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ABSTRACT
Considerable progress has been made towards automatic
support for one of the principal techniques available to en-
hance program reliability: equipping programs with exten-
sive contracts. The results of current contract inference tools
are still often unsatisfactory in practice, especially for pro-
grammers who already apply some kind of basic Design by
Contract discipline, since the inferred contracts tend to be
simple assertions—the very ones that programmers find easy
to write. We present new, completely automatic inference
techniques and a supporting tool, which take advantage of
the presence of simple programmer-written contracts in the
code to infer sophisticated assertions, involving for example
implication and universal quantification.

Applied to a production library of classes covering stan-
dard data structures such as linked lists, arrays, stacks,
queues and hash tables, the tool is able, entirely automat-
ically, to infer 75% of the complete contracts—contracts
yielding the full formal specification of the classes—with
very few redundant or irrelevant clauses.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software Verification—
programming by contract, assertion checkers, reliability ; F.3.1
[Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs

Keywords
contract inference, invariants, data mining, random testing

1. INTRODUCTION
Contracts are widely recognized as one of the most promis-

ing techniques for achieving software reliability. The advan-
tages of equipping software with contracts include [22] not
only avoiding mistakes in the first place and documenting
the software accurately, but also, if mistakes do remain, im-
proving dramatically the effectiveness of tests (and opening
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up the possibility of proofs, as well as automatic correc-
tion [32]). To yield the full range of these potential bene-
fits, the contracts must be present throughout the software,
and must describe its semantics as completely as possible.
Most practical software, however, comes equipped with no
contracts or, in languages enjoying support for Design by
Contract [2], with incomplete contracts. To compensate, re-
searchers have explored techniques (surveyed in Section 7)
for inferring contracts from the code. Some of these tech-
niques, such as abstract interpretation, involve static pro-
gram analysis; others such as Daikon [10] are dynamic and
rely on data from program executions.

These developments have yielded many important results
and insights, but their practical usability remains limited.
The advantages and limitations of the two kinds of tech-
niques are complementary: Static approaches report sound
but conservative contracts, and are mostly successful with
small programs. Dynamic approaches scale better, but tend
to be limited to inferring simple properties, such as a post-
condition in a list insertion routine stating that “the list size
has been increased by 1”; they also produce properties that
are redundant with others or subsumed by them, such as
“the list has grown in size” in this example, and unsound
properties that characterize the test suite rather than the
program. Even when relevant and non-redundant, the sim-
pler properties typically inferred may be disappointing to
programmers writing in a contract-equipped language, as
they often are the kind of contract elements that program-
mers naturally intuit; what they expect from a supporting
tool is that it will infer the more sophisticated properties.

The present work describes techniques for inferring ad-
vanced contracts, especially in the case of a contract-equip-
ped language where the tools can take advantage of simple,
partial contracts written by the programmers. Its focus is
on postconditions of commands (routines changing the state
of objects, as opposed to queries, which return information
about an object); it more specifically looks for two impor-
tant kinds of command postcondition clauses:

• Clauses involving quantification, to express for exam-
ple that all previous elements of a structure are still
present. Such clauses, which programmers seldom
write, are critical to express frame properties.

• Clauses involving implications whose premises are sin-
gle formulae or conjunctions of formulae.

Both kinds of postconditions are difficult to handle with
most existing approaches without customized instrumenta-
tion. We demonstrate that when simple contracts are avail-
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Listing 1: Programmer-written and automatically
inferred postconditions of LINKED LIST.extend.

1 extend (v: G) −− Add ‘v’ to end. Do not move cursor.
2 ensure
3 −− Programmer−written
4 post 1 : occurrences (v) = old (occurrences (v)) + 1
5

6 −− Automatically inferred
7 post 2 : count = old count + 1
8 post 3 : i th (old count + 1) = v
9 post 4 : forall i .

10 1≤ i ≤ old count implies i th (i) = old i th ( i)
11 post 5 : old after implies index = old index + 1
12 post 6 : not old after implies index = old index
13

14 post 7 : last = v
15 post 8 : forall o:G 6=v .
16 occurrences (o) = old occurrences (o)
17 post 9 : forall o:G 6=v . has (o) = old has (o)

able, as in contract-equipped languages, our techniques can
infer stronger contracts fully automatically.

