

Higher-Order TRIO

Carlo A. Furia, Dino Mandrioli, Angelo Morzenti,

Matteo Pradella*, Matteo Rossi, Pierluigi San Pietro
Dipartimento di Elettronica ed Informazione

Politecnico di Milano,
*CNR IEIIT-MI

{furia, mandrioli, morzenti, pradella, rossi, sanpietro}@elet.polimi.it

 2

 3

0 Index
0 Index ___ 3

1 Introduction: Why Higher-Order TRIO _________________________________ 5

2 Some terminology and basic definitions _________________________________ 5

3 Syntax __ 6

4 Semantics (of Basic HOT) __ 9

5 Syntactic sugar __ 13

5.1 non-contextual and infix keywords _________________________ 13

5.2 Modules__ 15

5.3 Quantification over the modules of a class _________________________ 16

5.4 Key of a HOT class __ 16

6 A different approach: set theory_______________________________________ 17

6.1 Syntax ___ 18

6.2 Semantics __ 18

6.3 Examples___ 20

7 Genericity __ 22

8 Conclusions and future work ___ 23

9 References __ 24

10 Appendix A: Invoice and Sensor revised __________________________ 24

 4

 5

1 Introduction: Why Higher-Order TRIO
TRIO [C3M399] is a first-order metric temporal logic with object-oriented constructs
that is suitable to describe time-critical systems. TRIO is typed, but the number of
types available in TRIO is limited to a small set. To model general complex systems
(that is systems ranging from invoice management applications to power plants),
however, we feel that great flexibility in defining what are the objects composing the
system is needed.
Higher-Order TRIO (HOT for short) is a thorough revisitation of the TRIO language,
one in which the user can freely define new types, which can be complex (or, for that
matter, simple and basic) at will.
In fact, in origin, HOT derives from a very specific need, which is to effectively
model system (software) architectures, that require suitable mechanisms and
constructs to easily represent information such as "object A sends object B another
object C", etc.
Representing this kind of information in usual TRIO would not be impossible, but
certainly complicated and cumbersome (in two words, practically unfeasible).
For this, we need a new definition of types in TRIO. More precisely, we will start
from the idea that Class = Type.
As a consequence, TRIO becomes a higher-order temporal logic, as it is now possible
to quantify over variables that are typed by a Class (which can include functions,
predicates, etc.). We will investigate the consequences of the equality Class = Type in
the next sections.

This document is structured as follows. Section 2 presents some basic terminology
and definitions. Section 3 introduces the syntax of HOT, while Section 4 gives a
lambda calculus-based semantics for the language. Section 5 adds some syntactic
sugar to basic HOT to simplify writing useful and common properties. Section 6
presents an alternative semantics for HOT based on set theory (Set theory-based
HOT, SHOT for short). Section 7 hints at genericity in HOT. Finally, Section 8 draws
some conclusions and outlines future work related to HOT.

Before concluding this introduction, notice that, with respect to TRIO, the modal part
(that is, Time) of the HOT logic remains unchanged. The representation of temporal
evolution of systems in HOT is still built around the Dist operator (and all the usual
derived temporal operators). Then, this document will not delve into the details of
HOT temporal operators, whose definition and semantics is the same as in old TRIO.

2 Some terminology and basic definitions
In the definition of HOT, let us start with a list of basic concepts and their synonyms
(summarized in Table 1).

Concept Synonyms
Item Function. Predicate. Relation.
Formula
Class Type (and subtype). Domain. Set. (Module.)
Object Instance. Value (of a type). Model. History.

Table 1 - List of HOT concepts and synonyms.

 6

Items are the founding elements of the HOT logic. In HOT (and TRIO) terms, we call
item what, in usual logic lore, is called function or predicate (notice that an item is
either a function or a predicate, but in traditional logic a predicate is not a function,
even though it is easy to express the former using the latter, and vice-versa). HOT
items can have arguments (and return values), which are typed elements. The
arguments (and returned values) of HOT items can be of any HOT type (see below).
For example, we might define a HOT item it to be a predicate with two arguments
of type t1 and t2:

items:
TD it(t1, t2) : boolean;

Notice that, just like in TRIO, HOT items can be defined to be time-dependent (TD)
or time-independent (TI).

Items are the building blocks for HOT formulae. HOT (well-formed) formulae are, as
usual, a combination of functions, predicates (that is, items), logical connectors (&, |,
->, <->, not, etc.), temporal operators (Dist, Futr, Past, etc.) and quantifiers (all,
exists). For example:

p1(f1, f2(c1)) -> Futr(all(o)(p2(o)), t);

Notice that every HOT variable (for example c1, o and t in the formula above)
ranges over the values of some type, which is defined through a HOT class.

So, as stated before, a HOT class defines a type. A class identifies a domain, or,
equivalently, a set of elements.

Given a HOT domain (i.e. class), an element of the domain is an object. The term
object is synonym for instance (of a class) and value (of a type). A HOT object
corresponds also to a model for the corresponding class (or, in TRIO terms, to a
history). We will analyze in Section 4, which defines HOT semantics, the meaning of
making object synonym with model (and history).

