Practical Automated Partial Verification
of Multi-Paradigm Real-Time Models

Carlo A. Furid, Matteo Pradell and Matteo Rossi

! Dipartimento di Elettronica e Informazione, Politecnigdvilano, Italy
2 CNR IENT-MI, Milano, Italy
{furia, pradella, rossi}@let.polim.it
http://home.dei.polimi.it/lastname/

Abstract. This article introduces a fully automated verification teiciue that
permits to analyze real-time systems described using éncamts notion of time
and a mixture of operational (i.e., automata-based) andrig¢ise (i.e., logic-
based) formalisms. The technique relies on the reductiodeureasonable as-
sumptions, of the continuous-time verification problemtsadiscrete-time coun-
terpart. This reconciles in a viable and effective way theseédiscrete and op-
erational/descriptive dichotomies that are often encenauwt in practice when it
comes to specifying and analyzing complex critical systerhe article investi-
gates the applicability of the technique through a signifiexample centered on
a communication protocol. Concurrent runs of the protooefarmalized by par-
allel instances of a Timed Automaton, while the synchraitvrarules between
these instances are specified through Metric Temporal lfogieulas, thus creat-
ing a multi-paradigm model. Verification tests run on thisdmlausing a bounded
satisfiability checker implementing the technique showststent results and in-
teresting performances.

Keywords: Metric temporal logic, timed automata, discretizationhske time,
bounded model checking.

1 Introduction

There is a tension between the standpoints of modeling anerification when it
comes to choosing a formal notation. The ideal modelinguagg would be very ex-
pressive, thus capturing sophisticated features of systera natural and straightfor-
ward manner; in particular, for concurrent and real-timgesms, a dense time model is
the intuitive choice to model true asynchrony. On the ottearch expressiveness is of-
ten traded off against complexity (and decidability), hetie desire for a feasible and
fully automated verification process pulls in the oppositeation of more primitive,
and less expressive, models of time and systems. Discne¢e fior instance, is usually
more amenable to automated verification, and quite matahaigues and tools can be
deployed to verify systems modeled under this assumption.

Another, orthogonal, concern of the real-time modeler ésdhoice between oper-
ational and descriptive modeling languages. Typical exaspf operational notations
are Timed Automata (TA) and Timed Petri Nets, while tempdogics are popular

instances of descriptive notations. Operational and @®aaer notations have comple-
mentary strengths and weaknesses. For instance, tempgicd bre very effective for
describing partial models or requirements about the pasbgh the natural use of
past operators); automata-based notations, on the other hadel systems through
the notions of state and transition, and are typically easgimulate and visualize.
From a modeling viewpoint, the possibility of integratingitiple modeling paradigms
in formalizing a system would be highly desirable.

This paper introduces a verification technique that, undiésisle assumptions, rec-
onciles the dense/discrete and operational/descripibimtbmies in an effective way.
Its goal is to provide a practical means to carry out veriftcabf real-time systems
described using a dense notion of time and a mixture of ojpatand descriptive
notations. This approach both permits to analyze contisdimoe models using fully
automated, discrete-time verification techniques, arahallusers to mix operational
(TA) and descriptive (Metric Temporal Logic, MTL) formatis in the same specifica-
tion. The technique involves an automated translation@bferational component into
temporal logic notation. The resulting MTL model, which deises both the system and
the properties to be verified, is then discretized accorttirige technique introduced in
[9]. The technique is partial in two respects: it can fail toyide conclusive answers,
and only dense-time behaviors with bounded variabilityarified. The most common
approaches to similar verification problems are in fact liggamplementary, and in-
volve translating the logic into automata [2]. Our choiceniginly justified by the fact
that logic formulas are composable through conjunctioriclvfacilitates our ultimate
goal of formally combining heterogeneous models.

In this article, we start by providing a dense-time MTL axatination of TA. Due to
a well-known expressiveness gap between temporal logitaaiomata [13] in general
it is impossible to describe the language accepted by a T@utiir an MTL formula.
What we provide is instead an MTL formalization of thecepting run®of a TA, i.e.,
we model the overall behavior of TA through a set of MTL axiotss well-known
that MTL is undecidable over dense time [4]; however, thistable can be mitigated
in practice through thdiscretizationtechnique introduced — and demonstrated to be
practically appealing — in [9]. The undecidability of derttme MTL entails that the
reduction technique must be incomplete, i.e., there aresciswhich we are unable
to solve the verification problem in a conclusive manner. ey, as shown in [9],
the impact of this shortcoming can be reduced in many praatases. We then show
that this approach yields poor results if done naively. ¢éenve carefully revise the
axiomatization and put it in a form that is much more amenébldiscretization, ob-
taining a set of discretized MTL formulas describing TA rufibese axioms can then
be combined with other modules written in MTL, and with thegerties to be verified.
The resulting model can be analyzed by means of automatecktlistime tools; the
results of this analysis are then used to finally infer rasaiftout the verification of the
original dense-time model. We provide an implementatiosedaon theZot bounded
satisfiability checker [17].

To investigate the effectiveness of the technique, we éxyeted with a signifi-
cant example centered on the description of a communicatiotocol by means of a
TA. Concurrent runs of the protocol are formalized by patalstances of the same

automaton; additionally, the synchronization rules betwvthese instances are formal-
ized by means of MTL formulas, thus building a multi-paradighodel. Verification
tests were run on these models using Zia-based tool. The experimental results are
encouraging, both in terms of performances and in terms affileteness coverage”
of the method.

In fact, our approach aims at providingpeactical approach to the verification of
multi-paradigm models. Hence, we sacrifice completenessiier to have a lightweight
and flexible technique. Also note that, although in this pdpeare the operational for-
malism of choice, the same approach could be applied to ofremational formalisms,
such as Timed Petri Nets.

The paper is organized as follows. Section 1.1 briefly surimegsrsome related
research. Section 2 introduces the technical definiticetsstie needed in the remainder,
namely the syntax and semantics of MTL and TA, and the digatén technique from
[11, 9] that will be used. Section 3 shows how to formalizelibbavior of TA as a set
of dense-time MTL formulas. Then, Section 4 re-examinesakiems and suitably
modifies them in a way which is most amenable to the applinatfdhe discretization
technique. Section 5 describes the example of a simple caveation protocol and
reports on the experiments conducted on it with the SAT-ha&splementation of the
technique. Finally, Section 6 draws some conclusions.

1.1 Related Work

To the best of our knowledge, our approach is rather uniqueimbining operational
and descriptive formalisms over dense time, trading-offifieation completeness
against better performance and practical verificationlt&sOn the other hand, each
of the “ingredients” of our method has been studied in isotein the literature. In this
section we briefly recall a few of the most important resuitthis respect.

