
Javanni: A Verifier for JavaScript

Martin Nordio1, Cristiano Calcagno2, and Carlo A. Furia1

1 Chair of Software Engineering, ETH Zurich, Switzerland
{firstname.lastname}@inf.ethz.ch

2 ETH Zurich, Imperial College London and Monoidics Ltd ccris@doc.ic.ac.uk

Abstract. JavaScript ranks among the most popular programming languages for
the web, yet its highly dynamic type system and occasionally unintuitive seman-
tics make programming particularly error-prone. This paper presents Javanni, a
verifier for JavaScript programs that can statically detect many common program-
ming errors. Javanni checks the absence of standard type-related errors (such as
accessing undefined fields) without requiring user-written annotations, and it can
also verify full functional-correctness specifications. Several experiments with
JavaScript applications reported in the paper demonstrate that Javanni is flexi-
bly usable on programs with non-trivial specifications. Javanni is available online
within the CloudStudio web integrated environment.

1 Introduction

Originally developed by Netscape as a scripting language for lightweight web program-
ming, JavaScript has rapidly become one of the most widely used programming lan-
guages3 for the web. Its popularity has greatly exceeded its primary target—client-side
web programming for nonprofessionals—and the language is now routinely used to de-
velop large applications, such as Google Docs and Google Maps, and even some critical
software such as on-line banking. Unfortunately, the original language design includes a
number of quirks4 which, combined with a highly dynamic and weakly-typed type sys-
tem that mixes heterogeneous programming paradigms, make JavaScript programming
particularly error-prone. Simple errors such as accessing undefined fields, invoking un-
defined functions, or calling functions with the wrong number of actual parameters are
workaday in JavaScript programming. Even if programming frameworks exist (such as
the Google Web Toolkit) that automatically translate from a higher-level language, a
large part of JavaScript applications are still written by hand, with consequent risks in
terms of reliability and security.

This paper describes Javanni, a static verifier for JavaScript programs that can detect
many of these frustrating errors. Javanni translates JavaScript programs into Boogie [4],
and then uses the Boogie verifier to check correctness properties on the translated pro-
gram. Javanni is completely automatic, does not require user-written annotations, and
can detect common type-related errors including: (1) invocation of undefined functions;
(2) writing of undeclared variables; (3) reading of undefined values (e.g. undeclared or

3 http://www.tiobe.com
4 https://www.destroyallsoftware.com/talks/wat

http://www.tiobe.com
https://www.destroyallsoftware.com/talks/wat

uninitialized variables or fields); (4) incorrect number of actual parameters in function
calls.

The focus of most related approaches to JavaScript verification [1,3] is restricted to
standard type analysis. In contrast, Javanni supports full functional correctness prop-
erties; to our knowledge, this kind of support is available only in another quite recent
work based on separation logic [2].

In the translation to Boogie, Javanni automatically introduces a specification of cor-
rect typing behavior in the form of pre- and postconditions of functions; on top of these,
users may add custom assertions to the input programs and verify arbitrary functional
properties of their JavaScript applications. The specification generated automatically
by Javanni frames good programming practices, such as some discipline in field dec-
laration and initialization, and hence Javanni may report false positive; in most cases,
however, the reported errors are at least indicative of poor programming practices. The
translation also applies method inlining and loop unrolling to improve verification ac-
curacy without requiring extra annotations.

Javanni is a component of the CloudStudio [5] web-based multi-language integrated
development environment, available online at http://cloudstudio.ethz.ch/.
Section 3 presents a set of JavaScript programs that have been verified using Javanni,
against both the automatically generated specification and more complex functional
properties. Javanni is implemented in Java using the Rhino JavaScript framework. For
a demo video, see http://www.youtube.com/watch?v=K8yboTQZ9p0.

2 Verifying JavaScript

For each JavaScript input program J, Javanni creates a Boogie file BJ containing an
encoding of the source J annotated with assertions that formalize correctness proper-
ties. The translation also introduces some specification functions and axioms, used to
enforce the semantics of the original JavaScript source in the Boogie language. This
section succinctly illustrates the main features of the translation.

Type boxing and unboxing. To accommodate JavaScript’s dynamically-typed vari-
ables within Boogie’s static type system, Javanni includes boxing and unboxing func-
tions in the translation. JavaScript variables (and fields) get a generic reference type ref
in Boogie. Whenever we need to use some variable x according to its actual dynamic
type (e.g., int or bool), we unbox it: unbox(x) in Boogie returns the value attached to
x. Boxing works conversely; e.g., box(42) returns a reference attached to the integer
42. Additional axioms declare the behavior of arithmetic and Boolean operations with
respect to boxing and unboxing primitive (e.g., unbox(box(i)+box(j))=i+j).

Object creation. JavaScript supports field initialization with the prototype key-
word: C.prototype.a = v sets field a of class C to value v whenever an instance of
C is created. Javanni introduces initializer predicates to encode the semantics of field
initialization in Boogie. Javanni defines a predicate init .C(this : ref , h: Heap) for
each class C that holds for references this attached to objects whose fields satisfy
the initializations (in a given model h of the heap). For example, a class Student ini-
tialized with Student .prototype.age = 18 determines a predicate initializer with body
init . Student (this , h) { h[this , age] = 18 }. Initializers also keep track of which

2

http://cloudstudio.ethz.ch/
http://www.youtube.com/watch?v=K8yboTQZ9p0

member functions are defined. For each function f member of C, init .C(this , h)
specifies that h[this , func$f] 6= undef, where func$f is a fictitious field of C added
to represent f in Boogie. Creations of an object o of class C become two assump-
tions in Boogie: assume allocated [o, h] (reference o is not undefined or null) and
assume init .C(o, h) (the initializations hold); Boogie’s assume statements are used as
postulated facts in the reasoning.

