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Abstract. The basic modal operator bounded until of Metric Tempo-
ral Logic (MTL) comes in several variants. In particular it can be strict
(when it does not constrain the current instant) or not, and matching
(when it requires its two arguments to eventually hold together) or not.
This paper compares the relative expressiveness of the resulting MTL
variants over dense time. We prove that the expressiveness is not af-
fected by the variations when considering non-Zeno interpretations and
arbitrary nesting of temporal operators. On the contrary, the expres-
siveness changes for flat (i.e., without nesting) formulas, or when Zeno
interpretations are allowed.

1 Introduction

In the last few decades, the formal description and analysis of real-time systems
has become an increasingly important research topic. This has resulted, among
other things, in the development of several formal notations for the description
of real-time properties and systems. In particular, a significant number of ex-
tensions of classical temporal logics to deal with metric (quantitative) time has
been introduced and used (see e.g., [3]). Among them, Metric Temporal Logic
(MTL) [23, 4] is one of the most popular. An appealing feature of MTL is its
being a straightforward extension of well-known Linear Temporal Logic (LTL),
a classical temporal logic. In MTL, an interval parameter is added to LTL’s
modal operators (such as the until operator); the interval specifies a range of
distances over which the arguments of the modality must hold, thus allowing the
expression of real-time properties.

When MTL formulas are interpreted over discrete time domains (e.g., N,Z),
the well-known results and techniques about the expressiveness of LTL can often
be “lifted” to the real-time case [4]. On the contrary, when MTL formulas are
interpreted over dense time domains (e.g., R) additional difficulties and com-
plications are commonly encountered, which require novel techniques (e.g., [20,
21, 5, 11, 29, 28, 6]). Another aspect where the use of MTL (and temporal logics
in general) over metric dense-time models shows a substantial difference with
respect to discrete time is in the robustness of the language expressiveness with
respect to changes in its (syntactic) definitions or in the choice of the underlying



interpretation structures. In other words, it is often the case that apparently
minimal changes in the definition of the basic modal operators, or in the choice
of the interpretation structures (e.g., timed words rather than timed interval
sequences), of the logics yield substantial differences in the resulting expressive-
ness. Also, these differences are usually more difficult to predict and assess than
in the discrete-time case. One significant example is the use of a “natural” ex-
tension such as the introduction of past operators: it is well-known that adding
them does not change the expressive power over discrete time [12] (while it in-
creases the succinctness [25]), but it does over dense time both for LTL [18, 22],
and for MTL [5, 29] (Alur and Henzinger [2] were the first to analyze this issue
for a metric MTL subset known as MITL).

This paper contributes to enriching the emerging picture about the expres-
siveness of MTL and its common variants. The reference interpretation structure
is the behavior, that is generic mappings that associate with every instant of time
the propositions that are true at that instant. When behaviors are restricted to
be non-Zeno [19] (also called finitely variable [30, 20]) they are an equivalent way
of expressing the well-known timed interval sequences. We consider two basic lan-
guage features to be varied in MTL definitions: strictness and matchingness. The
basic until operator U(φ1, φ2) is called strict (in its first argument) if it does not
constrain its first argument φ1 to hold at the current instant (i.e., it constraints
strictly the future); on the other hand the same operator is called matching if
it requires the second argument φ2 to hold together with the first argument φ1

at some instant in the future (see Section 2 for precise definitions). The most
common definition uses an until operator that is strict and non-matching; it is
simple to realize that this does not restrict the expressiveness as the matching
and non-strict untils are easily expressible in terms of strict non-matching un-
tils. However, some applications dealing with MTL or closely related languages
are based on the matching (e.g., [26, 27]) or non-strict (e.g., [15]) variants, or
both. Therefore it is interesting to analyze if these syntactic restrictions imply
restrictions in the expressiveness of the language; this is done in Section 3.

Another dimension that we consider in our analysis is the restriction to flat
MTL formulas, i.e., formulas that do not nest temporal operators. These have
also been used, among others, in some previous work of ours [15], as well as in
several works with classical (qualitative) temporal logic (see related works). It
is an easy guess that flat MTL is less expressive than its full “nesting” counter-
part; in this paper (Section 4) we prove this intuition and then we analyze how
the relationships between the various (non-)matching and (non-)strict variants
change when restricted to flat formulas. In order to do so, we develop techniques
to handle two different definitions in the satisfaction semantics of formulas: ini-
tial satisfiability — where the truth of a formula is evaluated only at some initial
time (i.e., 0) — and global satisfiability — where the truth of a formula is eval-
uated at all time instants. While the two semantics are easily reconcilable when
nesting is allowed, passing from the initial semantics to the global one with flat
formulas is more challenging. We consider also the less common global satisfi-
ability semantics because the expressiveness of the flat fragment is non-trivial
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under such semantics (in fact, it corresponds to an implicit nesting of a qualita-
tive temporal operator), and most common real-time properties such as bounded
response and bounded invariance [23] can be easily expressed.

Finally, in Section 5, we also consider what happens to (relative) expressive-
ness if Zeno behaviors are allowed. In particular, we show that some equivalences
between MTL variations that hold over non-Zeno behaviors are no more valid
with Zeno behaviors. In this sense, allowing Zeno behaviors weakens the robust-
ness of MTL expressiveness with respect to definitions, and it renders the picture
more complicated and less intuitive.