Dense-time verification of operational models is an actifelfiand it has produced
a few high-performance tools and methods. Let us mentiaring&tance, Uppaal [15]
for the verification of TA. Although tools such as Uppaal eiph descriptive notation
to express the properties to be verified, the temporal lagiisat is quite simple and
of limited expressive power. In contrast, we allow basic&lll MTL to be freely used
in both the description of the model and in the formalizatidrthe properties to be
verified, at the price of sacrificing completeness of veriftra

MTL verification is also a well-understood research topicllMs known to be
undecidable over dense time domains [4]. A well-known sotuto this limitation re-
stricts the syntax of MTL formulas to disallow the expressaf exact (i.e., punctual)
time distances [2]. The resulting logic, called MITL, islfutlecidable over dense time.
However, the associated decision procedures are rathieuttifo implement in prac-
tice and, even if significant progress has recently been nmasienplifying them [16],
a serviceable implementation is still lacking.

Another approach to circumvent the undecidability of detirse MTL builds upon
the fact that the same logic is decidable over discrete thrfew approaches introduce
some notion of discretization, that is partial reductionhs verification problem from
dense to discrete time. The present paper goes in this idindzy extending previous
work on MTL [9] to the case of TA. A different discretizatioechnique, based on the

notion of robust satisfiability of MTL specifications, hasbeantroduced in [6]. Other
work also deals with notions of robustness in order to guamthat dense-time TA
are implementable with non-ideal architectures [5]. Arotivell-known notion of dis-
cretization is the one based on the concemtigitization[12], which has been applied
by several authors to the practical verification of destugdr operational formalisms.
The interested reader may also see the related work sedt[@hfor a more thorough
comparison of other discretization techniques.

2 Preliminaries and Definitions

2.1 Behaviors

Real-time system models describe the temporal behavioneédasic items and propo-
sitions, which represent the observable “facts” of theaystMore precisely, an itefn
is characterized by a finite domafit (and we writeit : D't) such that at any instant of
timeit takes one of the values id't. On the other hand, a propositipris simply a fact
which can be true or false at any instant of time.

A behavioris a formal model of drace (or run) of some real-time system. Given
a time domairll, a finite setP of atomic propositions, and a finite set of itethsa
behaviorb is a mapping : T — D't x Dz x ... x Dzl x 27 which associates
with every time instant € T the tupleb(t) = (vi,v2,..., vz, P) of item values
and propositions that are true @atBy denotes the set of all behaviors oy for an
implicit fixed set of items and propositiongt)|;: andb(t)|» denote the projection of
the tupleb(t) over the component corresponding to itenand the set of propositions
in 27 respectively. Alsot € T is atransition pointfor behavior if ¢ is a discontinuity
point of the mapping. Depending on wheth€éF is a discrete, dense, or continuous
set, we call a behavior ovér discrete-, dense-, or continuous-time respectively. i th
paper, we consider the natural numbBras discrete-time domain and the nonnegative
real numberd >, as continuous-time (and dense-) time domain.

Non-Zeno and non-BerkeleyDver dense-time domains, it is customary to consider
only physically meaningful behaviors, namely those respgcthe so-called non-Zeno
property. A behaviob is non-Zeno if the sequence of transition point$ dfas no ac-
cumulation points. For a non-Zeno behavipit is well-defined the notions of values
to the left and to the right of any transition point> 0, which we denote a5~ ()
andb™ (t), respectively. In this paper, we are interested in behawidgth a stronger re-
quirement, calleshon-Berkeleynesinformally, a behaviob is non-Berkeley for some
positive constani € R if, for all t € T, there exists a closed interval, u + 4] of
sized such that € [u,u + 6] andb is constant throughout,, v + J]. Notice that a
non-Berkeley behavior (for ang) is non-Zenaa fortiori. The set of all non-Berkeley
dense-time behaviors for> 0 is denoted b)Bf(C Br.,- In the following we always
assume behaviors to be non-Berkeley, unless explicittgdtatherwise.

Syntax and semanticd=rom a purely semantic point of view, one can consider the
model of a (real-time) system simply as a set of behavior8][@yer some time domain
T and sets of items and propositions. In practice, howeveryesystem is specified

using some suitable notation. In this paper system modelsemresented through a
mixture of MTL formulas [14, 4] and TA [1, 2]. The syntax andsantics of MTL and

TA are defined in the following. Given an MTL formula or a TA and a behaviob,

we writeb | p to denote thab represents a system evolution which satisfies all the
constraints imposed hy. If b = u for someb € By, p is calledT-satisfiable; i =

for all b € Br, p is calledT-valid. Similarly, if b = u for someb € Bf(, u is called
x’-satisfiable; ifv |= p for all b € B2, i is calledy’-valid.

2.2 Metric Temporal Logic

Let P be a finite (non-empty) set of atomic propositiofde a finite set of items, and
J be the set of all (possibly unbounded) intervals of the timmdinT with rational
endpoints.We abbreviate intervals with pseudo-arithenetpressions, such as d,
< d, > d,for[d,d], (0,d), and[d, +o0), respectively.

MTL syntax. The following grammar defines the syntax of MTL, whdre J andj
is a Boolean combination of atomic propositions or condgiover items.

=Bl o1Vl o1 Aga|Ur(Br,B2) | Si(Br,B2) | Ri(Br, B2) | T1(B1, B)

In order to ease the presentation of the discretizationnigales in Section 2.4,
MTL formulas are introduced inffat normal form where negations are pushed down to
(Boolean combinations of) atomic propositions, and terapoperators are not nested.
It should be clear, however, that any MTL formula can be ptd this form, possibly
by introducing auxiliary propositional letters [7]. Thedi@temporal operators of MTL
are thebounded untilU; (and its past counterparbunded sinc§;), as well as its dual
bounded releas®; (and its past counterpabbunded triggerT ;). The subscriptd
denote the interval of time over which every operator pratis. Throughout the paper
we omit the explicit treatment of past operators (i55.andT;) as it can be trivially
derived from that of the corresponding future operatorshinfollowing we assume a
number of standard abbreviations, such ag , =, <, and, wherd = (0, c0), we drop
the subscript interval of operators.

MTL semanticsMTL semantics is defined over behaviors, parametricalljnéspect
to the choice of the time domalii. In particular, the definition of the basic temporal
operators is the following:
b(t) =1 U, (61, 02) Iff there existsd € I such thatb(t + d) =1 (2

and, for allu € [0,d] itis b(t + u) =1 /1
b(t) =1 R;(B1, B2) iff forall d e I'itis: b(t+ d) =1 (2 or there exists

au € [0,d) such thab(t + u) Er1 b1
bET ¢ iff forall ¢t € T:b(t) =1 ¢

We remark that a global satisfiability semantics is assulinedthe satisfiability of

formulas is implicitly evaluated ovel time instants in the time domain. This permits
the direct and natural expression of most common real-tpeeifications (e.g., time-
bounded response) without resorting to nesting of tempmedators. In addition, every
generic MTL formulas with nesting temporal operators cariflagtened” to the form
we introduced beforehand by introducing auxiliary proposs; in other words flat
MTL and full MTL are equi-satisfiable .

