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Formal verification tools are often developed by experts for experts; as a result, their usability by
programmers with little formal methods experience may be severely limited. In this paper, we dis-
cuss this general phenomenon with reference to AutoProof: a tool that can verify the full functional
correctness of object-oriented software. In particular, we present our experiences of using AutoProof
in two contrasting contexts representative of non-expert usage. First, we discuss its usability by stu-
dents in a graduate course on software verification, who were tasked with verifying implementations
of various sorting algorithms. Second, we evaluate its usability in verifying code developed for pro-
gramming assignments of an undergraduate course. The first scenario represents usability by serious
non-experts; the second represents usability on “standard code”, developed without full functional
verification in mind. We report our experiences and lessons learnt, from which we derive some gen-
eral suggestions for furthering the development of verification tools with respect to improving their
usability.

1 Introduction

AutoProof is a flagship component of EVE [22], the Integrated Development Environment that combines
various verification tools we develop as part of our research. AutoProof is an auto-active [13] prover that
works on Eiffel programs annotated with full-fledged functional specifications in the form of contracts
(pre- and postconditions, class invariants, and other kinds of annotations for verification such as frame
specifications). While all the tools integrated in EVE were developed with an eye towards usability
and practicality, AutoProof mainly targets expert users who can provide detailed annotations to reason
automatically about complex functional properties of object-oriented programs.

In previous work, we demonstrated that AutoProof is a powerful and flexible tool in that it supported
the verification of a variety of benchmarks (including algorithmic problems and object-oriented design
idioms) [23], as well as the proof of full-functional correctness of a realistic general-purpose data struc-
ture library [18]. At the same time, we remain interested in assessing AutoProof’s usability in contexts
that go beyond those normally evaluated by research in verification, namely:

• Usability by users who are serious non-experts [13];

• Usability on standard object-oriented code, not written with verification in mind.

This paper describes our first experiences in these areas, outlines the obstacles that stand in the way of
broader use of AutoProof and other similar tools integrated in verification environments, and suggests
future work to address them.

Usability by non-experts. Students of our graduate course on “Software Verification” used AutoProof
to carry out part of their projects, consisting of the specification, implementation, and verification of
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sorting algorithms. The students can be considered serious users: they devoted a significant amount of
time to learning and using AutoProof for the project, and received proper training in deductive verifica-
tion during the course. At the same time, they remain non-experts: they had little previous experience
with auto-active verification, and were generally unaware of the research challenges and state of the art
in the area. Section 3 reports their experience, highlighting the major issues they faced, and the lessons
we learnt about making AutoProof – and auto-active tools in general – friendlier for non-expert users.

Usability on standard code. When a verification tool such as AutoProof is used by experts – often
the same persons who developed the tool in the first place –, it is normally applied to code written and
annotated with full functional verification in mind. The experts know the idioms that are more amenable
to verification – requiring fewer annotations or leading to better performance – thanks to their familiarity
with the tool’s inner workings. In contrast, even specifying code that has been produced independently
of verification may turn out to be a substantial challenge. Section 4 discusses our experience with ap-
plying AutoProof to the verification of a number of programming assignments of our “Introduction to
Programming” undergraduate course. In this case, we (the experts) apply verification to standard code
written prior to the verification attempt and independent of it, and go as far as possible without changing
the implementation. We report the major hurdles encountered, and the lessons learnt about how to attain
more flexibility in applying auto-active verifiers to standard code.

2 An overview of AutoProof

AutoProof is a verifier of the functional correctness of programs written in the Eiffel programming lan-
guage. AutoProof follows the so-called auto-active approach [13] to verification: users interact indi-
rectly by providing annotations in the input source code; then, each invocation of AutoProof proceeds
autonomously without user interaction until it provides feedback upon terminating.

The annotations used by AutoProof serve different, complementary purposes. Pre- (require) and
postconditions (ensure) define the functional specification to be verified. Class invariants supplement the
specification by defining general consistency properties of objects, as well as by supporting methodology-
specific annotations useful for reasoning about relations between objects. Other kinds of annotations –
such as loop (in)variants and intermediate assertions – are lower level in that they provide information
that is, strictly speaking, redundant but essential to guide verification to success. For example, a loop
invariant characterizes the semantics of a loop in a way that is amenable to reasoning about the effects of
the loop within its context.