For lack of space, we have omitted several proofs and details from this version
of the paper; the interested reader can find them in [17].

Related works. As mentioned above, in recent years several works have analyzed
the expressiveness of different MTL variants over dense time. Let us recall briefly
the main results of a significant subset thereof.

Bouyer et al. [5] compare the expressiveness of MTL with that of TPTL
(another real-time temporal logic) and they are the first to prove the conjecture
that the latter is strictly more expressive than the former, over both timed words
and timed interval sequences. As a corollary of their results, they show that past
operators increase the expressiveness of MTL.

Since the work of Alur and Henzinger [4] it is known that (full) MTL is un-
decidable over dense-time models. This shortcoming has been long attributed
to the possibility of expressing punctual (i.e., exact) timing constraints; in fact
Alur et al. [1] have shown that MITL, a MTL subset where punctual intervals
are disallowed, is decidable. However, punctuality does not always entail unde-
cidability. In fact, Ouaknine and Worrel [28] have been the first to prove that
MTL is decidable over finite timed words, albeit with non-primitive recursive
complexity; their proofs rely on automata-based techniques, and in particular
on the notion of timed automata with alternation. On the other hand, they
show that several significant fragments of MTL are still undecidable over infi-
nite timed words. In the same vein, Bouyer et al. [6] have identified significant
MTL fragments that are instead decidable (with primitive complexity) even if
one allows the expression of punctual timing constraints.

D’Souza and Prabhakar [11] compare the expressiveness of MTL over the
two interpretation structures of timed words and timed interval sequences (more
precisely, a specialization of the latter called “continuous” semantics). Build-
ing upon Ouaknine and Worrel’s decidability results for MTL [28], they show
that MTL is strictly more expressive over timed interval sequences than it is
over timed words. The same authors [29] analyze a significant number of MTL
variations, namely those obtained by adding past operators or by considering
qualitative operators rather than metric ones, over both timed words and timed
interval sequences, both in their finite and infinite forms. Still the same au-
thors [10] have shown how to rewrite MTL formulas in flat form, and without
past operators, by introducing additional propositions (a similar flattening has
been shown for another temporal logic in [14]). While these latter results do
not pertain directly to the expressiveness of the language (because of the new
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propositions that are introduced) they help assessing the decidability of MTL
variations.

In previous work [16] we proved the equivalence between the strict and non-
strict non-matching variants of MTL over non-Zeno behaviors and with arbitrar-
ily nested formulas. Section 3 uses techniques similar to those in [16] to prove
new equivalence results.

These results, which we do not report with further details for the lack of
space, show how relative expressiveness relations are much more complicated
over dense time than they are over discrete time. In fact, some authors (e.g.,
[20, 3]) have suggested that these additional difficulties are an indication that
the “right” semantic model for dense time has not been found yet. In particular,
Hirshfeld and Rabinovich [20, 21] have made a strong point that most approaches
to the definition of temporal logics for real-time and to their semantics depart
from the “classical” approach to temporal logic and are too ad hoc, which results
in unnecessary complexity and lack of robustness. While we agree with several
of their remarks, we must also acknowledge that MTL (and other similar logics)
has become a popular notation, and it has been used in several works. As a
consequence, it is important to assess precisely the expressiveness of the language
and of its common variants because of the impact on the scope of those works,
even if focusing on different languages might have opened the door to more
straightforward approaches.

Finally, let us mention that several works dealing with classical (qualitative)
temporal logic considered variants in the definition of the basic modalities, and
their impact on expressiveness and complexity. For instance, Demri and Schnoe-
belen [9] thoroughly investigate the complexity of LTL without nesting, or with
a bounded nesting depth. Also, several works have given a very detailed char-
acterization of how the expressiveness of LTL varies with the number of nested
modalities [13, 32, 24]; and several other works, such as [8, 7], have used and char-
acterized flat fragments where nesting is only allowed in the second argument
of any until formula. Reynolds [31] has proved that, over dense time, LTL with
strict until is strictly more expressive than LTL with a variant of non-strict until
which includes the current instant. Note that Reynold’s non-strict until has a
different (weaker) semantics than the one we consider in this paper, because of
the restriction to include the current instant. In other words, according to the
notation that we introduce in Section 2, [31] compares the strict Ũ(0,+∞) to the
non-strict U[0,+∞); as a consequence, Reynold’s result is orthogonal to ours.

2 MTL and Its Variants

MTL is built out of the single modal operator bounded until1 through propo-
sitional composition. Formulas are built according to the grammar: φ ::= p |

ŨI(φ1, φ2) | ¬φ | φ1 ∧ φ2 where I is an interval 〈l, u〉 of the reals such that
0 ≤ l ≤ u ≤ +∞, l ∈ Q, u ∈ Q ∪ {+∞}, and p ∈ P is some atomic proposition
from a finite set P.
1 In this paper we consider MTL with future operators only.
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The tilde in ŨI denotes that the until is strict, as it will be apparent in the

definition of its semantics; ŨI is also meant to be non-matching. We denote the

set of formulas generated by the grammar above as M̃TL, which is therefore
strict non-matching.

