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Abstract. This paper investigates the properties of Metric Temporal Logic
(MTL) over models in which time is dense but phenomena are constrained to
have bounded variability. Contrary to the case of generic dense-time behaviors,
MTL is proved to be fully decidable over models with bounded variability, if the
variability bound is given. In these decidable cases, MTL complexity is shown to
match that of simpler decidable logics such as MITL. On the contrary, MTL is
undecidable if all behaviors with variability bounded by some generic constant
are considered, but with an undecidability degree that is lower than in the case of
generic behaviors.

1 Introduction

The designer of formal notations faces a perennial trade-off between expressiveness
and complexity: on the one hand notations with high expressive power allow users to
formalize complex behaviors with naturalness; on the other hand expressiveness usually
comes with a significant price to pay in terms of complexity of the verification problem.
This results in a continual search for the “best” compromise between these diverging
features.

A paradigmatic instance of this general problem is the case of real-time tempo-
ral logics. Experience with real-time concurrent systems suggests that dense (or con-
tinuous) sets are a natural and effective modeling choice for the time domain. Also,
Metric Temporal Logic (MTL) is often regarded as a suitable and natural extension
of “classical” Temporal Logic to deal with real-time requirements. However, MTL is
well-known to be undecidable over dense time domains [2].1 In the literature, two main
compromises have been adopted to overcome this impasse. One consists in the semantic
accommodation of adopting the coarser discrete — rather than dense — time [2]. The
other adopts the syntactic concession of restricting MTL formulas to a subset known as
MITL [1]. More recently other syntactic adjustments have been studied [4].

In this paper we investigate other semantic compromises, in particular the use of
models where time is dense but events are constrained to have only a bounded variabil-
ity, i.e., their frequency of occurrence over time is bounded by some finite constant. We
show that MTL is fully decidable over such behaviors when the maximum variability

1 With a few partial exceptions that will be discussed in the following.



rate is fixed a priori; in such cases we are also able to show that the complexity of decid-
ability is the same as for the less expressive logic MITL, i.e., complete for EXPSPACE.
On the contrary, if all behaviors with bounded variability are considered together, MTL
becomes undecidable, but with a “lesser degree” of undecidability compared to the case
of unconstrained behaviors. Our decidability results are based on the possibility of ex-
pressing certain features of bounded variability in the expressive decidable temporal
logics of [11]. Although the focus of this paper is on the more expressive behavior se-
mantic model (also called signal, timed interval sequence, or trajectory) which is more
expressive [5] but requires more sophisticated techniques, one can show that the same
decidability and complexity results hold in the timed word case as well (where they
were already partly implied by the results in [17]). For lack of space, several proofs and
details are omitted from the paper but can be found in [9].

Related work. The complexity, decidability, and expressiveness of MTL over stan-
dard discrete and dense time models are well-known since the seminal work of Alur
and Henzinger [2]. In [2] MTL is shown to be decidable over discrete time, with an
EXPSPACE-complete decidability problem, and undecidable over dense time, with a
Σ1

1 -complete decidability problem. These results hold regardless of whether a timed
word or timed signal time model is assumed, with a peculiar, but significant excep-
tion: in a recent, unexpected, result, Ouaknine and Worrell showed that MTL is fully
decidable over finite dense-timed words, if only future modalities are considered [14].
The practical usefulness of this result is unfortunately plagued by the prohibitively high
nonprimitive-recursive complexity of the corresponding decidability problem.

In another very influential paper [1], Alur, Feder, and Henzinger showed that disal-
lowing the expression of punctual (i.e., exact) time distances in MTL formulas renders
the language fully decidable over dense time models. The corresponding MTL subset
is called MITL and has an EXPSPACE-complete decidability problem. The decision
procedure in [1] is based on a complex translation into timed automata; similar, but
simpler, automata-based techniques have been studied by Maler et al. [13].

Hirshfeld and Rabinovich have reconsidered the work on MITL from a broader,
more foundational, perspective built upon the standard timed behavior model [11]. Be-
sides providing simpler decision procedures and proofs for a real-time temporal logic
with the same expressive power as MITL, they have probed to what extent MITL can
be made more expressive without giving up decidability. This lead to the introduction
of the very expressive, yet decidable, monadic logic Q2MLO, and of the corresponding
TLC temporal logic. In a nice analogy with classical results on linear temporal logic
[10], TLC is expressively complete for all of Q2MLO (hence it subsumes MITL), and
it has a PSPACE-complete decidability problem (or EXPSPACE-complete assuming
a succinct encoding of constants used in formulas as it is customary in the majority of
MITL literature) [16].

It is clear that TLC and MTL have incomparable expressive power; in particular
the former disallows the expression of exact time distances. However, Bouyer et al. [4]
have shown that it is possible to devise significantly expressive MTL fragments that
are fully decidable (with EXPSPACE complexity) even if punctuality requirements
are allowed to some extent. Also, for brevity we omit the summary of other, related
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complexity results for decidable real-time temporal logics over dense time domains
recently developed by Lutz et al. [12].