Experiments show that the proposed techniques, which
we have implemented in the AutoInfer tool, inferred 75% of
the complete postconditions for data structure classes such
as linked list, queue, stack, array and hash table from Eif-
felBase, a production library which has been available for
many years and is widely used in Eiffel applications. The
inferred contracts achieve a high relevance, in that the var-
ious clauses are complementary and not mere repetitions,
and accurately record the effect of each command on the
visible state of the data structure.

AutoInfer is entirely automatic. It relies on dynamic anal-
ysis techniques and a general catalog of contract patterns.
To construct the test suite that serves as a basis for con-
tract inference, AutoInfer relies on the AutoTest [23] test
generation framework.

Section 2 gives an example of the kind of sophisticated
contracts that AutoInfer is able to infer. Section 3 describes
the automatic generation of the test suite for classes under
analysis. Section 4 explains the calculation of change pro-
files. Section 5 describes how to infer sophisticated postcon-
ditions involving functions with arguments, quantifications
and implications. Section 6 evaluates the effectiveness of
the proposed inference techniques. After the discussion of
related work in Section 7, Section 8 presents future work.
Section 9 draws conclusions.

2. EXAMPLE AND OVERVIEW
Class LINKED LIST is the standard Eiffel implementa-

tion of linked lists, using dynamic allocation. A typical
query is occurrences (v: G): INTEGER, returning the num-
ber of times its argument v of generic type G appears in the
list. A typical command is extend (v: G), extending the list
by adding v at the end.

The class authors equipped many features with contracts.
For example, they annotated extend with the postcondition
clause post 1 in Listing 1, to state that the command in-
creases the number of occurrences of the inserted element v
by one. (The listing only shows the command header and the

postcondition, ignoring the precondition, body, and other
clauses).

As it is often the case with contracts written by program-
mers [25], the postcondition clause post 1 is interesting but
incomplete, as it fails to mention the command’s effect on
other components of the object state, described by queries
other than occurrences. To be complete [26], the postcondi-
tion should also state that:

• The element v has been inserted at the end of the list.

• All the elements that were in the list before executing
extend are still there, in the same positions.

• The internal “cursor” of the list does not change posi-
tion.

The techniques described in the present paper, imple-
mented in our AutoInfer tool, can automatically infer post-
conditions clauses post 2 to post 6 in Listing 1, which com-
pletely formalize the effects of extend:

• post 2 asserts that exactly one element is added.

• post 3 states that v appears at position old count + 1:
the position next to the last valid position of the list
before invoking extend.

• post 4 states that for every valid position i of the old
list, the element at position i is the same before and
after the call.

• post 5 and post 6 formalize the position of the cursor
in terms of its integer position index: if the cursor was
after the last element of the list before invoking extend,
it is now after the new last element, corresponding
to an increment of index by one; otherwise index is
unchanged.

Even though post 2-post 6 capture every effect of extend
observable through the queries of LINKED LIST, redun-
dant clauses may still be desirable to increase the readability
and usefulness of the postcondition. AutoInfer indeed infers
three additional clauses, listed as post 7 to post 9 in List-
ing 1: v is the last element of the list (post 7); the number
of times every element other than v appears in the list is
unchanged (post 8); any element other than v occurs in the
list after insertion if and only if it occurred before (post 9).1

Overview. Figure 1 gives an overview of the inference
techniques described in the rest of the paper, and of how
AutoInfer integrates them.

1. The input is an Eiffel class, equipped with public que-
ries, commands, and possibly a few basic contracts.

2. Using the random testing techniques implemented in
AutoTest, AutoInfer generates a test suite that exer-
cises as many routines as possible (Section 3).

3. AutoInfer executes the test suite and profiles the re-
sults, monitoring in particular which arguments and
values returned by queries change when executing a
command. This information is collected in a change
profile (Section 4).

1In Listing 1, forall o:G 6=v . ... is a shorthand for
forall o: G . o 6=v implies ... .
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Figure 1: How AutoInfer works.

