
Integrating Discrete- and Continuous-Time

Metric Temporal Logics Through Sampling

Carlo A. Furia and Matteo Rossi

Dipartimento di Elettronica e Informazione, Politecnico di Milano
32, Piazza Leonardo da Vinci, 20133, Milano, Italy

{furia, rossi}@elet.polimi.it

Abstract. Real-time systems usually encompass parts that are best de-
scribed by a continuous-time model, such as physical processes under
control, together with other components that are more naturally for-
malized by a discrete-time model, such as digital computing modules.
Describing such systems in a unified framework based on metric tempo-
ral logic requires to integrate formulas which are interpreted over discrete
and continuous time.
In this paper, we tackle this problem with reference to the metric tempo-
ral logic TRIO, that admits both a discrete-time and a continuous-time
semantics. We identify sufficient conditions under which TRIO formu-
las have a consistent truth value when moving from continuous-time to
discrete-time interpretations, or vice versa. These conditions basically
involve the restriction to a proper subset of the TRIO language and a
requirement on the finite variability over time of the basic items in the
specification formulas. We demonstrate the approach with an example
of specification and verification.

Keywords: formal methods, real-time, integration, discretization, metric
temporal logic, discrete time, continuous time, dense time

1 Introduction and Motivation

The application of formal methods to the description and analysis of large and
heterogenous systems inevitably requires being able to model different parts
of the system using disparate notations and languages. In fact, it is usually
the case that different modules are naturally described using diverse formal
techniques, each one tailored to the specific nature of that component. Indeed,
the past decades have seen the birth and proliferation of a plethora of different
formal languages and techniques, each one usually focused on the description of
a certain kind of systems and hinged on a specific approach. On the one hand,
this proliferation is a good thing, as it allows the user to choose the notation and
methodology that is best suited for her needs and that matches her intuition.
However, this is also inevitably a hurdle to the true scalability in the application
of formal techniques, since we end up having heterogeneous descriptions of large

systems, where different modules, described using distinct notations, have no
definite global semantics when put together. Therefore, we need to find ways to
integrate dissimilar models into a global description which can then be analyzed.

A particularly relevant instance of the above general problem is encountered
when describing real-time systems, which require a quantitative modeling of
time. Commonly, such systems are composed of some parts representing physical
environmental processes and some others being digital computing modules. The
former ones have to model physical quantities that vary continuously over time,
whereas the latter ones are digital components that are updated periodically at
every (discrete) clock tick. Hence, a natural way to model the physical processes
is by assuming a continuous-time model, and using a formalism with a compliant
semantics, whereas digital components would be best described using a discrete-
time model, and by adopting a formalism in accordance. Thus, the need to
integrate continuous-time formalisms with discrete-time formalisms, which is
the object of the present paper.

In particular, let us consider the framework of descriptive specifications based
on (metric) temporal logic. Some temporal logic languages have semantics for
both a continuous-time model and a discrete-time one: each formula of the lan-
guage can be interpreted in one of the two classes of models. TRIO is an example
of these logics [5], the one we are considering in this paper; MTL [14] is an-
other well-known instance.1 The discrete-time semantics and the continuous-time
one, however, are unrelated in general, in that the same formula unpredictably
changes its models when passing from one semantics to another. On the contrary,
integration requires different formulas to describe parts of the same system, thus
referring to unique underlying models.

To this end, we introduce the notion of sampling invariance of a specification
formula. Informally, we say that a temporal logic formula is sampling invariant
when its discrete-time models coincide with the samplings of all its continuous-
time models (modulo some additional technical requirements). The sampling
of a continuous-time model is a discrete-time model obtained by observing the
continuous-time model at periodic instants of time. The justification for the
notion of sampling invariance stems from how real systems are made. In fact,
in a typical system the discrete-time part (e.g., a controller) is connected to
the (probed) environment by a sampler, which communicates measurements of
some physical quantities to the controller at some periodic time rate (see Figure
1). The discrete-time behaviors that the controller sees are samplings of the
continuous-time behaviors that occur in the system under control. Our notion of
sampling invariance captures abstractly this fact in relating a continuous-time
formula to a discrete-time one, thus mirroring what happens in a real system.

Once we have a sampling invariant specification, we can integrate discrete-
time and continuous-time parts, thus being able, among other things, to resort to
verification in a discrete-time model, which often benefits from more automated

1 We note that all the results drawn in this paper about TRIO can be applied to MTL
with little effort.

SAMPLER

CONTINUOUS
TIME

DISCRETE
TIME

Fig. 1. A system with a sampler.

approaches, while still being able to describe naturally physical processes in a
continuous-time model.

Another interesting approach that could be achieved with a sampling-invariant
language which is the subset of a more expressive one (TRIO, in our case) is one
based on refinement. In the process of formal modeling of a digital component
— and of a computer program in particular — one would start with a very high-
level description that would refer actions and events to the “real, ideal, physical”
time. The final implementation, however, will have to refer to a more concrete,
measured view of time, such as the one achievable through periodic readings
of an imperfect clock. The refinement of the specification from the ideal to the
concrete could then move from full TRIO to the sampling-invariant subset of it;
this latter description would be closer to the “implemented” view of time, and
would therefore facilitate its realization.

