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Abstract—When dependability of systems with a large num-
ber of components is a concern, being able to model and
analyze their properties, especially non-functional ones, in a
formal and automated way becomes essential. Often, however,
the application of formal methods and automated reasoning
is seen by practitioners as complex and time consuming.
Compositional techniques can help modify this belief.

In this paper we show how a compositional modeling
and verification technique can be applied to the analysis of
distributed systems with numerous interacting nodes. We auto-
mate the proof by exploiting a SAT-based tool. We demonstrate
the validity of the resulting approach by applying it to an
autonomic service-based system that manages, in a coordinated
peer-to-peer manner, electricity consumption in a geographical
area. In particular, we show that in this case the time needed
for performing the proof is remarkably shorter than in the
case in which we adopt a non-compositional approach.

Keywords-compositionality, formal models and proofs, auto-
nomic distributed systems

I. INTRODUCTION

Highly-distributed systems — such as those that are
peer-to-peer, pervasive, or ubiquitous — are typically large
systems composed of many elements interacting with one
another. When dependability for these systems is a concern,
being able to model and analyze their properties, especially
non-functional ones, in a way that is as formal and as
automated as possible, becomes essential. In these cases, we
need to make sure that all possible evolutions of the system
do not lead to some invalid or incorrect state.

In the literature various approaches have been proposed
to address the issue of modeling and analyzing software-
intensive systems. Besides the adoption of general-purpose
languages such as those based on logic, on state automata,
or on some calculi [1], some authors have suggested the
usage of specific languages called Architectural Description
Languages (ADLs) [2] and of their associated tools. As
discussed in [3], such languages and related tools are not
always sufficient to describe and to prove properties of
systems that evolve over time in terms of the number of
components. In general, formal languages are suitable when
the number of components to be considered is relatively

small. For large numbers of components, the time needed for
the proofs tends to increase significantly and easily becomes
too long to be manageable. The problem becomes even more
complex when the number of components changes over time.

Compositional techniques can help address these issues.
In this paper, using the compositional framework in-

troduced in [4] as foundation, we present a logic-based
technique for the modeling and verification of systems
made of a large number of interacting components, such
as distributed systems with numerous nodes. The technique
is supported by a fully-automated SAT-based tool, which is
used to carry out compositional proofs. We demonstrate the
validity of the resulting approach by applying it to model and
analyze a significantly large embedded and service-based
system that manages, in a coordinated peer-to-peer manner,
the consumption of electricity in a certain geographical area.
In particular, we show that in this case the time needed for
performing the proof in the presence of a high number of
instances is remarkably shorter than in the case in which we
adopt a non-compositional approach.

The paper is structured as follows: Section II introduces
the TRIO temporal logic, the Zot tool that we use for the
analysis, and the compositional framework of [4]. Section
III presents the modeling guidelines enabling the usage of
compositional analysis for distributed systems. Section IV
and V describe the case study and its formalization in terms
that make it amenable to compositional verification. Section
VI presents the compositional verification and compares its
performances with those of a non-compositional proof. Sec-
tion VII discusses related works and Section VIII concludes.

II. BACKGROUND: TRIO AND ZOT

Our compositional modeling and verification approach is
based on TRIO [5], a general-purpose formal specification
language suitable for describing complex real-time systems,
including distributed ones. TRIO is particularly interesting
for us as its modularization mechanisms foster the adoption
of a compositional modeling approach, which, in turn, is
conducive to the development of compositional verification
techniques [4]. TRIO is a first-order linear temporal logic
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that supports a metric on time. TRIO formulas are built out
of the usual first-order connectives, operators, and quanti-
fiers, as well as a single basic modal operator, called Dist,
that relates the current time, which is left implicit in the
formula, to another time instant: given a time-dependent
formula F (i.e., a term representing a mapping from the time
domain to truth values) and a (arithmetic) term t indicating
a time distance (either positive or negative), the formula
Dist(F, t) specifies that F holds at a time instant whose
distance is exactly t time units from the current instant.
Dist(F, t) is in turn also a time-dependent formula, as its
truth value can be evaluated for any current time instant,
so that temporal formulas can be nested as usual. While
TRIO can exploit both discrete and dense sets as time
domains, in this paper we assume the standard model of
the nonnegative integers N as discrete time domain. For
convenience in the writing of specification formulas, TRIO
defines a number of derived temporal operators from the
basic Dist, through propositional composition and first-order
logic quantification. Table I defines those used in this paper.

OPERATOR DEFINITION

Past(F, t) t ≥ 0 ∧ Dist(F,−t)
Futr(F, t) t ≥ 0 ∧ Dist(F, t)

SomF(F ) ∃d ≥ 0 : Futr(F, d)

Alw(F ) ∀d : Dist(F, d)

WithinF(F, t) ∃d ∈ [0, t] : Futr(F, d)

Since(F,G) ∃d > 0 : Past(G, d) ∧ ∀t ∈ (0, d) : Past(F, t)

NowOn(F ) Futr(F, 1)

Table I
TRIO DERIVED TEMPORAL OPERATORS

The TRIO specification of a system consists of a set of
basic items, which are primitive elements, such as predicates,
time-dependent values, and functions, representing the ele-
mentary phenomena of the system. The behavior of a system
over time is formally described by a set of TRIO formulas,
which state how the items are constrained and how they
vary, in a purely descriptive (or declarative) fashion.