4. AutoInfer performs template-based invariant detection
à la Daikon [10] to infer dynamically the simplest con-
tract clauses. The information in the change profile
is used to activate selectively a restricted number of
templates, thus minimizing the inference of uninterest-
ing or redundant clauses (Section 5.3). For example,
post 2 and post 7 in Listing 1 are discovered using this
technique.

5. AutoInfer mines the change profile for predicates ap-
pearing in expressions which evaluate to different val-
ues in the pre- and post-state of some execution. It
then instantiates a number of pre-defined templates
with the predicates to obtain a set of quantified ex-
pressions, such as post 3, post 4, post 8, and post 9
in Listing 1. The expressions are candidate contracts,
which are validated against the test suite: the candi-
dates passing all test cases are likely valid contracts
(Section 5.1).

6. AutoInfer also applies machine learning techniques,
based on decision tree learning algorithms, to expres-
sions in the change profile. The goal is finding corre-
lations between expressions that change or stay con-
stant. Every correlation with 100% confidence trans-
lates into a likely valid contract in the form of an impli-
cation (Section 5.2). For example, decision tree learn-
ing inferred post 5 and post 6 in Listing 1 by observing
queries that change when executing extend.

7. Finally, AutoInfer collects all the inferred contracts
and displays them to the user.

3. TEST SUITE GENERATION
AutoInfer starts from dynamic techniques. Dynamic tech-

niques observe the program state over multiple executions
at pre-defined points such as the entry and exit of a routine,
and generalize these observations into likely valid contracts
based on a given set of templates. The inferred contracts are
only as good as the test suite which exercised the program;
sound and interesting contracts require a set of test cases
which execute program paths extensively and with varied
values.

AutoInfer takes advantage of the existing AutoTest ran-
dom testing framework [23] to build test suites completely
automatically. AutoTest works on Eiffel classes equipped
with contracts. Its test generation mechanism produces a

pool of random objects by calling constructors and com-
mands with random arguments. Then, to generate a test
case for a routine r of a class C, it selects from the pool a
target object of class C and a collection of objects and other
values whose types make them appropriate as actual argu-
ments for r. The precondition of r serves as a filter on the
objects in the pool to select a valid input; the postcondition
of r serves as an oracle to determine if the test case executed
correctly or exposed a bug.

In this work we focus, as noted, on inferring postcondi-
tions of commands. The reason for this choice is the em-
pirical observation that preconditions are usually much sim-
pler than postconditions; in fact programmers often do write
complete preconditions [25]. We modified AutoTest to dis-
card failing test cases and increased its capability of exercis-
ing commands with the precondition satisfaction technique
developed in recent work [31]. The test suites built with this
method proved to be appropriate for dynamic contract infer-
ence techniques. Previous authors using dynamic techniques
have stated that test suites produced with random-test gen-
eration are unsuitable for contract inference [10, 14]. Our
own experience shows otherwise in the case of programs that
are already equipped with a few simple contract elements,
with the goal of inferring additional, more sophisticated as-
sertions.

4. CHANGE PROFILE
AutoInfer runs the test suite generated by AutoTest, eval-

uates a set of expressions at the entry and exit points of a
command, and determines how the command changes their
values. The result is a change profile for the command, con-
sisting of the values and their changes. The change profile
is the basis for deciding which templates to activate during
the next phase, contract inference (Section 5). The rest of
this section explains how to select expressions and compute
their change profiles.

The key goal, apparent in the notations introduced be-
low, is to go beyond the simple properties found by most
previous tools (such as count = old count + 1), involving
queries with no arguments, and infer properties involving
more complex queries with arguments, as in occurrences (v)
= old occurrences (v) + 1.

4.1 Monitored entities
Whenever a test case exercises a routine, AutoInfer keeps

track of the value of a number of entities before and after
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Figure 2: An instance of LINKED LIST.

executing the routine’s body.
The following notations are useful, for a command c of a

class C with formal arguments a1, . . . , am and an n-argu-
ment public query q of a class D:

• Sc denotes the set {Current, a1, . . . , am} of symbolic
values corresponding to the current object (this, self )
and the formal arguments of c.