Dense-timed words where the maximum number of events in a unit interval is fixed
have been introduced by Wilke in [17]. More precisely, timed words over Σ where
there are at most k positions over any unit interval are denoted by TSSk(Σ) and called
words of bounded variability k; in the following we introduce the class TΣTωk,1 that
can be seen to correspond to TSSk(Σ). Wilke showed that, for every k, the monadic
logic of distances Ld(Σ) is fully decidable over TSSk(Σ). Wilke’s results are based on
translation into the monadic fragment L←→d(Σ), which ultimately corresponds to timed
automata; also, they subsume the decidability of MTL over the same models. In this
paper, we extend and generalize Wilke’s result, and we discuss the complexity of the
corresponding models.

The corresponding notion of dense-time behaviors with bounded variability has
been introduced by Fränzle in [6] (where they are called trajectories of n-bounded
variability). Fränzle shows that full Duration Calculus is undecidable even over such
restricted behaviors, while some syntactic subsets of it become decidable; the decid-
ability proofs exploit a characterization of certain behaviors with bounded variability
by means of timed regular expressions.

In previous work [8, 7], we introduced the notion of non-Berkeleyness:2 a dense-
time behavior is non-Berkeley for some δ > 0 if δ time units elapse between any
two consecutive state transitions. In this paper we show that this notion is similar, but
different, than the notion of bounded variability; we also introduce a corresponding
definition of non-Berkeleyness for timed words.

2 Words and Behaviors: A Semantic Zoo

The symbols Z, Q, and R denote the sets of integer, rational, and real numbers, re-
spectively. For a set S, S∼c with ∼ one of <,≤, >,≥ and c ∈ S denotes the subset
{s ∈ S | s ∼ c} ⊆ S; for instance Z≥0 = N denotes the set of nonnegative integers
(i.e., naturals). An interval I of a set S is a convex subset 〈l, u〉 of S with l, u ∈ S, 〈
one of (, [, and 〉 one of ), ]. An interval is empty iff it contains no points; an interval
is punctual (or singular) iff l = u and the interval is closed (i.e., it contains exactly
one point). The length of an interval is given by |I| = max(u − l, 0). −I denotes the
interval 〈−u,−l〉, and I ⊕ t = t ⊕ I denotes the interval 〈t + l, t + u〉, for any t ∈ S.
Correspondingly, we define the length |x| of x as |x| = n.

2.1 Words and Behaviors

The two most popular models of real-time behavior [2, 3] are the timed word (also called
timed state sequence [17]) and the timed behavior (also called Boolean signal [13],
timed interval sequence [1], or trajectory [6]). Let T be a time domain; in this paper we
are interested in dense time domains, and in particular R and its mono-infinite subset
R≥0. Also, let Σ be a set of atomic propositions.

2 The name is an analogy with non-Zenoness [7].
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Behaviors. A (timed) behavior over timed domain T and alphabet Σ is a function
b : T → 2Σ which maps every time instant t ∈ T to the set of propositions b(t) ∈ 2Σ

that hold at t. The set of all behaviors over time domainT and alphabetΣ is denoted by
BΣT. For a behavior b let τ(b) denote the ordered (multi)set of its discontinuity points,
i.e., τ(b) = {x ∈ T | b(x) 6= limt→x− b(t) ∨ b(x) 6= limt→x+ b(t)}, where each point
that is both a right- and a left-discontinuity appears twice in τ(b). If τ(b) is discrete, we
can represent it as an ordered sequence (possibly unbounded to ±∞); it will be clear
from the context whether we are treating τ(b) as a sequence or as a set. Elements in
τ(b) are called the change (or transition) instants of b. τ(b) can be unbounded to ±∞
only if T has the same property.

Words. An infinite (timed) word over time domain T and alphabet Σ is a sequence
(Σ × T)ω 3 (σ, t) = (σ0, t0)(σ1, t1) · · · such that: (1) for all k ∈ N : σk ∈ 2Σ , and
(2) the sequence t of timestamps is strictly monotonically increasing. Every element
(σn, tn) in a word denotes that the propositions in the set σn hold at time tn. The set
of all infinite timed words over time domain T and alphabet Σ is denoted by TΣTω .
Finite timed words over time domain T and alphabet Σ are defined similarly as finite
sequences in (Σ × T)∗ and collectively denoted by TΣT∗. Also, the set of all finite
timed words of length up to n is denoted by TΣTn = {(σ, t) ∈ TΣT∗ | |t| ≤ n}.

2.2 Finite Variability and non-Zenoness

Since one is typically interested only in behaviors that represent physically meaningful
behaviors, it is common to assume some regularity requirements on words and behav-
iors. In particular, it is customary to assume non-Zenoness, also called finite variability
[11].

A behavior b ∈ BΣT is non-Zeno iff τ(b) has no accumulation points; non-Zeno
behaviors are denoted by BΣT. It should be clear that every non-Zeno behavior can
be represented through a canonical countable sequence of adjacent intervals of T such
that b is constant on every such interval. Namely, for b ∈ BΣT, ι(b) is an ordered
sequence of intervals ι(b) = {Ii = 〈ili, ui〉i | i ∈ I} such that: (1) I is an interval
of Z with cardinality |τ(b)| + 1 (in particular, I is finite iff τ(b) is finite, otherwise I
is denumerable); (2) the intervals in ι(b) form a partition of T; (3) for all i ∈ I we
have τi = ui = li+1; (4) for all i ∈ I, for all t1, t2 ∈ Ii we have b(t1) = b(t2). Note
that ι(b) is unique for any fixed τ(b) or, in other words, is unique up to translations
of interval indices. Transitions at instants τi corresponding to singular intervals Ii are
called pointwise (or punctual) transitions.