3 Syntax
Basic elements

The basic elements of the HOT language are:

• constants (of a type)
• variables (of a type)
• items
• connectors and quantifiers (not, &, all, etc.)
• temporal operators (Dist and all the usual derived operators Futr, Past,

etc.)
Constants and variables must have a type, which corresponds to the name of a HOT
class. The type boolean corresponds to the truth values true and false.

Items can only be declared inside HOT classes.

Terms

 7

• a constant of type t is a term of type t
• a variable of type t is a term of type t
• if i(T1, ... Tn):Tret is an item declared in class C, where

T1, ... Tn and Tret are all type names, and v1, ... vn are terms of
type T1, ... Tn and c is a term of type C, then c.i(v1, ... vn) is a
term of type Tret.

• nothing else is a term.

Predicates are terms of type boolean.

Formulae

• a predicate is a formula
• if f1 and f2 are formulae, not f1 and f1 & f2 are formulae (all other

usual logic connectors can be defined from not and &)
• if v is a variable of some type t (that is, ranging over the values of a class t)

and f is a formula, all v(f) is a formula (ex, as usual, is defined as not
all not)

• if f is a formula and t is a term of type temporal domain, Dist(f,
t) is a formula

• nothing else is a formula.

HOT formulae can be declared only inside HOT classes.

Examples

Here are some examples of definitions of HOT classes.
The first example defines the natural numbers using Peano's axioms. Class Natural
has three items, isZero, succ, and +. isZero identifies the natural number 0, that
is, there is only one natural number such that isZero is true. For short, we refer to
this particular natural number with constant 0 in the axioms of class Natural. succ
is a function that returns the successor of a natural number, while + represents the
usual addition. NatPredicate is a class (i.e. a type) representing the set of
possible predicates on natural numbers (that is, the set of functions from naturals to
booleans), and is defined below.

class Natural
visible: isZero, succ, +;
items:
 TI isZero : boolean;
 TI succ : Natural;
 TI +(Natural): Natural;

axioms:
 vars:
 n, n1, n2 : Natural;
 z : Natural;
 p : NatPredicate; /* defined below */

 formulae:
 Peano1: ex z(z.isZero); /* call it 0 */

 Peano1_bis: n1.isZero & n2.isZero -> n1 = n2;

 Peano2 : all n1(ex n2(n2 = n1.succ));

 8

 Peano3: n1.succ = n2.succ -> n1 = n2;

 Peano4: not ex i(ex z(z.iszero & (z = i.succ)));

 Peano5: all p(p.val(0) ->
 (all i(p.val(i) -> p.val(i.succ))
 ->
 all i(p.val(i))));

 ax+_1: all n1, n2(n1.+(n2.succ) = (n1.+(n2)).succ);
 ax+_2: all n1 (n1.+(0) = n1);
end

Notice that, to represent a + b given the definition above one should write
a.+(b), since + is an item of class Natural. However, HOT allows also the classic
(and more natural) syntax a + b. Section 5 deals with this (and other) syntactic
features of the language.

Class NatPredicate defines (a class corresponding to) the set of all predicates on
natural numbers. In classic logic, if p is a predicate over natural numbers and n is a
natural number, we would write p(n) to signify the value of predicate p in n. Again,
the syntax for pure HOT is a little more cumbersome, as we define an item, val,
which takes a natural number as argument, and corresponds to the value of the
predicate in that natural number. Then, instead of p(n), in HOT we write p.val(n).
Again, shortcuts for notations such as p.val(n) might be devised in the future, if
necessary.

class NatPredicate
visible: val;
items:
 TI val(Natural) : boolean;
end

Class Invoice defines invoices. It has only one axiom, which states that the serial
number of an invoice separates it from other invoices (that is, no two invoices have
the same serial number).

class Invoice
visible: sr_num, amount, date;
items:
 TI sr_num : Natural;
 TI amount : Real;
 TI date : Date;

axioms:
 vars:
 i1, i2: Invoice;

 formulae
 sr_num_unique: all i1, i2(i1.sr_num = i2.sr_num -> i1 = i2);
end

Class Sensor defines the behavior of any possible sensor of a system. Every sensor
has a serial number, which separates it from every other sensors. The quantity
measured by the sensor is represented by item measure, item limit is a threshold
that said quantity should not exceed, while predicate over_limit is true when the
measured quantity is above its limit. Finally, predicate working is true when the
sensor is correctly functioning (false otherwise).
The two axioms of the class state the uniqueness of serial numbers for sensors, and
the behavior of predicate over_limit.