Following a standard approach in deductive verification, AutoProof uses the information in the source
code and its annotations to encode verification conditions: logic formulae whose validity entails the
correctness of the input against its specification. Like other auto-active verifiers (such as Spec# [1],
Dafny [12], and VCC [3]), AutoProof does not generate verification conditions directly, but encodes the
semantics of Eiffel and its annotations into a Boogie program [11], which the Boogie verifier can process
to generate the actual verification conditions and to submit them to the theorem prover Z3 to check for
validity. AutoProof picks up Boogie’s output and translates it back to refer to the input Eiffel code. Failed
verification attempts, in particular, point to specific annotations that could not be verified by Boogie.

Providing informative feedback is a critical aspect in supporting usable auto-active verification. Au-
toProof deals with very expressive – hence, undecidable – logics. Therefore, when verification “fails” it
may mean one of two things: either there is an error (that is, an inconsistency between the implementation
and the specification); or the program is correct but the prover needs additional guidance (in the form of
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more detailed annotations) to complete a proof. It may be hard for users to figure out which is the case,
and where the error is or the additional annotations are needed.

AutoProof’s verification techniques are geared towards object-oriented features; in particular, Au-
toProof supports semantic collaboration [19], a verification methodology that combines with owner-
ship [14] to reason about complex object structures such as those that are idiomatic in object-oriented
design. Besides object-orientated features, AutoProof also fully supports algorithmic reasoning by means
of model-based contracts [17]. This is a style of specification whereby annotations refer to mathematical
models such as sequences, sets, and bags; this supports abstraction in terms of a small number of entities
that are purely applicative, and hence easy to express and reason upon in the underlying prover’s logic.

AutoProof provides two main user interfaces. It is fully integrated in EVE– the Eiffel Verification
Environment – which provides a full-fledged IDE that integrates various development and verification
tools. A lightweight web-based interface is also available through ComCom1, where users can submit
verification problems online. The web interface is limited to verification of single classes, and does
not offer much in the way of editing features such as auto-completion or even saving partial work;
nonetheless, the possibility of running AutoProof in a web browser without having to install any software
is quite convenient for non-advanced users.

Related work discusses AutoProof’s techniques in more detail [23], and presents the results of ap-
plying it to verification challenges involving algorithms [21] and realistic object-oriented software [18].

3 Teaching verification with AutoProof

We evaluated the usability of AutoProof for non-expert users through the take-home project of our
graduate-level software verification course, which required students to verify the functional correctness
of various sorting algorithms. After a brief overview of the course and project, we describe the students’
results, their most common difficulties, and general lessons learnt from their experiences.

3.1 Description of the course and project

Course overview and demographics. Our “Software Verification” graduate course2 at ETH Zürich
has run annually for several years. The curriculum attempts to embrace and convey the diversity of
verification approaches: topics span program logics, abstract interpretation, model checking, and testing.
The course comprises a lecture and exercise programme that weaves fundamental subjects (e.g., Hoare
logic, automata-based model checking) with more advanced research (e.g., separation logic for object-
orientation, model checking real-time systems), and challenges the students to assess the trade-offs and
connections between the different techniques.

In addition to developing a strong basis in theory – assessed through a written exam (worth 70% of
the final grade) – the course advocates practice, predominantly through a take-home project (worth 30%)
that challenges students to fully verify various sorting algorithms using state-of-the-art verification tools.
The project is intended to push students beyond isolated, simple exercises, and give them a chance to
experience the process of verification all the way through to the end – “warts and all”.

Software Verification is offered within the software engineering theme of our Master’s program, but
it is also open to undergraduate and PhD students. It is typically taken by 10–20 students with about 75%
of them Master’s, 20% Bachelor’s, and 5% PhD’s.