An infinite word w ∈ TΣTω is non-Zeno iff the sequence t of timestamps is diverg-
ing; non-Zeno infinite timed words are denoted by TΣTω . On the other hand, every
finite timed word is non-Zeno.

2.3 Bounded Variability and Non-Berkeleyness

In this paper we investigate behavior and words subject to regularity requirements that
are stricter than non-Zenoness. In this section we introduce the two closely related —
albeit different — notions of bounded variability and non-Berkeleyness.
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Bounded variability. A behavior b ∈ BΣT has variability bounded by k, δ for k ∈
N>0, δ ∈ R>0 iff it has at most k transition points over every open interval of size δ.
The set of all behaviors in BΣT with variability bounded by k, δ is denoted by BΣTk,δ .
Formally, BΣTk,δ = {b ∈ BΣT | ∀t ∈ T : |[t, t+ δ] ∩ τ(b)| ≤ k}.

Similarly, a word w ∈ TΣTω ∪ TΣT∗ has variability bounded by k, δ iff for every
closed interval of size δ there are at most k elements in w whose timestamps are within
the interval. The set of all infinite (resp. finite) words with variability bounded by k, δ
is denoted by TΣTωk,δ (resp. TΣT∗k,δ). With the notation introduced above, TΣTωk,δ =
{w ∈ TΣTω | ∀i ∈ N : ti+k − ti ≥ δ} and TΣT∗k,δ = {w ∈ TΣTω | ∀0 ≤ i ≤
|w| − (k + 1) : ti+k − ti ≥ δ}.

We also introduce the set of all behaviors (resp. infinite words, finite words) that are
of bounded variability for some k, δ as BΣT∃k∃δ =

⋃
k∈N>0
δ∈R>0

BΣTk,δ (resp. TΣTω∃k∃δ =⋃
k∈N>0
δ∈R>0

TΣTωk,δ , TΣT∗∃k∃δ =
⋃
k∈N>0
δ∈R>0

TΣT∗k,δ).

Non-Berkeleyness. A behavior b ∈ BΣT is non-Berkeley for δ ∈ R>0 iff every max-
imal constancy interval contains a closed interval of size δ. The set of all behaviors
in BΣT that are non-Berkeley for δ is denoted by BΣTδ; with the notation introduced
above BΣTδ = {b ∈ BΣT | ∀I ∈ ι(b) : ∃t ∈ I : [t, t+ δ] ⊆ I}.

Similarly, the set of infinite (resp. finite) words that are non-Berkeley for δ ∈ R>0

is denoted by TΣTωδ (resp. TΣT∗δ) and is defined as TΣTωδ = {w ∈ TΣTω | ∀i ∈ N :
ti+1 − ti ≥ δ} (resp. TΣT∗δ = {w ∈ TΣT∗ | ∀0 ≤ i ≤ |w| − 2 : ti+1 − ti ≥ δ}).

We also introduce the set of all behaviors (resp. infinite words, finite words) that
are non-Berkeley for some δ ∈ R>0 as BΣT∃δ =

⋃
δ∈R>0

BΣTδ (resp. TΣTω∃δ =⋃
δ∈R>0

TΣTωδ , TΣT∗∃δ =
⋃
δ∈R>0

TΣT∗δ).

Relations among classes. It is apparent that some of the various classes of behaviors
that we introduced above are closely related. More precisely, the following inclusion
relations hold.

Proposition 1. For all δ′ > δ > 0 and k > k′ ≥ 2:

BΣT1,δ′ ⊂ BΣTδ′ ⊂ BΣTδ ⊂ BΣTk′,δ ⊂ BΣTk,δ ⊂ BΣT∃k∃δ ⊂ BΣT (1)
BΣTδ ⊂ BΣT∃δ ⊂ BΣT∃k∃δ ⊂ BΣT (2)
BΣT∃δ and BΣTk′,δ are incomparable (3)

TΣTωδ′ ⊂ TΣTωδ = TΣTω1,δ ⊂ TΣTωk′,δ ⊂ TΣTωk,δ ⊂ BΣT∃k∃δ ⊂ TΣTω (4)

TΣTωδ ⊂ TΣTω∃δ ⊂ BΣT∃k∃δ ⊂ TΣTω (5)
TΣTω∃δ and TΣTωk′,δ are incomparable (6)

TΣT∗δ′ ⊂ TΣT∗δ = TΣT∗1,δ ⊂ TΣT∗k′,δ ⊂ TΣT∗k,δ ⊂ TΣT∗∃δ = TΣT∗∃k∃δ = TΣT∗
(7)

For lack of space, in the rest of the paper we will focus on behaviors, leaving the
proofs of the corresponding results for words to [9]. Also, we will consider only be-
haviors (and words) that have bounded variability δ for some rational value of δ > 0.
This is due to the fact that even decidable logics such as MITL become undecidable
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if irrational constants are allowed [15]. It is also well-known that this is without loss
of generality — as much as satisfiability is concerned — because formulas of com-
mon temporal logics are satisfiable iff they are satisfiable on behaviors (or words) with
rational transition points [1].

