RQ1: In software development carried out in globally distributed set-
tings, what is the impact of adopting structured vs. agile pro-
cesses on the overall success (A), importance for customers
(B), team motivation (C), cost-effectiveness (D), and amount
of real-time (E) and asynchronous communication (F)?

RQ2: In software development carried out in globally distributed set-
tings, what is the impact of adopting structured vs. agile pro-
cesses on the emergence of communication difficulties (G),
cultural differences (H), ineffective project management (I),
loss or fluctuation of know-how (J), shortage of labor skills
(K), ineffective reading or writing of documentation2 (L, M),
interpersonal conflicts (N), difficulties in keeping to the project
schedule (O), and in protecting intellectual property (P)?

The choice of project outcome aspects A–P reflects the major dimensions
studied in the research literature on distributed development (reviewed in
Section 8). The specific questions asked in the questionnaires and interviews
(see Section 3.1 and Table 1) outline the definitions we assumed for aspects
A–P targeted by the research questions; in the simplest cases, we can just
assume dictionary definitions.

Hypotheses for RQ1 and RQ2

For each aspect A–F of RQ1 (overall success, cost-effectiveness, etc.), a null-
hypothesis states the absence of correlation between development process type
and outcome relative to the aspect; all hypotheses refer to projects developed
in distributed settings.

HA
0 There is no difference in the overall success of projects developed

using agile methods vs. projects developed using structured methods.
HB

0 There is no difference in the importance (i.e., criticality for customers)
of projects assigned to development using agile methods vs. projects
assigned to development using structured methods.

HC
0 There is no difference in the motivation of teams following agile pro-

cesses vs. teams following structured processes.
HD

0 There is no difference in the estimated economic savings (compared to
onshore development) for customers in projects using agile methods
vs. projects using structured methods.

HE
0 There is no difference in the amount of real-time communication (e.g.,

in person or by phone) required by projects developed using agile
methods vs. projects developed using structured methods.

HF
0 There is no difference in the amount of asynchronous communica-

tion (e.g., emails or wikis) required in projects developed using agile
methods vs. projects developed using structured methods.

2 For structured processes, the term “documentation” mainly denotes requirement speci-
fications; for agile processes, it mainly denotes use-case scenarios and test cases.

6

Similarly, for each potentially problematic aspect G–P of RQ2 (communi-
cation difficulties, cultural differences, etc.), a null-hypothesis states the ab-
sence of correlation between development process type and the emergence of
the problematic aspect; again, all hypotheses refer to projects developed in
distributed settings.

HG
0 There is no difference in the emergence of communication difficulties

across geographically distributed units in projects using agile methods
vs. projects developed using structured methods.

HH
0 There is no difference in the emergence of cultural differences in

projects using agile methods vs. projects developed using structured
methods.

HI
0 There is no difference in the emergence of ineffective project man-

agement in projects using agile methods vs. projects developed using
structured methods.

HJ
0 There is no difference in the emergence of loss or fluctuation of know-

how in projects using agile methods vs. projects developed using
structured methods.

HK
0 There is no difference in the emergence of shortage of labor skills in

projects using agile methods vs. projects developed using structured
methods.

HL
0 There is no difference in the emergence of problems with ineffective

reading of documentation in projects using agile methods vs. projects
developed using structured methods.

HM
0 There is no difference in the emergence of problems with ineffective

writing of documentation in projects using agile methods vs. projects
developed using structured methods.

HN
0 There is no difference in the emergence of interpersonal conflicts in

projects using agile methods vs. projects developed using structured
methods.

HO
0 There is no difference in the emergence of difficulties in keeping to the

project schedule in projects using agile methods vs. projects developed
using structured methods.

HP
0 There is no difference in the emergence of difficulties in protecting

intellectual property in projects using agile methods vs. projects de-
veloped using structured methods.

If the collected data manages to falsify, with a degree of statistical sig-
nificance, any null-hypothesis, there is evidence supporting the corresponding
alternative hypothesis: the choice of agile rather than structured development
processes has an impact on the outcome of a certain aspect or the emergence
of a certain problem in globally distributed projects.

Discussion of the Hypotheses

Familiarity with software development practices might suggest a priori that
not all investigated aspects have the same importance or the same dependence

7

on the development process. For example, among the issues pertaining RQ1,
the amount of asynchronous communication may be less relevant than the
overall success of a project, which is arguably the most important overall goal.
Among the aspects mentioned in RQ2, the difficulty of protecting intellectual
property may seem to be largely independent on the choice of development
process compared to, say, issues with project management. Nonetheless, we
investigate all hypotheses independently, to determine to what extent intuition
is supported by hard evidence. This is also helpful to reduce the chance that
we miss any significant correlation between process type and other aspects due
to incorrect prior expectations.

The following sections describe how data was collected to support or fal-
sify the hypotheses above: Section 3 discusses the data collection process and
Section 4 quantitatively analyzes the data. Section 5 complements the quan-
titative analysis with a qualitative presentation of issues related to RQ1 and
RQ2.

3 Research Methodology

The data was collected in two phases.3 In the first phase, we sent out question-
naires to companies in Europe, Asia, and the Americas, about their offshore
and distributed development projects. In the second phase, we interviewed
representatives of several companies located in Switzerland about their dis-
tributed development efforts. Both the questionnaires and the interviews tar-
geted distributed projects, collecting data about: their success for the com-
panies, their cost-effectiveness, team motivation, importance for customers,
amount of communication, problematic aspects that emerged, and whether
they were organized according to a structured or agile process. As we discuss
in the rest of the section, the questionnaires included, whenever possible, de-
scriptive answers with quantitative references, so as to make comparable the
answers coming from different participants.

We did not distinguish among different types of agile (e.g., Scrum vs. ex-
treme programming) or different types of structured (e.g., RUP vs. waterfall)
processes. This is consistent with the observation that, while different pro-
cesses may involve different practices, the principles underlying agile rather
than structured methods are normally visibly different and straightforward to
identify in practice; after all, agile processes emerged in explicit contrast with
traditional structured processes (Beck et al, 2001). The complete data set con-
tains information about 66 distributed projects (details about the distribution
are in Section 3.1), of which 36 deployed agile methods and 30 structured
methods.

3 The dataset is available at http://se.inf.ethz.ch/data/icgse12.zip. Statistical anal-
ysis was performed using IBM SPSS v. 20.

8

3.1 Questionnaires

In the first phase, we contacted through questionnaires companies in various
countries and continents worldwide; each questionnaire targeted one software
project, containing several questions about the project.

We sent out the questionnaires to over 60 contacts worldwide, and we
received replies about 48 projects developed by companies in the USA (14
projects), Nordic countries (12 projects), Germany (6 projects), the UK (4
projects), Russia (1 project), the Netherlands (1 project), Latin America
(1 project), and Switzerland (3 projects, from companies other than those
involved in the interviews of the second phase); the countries of origin of the
remaining 6 projects were unspecified. 22 of the 48 projects were in collabo-
ration with remote units in Russia, 20 in India, 2 in Argentina, and 1 in each
of China, Bulgaria, Hungary, Romania.