 9

class Sensor
visible: measure, limit, over_limit, working;
temporal domain: Real;
items:
 TI sr_num: Natural;
 TD total measure: Real;
 TI limit: Real;
 TD over_limit : boolean;
 TD working : boolean;

axioms:
 vars:
 s1, s2: Sensor;

 formulae:
 def_over_limit: over_limit <-> measure > limit;
 sr_num_unique: all s1, s2(s1.sr_num = s2.sr_num -> s1 = s2);
end

Finally, class Controller models controllers provided with two sensors. The
hypothesis is that the two sensors monitor the same quantity, and item avg keeps
track of the average of the two measurements (as defined by axiom def_avg). The
sensors of the controller can be replaced if they stop working. Axiom
sensor1_change states exactly this property for sensor s1, that is, that if sensor
s1 stops working, it will be replaced with a different sensor within SUBS_TIME time
units.
Axiom sensors_never_the_same states that it is not possible to wire the
controller in a way such that it reads data from just one sensor.

class Controller
temporal domain: Real
items:
 TD s1: Sensor;
 TD s2: Sensor;
 TD avg: Real;

axioms:
 vars:
 sid1, sid2: Natural;

 formulae:
 sensors_never_the_same: Alw(s1 != s2);
 def_avg: avg = (s1.measure + s2.measure)/2;

 sensor1_change:
 not s1.working & s1.sr_num = sid1
 ->
 WithinF(s1.working & s1.sr_num != sid1, SUBS_TIME);
/* SUBS_TIME is a pre-defined positive real constant */
end

4 Semantics (of Basic HOT)
The semantics of HOT is given in terms of typed lambda calculus, as used in the type
theory presented in [And86]. Then, HOT classes are to be interpreted as sets of
values, and everything else is a function (even connectors and quantifiers, as shown in
[And86]). Most notably, items of classes are functions.

 10

Suppose, for example, that we declare in HOT the following class C (let us focus on
time-independent items for the time being, we will tackle the issue of time later in this
document):

class C
...
TI f(β) : γ;
...
end.

The first line declares C to be a set of values. Given an item i of class C, let us call
sigC(i) its signature in class C. For example, the signature of item f is sigC(f)
= β -> γ, while the signature of item + in class Natural is Natural ->
Natural.

Definition 1 (time-independent items). A time-independent item i of a class C is
interpreted as a function i that has domain C and range the signature of i. That is,

i : C -> sigC(i)

which means that symbol i has type C -> sigC(i).

For example, item f of class C is interpreted as a function f with domain C and range
β -> γ:

f : C -> (β -> γ)

(or, borrowing a notation from the PVS logic [OSS99] f is a function of type [C ->
[β -> γ]]; alternatively, using the notation of [And86], fγβC).
As additional examples, item + in class Natural is interpreted as

+ : Natural -> (Natural -> Natural)

item val of class NatPredicate corresponds to the following function

val : NatPredicate -> (Natural -> bool)

and item sr_num of class Sensor is interpreted as

sr_num : Sensor -> Natural

Then, to each HOT class C that has items i1, ..., in correspond n functions ij
(j = 1, ... n) that have type C -> sigC(ij). That is, every value c of type
C is associated with n values ij(c), each one with type sigC(ij).
The n values associated with value c uniquely identify c. That is, a value c of class C
is identified by the set of its images through functions i1, ... in.

Definition 2. Given a HOT class C with items i1, ..., in every value c of type
C is uniquely identified by the n images associated with c through functions i1,
... in. More precisely, using the interpretation of HOT as typed lambda calculus
and classic logic notation:

∀c1,c2:C (i1(c1) = i1(c2) ∧
 i2(c1) = i2(c2) ∧
 ... ∧
 in(c1) = in(c2)

 11

 →
 c1 = c2)

For example, definition 2 for class Natural presented above translates to

∀n1,n2:Natural (isZero(n1) = isZero(n2) ∧
 succ(n1) = succ(n2) ∧
 +(n1) = +(n2)
 →
 n1 = n2)

while for class NatPredicate definition 2 corresponds to

∀np1,np2:NatPredicate (val(np1) = val(np2)
 →
 np1 = np2)

and for class Invoice to

∀i1,i2:Invoice (sr_num(i1) = sr_num(i2) ∧
 amount(i1) = amount(i2) ∧
 date(i1) = date(i2)
 →
 i1 = i2)

Notice that axiom Peano3 of class Natural and sr_num_unique of class
Invoice are stronger than definition 2 for those two classes, which is entirely
admissible.

Then, a HOT class is defined by its axioms in the sense that its axioms constrain the
values of its items, and the values of its items define entirely a HOT class.

Time

A temporal domain τ in HOT can be any type with a total order and metric (that is, a
notion of distance between instants is defined). HOT items can be time-dependent or
time-independent. Time-dependent items can vary over time, meaning that they
evaluate to different values depending on the instant in which they are evaluated.

Definition 3 (time-dependent items). A time-dependent item td_i of a class C with
temporal domain τ is interpreted as a function td_i that has domain C and range the
functions from τ to the signature of td_i. That is,

td_i : C -> (τ -> sigC(i))

which means that symbol td_i has type C -> (τ -> sigC(i)).

For example, item measure of class Sensor (which has temporal domain Real) is
interpreted as

measure : Sensor -> (Real -> Real)

while item s1 of class Controller corresponds to

s1 : Controller -> (Real -> Sensor)

 12

As usual with TRIO, however, in formulae time is implicit, so it is never explicitly
represented or cited; for example, if s is a variable of type Sensor, s.measure is
interpreted as measure(s)(t), where t (t ∈ τ) is the current instant.
The usual Dist temporal operator of TRIO is used to manipulate the implicit temporal
variable of type τ.