Granularity. For an MTL formulag, let 7, be the set of all non-null, finite interval
bounds appearing ip. Then, D, is the set of positive valuessuch that any interval
bound inJ; is an integer if divided by.

OPERATOR = DEFINITION
01(B) = U,;(T,5)
OB = Si(T,0)
DI(ﬁ) = RI(Lvﬂ)
0,6 = T/(L.5)
OB = U ie)(B,T) V(=B AR 100)(B: 1))
O(ﬁ) = S(O,+oo)(ﬂ7 T) N (_'E/\ T(O,+oo) (Bs L))
op) = BAQO(B)
ow = BAOB)
AL gy = 106D (v O() 1T = Ray
0:1(51)/\0[0’1]([?2) ifT=IN
_ BLAO—s(B2) fT=Rxo
AL = {ﬂm_l(m) if T— N

Table 1.MTL derived temporal operators

Derived Temporal Operators. It is useful to introduce a number of derived temporal
operators, to be used as shorthands in writing specificgmmmulas. Those used in this
paper are listed in Table 3 € R~ is a parameter used in the discretization techniques,
discussed shortly).

We describe informally the meaning of such derived opesatocusing on future
ones (the meaning of the corresponding past operatorsiig @agvable).(,(3) means
that 3 happens within time intervdl in the future [, () means that holds through-
out the whole interval in the future.@(ﬂ) denotes that holds throughout some non-
empty interval in the strict future; in other wordstifs the current instant, there exists
somet’ > ¢ such thaps holds over(t, ¢'). Similarly, O(3) denotes thaf holds through-
out some non-empty interval which includes the currentimisti.e., over somg, t').
Then,A(f1, 52) describes a switch from conditigh to conditions,, without speci-
fying which value holds at the current instant. On the ottesrcha (51, 52) describes a
switch from condition3; to condition3, such that3; holds at the current instant; more
precisely ifA(81, 52) holds at some instamt A (51, 32) holds over(t — 4, ¢). In addi-
tion, for an itemit we introduce the shorthandl(it,v=,v™) for A(it = v~,it = v™).

A similar abbreviation is assumed far(it,v—, v ™). Finally, we useAlw(¢) to denote
¢ Ay 100y (@) A ﬁ(oﬁﬂo)((b). Sinceb =1 Alw(¢) iff b =1 ¢, for any behaviob,
Alw(¢) can be expressed without nestingpifis flat, through the global satisfiability
semantics introduced beforehand.

2.3 Operational Model: Timed Automata

We introduce a variant of TA which differs from the classidafinitions (e.g., [1]) in

that it recognizes behaviors, rather than timed words [R,E6rrespondingly, input
symbols are associated with locations rather than withsttians. Also, we introduce
the following simplifications that are known to be withous$oof generality: we do
not define location clock invariants (also called stayingditions) and use transition
guards only, and we forbid self-loop transitions.

We introduce one additional variant which does impact esgiveness, namely
clock constraints do not distinguish between differemgiion edges, that is between
transitions occurring right- and left-continuously. Théstriction is motivated by our
ultimate goal ofdiscretizingTA: as it will be explained later, such distinctions would
inevitably be lost in the discretization process, hence iwe them up already.

Finally, for the sake of simplicity, we do not consider adegee conditions, that is
let us assume that all states are accepting. Notice thatimting acceptance conditions
(e.g., Buchi, Muller, etc.) in the formalization would beutine.

TA syntax.For a setC of clock variables, the s@t(C') of clock constraintg is defined
inductively by

Eu=c<klc>k|&GNE&E|&VE

wherec is a clock inC andk is a constant ir)>.
A timed automator is a tuple(X, S, Sy, o, C, E), where:

— Y is afinite (input) alphabet,

— Sis afinite set of locations,

— Sy C Sis afinite set of initial locations,

— a: S — 2% is alocation labeling function that assigns to each locatie S a set
a(s) of propositions,

— C'is afinite set of clocks, and

- E C S x8x2Yx¢(C)is a set of transitions. An edgs, s', 4, £) represents
a transition from state to states’ # s; the setd C C identifies the clocks to be
reset with this transition, anglis a clock constraint over'.

TA semanticsln defining the semantics of TA over behaviors we deviate filoerstan-
dard presentation (e.g., [2, 16]) in that we do not repreBaras acceptors of behaviors
over the input alphabeY, but rather as acceptors of behaviors representing what are
usually calledunsof the automaton. In other words, we introduce automata espac
tors of behaviors over the iterasandin representing, respectively, the current location
and the current input symbol, as well as propositi¢rss | ¢ € C} representing the
clock reset status. This departure from more tradition@s@ntations is justified by the
fact that we intend to provide an MTL axiomatic descriptidiTA runs — rather than
accepted languages, which would be impossible for a wellakmexpressiveness gap
[13] — hence we define the semantics of automata over thigtebdd” state from the
beginning.

Here we sketch an informal description of the semanticsiallyi, all clocks are
reset and the automaton is in stagec Sy. At any given timet, when the automaton is

in some state, it can take nondeterministically a transiti¢sn ', 4, ¢) to some other
states’, only if the last time (before) each clock has been reset is compatible with
constraint{. If the transition is taken, all clocks il are reset, whereas all the other
clocks keep on running. Finally, as long as the automatanasy states, the input has
to satisfy the location labeling functiam(s), namely the current input corresponds to
exactly one of the propositions i(s).

A timed automatomrd = (X, S, Sy, o, C, E) is interpreted over behaviors over
itemsst : S,in : X and propositiond? = {rs. | ¢ € C}. At any instant of time,
st = s means that the automaton is in staten = ¢ means that the input symbol
is o, andrs. keeps track of resets of cloek(we model such resets through switches,
from false to true owice versaofrs.). Letb be such a behavior, and lebe one of its
transition points. Satisfaction of clock constraints et defined as follows:
b(t) Eec<k iff eitherb=(¢) = rs.andthereexists— k < t' < ts.t.b(t') £~ rse;

orb~(t) [~ rs. and there existsa— k <t/ < t s.t.b(t') |= rs.
b(t) Ec>k iff eitherb(t) =rscandforallt — k <t <t:(t) = rs;
orb=(t) = rscandforallt — k < t' <t :b(t') B~ rsc

Notice that this corresponds to looking for the previoustiire propositions, switched
(from false to true or from true to false) and counting timecsi then. This requires a
little “hack” in the definition of the semantics: namely, asfistart reset of all clocks
is issued before the “real” run begins; this is representetrbe instanty,, in the
formal semantics below.

