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Abstract. This article introduces a fully automated verification technique that
permits to analyze real-time systems described using a continuous notion of time
and a mixture of operational (i.e., automata-based) and descriptive (i.e., logic-
based) formalisms. The technique relies on the reduction, under reasonable as-
sumptions, of the continuous-time verification problem to its discrete-time coun-
terpart. This reconciles in a viable and effective way the dense/discrete and op-
erational/descriptive dichotomies that are often encountered in practice when it
comes to specifying and analyzing complex critical systems. The article investi-
gates the applicability of the technique through a significant example centered on
a communication protocol. Concurrent runs of the protocol are formalized by par-
allel instances of a Timed Automaton, while the synchronization rules between
these instances are specified through Metric Temporal Logicformulas, thus creat-
ing a multi-paradigm model. Verification tests run on this model using a bounded
satisfiability checker implementing the technique show consistent results and in-
teresting performances.

Keywords: Metric temporal logic, timed automata, discretization, dense time,
bounded model checking.

1 Introduction

There is a tension between the standpoints of modeling and ofverification when it
comes to choosing a formal notation. The ideal modeling language would be very ex-
pressive, thus capturing sophisticated features of systems in a natural and straightfor-
ward manner; in particular, for concurrent and real-time systems, a dense time model is
the intuitive choice to model true asynchrony. On the other hand, expressiveness is of-
ten traded off against complexity (and decidability), hence the desire for a feasible and
fully automated verification process pulls in the opposite direction of more primitive,
and less expressive, models of time and systems. Discrete time, for instance, is usually
more amenable to automated verification, and quite mature techniques and tools can be
deployed to verify systems modeled under this assumption.

Another, orthogonal, concern of the real-time modeler is the choice between oper-
ational and descriptive modeling languages. Typical examples of operational notations
are Timed Automata (TA) and Timed Petri Nets, while temporallogics are popular



instances of descriptive notations. Operational and descriptive notations have comple-
mentary strengths and weaknesses. For instance, temporal logics are very effective for
describing partial models or requirements about the past (through the natural use of
past operators); automata-based notations, on the other hand, model systems through
the notions of state and transition, and are typically easy to simulate and visualize.
From a modeling viewpoint, the possibility of integrating multiple modeling paradigms
in formalizing a system would be highly desirable.

This paper introduces a verification technique that, under suitable assumptions, rec-
onciles the dense/discrete and operational/descriptive dichotomies in an effective way.
Its goal is to provide a practical means to carry out verification of real-time systems
described using a dense notion of time and a mixture of operational and descriptive
notations. This approach both permits to analyze continuous-time models using fully
automated, discrete-time verification techniques, and allows users to mix operational
(TA) and descriptive (Metric Temporal Logic, MTL) formalisms in the same specifica-
tion. The technique involves an automated translation of the operational component into
temporal logic notation. The resulting MTL model, which describes both the system and
the properties to be verified, is then discretized accordingto the technique introduced in
[9]. The technique is partial in two respects: it can fail to provide conclusive answers,
and only dense-time behaviors with bounded variability areverified. The most common
approaches to similar verification problems are in fact usually complementary, and in-
volve translating the logic into automata [2]. Our choice ismainly justified by the fact
that logic formulas are composable through conjunction, which facilitates our ultimate
goal of formally combining heterogeneous models.

In this article, we start by providing a dense-time MTL axiomatization of TA. Due to
a well-known expressiveness gap between temporal logics and automata [13] in general
it is impossible to describe the language accepted by a TA through an MTL formula.
What we provide is instead an MTL formalization of theaccepting runsof a TA; i.e.,
we model the overall behavior of TA through a set of MTL axioms. It is well-known
that MTL is undecidable over dense time [4]; however, this obstacle can be mitigated
in practice through thediscretizationtechnique introduced — and demonstrated to be
practically appealing — in [9]. The undecidability of dense-time MTL entails that the
reduction technique must be incomplete, i.e., there are cases in which we are unable
to solve the verification problem in a conclusive manner. However, as shown in [9],
the impact of this shortcoming can be reduced in many practical cases. We then show
that this approach yields poor results if done naı̈vely. Hence, we carefully revise the
axiomatization and put it in a form that is much more amenableto discretization, ob-
taining a set of discretized MTL formulas describing TA runs. These axioms can then
be combined with other modules written in MTL, and with the properties to be verified.
The resulting model can be analyzed by means of automated discrete-time tools; the
results of this analysis are then used to finally infer results about the verification of the
original dense-time model. We provide an implementation based on theZot bounded
satisfiability checker [17].

To investigate the effectiveness of the technique, we experimented with a signifi-
cant example centered on the description of a communicationprotocol by means of a
TA. Concurrent runs of the protocol are formalized by parallel instances of the same
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automaton; additionally, the synchronization rules between these instances are formal-
ized by means of MTL formulas, thus building a multi-paradigm model. Verification
tests were run on these models using theZot-based tool. The experimental results are
encouraging, both in terms of performances and in terms of “completeness coverage”
of the method.

In fact, our approach aims at providing apractical approach to the verification of
multi-paradigm models. Hence, we sacrifice completeness inorder to have a lightweight
and flexible technique. Also note that, although in this paper TA are the operational for-
malism of choice, the same approach could be applied to otheroperational formalisms,
such as Timed Petri Nets.

The paper is organized as follows. Section 1.1 briefly summarizes some related
research. Section 2 introduces the technical definitions that are needed in the remainder,
namely the syntax and semantics of MTL and TA, and the discretization technique from
[11, 9] that will be used. Section 3 shows how to formalize thebehavior of TA as a set
of dense-time MTL formulas. Then, Section 4 re-examines theaxioms and suitably
modifies them in a way which is most amenable to the application of the discretization
technique. Section 5 describes the example of a simple communication protocol and
reports on the experiments conducted on it with the SAT-based implementation of the
technique. Finally, Section 6 draws some conclusions.

1.1 Related Work

To the best of our knowledge, our approach is rather unique incombining operational
and descriptive formalisms over dense time, trading-off verification completeness
against better performance and practical verification results. On the other hand, each
of the “ingredients” of our method has been studied in isolation in the literature. In this
section we briefly recall a few of the most important results in this respect.

Dense-time verification of operational models is an active field, and it has produced
a few high-performance tools and methods. Let us mention, for instance, Uppaal [15]
for the verification of TA. Although tools such as Uppaal exploit a descriptive notation
to express the properties to be verified, the temporal logic subset is quite simple and
of limited expressive power. In contrast, we allow basically full MTL to be freely used
in both the description of the model and in the formalizationof the properties to be
verified, at the price of sacrificing completeness of verification.

MTL verification is also a well-understood research topic. MTL is known to be
undecidable over dense time domains [4]. A well-known solution to this limitation re-
stricts the syntax of MTL formulas to disallow the expression of exact (i.e., punctual)
time distances [2]. The resulting logic, called MITL, is fully decidable over dense time.
However, the associated decision procedures are rather difficult to implement in prac-
tice and, even if significant progress has recently been madein simplifying them [16],
a serviceable implementation is still lacking.