The information in the questionnaires was provided by people with signif-
icant experience: 19 high managers, 19 project leaders, and 10 software en-
gineers, architects, and researchers. 19 projects out of 48 followed structured
processes, and 29 applied agile processes.

Table 1 lists the questionnaire questions measuring aspects A–P to assess
hypotheses HA

0 –HP
0 . As shown in the rightmost column, the ordinal range of

available answers for each question came, whenever possible, with a description
that refers to quantitative data (to make comparable answers to the same
questions coming from different participants). As it is common practice in
empirical research based on questionnaires, we used closed questions (that
is, questions with predefined answers), which can be answered in a moderate
amount of time. We selected the possible answers and their ranges based on
our intuition and previous experience—but not on a pilot study. Participants
could choose to not answer individual questions if they did not have access to
or were not allowed to disclose the relevant data. Tables 2 and 3 report the
number of valid answers received for each question.

3.2 Interviews

In the second phase, we contacted 13 Swiss software companies including:
3 large companies with more than 10’000 employees worldwide; 8 mid-size
companies with 200 to 900 employees each; and 2 small companies with less
than 100 employees. 6 of the companies also develop hardware products.

We individually interviewed 18 employees from these 13 companies, that
have experience with globally distributed development. Of the 18 employees,
9 were high managers (CEOs, CTOs, or business unit leaders), 9 were project
managers and senior software engineers.

Each interview discussed a recently completed software project the inter-
viewee had been involved with. All the projects were in collaboration with
distributed units from companies in Western Europe, Eastern Europe, Russia,
or Asia. In 12 of the 18 projects, the units outside Switzerland were subsidiaries

9

Variable Question Answers and numeric mapping

A
Rate the success of the last com-
pleted project.

1 (Complete Failure)
· · ·
10 (Full success)

B
How important was the last com-
pleted project for the customer?

1 (Unimportant)
· · ·
10 (Very critical)

C
How motivated were you working in
an outsourcing project?

1 (Not at all)
· · ·
10 (Very much)

D
What was the financial outcome for
the customer compared to onshore
development?

- (Don’t know)
1 (Lost more than 25%)
2 (Lost 10% to 25%)
3 (About even: −10 to 10%)
4 (Saved 10–25%)
5 (Saved 25–50%)
6 (Saved more than 50%)

E
How often did you have real-time
communication with the outsourc-
ing partner?

1 (Never)
2 (1 to 2 times per year)
3 (3 to 5 times per year)
4 (6 to 9 times per year)
5 (10 to 14 times per year)
6 (15 to 30 times per year)
7 (more than 30 times per year)

F
How often did you have asyn-
chronous communication with the
outsourcing partner?

1 (< 1 hour per week)
2 (1 to 2 hours per week)
3 (3 to 5 hours per week)
4 (6 to 9 hours per week)
5 (10 or more hours per week)

G
Was communication due to distance
a problem?

– (Don’t know)
1 (Not at all)
2 (A little)
3 (Medium)
4 (Severe)

H Were cultural differences a problem?

I
Was project management a prob-
lem?

J
Was loss or fluctuations of know-
how a problem?

K
Was a shortage of labor skills a prob-
lem?

L
Was reading specifications a prob-
lem?

M
Was writing specifications a prob-
lem?

N Were personal conflicts a problem?

O
Was keeping the project schedule a
problem?

P
Was protecting intellectual property
a problem?

Table 1 Questions from the questionnaire used to collect data for hypotheses HA
0 –HP

0 . For
each measured variable in the first column, the questionnaire formulates a question (second
column) and an ordinal range of answers with quantitative references (third column, also
given to participants). Each question also included the option not to answer.

of the main company; the collaboration in the other 6 projects can be charac-
terized as off-shore development provided by external companies. Finally, 11
projects out of 18 followed structured processes, and 7 applied agile processes.

The questions asked during the interviews were similar to those used in
the questionnaires; it was much harder, however, to get quantitative data
from the interviews, because the interviewees were often evasive when asked
to characterize precisely measures such as the success or economic savings of a
project, and only gave generic answers such as “the project was successful” or

10

“the savings were small”. For this reason, we used the data from the interviews
only in the qualitative analysis of Section 5.

4 Quantitative Results

We now present the quantitative data analysis of the hypotheses presented
in Section 2 on the data of the questionnaires (see Section 3). Subsection 4.1
discusses the six hypotheses HA

0 to HF
0 related to RQ1 about project outcome;

subsection 4.2 collectively presents the findings for the ten hypotheses HG
0 to

HP
0 related to RQ2 about problematic aspects.

The initial data-set included information about 48 projects; we removed
one of them, as it consisted of a questionnaire with clearly bogus answers,
leaving us with data about 47 projects. Some questionnaires were incomplete,
in that answers to some questions were missing. The analysis that follows ex-
cludes the missing answers for each question; therefore, the number of projects
evaluated may vary from question to question.

The analysis for each of the hypotheses HA
0 to HP

0 aims to determine
whether the data shows a statistically significant difference between answers
about projects using agile processes and answers about projects using struc-
tured processes.

The questionnaire consisted of multiple-choice questions; given the nature
of the available choices shown in Table 1, we should consider the emerging data
as ordinal but not interval-scale. For each answer, we visually inspected the
distribution of data and we performed a Shapiro-Wilk normality test; none
of them gave evidence to consider the underlying distributions as normal.
The presence of ordinal data and non-normal distributions suggests to deploy
the Mann-Whitney-Wilcoxon U test, a non-parametric statistical hypothesis
test (Arcuri and Briand, 2011; Sprent and Smeeton, 2007).

Analytical Formulation of Hypotheses HA
0 –HP

0

Each hypothesis HX
0 , for X = A, . . . , P , refers to a certain quantity (overall

success, importance, motivation, etc.) or to the severity of a certain potentially
problematic aspect (communication difficulties, cultural differences, etc.) mea-
sured by the corresponding random variablesX, AGX , and STX—respectively
in all projects, in agile projects, and in structured projects. For example, HC

0

tests the motivation of teams, hence AGC models team motivation in agile
projects, STC models team motivation in structured projects, and C models
team motivation across all projects. With this notation, the null hypothesis
HX

0 is expressible as:

HX
0 : P

(
AGX > STX

)
= P

(
STX > AGX

)
;

that is, the probability that random samples of quantity X are larger in agile
projects than in structured projects equals the probability that the samples

11

are larger in structured projects than in agile projects. Correspondingly, the
alternative hypothesis HX

1 is that there is a difference in probability, that is:

HX
1 : P

(
AGX > STX

)
6= P

(
STX > AGX

)
.