1http://cloudstudio.ethz.ch/comcom/#AutoProof
2Webpage of the latest iteration: http://se.inf.ethz.ch/courses/2014b_fall/sv/
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Project description. In the 2013–14 iterations of the course, the project required students to implement
a basic list data structure and sorting algorithms that operate upon it, and to specify and verify their
functionality as completely as possible. We asked for this to be done twice: first, in AutoProof, which
allows for verification to take place at the level of code; and second, in Boogie, which allows for more
fine-grained control over the low-level details of the proof machinery. Students were permitted to work
in teams of up to three people, and were required to submit, along with their annotated code, a report
comparing the verification task in the two tools and highlighting the trade-offs from working at the two
different levels of abstraction.

To get the students started, and to ensure comparable, fairly-graded projects, we provided them with
a skeleton Eiffel class containing the signatures of routines that they needed to implement, specify, and
verify. While the routine bodies for sorting were left completely blank, some of the simpler routines
were given with partial specifications or implementations, so as to help the students become familiar
with Eiffel syntax more quickly. Furthermore, we provided the necessary annotations relating to Au-
toProof’s methodology for ownership and semantic collaboration, allowing the students to focus their
verification efforts on the algorithms themselves and not the object structures (which were anyway here
simple – just one main class).

The sort routine for them to implement required the combination of bucket sort with another sorting
algorithm (merge sort in 2013; quick sort in 2014). The routine called the former algorithm on large
bounded inputs (if the list contained a certain number of elements with a certain range of values), and
the latter algorithm otherwise (small list length, large values, or both). Furthermore, bucket sort could
recursively call the other sorting algorithm (merge sort or quick sort) on the sublists in its buckets.
By combining various algorithms, the project served to highlight the modular approach to verification
present in tools like AutoProof and Boogie. Verification of the combined algorithm thus boiled down to
verifying the correctness of the two sorting algorithms: in particular, that they returned lists that were
sorted permutations of their input.

sort

do

if count ≥Max_count // 2 and has_small_elements (array) then
array := bucket_sort (array)

else

array := quick_sort (array)
end

ensure

is_sorted (array)
is_permutation (array.sequence, old array.sequence)

end

Routines were specified with model-based contracts that abstracted the list to a mathematical se-
quence (SEQUENCE) of integers. The query is_permutation exemplifies the expressive style of reasoning that
such contracts permit: two sequences (abstractions of lists) are evaluated to be permutations of each other
if, after converting them to bags (multisets), they are object-equal (that is value-equal, denoted by ∼).
(The annotations functional and ghost indicate to AutoProof that is_permutation is a declarative function
used only in specifications.)

is_permutation (a, b: SEQUENCE [INTEGER]): BOOLEAN
note

status: functional, ghost
do

Result := a.to_bag ∼ b.to_bag
end
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ROUTINE IMPLEMENTED SPECIFIED FULL PROOF is_sorted ONLY

add, extend, remove, . . . 9 9 9 –
quick_sort 9 8 6 2
bucket_sort 9 6 5 2

Table 1: Project tasks that student groups were able to complete (out of a total of nine groups).

Since the project required only a single class, students were free to choose between using the
lightweight web-based interface to AutoProof in ComCom, or using it through the EVE IDE. Similarly
for Boogie, students could work within the rise4fun web interface3 or download the verifier itself from
CodePlex.

Tool training. Students were given the project description four weeks into the course. Prior to this,
the lectures introduced them to the fundamentals of Hoare-style reasoning, as well as to the basics of
auto-active verification in AutoProof and Boogie. We accompanied the tool lectures with hands-on
exercises, which started simplistically (verifying 2–3 lines of code), before gradually building up to
more challenging examples adapted from international verification competitions. Beyond this material
and the course assistant’s support, students also had access to an AutoProof tutorial, manual, and code
repository,4 as well as to extensive Boogie documentation [11].

3.2 Verification results and difficulties

Verification results. We provide some impressions and results from the AutoProof task of the 2014
course project. (We do not compare with the 2013 project, since the version of AutoProof used then
lacked support for framing and model-based contracts, both of which full functional verification re-
quires.)