We define formally the semantics of M̃TL over generic Boolean behaviors.
Given a time domain T and a finite set of atomic propositions P, a Boolean
behavior over P is a mapping b : T → 2P from the time domain to subsets of
P: for every time instant t ∈ T, b maps t to the set of propositions b(t) that are
true at t. We denote the set of all mappings for a given set P as BP , or simply
as B. In practice, in this paper we take T to be the reals R, but all our results
hold also for R≥0,Q,Q≥0 as time domains.2

The semantics of M̃TL formulas is given through a satisfaction relation |=T:
given a behavior b ∈ B, an instant t ∈ T (sometimes called “current instant”)

and an M̃TL formula φ, the satisfaction relation is defined inductively as follows.
b(t) |=T p iff p ∈ b(t)

b(t) |=T ŨI(φ1, φ2) iff there exists d ∈ I such that b(t + d) |=T φ2

and, for all u ∈ (0, d) it is b(t + u) |=T φ1

b(t) |=T ¬φ iff b(t) 6|=T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

From these definitions, we introduce initial satisfiability and global satisfia-
bility as follows: a formula φ is initially satisfiable over a behavior b iff b(0) |=T φ;
a formula φ is globally satisfiable over a behavior b iff ∀t ∈ T : b(t) |=T φ, and
we write b |=T φ. The initial and global satisfiability relations allow one to iden-
tify a formula φ with the set of behaviors [[φ]]T that satisfy it according to each
semantics; hence we introduce the notation [[φ]]0T = {b ∈ B | b(0) |=T φ} and
[[φ]]T = {b ∈ B | b |=T φ}.

From the basic strict operator we define syntactically some variants: the
non-strict non-matching until UI , the strict matching until Ũ

↓
I , and the non-

strict matching until U
↓
I ; they are defined in Table 1. Also, we define the follow-

ing derived modal operators:3 R̃
↓
I(φ1, φ2) ≡ ¬Ũ

↓
I(¬φ1,¬φ2), ♦̃I(φ) ≡ ŨI(⊤, φ),

�̃I(φ) ≡ ¬♦̃I(¬φ), ©(φ) ≡ U(0,+∞)(φ,⊤), and ©̃(φ) ≡ Ũ(0,+∞)(φ,⊤); derived

propositional connectives (such as ⇒,∨,⇔) are defined as usual. For derived
operators we use the same notational conventions: a ∼ denotes strictness and a
↓ denotes matchingness. Accordingly, we denote by MTL the set of non-strict

non-matching formulas (i.e., those using only the UI operator), by M̃TL
↓

the set

of strict matching formulas (i.e., those using only the Ũ
↓
I operator), and by MTL↓

the set of non-strict matching formulas (i.e., those using only the U
↓
I operator).

Note that the ♦̃ operator (and correspondingly the �̃ operator as well) can
be equivalently expressed with any of the until variants introduced beforehand,

2 Even if we deal only with future operators, bi-infinite time domains R and Q are
considered as they match “more naturally” the global satisfiability semantics.

3 For clarity, let us give explicitly the semantics of the eR
↓

I operator: b(t) |=T
eR
↓

I(φ1, φ2)
iff for all d ∈ I it is: b(t + d) |=T φ2 or b(t + u) |=R φ1 for some u ∈ (0, d].
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i.e., ♦̃I(φ) ≡ ŨI(⊤, φ) ≡ UI(⊤, φ) ≡ Ũ
↓
I(⊤, φ) ≡ U

↓
I(⊤, φ). Therefore, in the

following we drop the tilde and write ♦I (resp. �I) in place of ♦̃I (resp. �̃I).

Operator ≡ Definition

UI(φ1, φ2) ≡ if 0 6∈ I: φ1 ∧ eUI(φ1, φ2) else: φ2 ∨ (φ1 ∧ eUI(φ1, φ2))
eU
↓

I(φ1, φ2) ≡ if 0 6∈ I: eUI(φ1, φ2 ∧ φ1) else: φ2 ∨ (eUI(φ1, φ2 ∧ φ1))

U
↓

I(φ1, φ2) ≡ φ1 ∧ eUI(φ1, φ2 ∧ φ1) ≡ UI(φ1, φ2 ∧ φ1)
Table 1. Until operator variants.

According to the semantics, all formulas of some MTL variant identify a set
of sets of behaviors which characterize the expressive power of that variant. We

overload the notation and also denote by M̃TL, MTL, M̃TL
↓
, and MTL↓ the set

of sets of behaviors identified by all strict non-matching, non-strict matching,
strict matching, and non-strict non-matching formulas, respectively. It will be
clear from the context whether we are referring to a set of formulas or to the
corresponding set of sets of behaviors, and whether we are considering the initial
or global satisfiability semantics.

For every formula φ, we define its granularity ρ as the reciprocal of the
product of all denominators of non-null finite interval bounds appearing in φ;
and its nesting depth (also called temporal height) k as the maximum number
of nested modalities in φ. A formula is called flat if it does not nest modal
operators, and nesting otherwise. Given a set of formulas F , the subset of all its
flat formulas is denoted by ♭F (for instance flat non-strict non-matching formulas
are denoted as ♭MTL).

Since the non-strict and matching variants have been defined in terms of

M̃TL — and their definitions do not nest temporal operators — it is clear that

the following relations hold: MTL↓ ⊆ MTL ⊆ M̃TL, MTL↓ ⊆ M̃TL
↓
⊆ M̃TL,

♭MTL↓ ⊆ ♭MTL ⊆ ♭M̃TL, and ♭MTL↓ ⊆ ♭M̃TL
↓
⊆ ♭M̃TL.