Another approach to circumvent the undecidability of dense-time MTL builds upon
the fact that the same logic is decidable over discrete time.A few approaches introduce
some notion of discretization, that is partial reduction ofthe verification problem from
dense to discrete time. The present paper goes in this direction by extending previous
work on MTL [9] to the case of TA. A different discretization technique, based on the
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notion of robust satisfiability of MTL specifications, has been introduced in [6]. Other
work also deals with notions of robustness in order to guarantee that dense-time TA
are implementable with non-ideal architectures [5]. Another well-known notion of dis-
cretization is the one based on the concept ofdigitization[12], which has been applied
by several authors to the practical verification of descriptive or operational formalisms.
The interested reader may also see the related work section of [9] for a more thorough
comparison of other discretization techniques.

2 Preliminaries and Definitions

2.1 Behaviors

Real-time system models describe the temporal behavior of some basic items and propo-
sitions, which represent the observable “facts” of the system. More precisely, an itemit
is characterized by a finite domainDit (and we writeit : Dit) such that at any instant of
time it takes one of the values inDit. On the other hand, a propositionp is simply a fact
which can be true or false at any instant of time.

A behavioris a formal model of atrace (or run) of some real-time system. Given
a time domainT, a finite setP of atomic propositions, and a finite set of itemsI, a
behaviorb is a mappingb : T → Dit1 × Dit2 × · · · × Dit|I| × 2P which associates
with every time instantt ∈ T the tupleb(t) = 〈v1, v2, . . . , v|I|, P 〉 of item values
and propositions that are true att. BT denotes the set of all behaviors overT, for an
implicit fixed set of items and propositions.b(t)|it andb(t)|P denote the projection of
the tupleb(t) over the component corresponding to itemit and the set of propositions
in 2P respectively. Also,t ∈ T is atransition pointfor behaviorb if t is a discontinuity
point of the mappingb. Depending on whetherT is a discrete, dense, or continuous
set, we call a behavior overT discrete-, dense-, or continuous-time respectively. In this
paper, we consider the natural numbersN as discrete-time domain and the nonnegative
real numbersR≥0 as continuous-time (and dense-) time domain.

Non-Zeno and non-Berkeley.Over dense-time domains, it is customary to consider
only physically meaningful behaviors, namely those respecting the so-called non-Zeno
property. A behaviorb is non-Zeno if the sequence of transition points ofb has no ac-
cumulation points. For a non-Zeno behaviorb, it is well-defined the notions of values
to the left and to the right of any transition pointt > 0, which we denote asb−(t)
andb+(t), respectively. In this paper, we are interested in behaviors with a stronger re-
quirement, callednon-Berkeleyness. Informally, a behaviorb is non-Berkeley for some
positive constantδ ∈ R>0 if, for all t ∈ T, there exists a closed interval[u, u + δ] of
sizeδ such thatt ∈ [u, u + δ] andb is constant throughout[u, u + δ]. Notice that a
non-Berkeley behavior (for anyδ) is non-Zenoa fortiori. The set of all non-Berkeley
dense-time behaviors forδ > 0 is denoted byBδ

χ ⊂ BR≥0
. In the following we always

assume behaviors to be non-Berkeley, unless explicitly stated otherwise.

Syntax and semantics.From a purely semantic point of view, one can consider the
model of a (real-time) system simply as a set of behaviors [3,8] over some time domainT and sets of items and propositions. In practice, however, every system is specified
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using some suitable notation. In this paper system models are represented through a
mixture of MTL formulas [14, 4] and TA [1, 2]. The syntax and semantics of MTL and
TA are defined in the following. Given an MTL formula or a TAµ, and a behaviorb,
we write b |= µ to denote thatb represents a system evolution which satisfies all the
constraints imposed byµ. If b |= µ for someb ∈ BT, µ is calledT-satisfiable; ifb |= µ
for all b ∈ BT, µ is calledT-valid. Similarly, if b |= µ for someb ∈ Bδ

χ, µ is called
χδ-satisfiable; ifb |= µ for all b ∈ Bδ

χ, µ is calledχδ-valid.

2.2 Metric Temporal Logic

LetP be a finite (non-empty) set of atomic propositions,I be a finite set of items, and
J be the set of all (possibly unbounded) intervals of the time domainT with rational
endpoints.We abbreviate intervals with pseudo-arithmetic expressions, such as= d,
< d,≥ d, for [d, d], (0, d), and[d, +∞), respectively.

MTL syntax.The following grammar defines the syntax of MTL, whereI ∈ J andβ
is a Boolean combination of atomic propositions or conditions over items.

φ ::= β | φ1 ∨ φ2 | φ1 ∧ φ2 | UI(β1, β2) | SI(β1, β2) | RI(β1, β2) | TI(β1, β2)

In order to ease the presentation of the discretization techniques in Section 2.4,
MTL formulas are introduced in aflat normal form where negations are pushed down to
(Boolean combinations of) atomic propositions, and temporal operators are not nested.
It should be clear, however, that any MTL formula can be put into this form, possibly
by introducing auxiliary propositional letters [7]. The basic temporal operators of MTL
are thebounded untilUI (and its past counterpartbounded sinceSI ), as well as its dual
bounded releaseRI (and its past counterpartbounded triggerTI ). The subscriptsI
denote the interval of time over which every operator predicates. Throughout the paper
we omit the explicit treatment of past operators (i.e.,SI andTI ) as it can be trivially
derived from that of the corresponding future operators. Inthe following we assume a
number of standard abbreviations, such as⊥,⊤,⇒,⇔, and, whenI = (0,∞), we drop
the subscript interval of operators.

MTL semantics.MTL semantics is defined over behaviors, parametrically with respect
to the choice of the time domainT. In particular, the definition of the basic temporal
operators is the following:
b(t) |=T UI(β1, β2) iff there existsd ∈ I such that:b(t + d) |=T β2

and, for allu ∈ [0, d] it is b(t + u) |=T β1

b(t) |=T RI(β1, β2) iff for all d ∈ I it is: b(t + d) |=T β2 or there exists
au ∈ [0, d) such thatb(t + u) |=T β1

b |=T φ iff for all t ∈ T: b(t) |=T φ
We remark that a global satisfiability semantics is assumed,i.e., the satisfiability of

formulas is implicitly evaluated overall time instants in the time domain. This permits
the direct and natural expression of most common real-time specifications (e.g., time-
bounded response) without resorting to nesting of temporaloperators. In addition, every
generic MTL formulas with nesting temporal operators can be“flattened” to the form
we introduced beforehand by introducing auxiliary propositions; in other words flat
MTL and full MTL are equi-satisfiable .
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Granularity. For an MTL formulaφ, let Jφ be the set of all non-null, finite interval
bounds appearing inφ. Then,Dφ is the set of positive valuesδ such that any interval
bound inJφ is an integer if divided byδ.