Objects as histories

Given the definitions presented above (and in particular definitions 2 and 3), the
values of a class C correspond to the histories of C.
Take, for example, class Controller. Definition 2 for class Controller
translates to

∀c1,c2:Controller (s1(c1) = s1(c2) ∧
 s2(c1) = s2(c2) ∧
 avg(c1) = avg(c2)
 →
 c1 = c2)

which means that two different controllers have different behaviors over time (so that
every controller is identified by a precise history).

Now, take class Sensor as further example. Definition 2 for class Sensor
translates to

∀s1,s2:Sensor (sr_num(s1) = sr_num(s2) ∧
 measure(s1) = measure(s2) ∧
 over_limit(s1) = over_limit(s2) ∧
 working(s1) = working(s2)
 →
 s1 = s2)

However, axiom sr_num_unique of class Sensor states that the serial number is
enough to identify sensors: if two sensors have different serial numbers, then they are
different values of class Sensor. This means that different sensors can have the
same interpretation on measure, over_limit and working items, but they have
different serial numbers (that is, they have different histories, as the serial number is
part of them, too).

Implicit quantification over the values of a class (explained through an example)

Let us consider axiom def_over_limit of class Sensor. Let us repeat the
axiom here for the sake of clarity, making explicit the implict temporal closure:

def_over_limit: Alw(over_limit <-> measure > limit).

As mentioned above, over_limit, measure and limit are in fact to be
interpreted in the following way:

over_limit : Sensor -> (Real -> bool)
measure : Sensor -> (Real -> Real)
limit : Sensor -> Real

As axiom def_over_limit is, by definition, valid for all sensors, it is in fact to be
interpreted as the higher-order formula:

 13

∀s:Sensor (Alw(over_limit(s) <-> measure(s) > limit(s))).

That is, given an axiom of a class C in which unqualified references to class items
appear (i.e. references without explicit mention of the containing class, such as all
references in axiom def_over_limit), the unqualified references are implicitly
universally quantified over all values of C.

Semantic remark (just to be precise). HOT domains can be infinite (we need to be
able to represent numbers of various kinds, from naturals to reals), so HOT type
theory includes an axiom of infinity1.

5 Syntactic sugar

5.1 non-contextual and infix keywords
Consider class Natural defined in Section 3. In that class, operator + is defined as
follows:

TI +(Natural) : Natural

which implies that in classic, pure object-oriented notation, to represent a + b one
should write a.+(b), since + is an item of class Natural (which takes a single
Natural as argument, and returns the sum of its argument and the Natural value to
which it is applied). However, sometimes it is useful (and more intuitive for the
specifier) to be able to use the classic mathematical notation.
To this end, HOT allows the following declaration:

non-contextual TI + (Natural, Natural) : Natural

in which case axioms ax+_1 and ax+_2 of class Natural are rewritten as follows:

 ax+_1: all n1, n2(+(n1, n2.succ) = (+(n1, n2)).succ);
 ax+_2: all n1 (+(n1, 0) = n1);

The precise meaning of the non-contextual keyword is detailed below, in this
same section.
To simplify syntax further and make it more similar to usual notations, HOT
introduces another keyword, infix, which allows one to use an infix notation for
(non-contextual) binary items. By using the infix keyword, the declaration of item
+ above becomes:

infix non-contextual TI + (Natural, Natural) : Natural

in which case axioms ax+_1 and ax+_2 are rewritten as follows:

 ax+_1: all n1, n2(n1 + n2.succ = (n1 + n2).succ);
 ax+_2: all n1 (n1 + 0 = n1);

1 This causes the HOT logic to be incomplete with respect to standard models (that is, models in which
every function type is required to represent the set of all possible functions from the domain set, to the
range set).

 14

Keyword infix can be used only in conjunction with keyword non-contextual, and
can be applied only to (non-contextual) items with exactly two arguments. Other that
that, infix has no additional semantics, and is pure syntactic sugar.

Semantics of the non-contextual keyword

From the discussion of Section 4 it is clear that the interpretation of an item of a class
can differ between two values of the same class; for example, item measure of class
Sensor can have different temporal profiles for different values of class Sensor
(say , for

ŝ
1 ∈ Sensor measure at time instant 1 might have image 5.5, while for ŝ

2 ∈ Sensor measure at the same time instant 1 might have image 8.3).
That is, the interpretation of an item it of class C depends on the context in which it
is evaluated, where by the term context we mean the actual value of class C that is
being considered (given c1,c2 ∈ C, with c1≠c2, c1.it can have different
interpretation from c2.it).
On the other hand, we might want to state that the value returned by a function is
independent of the context in which it is applied, but depends only on its arguments.
Operator (i.e. function) + (the version with two arguments, one for each operand) of
class Natural is such an example: if we define + as follows:

TI + (Natural, Natural) : Natural

we expect that, if n1,n2 ∈ Natural, even if n1≠n2,
n1.+(n3,n4)=n2.+(n3,n4) and it corresponds to the usual num n3+n4 for
natural numbers). Unless we state otherwise with a suitable axiom, the declaration
above does not rule out that for n1,n2 ∈ Natural and n1≠n2, it might happen
that n1.+(n3,n4)≠n2.+(n3,n4) (where n3,n3 ∈ Natural).
So, we might like to have a syntactic mechanism to state that the interpretation of an
item is independent of the context in which is it evaluated, and is entirely determined
by its arguments.
Keyword non-contextual achieves exactly this: it says that the interpretation of
the item is independent of its context.