Non-Zenoness. Behaviors over dense time are often subject to the non-Zenoness
(also called finite variability [20, 30]) requirement [19]. A behavior b ∈ B is called
non-Zeno if the truth value of any atomic proposition p ∈ P changes in b only
finitely many times over any bounded interval of time. In [16] we proved that

strict ©̃ operator can be expressed with non-strict © operator over non-Zeno

behaviors as ©̃(φ) ≡ ©(φ) ∨ (¬φ ∧ ¬©(¬φ)).

3 Nesting MTL over non-Zeno Behaviors

This section shows that the four MTL variants: M̃TL, MTL, M̃TL
↓
, and MTL↓

all have the same expressive power over non-Zeno behaviors, for both the ini-
tial and global satisfiability semantics. In fact, we provide a set of equivalences
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according to which one can replace each occurrence of strict until in terms of
non-strict until , and each occurrence of non-matching until in terms of match-

ing until . This shows that MTL = M̃TL = M̃TL
↓

= MTL↓. Note that the
result holds regardless of whether the global or initial satisfiability relation in
considered.

3.1 Non-Strict as Expressive as Strict

In [16] we have shown that MTL = M̃TL; more precisely, the following equiva-
lences have been proved, for a > 0 (and b > 0 in (4)).

Ũ(a,b〉(φ1, φ2) ≡ ♦(a,b〉(φ2) ∧ �(0,a]

(
U(0,+∞)(φ1, φ2)

)
(1)

Ũ[a,b〉(φ1, φ2) ≡ Ũ(a,b〉(φ1, φ2) ∨
(
�(0,a)(φ1) ∧ ♦=a(φ2)

)
(2)

Ũ(0,b〉(φ1, φ2) ≡ ♦(0,b〉(φ2) ∧ ©̃
(
U(0,+∞)(φ1, φ2)

)
(3)

Ũ[0,b〉(φ1, φ2) ≡ Ũ(0,b〉(φ1, φ2) ∨ φ2 (4)

Ũ[0,0](φ1, φ2) ≡ φ2 (5)

(1–5) provide a means to replace each occurrence of strict until with non-
strict untils only. Also, if we replace each occurrence of formula φ2 in (1–5) with
φ2 ∧ φ1 — except for (4) which requires a slightly different treatment, which is

however routine — we also have a proof that M̃TL
↓

= MTL↓, according to the
definition of the matching variants of the until operators.

3.2 Matching as Expressive as Non-Matching

This section provides a set of equivalences to replace each occurrence of a strict
non-matching operator with a formula that contains only strict matching opera-

tors; this shows that M̃TL = M̃TL
↓
. To this end, let us first prove the following

equivalence.

Ũ(0,b〉(φ1, φ2) ≡ Ũ
↓
(0,b〉(φ1, φ2)

∨ (♦(0,b〉(φ2) ∧ ©̃(φ1) ∧ R̃
↓
(0,b〉(φ2,©(φ1))

(6)

Proof (of Formula 6). Let us start with the ⇐ direction, and let t be the current

instant. If b(t) |=R Ũ
↓
(0,b〉(φ1, φ2) clearly also b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori.

So let us assume that Ũ
↓
(0,b〉(φ1, φ2) is false at t; note that this subsumes that

b(t) |=R ¬©̃(φ2 ∧ φ1).
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Let us remark that we can assume that ©̃(¬φ2) holds at t, because ©̃(φ1)

and ¬©̃(φ2 ∧ φ1) both hold. Therefore, it is well-defined u, the smallest instant

in (t, t+ b〉 such that b(u) |=R φ2 ∨©̃(φ2). Note that this implies that φ2 is false
throughout (t, u〉, with the interval right-open iff φ2 holds at u.

Let us first consider the case b(u) |=R φ2. Let v be a generic instant in
(t, u); recall that φ2 is false throughout (t, u) ⊃ (t, v]. Therefore it must be

b(v) |=R ©(φ1) for b(t) |=R R̃
↓
(0,b〉(φ2,©(φ1)) to be true. So, φ1 holds throughout

(t, u) and φ2 holds at u, which means that b(t) |=R Ũ(0,b〉(φ1, φ2).

Let us now consider the other case b(u) |=R ¬φ2 ∧ ©̃(φ2). Let v be a generic
instant in (t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v]. From b(t) |=R

R̃
↓
(0,b〉(φ2,©(φ1)) it must be b(v) |=R ©(φ1). Overall, φ1 holds throughout (t, u+

ǫ] for some ǫ > 0, as in particular b(t + u) |=R ©(φ1). Clearly, this subsumes

b(t) |=R Ũ(0,b〉(φ1, φ2).

For brevity, we omit the simpler ⇒ direction (see [17] for details). ⊓⊔

The case for a > 0 can be handled simply by relying on the previous equiv-
alence. In fact, the following equivalence is easily seen to hold.