OPERATOR ≡ DEFINITION

♦I(β) ≡ UI(⊤, β)
←−
♦ I(β) ≡ SI(⊤, β)
�I(β) ≡ RI(⊥, β)
←−
� I(β) ≡ TI(⊥, β)
f©(β) ≡ U(0,+∞)(β,⊤) ∨ (¬β ∧ R(0,+∞)(β,⊥))
f←−
©(β) ≡ S(0,+∞)(β,⊤) ∨ (¬β ∧ T(0,+∞)(β,⊥))

©(β) ≡ β ∧f©(β)
←−
©(β) ≡ β ∧

f←−
©(β)

△(β1, β2) ≡

8
<
:

f←−
©(β1) ∧

“
β2 ∨f©(β2)

”
if T = R≥0

←−
♦ =1(β1) ∧ ♦[0,1](β2) if T = N

N(β1, β2) ≡

(
β1 ∧ ♦=δ(β2) if T = R≥0

β1 ∧ ♦=1(β2) if T = N
Table 1.MTL derived temporal operators

Derived Temporal Operators. It is useful to introduce a number of derived temporal
operators, to be used as shorthands in writing specificationformulas. Those used in this
paper are listed in Table 1 (δ ∈ R>0 is a parameter used in the discretization techniques,
discussed shortly).

We describe informally the meaning of such derived operators, focusing on future
ones (the meaning of the corresponding past operators is easily derivable).♦I(β) means
thatβ happens within time intervalI in the future.�I(β) means thatβ holds through-

out the whole intervalI in the future.̃©(β) denotes thatβ holds throughout some non-
empty interval in the strict future; in other words, ift is the current instant, there exists
somet′ > t such thatβ holds over(t, t′). Similarly,©(β) denotes thatβ holds through-
out some non-empty interval which includes the current instant, i.e., over some[t, t′).
Then,△(β1, β2) describes a switch from conditionβ1 to conditionβ2, without speci-
fying which value holds at the current instant. On the other hand,N(β1, β2) describes a
switch from conditionβ1 to conditionβ2 such thatβ1 holds at the current instant; more
precisely if△(β1, β2) holds at some instantt, N(β1, β2) holds over(t − δ, t). In addi-
tion, for an itemit we introduce the shorthand△(it, v−, v+) for△(it = v−, it = v+).
A similar abbreviation is assumed forN(it, v−, v+). Finally, we useAlw(φ) to denote

φ ∧ �(0,+∞)(φ) ∧
←−
� (0,+∞)(φ). Sinceb |=T Alw(φ) iff b |=T φ, for any behaviorb,

Alw(φ) can be expressed without nesting ifφ is flat, through the global satisfiability
semantics introduced beforehand.
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2.3 Operational Model: Timed Automata

We introduce a variant of TA which differs from the classicaldefinitions (e.g., [1]) in
that it recognizes behaviors, rather than timed words [2, 16]. Correspondingly, input
symbols are associated with locations rather than with transitions. Also, we introduce
the following simplifications that are known to be without loss of generality: we do
not define location clock invariants (also called staying conditions) and use transition
guards only, and we forbid self-loop transitions.

We introduce one additional variant which does impact expressiveness, namely
clock constraints do not distinguish between different transition edges, that is between
transitions occurring right- and left-continuously. Thisrestriction is motivated by our
ultimate goal ofdiscretizingTA: as it will be explained later, such distinctions would
inevitably be lost in the discretization process, hence we give them up already.

Finally, for the sake of simplicity, we do not consider acceptance conditions, that is
let us assume that all states are accepting. Notice that introducing acceptance conditions
(e.g., Büchi, Muller, etc.) in the formalization would be routine.

TA syntax.For a setC of clock variables, the setΦ(C) of clock constraintsξ is defined
inductively by

ξ ::= c < k | c ≥ k | ξ1 ∧ ξ2 | ξ1 ∨ ξ2

wherec is a clock inC andk is a constant inQ≥0.
A timed automatonA is a tuple〈Σ, S, S0, α, C, E〉, where:

– Σ is a finite (input) alphabet,
– S is a finite set of locations,
– S0 ⊆ S is a finite set of initial locations,
– α : S → 2Σ is a location labeling function that assigns to each location s ∈ S a set

α(s) of propositions,
– C is a finite set of clocks, and
– E ⊆ S × S × 2C × Φ(C) is a set of transitions. An edge〈s, s′, Λ, ξ〉 represents

a transition from states to states′ 6= s; the setΛ ⊆ C identifies the clocks to be
reset with this transition, andξ is a clock constraint overC.

TA semantics.In defining the semantics of TA over behaviors we deviate fromthe stan-
dard presentation (e.g., [2, 16]) in that we do not representTA as acceptors of behaviors
over the input alphabetΣ, but rather as acceptors of behaviors representing what are
usually calledrunsof the automaton. In other words, we introduce automata as accep-
tors of behaviors over the itemsst andin representing, respectively, the current location
and the current input symbol, as well as propositions{rsc | c ∈ C} representing the
clock reset status. This departure from more traditional presentations is justified by the
fact that we intend to provide an MTL axiomatic description of TA runs — rather than
accepted languages, which would be impossible for a well-known expressiveness gap
[13] — hence we define the semantics of automata over this “extended” state from the
beginning.

Here we sketch an informal description of the semantics. Initially, all clocks are
reset and the automaton is in states0 ∈ S0. At any given timet, when the automaton is
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in some states, it can take nondeterministically a transition〈s, s′, Λ, ξ〉 to some other
states′, only if the last time (beforet) each clock has been reset is compatible with
constraintξ. If the transition is taken, all clocks inΛ are reset, whereas all the other
clocks keep on running. Finally, as long as the automaton is in any states, the input has
to satisfy the location labeling functionα(s), namely the current input corresponds to
exactly one of the propositions inα(s).

A timed automatonA = 〈Σ, S, S0, α, C, E〉 is interpreted over behaviors over
itemsst : S, in : Σ and propositionsR = {rsc | c ∈ C}. At any instant of timet,
st = s means that the automaton is in states, in = σ means that the input symbol
is σ, andrsc keeps track of resets of clockc (we model such resets through switches,
from false to true orvice versa, of rsc). Let b be such a behavior, and lett be one of its
transition points. Satisfaction of clock constraints att is defined as follows:
b(t) |= c < k iff either b−(t) |= rsc and there existst− k < t′ < t s.t.b(t′) 6|= rsc;

or b−(t) 6|= rsc and there exists at− k < t′ < t s.t.b(t′) |= rsc

b(t) |= c ≥ k iff either b−(t) |= rsc and for allt− k < t′ < t : b′(t) |= rsc;
or b−(t) 6|= rsc and for allt− k < t′ < t : b(t′) 6|= rsc

Notice that this corresponds to looking for the previous time the propositionrsc switched
(from false to true or from true to false) and counting time since then. This requires a
little “hack” in the definition of the semantics: namely, a first start reset of all clocks
is issued before the “real” run begins; this is represented by time instanttstart in the
formal semantics below.