Section 2 introduces
� � TRIO, a subset of TRIO for which sampling invariance

can be achieved. Then, Section 3 defines the sampling invariance requirement
and demonstrates that

� � TRIO formulas are invariant under sampling. Section
4 demonstrates the use of the notion of sampling invariance for integration by
developing a simple example of specification and verification. Finally, Section 5
compares our approach with related works, and Section 6 draws conclusions and
outlines future (and current) work. For the lack of space, we have omitted some
technical details and proofs; they can be found in [9].

2 The
� � TRIO Metric Temporal Logic

Let us start by presenting our reference metric temporal logic, namely TRIO [10,
15, 5]. More precisely, this section introduces a fragment of full TRIO that we
shall call

� � TRIO2; it is a syntactic and expressive subset of the former, robust
with respect to our notion of sampling invariance (as it will be defined in the
following Section 3). The presentation of

� � TRIO will be aided by an example
consisting in the formal description of a simple controlled reservoir system, which
will be further analyzed in Section 4.

2.1 Syntax

Whereas TRIO is based on a single modal operator named Dist [5],
� � TRIO

adopts the bounded Until and Since as primitive operators, because this permits

2 You can read it as “ar-zee-TRIO”.

a simpler statement of the sampling invariance results. More precisely, let Ξ be
a set of time-dependent conditions. These are basically Boolean expressions ob-
tained by functional combination of basic time-dependent items with constants.
We are going to define them precisely later on (in Section 3), for now let us just
assume that they are time-dependent formulas whose truth value is defined at
any given time. Let us consider a set

�
of symbols representing constants. We

denote intervals by expressions of the form 〈l, u〉, with l, u constants from
�
, 〈

a left parenthesis from {(, [}, and 〉 a right parenthesis from {),]}; let I be the
set of all such intervals. Then, if ξ, ξ1, ξ2 ∈ Ξ, I ∈ I, 〈∈ {(, [}, and 〉 ∈ {),]},
well-formed formulas φ are defined recursively as follows.

φ ::= ξ | UntilI〉(φ1, φ2) | SinceI〈(φ1, φ2) | ¬φ | φ1 ∧ φ2

From these basic operators, it is customary to define a number of derived oper-
ators: Table 1 lists those used in this paper.3

Operator ≡ Definition

ReleasesI〉(φ1, φ2) ≡ ¬UntilI〉(¬φ1,¬φ2)
ReleasedI〈(φ1, φ2) ≡ ¬SinceI〈(¬φ1,¬φ2)

∃t ∈ I = 〈l, u〉 : Dist(φ, t) ≡



Until〈l,u〉〉(true, φ) if u ≥ l ≥ 0
Since〈−l,−u〉〉(true, φ) if u ≤ l ≤ 0

∀t ∈ I = 〈l, u〉 : Dist(φ, t) ≡



Releases〈l,u〉〉(false, φ) if u ≥ l ≥ 0
Released〈−l,−u〉〉(false, φ) if u ≤ l ≤ 0

Dist(φ, d) ≡ ∀t ∈ [d, d] : Dist(φ, t)
Futr(φ, d) ≡ d ≥ 0 ∧ Dist(φ, d)
Som(φ) ≡ ∃t ∈ (−∞, 0] : Dist(φ, t) ∨ ∃t ∈ [0, +∞) : Dist(φ, t)
Alw(φ) ≡ ∀t ∈ (−∞, 0] : Dist(φ, t) ∧ ∀t ∈ [0, +∞) : Dist(φ, t)

AlwP(φ) ≡ ∀t ∈ (−∞, 0) : Dist(φ, t)
AlwPi(φ) ≡ ∀t ∈ (−∞, 0] : Dist(φ, t)

WithinP(φ, τ) ≡ ∃t ∈ (−τ, 0) : Dist(φ, t)
WithinPii(φ, τ) ≡ ∃t ∈ [−τ, 0] : Dist(φ, t)

Lasts(φ, τ) ≡ ∀t ∈ (0, τ) : Dist(φ, t)
Lastsii(φ, τ) ≡ ∀t ∈ [0, τ] : Dist(φ, t)

Table 1. Some
� � TRIO derived temporal operators

2.2 Semantics

In defining
� � TRIO semantics we assume that constants in

�
are interpreted

naturally as numbers from the time domain � plus the symbols ±∞, which
are treated as usual. Correspondingly, intervals I are interpreted as intervals of

3 Disjunction ∨ is defined as usual. For simplicity we assume that I = 〈l, u〉 is such
that l, u ≥ 0 or l, u ≤ 0 in the definition of the ∃t ∈ I and ∀t ∈ I operators.

� which are closed/open to the left/right (as usual square brackets denote an
included endpoint, and round brackets denote an excluded one).