We do not directly test for differences in medians and means of the random
variables AGX and STX using the U test, because that would require that
the underlying distributions of AGX and STX have the same shape; however,
our data does not meet this requirement.

Given a significance level α = 0.05, the U test gives a probability p that
the data supports the null hypothesis: if p < α, the data gives evidence to
reject the null hypothesis, if p > α, one can not reject the null hypothesis.

Summary of the Quantitative Findings

The overall outcome of our quantitative analyses is that we never reject the
null-hypothesis; specifically, the p values are normally much greater than any
reasonable significance level, and hence no correlation emerges as significant in
spite of the fairly large sample size. Therefore, the data provides no evidence
to distinguish between using agile vs. structured processes as independent
variables.

The following subsections describe the results in more detail. As an af-
terthought following the quantitative analysis, Section 4.3 shows that the data
possesses some statistically significant correlations among certain random vari-
ables, such as the overall success and the importance of a project. Such cor-
relations are, however, completely independent of the process type—agile or
structured.

4.1 Quantitative Analysis of RQ1: Project Outcome

The distribution of the data for hypotheses HA
0 to HF

0 is shown in Figure 1.
While a cursory visual inspection seems to indicate that some aspects—such as
the success, economic savings, and amount of asynchronous communication—
are impacted by the choice of process, the quantitative analyses show that the
differences are not statistically significant.

Table 2 lists the analysis results for hypotheses HA
0 –HF

0 . For each hypothe-
sis, the table reports standard descriptive statistics (such as median and mean)
split according to the process type; and the outcome of U test between data in
the two partitions (as described earlier in this section). The descriptive statis-
tics refer to the ordinal scales assigned to answers of each question, shown in
Table 1; notice that different questions may have different scales (which is not
an issue since each hypothesis refers to a single question). In all, none of the U
tests achieves statistical significance; in fact, p is greater than 0.5 in all cases
but one (where it still is about 0.25), which means that we are very far from
any statistical significance.

12

6%

4%

6%

4%
14%

13%

29%

19%

7%

6%

43%

50%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Motivation (A)

4 5 6 7 8 9 10 (10 ≡ Very much) (Not at all ≡ 0)

6%

28%

22%

28%

11%

28%

39%

17%

22%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Success (B)

5 7 8 9 10 (10 ≡ Full success) (Complete Failure ≡ 0)

3%

3%
7%

11%

24%

28%

28%

28%

34%

33%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Importance (C)

4 6 7 8 9 10 (10 ≡ Very critical) (Unimportant ≡ 0)

20%

50%

0%

31%

20%

19%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Savings (D)

Saved 10-25% Saved 25-50% More than 50%

10%

6%

24%

33%

17%

11%

7%
3%

6%

10%

11%

28%

33%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Real-Time Communication (E)

Never 1-2 times per year 3-5 6-9 10-14 15-30 > 30

3% 28%

22%

28%

44%

10%

22%

31%

11%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Asynchronous Communication (F)

< 1 hour per week 1-2 3-5 6-9 10 or more

Fig. 1 Bar charts for the data corresponding to hypotheses HA
0 to HF

0 ; see Section 4.1 for
a detailed analysis.

4.2 Quantitative Analysis of RQ2: Problematic Aspects

The distribution of the data for hypotheses HG
0 to HP

0 is shown in Figure 2.
Visual inspection may seem to indicate that some problematic aspects emerge
more frequently with one process type than with the other type—in particular,
communication difficulties are reported as more common with structured pro-
cesses, and ineffective management and cultural differences tend to be more
severe with agile processes. The quantitative analyses, however, show that
none of the differences is statistically significant.

Table 3 lists the analysis results for hypotheses HG
0 –HP

0 H
A
0 . For each hy-

pothesis, the table reports the same statistics as Table 2 but about variables

13

31%

39%

41%

22%

28%

39%

0%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Communication (G)

Not at all A little Medium Severe

41%

67%

38%

22%

17%

6%

3%

6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Cultural Differences (H)

Not at all A little Medium Severe

34%

41%

52%

35%

14%

18%

0%

6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Project Management (I)

Not at all A little Medium Severe

33%

29%

30%

35%

30%

24%

7%

12%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Loss or Fluctuation of Know-how (J)

Not at all A little Medium Severe

61%

50%

25%

39%

14%

6%

0%

6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Skills of Labor (K)

Not at all A little Medium Severe

57%

59%

32%

24%

11%

18%

0%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Reading Specifications (L)

Not at all A little Medium Severe

46%

59%

43%

35%

7%

6%

4%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Writing Specifications (M)

Not at all A little Medium Severe

55%

44%

45%

39%

0%

17%

0%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Personal Conflicts (N)

Not at all A little Medium Severe

28%

28%

45%

56%

21%

11%

7%

6%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Keeping Project Schedule (O)

Not at all A little Medium Severe

79%

78%

7%

17%

3%

6%

0%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agile

Structured

Protecting Intellectual Property (P)

Not at all A little Medium Severe

Fig. 2 Bar charts for the data corresponding to hypotheses HG
0 to HP

0 ; see Section 4.2 for
a detailed analysis.

14

aspect T # Median Min/Max Mean Rank Mean Std. dev. U p

HA
0 : success

A 29 8 7/10 23.14 8.34 1.078
236 0.571

S 18 9 5/10 25.39 8.44 1.381

HB
0 :

project
importance

A 29 9 4/10 23.95 8.69 1.417
259 0.973

S 18 9 7/10 24.08 8.83 1.043

HC
0 :

team
motivation

A 28 8.5 5/10 22.3 8.61 1.449
218 0.887

S 16 9.5 4/10 22.84 8.5 1.932

HD
0 : savings

A 15 5 4/6 18 5 0.655
90 0.247

S 16 4.5 4/6 14.13 4.69 0.793

HE
0 : real-time

communication

A 29 3 1/7 23.62 4.1 2.273
250 0.805

S 18 4 1/7 24.61 4.33 2.376

HF
0 : asynchronous

communication

A 29 3 1/5 24.48 3.38 1.293
247 0.75

S 18 3 2/5 23.22 3.22 0.943

Table 2 Quantitative analysis of hypotheses HA
0 to HF

0 . Column T identifies the process
type: agile (A) or structured (S); column # reports the number of projects that provided
data about the aspect. Columns U and p report the results of applying the U test. For
the reported severity of each aspect, the remaining columns report Median, Minimum and
Maximum, Mean Rank, Mean, and Standard deviation. See Table 1 for the ordinal scales of
each variable.

aspect T # Median Min/Max Mean Rank Mean Std. dev. U p

HG
0 : communication

A 29 2 1/3 23.81 1.97 0.778
255.5 0.898

S 18 2 1/3 24.31 2.00 0.907

HH
0 : cultural

differences

A 29 2 1/4 26.24 1.83 0.848
196 0.119

S 18 1 1/4 20.39 1.5 0.857

HI
0 :

project
management

A 27 2 1/3 22.24 2.11 0.974
243 0.931

S 17 2 1/4 23.71 1.88 0.928

HJ
0 : loss of

know-how

A 29 2 1/3 23.81 1.97 0.778
222.5 0.86

S 17 2 1/4 22.91 2.18 1.015

HK
0 : labor skills

A 28 1 1/3 22.71 1.54 1.015
230 0.578

S 18 1.5 1/4 24.72 1.67 0.840

HL
0 : reading doc.