Formally, a behaviorb overst : S, in : Σ, R (with b : R≥0 → S ×Σ × 2R) is arun
of the automatonA, and we writeb |=R≥0

A, iff:

– b(0) = 〈s0, σ,
⋃

c∈C{rsc}〉 andσ ∈ α(s0) for somes0 ∈ S0;
– there exists a transition instanttstart > 03 such that:b(t)|st = s0 andb(t)|R = R

for all 0 ≤ t ≤ tstart, b−(tstart) = 〈s0, σ
−, ρ−〉 andb+(tstart) = 〈s+, σ+, ρ+〉

with ρ− = R andρ+ = ∅;
– for all t ∈ R≥0: b(t)|in ∈ α(b(t)|st);
– for all transition instantst > tstart of b|st or b|R such thatb−(t) = 〈s−, σ−, ρ−〉

andb+(t) = 〈s+, σ+, ρ+〉, it is: 〈s−, s+, Λ, ξ〉 ∈ E, σ− ∈ α(s−), σ+ ∈ α(s+),
ρ =

⋃
c∈Λ{rsc}, ρ+ = ρ−△ρ = (ρ− \ ρ) ∪ (ρ \ ρ−), andb(t) |= ξ.

2.4 Discrete-Time Approximations of Continuous-Time Specifications

This section concisely summarizes the fundamental resultsfrom [9] that are needed in
the remainder of the paper, and provides some intuition about how they can be applied
to the discretization problem.

The technique of [9] is based on two approximation functionsfor MTL formu-
las, called under- and over-approximation. The under-approximation functionΩδ (·)
maps dense-time MTL formulas to discrete-time formulas such that the non-validity
of the latter implies the non-validity of the former, over behaviors inBδ

χ. The over-
approximation functionOδ (·) maps dense-time MTL formulas to discrete-time MTL

3 In the following, we will assume thattstart ∈ (δ, 2δ) for the discretization parameterδ > 0.
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formulas such that the validity of the latter implies the validity of the former, over be-
haviors inBδ

χ. We have the following fundamental verification result, which provides a
justification for the TA verification technique discussed inthis paper.

Proposition 1 (Approximations [9]). For any MTL formulasφ1, φ2, and for anyδ ∈
Dφ1,φ2

: (1) if Alw(Ωδ (φ1)) ⇒ Alw(Oδ (φ2)) isN-valid, thenAlw(φ1) ⇒ Alw(φ2)
is χδ-valid; and (2) ifAlw(Oδ (φ1))⇒ Alw(Ωδ (φ2)) is notN-valid, thenAlw(φ1)⇒
Alw(φ2) is notχδ-valid.

Discussion.Proposition 1 suggests a verification technique which builds two formulas
through a suitable composition of over- and under-approximations of the system de-
scription and the putative properties, and it infers the validity of the properties from the
results of a discrete-time validity checking. The technique is incomplete as, in particu-
lar, when approximation (1) is not valid and approximation (2) is valid nothing can be
inferred about the validity of the property in the original system over dense time.

It is important to notice that equivalent dense-time formulas can yield dramatically
different — in terms of usefulness — approximated discrete-time formulas. For in-
stance, consider dense-time MTL formulaθ1 = �(0,δ)(p) which, under the global sat-
isfiability semantics, says thatp is alwaystrue. Its under-approximation isΩδ (θ1) =
�∅(p) which holds for any discrete-time behavior! Thus, we have anunder-approx-
imation which is likely too coarse, as it basically adds no information to the discrete-
time representation. So, if we build formula (1) from Proposition 1 with Ωδ (θ1) in it,
it is likely that the antecedent will be trivially satisfiable (becauseΩδ (θ1) introduces
no constraint) and hence formula (1) will be non-valid, yielding no information to the
verification process. If, however, we modifyθ1 into theequivalentθ′1 = p ∧ θ1 we get
an under-approximation which can be written simply asΩδ (θ′1) = p, which correctly
entails thatp is always true over discrete-time as well. This is likely a much better
approximation, one which better preserves the original “meaning” ofθ1.

3 Formalizing Timed Automata in MTL

Consider a TAA = 〈Σ, S, S0, α, C, E〉; this section introduces an MTL formalization
of the runs ofA over non-Berkeley behaviors, for someδ > 0. In other words, this
section provides a set of formulasφ1, . . . , φ6 such that, for all non-Berkeley behaviors
b, b |= A iff b |= φj for all j = 1, . . . , 6.

Clock constraints.Given a clock constraintξ, we represent byΞ(ξ) an MTL formula
such thatb(t) |= ξ iff b(t) |= Ξ(ξ) at all transition pointst. Ξ(ξ) can be defined
inductively as:

Ξ (c < k) ≡
←̃−
©(rsc) ∧

←−
♦ (0,k)(¬rsc) ∨

←̃−
©(¬rsc) ∧

←−
♦ (0,k)(rsc)

Ξ (c ≥ k) ≡
←̃−
©(rsc) ∧

←−
� (0,k)(rsc) ∨

←̃−
©(¬rsc) ∧

←−
� (0,k)(¬rsc)

Ξ (ξ1 ∧ ξ2) ≡ Ξ (ξ1) ∧ Ξ (ξ1)
Ξ (ξ1 ∨ ξ2) ≡ Ξ (ξ1) ∨ Ξ (ξ1)
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Essentially,Ξ translates guardξ by comparing the current time to the last time a reset
for the clockc happened, where a reset is represented by a switching of itemrsc. Notice
that, to compute the approximations of the clock-constraint formulas, every constantk
used in the definition of the TA must be an integral multiple ofδ.

Necessary conditions for state change.Let us state the necessary conditions that char-
acterize a state change. For any pair of statessi, sj ∈ S such that there areK transitions
〈si, sj , Λ

k, ξk〉 ∈ E for all 1 ≤ k ≤ K, we introduce the following axiom:

△(st, si, sj) ⇒
∨

k


Ξ(ξk) ∧

∧

c∈Λk

(
△(¬rsc, rsc) ∨△(rsc,¬rsc)

)

 (1)

Also, we introduce an axiom asserting that, for any pair of statessi 6= sj ∈ S such
that〈si, sj , Λ, ξ〉 6∈ E for anyΛ, ξ (i.e., for any pair of states that are not connected by
any edge), there cannot be a transition fromsi to sj :

¬△(st, si, sj) (2)

Sufficient conditions for state change.There are multiple sufficient conditions for state
changes; basically, they account for reactions to reading input symbols and resetting
clocks. Let us consider input first: the staying condition inevery state must be satisfied
always, so for alls ∈ S the following axiom is added:

st = s ⇒ in ∈ α(s) (3)

Then, for each reset of a clockc ∈ C, for all 1 ≤ k ≤ K such that〈sk
i , sk

j , Λk, ξk〉 ∈

E is an edge such thatc ∈ Λk (i.e., on whichc is reset), the following axiom is intro-
duced (a similar one for the transition ofrsc from true to false is also included):

△(¬rsc, rsc) ⇒
∨

k

△
(
st, sk

i , sk
j

)
(4)

Initialization and liveness condition.The axiomatization is completed by including for-
mulas describing initialization and liveness conditions.The following axiom, describing
system initialization, is only evaluated at0:

at0:
∧

c∈C

rsc ∧ ♦[0,2δ]

(
∧

c∈C

¬rsc

)
∧
∨

s0∈S0

©(st = s0) (5)

Finally, we introduce a “liveness” condition stating that the automaton must even-
tually move out of every state. Thus, for every states ∈ S, if S′

s ⊂ S is the set of
states that are directly reachable froms through a single transition the following axiom
asserts that, if the automaton is ins, it must eventually move to a state inS′

s:

st = s ⇒ ♦


 ∨

s′∈S′
s

st = s′


 (6)

10



Since axiom (6) does not mandate that only some particular states must be traversed
infinitely often, this corresponds to the condition that allstates are acceptingà la Büchi.