Then, we define the semantics of an
� � TRIO formula using as interpretations

mappings from the time domain � to the domain D the basic items map their
values to. Let B � be the set of all such mappings, which we call behaviors, and
let b ∈ B � be any element from that set. If we denote by ξ|b(t) the truth value
of the condition ξ at time t ∈ � according to behavior b, we can define the
semantics of

� � TRIO formulas as follows. We write b |= � φ to indicate that the
behavior b is a model for formula φ under the time model � . Thus, let us define
the semantics for the generic time model � ; in practice this will be either the
reals � or the integers � .
b(t) |= � ξ iff ξ|b(t)
b(t) |= � UntilI〉(φ1, φ2) iff there exists d ∈ I such that b(t+ d) |= � φ2

and, for all u ∈ [0, d〉 it is b(t+ u) |= � φ1

b(t) |= � SinceI〈(φ1, φ2) iff there exists d ∈ I such that b(t− d) |= � φ2

and, for all u ∈ 〈−d, 0] it is b(t+ u) |= � φ1

b(t) |= � ¬φ iff b(t) 2 � φ
b(t) |= � φ1 ∧ φ2 iff b(t) |= � φ1 and b(t) |= � φ2

b |= � φ iff for all t ∈ � : b(t) |= � φ

Thus, an
� � TRIO formula φ constitutes the specification of a system, representing

exactly all behaviors that are models of the formula. We denote by [[φ]] � the set
of all models of formula φ with time domain � , i.e., [[φ]] � ≡ {b ∈ B � | b |= � φ}.
In the remainder we will sometime use the expression “behaviors of a formula
φ” to mean the set [[φ]] � .

2.3 The Controlled Reservoir

Let us briefly illustrate the practical use of the
� � TRIO language by building a

descriptive specification (i.e., consisting of a set of logic axioms) for a controlled
reservoir.

The reservoir is filled with some liquid; at any time, the (measured) level of
the liquid is represented by a time-dependent item l that takes value in the set

� ≥0. Furthermore, the reservoir can leak and/or be filled with new liquid. This
is modeled through two Boolean-valued time-dependent items L and F indicating
the reservoir leaking and being filled, respectively. Therefore, the behaviors (i.e.,
the logical models) of our reservoir will be functions mapping the time domain

� to the domain Dres = � ≥0 × {0, 1} × {0, 1}.

Let us start the formal specification by writing some TRIO (not
� � TRIO) ax-

ioms that define how the level varies over time according to whether the reservoir
is leaking and/or being filled. Thus, let us introduce two positive real constants
rf , rl that denote the rate at which the level increases, and at which it decreases,
when the reservoir is filling and leaking, respectively. Then, we state that: when-
ever the reservoir is being filled (i.e., F) and is not leaking (i.e., ¬L) for a (generic)
time interval of length t (i.e., Lasts(F ∧ ¬L, t), and the level is some l at the be-
ginning of the interval (i.e., l = l), then at the end of the interval the level will

have grown to l+rft (i.e., Futr(l = l + rft, t)). Let us define similarly three other
axioms to describe all the possible combinations of filling and leaking.

Lasts(F ∧ L, t) ∧ l = l ⇒ Futr(l = l + (rf − rl)t, t) (1)

Lasts(F ∧ ¬L, t) ∧ l = l ⇒ Futr(l = l + rft, t) (2)

Lasts(¬F ∧ L, t) ∧ l = l ⇒ Futr(l = max(l − rlt, 0), t) (3)

Lasted(¬F ∧ ¬L, t) ∧ l = l ⇒ Futr(l = l, t) (4)

In order to define the control action, let us introduce two more constants.
The overall goal of the control action is to keep the level above a minimum
level l, whatever the leaking behavior is, by filling it whenever needed. To this
end, we define a threshold level denoted by tl: whenever the level goes below tl,
the controller activates the filling, as indicated by Axiom 5 below. Obviously,
we assume tl > l. Finally, let us also state that the level is initially above the
threshold tl (Formula 6).

l < tl ⇒ F (5)

Som(AlwP(l ≥ tl)) (6)

Let us close this section with two remarks. First, we assume that formulas (1–
4) and (6) are interpreted over � as time domain, since they model the behavior
of a physical system; conversely, formula (5) is implicitly interpreted over � as
time domain, since it describes the behavior of a digital device that “watches”
the physical system through a sampler. Second, while Formulas 5 and 6 qualify as� � TRIO formulas, the other Formulas (1–4) involve free (time) variables (namely,
t), so they are full-TRIO formulas, not

� � TRIO.

3 Sampling Invariance and Integration

The overall goal of integrating formulas that are interpreted over different time
domains basically requires to define a suitable notion of invariance. Whenever
a formula achieves this invariance it means that its “intended meaning” is pre-
served by changes of the temporal domain. Thus, the formula can be equivalently
interpreted under any of the time domains, putting it on a common ground with
the other formulas, effectively integrating it with them.