A 28 1 1/3 22.88 1.54 0.693
234 0.926

S 18 1 1/3 23.21 1.59 0.795

HM
0 : writing doc.

A 28 2 1/4 24.18 1.68 0.772
205 0.388

S 17 1 1/3 21.06 1.47 0.624

HN
0 : personal

conflicts

A 29 1 1/2 22.36 1.45 0.506
213.5 0.242

S 18 2 1/3 24.31 2.00 0.907

HO
0 : project

schedule

A 29 2 1/4 24.69 2.07 0.884
241 0.636

S 18 2 1/4 22.89 1.94 0.802

HP
0 :

intellectual
property

A 26 1 1/3 21.56 1.15 0.464
209.5 0.358

S 18 1 1/3 23.86 1.28 0.575

Table 3 Quantitative analysis of hypotheses HG
0 to HP

0 . Column T identifies the process
type: agile (A) or structured (S); column # reports the number of projects that provided
data about the aspect. Columns U and p report the results of applying the U test. For
the reported severity of each aspect, the remaining columns report Median, Minimum and
Maximum, Mean Rank, Mean, and Standard deviation. All variables are on a 1–4 ordinal
scale (see Table 1).

G–P. The descriptive statistics refer to the ordinal scale 1–4 of severity shown
in Table 1, which is the same for all variables related to RQ2. In all, none of
the U tests achieves statistical significance; in fact, p is greater than 0.24 in all
cases but one (where it still greater than 0.11), which means that we clearly
have no statistical significance.

15

4.3 Other Correlations Between Variables

The analysis using the Mann-Whitney-Wilcoxon U test did not provide any
evidence of statistically significant correlations between the project type (agile
or structured) and the reported measures of different quantities (success, team
motivation, communication problems, etc.). Are there statistically significant
correlations between other pairs of variables, not involving the project type?

To answer this question, we calculated Kendall’s τ rank correlation coeffi-
cient for all pairs of random variables A to P measuring the quantities involved
in hypotheses HA

0 to HP
0 across all 47 projects targeted by the questionnaires.

Table 4 lists the cases of significant correlations: the pairs of variables with a
correlation coefficient τ ≥ 0.4 or τ ≤ −0.4 and a significance p < 0.01.

pair of quantities τ p (two-sided)
A (overall success) / B (importance) 0.505 < 0.001
L (reading doc.) / K (labor skills) 0.493 < 0.001
L (reading doc.) / M (writing doc.) 0.645 < 0.001
N (personal conflicts) / K (labor skills) 0.407 = 0.003

Table 4 Correlation analysis based on Kendall’s τ correlation coefficient. The pairs of
random variables are those with a correlation coefficient τ ≥ 0.4 or τ ≤ −0.4 and with
significance p < 0.01.

These correlations may suggest lines for future studies about significant
aspects of globally distributed software development. At the same time, none
of them is really surprising in hindsight. If a project is important for the cus-
tomer, it is reasonable that more effort is put into it so as to achieve overall
success; this justifies the correlation between A and B. Properly handling doc-
umentation (whether formal documents or use-case scenarios) requires skilled
developers (correlation between L and M), who can also abate the likelihood
of interpersonal conflicts due to lack of confidence in other team members
(correlation between N and K). Finally, poorly written documentation is also
hard to read, reflected in the correlation between variables L and M .

5 Qualitative Results

This section discusses various aspects of distributed software development that
emerged from all the collected data: the costs of nearshore vs. offshore devel-
opment, the average success and quality achieved in distributed projects, the
role of personnel skills and of communication patterns, the issues of personnel
fluctuation and intellectual property management, the criteria for choosing
development process, and the typical team size.

Unlike the results of Section 4, the data is mostly qualitative and deals with
aspects complementary to the choice of development process that also affect
the outcome and success of projects. Sections 5.1 through 5.7 report data from

16

the interviews only (for a total of 18 projects, see Section 3), whereas the other
Sections 5.8 and 5.9 also incorporates data from the questionnaires (totaling
65 projects).

Unlike the previous Section 4, the results in the current section are mainly
qualitative. The measures we report in the following subsections should there-
fore mainly be considered elements to articulate the discussion and corroborate
the quantitative picture of the rest of the paper.

5.1 Costs of Nearshore vs. Offshore

The conventional wisdom is that nearshore development (where developers
work close to customers, in terms of time zones and distance) makes team
coordination and collaboration with customers easier, but is significantly more
expensive than offshore development (which can use less expensive developers
in countries such as India and China). The interviews with Swiss companies
representatives revealed, however, that most companies that prefer nearshore
development do it for legal reasons and because it reduces the amount of
traveling, rather than directly to reduce costs.

In fact, our data does not show correlation between costs and location:
the overall costs in nearshore development are not necessarily higher than in
offshore development. While the salaries of programmers in Asia is typically
between 1/5 and 1/3 of the corresponding positions in Switzerland, the overall
project costs are also affected by factors such as productivity, communication
and management overhead, and various costs for setting up and maintaining
offices, which weakens the dependence between total costs and location.

Similarly, our data shows no significant cost differences between globally
distributed projects (where members of the same development team operate
in different locations) and outsourced projects (where management is in a
location, and all development takes place in a different location): compared
with purely local development, globally distributed projects reported savings
for an average 28% and a standard deviation of 11%;4 outsourced projects
reported very similar savings for an average of 33% and a standard deviation
of 11%.5 The overhead (for communication, management, and office costs) is
also almost identical in globally distributed and in outsourced projects, ranging
between 35% and 45%. For example, creating a new unit in an outsourced
location requires 2 to 5 months to setup the office, plus another 3 months to
become productive; the investment pays back after 3–4 years on average.

5.2 Project Success

Out of the 18 projects surveyed in the interviews: 11 are considered “complete
success”; and 5 are “overall success” which, however, suffered non-trivial prob-

4 Data about 8 projects.
5 Data about 10 projects.

17

lems during development. The major sources of problems and difficulties were:
unqualified personnel, cultural and communication difficulties, deficiencies of
the infrastructure, insufficient interaction among units. The major sources of
success were: skilled personnel and effective team building (after a solid team is
established, the members will work proficiently even if distributed in different
locations).