The next proposition states the axiomatization correctness (see [10] for details).

Proposition 2 (MTL TA Axiomatization). Let A = 〈Σ, S, S0, α, C, E〉 be a timed
automaton,φA

1 , . . . , φA
6 be formulas (1–6) for TA A, and letb ∈ Bδ

χ be any non-Berkeley
behavior over itemsst : S, in : Σ and propositions inR. Thenb |= A if and only if
b |=

∧
1≤j≤6 φA

j .

4 Discrete-Time Approximations of Timed Automata

While formulas (1–6) correctly formalize the behavior of TAas defined in Section 2.3,
they yield approximations of little use for verification purposes, since they are very
likely to produce inconclusive results due to the incompleteness of the technique. To
avoid such problems, instead of computing approximations directly from axioms (1–6),
we introduce new formulas, which are equivalent to (1–6) over non-Berkeley behav-
iors, but whose form yields better approximations. In the rest of this section we first
compute the under-approximation of formulas (1–6) (Section 4.1), and then their over-
approximation (Section 4.2).

4.1 Under-Approximation

As mentioned above, the form of some of the axioms (1–6) produces under-approxima-
tions that are ill-suited to perform verification through the discretization technique of
[9], due to the inherent incompleteness of the latter.

While the details underlying this issue are outside the scope of this article (and
can be found in [10]), let us hint at some of the problems that arise from the under-
approximation of formulas (1–6). First, it can be shown that, in general,
Ωδ (¬△(β1, β2)) 6= ¬Ωδ (△(β1, β2)); since subformulas of the form
△(st = si, st = sj) are used in (1–6) to describe state transitions, there are discrete-
time behaviors where such a transition both occurs and does not occur, i.e.,
Ωδ (△(st = si, st = sj)) andΩδ (¬△(st = si, st = sj)) are both true, which is an ap-
proximation too coarse to be useful. Second,Ωδ (¬△(β1, β2)) is a very weak formula,
in that it can be shown to be true, in particular, wheneverβ1 or β2 are false; then, an-
tecedents△(st = si, st = sj) in (1–6) are trivially true because it can never be that both
st = si andst = sj whensi 6= sj .

To obtain better approximations, in the new axiomatizationevery occurrence of
△(β1, β2) is replaced withN(β1, β2). This entails that formulasΞ(ξ) representing

clock constraints must also be changed in
−→
Ξ (ξ), where

−→
Ξ is defined below. Hence,

formulas (1–2),(4) become:

N(st, si, sj) ⇒
∨

k

−→
Ξ (ξk) ∧

∧

c∈Λk

(
N(¬rsc, rsc) ∨ N(rsc,¬rsc)

)
(7)

¬N(st, si, sj) (8)

11



N(¬rsc, rsc) ⇒
∨

k

N
(
st, sk

i , sk
j

)
(9)

where
−→
Ξ is defined as follows:

−→
Ξ (c < k) ≡ rsc ∧

←−
♦ (0,k)(¬rsc) ∨ ¬rsc ∧

←−
♦ (0,k)(rsc)

−→
Ξ (c ≥ k) ≡ rsc ∧

←−
� (0,k−δ)(rsc) ∨ ¬rsc ∧

←−
� (0,k−δ)(¬rsc)

It can be shown that, given a non-Berkeley behaviorb ∈ Bδ
χ, b |= (1) iff b |= (7),

b |= (2) iff b |= (8) andb |= (4) iff b |= (9).

Proof. Let us first show that (1) implies (7), so lett be the current instant, assume that
(1) and the antecedentN(st, si, sj) of (7) hold: we establish that the consequent of (7)
holds.N(st, si, sj) means thatst = si at t and st = sj 6= si at t + δ; hence there
must be a transition instantt′ of item st somewhere in[t, t + δ]. Then (1) evaluated
at t′ entails thatt′ is a transition instant for some propositionsrsc|c∈Λk as well. Let
d ∈ C be anyone of such clocks and assume that△(rsd,¬rsd) holds att′. Let us first
assumet′ ∈ (t, t + δ); correspondingly, from the non-Berkeleyness assumption,rsd

holds over[t, t′) and¬rsd holds over(t′, t + δ]. In particular,rsd holds att and¬rsd

holds att + δ, soN(rsd,¬rsd) holds att. Otherwise, lett′ = t, sost changes its value
left-continuously att. Then, again from (1) and the non-Berkeleyness assumption,rsd

also changes its value left-continuously, sorsd holds att and¬rsd holds att+δ. Finally,
if t′ = t + δ, st changes its value right-continuously att′, sorsd also changes its value
right-continuously, sorsd holds att and¬rsd holds att+δ. In all, sinced is generic, and
the same reasoning applies for the converse transition△(¬rsd, rsd), we have established
that

∧
c∈Λk (N(¬rsc, rsc) ∨ N(rsc,¬rsc)) holds att.

Next, let us establish
−→
Ξ (ξk) from Ξ(ξk). Let us first consider someΞ (d < k) such

that
←̃−
©(rsd) ∧

←−
♦ (0,k)(¬rsd) at t′. So, lett′′ ∈ (t′ − k, t′) be the largest instant with

a transition from¬rsd to rsd. Note that it must actually bet′′ ∈ (t′ − k, t] because
t′ − t ≤ δ and the non-Berkeleyness assumption. Ift′′ ∈ (t′ − k, t) ⊆ (t − k, t)

then rsd ∧
←−
♦ (0,k)(¬rsd) holds att, hence

−→
Ξ (d < k) is established. Ift′′ = t then

rsd switches to true right-continuously att, so rsd ∧
←̃−
©(¬rsd) at t which also entails

−→
Ξ (d < k). The same reasoning applies if̃

←−
©(¬rsc) ∧

←−
♦ (0,k)(rsc) holds att′. Finally,

consider someΞ (d ≥ k) such that̃
←−
©(rsd)∧

←−
� (0,k)(rsd) holds att, thusrsd holds over

(t− k, t). Fromt ≤ t′ + δ we havet′ + δ − k ≥ t + k so(t′ − k + δ, t′) ⊆ (t− k, t),

which shows that
←−
� (0,k−δ)(rsd) holds att′. The usual reasoning about transition edges

would allow us to establish that alsorsd holds att′. Since the same reasoning applies

if
←̃−
©(¬rsd) ∧

←−
� (0,k)(¬rsd), we have established that

−→
Ξ (d ≥ k) holds att′. Sinced is

generic, we have that
−→
Ξ (ξk) holds att′.