Our notion of invariance is named sampling invariance, and relates continuous-
and discrete-time behaviors of a formula through what we call the sampling of a
behavior. Precisely, given a continuous-time behavior b ∈ B � , we define its sam-
pling as the discrete-time behavior σδ,z [b] ∈ B � that agrees with b at all integer
time instants corresponding to multiples of a constant δ ∈ � >0 from a basic
offset z ∈ � . We call δ the sampling period and z the origin of the sampling. In
formulas, we have the following definition:

∀k ∈ � : σδ,z [b] (k) ≡ b(z + kδ)

3.1 Sampling Invariance

Let us now give a sensible definition of sampling invariance. Ideally, we would
like to be able to say that, for a given formula φ, sampling period δ, and origin
z: the sampling of any of its continuous-time behaviors is one of its discrete-time
behaviors (i.e., b ∈ [[φ]] � ⇒ σδ,z [b] ∈ [[φ]] �); and, conversely, any continuous-
time behavior whose sampling is a discrete-time behavior of φ is also a valid
continuous-time behavior of φ (i.e., b ∈ [[φ]] � ⇒ ∀b′ : (σδ,z [b′] = b⇒ b′ ∈ [[φ]] �)).

This ideal notion of sampling invariance is not achievable, as it is, by any non-
trivial temporal logic language (and

� � TRIO in particular), as the continuous-
time and the discrete-time behaviors of a formula are in general only loosely
related. In particular, let us point out two basic reasons why the above definitions
must be relaxed to be pursuable.

Regularity of behaviors. The first and most relevant issue concerns the fact that
the density of the time domain � allows for behaviors that may change an un-
bounded number of times between any two sampling instants; therefore, the
information about these “intermediate changes” is completely lost by sampling
the behavior. Consider, for instance, Figure 2(a). There, a Boolean-valued item

z + kδ z + (k + 1)δ

1

0

k k + 1

1

0

(a)

k − 1 t

(b)

δ

Fig. 2. (a) Change detection failure; (b) Moving interval.

changes its values twice (from true to false and then back to true) within the
interval, of length δ, between two adjacent sampling instants. Therefore, any
continuous-time formula predicating about the value of the item within those
instants may be true in continuous time and false for the sampling of the be-
havior, which only “detects” two consecutive true values. Instead, we would like
that the “rate of change” of the items is slow-paced enough that every change
is detected at some sampling instant, before it changes again.

To this end, let us introduce a constraint on the continuous-time behaviors
of a formula: only behaviors conformant to the constraint can be invariant under
sampling. The precise form of the constraint to be introduced depends on the
kind of items we are dealing with in our specification (namely, whether they take
values to discrete or continuous domains); we will define it precisely in the next
Section 3.2. In practice, however, the constraint is expressed by an additional� � TRIO formula χ, which depends, in general, on the particular specification we
have written; we call χ the behavior constraint.

Discrete steps and continuous units. The second obstacle to achieving sampling
invariance is instead a technical issue concerning measurement units. Let us
illustrate it with the

� � TRIO formula Lasts(F, 1/2). In a discrete-time setting,
we would like the formula to mean: for all (integer) time distances that fall
in an interval between the two time instants corresponding to the sampling
instants closest to 0 and 1/2, etc. Hence, we should actually adopt the formula
Lasts(F, 1/2δ) as discrete-time counterpart, dividing every time constant by the
sampling period.

Conversely, there is another change in the time constants — probably less
manifest — that must be introduced when interpreting a discrete-time formula
in continuous time. To give the intuition, consider the formula Lastsii(F, 1) in
discrete time: F holds for two consecutive time steps (including the current one).
In continuous time, when evaluating the corresponding Lastsii(F, δ) between two
consecutive sampling instants (cf. instant t in Figure 2(b)), we can only state
a weaker property about F holding, namely that F holds in a subset of the δ-
wide interval in the future. On basic formulas, this requirement is rendered as a
shrinking (or stretching, for existential formulas) of the intervals bounds by one
discrete time unit.

In Section 3.2 we will define how to modify the time constants in any
� � TRIO

formula when passing from continuous to discrete time and vice versa. Let us
name adaptation function this simple translation rule, as it just adapts the time
bounds in our formulas, without changing its structure. We denote the adaptation
function from continuous to discrete time as η

�
δ {·}, and the converse function

from discrete to continuous time as η
�
δ {·}.

Definition of Sampling Invariance. We are finally able to give a formal definition
of sampling invariance which, by employing the above outlined ingredients, is
achievable for

� � TRIO formulas (as it will be shown in Section 3.3).

Definition 1 (Sampling Invariance). Given a formula φ, a behavior con-
straint formula χ, two adaptation functions η

�
δ {·} and η

�
δ {·}, a sampling period

δ, and an origin z, we say that:

– φ is closed under sampling iff for any continuous-time behavior b ∈ B � :

b ∈ [[φ ∧ χ]] � ⇒ σδ,z [b] ∈ [[η
�
δ {φ}]] �

– φ is closed under inverse sampling iff for any discrete-time behavior b ∈ B � :

b ∈ [[φ]] � ⇒ ∀b′ ∈ [[χ]] � :
(
σδ,z [b′] = b ⇒ b′ ∈ [[η

�
δ {φ} ∧ χ]] �

)

– φ is sampling invariant iff it is closed under sampling (when interpreted
in the continuous-time domain) and closed under inverse sampling (when
interpreted in the discrete-time domain).