Type correctness assertions. Javanni automatically generates Boogie
assertion statements that encode the type correctness of invocations and readings of
functions, variables, and fields. If Boogie can discharge all the assert statements, there
are no type errors of these kinds. For example, every field access of the form x .a de-
termines two assertions in Boogie: the target is defined (assert allocated [x , h]); and
the field is defined (assert Heap[x,a] 6= undef). More complex assertions encode type
conformance and correctness of function invocations.

Contracts. To verify full functional correctness properties in JavaScript programs,
Javanni supports preconditions, postconditions, and assume and assert instructions a
la Boogie. While JavaScript does not natively support assertions, Javanni recognizes
method calls with the special names requires (preconditions), ensures (postcondi-
tions), and assume and assert . These methods directly translate to the corresponding
requires, ensures, assume and assert instructions in Boogie.

Inlining and loop unrolling. Boogie is a modular verifier: it reasons about function
invocations using only the pre- and postconditions of the callees. This means that if
function foo calls bar but the latter has no postcondition, Boogie will be oblivious
of the effects of bar when reasoning about foo. To reduce the amount of user-written
annotations required to reason modularly in Boogie, Javanni features inlining: replace
a call to bar within foo with a copy of bar’s code, so that its effects within foo can be
evaluated directly. A similar feature is loop unrolling, useful to reason inductively about
loops without loop invariants. Unrolling replaces a loop by a sequence (of finite length)
of conditional executions of its body; the depth of the unrolling can be set by users to
find the best trade-off between scalability and annotation burden.

3 Case Study

Table 1 lists a set of examples verified using Javanni. For each example, it shows the
length (in LOC) of the JavaScript source, the length of the specification added manually,
the length of the Boogie source generated by Javanni without and with inlining and loop
unrolling, and the time taken to check the Boogie program (on a Windows 7 machine
with a 3.1 GHz dual core Intel Pentium processor and 4GB of RAM). The examples are
available at http://se.inf.ethz.ch/people/nordio/javanni/.

Programs 1–2 only include standard type correctness properties generated automat-
ically by Javanni. Program 1 is a collection of small JavaScript applets from http:
//www.jsworkshop.com; program 2 is one single larger application, a poker game,
from the same source. Programs 3–6 are JavaScript implementations of object-oriented
standard examples also used in previous work of ours [7,6], each equipped with func-
tional specifications (pre- and postcondition) for each method. In this case, verification
also required intermediate assertions, but these were much fewer than in [7,6] thanks to

3

http://se.inf.ethz.ch/people/nordio/javanni/
http://www.jsworkshop.com
http://www.jsworkshop.com

NAME
LOC

JS
LOC
SPEC

LOC
BOOGIE

LOC
INLINED

TIME [S] FEATURE

1. JS workshop 237 0 2448 3400 3.3 Type Correctness
2. Poker game 320 0 1139 12240 11.0 Type Correctness
3. Cell / Recell 130 21 580 1372 0.6 Functional
4. Counter 42 6 325 431 0.5 Functional
5. Expression 79 2 381 595 0.5 Functional
6. Sequence 102 3 440 1216 0.6 Functional

Total 910 32 5313 19254 16.5

Table 1. JavaScript programs automatically verified with Javanni.

Javanni’s inlining and unrolling. Programs 3–4 use object-oriented features to model:
cells that store integer values (3); and a counter (4). Program 5 features nonnegative
integer expression objects which can be evaluated. Program 6 models integer sequences
including monotone, strict, arithmetic, and Fibonacci sequences.

4 Conclusions

This paper presented the essential features of Javanni, a verifier for JavaScript pro-
grams. Javanni works by automatically transforming JavaScript programs into the Boo-
gie verification language; it then uses the Boogie verifier to determine if the original
JavaScript program is correct. Verifying standard type correctness properties does not
require special annotations; functional properties, on the other hand, are also supported
and specified by means of standard pre- and postconditions, which define the expected
behavior of methods. To improve verification accuracy without requiring extra annota-
tions, Javanni’s translation applies method inlining and loop unrolling. The case study
suggests that these techniques can be instrumental in reducing the annotation burden
required to automatically verify programs in practice.

Acknowledgments. This work was partially supported by the Swiss SNF (proj. ASII
200021-134976); and by the Gebert-Ruf Stiftung through CloudStudio’s funding.

References

1. C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for JavaScript. In
ECOOP, pages 429–452. Springer, 2005.

2. P. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for javascript. In POPL,
pages 31–44, 2012.

3. S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In SAS, volume 5673
of LNCS. Springer-Verlag, 2009.

4. K. R. M. Leino. This is Boogie 2. Technical report, Microsoft Research, 2008.
5. M. Nordio et al. Collaborative software development on the web, 2011. arXiv:1105.0768v3.
6. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verification of object-oriented

programs by combining static and dynamic techniques. In SEFM, LNCS. Springer, 2011.
7. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Verifying Eiffel programs with Boogie.

In BOOGIE workshop, 2011. http://arxiv.org/abs/1106.4700.

4

http://arxiv.org/abs/1106.4700

	: A Verifier for JavaScript
	Nordio et al.
	Introduction
	Verifying JavaScript
	Case Study
	Conclusions