• T q,c ⊆ Sc denotes the set of symbolic values in Sc

of type conforming to D: every element in T q,c is a
type-correct target for calls to q.

• Aq,c
i ⊆ Sc denotes the set of symbolic values in Sc of

type conforming to the i-th argument of q.

• Eq,c denotes the seta0.q(a1, . . . , an)
∣∣ a0 ∈ T q,c ∧

∧
1≤i≤n

ai ∈ Aq,c
i


of type-correct expression calls to q with target and
arguments from Sc.

Example. Consider the command extend (v: G) of
LINKED LIST and the query has (v: G) of the same class.
Then, Sextend is {Current, v}; Thas,extend is {Current};
Ahas,extend

1 is {Current, v}, assuming that the generic type
G allows nested lists; Ehas,extend is {Current.has (v),
Current.has (Current)}.

4.2 Value sets
Consider an execution k of a command c. For every public

query q, V q,c
k is the set of triples 〈e, v, v′〉 such that e ∈ Eq,c

is an expression call to q; v is the value returned by evalu-
ating e right before the execution k of c; and v′ is the value
returned by evaluating e right after the same execution.

Example. Continuing the example of Section 4.1, con-
sider an invocation k of command extend (v: G) on the list

of Figure 2. V has,extend
k is then {〈Current.has (v),False,

True〉, 〈Current.has (Current),False, False〉}.
The value, pre, post, and change sets summarize the ef-

fects of a command c on the values of a public query q in
every execution.

• The value set Vq,c
e of command c on expression e ∈

Eq,c is the set{
〈v, v′〉 | 〈e, v, v′〉 ∈

⋃
k

V q,c
k

}
of all values e evaluates to in any execution of c.

• The pre set
←−
V q,c

e of c on e ∈ Eq,c is the set {v | 〈v, v′〉 ∈
Vq,c
e } of all values e evaluates to before executions of
c.

• The post set
−→
V q,c

e of c on e ∈ Eq,c is the set {v′ |
〈v, v′〉 ∈ Vq,c

e } of all values e evaluates to after execu-
tions of c.

• The change set Ṽq,c
e of c on e ∈ Eq,c, defined only

for calls to queries returning numeric values, is the set
{v′ − v | 〈v, v′〉 ∈ Vq,c

e } of all differences between the
values e evaluates to after and before executions of c.

An expression e ∈ Eq,c is variant with a command c
iff Vq,c

e contains at least a pair 〈v, v′〉 such that v′ 6= v.
The notion of variant expression guides the selection of po-
tential consequents in contracts involving implications (Sec-
tion 5.2).

Examples. The following examples, again applying to
extend of LINKED LIST, illustrate the notions of pre, post,
and change set.

• The query call Current.is empty determines whether
the current list is empty. extend may execute on empty
or non-empty lists, always yielding a non-empty list.
Hence, for every non-trivial test suite, the pre set of
extend on Current.is empty is {True, False}, the
post set is {False}, and Current.is empty is variant.

• The query call Current.count returns the number of
elements in the list. extend always increases count by
one, so the change set of extend on Current.count is
{1}. The post set contains all positive integers from 1
to the maximum length of a list generated in the test
suite.

5. INFERENCE TECHNIQUES
This section describes the inference techniques implemen-

ted in AutoInfer. 5.1 illustrates how to generate candidate
contracts involving quantification, 5.2 discusses the gener-
ation of contracts with implications, 5.3 describes how the
inference of basic contracts integrates with the other tech-
niques, and 5.4 presents validation techniques for candidate
contracts.

5.1 Contracts with quantification
Many interesting contracts compare the values returned

by queries for different values of their arguments; such con-
tracts can be formalized with expressions involving quantifi-
cation. Quantified expressions are particularly useful in con-
tracts of container classes: executing a command typically
introduces local changes to the data structure, for exam-
ple by adding or removing an element; a complete contract,
however, should also mention explicitly that the state of the
rest of the container has not changed. Such invariance prop-
erties are also called frame properties.