3.2 Adaptation, Conditions, and Behavior Constraints

The proof that
� � TRIO is sampling invariant is given for formulas of the language

that are in a normal form, where there is no nesting of temporal operators, and
all negations are pushed inside. Consequently, negations on Since and Until are
replaceable by the Releases and Released operators. As it is fully shown in [9],
any

� � TRIO can be put in normal form, possibly introducing auxiliary time-
dependent items. Therefore, in the remainder of this section we will assume to
deal with formulas in normal form.

Adaptation Function. Let us define the adaptation function η
�
δ {·} from con-

tinuous to discrete time as follows, where l′ is bl/δc if 〈 is (, and dl/δe if 〈 is [,
and u′ is du/δe if 〉 is), and bu/δc if 〉 is].4

η
�
δ {ξ} ≡ ξ
η

�
δ

{
Until〈l,u〉〉(ξ1, ξ2)

}
≡ Until[bl/δc,du/δe])(ξ1, ξ2)

η
�
δ

{
Since〈l,u〉〈(ξ1, ξ2)

}
≡ Since[bl/δc,du/δe]((ξ1, ξ2)

η
�
δ

{
Releases〈l,u〉〉(ξ1, ξ2)

}
≡ Releases〈l′,u′〉](ξ1, ξ2)

η
�
δ

{
Released〈l,u〉〈(ξ1, ξ2)

}
≡ Released〈l′,u′〉[(ξ1, ξ2)

η
�
δ {φ1 ∧ φ2} ≡ η

�
δ {φ1} ∧ η

�
δ {φ2}

η
�
δ {φ1 ∨ φ2} ≡ η

�
δ {φ1} ∨ η

�
δ {φ2}

The adaptation function η
�
δ {·} from discrete to continuous time is instead

defined as follows, where the adapted interval 〈(l−1)δ, (u−1)δ〉 for the Until and
Since operators can indifferently be taken to include or exclude their endpoints.5

η
�
δ {ξ} ≡ ξ
η

�
δ

{
Until[l,u]](ξ1, ξ2)

}
≡ Until〈(l−1)δ,(u+1)δ〉](ξ1, ξ2)

η
�
δ

{
Since[l,u][(ξ1, ξ2)

}
≡ Since〈(l−1)δ,(u+1)δ〉[(ξ1, ξ2)

η
�
δ

{
Releases[l,u])(ξ1, ξ2)

}
≡ Releases[(l+1)δ,(u−1)δ])(ξ1, ξ2)

η
�
δ

{
Released[l,u]((ξ1, ξ2)

}
≡ Released[(l+1)δ,(u−1)δ]((ξ1, ξ2)

η
�
δ {φ1 ∧ φ2} ≡ η

�
δ {φ1} ∧ η

�
δ {φ2}

η
�
δ {φ1 ∨ φ2} ≡ η

�
δ {φ1} ∨ η

�
δ {φ2}

Conditions. The definitions of the primitive conditions ξ appearing in
� � TRIO

formulas depend on whether we deal with primitive time-dependent items take
values to discrete or dense domains. This should not be confused with the density
of the time domain: for behaviors mapping � to a generic domain D, we now
distinguish whether D is a discrete or a dense set. Note that when discrete- and
dense-valued items coexist in the same specification, we just have to consider
them separately.

4 As it is customary, the brackets b·c and d·e denote the floor and ceiling functions
[11].

5 Note that in discrete time we need only consider closed intervals.

Discrete-valued items. If all primitive time-dependent items in Ψ = {ψ1, . . . ψn}
have discrete codomains, then D ≡ D1 × · · · × Dn where each Di is a discrete
set. Let Λ be a set of constants from the sets Di’s, and Γ be a set of functions
having domains in subsets of D and codomains in some Di’s. Then, if λ ∈ Λ,
f, f1, f2 ∈ Γ , and ./ ∈ {=, <,≤, >,≥}, conditions ξ can be defined recursively
as follows, assuming type compatibility is respected:

ξ ::= f(ψ1, . . . , ψn) ./ λ | f1(ψ1, . . . , ψn) ./ f2(ψ1, . . . , ψn) | ¬ξ | ξ1 ∧ ξ2

Dense-valued items. If all time-dependent items in Ψ have dense codomains,
then D ≡ D1 × · · · ×Dn where each Di is a dense set. Let Λ be a set of n-tuples
of the form 〈〈1l1, u1〉

1, . . . , 〈nln, un〉
n〉, with li, ui ∈ Di, li ≤ ui, 〈

i∈ {(, [}, and
〉i ∈ {),]}, for all i = 1, . . . , n. Then, if λ ∈ Λ, conditions ξ are defined simply as
follows:

ξ ::= 〈ψ1, . . . , ψn〉 ∈ λ | ¬ξ | ξ1 ∧ ξ2

Then, for a behavior b : � → D, the evaluation of conditions on b at t ∈ �
is defined as obvious; in particular — for discrete-valued items — a function
application f(ψ1, . . . , ψn) is interpreted by taking f(ψ1|b(t), . . . , ψn|b(t)), and —
for dense-valued items — 〈ψ1, . . . , ψn〉|b(t) ∈ λ is interpreted as ∀i = 1, . . . , n :
ψi(t) ∈ 〈ili, ui〉

i (i.e., all items are in their respective ranges at time t).