Formally, a behaviob overst : S,in: X, R (withb: R>o — S x X x 2f)isarun
of the automatoml, and we writeb =g, A4, iff:

= 0(0) = (s0,0,U,ccrsc}) ando € a(so) for somesg € So;

— there exists a transition instant... > 03 such thatb(t)|ss = so andb(t)|r = R
forall 0 <t < tspart, b (Estart) = (S0,07, p7) andb™ (tstart) = (sT,0™, p™)
with p~ = Randp™ = ();

— forallt € R>o: b(t)|in € a(b(t)]st);

— for all transition instant$ > tgart Of b|st OF b| g such that—(¢)
andb™(t) = (sT,0F, ph), itis: (s7,sT,A,&) € E,07 € a(s™
p=Ueealrsch pt =p"Lp=(p"\p)U(p\ p7), andd(t) =

Il

|

Q

|
+3

I

2.4 Discrete-Time Approximations of Continuous-Time Speifications

This section concisely summarizes the fundamental reBolits [9] that are needed in
the remainder of the paper, and provides some intuition temu they can be applied
to the discretization problem.

The technique of [9] is based on two approximation functifwrsMTL formu-
las, called under- and over-approximation. The under@ppration function{; ()
maps dense-time MTL formulas to discrete-time formulashsihat the non-validity
of the latter implies the non-validity of the former, overhiawiors ian(. The over-
approximation functiorO; (-) maps dense-time MTL formulas to discrete-time MTL

% In the following, we will assume thats... € (4, 26) for the discretization parametér> 0.

formulas such that the validity of the latter implies theidiy of the former, over be-
haviors inBi. We have the following fundamental verification result, @fhprovides a
justification for the TA verification technique discussedhiis paper.

Proposition 1 (Approximations [9]). For any MTL formulasy,, ¢, and for anys €
Dpy.oo: (1) if Alw(Q5 (¢1)) = Alw(Os (¢p2)) is N-valid, thenAlw(¢1) = Alw(¢p2)
is x°-valid; and (2) ifAlw(Os (¢1)) = Alw(2s (¢2)) is notIN-valid, thenAlw(¢;) =
Alw () is noty?-valid.

Discussion.Proposition 1 suggests a verification technique which Builb formulas
through a suitable composition of over- and under-apprations of the system de-
scription and the putative properties, and it infers thélitgl of the properties from the
results of a discrete-time validity checking. The techeiggiincomplete as, in particu-
lar, when approximation (1) is not valid and approximatighié valid nothing can be
inferred about the validity of the property in the origingstem over dense time.

It is important to notice that equivalent dense-time forasutan yield dramatically
different — in terms of usefulness — approximated disctete formulas. For in-
stance, consider dense-time MTL forméla= D(O_’é)(p) which, under the global sat-
isfiability semantics, says thatis alwaystrue. Its under-approximation 85 (6;) =
Oy (p) which holds for any discrete-time behavior! Thus, we haveuader-approx-
imation which is likely too coarse, as it basically adds nfmimation to the discrete-
time representation. So, if we build formula (1) from Pragios 1 with Q5 (61) in it,
it is likely that the antecedent will be trivially satisfig(becausé€l;s (61) introduces
no constraint) and hence formula (1) will be non-valid, gieg no information to the
verification process. If, however, we modify into theequivalent); = p A 6; we get
an under-approximation which can be written simplygg67) = p, which correctly
entails thatp is always true over discrete-time as well. This is likely aamipetter
approximation, one which better preserves the originaldnieg” of 0, .

3 Formalizing Timed Automata in MTL

Consider a TAA = (X, S, Sy, , C, E); this section introduces an MTL formalization
of the runs ofA over non-Berkeley behaviors, for some> 0. In other words, this
section provides a set of formulas, . . . , ¢ such that, for all non-Berkeley behaviors
bbl=Aiff bl=¢;forallj=1,...,6.

Clock constraints.Given a clock constrairg, we represent by (¢) an MTL formula
such thath(t) | € iff b(t) &= =() at all transition pointg. =(£) can be defined
inductively as:

11 “1 onon

rs(>A<><0k<ﬁrsc> vV O(r5) A D (g, (1se)

(
(rs() AN D(O k)(l’s) \Y 6(“rsc) A E(O,k) (ﬁl’sc)
it

DN
~—
(e

Essentially,= translates guargl by comparing the current time to the last time a reset
for the clocke happened, where a reset is represented by a switching ofdteiotice
that, to compute the approximations of the clock-constrfaimulas, every constart
used in the definition of the TA must be an integral multiplé of

Necessary conditions for state chandeet us state the necessary conditions that char-
acterize a state change. For any pair of states; € .S such that there ark transitions
(siy s, AR, %) € Eforall 1 < k < K, we introduce the following axiom:

A(st, s, 55) = \/ E(fk)/\ /\ (A(ﬂrsc,rsc)\/A(rsc,—'rsc)) (1)

k ceANF

Also, we introduce an axiom asserting that, for any pair afests; # s; € .S such
that(s;, s;, A4,£) ¢ E forany A, ¢ (i.e., for any pair of states that are not connected by
any edge), there cannot be a transition frano s;:

ﬁA(St, TR Sj) (2

Sufficient conditions for state chang€here are multiple sufficient conditions for state
changes; basically, they account for reactions to readipgtisymbols and resetting

clocks. Let us consider input first: the staying conditioewery state must be satisfied
always, so for alk € S the following axiom is added:

st=s = in€a(s) (3)

Then, foreach reset of a clocke C, forall1 < k < K suchtha{s}, s, A% ¢¥) e

E is an edge such thatc A* (i.e., on whichc is reset), the following axiom is intro-
duced (a similar one for the transitionsf. from true to false is also included):

A(—rse,) = \/A st,s¥. s] 4)

Initialization and liveness conditionT he axiomatization is completed by including for-
mulas describing initialization and liveness conditioFtse following axiom, describing
system initialization, is only evaluated @t

ato: /\ rse A Qpo,24) </\ —|rsc> A \/ O(st = so) (5)

ceC ceC s0ESo

Finally, we introduce a “liveness” condition stating thlaé tautomaton must even-
tually move out of every state. Thus, for every state S, if S, C S is the set of
states that are directly reachable frertihrough a single transition the following axiom
asserts that, if the automaton issinit must eventually move to a state §f}:

st=s = 0| \/ st=+ (6)

s'es)

10

Since axiom (6) does not mandate that only some particudéesmust be traversed
infinitely often, this corresponds to the condition thatstéites are acceptirdga Biichi.
The next proposition states the axiomatization correstfe=e [10] for details).