To specify large and complex systems, and to support
encapsulation, reuse and information hiding at the specifi-
cation level, TRIO has the usual modular constructs such
as classes and modules. The basic encapsulation unit is the
class, which is a collection of parameters, basic items, and
formulas. An instance of a class is, in logical terms, a model
of the class formulas (i.e., an interpretation satisfying the
conjunction of all formulas). More precisely, every TRIO
class C has a set of formulas FC = {φC,k}k that predicate
on its items. A system S in TRIO is described through a
set of classes {Ci}i. In fact, S is itself a TRIO class, which
contains its own formulas FS = {φS,j}j , in addition to those
of its components. Then, a system in TRIO is described
by the conjunction Σ of the formulas of S and of all the
classes it encloses, that is, Σ =

∧
j φS,j∧

∧
i,k φCi,k (see [5]

for more details on the object-oriented features of TRIO).

Section V shows an example of TRIO usage in building
a formal model of the energy-sharing example discussed
informally in Section IV.

The goal of the verification phase is to ensure that the
system S satisfies some desired property R, that is, that
S |= R. In the TRIO approach S and R are both expressed
as logic formulas Σ and ρ, respectively; then, showing that
S |= R amounts to proving that Σ⇒ ρ is valid.

TRIO is supported by a variety of verification techniques
implemented in prototype tools. In this paper we use Zot [6],
a SAT-based bounded satisfiability checker which supports
verification of discrete-time TRIO models. Zot encodes
satisfiability (and validity) problems for discrete-time TRIO
formulas as propositional satisfiability (SAT) problems,
which are then checked with off-the-shelf SAT solvers.
Through Zot one can verify whether stated properties hold
for the system being analyzed (or parts thereof) or not; if a
property does not hold, Zot produces a counterexample that
violates it.

A. Compositional Verification with TRIO

When dealing with a complex problem, such as the
development of a large system, a natural approach to attack
it consists in breaking it up in smaller parts, tackle them
separately, and then piecing them together to attain the de-
sired result. Such an approach is often called compositional,
as the goal is achieved by composing intermediate results.

The goal of the compositional approach to verification in
TRIO is to simplify the proof Σ⇒ ρ by breaking it up into
smaller lemmas to be verified for single components Ci,
instead of the whole system S. The technical framework to
carry out compositional proofs in TRIO has been introduced
in [4]. The compositional approach in TRIO is in the
so-called assume/guarantee mold (see [7, Chap. 4]): the
properties ρi of a component described through a TRIO
class Ci in a system S are proved from the formulas FCi

of Ci, assuming other properties, ACi , formalized through
assumption formulas. Before being able to conclude that ρi
holds in the whole system S, assumption formulas must be
discharged (i.e., proved) through the formulas of S (which
include those of other components). Circularities can occur
when, to prove a property ρi, a property ρj is used whose
validity, however, depends on ρi. Circularities can be the
source of inconsistencies; for this reason, [4] defined an
inference rule to soundly prove properties of systems in
which certain kinds of circularities arise. In addition, it
introduced a sequence of steps through which compositional
reasoning can be carried out on TRIO specifications, both in
presence and in absence of circularities among properties.

The compositional framework originally defined in [4]
was implemented in the PVS theorem prover. This allowed
us to check the correctness of the compositional proofs, but
the process of proving the properties required a fair amount
of interaction with the tool.
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III. USING COMPOSITIONALITY FOR
SYSTEMS WITH MANY COMPONENTS

Systems with a modular structure are prime candidates to
be modeled and analyzed using compositional techniques.
Distributed systems, which are typically made of several
components interacting with each other, are intrinsically
modular. We focus in particular on peer-to-peer, pervasive
and ubiquitous systems as they usually feature a large
number of components of a limited number of types. In these
kinds of systems (albeit not only in them), components are
usually developed with little or no assumptions on the exact
physical structure of the overall system, and their interaction
with the rest of the system is entirely confined to their in-
terfaces. In this section, using the compositional framework
outlined in Section II-A as the theoretical foundation, we
describe a formal approach to the modeling and verification
of systems with the characteristics mentioned above: a large
number of components, few types, and whose interaction
with the outside world is encapsulated within their inter-
faces. The approach is supported by Zot in a fully automated
way. As Section VI shows, the compositional nature of
the approach allows us to mitigate the drawbacks of the
high computational complexity typical of fully automated
verification techniques, and to analyze properties of systems
with hundreds of components using a reasonable amount of
computational resources.

In our approach, every component c of the system is
described by a set of local properties Lc = {λc,k}k (i.e.,
properties concerning phenomena of the component c). The
complete description of a system S is given by all properties
of its components, plus the set of its own global properties
G = {γj}j . We express properties through sets of suit-
able formulas {φC,k}k and {φS,j}j of corresponding TRIO
classes. With a slight abuse of notation, let us use {λc,k}k
and {γj}j instead of the more precise {φC,k}k and {φS,j}j .
Thus, the complete formal model of system S is simply
given by the logical conjunction Σ =

∧
j γj ∧

∧
c,k λc,k.

We identify several kinds (i.e., sets) of local properties in
a component:
• internal properties Ic, which describe features of the

component hidden outside of the component itself;
• shared properties Sc, which describe features of the

component related to its interaction with the outside
world;

• assumptions Ac, which describe conditions that must
hold on the interaction between the component and the
outside world for the component to operate correctly.

Then, Lc = Ic ∪ Sc ∪ Ac. Shared properties and assump-
tions differ from a methodological point of view in that
shared properties must be enforced by the component itself
(i.e., they hold if the component behaves properly), while
assumptions are enforced by the rest of the system (i.e.,
they hold if the rest of the system behaves properly). Shared

properties and assumptions are part of the interface of a
component, as their role is to define, from the component’s
point of view (i.e., locally), its interaction with the rest of
the system. Global properties typically describe the actual
structure of the system (e.g., the number and types of
components it includes), coordination mechanisms among
the various components (e.g., sending and delivering of
messages between elements of a distributed system), and
any other global constraint and domain assumption needed
to fully characterize the system. Section V shows formaliza-
tions of different kinds of properties for the system studied
in this paper.