Ũ(a,b〉(φ1, φ2) ≡ Ũ
↓
(a,b〉(φ1, φ2)

∨
(
�(0,a](φ1) ∧ ♦=a

(
Ũ(0,b−a〉(φ1, φ2)

)) (7)

The cases for left-closed intervals are also derivable straightforwardly as:

Ũ[0,b〉(φ1, φ2) ≡ φ2 ∨ Ũ(0,b〉(φ1, φ2) (8)

and

Ũ[a,b〉(φ1, φ2) ≡
(
♦=a(φ2) ∧ �(0,a)(φ1)

)
∨ Ũ(a,b〉(φ1, φ2) (9)

Finally, let us note that the ©(φ) operator can be expressed equivalently

with strict matching operators as φ ∧ Ũ
↓
(0,+∞)(φ,⊤). In fact, ©(φ) at x means

that φ holds over an interval [x, x + ǫ) for some ǫ > 0; therefore, φ also holds

over a closed interval such as [x, x + ǫ/2], as required by φ ∧ Ũ
↓
(0,+∞)(φ,⊤), and

vice versa.
All in all (6–9) provide a means to replace every occurrence of strict non-

matching until with a formula that contains only strict matching untils. This

shows that M̃TL = M̃TL
↓
, completing our set of equivalences for non-Zeno

behaviors.

4 Flat MTL

Section 3 has shown the equivalence of all (non-)strict and (non-)matching MTL
variants for non-Zeno behaviors. It is apparent, however, that the equivalences
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between the various until variants introduce nesting of temporal operators, that
is they change flat formulas into nesting ones. This section shows that this is
inevitable, as the relative expressiveness relations change if we consider flat for-
mulas only. More precisely, we prove that both non-strictness and matchingness
lessen the expressive power of MTL flat formulas, so that the strict non-matching
variant is shown to be the most expressive. We also show that, as one would ex-
pect, even this most expressive flat variant is less expressive than any nesting
variant. All separation results are proved under both the initial satisfiability and
the global satisfiability semantics.

4.1 Non-Strict Less Expressive Than Strict

This section shows that ♭MTL ⊂ ♭M̃TL; let us outline the technique used to

prove this fact. We provide a strict flat formula α ∈ ♭M̃TL and we prove that it
has no equivalent non-strict flat formula. The proof goes adversarially: assume
β ∈ ♭MTL is a non-strict flat formula equivalent to α, and let ρ be the granularity
of β. From ρ we build two behaviors bρ

⊤ and bρ
⊥ such that any ♭MTL formula

of granularity ρ (and β in particular) cannot distinguish between them, i.e., it
is either satisfied by both or by none. On the contrary, α is satisfied by bρ

⊤

but not by bρ
⊥, for all ρ. This shows that no equivalent non-strict flat formula

can exist, and thus ♭M̃TL 6⊆ ♭MTL. From ♭MTL ⊆ ♭M̃TL we conclude that

♭MTL ⊂ ♭M̃TL.
As in all separation results, the details of the proofs are rather involved;

this is even more the case when considering the global satisfiability semantics;
throughout we will try to provide some intuition referring to [17] for all the
lower-level details.

Let us define the following families of behaviors over {p}. For any given ρ > 0,
let bρ

⊤ and bρ
⊥ be defined as follows: p ∈ bρ

⊤(t) iff t ≤ 0 or t ≥ ρ/4; and p ∈ bρ
⊥(t)

iff t ≤ 0 or t > ρ/4. Similarly, for any given ρ > 0, cρ
⊥ is defined as follows:

p ∈ cρ
⊥(t) iff p ∈ bρ

⊥(t) and t 6= 0. Note that bρ
⊤(t) = bρ

⊥(t) for all t 6= ρ/4,
and that bρ

⊥(t) = cρ
⊥(t) for all t 6= 0. Let us also define the sets of behaviors

B⊤ =
⋃

ρ∈Q>0
bρ
⊤ and B⊥ =

⋃
ρ∈R>0

bρ
⊥. The behaviors bρ

⊤, bρ
⊥, cρ

⊥ are pictured in
Figure 1.

Initial satisfiability. Let us first assume the initial satisfiability semantics; we
show that no ♭MTL formula φ with granularity ρ distinguishes initially between
bρ
⊤ and bρ

⊥. To this end, we prove the following.

Lemma 1. For any ♭MTL formula φ of granularity ρ, it is bρ
⊤(0) |=R φ iff

bρ
⊥(0) |=R φ.

Proof. The proof is by induction on the structure of φ. Let us consider just a
few most relevant cases (the others are in [17]): assume φ = UI(β1, β2), with
I = 〈l, u〉 and: (1) l = k1ρ for some k1 ∈ N; and (2) u = k2ρ or u = +∞, for
some k1 ≤ k2 ∈ N. Note that we can assume 0 6∈ I without loss of generality, as
U[0,u〉(β1, β2) ≡ β2 ∨ U(0,u〉(β1, β2). We also assume that I is non-empty; this is
also without loss of generality. We then consider all cases for β1, β2; in particular:

9



0

c
ρ
⊥

b
ρ
⊥

b
ρ
⊤

ρ/4 ρ/2 3ρ/4

Fig. 1. The behaviors b
ρ

⊤, b
ρ

⊥, c
ρ

⊥.

– If β1 ≡ ⊤ and β2 is one of p or ¬p, we have φ ≡ ♦I(β2).
If l = 0, then u > l, which entails u ≥ ρ. Any interval of the form 〈0, ρ〉
encompasses both instants where p holds and instants where ¬p holds. Thus,
bρ
⊤(0) |=R φ and bρ

⊥(0) |=R φ in this case.
If l > 0 then l ≥ ρ. Then, whatever u ≥ l is, it is clear that p holds throughout
the non-empty interval 〈l, u〉. Therefore, if β2 ≡ p we have bρ

⊤(0) |=R φ and
bρ
⊥(0) |=R φ; otherwise β2 ≡ ¬p, and bρ

⊤(0) 6|=R φ and bρ
⊥(0) 6|=R φ.