Proposition 2 (MTL TA Axiomatization). Let A = (X, S, Sy, «, C, E) be a timed
automatongy!, . .., ¢ be formulas (1-6) for TA A, and lete B be any non-Berkeley
behavior over itemst : S,in : X and propositions inR. Thenb = A if and only if

bE /\1§j§6 ¢}-4-

4 Discrete-Time Approximations of Timed Automata

While formulas (1-6) correctly formalize the behavior of @8 defined in Section 2.3,
they yield approximations of little use for verification poses, since they are very
likely to produce inconclusive results due to the incongiesss of the technique. To
avoid such problems, instead of computing approximatimestly from axioms (1-6),
we introduce new formulas, which are equivalent to (1-6) eavan-Berkeley behav-
iors, but whose form yields better approximations. In the o this section we first
compute the under-approximation of formulas (1-6) (Secdid), and then their over-
approximation (Section 4.2).

4.1 Under-Approximation

As mentioned above, the form of some of the axioms (1-6) preslunder-approxima-
tions that are ill-suited to perform verification througte tiscretization technique of
[9], due to the inherentincompleteness of the latter.

While the details underlying this issue are outside the sanfpthis article (and
can be found in [10]), let us hint at some of the problems thigearom the under-
approximation of formulas (1-6). First, it can be shown that general,
Qs (A (B1,02)) # Qs (A(B1,02)); since subformulas of the form
A(st = s;,st = s;) are used in (1-6) to describe state transitions, there aoeedé-
time behaviors where such a transition both occurs and dagsoocur, i.e.,
Qs (A(st = s;,5t = 55)) andQs (—A(st = s;, st = s;)) are both true, which is an ap-
proximation too coarse to be useful. Secog(—A (51, B2)) is a very weak formula,
in that it can be shown to be true, in particular, wheneseor 3, are false; then, an-
tecedentgd\ (st = s;, st = s;) in (1-6) are trivially true because it can never be that both
st = s; andst = s; whens; # s;.

To obtain better approximations, in the new axiomatizagwary occurrence of
A(B1,B=2) is replaced witha (51, 82). This entails that formula&'(¢) representing
clock constraints must also be changed?r@g), where = is defined below. Hence,
formulas (1-2),(4) become:

A(st, s;,55) = \/E}(fk) A /\ (A(ﬁrsc,rsc) v A(rsc,ﬁrsc)) 7
k

ceAk

ﬁA(St, Si,Sj) (8)

11

A(ﬁrsw rse) = \/ A (St7 Si—c, Sf) 9
k

e - -
where = is defined as follows:

|

—~

— —
c<k)=rsc AN Qory(mrse) Vo oarse A Qg py(rse)

— —
(c>k)=rse A pg(rse) vV —rse AU p_g)(rse)

] O

It can be shown that, given a non-Berkeley behaviar B2, b |= (1) iff b |= (7),
b (2)iff b = (8) andb = (4) iff b = (9).

Proof. Let us first show that (1) implies (7), so kebe the current instant, assume that
(1) and the antecedeat(st, s;, s;) of (7) hold: we establish that the consequent of (7)
holds. A(st, s;, s;) means thatt = s; att andst = s; # s; att + 6; hence there
must be a transition instant of item st somewhere ift, ¢ + ¢]. Then (1) evaluated
att¢’ entails thatt’ is a transition instant for some propositions|.c 4.~ as well. Let

d € C be anyone of such clocks and assume théts;, —rs;) holds att’. Let us first
assume’ € (t,t + 6); correspondingly, from the non-Berkeleyness assumptign,
holds over(t,t') and-rs; holds over(t', ¢ + 4]. In particular,rsq holds att and-rsy
holds att + 4, so A(rsq, —rsg) holds att. Otherwise, let’ = ¢, sost changes its value
left-continuously at. Then, again from (1) and the non-Berkeleyness assumptign,
also changes its value left-continuouslyyspholds att and-rsy holds att + 4. Finally,

if ¢ =t + 4, st changes its value right-continuouslytitsors, also changes its value
right-continuously, ses; holds att and—rs, holds att+ 4. In all, sinced is generic, and
the same reasoning applies for the converse transitiofrs,, rs,), we have established
that A\ . ,» (A(—rsc, rsc) V A(rsc, rs.)) holds att.

Next, let us establisff(gk) from =(¢%). Let us first consider som& (d < k) such

that6(rsd) A K(Oyk)(ﬁrsd) att’. So, lett” € (t' — k,t') be the largest instant with
a transition from—rs, to rs;. Note that it must actually b€’ € (¢’ — k,t] because
t' —t < ¢ and the non-Berkeleyness assumptiontIfe (¢’ — k,t) C (t — k,t)
thenrsy A ‘5(07k)(ﬁrsd) holds att, hence= (d < k) is established. I#" = ¢ then

rsq switches to true right-continuously atsors, A 6(—|rsd) at ¢ which also entails
i (d < k). The same reasoning applie@(ﬂrsc) A <5(0_’,6)(@) holds att’. Finally,
consider som& (d > k) such tha6(rsd) A E(o,k)(fsd) holds att, thusrs, holds over
(t —k,t). Fromt <¢ +dJwehavet’ +§ —k >t +kso(t' —k+4,¢') C (t—k,t),

—
which shows that] q ;,_ s (rs4) holds att’. The usual reasoning about transition edges
wggld allow us to establish that alsg; holds att’. Since the same reasoning applies

if G(ﬁrsd) A (ﬁ(o_’k) (—rsq), we have established thEt)(d > k) holds att’. Sinced is

generic, we have thﬁ(&k) holds att’.

Let us now prove (7) implies (1), so lebe the current instant, assume that (7) and
the antecedent (st, s;, s;) of (1) hold: we establish that the consequent of (1) holds.
So, there is a transition ef from s; to s; # s; att; from the non-Berkeleyness assump-
tion we have thatt = s; andst = s; hold over[t — §,¢) and(¢, t + 4], respectively. If

12

the transition okt is left-continuous (i.e.st = s; holds att), consider (7) at, where
the antecedent holds. SE?({’“) A Neear (A(mrse,rse) V A(rs., —rs.)) holds att for
somek. Letd € A* be such thak (—rsg, rsy) holds, that is-rs; holds att andrs, holds
att + 4. This entails that there exists a transition paing [t, ¢ + J] of rs;. However

is already a transition point, thus it musttie= ¢; this showsA(—rs4, rs;) atd. Recall
thatd is generic, and the same reasoning applies for the convenssitton fromrs,
to —rsq. If, instead, the transition at is right-continuous (i.est = s; holds att), we
consider (7) at — ¢ and perform a similar reasoning. All in all, we have estdigis
that A\ .. yx (A(7rse, rse) V A(rse, rs.)) holds att.