Behavior Constraints. According to whether we are considering discrete- or
dense-valued items in our specification, we have two different definitions for the
behavior constraint χ. Again, if discrete and dense items coexist in the same
specification, we just consider both conditions for their respective items.

Discrete-valued items. The constraint on behaviors for discrete-valued items is
given in Formula χ◦ and basically requires that the value of each item in Ψ is
held for δ time units, at least.6

χ◦ , ∀v ∈ D : (〈ψ1, . . . , ψn〉 = v ⇒ WithinPii(Lastsii(〈ψ1, . . . , ψn〉 = v, δ) , δ))

Dense-valued items. The constraint on behaviors for dense-valued items is ex-
pressed by Formula χφ

• depends on the actual conditions ξ that we introduced
in the formula φ. Let Ξ̃ be the set of conditions that appear in φ; χφ

• requires
that the value of every item in Ψ is such that its changes with respect to the
conditions in Ξ̃ occur at most once every δ time units. This is expressed by
the following “pseudo”-

� � TRIO formula, where the higher-order quantification
∀ξ̃ ∈ Ξ̃ is just a shorthand for the explicit enumeration of all the conditions in
(the finite set) Ξ̃.

χφ
• , ∀ξ̃ ∈ Ξ̃ : WithinPii

(
Lastsii

(
ξ̃, δ

)
, δ

)
∨ WithinPii

(
Lastsii

(
¬ξ̃, δ

)
, δ

)

6 Actually, while
� � TRIO, as we defined it above, is purely propositional, χ◦ uses a

universal quantification on non-temporal variables. However, it is not difficult to
understand that this generalization does not impact on sampling-invariance.

3.3 Sampling Invariance of
� � TRIO

We finally state the sampling invariance of
� � TRIO formulas.

Theorem 1 (Sampling Invariance).
� � TRIO is sampling invariant with re-

spect to the behavior constraints χ◦ and χφ
• , the adaptation functions η

�
δ {·} and

η
�
δ {·}, for any sampling period δ and origin z.

Proof (sketch). For the sake of space we just sketch the outline of the proof and
refer to [9] for the details.

First of all, let us notice that the proof for both dense- and discrete-valued
items is the same, and it relies on the basic fact that the truth value of any
condition ξ cannot change more than once between any two consecutive sampling
instants, because of the behavior constraints χ◦ and χφ

• . Then, let φ be any� � TRIO formula.
To prove closure under sampling, let b be a continuous-time behavior in

[[χ◦]] � , φ′ = η
�
δ {φ}, and b′ be the sampling σδ,z [b] of behavior b with the given

origin and sampling period. For a generic sampling instant t = z + kδ, one
can show that b(t) |= � φ implies b′(k) |= � φ′, by induction on the structure of
φ. Even if all the details are quite convoluted, the overall idea is fairly terse:
assuming φ holds we infer that some condition ξ holds at some instant u that
depends on the bounds of the time intervals involved in φ; then, condition χ◦

(or χφ
•) ensures that the truth of ξ is held at least until the previous or the

next sampling instant (w.r.t. u); therefore, the discrete-time formula φ′, whose
time bounds have been relaxed by the adaptation function η

�
δ {·}, matches this

sampling instant and is thus shown to hold at k.
To prove closure under inverse sampling let b be a discrete-time behavior,

φ′ = η
�
δ {φ}, and b′ be a continuous-time behavior such that b′ ∈ [[χ◦]] � and

b = σδ,z [b′] for the given origin and sampling period. The proof is now split into
two parts. The former shows that, for a generic sampling instant t = z + kδ, if
b(k) |= � φ then b′(t) |= � φ′, that is φ′ holds in continuous-time at all sampling
instants. Again, this involves reasoning on the intervals involved in the operators
and the condition χ◦ (or χφ

•). Afterwards, we show that φ′ holds in between
sampling instants: if it holds at some sampling instant t, then it is either always
true in the future and past, or there exist definite “changing points” in the
future and past where φ′ changes its truth value to false. These changing points,
however, can be shown to correspond to changes in the truth value of some
condition ξ (because in normal form we have no nesting), and thus there can
be at most one of them between any two consecutive sampling instants. A final
analysis shows that indeed if any φ′ holds at all sampling instants, then it also
holds in between them, since it should otherwise change its value twice between
two of them. ut

4 Example

Let us now develop controlled reservoir whose specification was introduced in
Section 2.3. Let us consider the following invariance formula, asserting that the

level of liquid never goes below l.

Alw(l ≥ l) (7)

We would like to prove that 7 follows from the axioms, that is (1–6)⇒(7).
Notice, however, that the axioms do not refer to a uniform time domain, and
thus they need to be integrated first.

A first possible strategy would first notice that Formula 5 does not use tem-
poral operators at all and so it could be easily interpreted over the reals. Then,
one would proceed to prove (1–6)⇒(7) assuming continuous time. Such a proof
is possible although not very simple — at least with respect to the simplicity
of the involved formulas — as it requires to deal with regularity properties of
functions with real domain (such as continuity and non-Zenoness); the reader
can check out [8], where a similar proof was carried out in continuous time with
the aid of a compositional inference rule.