– If β1 ≡ p or β1 ≡ ¬p, then φ does not hold unless ©(β1) holds (still because
0 6∈ I). Since the value of p changes from 0 to its immediate future, it is
bρ
⊤(0) 6|=R φ and bρ

⊥(0) 6|=R φ. ⊓⊔

Lemma 1 leads straightforwardly to the desired separation result.

Theorem 1. Under the initial satisfiability semantics, ♭MTL ⊂ ♭M̃TL.

Proof. Let us show that the ♭M̃TL formula Σ = Ũ(0,+∞)(¬p, p) has no equivalent

♭MTL formula. Σ can distinguish initially between the families of behaviors
B⊤,B⊥, as for any b ∈ B⊤, b′ ∈ B⊥, it is b(0) |=R Σ and b′(0) 6|=R Σ. Let us
assume that σ is an ♭MTL formula of granularity ρ equivalent to Σ. However,
from Lemma 1 it follows that bρ

⊤(0) |=R σ iff bρ
⊥(0) |=R σ. Therefore, σ is not

equivalent to Σ. ⊓⊔

Global satisfiability. Let us now prove an analogous of Theorem 1 for the global
satisfiability semantics.

Lemma 2. For any ♭MTL formula φ of granularity ρ and any instant t < 0, it
is: bρ

⊤(t) |=R φ iff bρ
⊥(t) |=R φ, or bρ

⊥(t) |=R φ iff cρ
⊥(t) |=R φ.

Proof. The proof is by induction on the structure of φ; throughout, t is any fixed
instant less than 0. Let us just outline a few significant cases; all details are in
[17].
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For the base case, if φ = UI(β1, β2) with β1, β2 ∈ {p,¬p,⊤,⊥} one can verify
that it is bρ

⊤ |=R φ iff bρ
⊥ |=R φ iff cρ

⊥ |=R φ, unless: (a) bρ
⊤ 6|=R φ iff bρ

⊥ |=R φ
iff cρ

⊥ |=R φ and t + kρ = ρ/4 or t + kρ = 0 for some positive integer k; or (b)
bρ
⊤ |=R φ iff bρ

⊥ |=R φ iff cρ
⊥ 6|=R φ and t + hρ = 0 for some positive integer h.

Therefore, consider the inductive case φ = φ1 ∧ φ2; in particular let us focus
on the “crucial” case bρ

⊤(t) 6|=R φi iff bρ
⊥(t) |=R φi iff cρ

⊥(t) |=R φi and t+kρ = ρ/4
for some i, and bρ

⊤(t) |=R φj iff bρ
⊥(t) |=R φj iff cρ

⊥(t) 6|=R φj and t + hρ = 0
for j 6= i. This case, however, is not possible as t + kρ = ρ/4 = ρ/4 + t + hρ
implies (k − h)ρ = ρ/4 which is impossible as k and h are integers. To give
some intuition, this is due to the granularity: in other words, from the same t we
cannot reference both 0 and ρ/4, since they are less than ρ time instants apart.
Finally also note that this restriction can be “lifted” to the conjunction itself,
to go with the inductive hypothesis. ⊓⊔

Through Lemma 2 we can extend Theorem 1 to the global satisfiability se-
mantics.

Theorem 2. Under the global satisfiability semantics, ♭MTL ⊂ ♭M̃TL.

Proof. Let us show that the ♭M̃TL formula Ω = Ũ(0,+∞)(¬p, p)∨©(¬p)∨©̃(p)

has no equivalent ♭MTL formula. It is simple to check that, for all b ∈ B⊤, b′ ∈ B⊥

it is b |=R Ω and b′ 6|=R Ω; more precisely, it is b′(0) 6|=R Ω and, for all t > 0,
b′(t) |=R Ω. Also, for all b′′ ∈

⋃
ρ cρ

⊥, it is b′′ |=R Ω.
Now the proof goes by reductio ad absurdum. Let ω be an ♭MTL formula

of granularity ρ equivalent to Ω. Thus it must be bρ
⊤ |=R ω, bρ

⊥ 6|=R ω, and
cρ
⊥ |=R ω. So, there exists a t such that bρ

⊥(t) 6|=R ω. Let us show that no such t
can exist. Lemma 1 mandates that bρ

⊥(0) |=R ω, so it must be t 6= 0.
If t > 0, recall that cρ

⊥ |=R ω. This subsumes that cρ
⊥(u) |=R ω for all u > 0,

and thus in particular at t. However, note that cρ
⊥(x) = bρ

⊥(x) for all x > 0;
since ω is a future formula, its truth value to the future of 0 cannot change when
just one past instant has changed and the future has not changed. So it must be
bρ
⊥(t) |=R ω: a contradiction.