The clock constraint formul& (¢%) can also be proved along the same lines. For in-
stance, assume that the transitiorstohit ¢ is left-continuous an&_)(rsd) holds att for
somed € C, and consider a constraﬁ(d < k) att. We have thag(oyk)(ﬁrsd) must
holds att, which establishes th& (d < k) holds att. Similar reasonings apply to the
other cases. See [10] for proofs of the other equivalences. a

Then, the axiomatization of TA given by formulas (7-9),(8}6) yields the follow-
ing under-approximations.

A(—rs,rse)

-
(1) = Altsns) = V9 (ZE)) n A v (10)
k cear \ A(rse,—rs.)
where:
— «— «—
Q§ = (C < k) = rse A\ <> [O,k/é]("rsc) Voo—rse A <> [O,k/(s](rsc)
— — —
Qs (E(c>k) = rse Ay ysog(rse) Voorse A Opg gys-9y(—rse)

In addition the following can be proved to hold:

Q5((8)) = —A(st,s;,55) (12)
Q5((9) = A(rse,rse) = \/ A(st, s, s%) (12)
k
Q25(3) =) (13)
ato: Q5((5) = /\ rscAOpy </\ ﬁrsc> A\ ost=s0 (14
ceC ceC S0ESo
Qs((6)) = (6) (15)

4.2 Over-Approximation

While the over-approximation of axioms (1-6) poses lesblgras than their under-
approximation, it must nonetheless be carried out veryfalyeand some modifica-
tions to the axioms are in order in this case, too. Notice thatfollowing equalities
hold:

13

= 05 (=A(B1, £2)) = ~(A(Br1, B2) V A(Br, B2)) if =(B1 A B2) holds.

The over-approximations of the clock constraints (i (=(€))) pose little prob-
lems wher¥ is of the forme < k; however, whert is of the forme > k, they yield
formulas that are unsatisfiable if there are some transitioat reset and whose guard
is ¢ > k. Hence, the definition oE'(¢ > k) must be modified in the following way
(which is equivalent to the previous formulation for nonrBaley behaviors):

_ = — P —
E(e>k) = Ofrse) AN rse) vV O(rse) A U (rse)
Therefore, the over-approximations of the new clock camsts are the following:

_ — — — —
05 (= (e <k)) = Bpoyyrse) A O rys—1(7rse) V Do, (7rse) A O g5y (rse)
05 (Z (¢ = k)) = Oy yy(rse) A Do gystay(rse) V Do 1 (rse) A Do sy (rse)

The over-approximation of formula (1), instead, is very peerification-wise, be-
cause subformulas of the forth (5, 32) such that3;, 82 cannot hold at the same in-
stant produce over-approximations that are unsatisfidhle same problems arise with
the over-approximation of formula (4).

However, similarly to what was done in Section 4.1, it is floiesto rewrite axioms
(1) and (4) so that they yield better over-approximatiorige Two following formulas
are equivalent, over non-Berkeley behaviors, to (1) andrébpectively (see [10] for
equivalence proofs).

6(ﬁrsc) ANO_s(st =s; = rsc)
A(st,sirs5) = \[| SE)ANeenr | v (16)
b 6(rsc) AO_s(st =55 = —rs,)

A(rse,rs.) = \/ (g(st = sF) AO_s(rsc = st = sf)) (17)
k

Intuitively, the equivalence of (1) and (16) can be provetimgpthat, if A(st, s, s;)
holds atinstantin some non-Berkeley behavibbecause a transitign;, s;, A*, £*) €
E is taken, then, for the non-Berkeleynes$ @fmust best = s; throughout(t, ¢ + 4].

As a consequence of (16), for aayg A*, if G(ﬁrsc) att thenrs. holds att+ 9. For the
non-Berkeleyness dfit must be thatD(rs..) holds att, henceA(-rs,, rs.) also holds

att. The C&S@(—'rsc) att is handled in the same way. Similar reasoning can be used
to prove the equivalence of (4) and (17).

14

Finally, formulas (16-17),(2—3),(5-6) yield the followjover-approximations, af-
ter performing some discrete-time simplifications:

05 ((16)) =
. Os (E(Ek)) A
t,55,5;) = \/ Oo,y(rse) A op(st = s = rsc) (18)
cear | \%
Do,17(rse) A Do, (st =55 = —rse)
Os5 ((17)) = A(-rse,rs.) = \/ (5[0,1] (st = sF) A Uio,2) (rsc = st = sf))
k
(19)
0s5((2)) = —(A(st,84,85) V A(st, 84, 85)) (20)
05(3) = 3) (21)
at0: O;5((5) = /\ rse A O (ﬁrsc> Opp,y(st=s0) (22)
ceC ceC 50€So
0s5((6)) = (6) (23)
4.3 Summary

The following proposition, following from Propositions 2-and the results of the pre-
vious sections, summarizes the results of the discrete-dipproximation formulas.

Proposition 3. Let S be a real-time system described by #A= (X, S, Sy, a, C, E)
and by a set of MTL specification formul@s>*}, over items inZ and propositions
in P. Also, let¢PP be another MTL formula over items fuU {st : S,in : X'} and
propositions inP U R. Then:

—if:

J

Alw (¢éo> A 9 A Blazy A 6y A Gaa A i) A [\ (¢>§-“>)

= Alw(Os (¢°™°P))

is IN-valid, thengP™P is satisfied by all non-Berkeley ruhsc Bf(of the system;
—if:

Alw (¢és> A 92y Baoy 1 6wy A bay 1 ey N [\ Os (¢>§-“))
J

= Alw(Qs (¢PP))

is notIN-valid, then¢P™P is false in some non-Berkeley rare Bf(of the system.

15

5 Implementation and Example

We implemented the verification technique of this paper dagimpto theZot bounded
satisfiability checker [17, 18] calletAZot. The plugin provides a set of primitives by
which the user can define the description of a TA, of a set of MXioms, and a set of
MTL properties to be verified. The tool then automaticallyidsithe two discrete-time
approximation formulas of Proposition 3. These are chedétiedalidity over timelN;
the results of the validity check allows one to infer the dii of the original dense-time
models, according to Proposition 3.

The verification process ilAZot consists of three sequential phases. First, the
discrete-time MTL formulas of Proposition 3 are built and &ianslated into a propo-
sitional satisfiability (SAT) problem. Second, the SAT arste is put into conjunctive
normal form (CNF), a standard input format for SAT solversird, the CNF formula
is fed to a SAT solving engine (such as MiniSat, zChaff, ordir).