The data does not show any visible correlation between the motivation of
a development team and the overall success (while Section 4.3 showed corre-
lation between project importance and success). Other factors, however, seem
to positively affect the final outcome: companies that are comfortable with
frequent changes of customer, working on series of short-term independent
projects rather than on the long-term incremental development of a single
product, tend to encounter fewer problems. The interviews suggest that com-
panies adapt to frequently changing customers by improving their process and
management skills; companies bound to fewer customers, in contrast, accumu-
late valuable knowledge but tend to have less robust organizational structures.
This may suggest that flexibility is a central skill for distributed software devel-
opment, required to react to and minimize the effects of inevitable problems.

5.3 Project Quality

The overall quality of the majority of projects was reported as “good” or bet-
ter, but our interviews revealed that development problems related to quality
are not uncommon, especially at the beginning of projects (where problems
were reported in over 50% of the projects). It seems that quality correlates
positively with timeliness: late projects are unlikely to achieve a good qual-
ity; nonetheless, compromises on quality are often accepted to meet deadlines.
We observed no significant differences between nearshore and offshore devel-
opment.

5.4 Personnel Skills

Personnel skills are a major factor of project success. Most interviewees think
that personnel skills decrease with distance: the most skilled personnel is in
Switzerland, followed by the personnel in nearshore locations (typically, East-
ern Europe), and then by personnel in offshore locations (India and China).
The deterioration of skills is attributed to difficulties in communication and
collaboration, and more generally to the challenges introduced by distributed
software engineering.

5.5 Communication Patterns

Effective communication is another major factor of project success, and in fact
13 out of 18 projects required a weekly (virtual) meeting among all project

18

members. Figure 3 shows the means of communication used in the 18 projects,
classified by their richness (i.e., perceived effectiveness) and synchrony. Most
of the communication among developers takes place using instant messaging,
which is preferred over voice calls and face-to-face communication because
it helps bypass communication obstacles—for example, strong accents—and
because it is a good compromise between real-time and asynchronous commu-
nication. Time zones were not reported as an issue for communication.

e-mail

text instant
messaging

phone call video call
face to face

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100

Sy
n

ch
ro

n
y

o
f

co
m

m
u

n
ic

at
io

n
 t

yp
e

Richness of communication type

Fig. 3 Communication means categorized by richness and synchrony of different commu-
nication types. The diameter of the circles is proportional to the amount of communication
(calculated as means) used in the distributed projects examined through interviews.

5.6 Personnel Fluctuation

Personnel fluctuation refers to the phenomenon of frequently changing teams,
whose members are likely to quit on a short notice (or no notice at all) and
have to be rapidly replaced. Fluctuation often causes loss of know-how, de-
lays, and cost increases for training and recruitment. While 6 out of 18 projects
report fluctuation levels higher than those they experience in projects devel-
oped entirely in Switzerland, only one of them found fluctuation to be a critical
problem in distributed development.

The interviewees mentioned different mentalities of work and the availabil-
ity of many job opportunities as the main reasons for why offshore personnel
may fluctuate. In some cases, fluctuation is just a consequence of the less stimu-
lating tasks being often outsourced: the offshore personnel would be motivated
were it assigned to interesting jobs.

19

5.7 Intellectual Property

Companies consider intellectual property a key asset, as it provides fundamen-
tal protections against competitors. None of the projects encountered problems
regarding intellectual property. This was probably the results of two factors:
first, intellectual property is project-specific, and hence it is hardly marketable
to others in the case of custom software projects (all the projects targeted by
the interviews are custom). Second, the critical components of each project
are developed onshore, where the most valuable intellectual property can be
adequately protected.

5.8 Onshoring vs. Offshoring in Different Development Phases

For each development phase (requirements, design, implementation, unit and
system testing, deployment, and maintenance), we asked which percentage of
the time spent on that activity was assigned to the onshore rather than to
the offshore units of a distributed project.6 Figure 4 shows the data about 66
projects, discussed during the interviews and reported in the questionnaires
(in addition to the data of the questionnaire data analyzed in Section 4). The
graphs only suggest a slight difference in the system design phase—where off-
shoring is more common with agile processes—and in the unit testing phase—
where offshoring is more common with structured processes. The overall qual-
itative trends are, however, quite similar in the two plots of Figure 4, consis-
tently with the general observations of the study.

24

52

77 79
67

45
63

76

48

23 21
33

55
37

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
 o

f
ac

ti
vi

ty
 d

o
n

e
 b

y
u

n
it

Agile projects

Offshore unit Onshore unit

24
34

76 85
65

50
66

76
66

24 15
35

50
34

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

%
 o

f
ac

ti
vi

ty
 d

o
n

e
 b

y
u

n
it

Structured projects

Offshore unit Onshore unit

Fig. 4 Allocation (percentage of time assigned to offshore or onshore units) of development
phases in agile and structured processes.

6 We did not provide a definition of the various activities to interviewees, relying on their
conventional understanding of the terms in each context. While the same phase may have
fairly different connotations in agile rather than structured processes (e.g. requirements in
agile projects might refer to user stories), no interviewee voiced doubts about how to assign
activities within their projects or asked for clarifications about this aspect.

20

5.9 Team Size

Agile development practices focus on small teams, whereas structured pro-
cesses often are designed with larger teams in mind; the data we collected
about team size confirms these expectations. Figure 5 shows the team size of
66 projects, discussed during the interviews and reported in the questionnaires
(in addition to the data of the questionnaire data analyzed in Section 4); ag-
ile projects tend to have smaller teams than structured projects: most agile
projects deploy teams of 30 people or fewer, whereas structured projects may
deploy large teams, up to 120 people or more. It is noteworthy, however, that
agile practices have been scaled up to teams of more than 60 developers in a
couple of cases; and that structured processes have been followed even with
quite small (< 4) teams.

0

2

4

6

8

10

12

less than 4
people

4-7 people 8-14 people 15-29
people

30-59
people

60-119
people

120 or more
people

N
u

m
b

e
r

o
f

p
ro

je
ct

s

Agile Structured

Fig. 5 Team size in agile and structured projects.

6 Discussion: Practical Implications

The bulk of our study showed no statistically significant correlations between
variables measuring outcomes of distributed processes and the type of devel-
opment project followed—agile or structured. What are the take-home lessons
of this overall result for practitioners?

During the informal discussions following the presentation of an initial
version of this article (Estler et al, 2012), our results were often perceived
as provocative, as they seemed to clash with the direct experience of many
experienced practitioners of distributed development. Everyone had their suc-
cess stories, reporting noticeable improvements as soon as they switched from
a process type to another; how can our results so blatantly contradict their
experience?

21

A common thread we noticed in all of such success stories is that they
were mostly anecdotal and, even in the few cases where they were based on
rigorously collected quantitative data, they invariably involved only a handful
of projects (in many cases, only one) managed and performed by the same
advocate of the particular choices made. Our study, in contrast, targets a sub-
stantial number of different projects, involves quantitative data (even taking
into account the limitations of questionnaires discussed in Section 7), and does
not target any projects in which we were even remotely involved. The impli-
cations of sharpening the experimental conditions are well-known: if there are
significant correlations, they should be magnified by better designed experi-
ments and larger sample sizes.