Let us now assume t < 0. From Lemma 2 for formula ω, it is either (1)
bρ
⊤(t) |=R ω iff bρ

⊥(t) |=R ω; or (2) bρ
⊥(t) |=R ω iff cρ

⊥(t) |=R ω. However, bρ
⊤(t) |=R

ω and bρ
⊥(t) 6|=R ω, so (1) is false and (2) must be true. Hence, it must be

cρ
⊥(t) 6|=R ω. But this implies cρ

⊥ 6|=R ω, whereas it should be cρ
⊥ |=R ω since ω is

supposed equivalent to Ω: a contradiction again. ⊓⊔

4.2 Matching Less Expressive Than Non-Matching

This section provides an indirect simple proof that ♭M̃TL
↓
⊂ ♭M̃TL. To this end

we first show the equivalence of non-strict and strict flat matching MTL when
restricted to a unary set of propositions.

Lemma 3. Over a unary set of propositions P : |P| = 1, ♭MTL↓ = ♭M̃TL
↓
.
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Proof (sketch). We can show that any ♭M̃TL
↓

formula φ = Ũ
↓
I(β1, β2) has an

equivalent ♭MTL↓ formula for unary alphabet, as when β1 = ¬β2 φ is trivially
false, according to the semantics of Section 2. ⊓⊔

As a corollary of Lemma 3 we can separate ♭M̃TL
↓

and ♭M̃TL (over general
set of propositions).

Theorem 3. ♭M̃TL
↓
⊂ ♭M̃TL.

Proof. Recall that ♭MTL↓ ⊆ ♭MTL. Let us first assume a unary alphabet;

from Lemma 3 it is ♭M̃TL
↓

= ♭MTL↓. Since Theorems 1 and 2 are based on
counterexamples over unary alphabet, it is also ♭MTL ⊂ ♭M̃TL. All in all:

♭M̃TL
↓

= ♭MTL↓ ⊆ ♭MTL ⊂ ♭M̃TL, hence ♭M̃TL
↓
⊂ ♭M̃TL over unary al-

phabet, which implies the same holds over generic alphabet. ⊓⊔

4.3 Non-Strict Matching Less Expressive Than Matching

Section 4.1 shows that strict flat MTL is strictly more expressive than its non-
strict flat counterpart, when both of them are in their non-matching version.
If we consider the matching versions of strict and non-strict operators, one can

prove that the same holds, that is ♭MTL↓ ⊂ ♭M̃TL
↓
.

Lemma 3 entails that any separation proofs for ♭MTL↓ and ♭M̃TL
↓

must
consider behaviors over alphabets of size at least two. In fact, it is possible to
use a technique similar to that of Section 4.1, but with behaviors over alphabet
of size two. For details we refer to [17].

Theorem 4. Under the initial and global satisfiability semantics, ♭MTL↓ ⊂

♭M̃TL
↓
.

4.4 Non-Strict Matching Less Expressive Than Non-Strict

Section 4.2 shows that flat non-matching MTL is strictly more expressive than
its matching flat counterpart, when both of them are in their strict version.
The same relation holds if we consider the non-strict versions of matching and
non-matching operators, that is we can prove that ♭MTL↓ ⊂ ♭MTL. The proof
technique is again is similar to the one in the previous Section 4.3, and it is
based on behaviors over a binary set of propositions; see [17] for details.

Theorem 5. Under the initial and global satisfiability semantics, ♭MTL↓ ⊂
♭MTL.

4.5 Flat Less Expressive Than Nesting

Through a technique similar to that used in Section 4.1 it is also possible to

show that ♭M̃TL ⊂ MTL. For the lack of space we refer to [17] for all details.

Theorem 6. Under the initial and global satisfiability semantics, ♭M̃TL ⊂ MTL.
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5 Nesting MTL over Zeno Behaviors

This section re-considers some of the expressiveness results for nesting formulas
of Section 3 when Zeno behaviors are allowed as interpretation structures, and

in particular it shows that the equivalence between MTL and M̃TL does not
hold if we allow Zeno behaviors.

5.1 Non-Strict Less Expressive Than Strict

Let us first show that MTL ⊂ M̃TL over generic behaviors. To this end, we
define behaviors bδ, b

Z
δ over P = {p}, for all δ > 0. bδ is defined as: p ∈ bδ(t)

iff t = kδ/2 for some k ∈ Z. bZδ is defined as: p ∈ bZδ (t) iff t = (k + 2−n)δ, for
some k ∈ Z, n ∈ N. Clearly, for all t ∈ T, p ∈ bδ(t) implies p ∈ bZδ (t); moreover,
notice that bZδ has Zeno behavior to the right of any instant kδ.

Through the usual case analysis on the structure of formulas, we can prove
that the behavior of any MTL formula over bδ and bZδ is very simple, as it
coincides with one of p,¬p,⊤,⊥ (see [17] for all details).

Lemma 4. The truth value of any MTL formulas φ of granularity δ coincides
with one of p,¬p,⊤,⊥ over both bδ and bZδ .

An immediate consequence of the previous lemma is that, at any instant
where the values bδ(t) and bZδ (t) coincide, the truth values of any formula φ also
coincide.

Corollary 1. For any MTL formula φ of granularity δ, and all k ∈ Z: bδ(kδ) |=R

φ iff bZδ (kδ) |=R φ.

Finally, we prove the desired separation result as follows.

Theorem 7. If Zeno behaviors are allowed, MTL ⊂ M̃TL.

Proof. Let us consider the two families of behaviors: N = {bδ | δ ∈ Q>0} and
Z = {bZδ | δ ∈ Q>0}.