Table 1 displays the results of the project for the nine groups that submitted. Every group was able
to implement, specify, and verify the basic API for list data structures (as we had hoped – these were
intended as a warm-up exercise). The core challenge – verifying the two sorting algorithms – led to more
variety. Every group was able to implement the sorting routines, with only a few overcomplicating the
task. Most groups were able to fully specify the routines, but three groups suffered from inconsistent
specifications which led to vacuous verification (we discuss the problem more generally later in this
section); two groups had isolated and fixable cases of it, but in the third group they were extensive and
impossible to salvage. Six (resp. five) groups were successfully able to verify that quick sort (resp. bucket
sort) returned a sorted permutation of the input. We include in these numbers three groups who relied
on, but could not prove, the correctness of an “obviously” true lemma (of the kind that we exemplify
in the following paragraph). Unsurprisingly, the greatest challenge appeared to be in verifying that the
output was a permutation of the input; every group (other than the ones suffering from inconsistent
specifications) could prove the weaker property that the output was some sorted list.

Common difficulties. The most common difficulty came from AutoProof’s expressive model-based
contracts. On the one hand, students quickly grasped the abstractions model-based contracts provide,

3http://rise4fun.com/Boogie/
4http://se.inf.ethz.ch/research/autoproof/
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and were generally able to specify full functional correctness (predicates is_sorted and is_permutation).
On the other hand, many students struggled to verify these specifications – especially for permutations –
because the success of verification required, to some extent, knowledge of how the model-based contracts
were encoded in Boogie, and such details were opaque to all but the most inquisitive of our non-expert
users. Failing proofs (of correct code) were often fixable through the addition of lemmas or intermedi-
ate assertions; but these were occasionally non-obvious, non-trivial, and far removed from the original
verification task and the level of abstraction of the source code. One group, for example, realised that Au-
toProof was getting stuck on a proof because it could not automatically deduce an obvious relationship
between bags (multisets) and subsequences:5

lemma_extend_bag (b: BAG [INTEGER]; s: SEQUENCE [INTEGER]; i: INTEGER)
require

in_range: 1≤ i and i≤ s.count
same_until_i: b =s.interval (1, i − 1).to_bag

do

ensure

extended_same: b.extended (s [i]) =s.interval (1, i).to_bag
end

For AutoProof to prove the lemma, it was enough to add an extra assertion concerning intervals only:
check s.interval (1, i − 1).extended (s [i]) =s.interval (1, i) end

which was obtained, essentially, through trial and error. This process of guesswork appeared to be
prevalent across groups in their attempts to prove the permutation property, and was a main source of
frustration. It resulted, for several submissions, in a bloated annotation overhead, as students added
whatever checks and contracts related to the models that they could think of, in the hope that they would
lead to AutoProof instantiating the missing Boogie axioms it needed to verify the code.

A less common (but arguably more serious) difficulty came from the fact that AutoProof will happily
verify programs with inconsistent specifications; in particular, routines with preconditions that reduce
to False. There are no pre-states satisfying such preconditions, meaning, vacuously, that every valid
execution (there aren’t any) establishes the postcondition. There are currently no facilities built in Auto-
Proof to check if specifications or assertions contain a contradiction of this kind.

The students who introduced contradictions typically did so using the advanced annotations for
ownership- and collaboration-based reasoning. We had tried to prevent this by including all such annota-
tions in the skeleton Eiffel class provided with the project description. Some groups, however, modified
these contracts without truly understanding their semantics, leading to routines that vacuously verified.
For example, one group added array.is_wrapped as a precondition to the sort routine; roughly, this means
that sort operates on an array object that is not “owned” by any other object and is in a consistent state.
However, sort’s enclosing class includes clause owns = [array] as part of its invariant; this means that each
instance of the class “owns” the array object it includes as attribute. These two specification elements
contradict each other: array.is_wrapped requires, in particular, that array is not owned by any object.

This general problem can be addressed on two levels: the tool can be improved to find inconsistent
specifications automatically, and the students can be better educated to understand the shortcomings of
AutoProof. Steps have been taken towards addressing the latter by adding a section about the problem to
the AutoProof tutorial. Supplying unit tests that exercise valid inputs can also help students understand
the scope and flaws of their specifications; we plan to do this in future iterations of the course. Adding
support to AutoProof for finding inconsistencies belongs to future work, which could rely on and extend
Boogie’s “smoke test” feature.