Definition 4 (semantics of keyword non-contextual). For every non-contextual
item nci (either time-independent or time-dependent) of a class C (with signature
sigC(nci)) the following holds:

∀c1,c2:C (nci(c1) = nci(c2))

So, given the following declaration in class Natural,

non-contextual TI + (Natural, Natural) : Natural

the following formula holds:

∀n1,n2:Natural (+(n1) = +(n2))

which, in HOT terms, corresponds to saying that

all n1,n2(all n3,n4(n1.+(n3,n4) = n2.+(n3,n4)))

Then, for non-contextual items, the specific value in which they are evaluated
(n1, and n2, in the formula above) is irrelevant, and can be skipped altogether. We

 15

can then write +(n3, n4) (or, better, n3+n4 if we declare + to be also infix)
directly, instead of referring to a specific value as in n1.+(n3, n4), without risk
of ambiguities.

5.2 Modules
TRIO has a notion of module: a TRIO module is an instance of a TRIO class
contained in another TRIO class. Furthermore, in TRIO the notion of module is
primitive.
HOT does not have a primitive notion of module. Rather, it has linguistic constructs
that allow one to obtain the same semantics of TRIO modules in HOT from basic
HOT concepts.
HOT offers the keyword module as a shortcut to automatically introduce the HOT
axioms and definitions corresponding to the semantics of TRIO modules.
HOT allows the following syntax:

module <module_name> : [array <array_range> of] <module_type>

where module, array and of are terminals, <module_name>,
<module_type> and <array_range> nonterminals which expand, respectively,
to two identifiers (the name and type of the module) and one domain (the range of the
array).
The syntax above is translated in either of the two following HOT declarations,
depending on the fact that the module is an array or not:

TI <module_name> : <module_type;

TI <module_name>(<array_range>) : <module_type>;

Every module defines a different value of type <module_type>, as defined by the
following definition.

Definition 5 (semantics of keyword module). Given a class C with modules m1, ...
mn and ma1, ... mam, all of the same type t (where m1, ... mn are single modules, while
ma1, ... mam are arrays of modules with ranges r1, ... rm), the following formula
holds:

m1 ≠ m2 ∧ m1 ≠ m3 ∧ ... ∧ m1 ≠ mn ∧ (∀i∈r1)(m1 ≠ ma1(i)) ∧
 (∀i∈r2)(m1 ≠ ma2(i)) ∧ ... ∧
 (∀i∈rm)(m1 ≠ mam(i)) ∧
m2 ≠ m3 ∧ ... ∧ m2 ≠ mn ∧ (∀i∈r1)(m2 ≠ ma1(i)) ∧ ... ∧
 (∀i∈rm)(m2 ≠ mam(i)) ∧
... ∧
(∀i1,i2∈r1)(i1 ≠ i2 → ma1(i1) ≠ ma1(i2)) ∧
(∀i1∈r1)(∀i2∈r2)(ma1(i1) ≠ ma2(i2)) ∧ ... ∧
(∀i1∈r1)(∀im∈rm)(ma1(i1) ≠ mam(im)) ∧
... ∧
(∀i1,i2∈rm)(i1 ≠ i2 → mam(i1) ≠ mam(i2))

Then, if class UnmodifiableController contains the following declarations:

class UnmodifiableController
...
module uc_s1 : Sensor;
module uc_s2 : Sensor;

 16

...
end

the following definitions and formula hold for the class:

TI uc_s1 : Sensor;
TI uc_s2 : Sensor;

uc_s1 != uc_2;

5.3 Quantification over the modules of a class
To make writing HOT specifications lighter, a shortcut that allows users to easily
express quantification over all the modules (in the sense defined in Section 5.2) of a
class that have a certain type is defined.
So, if v is a variable of type t and f is a HOT formula, allmod v(f) is also a
HOT formula, whose semantics is given by the following definition.

Definition 6 (semantics of quantifier all modules). Given a class C with
modules m1, ... mn and ma1, ... mam, all of the same type t (where m1, ... mn are single
modules, while ma1, ... mam are arrays of modules with ranges r1, ... rm), and given a
variable v of type t and a formula f(v) (where v is free in f), formula allmod
v(f(v)) corresponds to:

f(m1) ∧ f(m2) ∧ ... ∧ f(mn) ∧
(∀i∈r1)(f(ma1(i)) ∧ ... ∧ (∀i∈rm)(mam(i))

Notice that this is not a quantification over all instances of type t, but only on those
instances that correspond to modules of class C.
For example, if in class UnmodifiableController outlined in Section 5.2 one
writes allmod s(f(s)), where s is a variable of type Sensor and f a formula
in which s is free, this would simply correspond to writing
f(uc_s1) ∧ f(uc_s2), which is not the same as all s(f(s)).

exmod v(f(v)) is naturally defined as not allmod v(not f(v)).