As mentioned in Section II, the goal of system verification
is to show that Σ⇒ ρ holds (in logical terms, that it is valid),
where ρ is the putative property that one wishes to check.
In TRIO terms, this means proving that the following TRIO
formula is valid.1

Alw(G) ∧
∧
c

Alw(Ic ∧ Sc) ⇒ Alw(ρ) (1)

This check can be performed automatically by the Zot
tool described in Section II. This straightforward process is
dubbed “non-compositional verification” in the remainder.
However, Formula 1 is quite large, and automated decision
procedures have an inherently intractable computational
complexity. In fact, the experiments reported in Section
VI show that non-compositional verification is practically
feasible only for systems with few components.

The compositional approach to verification tackles these
limits by breaking Formula 1 into simpler ones such that:
(a) successfully checking the simpler formulas guarantees
that (1) is valid; (b) the overall effort to tackle the simpler
formulas is smaller than the effort to check (1) at once.
Local assumptions As are used to enhance the de-coupling
between the various modules. Then, compositional verifica-
tion reduces to the steps in the following inference rule.

1) Proof of local properties: check that every module
c satisfies locally some suitably-chosen property ρc
under suitable local assumptions, i.e., check the valid-
ity of Alw(Ic ∧ Sc ∧ Ac)⇒ Alw(ρc). If components
belong to a limited number of types, these proofs can
be carried out just once for each type of component,
thus saving verification effort.

2) Discharging phase: check that the assumptions local to
every module are satisfied at system level, i.e., check
the validity of Alw(G)⇒ Alw(Ac) for all c.

3) Proof of global properties: check that the conjunction
of the local properties subsumes global property ρ, i.e.,
check the validity of

∧
c Alw(ρc)⇒ Alw(ρ).

One can prove that the above steps are equivalent to
checking (1), hence compositional verification is sound (and
trivially complete, see [4], [8]).

1AssumptionsAs are implied by G and the internal and shared properties
Sc′ , Ic′ of each component c′, if the model is correct.
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Notice that the compositional verification approach we
envisage can be natually supported by the possibility offered
by logics of composing models through conjunction of
formulas. Suppose, for example, the system model Σ is made
of two parts Γ and ∆, i.e., that Σ = Γ ∧ ∆. If one can
show (e.g., through the Zot tool) that Γ ⇒ ρ, then it can
be trivially concluded that also Σ ⇒ ρ. However, if Γ and
∆ are formulas of comparably large size, checking whether
Γ ⇒ ρ is valid is computationally lighter than checking
whether Σ⇒ ρ is valid.

The 3-step compositional inference rule described above
is non-circular, as there are no circular dependencies among
formulas in the proofs of steps 1–3. In our (and other
researchers’ [9]) experience non-circular rules, even if less
challenging from the theoretical perspective when compared
to circular rules, can in practice permit a very efficient and
effective verification process.

Depending on the amount of verification carried out at
the three steps, results obtained through verification are
more or less robust to changes made to the model (which
might reflect changes in the actual system, or different
configurations to be analyzed). In fact, if the vast majority
of proofs is done in step 1 and a component model changes,
the re-verification effort is small, as only the part of step 1
concerning the portion of the system that has changed has
to be re-done, and steps 2 and 3 are light. If, instead, proofs
are mainly carried out at step 3, a change in a component
model entails that a significant re-verification effort must
be carried out, as the savings in step 1 are small. Ideally,
since the classes of distributed systems targeted in this paper
are often characterized by a high dynamism, for example
due to the fact that components can frequently join/leave
the system, we would like the verification process to be at
component-level as much as possible, so that the analysis is
the least affected by changes in the model. The reader should
be warned that obtaining a suitable decomposition for a
model is an ingenuity-intensive task that can be burdensome.
However, when this is achieved, the verification process can
speed up considerably, thus allowing users to use verification
as an important tool to guide the design of the system.

Let us stress that we do not advocate compositionality
as a “silver bullet” to solve the verification problem for
large systems. In fact, while a compositional approach can
be beneficial in this sense, sometimes, as argued in [10]
and [4], the proofs carried out in the three-step process above
are not significantly simpler than showing that Σ ⇒ ρ.
This can occur for example when the discharging phase
is complex enough that it balances any gains obtained by
conducting part of the verification process at the component
level. Another reason might be that the number of proved
local properties ρc is comparable to the number of properties
in Lc. Also, when the system is made of many different
types of components with few instances each, the number
of local properties ρc to be proved increases, thus reducing

the benefits of employing a compositional approach.

IV. THE ENERGY-SHARING CASE-STUDY

The energy-sharing case study targets energy sharing
among residential homes. It relies on the observation that
while energy consumption in a building is not constant all
the time, the way the electrical power distribution system
is organized makes any change quite difficult to handle.
In general, from the point of view of the energy provider,
unforeseen peaks are difficult to manage, unless the produc-
tion as well as the distribution system to each consumption
unit is designed by overestimating the consumption. In Italy,
the issue is currently addressed by having meters installed
at each site, which check for power consumption and stop
the provision of electricity if the consumption goes above
a certain threshold. In the line of the principle that sharing
resources within social communities helps sustainability, we
could envisage a more dynamic solution that is able to
internally auto-adapt, to some extent, to the variations of
power consumption at the various individual sites that belong
to the community. This helps in guaranteeing that the overall
consumption remains within some established limits.

We have developed a community of sites each controlled
by some software component in charge of monitoring the
power consumption within a site and of requesting and
offering help to the other sites when needed. Each site
can consume more than its threshold provided that, at the
same time, there exist some other sites consuming less and
available to lend part of their threshold. The overall goal of
optimizing the energy consumption is not achieved through
a centrally-supervised execution, but it emerges at system-
level from the collaboration among various components.