3 MTL and Its Relatives

The main focus of this paper is the decidability of MTL over the classes of behaviors
and words that we introduced in the previous section. Hence, this section introduces
formally MTL and other closely related temporal logics that will be used to obtain the
results of the following sections. For notational convenience, in this paper we usually
denote MITL formulas as ψ and MTL formulas as φ.

3.1 MITL and MTL

Let us start with the Metric Interval Temporal Logic (MITL) [1], a decidable subset of
MTL. MITL formulas are defined as follows, for p ∈ P an atomic proposition and I a
non-singular interval of the nonnegative reals with rational (or unbounded) endpoints:
ψ := p | ¬ψ | ψ1 ∧ ψ2 | UI(ψ1, ψ2) | SI(ψ1, ψ2). Metric Temporal Logic (MTL) [2]
is defined simply as an extension of MITL where singular intervals are allowed.

Abbreviations such as >,⊥,∨,⇒,⇔ are defined as usual. We drop the interval I
in operators when it is (0,∞), and we represent intervals by pseudo-arithmetic expres-
sions such as > k, ≥ k, < k,≤ k, and = k for (k,∞), [k,∞), (0, k), (0, k] and
[k, k], respectively. We also introduce a few derived temporal operators; in the follow-
ing definitions I is an interval of the nonnegative reals with rational (or unbounded)
endpoints. More precisely, the following definitions introduce MITL derived operators
if I is taken to be non-singular and φ is an MITL formula; otherwise they introduce
MTL derived operators. For both semantics we introduce the following derived opera-
tors: ♦I(φ) = UI(>, φ), �I(φ) = ¬♦I(¬φ), RI(φ1, φ2) = ¬UI(¬φ1,¬φ2),©(φ) =
U(φ,>), as well as their past counterparts

←−
♦ I(φ) = SI(>, φ),

←−
� I(φ) = ¬←−♦ I(¬φ),

TI(φ1, φ2) = ¬SI(¬φ1,¬φ2),
←−©(φ) = S(φ,>), and Alw(φ) =

←−
�(φ)∧φ∧�(φ) and

4(φ) =
←−©(¬φ) ∧ (φ ∨©(φ)).

Semantics. For b ∈ BΣT (with Σ = 2P ) and t ∈ T we define:3
b(t) |=T p iff p ∈ b(t)
b(t) |=T ¬φ iff b(t) 6|=T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

b(t) |=T UI(φ1, φ2) iff there exists d ∈ t⊕ I ∩T such that b(d) |=T φ2

and for all u ∈ (t, d) it is b(u) |=T φ1

b(t) |=T SI(φ1, φ2) iff there exists d ∈ −I ⊕ t ∩T such that b(d) |=T φ2

and for all u ∈ (d, t) it is b(u) |=T φ1

b |=T φ iff b(0) |=T φ
3 We assume that 0 ∈ T without practical loss of generality.
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Normal form over behaviors. In order to simplify the presentation of some of the fol-
lowing results, we present a normal form for MITL over behaviors, defined by the fol-
lowing grammar, where d is a positive rational number: p | ¬ψ | ψ1 ∧ ψ2 | U(ψ1, ψ2) |
S(ψ1, ψ2) | ♦<d(ψ) | ←−♦<d(ψ). The fact that every MITL formula can be expressed
according to the syntax above follows from two results. [11, Th. 4.1, Prop. 4.2] showed
that every generic MITL formula using intervals with integer endpoints can be trans-
lated into an equivalent one in the normal form above. Second, [1, Lm. 2.16] showed
that every MITL using intervals with rational endpoints can be translated into an equi-
satisfiable one with integer endpoints only; this is achieved by uniformly scaling the
endpoints into integers. It is then clear that all our results for behaviors can assume
formulas in this normal form. In addition, an analogous normal form for MTL can be
defined by introducing the additional operators: ♦=d(φ) | ←−♦ =d(φ).

For any MTL formula φ and behavior b ∈ BΣT, we define the derived behavior bφ
that represents the truth value of φ over b; namely:

bφ(t) =

{
b(t) ∪ {φ} if b(t) |=T φ
b(t) otherwise

Also, the size |φ| of a formula φ is defined as the number of its atomic propositions, con-
nectives, and temporal operators, multiplied by the size — assuming a binary encoding
— of the largest finite constant appearing in intervals bounding temporal operators.

3.2 QITL: Decidable Extensions of MITL

Following [11, 16], we introduce decidable extensions of MITL over behaviors. These
extensions will be useful in the decidability proofs of Section 5.