Let us now prove (7) implies (1), so lett be the current instant, assume that (7) and
the antecedent△(st, si, sj) of (1) hold: we establish that the consequent of (1) holds.
So, there is a transition ofst from si to sj 6= si att; from the non-Berkeleyness assump-
tion we have thatst = si andst = sj hold over[t− δ, t) and(t, t + δ], respectively. If
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the transition ofst is left-continuous (i.e.,st = si holds att), consider (7) att, where
the antecedent holds. So,

−→
Ξ (ξk) ∧

∧
c∈Λk (N(¬rsc, rsc) ∨ N(rsc,¬rsc)) holds att for

somek. Letd ∈ Λk be such thatN(¬rsd, rsd) holds, that is¬rsd holds att andrsd holds
at t + δ. This entails that there exists a transition pointt′ ∈ [t, t + δ] of rsd. However,t
is already a transition point, thus it must bet′ = t; this shows△(¬rsd, rsd) atd. Recall
that d is generic, and the same reasoning applies for the converse transition fromrsd

to ¬rsd. If, instead, the transition ofst is right-continuous (i.e.,st = sj holds att), we
consider (7) att − δ and perform a similar reasoning. All in all, we have established
that

∧
c∈Λk (△(¬rsc, rsc) ∨△(rsc,¬rsc)) holds att.

The clock constraint formulaΞ(ξk) can also be proved along the same lines. For in-

stance, assume that the transition ofst at t is left-continuous and
←−
©(rsd) holds att for

somed ∈ C, and consider a constraint
−→
Ξ (d < k) at t. We have that

←−
♦ (0,k)(¬rsd) must

holds att, which establishes thatΞ(d < k) holds att. Similar reasonings apply to the
other cases. See [10] for proofs of the other equivalences. ⊓⊔

Then, the axiomatization of TA given by formulas (7–9),(3),(5–6) yields the follow-
ing under-approximations.

Ωδ ((7)) ≡ N(st, si, sj) ⇒
∨

k

Ωδ

(−→
Ξ (ξk)

)
∧
∧

c∈Λk




N(¬rsc, rsc)
∨

N(rsc,¬rsc)


 (10)

where:

Ωδ

(−→
Ξ (c < k)

)
≡ rsc ∧

←−
♦ [0,k/δ](¬rsc) ∨ ¬rsc ∧

←−
♦ [0,k/δ](rsc)

Ωδ

(−→
Ξ (c ≥ k)

)
≡ rsc ∧

←−
� [1,k/δ−2](rsc) ∨ ¬rsc ∧

←−
� [0,k/δ−2](¬rsc)

In addition the following can be proved to hold:

Ωδ ((8)) ≡ ¬N(st, si, sj) (11)

Ωδ ((9)) ≡ N(¬rsc, rsc)⇒
∨

k

N
(
st, sk

i , sk
j

)
(12)

Ωδ ((3)) ≡ (3) (13)

at0: Ωδ ((5)) ≡
∧

c∈C

rsc ∧ ♦[1,2]

(
∧

c∈C

¬rsc

)
∧
∨

s0∈S0

st = s0 (14)

Ωδ ((6)) ≡ (6) (15)

4.2 Over-Approximation

While the over-approximation of axioms (1–6) poses less problems than their under-
approximation, it must nonetheless be carried out very carefully, and some modifica-
tions to the axioms are in order in this case, too. Notice thatthe following equalities
hold:
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– Oδ

(
©̃(β)

)
= �[0,1](β).

– Oδ

(
♦[0,2δ](β)

)
= ♦=1(β).

– Oδ (©(β)) = �[0,1](β).

– Oδ

(
←̃−
©(β)

)
= Oδ

(←−
©(β)

)
=
←−
� [0,1](β).

– Oδ (¬△(β1, β2)) = ¬(△(β1, β2) ∨ N(β1, β2)) if ¬(β1 ∧ β2) holds.

The over-approximations of the clock constraints (i.e.,Oδ (Ξ(ξ))) pose little prob-
lems whenξ is of the formc < k; however, whenξ is of the formc ≥ k, they yield
formulas that are unsatisfiable if there are some transitions that resetc and whose guard
is c ≥ k. Hence, the definition ofΞ(c ≥ k) must be modified in the following way
(which is equivalent to the previous formulation for non-Berkeley behaviors):

Ξ (c ≥ k) ≡
←̃−
©(rsc) ∧

←−
� [δ,k)(rsc) ∨

←̃−
©(¬rsc) ∧

←−
� [δ,k)(¬rsc)

Therefore, the over-approximations of the new clock constraints are the following:

Oδ (Ξ (c < k)) ≡
←−
� [0,1](rsc) ∧

←−
♦ [1,k/δ−1](¬rsc) ∨

←−
� [0,1](¬rsc) ∧

←−
♦ [1,k/δ−1](rsc)

Oδ (Ξ (c ≥ k)) ≡
←−
� [0,1](rsc) ∧

←−
� [0,k/δ+1](rsc) ∨

←−
� [0,1](¬rsc) ∧

←−
� [0,k/δ+1](¬rsc)

The over-approximation of formula (1), instead, is very poor verification-wise, be-
cause subformulas of the form△(β1, β2) such thatβ1, β2 cannot hold at the same in-
stant produce over-approximations that are unsatisfiable.The same problems arise with
the over-approximation of formula (4).

However, similarly to what was done in Section 4.1, it is possible to rewrite axioms
(1) and (4) so that they yield better over-approximations. The two following formulas
are equivalent, over non-Berkeley behaviors, to (1) and (4), respectively (see [10] for
equivalence proofs).

△(st, si, sj) ⇒
∨

k


Ξ(ξk) ∧

∧
c∈Λk




←̃−
©(¬rsc) ∧�=δ(st = sj ⇒ rsc)

∨
←̃−
©(rsc) ∧�=δ(st = sj ⇒ ¬rsc)





 (16)

△(¬rsc, rsc) ⇒
∨

k

(
←̃−
©
(
st = sk

i

)
∧�=δ

(
rsc ⇒ st = sk

j

))
(17)

Intuitively, the equivalence of (1) and (16) can be proved noting that, if△(st, si, sj)
holds at instantt in some non-Berkeley behaviorb because a transition〈si, sj , Λ

k, ξk〉 ∈
E is taken, then, for the non-Berkeleyness ofb it must best = sj throughout(t, t + δ].