Consider, for example, the command start of the running
example class LINKED LIST, which moves the internal cur-
sor to the first position in the list. While the effect of start
on the cursor is easily described in a contract, expressing the
absence of effects on the elements of the list requires con-
tracts involving quantification such as forall o . has (o) =
old has (o), which states that the list contains an object o
after executing the command iff it contained it before.

Which query calls should appear in contracts involving
quantifications? AutoInfer mines the change profile for calls
to public queries on targets accessible from the current com-
mand. In principle, AutoInfer can consider queries with any
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number of arguments. To simplify the presentation, how-
ever, we focus here on single-argument queries.

Consider the set of expressions defined by the grammar

Pc 3 P ::= True | t.q | not P | old P

where q ranges over the set of all public queries and t ranges
over T q,c. For p ∈ Pc, let p(o) denote the call expression
where the query appearing in p (if any) is applied to argu-
ment o. For each choice of expressions2 x, y, z ∈ Pc whose
arguments have compatible types, AutoInfer instantiates the
following templates as candidate postconditions for c.3

forall o . x(o) = y(o)

forall o . x(o) 6= y(o)

forall o . x(o) or y(o) implies z(o)

forall o . x(o) and y(o) implies z(o)

For each x, y, z ∈ Pc, if the command c has a formal argu-
ment v of type compatible with the type of o in x(o), y(o),
z(o), AutoInfer also instantiates the following templates.

forall o 6=v . x(o) = y(o)

forall o 6=v . x(o) 6= y(o)

forall o 6=v . x(o) or y(o) implies z(o)

forall o 6=v . x(o) and y(o) implies z(o)

The idea behind this second set of templates is that, if a
command c operates on an argument v of the same type as
some query q, it is likely to affect the values returned by the
query differently according to whether q is invoked with v or
with a different value as argument. For example, this is the
case of command extend in Listing 1, whose postcondition
clauses post 8 and post 9 have been inferred according to
the “conditional” quantified templates.

Sequence-based contracts. Many container data struc-
tures can enumerate the elements they contain in a linear
sequence. This obviously holds not only of lists but also
of more complex structures such as trees through standard
traversal mechanisms. An indicator that a data structure
may admit an enumeration of its elements is the presence
of a public query with a single argument of type INTEGER
and a precondition constraining the values that the argu-
ment can take to an interval of the integers. Whenever a
query en ( i : INTEGER) with these characteristics exists,
we denote by σen the sequence of values en(m), en(m+1),. . .,
en(M) it induces, where [m..M ] is the integer interval deter-
mined by en’s precondition [32]. For example, the query
i th of class LINKED LIST returns a reference to the i-th
element in the list, provided 1≤ i ≤ count. This induces the
sequence σ i th of values i th (1) , . . ., i th(count).

Whenever a sequence representation σen is available, Au-
toInfer instantiates a number of candidate contracts that try
to capture the effects of any command c on the sequence of
values σen. These contracts are built by instantiating the
template:

σen = (old σen[m..x]) ◦ z ◦ (old σen[y..M ]) (1)

with values for x, y, z, where σ[a..b] denotes the subsequence
of σ corresponding to the interval [a..b] and ◦ denotes con-

2Obviously redundant or trivial expressions are immediately
discarded.
3All quantifications are implicitly restricted to objects of
conforming type.

catenation. Our experience with model-based contracts [26]
suggested the particular form of (1), which is only a readable
shorthand for the three candidate contracts with quantifica-
tion in Listing 2—where ν abbreviates the expression m +
old (x − m); and if z = λ (λ denotes the empty sequence)
then c 2 is undefined and δz = 0, otherwise δz = 1.

The method for picking values for x, y, z is, informally,
to use for x and z any two references or queries of suitable
type (integer for x and the same as en for z) that can be
evaluated in c’s postcondition, for y to pick x + 1 or x + 2.
Formally, let w : q denote that the types of expressions w, q
are conforming. Then, z ranges over the set

{λ} ∪ {w ∈ Sc | w : en} ∪
⋃
q:en

Eq,c ,

x̂ ranges over the set

{m,M} ∪ {v ∈ Sc | v : INTEGER} ∪
⋃

q:INTEGER

Eq,c ,

x ranges over the set {x̂, x̂+ 1, x̂− 1}, and y ranges over the
set {x+ 1, x+ 2}.