An alternative approach to achieve the verification goal is therefore to exploit
the results about integration. First of all we need to identify some simpler for-
mulas, expressible in

� � TRIO, which can be easily derived from the TRIO axioms
(1–4) assuming � as time domain. Thus, let us pick a sufficiently small sampling
period δ, i.e., one such that rlδ < tl − l. Then, we derive three formulas from the
axioms (1–4) that state basic properties about the invariance of the reservoir
level over a time interval of length δ. We omit their simple proofs.

Lasts(F, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ) (8)

l ≥ tl ⇒ Futr(l ≥ l, δ) (9)

Lasts(¬F ∧ ¬L, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ) (10)

Now, Formulas (8–10,5,6,7) are all well-formed
� � TRIO formulas, and are

therefore invariant under sampling and inverse sampling. Therefore, let us in-
terpret all of them in discrete time. While Formulas (5) and (7) do not require
any adaptation, the other formulas (8–10,6) must be adapted. After translating
them in normal form, applying the adaptation function η

�
δ {·}, and writing them

back with derived operators, one gets the following formulas.

Lastsii(F, 1) ∧ l ≥ l ⇒ Futr(l ≥ l, 1) (11)

l ≥ tl ⇒ Futr(l ≥ l, 1) (12)

Lastsii(¬F ∧ ¬L, 1) ∧ l ≥ l ⇒ Futr(l ≥ l, 1) (13)

Som(AlwPi(l ≥ tl)) (14)

All in all, we have reduced the verification goal to proving that (11–13,5,14)⇒(7),
in discrete time. This is a sufficiently simple task to be totally automated; for
instance, we proved it using model-checking techniques for TRIO and the SPIN
model checker [16]. Finally, the invariance property (7) that has been proved in
discrete time, holds in continuous time as well, for all behaviors satisfying the
constraint χ. A further, complementary, analysis could then consider behaviors
violating the constraints χ, if they are deemed physically meaningful; we leave
this (interesting) problem to future work.

5 Related Works

The problem of formally describing in a uniform manner systems that encompass
both discrete-time and continuous-time modules is particularly motivated by the
recently growing interest in hybrid systems [3]. Although this paper does not
deal with hybrid systems in the sense of hybrid automata [2], we also allow one
to describe systems where both discrete- and continuous-time dynamics occur.
However, with respect to the hybrid automata work, our approach considers
descriptive models, i.e., entirely based on temporal logic formulas, which are
well suited for very high-level descriptions of a system. Moreover, our idea of
integration stresses separation of concerns in the development of a specification,
as the modules describing different parts of the systems, that obey different
models, can be developed independently and then joined together to have a
global description of the system. Thus, no ad hoc formalism has to be introduced,
since the analysis can exploit the ideas and formalisms of temporal logics.

A straightforward way to compose continuous-time and discrete-time mod-
els is to integrate discrete models into continuous ones, by introducing some
suitable conventions. This is the approach followed by Fidge in [7], with ref-
erence to timed refinement calculus. The overall simplicity of the approach is
probably its main strength; nonetheless we notice that integrating everything
into a continuous-time setting has some disadvantages in terms of complexity,
as continuous time often introduces some peculiar difficulties that render rea-
soning more difficult. On the contrary, our approach aims at achieving a notion
of equivalence between discrete-time and continuous-time descriptions, so that
one can resort to discrete time when verifying properties, while still being able
to describe naturally physical processes using a full continuous-time model.

Another approach to the definition of an equivalence between continuous-
and discrete-time behaviors of a specification formula is that based on the no-
tion of digitization. Henzinger et al. [12] were the first to introduce and study this
notion in the context of temporal logic. Digitizability is similar to our sampling
invariance in that they both define a notion of invariance between discrete- and
dense-time interpretations of the same formula. However, they differ in other
major aspects. First, [12] compares analog- and digital-clock models, that is be-
haviors consisting of a discrete sequences of events, each carrying a timestamp:
in analog-clock behaviors the timestamp is a real value, whereas in digital-clock
ones it is an integer value. On the contrary, our work considers truly continuous-
time behaviors and encompasses the description of dense-valued items; these fea-
tures are both needed to faithfully model continuous physical quantities. Clearly,
the introduction of the behavior constraint χ does limit in practice the dynamics
of the items, in order to render them ultimately discretizable and thus equiva-
lent to a discrete sequence; nonetheless, the possibility of modeling dense-valued
items is unaffected, and we believe that the explicit (syntactic) introduction
of the constraint χ — required to achieve invariance — permits a clearer un-
derstanding of what we “lose” exactly by discretization, and makes it possible,
whenever needed, a comparison with the unconstrained continuous-time model.
The other major difference between our approach and the one presented in [12]

concerns the physical motivation for the notion of invariance. In fact, sampling
invariance models — albeit in an abstract and idealized way — the sampling
process which really occurs in systems composed by a digital controller inter-
acting with a physical environment. On the contrary, digitization is based on
the idea of “shifting” the timestamps of the analog model to make them coin-
cide with integer values; informally, we may say that behaviors are “stretched”,
without changing the relative order of the events. This weaker notion allows for
a neater statement of the results about digitization; however it is more oriented
towards mathematical and verification results, and less to physical reasons. A
formal comparison of the two notions of discretization belongs to future work
(see also [4]).