As a consequence of (16), for anyc ∈ Λk, if
←̃−
©(¬rsc) att thenrsc holds att+δ. For the

non-Berkeleyness ofb it must be that̃©(rsc) holds att, hence△(¬rsc, rsc) also holds

at t. The casẽ
←−
©(¬rsc) at t is handled in the same way. Similar reasoning can be used

to prove the equivalence of (4) and (17).
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Finally, formulas (16–17),(2–3),(5–6) yield the following over-approximations, af-
ter performing some discrete-time simplifications:

Oδ ((16)) ≡

N(st, si, sj)⇒
∨

k




Oδ

(
Ξ(ξk)

)
∧

∧
c∈Λk




←−
� [0,1](¬rsc) ∧�[0,2](st = sj ⇒ rsc)

∨
←−
� [0,1](rsc) ∧�[0,2](st = sj ⇒ ¬rsc)





 (18)

Oδ ((17)) ≡ N(¬rsc, rsc)⇒
∨

k

(←−
� [0,1]

(
st = sk

i

)
∧�[0,2]

(
rsc ⇒ st = sk

j

))

(19)

Oδ ((2)) ≡ ¬(△(st, si, sj) ∨ N(st, si, sj)) (20)

Oδ ((3)) ≡ (3) (21)

at0: Oδ ((5)) ≡
∧

c∈C

rsc ∧ ♦=1

(
∧

c∈C

¬rsc

)
∧
∨

s0∈S0

�[0,1](st = s0) (22)

Oδ ((6)) ≡ (6) (23)

4.3 Summary

The following proposition, following from Propositions 1–2 and the results of the pre-
vious sections, summarizes the results of the discrete-time approximation formulas.

Proposition 3. Let S be a real-time system described by TAA = 〈Σ, S, S0, α, C, E〉
and by a set of MTL specification formulas{φsys

j }j over items inI and propositions
in P . Also, letφprop be another MTL formula over items inI ∪ {st : S, in : Σ} and
propositions inP ∪R. Then:

– if:

Alw


φA

(10) ∧ φA
(11) ∧ φA

(12) ∧ φA
(13) ∧ φA

(14) ∧ φA
(15) ∧

∧

j

Ωδ

(
φsys

j

)



⇒ Alw(Oδ (φprop))

isN-valid, thenφprop is satisfied by all non-Berkeley runsb ∈ Bδ
χ of the system;

– if:

Alw


φA

(18) ∧ φA
(19) ∧ φA

(20) ∧ φA
(21) ∧ φA

(22) ∧ φA
(23) ∧

∧

j

Oδ

(
φsys

j

)



⇒ Alw(Ωδ (φprop))

is notN-valid, thenφprop is false in some non-Berkeley runb ∈ Bδ
χ of the system.
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5 Implementation and Example

We implemented the verification technique of this paper as a plugin to theZot bounded
satisfiability checker [17, 18] calledTAZot. The plugin provides a set of primitives by
which the user can define the description of a TA, of a set of MTLaxioms, and a set of
MTL properties to be verified. The tool then automatically builds the two discrete-time
approximation formulas of Proposition 3. These are checkedfor validity over timeN;
the results of the validity check allows one to infer the validity of the original dense-time
models, according to Proposition 3.

The verification process inTAZot consists of three sequential phases. First, the
discrete-time MTL formulas of Proposition 3 are built and are translated into a propo-
sitional satisfiability (SAT) problem. Second, the SAT instance is put into conjunctive
normal form (CNF), a standard input format for SAT solvers. Third, the CNF formula
is fed to a SAT solving engine (such as MiniSat, zChaff, or MiraXT).

5.1 A Communication Protocol Example

We demonstrate the practical feasibility of our verification techniques by means of an
example, where we verify certain properties of the following communication protocol

Consider a server accepting requests from clients to perform a certain service (the
exact nature of the service is irrelevant for our purposes).Initially, the server isidle in
a passive open state. At any time, a client can initiate a protocol run; when this is the
case, the server moves to atry state. WithinT1 time units, the state moves to a news1
state, characterizing the first request of the client for theservice. The request can either
terminate withinT2 time units, or time-out afterT2 time units have elapsed. When
it terminates, it can do so either successfully (ok) or unsuccessfully (ko). In case of
success, the protocol run is completed afterward, and the server goes back to beingidle.
In case of failure or time-out, the server moves to a news2 state for a second attempt.
The second attempt is executed all similarly to the first one,with the only exception that
the system goes back to theidle state afterward, regardless of the outcome (success,
failure, or time-out). The timed automaton of Figure 1 models the protocol.4

We verified the following 5 properties of a single instance ofthe automaton:

1. “If there is a success, the server goes back to idle withoutpassing through error
states.”

ok1 ∨ ok2 ⇒ U(ko1 ∨ ko2, idle)

2. “If there is a failure, the server goes back to idle withoutpassing through success
states.”

ko1 ∨ ko2 ⇒ U(ok1 ∨ ok2, idle)

This property is false, and in fact counterexamples are produced in the tests.

4 Since the definition of clock constraints forbids the introduction of exact constraints such as
A = T2, such constraints represent a shorthand for the valid clockconstraintT2 ≤ A < T +δ.
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idle try s1

ok1

ko1

tout1

s2

ok2

ko2

tout2

G, S := 0 S < T1, A := 0

A < T2

A < T2, S := 0

A = T2, S := 0

S < T1, A := 0

S < T1, A := 0

A < T2

A < T2

A = T2

G < T3

G < T3

G < T3

G < T3

Fig. 1.Timed automaton modeling the communication protocol.

3. “A full run of the protocol executes in no more thanT3 time units.”

try ⇒ ♦(0,T3)(idle)

This property cannot be verified due to the incompleteness ofthe method: whether
a run is completed inT3/δ time instants depends sensibly on how the sampling is
chosen. However, if we slightly weaken the property by changingT3 into T3+δ the
method is successful in verifying the property. In the tables, the (verified) property
— modified in this way — is labeled 3’.

4. “The first attempt of the protocol is initiated no later than 2T1 + T2 + δ time units
after the run has been initiated.”

s1 ⇒
←−
♦ (0,2T1+T2+δ)(try)

5. “A run is terminated withinT3 time units after a successful outcome, without going
through failure states.”

ok1 ⇒ U(0,T3)
(¬(ko1 ∨ ko2), idle)

We also considered concurrent runs ofNr ≥ 2 instances of the automaton, synchro-
nized under the assumption that two parallel protocol runs that are initiated concurrently
either both terminate successfully, or both terminate unsuccessfully. This is formalized
by the following MTL formula:

∀1 ≤ i < j ≤ Nr : tryi ∧ tryj ⇒

U
(
¬(tout2

i ∨ ko2
i), ok1

i ∨ ok2
i
)
∧ U
(
¬(tout2

j ∨ ko2
j), ok1

j ∨ ok2
j
)

∨

U
(
¬(ok1

i ∨ ok2
i), tout2

i ∨ ko2
i
)
∧ U
(
¬(ok1

j ∨ ok2
j), tout2

j ∨ ko2
j
)
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Correspondingly, we introduce the following two properties to be verified in this
concurrent system.