In the running example of Listing 1, post 3 and post 4
correspond to the instantiation of the sequence-based tem-
plate for query i th and m = 1, x = M = count, z = v,
y = x + 1. For these values, m = old m, ν = old count,
and the interval [y..M ] is empty, hence c 1 corresponds to
post 4, c 2 to post 3, and c 3 reduces to True.

5.2 Contracts with implications
The natural form of many postconditions is an implication

p1 ∧ p2 ∧ · · · ∧ pn =⇒ p0 (2)

which links several predicates p1, . . . , pn holding before ex-
ecuting a command to another predicate p0 holding after-
ward. p1, . . . , pn are called antecedents and p0 is the conse-
quent. Intuitively, each pi is a Boolean expression that com-
pares the value returned by some query to another value. For
example, post 5 in Listing 1 asserts that, whenever extend
is invoked on a list where after is True, the difference
index − old index will be 1 (i.e., index is increased by 1).

Dynamic inference techniques, consisting in generating
many candidate contracts by instantiating a template and
then validating them against the test suite, do not work well
to infer implications: there are often many different Boolean
expressions that can instantiate the antecedents and the con-
sequent of an implication, hence the resulting number of
candidate contracts easily grows beyond manageable limits.

In the present paper, we use data mining techniques to
search efficiently for correlations among predicates which
can be expressed as an implication (2). This approach does
not restrict a priori the expressions that can compose the
predicates but relies on data mining algorithms to select and
combine relevant expressions among a large number of can-
didates.

Listing 2: Sequence-based contracts.
1 c 1: forall m ≤ j≤n.en (j) = (old en) (j − m + old m)
2 c 2: en (ν + 1) = z
3 c 3: forall ν + 1 + δz ≤ j ≤ ν + 1 + δz + old (M − y) .
4 en ( j) = (old en) (j − ν − 1 − δz + old y)
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index   = old index index   = old index + 1 

True False 

old after 

Figure 3: A decision tree for contracts of extend.

Decision tree learning. The approach uses decision tree
learning [27]. The input to a decision tree learning algorithm
consists of: (a) a set of source expressions {e1, . . . , en}, each
with a finite set ∆i of nominal values that it can take; (b)
a target expression e0 with its set ∆0 of nominal values; (c)
a training set T ⊆ ∆1 × · · · × ∆n × ∆0 of tuples of val-
ues for the source and target expressions. The output of
the algorithm is a tree with a confidence value 0 ≤ α ≤ 1
where: (a) each leaf represents a value e ∈ ∆0 of the tar-
get; (b) each interior node corresponds to one of the source
expressions; (c) each node associated with some source ei
has at most |∆i| children, one for each value that ei can
take. The tree represents the target as a function of the
sources that is consistent with a fraction α of the train-
ing set T : the value taken by e0 for a source with values
〈e1, . . . , en〉 ∈ ∆1 × · · · × ∆n is obtained by following the
path that starts from the root and, for each node associated
with expression ei, continues to the child corresponding to
value ei. For example, the simple decision tree in Figure 3
includes a single source Boolean expression after and an in-
teger target expression index with nominal values {0, 1}; it
represents the function f : {True, False} → {0, 1} defined
as f(True) = 1, f(False) = 0.

We learn postconditions in the form of implications for a
command c according to the following procedure.

1. Select any target expression t among all query expres-
sion calls from

⋃
q E

q,c that are variant with c.

2. Select a nominal value set ∆t for t: if t is of type

INTEGER, ∆t can be the post set
−→
V q,c

t or the change

set Ṽq,c
t ; otherwise ∆t is the post set

−→
V q,c

t . When the
change set is selected, we call t a change target.

3. The set of source expressions is Rt ,
⋃

q E
q,c \ {t};

each source expression si ∈ Rt has nominal value set

∆si equal to the pre set
←−
V q,c

si .