The system is described in [11] and is based on an
autonomic infrastructure and architectural model called
SelfLets. According to the SelfLets model a software
system is composed of various autonomous elements, each
of which is a SelfLet. Every SelfLet is defined in terms
of: 1) a main behavior that is continuously executed by the
component, 2) a number of other behaviors that can be exe-
cuted in parallel with the main behavior and are triggered on
demand by the component itself or by its neighbors through
a service call, and 3) an autonomic policy that defines
some reactions to abnormal situations that can occur during
the life-time of the SelfLet. The reactions include the
possibility of changing the main behavior, disabling/enabling
the execution of the other behaviors, disabling/enabling the
interaction with some neighbors, etc. Designers program the
behaviors using UML state diagrams (with some restrictions
that have been introduced to formalize their semantics) and
the autonomic policy using the Drools [12] rule language.

For the sake of brevity we do not provide many details
on the SelfLets approach, but we briefly describe the be-
havior of the components of the electricity-sharing example,
which are modeled and analyzed formally in the rest of this
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paper. Figure 1 shows the main behavior of an Electricity-
Sharing SelfLetṠtate needSenseConsumption indi-
cates that the SelfLet needs to sense the current energy
consumption; for brevity we do not discuss how this is
achieved in the implementation.

Figure 1. Main behavior of the Electricity SelfLet.

Once data about consumption have been gathered, three
possible scenarios can take place: the consumption is
safely below the threshold (consumption_normal),
the consumption is dangerously close to the threshold
(consumption_lack) or it is greater than the threshold
(consumption_over). Both a normal consumption and
an over consumption eventually restart the SelfLet in
the needSenseConsumption state, possibly after an
handling an exception in the case of over consumption.

The most interesting state is lack. In this state a request
for the service named thresholdIncrease is issued.
Such a service can be offered by some other SelfLet
whose current energy consumption is well below the thresh-
old. We have implemented a specific autonomic policy that
sets the thresholdIncrease service as executable by
the SelfLet when the consumption is low, and disables it
when the consumption is high. This policy implements the
idea that a SelfLet can “lend” part of its threshold only
when it does not need all of it. The policy is composed of one
rule called “changed consumption reaction” that is triggered
when the consumption property is updated. The behavior
implementing service thresholdIncrease offers part
of its threshold to the requester according to the formula
output = ((threshold− consumption)/2); then, the offer-
ing SelfLet can lend only part of its unused threshold,
limiting the possibility that it will soon enter a lack state.

From the deployment point of view, the system is
composed of an unlimited number of Electricity-Sharing
SelfLet replicas, each of them installed in some location
(home, industrial site, ...) that is participating to the energy
sharing. The various replicas are connected through some
network so that they can interact to exchange their thresh-
old. The model of Section V formalizes the fundamental
behavioral aspects of SelfLets sketched in this section.

V. THE ENERGY-SHARING EXAMPLE IN TRIO
The formal SelfLet model is developed with a com-

positional approach by exploiting TRIO’s modular features.
This amounts essentially to: identifying the fundamental
components of the system; describing their internal and

shared properties, according to the distinction drawn in
Section III; and formalizing how they are composed into
a global system. The formal model is centered around a
SelfLet TRIO class describing the fundamental behavior
of a SelfLet through TRIO formulas.2

A. The SelfLet class

According to the distinction introduced in Section III, the
formulas of every SelfLet s are partitioned into three sets
Is,Ss,As. They denote respectively internal, shared, and
assumption properties. Let us start with set Is of formulas
which formalize the behavior that is totally independent of
communication with the environment.
Internal properties Is. A first layer of description con-
sists in the formalization of the state diagram of Figure 1
augmented with some additional states and transitions that
account for the presence of the SelfLet runtime. The
state diagram that is actually modeled in TRIO is shown
in Figure 2. It differs from the original one only for states
normal and wait and for the transitions that connect these
to the other states. State wait introduces a delay in the
re-execution of the main behavior of Figure 1, while state
normal indicates a consumption within the normal range.

Figure 2. The state machine modeled in TRIO.

According to a standard state-based modeling, at any
instant of time the configuration of a SelfLet s
is characterized by the current state, formalized by
time-dependent item sLetState with domain {lack,wait,
over, normal, sense}. Transitions between states are trig-
gered by suitable events. For instance, consider state over
which can be exited while going to state sense. Time-
dependent predicates toSense, toOver represent the events
of going to state sense and state over in the next instant.
Hence, state over is characterized by:

sLetState = over ⇔ Since(¬toSense, toOver) (2)

Similar formulas describe the other states over which
sLetState ranges. In addition to discrete state sLetState,
the overall configuration of a SelfLet is characterized
by the current values of energy consumption and threshold,
formalized by items consumption and threshold ranging

2The complete model used for verification with the Zot tool can be found
at http://se.inf.ethz.ch/people/furia/misc/sct.tgz.
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over the discrete sets [MINC,MAXC] and [MINT,MAXT],
respectively (with MINC, · · · ,MAXT suitable constants).
The state-space of consumption and energy values is parti-
tioned into three sets, represented by the mutually-exclusive
time-dependent predicates cCrit, cOver, cNormal, according
the current values of threshold and consumption. Namely,
cCrit means that the SelfLet is lacking energy, hence
consumption is close to threshold:

cCrit⇔ 95
100

threshold ≤ consumption ≤ threshold (3)

Similarly, cOver holds iff consumption is greater than
threshold; and cNormal holds in the remaining case, i.e.,
when consumption is less than 95% of threshold.

Other internal properties, not shown here, specify how the
values of threshold and consumption are updated over time.
Shared properties Ss. The consumption of a SelfLet
depends on the electricity demand of its appliance at
any given time; we model this conservatively by allowing
consumption to change nonderministically within the range
[MINC,MAXC]. On the contrary, threshold is a “shared re-
source” in that it can only be exchanged among SelfLets,
according to the following shared formulas.