6. “If at some time one process succeeds and the other fails, then they have not begun
the current run together.”

ok2
A ∧ ko2

B ⇒ S(0,T3)

(
¬(tryA ∧ tryB), tryA ∨ tryB

)

7. “If at some time one process succeeds and the other failed recently, then they have
not begun the current run together.”

ok2
A ∧
←−
♦ (0,T1)

(
ko2

B
)
⇒ S(0,T3)

(
¬(tryA ∧ tryB), tryA ∨ tryB

)

5.2 Experimental Evaluation

Tables 2 shows some results obtained in tests withTAZot verifying the properties above.
In all tests it isδ = 1. For each test the table reports: the checked property; the number
Nr of parallel protocol runs, according to which the discretizations are built; the values
of other parameters in the model (i.e.,T1, T2, T3); the temporal boundk of the time
domain (asZot is a bounded satisfiability checker, it considers all the behaviors with
period≤ k); the total amount of time and space (in MBytes) to perform each phase
of the verification, namely formula building (FB), transformation into conjunctive nor-
mal form (CNF), and propositional satisfiability checking (SAT); and the total size (in
thousands of clauses) of the propositional formulas that have been checked. The tests
have been performed on a PC equipped with an AMD Athlon64 X2 Dual-Core Proces-
sor 4000+, 2 Gb of RAM, and Kubuntu GNU/Linux (kernel 2.6.22). TAZot used GNU
CLisp 2.41 and MiniSat 2.0 as SAT-solving engine.

The experiments clearly shows that the formula building time is usually negligible;
the satisfiability checking time is also usually acceptablysmall, at least within the pa-
rameter range for the experiments we considered. On the contrary, the time to convert
formulas in conjunctive normal form usually dominates in our tests. This indicates that
there is significant room for practical scalability of our verification technique. In fact,
from a computational complexity standpoint, the SAT phase is clearly the critical one,
as it involves solving an NP-complete problem. On the other hand, the CNF routine has
a quadratic running time.

Another straightforward optimization could be the implementation of the TA encod-
ing directly in CNF, to bypass thesat2cnf routine. This can easily be done, because
the structure of the formulas in the axiomatization is fixed.In conclusion, we can safely
claim that the performances obtained in the tests are satisfactory in perspective, and
they successfully demonstrate the practical feasibility of our verification technique.

6 Conclusion

In this paper, we introduced a technique to perform partial verification of real-time
systems modeled with dense time and using mixed operationaland descriptive compo-
nents. The proposed approach is fully automated and implemented on top of a discrete-
time bounded satisfiability checker. We experimented with anon-trivial example of
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PR.# Nr T1, T2, T3 k FB (time/mem) CNF (time/mem) SAT (time/mem) # KCL .
1 1 3,6,18 30 0.1 min/114.6 Mb 3.9 min 0.3 min/90.2 Mb 520.2
2 1 3,6,18 30 0.1 min/228.6 Mb 7.8 min 0.5 min/180.1 Mb 1037.9
3 1 3,6,18 30 0.2 min/244.3 Mb 9.1 min 0.7 min/195.6 Mb 1112.4
3’ 1 3,6,18 30 0.1 min/122.5 Mb 4.6 min 0.4 min/98.0 Mb 557.7
4 1 3,6,18 30 0.1 min/121.4 Mb 4.5 min 0.3 min/97.4 Mb 553.2
5 1 3,6,18 30 0.1 min/122.6 Mb 4.6 min 0.4 min/97.9 Mb 557.3
1 1 3,6,24 36 0.1 min/146.8 Mb 6.3 min 0.5 min/117.9 Mb 669.1
2 1 3,6,24 36 0.2 min/292.9 Mb 12.5 min 0.9 min/235.4 Mb 1335.2
3 1 3,6,24 36 0.2 min/319.0 Mb 15.4 min 1.2 min/258.6 Mb 1459.0
3’ 1 3,6,24 36 0.1 min/159.9 Mb 7.6 min 0.7 min/129.3 Mb 731.3
4 1 3,6,24 36 0.1 min/155.0 Mb 7.2 min 0.5 min/126.4 Mb 708.5
5 1 3,6,24 36 0.1 min/160.3 Mb 7.8 min 0.9 min/129.8 Mb 731.3
1 1 4,8,24 40 0.1 min/171.9 Mb 8.5 min 0.7 min/136.2 Mb 785.5
2 1 4,8,24 40 0.2 min/343.1 Mb 17.2 min 1.2 min/271.9 Mb 1567.7
3 1 4,8,24 40 0.3 min/372.1 Mb 21.0 min 1.7 min/297.3 Mb 1705.1
3’ 1 4,8,24 40 0.1 min/186.5 Mb 10.2 min 0.9 min/148.9 Mb 854.6
4 1 4,8,24 40 0.1 min/184.6 Mb 10.3 min 0.8 min/148.3 Mb 846.6
5 1 4,8,24 40 0.1 min/186.9 Mb 10.4 min 1.1 min/148.9 Mb 854.5
1 1 3,15,90 105 2.2 min/819.6 Mb 203.8 min 20.0 min/674.7 Mb 3826.9
2 1 3,15,90 105 4.4 min/1637.3 Mb 389.2 min 31.3 min/1352.5 Mb7645.2
3 1 3,15,90 105 5.6 min/1945.7 Mb 561.2 min 61.1 min/821.2 Mb 9103.8
3’ 1 3,15,90 105 2.9 min/974.0 Mb 286.7 min 61.1 min/410.9 Mb 4557.2
4 1 3,15,90 105 2.3 min/864.5 Mb 224.8 min 14.4 min/381.0 Mb 4042.8
5 1 3,15,90 105 3.2 min/981.1 Mb 291.4 min 342.5 min/463.4 Mb 4571.0

6 2 3,6,18 30 0.2 min/241.6 Mb 16.7 min 1.6 min/192.4 Mb 1098.9
7 2 3,6,18 30 0.2 min/244.9 Mb 17.3 min 1.8 min/194.4 Mb 1114.4
6 2 3,6,24 36 0.2 min/313.7 Mb 28.7 min 2.4 min/254.5 Mb 1432.0
7 2 3,6,24 36 0.2 min/317.6 Mb 31.0 min 2.7 min/257.5 Mb 1450.5
6 2 4,8,24 40 0.3 min/366.3 Mb 39.5 min 3.5 min/294.1 Mb 1675.3
7 2 4,8,24 40 0.3 min/371.5 Mb 38.2 min 3.8 min/297.0 Mb 1700.1

6 4 3,6,18 30 0.3 min/472.3 Mb 61.4 min 5.0 min/377.3 Mb 2145.6
7 4 3,6,18 30 0.3 min/475.5 Mb 62.3 min 5.3 min/379.3 Mb 2161.1
6 4 3,6,24 36 0.5 min/609.3 Mb 101.6 min 8.7 min/483.6 Mb 2777.7
7 4 3,6,24 36 0.5 min/613.2 Mb 103.1 min 9.2 min/486.2 Mb 2796.2
6 4 4,8,24 40 0.5 min/712.3 Mb 139.2 min 12.1 min/577.0 Mb 3254.6
7 4 4,8,24 40 0.6 min/717.5 Mb 141.0 min 12.6 min/580.3 Mb 3279.5

Table 2.Checking properties of the communication protocol.
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a communication protocol, where concurrent runs of the protocol are synchronized
through additional MTL formulas, hence building a mixed model. Verification tests
showed consistent results and reasonable performances. Asfuture work, we intend to
improve the efficiency of the technique by using a pure CNF encoding, and to investi-
gate the use of other operational formalisms, such as timed Petri nets.
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