5The expression s.interval (x, y) denotes s’s subsequence from index x to index y.
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User interface. As we discussed in Section 2, AutoProof offers two main user interfaces: EVE (a
full-fledged IDE) and ComCom (a web-based lightweight interface). Nearly all students preferred using
the ComCom interface to carry out their projects. The students generally appreciated the simplicity of
ComCom’s interface and the fact that they could use AutoProof through it on every computer without
installing any software, and believed that such ease of use was overall more valuable than having addi-
tional tools provided by a full-fledged IDE. This trade-off was clearly influenced by two features of the
project work: the fact that the project was set up so as to involve developing all functionality in one sin-
gle class (ComCom does not support multi-class projects); and the fact that we provided fairly complete
online API documentation for the library classes needed for the project. For more complex endeavors
the support of an IDE could be invaluable; but for focused, algorithmic-verification projects such as the
one we used, ease of use trumps having a rich toolset.

4 Verifying standard client code with AutoProof

The success of deductive verification – in particular, of the auto-active fashion AutoProof conforms
to (see Section 2) – often hinges on programs being written, specified, and annotated in a way that is
amenable to automated reasoning. Deductive verification hardly scales to poorly modularised programs,
and certain language and design features may require more cumbersome annotations than other, seman-
tically equivalent, features. This is why showcase verification efforts (e.g., [25, 24, 4, 2, 15, 7, 18])
normally target software that has been developed with verification in mind from the beginning, or at least
has been significantly adapted to suit verification.

To evaluate how AutoProof behaves when these standard assumptions are not met, we tried to verify
a number of programs that were not written with verification in mind. This effort is indicative of Auto-
Proof’s usability on standard code. This section presents the programs we considered and how much we
could verify with only limited changes to the source code before hitting the limitations of AutoProof.

4.1 Description of the example programs

We consider four programs that we used in our “Introduction to Programming” course. The programs
are three applications (simulating board games of increasingly richer logic and features) and one library
(modelling a transportation system). The applications are programming assignments for students of the
course; we verified the master solutions developed by instructors in the past, which have the advantage
of offering code of sufficiently good quality, but still not developed for verification. The library is used
– but not written – by the same students in other assignments; it was also developed by instructors of the
course and improved over the years.

Board game 1 (G1): A number of players advance on a board made up of a fixed number of squares
by rolling two dice; the first player that reaches the end of the board is the winner. Players are
identified by their names and positions on the board. The board is represented only implicitly
through the players’ positions on it.

Board game 2 (G2): Extending the logic of G1, players also collect money as they progress; the game
ends as soon as a player reaches the end of the board; the player with the largest amount of money
is the winner. Players are identified by their names, positions on the board, and amount of money
they hold. The board is represented explicitly as a list of square objects, which are of three classes
related by inheritance. What happens when a player reaches a square depends on the class the
square is an instance of: the player may win money, lose money, or neither win nor lose.
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Board game 3 (G3): A simplified version of Monopoly. Players continue playing as long as they have
money; the last player remaining with some money is the winner. Square objects now include
classes implementing more complex behaviour, such as properties that can be bought and sold by
players. Then, a player has to pay “rent” upon reaching a square representing property of another
player.

Traffic library (TL): The library supports the modelling of urban public transportation systems. It
offers classes modelling entities such as lines, stops, and carriers. The classes use many cross-
referencing data structures defining mutual consistency. For example: stop classes contain a list
of lines (lines that stop there); line classes contain a list of stops (where the line stops); and class
invariants specify that, for each stop s, each line ` that is in s’s list of lines must include s among
its list of stops.

The design and implementation of the four programs significantly relies on common data structures
(such as lists) taken from the EiffelBase2 library, the implementation of which we recently fully veri-
fied [18]. With this setup, the effort described here focuses on the verification of standard client code
that uses fully verified standard components.