5.4 Key of a HOT class
Every value of a HOT class corresponds to an interpretation (an assignment to the
items of the class), that is, in usual TRIO terms, a history: different instances of the
same TRIO class differ for at least the value of one of their items in one time instant
(see definition 2 of Section 4). This means, conversely, that two instances of a TRIO
class are in fact the same if they have the same interpretation for all their items.
In some cases, however, the condition that identifies the instances of a class could be
stronger (for example, for the sensors modeled in Section 3, it is enough that two
instances have the same serial number for them to be the same).
HOT offers the keyword key to explicitly state a condition that is enough to uniquely
identify the values of a class.
Keyword key is used in the formulae subsection in the axioms declaration, and
has the following syntax:

key: <condition>;

 17

Only one key declaration is allowed in each class.
In the formula corresponding to a key declaration a class C, there must be exactly
two free variables of type C. For example, the property defined by axiom Peano3 of
class Natural of Section 3 might be used as key for the class, but in this case it
should be declared as follows:

class Natural
...
axioms:
 vars:
 n1, n2: Natural
...
 key: n1.succ = n2.succ;
...
end

The precise semantics of a key declaration is given by the following definition.

Definition 7 (semantics of keyword key). Given a HOT class C with condition
cond declared as key, every value c of type C is uniquely identified by condition
cond. More precisely, using again the interpretation of HOT as typed lambda
calculus:

∀c1,c2:C (cond(c1, c2)
 →
 c1 = c2)

From definition 7 it descends that in the above revised declaration of class Natural,
the key declaration translates to the following formula:

∀n1,n2:Natural (n1.succ = n2.succ → n1 = n2)

which corresponds to axiom Peano3 of the original declaration.
Take now, as a second example, class Sensor also of Section 3. We could revise its
definition and substitute axiom sr_num_unique with the following key
declaration:

key: s1.sr_num = s2.sr_num;

which translates to the following formula:

∀s1,s2:Sensor (s1.sr_num = s2.sr_num → s1 = s2)

which is precisely axiom sr_num_unique.

6 A different approach: set theory
So far we have based HOT on lambda calculus, but it is worth exploring a different
approach to found HOT on: set theory (see for example [Men97]). To separate this
second approach from the first one, we call it SHOT (Set theory-based Higher Order
Trio).
SHOT is very similar to HOT, but employs a different semantic approach, which is
reflected also in few selected syntactic aspects. In the rest of this section we present
SHOT by highlighting its differences with respect to HOT (which will be graphically
stressed).

 18

6.1 Syntax
Basic elements

The basic elements of the SHOT language are:

• constants
• variables
• items
• operations
• (types)

Constants and variables must have a type, which corresponds to the name of a HOT
class.
We will write x : D to stress that x has type D, and x(D1) : D2 for functions
with signature D1 -> D2 (the latter like in good old first-order TRIO) .

Type Bool is defined as {true, false}.

Items and operations can only be declared inside SHOT classes.

Terms

• a constant is a term
• a variable is a term
• if i : T1 × T2 × .. × Tn -> Tret is an item declared in class C,

and v1, ... vn are terms of type T1, ... Tn and c is a term of type C,
then c.i(v1, ... vn) is a term of type Tret.

• an operation f : A -> B, applied to a term a : A is a term f(a): B
• nothing else is a term.

Logical connectives (and, or, implies, not) are constants having type Bool ×
Bool -> Bool, and Bool -> Bool respectively. Formulae and predicates are
terms of type D1 × D2 × .. Dk -> Bool, where Di are types of free variables.
Moreover SHOT has the usual quantifiers for every type: all t : T; ex t : T.

6.2 Semantics
SHOT is an extensional logic: two types or functions or anything else are equal iff
they have the same type and are equal on all their arguments.

Classes define new types, and may be based on existing types.
In fact, we separate two types of classes: classes defining primitive types, and classes
defining (derived) types based on other types. They differ on the number of items
declared in them: classes defining primitive types do not have any items declared in
them, while classes defining derived types contain at least one item declaration.

The declaration of a primitive type PC simply corresponds to stating that there is a set
of name PC, and its axioms define it (see class Natural declared below in Section
6.3)..

 19

Suppose instead we have a class C with N (N > 0) items i1...iN (where the first P
items are time-independent, and the other N-P ones are time-dependent) and M (M ≥
0) operations op1...opM (of which the first L ones are time-independent, the others
time-dependent); suppose also that every item i has signature sigC(i), and every
operation op has signature sigC(op) (see also Section 4 for the definition of sigC).
The declaration of class C would roughly be the following one:

class C
temporal domain: τ;

items:
 TI i1 : sigC(i1);
 ...
 TI iP : sigC(iP);
 TD iP+1 : sigC(iP+1);
 ...
 TD iN : sigC(iN);

operations:
 TI op1 : sigC(op1);
 ...
 TI opL : sigC(opL);
 TD opL+1 : sigC(opL+1);
 ...
 TD opM : sigC(opM);

axioms:
...
end

The first line states that C is a type.
The items section states that
C ⊆ ℘(sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN)))).
The operations section defines name and signature of permitted operations on
type C, while actual operations are defined by the axioms.
Axioms define if and how C is a proper subset of
℘(sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN)))), and
its corresponding operations.

An object c of type C has type
sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN))).
An object is completely defined by its items, but not by its operations.