Time-dependent predicates offerTInc and needTInc rep-
resent when a SelfLet signals to other SelfLets that
it offers or needs to receive some threshold, respectively:
whenever the SelfLet is functioning normally and its
threshold is above the minimum, its threshold is offered;
whenever it is lacking threshold, some threshold is needed.

offerTInc ⇔ cNormal ∧ threshold > MINT (4)
needTInc ⇔ cCrit (5)

Predicate offerTInc models the autonomic policy described
in Section IV. Time-dependent predicate exchange(s, s′, δ)
signals when a threshold exchange with amount δ occurs
between SelfLet s and SelfLet s′ 6= s. Time-dependent
predicate exchange is not constrained “locally” by formulas
in Is, Ss, or As because it pertains to the global dynamics
of the system. However, it constrains the local changes to
the threshold, since threshold changes iff it is exchanged:3

∃s′ : exchange
`
s, s′, δ

´
⇔ needTInc ∧ TIncd(δ) (6)

TIncd(δ) ∧ threshold = τ ⇒ NowOn(threshold = τ + δ) (7)

Notice that the exact amount of offered threshold is
chosen nondeterministically (within a fixed range ∆). Hence,
the properties proved in Section VI also hold for the more
constrained policy described in Section IV.
Assumptions As. The local assumption states that whenever
a SelfLet requires a threshold increase, sooner or later
some other SelfLet will offer to help it:

ASSs : needTInc⇒ SomF(∃δ ∈ ∆ : TIncd(δ))

3Predicate TIncd(δ) holds in all those instants in which there is an
increase of δ in the threshold.

In other words, the SelfLet assumes cooperating neigh-
bors, in number sufficient to guarantee that not all
SelfLets will be lacking threshold at the same time.

B. The overall system

The overall system is a collection of Ns SelfLet mod-
ules — i.e., independent instances of the SelfLet TRIO
class — SelfLets[s] with s ∈ [1..Ns]. The overall system
introduces an additional set of global properties G, which
formalize coordination mechanisms among SelfLets.

For any two SelfLets s1, s2, exchange(s1, s2, δ) im-
plies that: (1) s1 increases its threshold by δ, and (2) s2

decreases its threshold by δ.

exchange(s1, s2, δ)⇔
(

SelfLets[s1].TIncd(δ)
∧ SelfLets[s2].TDecd(δ)

)
(8)

In addition, if there are two SelfLets s1, s2 such that
s2 is offering threshold and s1 is requiring it, a threshold
exchange between some two SelfLets occurs within some
Te time units, with Te a suitable constant. This abstract
synchronization mechanism does not require that the pair
of SelfLets exchanging the threshold are the same of the
premises as long as it is a suitable “need/offer” pair.

0@ ∃s1, s2 :
SelfLets[s1].needTInc∧
SelfLets[s2].offerTInc

1A⇒
0BB@

∃s′1, s
′
2, δ ∈ ∆ :

SelfLets[s′1].needTInc ∧
SelfLets[s′2].offerTInc ∧

WithinF
`

exchange
`
s′1, s

′
2, δ
´
, Te

´
1CCA (9)

VI. APPLYING COMPOSITIONALITY:
APPROACH AND FINDINGS

This section presents the properties to be proven and the
outcome of their automated verification, comparing in partic-
ular the non-compositional and compositional approaches.4

While a SelfLet’s threshold and consumption values
are constrained by rules, they interact indirectly in complex
ways. Hence, we would like to ensure that threshold values
do not grow arbitrarily, as a threshold increment can be
performed only when it is required, and it is required only
if the threshold is sufficiently low w.r.t. the consumption.

P1 :
∧

1≤s≤Ns

SelfLets[s].threshold < 2 · SelfLets[s].MAXC

The significance of property P1 is two-fold. First, it estab-
lishes that the restriction to the domain of threshold to a
finite range is without loss of generality, as threshold does
not grow indefinitely anyway. Second, it demonstrates that
SelfLets behave in a fair, “non-greedy” manner, and they
do not hoard threshold, and starve other SelfLets for it.

Another expectation we have on any system of multiple
interacting SelfLets is that they sustain one another in
such a way that the overall system provides a sufficiently

4All tests have been performed on AMD Athlon64 X2 Dual Core
Processor 4000+ with 2 Gb of RAM, Kubuntu GNU/Linux (kernel 2.6.22),
Zot with SBCL v. 1.0.11 and MiniSat v. 2.0.
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high level of service. Property P2 formalizes a significant
aspect of this requirement by demanding that no SelfLet
stays indefinitely in a lack state.

P2 :
∧

1≤s≤Ns

SomF(¬SelfLets[s].cCrit)

Somewhat surprisingly, automatic verification through
Zot showed that property P2, is not a valid property of the
system. This is the case even if the system is initialized
with a sufficient total amount of threshold, so that not all
SelfLets can be lacking at the same time. In fact, counter-
examples produced by Zot showed subtle — yet possible
— unfair scenarios, where two (or more) SelfLets help
each other while completely ignoring a third one, which
cannot exit its lacking state because no one gives it any
threshold. From the counter-examples it can be concluded
that, if the system does not have some kind of fairness
property guaranteeing that, if a SelfLet needs threshold,
it will eventually receive some, property P2 cannot hold.
Since P2 is a desirable property of our system, we seek
suitable further constraints to add to the model, which
make P2 valid. Such constraints must then be reflected
on the actual system implementation, so they have to be
carefully chosen, lest they are unrealizable in practice.
Hence, we avoid constraining a priori the maximum number
of SelfLets that are lacking at any time, nor we intro-
duce a centralized arbiter to ensure fairness of threshold
exchanges, as this would make the whole system no more
highly-distributed, and would probably render compositional
verification mostly ineffective, as much of the proof burden
would be concentrated on the single arbiter, or at system-
level. Instead, we introduce global constraint B ∈ G: every
request for a threshold increase is partially satisfied (by some
unspecified SelfLet) within 2Tr time units (with Tr a
suitable constant).