We extend MITL by introducing modalities ♦♦nI (ψ1, . . . , ψn) for n > 0 and I a
non-singular interval. We denote the corresponding temporal logics by QITL(n), for
n > 0. Also, we denote the temporal logic

⋃
k>0 QITL(k) simply by QITL; note that

QITL is essentially equivalent to the logic TLPI introduced in [16]. The semantics of
the new operators is:
b(t) |=T ♦♦nI (ψ1, . . . , ψn) iff there exist t1 < · · · < tn ∈ I ⊕ t

such that for all 1 ≤ i ≤ n it is b(ti) |=T ψi

We also introduce the abbreviation ♦♦nI (ψ) = ♦♦nI

ψ,ψ, . . . , ψ︸ ︷︷ ︸
n times

.

The small syntactic gap between QITL and TLPI can be easily bridged along the
lines of [11] (see [9] for details). Hence, the following is a corollary of the complexity
results for TLPI — with a succinct encoding of constants — presented in [16].

Proposition 2 (Decidability and Complexity of QITL). QITL is decidable with an
EXPSPACE-complete validity problem.
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4 Syntactic Definition of Regularity Constraints

In this section we show how to express the regularity constraints of bounded variability
and non-Berkeleyness as MITL or QITL formulas. The following two sub-sections
introduce two preliminary results.

4.1 From Non-Berkeleyness to Bounded Variability

Let φ be any MTL formula and b ∈ BΣTδ a non-Berkeley behavior. While non-
Berkeleyness is defined according to the behavior of atomic propositions in b, it is
simple to realize that, in general, it cannot be lifted to the behavior of φ itself in bφ. In
other words, it may happen that bφ is Berkeley (i.e., two adjacent transitions are less
than δ time units apart) even if b is not.

However, bφ is at least with variability bounded by θ(φ), δ, where θ(φ) can be com-
puted from the structure of φ. More precisely, consider the following definition, where
β is a Boolean combination of atomic propositions.

θ(β) = 2
θ(¬φ) = θ(φ)

θ(φ1 ∧ φ2) = θ(φ1) + θ(φ2)
θ(U(φ1, φ2)) = θ(φ1)
θ(♦<d(φ)) = θ(φ) + 1
θ(♦=d(φ)) = θ(φ)

Note that θ(φ) = O(|φ|). Then, we can prove the following.

Lemma 1. For any b ∈ BΣTδ and MTL formula φ, it is bφ ∈ BΣTθ(φ),δ .

Proof. Let b be a non-Berkeley behavior for δ > 0, J = [t, t+ δ] be any closed interval
of size δ, and φ be a generic MTL formula. The proof goes by induction on the structure
of φ; for brevity let us just consider the cases φ = ♦=d(φ′) and φ = ♦<d(φ′).

In the first case, clearly τ(φ) = . . . , x−1−d, x0−d, x1−d, . . . , xi−d, . . ., where
τ(φ′) = . . . , x−1, x0, x1, . . . , xi, . . .. Thus, bφ′ ∈ BΣTθ(φ′),δ implies bφ ∈ BΣTθ(φ),δ

as well, since θ(φ) = θ(φ′).
For the second case, let x1, . . . , xk = τ(bφ′) ∩ J be the transition points of bφ′

over J ; by inductive hypothesis we know that k ≤ θ′ = θ(φ′). Let us first consider
the case: xi − xi−1 ≥ d for all i = 2, . . . , k + 1. If also x1 is a transition from false
to true (see Figure 1 for an example with k = 4, where x′i = xi − d), bφ has the
corresponding transition points x1−d, x2, x3−d, . . .; if instead x1 is a transition from
true to false, bφ has the corresponding transition points x1, x2−d, x3, . . .. In particular,
note that when xi+1 − xi = d and φ′ is false throughout (xi, xi+1), xi = xi+1 − d is a
punctual transition point for bφ, and in fact it appears twice in τ(bφ). Overall, bφ has at
most all the transition points bφ′ has over J , plus one corresponding to xk+1−d. Since
θ(φ) = θ(φ′) + 1, we have that bφ ∈ BΣTθ(φ),δ . Whenever xi − xi−1 < d for some
i = 2, . . . , k + 1, the transition points of bφ′ may instead be fewer. In fact, if x1 is a
transition from false to true, for all odd i = 3, . . . , k+ 1 such that xi− xi−1 < d, there
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x1 x2 x3 x4 x5

φ′

x′
1 x2 x′

3 x4x
′
5

�<d(φ′)

d

[t, t+ δ] = J

Fig. 1. bφ′ and b♦
<d(φ

′) over J .

are no transition points for bφ between xi−1 and xi+1. Similarly, if x1 is a transition
from true to false, for all even i = 2, . . . , k + 1 such that xi − xi−1 < d, there are no
transition points for bφ between xi−1 and xi+1. Overall, θ(φ) = θ(φ′) + 1 is an upper
bound on the number of transitions of bφ over J in this case as well. ut

4.2 Describing Sequences of Transitions

Let us now introduce QITL formula happ(φ, k, I) stating that formula φ takes exactly
k − 1 consecutive transitions, eventually leading to true (i.e., it holds at the end of I).
Formally, for every QITL formula φ, nonsingular interval I , and integer k > 0, we
introduce the QITL formula:

happ(φ, k, I) = ♦♦kI

φ′,¬φ′, · · · , φ,¬φ, φ︸ ︷︷ ︸
k terms

∧¬♦♦k+1
I

φ′,¬φ′, · · · , φ,¬φ, φ,¬φ︸ ︷︷ ︸
k+1 terms


where φ′ = φ if k is odd and φ′ = ¬φ otherwise.