4.2 Verification process and results

The four programs to be verified consist of fully compilable and executable implementations annotated
with basic interface specifications in the form of preconditions, postconditions, and class invariants.
Our main goal was verifying the given specifications against the given implementations while changing
them as little as possible. We obviously had to add a significant number of annotations to support
verification with AutoProof; we occasionally also had to extend or adjust existing specifications to make
them amenable to automated reasoning. We resorted to changing the implementation only when it was
the only way to enable verification with AutoProof; in these cases, we limited ourselves to small local
changes that ostensibly did not affect the programs’ structure or behaviour.6

Changes necessary for verification. The most common changes we introduced were:

• The given interface specifications were in general too weak for modular reasoning, where the
effect of a call to routine r is limited to what is prescribed by r’s pre- and postconditions (as well
as the invariant of r’s enclosing class). Thus, we added stronger specifications in the form of
preconditions, postconditions, and class invariants.

• Frame specifications (denoted by the keyword modify) specify which locations in the heap each
routine may modify. Such specifications are essential for modular reasoning, but were not present
in the original programs since Eiffel does not offer native syntax to specify them. Thus, we added
frame specifications to all routines to be verified.

• Relations between dependent objects (for example, an object of class STOP that includes a list ob-
ject) require annotations following the ownership and semantic collaboration methodologies [19].
Thus, we added annotations to this effect in the form of additional class invariants.

• Reasoning about loop correctness and termination requires loop invariants and variants, which
were not given in the original programs. Thus, we added loop invariants to prove postconditions
and loop variants to prove termination.

6Related work has looked into the problem of verifying systematic refactoring of code across versions [16].
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NAME #C #R CODE ANNOTATIONS A/C V
T P Q C L F A N

G1 before 4 9 164 20 6 6 8 0 0 0 0 0.2
G1 after 4 8 165 101 17 13 16 37 3 3 12 1.2 100%
G2 before 8 19 301 41 11 14 16 0 0 0 0 0.3
G2 after 8 18 307 173 25 27 30 57 8 7 29 1.4 100%
G3 before 15 38 491 87 19 31 37 0 0 0 0 0.2
G3 after 15 45 608 425 50 56 52 86 49 37 95 1.1 93%
TL before 13 145 1219 442 176 166 100 0 0 0 0 0.5
TL after 14 149 1220 1077 275 225 112 30 46 114 275 1.3 78%

Table 2: Results of verifying the programming examples.

• We replaced regular Eiffel strings with a custom STRING class annotated with model-based contracts.
This way, we were able to reason about basic string operations using AutoProof.

• The board games (precisely, the dice components) rely on random number generator functions
implemented as once routines (Eiffel’s variant of static methods in other languages). AutoProof
does not fully support once routines, as they require non-modular reasoning in general. We removed
once routines and mimicked their functionality using regular attributes.

• We added various intermediate assertions to guide AutoProof to successful verification without
timeouts or spurious errors.

Table 2 displays data about the example programs. Each program takes two rows: one row describes
it before we introduced the modifications necessary for verification, and another row describes it after
modification and verification. For each example, the table reports: the number of Eiffel classes (#C)
and routines (#R); the lines of executable Eiffel CODE and of ANNOTATIONS (a total of T annotation
lines, split into preconditions P, postconditions Q, class invariants C, loop invariants and variants L,
frame specifications F , intermediate assertions A, and auxiliary annotations N specific to the verifica-
tion methodology); the A/C annotations to code ratio (measured in tokens, as it is customary); and the
percentage of verified routines V .

Verification results. Unsurprisingly, the success of our verification effort varied with the complexity
of the example programs.

Board games 1 and 2. We verified the correctness of each data structure usage according to their
complete specifications in EiffelBase2; we also verified the functional correctness against the given spec-
ifications (augmented as discussed above).7 Overall, the verification of these two example programs was
successful with reasonable effort and only minimal changes to the implementations.

The hardest and most time-consuming task was providing suitable loop invariants. Note that the
original versions of the programs did not include any loop invariants (see column L in Table 2). The
more complex the postconditions to be proved, the trickier the loop invariants were to determine. In a
few cases we had to introduce small changes to the initialisation, or to the order of instructions in the
loops, so that we could write less complex loop invariants that AutoProof could reason about without
becoming bogged down. For example, we explicitly initialised variables before entering a loop – even

7The verified code of G1 and G2 is available online at http://se.inf.ethz.ch/research/autoproof/repo
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if the loop body assigns to the variable before reading it – so that the loop invariant does not have to
handle “initiation” (that is, the fact that the invariant holds initially before entering the loop for the first
iteration) as a special case.