While item signatures are used to define C, item names are used as name of
components. Dot notation is defined as projection. E.g. let t be the current time
instant and I the interpretation function. Then c.i3 is interpreted at the current time
instant as I(c)(t)|sigC(i3). (I(c) is a tuple :

sigC(i1) × ... sigC(iP) × (τ -> (sigC(iP+1) × ... sigC(iN))).
I(c)(t) is the object value at time t, i.e. I(c)(t) ∈
sigC(i1) × ... sigC(iP) × (sigC(iP+1) × ... sigC(iN))).

Notice that item signatures in C must not contain C itself nor of any derived type that
depends on C (we define the relation "depend on" for types in the following way: if a

 20

type C1 has an item with either an argument or the range of type C2, then C1 depends
on C2 and, recursively, on all types on which C2 depends). Notice also that, by the
definition itself of primitive type as introduced above, a primitive type does not
depend on any other types.

On the other hand, an operation declared in a SHOT class C must have at least one
argument or the range which is either of type C itself, or of a type that depends on C.2

Finally, notice that, with the new semantics, definitions 1, 2 and 3 of Section 4 are not
needed any more (in fact, definitions 1 and 3 are made unnecessary by the
interpretation of classes as subsets of powersets, while definition 2 derives from the
axioms of the underlying set theory).

6.3 Examples
Here we present the examples introduced in Section 3, but with the new separation in
items and operations.

class Natural

/* no items: Natural is a primitive set
 * (i.e. it is not defined in terms of other sets)
 */

operations:
 TI succ(Natural) : Natural;
 /* i.e. N -> N */

 TI +(Natural, Natural): Natural;
 /* i.e. N x N -> N */

axioms:
 vars:
 n, n1, n2 : Natural;
 p : Natpredicate; /* defined below */

formulae:
 Peano1: 0 in Natural;

 Peano2: all n1(ex n2(n2 = succ(n1)));

 Peano3: succ(n1) = succ(n2) -> n1 = n2;

 Peano4: not ex n (0 = succ(n));

 Peano5: all p (p(0) ->
 (all n (p(n) -> p(succ(n)))
 ->
 all n (p(n))));

 ax+_1: all n1, n2(+(n1,succ(n2)) = succ(+(n1,n2)));
 ax+_2: all n1 (+(n1,0) = n1);

end

As usual, + is more commonly used as infix, so we will write 3 + 4 instead of +(3,4)...

2 Notice that, in a SHOT class, it would be possible to separate items from operations without
explicitly using keywords items and operations (items never include types that depend on the
enclosing class, while operations always do). However, the keywords help clarify the role of class
elements, hence their introduction, despite the fact that they are redundant.

 21

Class NatPredicate defines the set of all predicates on natural numbers.

class NatPredicate
items:

TI v(Natural) : Bool;

end

We can define a useful shortcut for classes C with exactly one item i: given an
instance c of type C, instead of writing c.i, we decide to simply write c, since c.i
in SHOT is a projection operation, but if there is only one item, we project on the
whole class. Hence in axiom Peano5 in class Natural we write p(n) instead of
p.v(n).

A new version of the Invoice class, with a copy operation (the copy operation is
partial, because it may not always be invoked: when it is invoked, it returns a copy of
the Invoice):

class Invoice
visible: sr_num, amount, date;
items:
 TI sr_num : Natural;
 TI amount : Real;
 TI date : Date;

operations:

 TD partial copy(Invoice) : Invoice;

axioms:
 vars:
 i1, i2: Invoice;

 formulae:
 sr_num_unique: all i1, i2(i1.sr_num = i2.sr_num -> i1 = i2);

 copy_def: copy(i1) = i2
 ->
 i1.sr_num <> i2.sr_num &
 i1.amount = i2.amount &
 i1.date = i2.date;
end

An Invoice_DB object has an event such that, when it occurs, a copy of a certain
invoice is made:

class Invoice_DB
visible: copy_invoice;
items:
 TD invoices(Natural) : Invoice;
 event copy_invoice(Natural);

axioms:
 vars:
 n1, n2 : Natural;
 i: Invoice;

 formulae:
 copy_invoice_def: copy_invoice(n1) &
 Invoice.copy(invoices(n1)) = i
 ->
 ex n2(n2 <> n1 & NowOn(invoices(n2) = i);
end

 22

A new version of the Sensor class, with a destroy command (when the sensor is
destroyed, it stops working for the rest of the temporal domain):

class Sensor
visible: measure, limit, over_limit, working;
temporal domain: Real;
items:
 TI sr_num: Natural;
 TD total measure: Real;
 TI limit: Real;
 TD over_limit : boolean;
 TD working : boolean;

 event destroy;

axioms:
 vars:
 s1, s2: Sensor;

 formulae:
 def_over_limit: over_limit <-> measure > limit;
 sr_num_unique: all s1, s2(s1.sr_num = s2.sr_num -> s1 = s2);

 destroy_def: destroy -> AlwF(not working);
end

Notice that neither class Sensor, nor class Controller as declared in Section 3 have to
be modified if one switches from the lambda calculus semantics to the set theory
semantics.