B :
^

1≤s≤Ns

0@ SelfLets[s].needTInc
⇒

WithinF(∃δ ∈ ∆ : SelfLets[s].TIncd(δ) , 2Tr)

1A
Notice that this does not make P2 vacuously true, as exiting

a lack state requires more than one threshold increase in the
most general case, and multiple threshold exchanges may
interleave subtly. B induces implicitly a maximum number
of lacking SelfLet at any time, but it does not determine
how many. In addition, it is nicely compositional in that it
allows a very effective and clean decoupling of modules (in
the sense used in Section III). Below we verify that P2 holds
for any system of SelfLets that also satisfies B. We will
then identify a weaker constraint that still makes P2 true.

As mentioned in Section III, non-compositional verifica-
tion amounts to using Zot to check the validity of (1) with
P1 and P2 substituting ρ. The results of this process are
summarized in Table II. For each test the table reports: the
checked property (P1 or P2); the number Ns of SelfLets

in the system; the size k of time bounds (as Zot is a bounded
satisfiability checker); the total amount of time (in minutes)
and space (in Mb) needed for executing the proof.

PROPERTY Ns k TIME SPACE
P1 5 10 47.74 566.6
P1 5 20 180.29 616.3
P1 5 30 512.50 948.7
P2 3 10 5.09 186.1
P2 3 20 21.76 368.5
P2 3 30 47.45 551.7
P2 5 10 48.46 568.9
P2 5 20 192.03 616.4
P2 5 30 436.34 917.7

Table II
NON-COMPOSITIONAL VERIFICATION.

The results show clearly that non-compositional verifica-
tion has serious scalability limitations. In practice, the verifi-
cation of systems with more than 5 interacting SelfLets is
already extremely resource-consuming. This is no surprise,
as exhaustive verification techniques suffer from the well-
known state-explosion problem, hence more sophisticated
and ad hoc approaches are required to achieve scalability.
Compositionality provides precisely such scalability.

Let us now apply the generic compositional proof steps
of Section III to carry out the verification of P1 and P2.

The proof of P1 can be carried out entirely locally to the
SelfLet modules, without the need of additional assump-
tions. Intuitively, any SelfLet stops asking for threshold
increases if its threshold is sufficiently high. This behavior
is guaranteed regardless of what other SelfLets do, hence
it can be proved at component-level. More technically, the
verification of P1 reduces to checking the validity of:

Alw(Is) ⇒ Alw(threshold < 2 ·MAXC) (10)

for all s ∈ [1..Ns]. This corresponds to step 1 of Section
III with ρs being threshold < 2 · MAXC for all s. Step
2 is empty because we use no assumptions, and step 3 is
trivial because it is easy to see that

∧
s ρs ≡ P1. Given

that all SelfLet modules are identical, the whole proof
amounts to a single check of (10) for an arbitrary SelfLet
s ∈ [1..Ns]. Hence the verification effort does not depend
on the number of SelfLets Ns in the system, a dramatic
improvement over the non-compositional approach.5

The results of this compositional verification of property
P1 are summarized in Table III; the third column reports
the SCALE factor by which all temporal constants in the
systems are multiplied. Given that the required resources do
not depend on the number of SelfLets Ns, it is possible
to analyze systems with a virtually unlimited number of
SelfLets with very reasonable resources; also notice that
there is no time/space trade-off with respect to the non-
compositional case, which is far worse according to both

5Even if every SelfLet were different than the others, the verification
time would still scale linearly with Ns, as verification would simply entail
repeating step 1 Ns times, since step 2 is empty.

7



measures. Further experiments vary the SCALE and bound
k parameters, which determine the size of formulas for
single SelfLets. While the required verification resources
change, as expected, even the largest attempted tests termi-
nated within reasonable time.

Ns k SCALE TIME SPACE
3 10 1 0.35 46.0
3 30 3 2.68 137.1
3 100 10 36.76 504.3

10 10 1 0.36 46.0
10 20 1 1.20 90.3
10 30 5 2.85 144.2
50 10 1 0.35 46.0
50 20 1 1.22 90.3
50 30 2 2.68 135.8

100 20 1 1.20 90.3
100 30 1 2.60 134.0
100 50 3 7.35 227.7
100 80 1 18.47 349.9
100 80 3 19.91 377.4
100 100 1 29.13 445.3
100 100 3 30.64 454.6
500 20 1 1.20 90.3

Table III
COMPOSITIONAL VERIFICATION OF P1 .

The application of compositionality to the verification
of P2 exploits the local assumption defined in Section V.
Essentially, the system-wide property P2 is split into a set
of single assumptions, each local to each SelfLet; this de-
couples the various SelfLets so that the actual verification
can be done almost entirely at the local level. Then, the three
compositional proof steps of Section III are instantiated into
the following three formulas (for all s ∈ [1..Ns]).