Next, we introduce a formula, built upon happ(φ, k, I), to describe the case where
we have at most n transitions over I . For every QITL formula φ, nonsingular interval
I , and n > 0, we introduce the QITL formula:

yieldsT(φ, n, I) =
∨

0≤k≤n
happ(φ, k, I) (8)

Lemma 2. Let φ undergo at most n transitions over t ⊕ [τ − δ, τ ] for some τ > 0,
that is 〈τ(bφ) ∩ t ⊕ [τ − δ, τ ]〉 ≤ n; then b(t + τ) |= φ iff b(t) |= yieldsT(φ, n +
1, [max(0, τ − δ), τ ]).
Proof. Let φ undergo exactly k ≤ n transitions over t ⊕ [τ − δ, τ ], and let I =
[max(0, τ − δ), τ ]. Let us first consider the case τ − δ > 0, and thus I = [τ − δ, τ ].
If b(t + τ) |= φ then one can check that b(t) |= happ(φ, k + 1, [τ − δ, τ ]), which
implies b(t) |= yieldsT(φ, n + 1, [τ − δ, τ ]) according to (8). Conversely, if b(t) |=
yieldsT(φ, n + 1, [τ − δ, τ ]) then b(t) |= happ(φ, k̃, [τ − δ, τ ]) for some k̃ ≤ n + 1.
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In particular, it is b(t) |= happ(φ, k + 1, I); hence b(t + τ) |= φ. Let us now assume
τ − δ ≤ 0, and thus I = [0, τ ] ⊆ [τ − δ, τ ]. Then, φ undergoes exactly h transi-
tions over t ⊕ I , for some h ≤ k ≤ n. If b(t + τ) |= φ then one can check that
b(t) |= happ(φ, h+ 1, [0, τ ]), which implies b(t) |= yieldsT(φ, n+ 1, [0, τ ]) according
to (8). Conversely, if b(t) |= yieldsT(φ, n+ 1, [0, τ ]) then b(t) |= happ(φ, h̃, [0, τ ]) for
some h̃ ≤ n+ 1. In particular, it is b(t) |= happ(φ, h+ 1, I); hence b(t+ τ) |= φ. ut

4.3 Syntactic Characterizations

This section defines non-Berkeleyness and bounded variability syntactically.

Non-Berkeleyness. The following formula χδ characterizes behaviors that are non-
Berkeley for δ > 0, that is b ∈ BΣTδ with Σ = 2P iff b |= χδ .

χδ = Alw

♦[0,δ]

 ∨
β∈2P

�[0,δ](β)

 ∧
←−� (⊥)⇒

∨
β∈2P

�[0,δ](β)


Note that the second conjunct is needed only for time domains bounded to the left,
where it holds precisely at the origin.

While χδ has size exponential in |P|, it is possible to express non-Berkeleyness
with a formula which is polynomial in |P|. To this end, let us first define: RT(β) =
4(β)∧β∨4(¬β)∧¬β, LT(β) = 4(β)∧¬β∨4(¬β)∧β, GT(β) = 4(β)∨4(¬β)
that model a right-continuous, left-continuous, and generic transition of β, respectively.
Then, we introduce:

χR
δ =

∧
β∈Σ

RT(β)⇒
∧
γ∈Σ


�(0,δ)(¬GT(γ))

∧
GT(γ)⇒ RT(γ)

∧
♦(0,δ](GT(γ))⇒ ♦(0,δ](LT(γ))




χL
δ =

∧
β∈Σ

LT(β)⇒
∧
γ∈Σ

 �(0,δ](¬GT(γ))
∧

GT(γ)⇒ LT(γ)


χI
δ =
←−
� (⊥)⇒

∧
β∈Σ

�[0,δ](β ∨ ¬β)

χ′δ = Alw
(
χR
δ ∧ χL

δ ∧ χI
δ

)
χR
δ describes the non-Berkeley requirement about a right-continuous transition: no

other transition can occur over (0, δ), if there is a transition at the current instant it
must also be right-continuous, and if there is a transition at δ it must be left-continuous,
so that a closed interval of size δ is fully contained between the two consecutive tran-
sitions. Similarly, χR

δ describes the non-Berkeley requirement about a left-continuous
transition. Finally, χI

δ describes the non-Berkeley requirement at the origin of a time
domain bounded to the left. It should be clear that b ∈ BΣTδ with Σ = 2P iff b |= χ′δ ,
and χ′δ has size quadratic in |P|.
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Bounded variability. To describe bounded variability syntactically over behaviors, we
first introduce QITL formula pt(k, I), for k > 0.

pt(k, I) = ♦♦kI

∨
β∈P

(
4(β) ∧©(¬β) ∨ 4(¬β) ∧©(β)

)
∧ ¬♦♦k+1

I

∨
β∈P

(
4(β) ∧©(¬β) ∨ 4(¬β) ∧©(β)

)
If we let pt(0, I) = ¬♦♦1

I

(∨
β∈P

(
4(β) ∧©(¬β) ∨4(¬β) ∧©(β)

))
, pt(k, I)

states that there are exactly k ≥ 0 punctual transitions of atomic propositions over
interval I .