In our study, we observed the opposite: the claimed superiority of one or
the other development process for distributed development vanished as we
looked at correlations of many variables and over a larger number of projects.
As discussed in Section 4, we do not get even close to statistical significance:
most of our p values are larger than 50%. Rather than resuscitating the hopes
that “one process type is intrinsically better”, the qualitative analysis of Sec-
tion 5 corroborates the quantitative results whenever it targets similar aspects,
since there is no distinctive trend that emerges based on the structured vs.
agile dichotomy. While experiments can never establish a negative, the only
reasonable conclusion is that there are no significant intrinsic correlations be-
tween development process type and the numerous variables we considered to
measure project outcome and problematic aspects.

While we maintain that this result is sound, it should not be misinterpreted
as to suggest that “processes don’t matter”. The only sensible way to reconcile
the individual personal successes of many practitioners with the big picture
drawn by our study is concluding that the process is not an independent vari-
able. We could not find any obvious aspect whose outcome is single handedly
influenced by the choice of process. Therefore, we cannot expect to positively
affect the chances of success (or other dimensions) of a project just by choos-
ing to be agile rather than structured. Practitioners should choose the process
carefully, based on the project characteristics, organizational structure of the
company, and their previous successful or unsuccessful experiences, rather than
a priori expecting that a single choice can be a silver bullet. To summarize with
an alternative slogan: “processes do matter, but they’re not all that matters”.

7 Threats to Validity

We discuss the threats to validity in two categories: internal and external.
Internal validity refers to whether the study supports the findings. External
validity refers to whether the findings can be generalized.

22

7.1 Internal Validity

A number of threats to internal validity may surface in studies based on sur-
veys and interviews. Interviews feature a trade-off between minimizing “in-
terviewer effects” (Fowler and Mangione, 1989)—the interviewer giving subtle
clues about preferred answers—and ensuring quality of answers. The last au-
thor of this paper carried out the interviews using brief and schematic ques-
tions (like those used in the questionnaires) in order to minimize interviewer
effects. With some interviewees, however, this resulted in insufficiently clear or
vague answers. For example, several interviewees responded to multiple-choice
questions with open answers that did not stick to the available choices. In
these cases, the interviewer sometimes tried to improve the quality of answers
by using a more dialectical style of inquiry, possibly at the risk of introduc-
ing interviewer effects. We cannot guarantee that the optimal trade-off was
achieved in all cases.

Another potential threat to internal validity is the risk that the granularity
of multiple-choice answers (in questionnaires and interviews) is too coarse. In
particular, the dichotomy between agile and structured processes does not al-
low for “hybrid processes”, which may be used in practice. Also, the different
backgrounds of study participants could have resulted in different interpreta-
tions of the same ordinal scales (for example, the “overall success” of the same
project would be ranked at a different level on a scale of 1 to 10 by different
individuals). Finally, the absence of a control group and the fact that we did
not have direct access to data about projects make it impossible to evaluate
the genuineness of the data collected with interviews and questionnaires: we
do not know how precise (and objective) the assessment of quantities such
as “overall success” or “economic savings” was, nor whether processes clas-
sified as “agile” (or “structured”) properly followed the agile (or structured)
principles and practices.

While these threats are inherent in studies based on questionnaires and
interviews (like this paper’s), we have reasons to assume they had only limited
impact. First, participants were asked to report on the latest completed single
(agile or structured) globally distributed software development project; hence
they had a chance to select one well-rounded example that unambiguously
fits the agile or structured paradigm, rather than a hybrid. Furthermore, the
differences among agile (or among structured) processes are likely to be small
compared to the differences between any one agile and any one structured pro-
cess. In fact, agile processes emerged as a reaction (Beck et al, 2001) against
mainstream development practices, hence the “agile vs. structured” classifica-
tion is reasonably robust. Second, Table 1 shows how we provided descriptions
for the ordinal values of answers to questions in the questionnaires; the de-
scriptions typically include quantitative references (e.g., “less than 2 hours
per week”). This helps ground the various answers on quantitative data, and
reduces the risk of wildly different interpretations by different respondents.
Third, we limited the quantitative analysis (Section 4) to the more reliable
data coming from the questionnaires, whereas we used the possibly somewhat

23

iffy data coming from the interviews only qualitatively, to corroborate the
overall picture drawn by the study (Section 5). Fourth, the wide array of vari-
ables analyzed independently (also see the discussion in Section 4.3) increases
the chance that, if some significant correlation were present, we would have
detected it. About the remaining threats, the rank and experience of most
participants to the study positively reflect on the chances of having obtained
quantitative estimates of fair and uniform quality.

7.2 External Validity

The major threats to external validity for studies based on surveys come from
insufficient coverage or responsiveness. Coverage measures to what extent the
data-set supports generalization of the findings. Responsiveness quantifies the
amount of “non-respondents”, that is contacts who received a questionnaire
but did not reply with meaningful data. A low responsiveness is a threat to
external validity, as non-respondents may exhibit some characteristics relevant
for the study and underrepresented among respondents.

In our study, we sent out questionnaires to over 60 contacts and we received
48 replies (one was discarded). Even though we do not know for sure whether
some of the contacts forwarded the questionnaires to others (the replies were
anonymous for confidentiality reasons), the figures seem to indicate a low risk
of bias due to lack of responsiveness.

Assessing the coverage is harder for our study. The data collected through
interviews was limited to projects developed by Swiss companies; the online
questionnaires reached 18 different companies worldwide, but the vast major-
ity of these companies have their headquarters in Europe or North America.
We cannot prove that the experience of our respondents is representative of
the entire population of distributed software projects, which may affect the
generalizability of our findings.

8 Related Work

This section presents related work in three areas: empirical studies on agile
processes in local development settings (Section 8.1), on the issues and chal-
lenges raised by distributed development (Section 8.2), and on applying agile
processes in distributed settings (Section 8.3). Section 1 listed general refer-
ences on development processes and their role in the software development
life-cycle.

8.1 Agile Processes for Local Development

The effectiveness of agile processes in collocated projects has been widely inves-
tigated empirically. Müller and Tichy (2001) studied the outcome of extreme
programming practices in a programming course for graduate students. Their

24

data characterizes the performance of 12 students grouped in pairs, each pair
carrying out a 40-hour programming project and 3 smaller assignments (total-
ing about 600 minutes of work). The study showed that groups using extreme
programming produced high-quality code, but it also exposed some difficulties
in applying this agile methodology at best in practice.