5.1 A Communication Protocol Example

We demonstrate the practical feasibility of our verificattechniques by means of an
example, where we verify certain properties of the follogwd@mmunication protocol
Consider a server accepting requests from clients to paréocertain service (the
exact nature of the service is irrelevant for our purpodegtjally, the server idgdle in
a passive open state. At any time, a client can initiate aopodtrun; when this is the
case, the server moves tdrg state. Within7; time units, the state moves to a new
state, characterizing the first request of the client fois#r@ice. The request can either
terminate within7; time units, or time-out afte; time units have elapsed. When
it terminates, it can do so either successfulhk)(or unsuccessfullykp). In case of
success, the protocol run is completed afterward, and tiversgoes back to beingle.
In case of failure or time-out, the server moves to a sgwstate for a second attempt.
The second attempt is executed all similarly to the first arith, the only exception that
the system goes back to tidie state afterward, regardless of the outcome (success,
failure, or time-out). The timed automaton of Figure 1 medbk protocof.
We verified the following 5 properties of a single instance¢haf automaton:

1. “If there is a success, the server goes back to idle witpassing through error
states.”

ok Voka = U(koy V kog,idle)

2. “If there is a failure, the server goes back to idle withpassing through success
states.”

ko; Vkoas = U(ok; V oka,idle)
This property is false, and in fact counterexamples areywed in the tests.

4 Since the definition of clock constraints forbids the introtion of exact constraints such as
A = T, such constraints represent a shorthand for the valid dooktraintl> < A < T'+9.

16

2 <T2,S::0/k;\ S<T,A:=0
1

=/

Fig. 1. Timed automaton modeling the communication protocol.

3. “Afull run of the protocol executes in no more thantime units.”
try = O(O,Tg,) (ldle)

This property cannot be verified due to the incompletenetiseafnethod: whether
a run is completed ifi’; /6 time instants depends sensibly on how the sampling is
chosen. However, if we slightly weaken the property by cliagp@s into 75 + § the
method is successful in verifying the property. In the taptbe (verified) property
— modified in this way — is labeled 3'.

4. “The first attempt of the protocol is initiated no laternt®d; + 75 + § time units
after the run has been initiated.”

—
s1 = O2ntmts(try)
5. “Arun is terminated withir{; time units after a successful outcome, without going
through failure states.”
oki = Ugp(n(kor Vkoy),idle)

We also considered concurrent runs\gf > 2 instances of the automaton, synchro-
nized under the assumption that two parallel protocol rhasdre initiated concurrently
either both terminate successfully, or both terminate acsssfully. This is formalized
by the following MTL formula:

V1<i<j<N,: try'Atry! =
U (_‘(tOHtQi \Y, kozi), ok; ‘v Okgi) AU (ﬁ(toutgj Vv kozj), oky? v Okg‘j)
\Y
U (ﬁ(okli v Okgi), touts® V kOQi) AU (ﬁ(oklj \Yi Okgj), touts? V k02j)

17

Correspondingly, we introduce the following two propestte be verified in this
concurrent system.

6. “If at some time one process succeeds and the other fals they have not begun
the current run together.”

oks? Akoy® = Seo0,15) (ﬁ(tryA AtryB), tryd v tryB)

7. “If at some time one process succeeds and the other faitexhtly, then they have
not begun the current run together.”

—
oko A O 0.11) (kOQB) = Som) (=(try? A try®), try? v try?)

5.2 Experimental Evaluation

Tables 2 shows some results obtained in tests Tfot verifying the properties above.
In all tests itisd = 1. For each test the table reports: the checked property;umdar
N, of parallel protocol runs, according to which the discratiians are built; the values
of other parameters in the model (i.&%, 7, T3); the temporal bound of the time
domain (asZot is a bounded satisfiability checker, it considers all tekaviors with
period < k); the total amount of time and space (in MBytes) to perforrchephase
of the verification, namely formula building (FB), trangfimaition into conjunctive nor-
mal form (CNF), and propositional satisfiability checkir®XT); and the total size (in
thousands of clauses) of the propositional formulas the¢ leen checked. The tests
have been performed on a PC equipped with an AMD Athlon64 Xalfore Proces-
sor 4000+, 2 Gb of RAM, and Kubuntu GNU/Linux (kernel 2.6.Zl3Z.ot used GNU
ClLisp 2.41 and MiniSat 2.0 as SAT-solving engine.

The experiments clearly shows that the formula buildingetimusually negligible;
the satisfiability checking time is also usually acceptahall, at least within the pa-
rameter range for the experiments we considered. On theacgnthe time to convert
formulas in conjunctive normal form usually dominates im tasts. This indicates that
there is significant room for practical scalability of ourifieation technique. In fact,
from a computational complexity standpoint, the SAT phasaearly the critical one,
as it involves solving an NP-complete problem. On the otlasmchthe CNF routine has
a quadratic running time.

Another straightforward optimization could be the implenagion of the TA encod-
ing directly in CNF, to bypass theat 2cnf routine. This can easily be done, because
the structure of the formulas in the axiomatization is fixectonclusion, we can safely
claim that the performances obtained in the tests are aetiisf/ in perspective, and
they successfully demonstrate the practical feasibifityuy verification technique.

6 Conclusion

In this paper, we introduced a technique to perform partlfication of real-time
systems modeled with dense time and using mixed operatmadescriptive compo-
nents. The proposed approach is fully automated and implesd®n top of a discrete-
time bounded satisfiability checker. We experimented withoa-trivial example of