Reasoning using class invariants also required a good deal of additional annotations. By default,
AutoProof makes the whole class invariant of valid objects available wherever they are visible. The
example programs involve numerous data structures and other classes with complex invariants; hence,
the default approach means that large, complicated assertions often cluttered the proof space. Instead,
we used AutoProof with a different option: no class invariants were visible by default and, whenever
a specific clause of a specific class invariant was needed in the proof, we explicitly made it available
to the prover with an assert annotation. This option gave us much more flexibility, and supported the
verification of routines involving objects with complex invariants, but also required significantly more
annotations on a case-by-case basis.

Board game 3. We verified the correctness of each data structure usage according to their complete
specifications in EiffelBase2; we also verified functional correctness against the given specifications
(augmented as discussed above) for a large part (84%) of the routines. Compared to board games 1 and
2, board game 3 required more substantial changes to the implementation and, generally, more effort.

Expressing and reasoning about class invariants – in particular, framing specifications in combination
with inheritance and the consistency of inter-dependent objects – was the main source of complexity, and
what prevented us from verifying all the routines. Specifically, we failed to verify routines related to the
class PROPERTY that models board squares in the style of Monopoly. When a player lands on one such
square, the player owning the property receives an amount of money as rent. This behaviour cannot
be expressed in the framing specification of PROPERTY’s parent class, which is more abstract and has no
notion of players’ property; introducing the behaviour directly in PROPERTY is hard to achieve without
contradicting the parent’s more abstract specification. In addition, the specifications of classes PROPERTY

and PLAYER are inter-dependent (each player has a list of properties, and each property has a player who
owns it), which makes verification of these routines even more intricate.

One specific design issue which required some changes to the implementation was the usage of cre-
ation procedures (constructors). Many classes relied on the default creation procedure, which simply
initialises attributes to their default values (for example, Void for references). AutoProof’s methodol-
ogy, however, introduces some special attributes to encode the relationship between dependent objects
(ownership and collaboration relations); hence, we had to provide specialised creation procedures that
initialise such special attributes in a way that enables verification.

Traffic library. While we were still able to verify a substantial part of Traffic’s routines, the ef-
fort required – both in terms of developing the annotations and in the actual verification time – was
significantly higher. Traffic’s design consists of a core class containing several data structures holding
all objects in the transportation system, whose class invariants express consistency between them. This
centralised design makes verification less modular, which is reflected by the longer verification times of
routines that deal with multiple data structures (such as initialisation routines), even though their size in
number of instructions is not substantially different from that of some complex routines from the board
game examples.

As with G3, specifying classes and routines that rely on the consistency of other objects was a deli-
cate and time-consuming task. Complex operations – for example, removing a station while ensuring that
all cross references from the corresponding lines are removed, or generating a list of all lines connecting
two stations ordered by name – required major effort in providing specifications suitable for AutoProof
(in particular, careful manipulation of ghost code to support efficient reasoning about model-based spec-
ifications), to the point that we could not complete a number of them within the guidelines.
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One specific issue that required changes to the implementation of the Traffic library was its usage of
floating point arithmetic for 2D vector operations and calculating distances between stations. AutoProof
has limited support for floating point operations, and translates floating point numbers to Boogie’s real
type (corresponding to mathematical reals). Hence, we weakened postconditions of operations involving
floating point arithmetic to accommodate the way that they are modelled by the prover.

5 Related work

Over the last decade or so, following the steady progress of verification tools, there has been an increasing
interest in teaching formal methods using practical tools. The TFM [5, 6] and FORMED [8] workshops
present a variety of experiences based on approaches as diverse as model checking, test-case generation,
and interactive proofs. For brevity, this section focuses on few recent works that are closer to our own
experience.