Second, we introduce QITL formula gt(k, I), for k > 0:

gt(k, I) = ♦♦kI

∨
β∈P

(
4(β) ∨4(¬β)

)∧¬♦♦k+1
I

∨
β∈P

(
4(β) ∨4(¬β)

)
If we let gt(0, I) = ¬♦♦1

I

(∨
β∈P

(
4(β) ∨4(¬β)

))
, gt(k, I) states that there are

exactly k ≥ 0 (generic, i.e., punctual or not) transitions of atomic propositions over
interval I .

Finally, the following formula χk,δ characterizes behaviors with variability bounded
by k, δ, that is b ∈ BΣTk,δ with Σ = 2P iff b |= χk,δ .

χG
k,δ =

∨
0≤j≤k

0≤h≤bj/2c

pt(h, [0, δ]) ∧ gt(j − h, [0, δ])

χI
k,δ =

←−
�(⊥) ∧

∨
β∈P

β ∧©(¬β)
∨

¬β ∧©(β)

⇒ ∨
0≤j≤k−2

0≤h≤bj/2c

 pt(h, (0, δ])
∧

gt(j − h, (0, δ])


χk,δ = Alw

(
χG
k,δ ∧ χI

k,δ

)
More precisely, χG

k,δ applies to any time instant and requires that at most k transitions
(weighted according to whether they are punctual or not) occur over any closed interval
of size δ. On the other hand, χI

k,δ applies only at the origin of time domains that are
bounded to the left: if there is a punctual transition at the origin, there must be at most
k− 2 transitions over the residual interval (0, δ] (in fact, limt→0− b(t) is undefined and
hence different than b(0)); if not, it is clear that the general formula χG

k,δ is enough.
Note that the size of χk,δ is polynomial in |P|, k.

5 Decidability Results

For simplicity, in this section we assume future-only MTL formulas. It is however clear
that the results can be extended to MTL with past operators by providing a few addi-
tional details. We also assume formulas in normal form (introduced in Section 3.1).
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5.1 MTL over Non-Berkeley Behaviors
This section shows that MTL is decidable over non-Berkeley behaviors, by providing a
translation from MTL formulas to QITL formulas.

Lemma 3. For any MTL formula φ over any behavior b ∈ BΣTδ, we have:

♦=d(φ) ≡ yieldsT(φ, θ(φ) + 1, [max(0,d− δ),d])

Proof. Let I = [max(0,d−δ),d]. From Lemma 1, φ undergoes at most θ(φ) transitions
over t⊕ I . So, from Lemma 2, we have immediately that b(t+ d) |= φ — i.e., b(t) |=
♦=d(φ) — iff b(t) |= yieldsT(φ, θ(φ) + 1, I). ut
Decidability of MTL over non-Berkeley behaviors. It is now straightforward to prove
the decidability of MTL over non-Berkeley behaviors. To this end, let us introduce the
following translation function µ from MTL formulas to QITL formulas, where ψ is any
MITL formula and φ is any MTL formula.

µ(ψ) ≡ ψ

µ(¬φ) ≡ ¬µ(φ)
µ(φ1 ∧ φ2) ≡ µ(φ1) ∧ µ(φ2)

µ(U(φ1, φ2)) ≡ U(µ(φ1), µ(φ2))
µ(♦<d(φ)) ≡ ♦<d(µ(φ))
µ(♦=d(φ)) ≡ yieldsT(µ(φ), θ(φ) + 1, [max(0,d− δ),d])

Theorem 1. For any MTL formula φ, for any behavior b ∈ BΣTδ for some δ > 0, we
have b |=T φ iff b |=T µ(φ).

Theorem 1, the decidability of MITL and QITL [1, 11], and the syntactic charac-
terization of non-Berkeleyness by means of the χδ formula, immediately imply the
following.

Corollary 1. For any δ > 0, the satisfiability of MTL formulas is decidable over BΣTδ .
Proof. Given a generic MTL formula φ, φ is satisfiable over BΣTδ iff φ′ = φ ∧ χ′δ is
satisfiable over non-Zeno behaviors. In turn, by Theorem 1, φ′ is satisfiable over non-
Zeno behaviors iff φ′′ = µ(φ)∧χ′δ is. Since φ′′ is a QITL formula, the theorem follows
from Proposition 2. ut

5.2 MTL over Bounded Variably Behaviors
The results of the previous section can be extended to the case of behaviors with
bounded variability along the following lines. First, consider the claim: for any b ∈
BΣTk,δ and MTL formula φ, it is bφ ∈ BΣTk+θ(φ),δ . The claim can be proved simi-
larly as for Lemma 1, where the base case for Boolean combinations β is changed into
2 + k, whereas the inductive steps are essentially unaffacted, provided the inductive
hypothesis about the variability being bounded by θ is replaced by it being bounded by
θ + k. Correspondingly, we can introduce a translation µ′ from MTL to QITL formu-
las which is obtained from µ by replacing θ(φ) with k + θ(φ). Finally, QITL formula
µ′(φ) ∧ χk,δ is satisfiable over BΣT iff φ is satisfiable over BΣTk,δ . Hence, MTL is
decidable over BΣTk,δ .
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6 Related Results

This section discusses the expressiveness and complexity of MTL over non-Berkeley
and bounded variably behaviors and words.