Hulkko and Abrahamsson (2005) also analyzed extreme programming prac-
tices, and in particular pair programming. Their study involved both students
and professional programmers in a controlled setting, where they developed
implementations of size up to 8000 lines of code. The results provided no evi-
dence that pair programming practices improve productivity or the quality of
the produced code, compared with programmers working solo.

Begel and Nagappan (2008) surveyed the results of pair programming prac-
tices at Microsoft. Professional programmers, testers, and manager with about
10 years of experience took part in the survey; the majority reported that pair
programming works well for them and produces higher-quality code.

Bhat and Nagappan (2006) conducted an empirical study about test-driven
development—another practice of extreme programming—at Microsoft. The
study compared test-driven development against more traditional practices,
showing an increase in code quality but also in development time (by about
15%) with the adoption of test-driven development.

Nawrocki et al (2002) compared development with extreme programming
against development following CMM level 2. Their study, targeting university
students, revealed that CMM implementations are more stable and contain
fewer bugs, but programmers following CMM practices perceive their job as
more tedious.

8.2 Empirical Studies on Distributed Development

Empirical studies on globally distributed development have analyzed differ-
ent aspects, including communication patterns, the effect of time zones, and
achievable quality and productivity.

Several studies focused on the amount and type of communication required
by distributed projects. For example, Allen (1977) reported that the frequency
of communication among engineers whose offices are more than 30 meters apart
drops to almost the same level as that of engineers separated by several miles.
In the same vein, Carmel (1999) identified loss of communication as one of four
major risk factors that can lead to the failure of distributed software projects.

Herbsleb and Mockus (2003) analyzed the impact of globally distributed
development on the amount of communication needed to agree on and imple-
ment requests for modifications of existing implementations. They found that,
when developers are geographically distributed, the overall time increases by
a factor of 2.5 on average. If, however, the effect of other variables such as
the number of people involved in a task and the size of the required modifi-
cations is properly taken into account, the differences in communication time
between distributed and collocated teams are no longer significant. Other find-

25

ings were that communications is much more frequent among collocated than
among remote developers; and that the size of the social network (i.e., the
number of colleagues a developer ever interacts with) is significantly smaller
for programmers working in distributed teams.

In previous work of ours (Nordio et al, 2011a), we studied the effect of time
zones and locations on communication within distributed teams; we performed
the study as part of our DOSE (Nordio et al, 2010, 2011b) university course.
We found that the amount of communication is larger in two-location projects
than in projects distributed across three locations; and that it decreases the
more time zones separate the developers of a distributed team.

Other studies of distributed development focus on achievable quality. For
example, Bird et al (2009) present a case study on the development of Win-
dows Vista, comparing the failures of components developed by distributed
teams with those of components developed by collocated teams. Their results
show no significant differences in the two cases. Spinellis (2006) examined how
distributed development affects defect density, coding styles, and productiv-
ity in an open source project. He found that there is little or no correlation
between geographic distribution and these quality metrics.

None of these studies targeted the type of processes adopted in distributed
development, which is instead the focus of the present paper. Taking a different
angle, Cataldo and Nambiar (2009) analyzed the mutual impact of process
maturity and distribution on project quality. Their study classified companies
according to their CMMI level, showing that the advantages of processes at
higher maturity levels decrease with the distribution of teams. They do not
compare structured and agile processes, as the present paper does.

8.3 Agile Processes for Distributed Development

There are some clear challenges involved in applying agile processes—such as
Scrum and extreme programming—to distributed projects. Researchers have
proposed changes to agile practices that render them applicable in globally
distributed settings. Correspondingly, the remainder of this section summa-
rizes a few empirical studies that have analyzed distributed projects using
agile methods. The present paper complements such work, as it compares the
impact of agile methods against that of structured methods for distributed
development.

Layman et al (2006) studied the communication practices of extreme pro-
gramming teams distributed between the USA and the Czech Republic. The
developers created an environment for informal communication in a distributed
setting, which helped develop user-story specifications and solve technical
problems quickly and efficiently. Face-to-face communication was effectively
replaced by other means of communication.

Paasivaara et al (2009) studied how Scrum is performed in distributed
projects. Their interview of 19 team members in 3 companies in Finland iden-

26

tified best practices, benefits, and challenges involved in the various Scrum
activities such as “daily scrum”, “sprints”, and “sprint planning meeting”.

Sureshchandra and Shrinivasavadhani (2008) developed another evaluation
of agile processes, targeting only one company. Besides surveying best prac-
tices and lessons learned, they make a brief comparison of the productivity
(measured as lines of code over time) of 15 projects using agile and non ag-
ile processes, and they report a 10% increase in the productivity with agile
methods.

9 Conclusions and Future Work

We presented a case study analyzing the impact of software processes on dis-
tributed development. We have examined a total of 66 industry projects, classi-
fied them into agile and structured, and evaluated the correlation between pro-
cess type and success, importance, economic savings of projects, team motiva-
tion, and real-time and asynchronous communication, as well as the emergence
of problematic aspects such as management difficulties and personal conflicts.
The collected data shows that the correlations between process type and the
other measures are negligible and without statistical significance: choosing an
agile rather than a structured process does not appear to be a crucial decision
for globally distributed projects.

As future work, we plan to investigate various agile and structured projects
in more detail, to determine which agile practices are followed in practice, and
to identify common practices across different projects. We also plan to study
how developers write programs in distributed settings and, in particular, how
they communicate and coordinate API changes. This study will be performed
with our CloudStudio IDE (Estler et al, 2013), which supports software devel-
opment in the cloud with real-time concurrent editing.

Acknowledgements The authors thank all the participants to the study; the ICGSE
2012 attendees—where a preliminary version of this work was presented—for their lively
and interesting comments and remarks about our work; the anonymous reviewers of the
conference and journal papers; and the guest editors Erran Carmel, Rini van Solingen,
Rafael Prickladnicki, and Filippo Lanubile for organizing and managing this special issue of
EMSE. This research has been partially funded by the Gebert-Rüf Stiftung.