Alw(Is ∧ Ss ∧ As)⇒ SomF(¬cCrit) (11)
Alw(G)⇒ Alw(ASSs) (12)∧

1≤s≤Ns

Alw(SomF(¬SelfLets[s].cCrit))⇒ Alw(P2) (13)

Similarly as for P1, (13) is trivial because it is easy to see
that

∧
s ρs ≡ P2, where ρs is SomF(¬cCrit) for any s in this

case. (12) is typically simple to establish, because B ∈ G
alone subsumes any ASSs. (11) is instead more intricate,
but it can be checked independently of the number Ns of
SelfLets because all SelfLets are identical. Table IV
summarizes the results of this compositional verification of
property P2 for different values of Ns, k, and scale (SC)
factor. For every test, the time and space (T/S) of both steps
1 and 2 (corresponding to (11) and (12), respectively) is
reported, as well as the totals for the whole compositional
verification of P2. This shows that the complexity of the
component-level check of (11) is independent of Ns, as for
P1. On the other hand, the complexity of checking (12)
grows (also) with Ns. As a result, whereas the relative
weight of checking (12) over the whole verification process
is negligible for small values of Ns, it becomes dominant
roughly for Ns > 50. The other parameters k and SC influ-
ence, instead, both verification steps, as they affect the size

not only of the whole interacting system but also of single
SelfLets. In all, the compositional approach allowed us
to verify P2 for systems of significantly large size with
resources similar to those required for only 5 SelfLets
and a bound of 30 in the non-compositional tests.

Ns k SC T/S (11) T/S (12) TOT. T/S
3 10 1 0.37 / 49.3 0.02 / 6.1 0.39 / 49.3
3 30 3 2.88 / 139.2 0.08 / 20.9 2.96 / 139.2
3 100 10 39.06 / 516.3 2.92 / 150.1 41.98 / 516.3

10 10 1 0.36 / 49.3 0.05 / 14.3 0.41 / 49.3
10 20 1 1.30 / 91.3 0.10 / 26.0 1.40 / 91.3
10 30 5 3.09 / 146.7 0.88 / 85.8 3.97 / 146.7
50 10 1 0.36 / 49.3 0.48 / 61.7 0.84 / 61.7
50 20 1 1.30 / 91.3 1.50 / 113.6 2.81 / 113.6
50 30 2 2.79 / 137.2 5.94 / 234.8 8.73 / 234.8

100 20 1 1.33 / 91.3 5.88 / 231.5 7.21 / 231.5
100 30 1 3.01 / 135.5 12.42 / 344.8 15.43 / 344.8
100 50 3 7.76 / 230.5 144.13 / 473.0 151.89 / 473.0
100 80 1 19.24 / 353.0 152.64 / 452.3 171.88 / 452.3
100 80 3 20.77 / 382.0 375.60 / 787.4 396.37 / 787.4
100 100 1 31.21 / 448.5 224.85 / 561.5 256.06 / 561.5
100 100 3 31.83 / 461.2 582.38 / 930.5 614.21 / 930.5
500 20 1 1.43 / 91.3 583.17 / 571.7 584.59 / 571.7

Table IV
COMPOSITIONAL VERIFICATION OF P2 .

We can at this point study P2 and B more deeply.
In particular, one can show that constraint B is strong
enough to guarantee that a SelfLet cannot stay in state
cCrit for more than 10Tr time units. The new property
to be proved becomes, in this case, ∀(1 ≤ s ≤ Ns) :
WithinF(¬SelfLets[s].cCrit, 10Tr) and Zot checks its va-
lidity in 26 minutes for 100 SelfLets, with k = 30.
This check suggests that B is likely stronger than needed to
prove the original P2 property. In fact, if we relax constraint
B by replacing the WithinF operator with SomF (which
entails that the delay with which a SelfLet in need of
threshold receives it is not bounded) we show that property
P2 still holds (Zot checks its validity in 19 minutes for 100
SelfLets, with k = 30). The new constraint that we obtain
can be implemented in the actual system more easily than
the original one. In fact, it is possible to introduce in each
SelfLet a mechanism that, when this SelfLet is in need
of threshold, gradually increases its priority and that, when
it is offering part of the threshold, tends to privilege the
requests from SelfLets with higher priority.

Once the effectiveness of the compositional verification
approach is established, the model can be used to explore
new properties, or to try different system parameters.

An interesting analysis concerns the accuracy of the
discretization introduced in the formal model. Items
consumption and threshold model physical quantities, hence
they should be ideally real-valued items (and the range
of threshold would even be unbounded). However, the
formal model must approximate these real quantities by a
finite set of values in order to make automated finite-state
verification possible. In the experiments discussed so far we
have introduced a rather coarse finitization of the ranges,
where consumption and threshold vary over the finite sets
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of integers [0..5] and [1..11], respectively. This is essentially
the coarsest finitization that does not render the model trivial
(and where in particular SelfLets require more than one
threshold increase to exit the critical range). Therefore, it
may be interesting to extend these ranges in order to make
the formal model less abstract and the finitization finer.

k consumption T/S (11) T/S (12) TOT. T/S
50 [0..8] 12.93/246.8 0.07/14.2 12.99/260.9
50 [0..10] 22.73/316.0 0.06/14.2 22.79/330.2
50 [0..12] 37.76/398.4 0.07/14.2 37.83/412.5
50 [0..15] 173.59/325.2 0.06/14.2 173.65/339.3
70 [0..8] 27.12/329.1 0.11/19.5 27.23/348.6
70 [0..10] 43.75/442.1 0.10/19.5 43.85/461.5
70 [0..12] 168.88/324.9 0.11/19.5 168.99/344.4
70 [0..15] 388.03/437.6 0.10/19.5 388.14/457.1

100 [0..8] 109.33/266.4 0.16/26.5 109.49/292.9
100 [0..10] 238.39/375.6 0.17/26.5 238.56/402.1

Table V
COMPOSITIONAL VERIFICATION OF P2 FOR 3 SELFLETS.