We end the presentation of related works by mentioning that several differ-
ent papers on discretization and continuous/discrete equivalence have exploited
similar notions of invariance as that in [12]. For the sake of space we limit our-
selves to citing the work by Hung and Giang [13], where a sampling semantics
for Duration Calculus (DC) is defined; the paper by Ouaknine [17], where digiti-
zation for CSP is discussed; and the paper by Ouaknine and Worrell [18], which
discusses the problem of digitization for timed automata, and offers several other
references to related works.

6 Conclusions

This paper introduced the notion of sampling invariance, which is a physically
motivated way to relate the continuous-time and discrete-time behaviors of a
system. Sampling invariance means that a temporal logic formula can be inter-
preted with a continuous-time or discrete-time model consistently and in a uni-
form manner. Therefore, writing sampling invariant formulas permits to achieve
integration of discrete-time and continuous-time formalisms in the same speci-
fication, thus being able to verify the system in the discrete-time models, while
still describing naturally physical processes with the true continuity permitted
by continuous-time models.

We demonstrated how to achieve sampling invariance with
� � TRIO, a subset

of the TRIO language. The approach involved the introduction of some suitable
constraints on the possible behaviors of a system, which limit the dynamics in
an appropriate way, as well as simple translation rules that adapt the meaning
of time units in the two time models. We are confident that the approach can
be applied to other metric temporal logics as well (and MTL in particular).

Future work will follow three main directions. Firstly, we will compare the
expressiveness of

� � TRIO with that of other formalisms for the description of real-
time and hybrid systems that admit discretization under certain constraints; in
particular, we will consider timed and hybrid automata [2], logics such as MITL
[1], and the AASAP semantics [6]. Secondly, we will study how to possibly ex-
tend and generalize our approach, both in terms of enriching the expressiveness
of the logic language, and by attempting variants of the notion of sampling in-
variance. Thirdly, we will try to apply our results about sampling invariance to a

refinement approach, as we hinted at in the Introduction. This effort should be
methodological as well as technical, and it will aim at tackling, from a new per-
spective, the important problem of refining an abstract high-level specification
to an implementable low-level one.

References

1. R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality.
JACM, 43(1):116–146, 1996.

2. R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions
of hybrid systems. In Antsaklis [3], pages 971–984.

3. P. J. Antsaklis, editor. Special issue on hybrid systems: theory and applications,
volume 88 of Proceedings of the IEEE, 2000.

4. E. Asarin, O. Maler, and A. Pnueli. On discretization of delays in timed automata
and digital circuits. In Proceedings of CONCUR’98, volume 1466 of LNCS, pages
470–484, 1998.

5. E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P. Mirandola, and
A. Morzenti. From formal models to formally-based methods: an industrial ex-
perience. ACM TOSEM, 8(1):79–113, 1999.

6. M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semantics. Formal Aspects

of Computing, 17(3):319–341, 2005.
7. C. J. Fidge. Modelling discrete behaviour in a continuous-time formalism. In

Proceedings of IFM’99, pages 170–188. Springer, 1999.
8. C. A. Furia and M. Rossi. A compositional framework for formally verifying mod-

ular systems. volume 116 of ENTCS, pages 185–198. Elsevier, 2004.
9. C. A. Furia and M. Rossi. When discrete met continuous. Techni-

cal Report 2005.44, DEI, Politecnico di Milano, 2005. Available from
http://www.elet.polimi.it/upload/furia/.

10. C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic language for executable
specifications of real-time systems. JSS, 12(2):107–123, 1990.

11. R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A founda-

tion for computer science. Addison-Wesley, 1994.
12. T. A. Henzinger, Z. Manna, and A. Pnueli. What good are digital clocks? In

Proceedings of ICALP’92, volume 623 of LNCS, pages 545–558, 1992.
13. D. V. Hung and P. H. Giang. Sampling semantics of duration calculus. In Pro-

ceedings of FTRTFT’96, volume 1135 of LNCS, pages 188–207, 1996.
14. R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time

Systems, 2(4):255–299, 1990.
15. A. Morzenti, D. Mandrioli, and C. Ghezzi. A model parametric real-time logic.

ACM TOPLAS, 14(4):521–573, 1992.
16. A. Morzenti, M. Pradella, P. San Pietro, and P. Spoletini. Model-checking TRIO

specifications in SPIN. In Proceedings of FME’03, volume 2805 of LNCS, pages
542–561, 2003.

17. J. Ouaknine. Digisation and full abstraction for dense-time model checking. In
Proceedings of TACAS’02, volume 2280 of LNCS, pages 37–51, 2002.

18. J. Ouaknine and J. Worrell. Revisiting digitization, robustness, and decidability
for timed automata. In Proceedings of LICS’03, pages 198–207. IEEE Computer
Society, 2003.