References

Allen TJ (1977) Managing the Flow of Technology. MIT Press
Arcuri A, Briand LC (2011) A practical guide for using statistical tests to

assess randomized algorithms in software engineering. In: Proceedings of the
33rd International Conference on Software Engineering, (ICSE), Waikiki,
Honolulu , HI, USA, May 21–28, 2011, ACM, pp 1–10

Beck K, Beedle M, van Bennekum A, Cockburn A, Cunningham W, Fowler
M, Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin

27

RC, Mellor S, Schwaber K, Sutherland J, Thomas D (2001) Manifesto for
agile software development. http://www.agilemanifesto.org

Begel A, Nagappan N (2008) Pair programming: what’s in it for me? In: Pro-
ceedings of the Second International Symposium on Empirical Software En-
gineering and Measurement, (ESEM), October 9–10, 2008, Kaiserslautern,
Germany, ACM, pp 120–128

Bhat T, Nagappan N (2006) Evaluating the efficacy of test-driven develop-
ment: industrial case studies. In: 2006 International Symposium on Empir-
ical Software Engineering (ISESE), September 21–22, 2006, Rio de Janeiro,
Brazil, ACM, pp 356–363

Bird C, Nagappan N, Devanbu PT, Gall H, Murphy B (2009) Does distributed
development affect software quality? an empirical case study of Windows
Vista. Commun ACM 52(8):85–93

Boehm B, Turner R (2004) Balancing Agility and Discipline: A Guide for the
Perplexed. Addison-Wesley

Carmel E (1999) Global Software Teams: Collaborating Across Borders and
Time Zones. Prentice Hall PTR

Cataldo M, Nambiar S (2009) On the relationship between process maturity
and geographic distribution: an empirical analysis of their impact on soft-
ware quality. In: Proceedings of the 7th joint meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, 2009, Amsterdam, The
Netherlands, August 24–28, 2009, ACM, pp 101–110

Cohen D, Lindvall M, Costa P (2004) An introduction to agile methods. Ad-
vances in Computers 62:1–66

Espinosa JA, Nan N, Carmel E (2007) Do gradations of time zone separation
make a difference in performance? a first laboratory study. In: 2nd IEEE
International Conference on Global Software Engineering, ICGSE 2007, Mu-
nich, Germany, 27–30 August, 2007, IEEE, pp 12–22

Estler HC, Nordio M, Furia CA, Meyer B, Schneider J (2012) Agile vs. struc-
tured distributed software development: A case study. In: Carmel E, van
Solingen R (eds) Proceedings of the 7th International Conference on Global
Software Engineering, (ICGSE), IEEE Computer Society, pp 11–20

Estler HC, Nordio M, Furia CA, Meyer B (2013) Unifying configuration man-
agement with merge conflict detection and awareness systems. In: Dietrich
J, Noble J (eds) Proceedings of the 22nd Australasian Software Engineering
Conference (ASWEC), IEEE Computer Society, pp 201–210

Fowler FJ, Mangione TW (1989) Standardized Survey Interviewing: Minimiz-
ing Interviewer-Related Error. Sage Publications Inc.

Ghezzi C, Jazayeri M, Mandrioli D (2002) Fundamentals of Software Engi-
neering, 2nd edn. Prentice Hall

Herbsleb JD, Mockus A (2003) An empirical study of speed and communi-
cation in globally distributed software development. IEEE Transactions on
Software Engineering 29(6):481–494

Herbsleb JD, Mockus A, Finholt TA, Grinter RE (2000) Distance, dependen-
cies, and delay in a global collaboration. In: Proceedings of the 2000 ACM

28

conference on Computer supported cooperative work, ACM, pp 319–328
Hulkko H, Abrahamsson P (2005) A multiple case study on the impact of

pair programming on Product Quality. In: 27th International Conference
on Software Engineering (ICSE 2005), 15–21 May 2005, St. Louis, Missouri,
USA, ACM, pp 495–504

Layman L, Williams L, Damian D, Bures H (2006) Essential communication
practices for extreme programming in a global software development team.
Information and Software Technology 48(9):781–794

Müller MM, Tichy WF (2001) Case study: Extreme programming in a uni-
versity environment. In: Proceedings of the 23rd International Conference
on Software Engineering, ICSE 2001, 12–19 May 2001, Toronto, Ontario,
Canada, IEEE, pp 537–544

Nawrocki JR, Walter B, Wojciechowski A (2002) Comparison of CMM Level
2 and eXtreme Programming. In: Proceedings of the 7th Internation Con-
ference on Software Quality (ECSQ), Springer, Lecture Notes in Computer
Science, vol 2349, pp 288–297

Nordio M, Mitin R, Meyer B, Ghezzi C, Di Nitto E, Tamburrelli G (2009)
The role of contracts in distributed development. In: Proceedings of
Software Engineering Approaches for Offshore and Outsourced Develop-
ment,(SEAFOOD), Springer, Lecture Notes in Business Information Pro-
cessing, vol 35, pp 117–129

Nordio M, Mitin R, Meyer B (2010) Advanced hands-on training for dis-
tributed and outsourced software engineering. In: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering – Volume 1,
ICSE 2010, Cape Town, South Africa, 1–8 May 2010, ACM, pp 555–558

Nordio M, Estler HC, Meyer B, Tschannen J, Ghezzi C, Di Nitto E (2011a)
How do distribution and time zones affect software development? a case
study on communication. In: Proceedings of 6th IEEE International Con-
ference on Global Software Engineering, (ICGSE), IEEE

Nordio M, Ghezzi C, Meyer B, Di Nitto E, Tamburrelli G, Tschannen J,
Aguirre N, Kulkarni V (2011b) Teaching software engineering using globally
distributed projects: the DOSE course. In: Collaborative Teaching of Glob-
ally Distributed Software Development – Community Building Workshop
(CTGDSD), ACM, pp 36–40

Paasivaara M, Durasiewicz S, Lassenius C (2009) Using Scrum in distributed
agile development: A multiple case study. In: 4th IEEE International Con-
ference on Global Software Engineering, (ICGSE), Limerick, Ireland, 13–16
July, 2009, IEEE, pp 195–204

Paasivaara M, af Ornäs NH, Hynninen P, Lassenius C, Niinimaki T, Piri
A (2010) Practical guide to managing distributed software development
projects. Tech. rep., Aalto University, School of Science, Dept. of Computer
Science and Engineering

Pfleeger SL, Atlee J (2005) Software Engineering: Theory and Practice, 3rd
edn. Prentice Hall

Pressman R (2009) Software Engineering: A Practitioner’s Approach, 7th edn.
McGraw-Hill

29

Ramasubbu N, Balan R (2007) Globally distributed software development
project performance: An empirical analysis. In: Proceedings of the 6th joint
meeting of the European Software Engineering Conference and the ACM
SIGSOFT International Symposium on Foundations of Software Engineer-
ing, 2007, Dubrovnik, Croatia, September 3–7, 2007, ACM, pp 125–134

Ramasubbu N, Cataldo M, Balan RK, Herbsleb JD (2011) Configuring global
software teams: a multi-company analysis of project productivity, quality,
and profits. In: Proceedings of the 33rd International Conference on Software
Engineering, (ICSE), ACM, pp 261–270

Spinellis D (2006) Global software development in the FreeBSD project. In:
Proceedings of the 2006 International Workshop on Global Software Devel-
opment for the Practitioner (GSD), ACM, pp 73–79

Sprent P, Smeeton N (2007) Applied Nonparametric Statistical Methods. Texts
in Statistical Science, Chapman & Hall/CRC

Sureshchandra K, Shrinivasavadhani JJ (2008) Adopting agile in distributed
development. In: 3rd IEEE International Conference on Global Software
Engineering, (ICGSE), Bangalore, India, 17–20 August, 2008, IEEE, pp
217–221

30