First, let us consider initial satisfiability. The M̃TL formula Σ = ©̃(¬p)
separates initially the two families N and Z, as b(0) |=R Σ for all b ∈ N and
b′(0) 6|=R Σ for all b′ ∈ Z.

On the contrary, let φ be any MTL formula, and let δ be its granularity.
Then, N ∋ bδ(0) |=R φ iff Z ∋ bZδ (0) |=R φ by Corollary 1, so no MTL formula

separates initially the two families. This implies that the M̃TL formula Σ has
no initially equivalent formula in MTL.

Now, let us consider global satisfiability. The M̃TL formula Σ′ = p ⇒ ©̃(¬p)
separates globally the two families N and Z, as b(t) |=R Σ′ for all t ∈ T and for
all b ∈ N , and b′(t) 6|=R Σ′ for some t = kδ, and for all b′ ∈ Z.

On the contrary, let φ be any MTL formula, and let δ be its granularity.
For the sake of contradiction, assume that b(t) |=R φ for all t ∈ T and for all
b ∈ N , and that b′(t) 6|=R φ for some t, and for all b′ ∈ Z. Now, in particular,
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bδ |=R φ; a fortiori, bδ(0) |=R φ′ where φ′ = �[0,+∞)(φ). Similarly, it must be

bZδ 6|=R φ. A little reasoning should convince us that this implies bZδ (0) 6|=R φ′. In
fact, bZδ 6|=R φ means that there exists a t ∈ T such that bZδ (t) 6|=R φ. t may be
greater than, equal to, or less than 0. However, bZδ is periodic with period δ; this
implies that bZδ (t) |=R α iff bZδ (t + kδ) |=R α, for all formulas α, t ∈ T, k ∈ Z.
Therefore, if there exists a t ∈ T such that bZδ (t) 6|=R φ, then also there exists a
t′ ≥ 0 such that bZδ (t′) 6|=R φ. The last formula implies that bZδ (0) 6|=R φ′.

Now, notice that the formula φ′ is of the same granularity as φ, that is δ.
Moreover, bδ(0) |=R φ′ and bZδ (0) 6|=R φ′. This contradicts Corollary 1; therefore
φ does not globally separate the two families of behaviors. Since φ is generic, the

M̃TL formula Σ′ has no globally equivalent formula in MTL. ⊓⊔

Finally, if we reconsider all the theorems of the current section, and the
corresponding proofs, we notice that they still stand for the matching variants
of the non-strict and strict until . In other words, the same proofs provide a

separation between MTL↓ and M̃TL
↓
.

5.2 Matching as Expressive as Non-Matching

A careful reconsideration of the proofs of (6–9) shows that the equivalences
hold even when Zeno behaviors are allowed; essentially, Zeno behaviors can be

explicitly dealt with in the proof.4 In summary, we have a proof that M̃TL =

M̃TL
↓

even if Zeno behaviors are allowed. As an example, let us sketch a bit of
the proof of (6) for Zeno behaviors.

Proof (of (6) for Zeno behaviors). For the ⇐ direction, let us consider the case:

b(t) |=R ¬©̃(φ2 ∧ φ1) and b(t) |=R ©̃(φ1), i.e., φ1 holds over an interval (t, t+ ǫ)
for some ǫ > 0. If φ2 has Zeno behavior to the right of t, it changes truth value
infinitely many times over min(ǫ, b). Hence, there exists a 0 < ν < min(ǫ, b) such

that b(t + ν) |=R φ2; so b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori. The other cases are

done similarly (see [17]). ⊓⊔

Furthermore, it is possible to adapt (6–9) to use non-strict operators only.
In practice, (7–9) hold if we just replace strict operators with the corresponding
non-strict ones; on the other hand, (6) should be modified as:

U(0,b〉(φ1, φ2) ≡ U
↓
(0,b〉(φ1, φ2) ∨ (♦(0,b〉(φ2) ∧©(φ1) ∧ R

↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1))

(10)

All the resulting new equivalences using only non-strict operators can be
shown to hold for Zeno, as well as non-Zeno, behaviors (see [17]). Hence, we
have a proof that MTL = MTL↓ over generic behaviors.
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♭M̃TL
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♭M̃TL♭MTL

⊂

⊂

⋂ ⋂

MTL
↓

M̃TL
↓

M̃TLMTL

=

=

‖ ‖

⋂

MTL
↓

M̃TL
↓

M̃TLMTL

⊂

⊂

⋂

♭MTL
↓

♭M̃TL
↓

♭M̃TL♭MTL

⊂

⊂

⋂ ⋂

‖ ‖ ‖ ‖‖ ‖

Fig. 2. Expressiveness over non-Zeno (left) and Zeno (right) behaviors.

6 Summary and Discussion

Figure 2 displays the relative expressiveness relations for non-Zeno behaviors
(left) and Zeno behaviors (right). Note that the separation proofs for the flat
fragments used only non-Zeno behaviors, therefore they imply the separation of
the corresponding classes for generic (i.e., including Zeno) behaviors as well. On

the other hand, the problem of the relative expressiveness of ♭MTL and ♭M̃TL
↓

is currently open (over both Zeno and non-Zeno behaviors).
Tackling this open question about MTL relative expressiveness, and consid-

ering other variations such as the use of past operators, belongs to future work.
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