Poll [20] discusses teaching formal methods using Java, JML annotations, and the static verifier ES-
C/Java2. During exercise sessions lasting 2–3 hours, students solve verification problems that are given
by the instructors and involve different aspects of specification and verification. Some of the findings
are common to our experience: for example, how the students are initially baffled by how modular ver-
ification works (and are frustrated by having to provide detailed specifications of every used routine);
or the problems resulting when verification trivially succeeds simply because the students inadvertently
introduce inconsistent specifications. Other findings reported by Poll are less relevant to our experience
mainly because of the different setup. AutoProof is a more modern tool than ESC/Java2 and it is sound;
hence, it supports verification of fairly complex algorithmic challenges. The tricky semantics of class
invariants was not a major problem for us, since we deemphasised invariant reasoning in the project de-
scriptions; in addition, the fact that students developed both implementations and specifications assuaged
the challenge of dealing with specification styles that they were not familiar with. However, it was a chal-
lenge when we tried to apply AutoProof to code developed without invariant reasoning (or, generally,
formal verification) in mind. Finally, the limited and incomplete API specifications of Java libraries
were a problem for Poll’s students; in our case, we provided the necessary library classes with detailed
specifications so that students could focus on the specifications and code in their project modules.

Kiniry and Zimmerman [10] advocate an early and gradual introduction of formal methods into the
undergraduate curriculum, in conjunction with design by contract and runtime as well as static check-
ing. They emphasise the importance of tool support and IDE integration; our experience led to similar
recommendations in this respect. Their approach to object-oriented design and implementation has a
broader scope than our project’s; but we target more advanced functional properties that better match the
capabilities of our AutoProof tool.

Jaume and Laurent [9] discuss the role of tool support – and IDE integration – to teach discrete
mathematics concepts such as those that are ubiquitous in formal method specifications. Their approach
to relating mathematical structures is similar to the way mathematical structures are related by inheritance
in our model classes. They support proofs of theorems using the FoCaLiZe system, which relies on
proof scripts provided by users. This is suitable for teaching discrete mathematics and techniques such
as induction; in contrast, AutoProof follows the auto-active and programs-as-proofs paradigm, which is
closer to the source-code level of programs.
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6 Discussion

The fact that AutoProof lacks techniques to detect inconsistent specifications betrays its origins as a
research tool “by experts for experts” – given to serious non-expert users only a posteriori. As expert
users, we normally deploy several means of detecting inconsistency in specifications: manually inserting
assert False instructions in suspicious locations, using Boogie’s smoke tests on the Boogie translations
AutoProof produces in the background, or even running Z3’s axiom profiler to follow the instantiations
of axioms during proofs. We extended AutoProof’s tutorial to suggest the first technique, which can be
carried out at the level of source code; but part of the problem remains due to the students’ inexperience:
while we have learnt to be suspicious of complex proofs that suddenly succeed in no time (they’re prob-
ably due to inconsistencies), students can get a false sense of progress from such behaviour and do not
necessarily suspect that their effortless success is too good to be true.

We have been moderately successful at verifying standard code not written with verification in mind.
Our effort has two main sides, which highlighted clearly different challenges. On one hand, verify-
ing client usages – every call to library routines conforms to the library’s API specification – generally
requires reasonable effort. In our examples, the library classes were mainly data structures from Eiffel-
Base2, with preconditions typically requiring that references be non-Void and position indexes be within
bounds. With few exceptions, such properties can be verified with moderate annotation overhead that
scales graciously with the client program’s size. It is interesting to note that such properties are also
amenable to fully automated techniques, such as static analysis, that require little or no annotation.

On the other hand, verifying functional correctness of the actual programs was significantly more
challenging. For the simpler examples, the biggest challenge was dealing with complex class invariants
that clutter the proof space; we tackled the challenge by trading off some automation in exchange for the
capability of selecting the few class invariants that were relevant to each part of the correctness proofs.
For the more complicated examples, which exhibited complex dependencies between objects, simply
selecting the relevant class invariants was not enough. In this case, framing became the number one chal-
lenge, which we could tackle only partially. Even if AutoProof supports semantic collaboration, which
offers constructs to model complex object dependencies, specifying sophisticated framing relationships
is simply not possible as an afterthought. In all, invariant reasoning is quite sensitive to the complexity
and size of the interacting components. The state of the art is such that scalability is limited and possi-
ble only if software is designed with great attention to modularisation and with an idea of verification’s
specific requirements.
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