18

PR.#N, T1,T>,Ts k FB (time/mem) CNF (time/mem) SAT (time/mem) #K
1 1 3,6,18 30 0.1 min/114.6 Mb 3.9 min 0.3 min/90.2 Mb 520(2
2 1 3,6,18 30 0.1 min/228.6 Mb 7.8 min 0.5min/180.1 Mb 103/7.9
3 1 3,6,18 30 0.2 min/244.3 Mb 9.1 min 0.7 min/195.6 Mb 1112.4
3 1 3,6,18 30 0.1 min/122.5Mb 4.6 min 0.4 min/98.0 Mb 5577
4 1 3,6,18 30 0.1 min/121.4 Mb 4.5 min 0.3 min/97.4 Mb 553(2
5 1 3,6,18 30 0.1 min/122.6 Mb 4.6 min 0.4 min/97.9 Mb 557|3
1 1 3,6,24 36 0.1 min/146.8 Mb 6.3 min 0.5min/117.9 Mb 6691
2 1 3,6,24 36 0.2 min/292.9 Mb 12.5 min 0.9 min/235.4 Mb 1335.2
3 1 3,6,24 36 0.2 min/319.0 Mb 15.4 min 1.2 min/258.6 Mb 1459.0
3 1 3,6,24 36 0.1 min/159.9 Mb 7.6 min 0.7 min/129.3 Mb 731{3
4 1 3,6,24 36 0.1 min/155.0 Mb 7.2 min 0.5 min/126.4 Mb 7085
5 1 3,6,24 36 0.1 min/160.3 Mb 7.8 min 0.9 min/129.8 Mb 7313
1 1 48,24 40 0.1 min/171.9 Mb 8.5 min 0.7 min/136.2 Mb 7855
2 1 4,8,24 40 0.2 min/343.1 Mb 17.2 min 1.2 min/271.9 Mb 1567.7
3 1 4,8,24 40 0.3 min/372.1 Mb 21.0 min 1.7 min/297.3 Mb 1705.1
3 1 4,8,24 40 0.1 min/186.5Mb 10.2 min 0.9 min/148.9 Mb 854(6
4 1 4,8,24 40 0.1 min/184.6 Mb 10.3 min 0.8 min/148.3 Mb 846.6
5 1 4,8,24 40 0.1 min/186.9 Mb 10.4 min 1.1 min/148.9 Mb 8545
1 1 3,15,90 105 2.2 min/819.6 Mb 203.8 min 20.0 min/674.7 Mb2638
2 1 3,15,90 105 4.4 min/1637.3 Mb 389.2 min 31.3 min/1352.57945.2
3 1 3,15,90 105 5.6 min/1945.7 Mb 561.2 min 61.1 min/821.2 Mb0328
3 1 3,15,90 105 2.9 min/974.0 Mb 286.7 min 61.1 min/410.9 MB5%4.2
4 1 3,15,90 105 2.3 min/864.5 Mb 224.8 min 14.4 min/381.0 Mb4248
5 1 3,15,90 105 3.2 min/981.1 Mb 291.4 min 342.5 min/463.4 N8B140
6 2 3,6,18 30 0.2 min/241.6 Mb 16.7 min 1.6 min/192.4 Mb 1098.9
7 2 3,6,18 30 0.2 min/244.9 Mb 17.3 min 1.8 min/194.4 Mb 1114.4
6 2 3,6,24 36 0.2 min/313.7 Mb 28.7 min 2.4 min/254.5Mb 1432.0
7 2 3,6,24 36 0.2 min/317.6 Mb 31.0 min 2.7 min/257.5Mb 1450.5
6 2 4,8,24 40 0.3 min/366.3 Mb 39.5 min 3.5min/294.1 Mb 1675.3
7 2 4,8,24 40 0.3 min/371.5Mb 38.2 min 3.8 min/297.0 Mb 1700.1
6 4 3,6,18 30 0.3 min/472.3 Mb 61.4 min 5.0 min/377.3 Mb 2145.6
7 4 3,6,18 30 0.3 min/475.5Mb 62.3 min 5.3min/379.3 Mb 2141.1
6 4 3,6,24 36 0.5 min/609.3 Mb 101.6 min 8.7 min/483.6 Mb 2777.
7 4 3,6,24 36 0.5 min/613.2 Mb 103.1 min 9.2 min/486.2 Mb 2296.
6 4 4,8,24 40 0.5min/712.3Mb 139.2 min 12.1 min/577.0 Mb 3854
7 4 4,8,24 40 0.6 min/717.5Mb 141.0 min 12.6 min/580.3 Mb 3279

Table 2. Checking properties of the communication protocol.

19

a communication protocol, where concurrent runs of thequatare synchronized
through additional MTL formulas, hence building a mixed rabd/erification tests
showed consistent results and reasonable performancdstuke work, we intend to
improve the efficiency of the technique by using a pure CNFodimg, and to investi-
gate the use of other operational formalisms, such as tire&driets.

References

10.

11.

12.

13.

14.

15.

16.

17.
18.

R. Alur and D. L. Dill. A theory of timed automata.Theoretical Computer Science
126(2):183-235, 1994.

. R. Alur, T. Feder, and T. A. Henzinger. The benefits of nelgopunctuality. Journal of the

ACM, 43(1):116-146, 1996.

. R. Alur and T. A. Henzinger. Logics and models of real tiesurvey. InProc. of Real-

Time: Theory in Practicevolume 600 olLNCS pages 74-106, 1992.

. R.Alurand T. A. Henzinger. Real-time logics: Complextyd expressiveneskformation

and Computation104(1):35-77, 1993.

. M. De Wulf, L. Doyen, and J.-F. Raskin. Almost ASAP semesitfrom timed models to

timed implementationgrormal Aspects of Computing7(3):319-341, 2005.

. G. E. Fainekos and G. J. Pappas. Robust sampling for MIEBcipations. InProc. of

FORMATS'07volume 4763 of.NCS 2007.

. C. A. Furia.Scaling up the formal analysis of real-time systeRisD thesis, DEI, Politecnico

di Milano, May 2007.

. C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi. Mod®gj time in computing. Tech-

nical Report 2007.22, DEI, Politecnico di Milano, Janua@p?2.

. C. A. Furia, M. Pradella, and M. Rossi. Automated verifmabf dense-time MTL speci-

fications via discrete-time approximation. Pmoc. of FM’'08 volume 5014 oL NCS pages
132-147, 2008.

C. A. Furia, M. Pradella, and M. Rossi. Practical aut@datartial verification of multi-
paradigm real-time models. http://arxiv.org/abs/08883} April 2008.

C. A. Furia and M. Rossi. Integrating discrete- and cardtis-time metric temporal logics
through sampling. IfProc. of FORMATS’06volume 4202 of NCS pages 215-229, 2006.
T. A. Henzinger, Z. Manna, and A. Pnueli. What good aretaliglocks? InProc. of
ICALP’92, volume 623 olLNCS pages 545-558, 1992.

T. A. Henzinger, J.-F. Raskin, and P.-Y. Schobbens. €helar real-time languages. In
Proc. of ICALP’98 volume 1443 o£.NCS pages 580-591, 1998.

R. Koymans. Specifying real-time properties with neeteimporal logicReal-Time Systems
2(4):255-299, 1990.

K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshieiternational Journal on
Software Tools for Technology Transfé(1-2), 1997.

O. Maler, D. Nickovic, and A. Pnueli. From MITL to timedtamata. InProc. of FOR-
MATS'06 volume 4202 o£.NCS pages 274-289, 2006.

M. PradellaZot. ht t p: / / hone. dei . pol i m . it/ pradel | a,March 2007.

M. Pradella, A. Morzenti, and P. San Pietro. The symmetrhe past and of the future:
bi-infinite time in the verification of temporal propertida.Proc. of ESEC/FSE 2002007.

20