We ran one more set of experiments where we varied the
ranges of consumption and threshold in the compositional
verification of P2; the results are reported in Table V.
In all these experiments we considered a system of just
3 SelfLets, and the range of item threshold is set to
[1..2MAXC], where MAXC is the maximum value for item
consumption. Since we limit the number of SelfLets
in the system, resources needed to prove step (12) in the
compositional proofs are negligible, whereas all effort is
for step (11) which instead depends on the ranges of the
items. The experiments show clearly that the detailed model
is more expensive than the original one in terms of the
verification effort. In particular, non-compositional proofs
are unfeasible even with a mere 3 SelfLets, and one can
scale up to larger ranges only by applying the compositional
technique in the first place. These tests provide even more
evidence of the importance of compositionality in system
analysis, and demonstrate that one can verify non-trivial
system models only if the modularization of the system is
exploited in the verification process as accurately as possible.

A. Findings and threats to validity

The experiment we have presented in this section has
allowed us to identify a subtle problem of its implemen-
tation. The actual system, in fact, has been built assuming
that property P2 would have held without introducing any
specific fairness mechanism. As we have highlighted before,
the first result we have obtained with the analysis has been
the identification of this lack of fairness. The execution of
analyses with various revisions of property P2 and of the
constraint B has allowed us to start reasoning on the issue
also from the perspective of the actual implementation of
the solution. Thanks to the fact that the analysis has been
performed with a fully-automated tool, we have been able
to easily and quickly run the model in various situations and
explore it in depth. Had we adopted the PVS approach used
in [4] such exploration would have required a significant

manual effort and specific analysis skills. The introduction
of compositionality not only for the modularization of the
model, but, mainly, for its analysis, has allowed us to
prove the properties in the presence of a large number
of components. Moreover, we have shown that through
compositionality it is also possible to explore large domains
for variables, provided that the number of components in
this case is kept small.

Of course, some threats to validity need to be investigated
as well. First of all, even if we refer to a system with a large
number of SelfLets, we are only considering a single
type of SelfLet. The results we obtain, however, can be
still considered valid even for a higher number of types, if
this is kept an order of magnitude smaller than the number
of instances and if assumptions As are well designed. As
discussed in Section III, the local proofs will have to be
executed for each type, and therefore, their number will
increase linearly with the number of considered types. An-
other potential threat concerns the limitation in the number
of SelfLets we had to introduce when increasing the
domains of variables. This is due to the inherent complexity
of SAT-based proofs and model checking techniques. How-
ever, the “push-button” approach offered by such techniques
allows us to govern the complexity by varying one parameter
at a time when needed.

VII. RELATED WORK

In the literature, a wide array of compositional inference
rules, which allow one to conclude the validity of a property
of a system from the validity of properties of its components,
have been devised. The interested reader can refer to [7,
Chap. 4] for a survey of some relevant approaches. Despite
the abundance of compositional inference rules, however,
their application to the analysis of large systems remains
spotty. In this paper, with the aid of an automated SAT-
based verification tool, we have been able to prove some
meaningful properties of a large pervasive system.

In recent years, techniques have been developed to
automatically infer assumptions for components modeled
through finite state machines (or transition systems) [13].
They have been successfully applied to the automated com-
positional analysis of autonomous systems [14], though,
in their current state, their practical effectiveness and im-
provements with respect to monolithic verification has been
questioned in [15]. The analysis technique applied in this
paper is automated in the sense that property verification
is carried out through a SAT-based, fully automated, tool,
whereas assumptions have been produced manually. This im-
plies that, currently, the technique used here relies heavily on
the modeler’s expertise; however, as Section VI showed, the
improvements obtained over noncompositional verification
are significant. In fact, we were able to check the validity of
the desired properties for systems with orders of magnitude
more components than those that were analyzable through

9



monolithic verification, while [15] showed that techniques
based on automatic inference of assumptions are often
able to manage only few (if any) more components than
noncompositional verification.

In [16] compositionality is used to guarantee that, in a
middleware-based distributed system, the abstract properties
of the system (which is modeled through transition systems
composed together) that hold when the middleware is not
considered still hold after the latter is introduced in the
model. Along similar lines, [17] uses model checking to
verify properties of a complex system while considering the
constraints of the resources used for its execution. Hence,
the results in [16] and [17] are in a way complementary to
those presented in this paper. In fact, we focus on proving
properties of the system using a very abstract model of the
communication mechanism between components.

VIII. CONCLUSION

We have discussed in this paper on how to apply a com-
positional technique to the proof of properties of systems
with a high number of components. The results we have
obtained referring to the energy-sharing example show that
the approach is remarkably scalable and able to provide
results in a significantly small amount of time even when the
proof involves a high number of components. We have also
shown the advantage of the push-button proof style offered
by Zot. It is surely more user-friendly, compared to a proof
checker, and allows system designers to simplify and speed
up the verification process in many cases.

The energy-sharing example, even though simplified in
this paper, presents interesting characteristics that are com-
mon also to other systems. In particular, it is composed of a
high number (not fixed a priori) of distributed components
that interact with a peer-to-peer logic without any centraliza-
tion point. Moreover, the behavior of each peer evolves over
time depending on actual consumption of energy at the local
site and on the requests coming from the other sites. Thus,
we argue that the specific results we have obtained in this
case can be obtained in other cases, for systems with these
distinguishing features. Clearly, as the reader can guess, if
peers share the same characteristics (i.e., are of the same
type) step 1 of the compositional proof is executed only once
to prove the local properties of all components. Viceversa,
if peers are completely different from each other in terms
of their main characteristics, the step 1 of the compositional
proof will have to be repeated several times to prove the
(different) properties of all peers. This would increase the
cost of the proof in terms of time, but, if the system is well
modularized, it could still be possible to obtain an advantage
from the relatively fast execution of steps 2 and 3.

As future work we plan to consolidate the case study by
enriching its model and verifying new properties. Our long
term objective is to build a general design and verification
environment for the SelfLets autonomic framework.
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