7 Genericity
HOT/SHOT classes can be parametric with respect to values of classes and with
respect to classes. The header of a generic HOT/SHOT class has the following
syntax:

class <class_name> (<par_decls>)

where nonterminal <par_decl> is defined as follows:

<par_decls> := <par_decl>; <par_decls> |
 <par_decl>
<par_decl> := const <par_name> : <par_type> |
 domain <par_name>

For example, the following declarations are admissible in HOT/SHOT:

class NaturalRange (const lower_bound : Natural,
 const upper_bound : Natural)
...
end

class Stack (domain ObjType)
...
end

class MaxDepthBinaryTree (const max_depth : Natural,
 domain ObjType)
...
end

It probably makes sense to allow users to define some constraints on the parameters
passed to the class (for example, one might require for class NaturalRange that
the upper bound must be greater than or equal the lower bound, or, for class

 23

MaxDepthBinaryTree, one might require that a total order is defined for type
ObjType), but we leave this topic to further revisions of HOT/SHOT.

8 Conclusions and future work
This document introduced a revised version of the TRIO specification language, one
in which the concepts of type and class coincide.
We feel that the resulting language is extremely compact and clean, meaning that it is
based on a small set of core concepts, and every other concept is derived from it.

A few issues have not been tackled in this document (or have been analyzed only
superficially), but will be dealt with in the future.
Most notably, a more thorough discussion of genericity is in order, as we gave only a
brief idea of how the new type system makes the concept of generic classes simpler
with respect to usual TRIO.

In addition, we feel that the compactness and simplicity of its core is an important
asset of the HOT/SHOT language. In particular, we intend to exploit these important
characteristics to rigorously introduce the notions of inheritance and subtyping in
HOT/SHOT.
In fact, we feel that, while the concepts of inheritance and subtyping have been
studied for many years now, and many languages (programming or not) include a
notion of either (or both) of them, the way they have been dealt with is still largely
unsatisfactory.
More precisely, we plan on introducing subtyping in HOT/SHOT as a constrained
(semantic) variant of inheritance.

Finally, the concepts of inheritance and subtyping will evolve into a notion of
refinement for HOT/SHOT classes, which will add a method on top of the rigorously-
defined aforemenetioned ideas.

 24

9 References
[And86] P. B. Andrews. An Introduction to Mathematical logic and type theory: to truth

through proof. Academic Press. 1986.

[C3M399] Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P. and

Morzenti, A. 1999. From Formal models to formal based methods: an

industrial experience, ACM Transactions on Software Engineering and

Methodologies 8, 1, 79-113.

[CPRM03] A. Coen-Porisini, M. Pradella, M. Rossi, D. Mandrioli. A Formal Approach for

Designing CORBA-based Applications, ACM Transactions On Software

Engineering and Methodology, vol. 12, n. 2, April 2003.

[Men97] E. Mendelson. Introduction to Mathematical Logic. Lewis Publishers, 4th

edition, 1997

[OS99] S. Owre, N. Shankar. The Formal Semantics of PVS. Technical Report CSL-

97-2R. SRI International. March 1999.

10 Appendix A: Invoice and Sensor revised
Section 6 introduced new operations (in set theory terms) to the Invoice and
Sensor classes that were absent in their original definitions given in Section 3. This
appendix presents how the original declarations of Section 3 could be modified to
include the new items, if the semantics of HOT is given in terms of typed lambda
calculus.

The new version of the Invoice class, with a copy operation (the copy operation
is partial, because it may not always be invoked: when it is invoked, it returns a copy
of the Invoice):

class Invoice
visible: sr_num, amount, date;
items:
 TI sr_num : Natural;
 TI amount : Real;
 TI date : Date;

 TD partial copy : Invoice;

axioms:
 vars:
 i1, i2: Invoice;

 formulae:
 sr_num_unique: all i1, i2(i1.sr_num = i2.sr_num -> i1 = i2);

 copy_def: i1.copy = i2
 ->
 i1.sr_num <> i2.sr_num &
 i1.amount = i2.amount &
 i1.date = i2.date;
end

 25

An Invoice_DB object has an event such that, when it occurs, a copy of a certain
invoice is made:

class Invoice_DB
visible: copy_invoice;
items:
 TD invoices(Natural) : Invoice;
 event copy_invoice(Natural);

axioms:
 vars:
 n1, n2 : Natural;
 i: Invoice;

 formulae:
 copy_invoice_def: copy_invoice(n1) &
 invoices(n1).copy = i
 ->
 ex n2(n2 <> n1 & NowOn(invoices(n2) = i);
end

A new version of the Sensor class, with a destroy command (when the sensor is
destroyed, it stops working for the rest of the temporal domain):

class Sensor
visible: measure, limit, over_limit, working;
temporal domain: Real;
items:
 TI sr_num: Natural;
 TD total measure: Real;
 TI limit: Real;
 TD over_limit : boolean;
 TD working : boolean;

 event destroy;

axioms:
 vars:
 s1, s2: Sensor;

 formulae:
 def_over_limit: over_limit <-> measure > limit;
 sr_num_unique: all s1, s2(s1.sr_num = s2.sr_num -> s1 = s2);

 destroy_def: destroy -> AlwF(not working);
end