6.1 Expressiveness of MTL over non-Berkeley

The technique used in Section 5 to assess the decidability of MTL over non-Berkeley
behaviors involved the translation of MTL formulas into QITL, a strict superset of
MITL. This raises the obvious question of whether QITL is really needed in translating
MTL to a decidable logic. A partial negative answer to this question can be provided by
showing that MITL is strictly less expressive than MTL over non-Berkeley behaviors.
This answer is only partial because we address expressiveness, not equi-satisfiability;
that is, it might be possible to construct, for every MTL formula, a corresponding MITL
formula which is equi-satisfiable over non-Berkeley behaviors but requires additional
atomic propositions to be built. However, one can prove that for any δ > 0, MTL is
strictly more expressive than MITL over BΣTδ . We refer to [9] for some details of the
(involved) proof.

6.2 Complexity of MTL over Non-Berkeley

This section shows that the satisfiability problem for MTL formulas over non-Berkeley
(and bounded variably) behaviors has the same complexity as the same problem for
MITL over generic behaviors.

Theorem 2. The satisfiability problem for MTL over BΣTδ is EXPSPACE-complete.

Proof. The fact that the problem is in EXPSPACE follows from the translation proce-
dure of Section 3 from an MTL formula φ to an equi-satisfiable QITL formula of size
polynomial in |φ|, and from the complexity of QITL (Proposition 2).

The EXPSPACE-hardness of MTL satisfiability over non-Berkeley behaviors can
be proved by reducing the corresponding problem over the integers, where integer-
timed words are embedded into non-Berkeley behaviors. See [9] for details. ut

With a very similar justification we can prove the following.

Theorem 3. The satisfiability problem for MTL over BΣTk,δ is EXPSPACE-complete
(assuming a unary encoding of k).

7 Undecidability Results

MTL is decidable no more if we consider all non-Berkeley behaviors for any δ together.
More precisely, the satisfiability problem for MTL over BΣT∃δ is Σ0

1 -complete; com-
pare against the same problem over BΣT where it is Σ1

1 -complete.

Theorem 4. The satisfiability problem for MTL over BΣT∃δ is Σ0
1 = RE-complete.
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Proof. Let φ be a generic MTL formula. φ is satisfiable over BΣT∃δ iff there exists a
δ > 0 such that φ is satisfiable over BΣTδ . Given that BΣTγ ⊃ BΣTδ for all γ < δ
(Proposition 1), and that the satisfiability of φ is decidable over BΣTγ for any fixed
γ > 0 (Corollary 1), the following procedure halts iff φ is satisfiable over BΣT∃δ: (1)
let d← 1; (2) decide if φ is satisfiable over BΣTd; (3) if not, let d← d/2 and goto (2).
This proves that the satisfiability problem for MTL over BΣT∃δ is in RE.

To show RE-hardness, we reduce the halting problem for 2-counter machines to
MTL satisfiability over BΣT∃δ . The key insight is that a halting computation is one
where only a finite number of instructions is executed. Correspondingly it can be rep-
resented by a behavior where only a finite number of transitions occur within a finite
amount of time; such behaviors are necessarily in BΣT∃δ because the infimum over
distances between transitions coincides with the minimum. See [9] for all details. ut

The above proof can be adapted with simple modifications to work for infinite timed
words, as well as for the classesBΣT∃k∃δ and TΣTω∃k∃δ . On the contrary, undecidability
does not carry over to finite words, where the problem is known to be decidable [14].

8 Summary

Table 1 summarizes the results on the expressiveness of MTL over various semantic
classes. Cells without shade host previously known results; cells with a light shade are
corollaries of known results; cells with a dark shade correspond to the main results
discussed and proved in this paper.

As future work, it will be interesting to investigate the practical impact of the new
decidability results of this paper. This will encompass, on the one hand, experimenting
with implementations of decision algorithms to evaluate their performances on practical
verification problems and, on the other hand, assessing which classes of systems can be
naturally described with bounded variably models.

DECIDABILITY COMPLEXITY

BΣTδ , BΣTk,δ Yes EXPSPACE-C
BΣT∃δ,BΣT∃k∃δ No Σ0

1 -C
BΣT No Σ1

1 -C
TΣTωδ , TΣTωk,δ Yes EXPSPACE-C
TΣTω∃δ, TΣTω∃k∃δ No Σ0

1 -C
TΣTω No Σ1

1 -C
TΣT∗δ , TΣT∗k,δ Yes EXPSPACE-C
TΣT∗∃δ, TΣT∗∃k∃δ Yes non-PR

TΣT∗ Yes non-PR
Table 1. Summary of the known results.
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