4. Populate the training set Tt with a tuple 〈s1, . . . , sn, t〉
for each execution k of c. For each 1 ≤ i ≤ n, si equals
the value si evaluates to before the execution k of c.
If t is a change target, then t is the difference between
the values t evaluates to after and before the execution
k of c; otherwise, t is the value t evaluates to after the
execution k of c.

5. Feed the tree learning algorithm with the selected tar-
get t, source St, and training set Tt. AutoInfer uses
RapidMiner [28], an open-source data mining toolkit,
with multiple tree learning algorithms, and selects the
decision tree with the highest confidence.

The inference process is successful only if it builds a
tree with confidence value 1. A decision tree with a

lower confidence value disagrees with the values ob-
served in some runs of the test suite, hence some of
the implications it produces correspond to provably
invalid contracts.

6. Rewrite each path4 e1
e1−→ · · · → em

em−−→ t of the tree
into the contract:

old e1 = e1 ∧ · · · ∧ old em = em implies φ = t

where φ is t − old t if t is a change target and is just
t otherwise. For example, under the assumption that
index is a change target, the tree in Figure 3 corre-
sponds to the contracts post 5 and post 6 in Listing 1.

Experiments suggested that decision tree learning is most
likely to yield interesting implications when the target has
a small nominal value set, typically with no more than 3
elements. The current implementation takes this fact into
account to increase the efficiency of the inference process.

5.3 Basic contracts
In addition to the complex contract clauses generated with

the techniques described in the rest of this section, AutoIn-
fer implements some basic dynamic inference techniques to
discover simpler contracts. These basic techniques gener-
ate candidate contracts by instantiating a pre-defined set of
templates, a technique pioneered by Daikon [10].

Equalities. For a variant expression e1 and an (not nec-
essarily variant) expression e2

5 of conforming type, if
−→
V q,c

e1 =
−→
V q,c

e2 , AutoInfer introduces the candidate post-
condition e1 = e2 for command c. post 7 in Listing 1
is an example of inferred equality.

Linear relations. For any variant query expression e1 of
type INTEGER, AutoInfer tries to find a linear rela-
tion e1 = a·e2+b or e1 = a·old e2+b, with a, b ∈ Z, be-
tween e1 and any other integer query expression e2. To
this end, AutoInfer uses linear regression techniques.
post 2 in Listing 1 is an example of inferred linear re-
lation.

5.4 Validation
The validation step in the dynamic contract inference pro-

cess of AutoInfer re-runs all tests in the test suite and checks
the validity of all candidate contracts. A candidate is vali-
dated if it is not falsified by any execution. As in any dy-
namic inference technique, there is no absolute guarantee
that a validated contract is indeed correct in absolute terms;
however, a good test suite often provides a high confidence.

AutoInfer performs the validation step on all candidate
contracts involving quantification (Section 5.1) and on ba-
sic contracts (Section 5.3). Implications inferred with deci-
sion trees (Section 5.2) require no validation, as a tree with
confidence value of one matches by construction all data in
the test suite. Before returning the final set of validated
contracts to the user, AutoInfer performs a simple pruning
which removes obviously redundant or trivial contracts.

4Typically, m� n.
5In this case, expressions can also be references to arguments
of the command. The extension of the previous notation is
straightforward, hence omitted for brevity.
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6. EXPERIMENTAL EVALUATION
This section reports the results of experiments that ap-

plied AutoInfer to Eiffel implementations of several common
data structures.

6.1 Experimental setup
Selection of classes. Table 1 lists the Eiffel classes

implementing data structures used in the experiments; all
the classes are from EiffelBase [9], the standard Eiffel data
structure library. For each class, consider its size in lines
of code (LOC), the number of commands (#Cmd), queries
(#Qry), precondition (#Pre) and postcondition (#Post)
clauses provided by developers.

Setup and performance. All the experiments ran on a
Windows 7 machine with a 2.53 GHz Intel dual-core CPU
and 4 GB of memory. AutoInfer was the only computation-
ally-intensive process running during the experiments.

The generation of the test suite (Section 3) ran for about
30 hours for each class; after the automated elimination of
duplicated test cases, the final test suite consisted of 10 to
400 non-failing runs per command of each class. Follow-
ing the test suite generation, the construction of the change
profile (Section 4) took another 20–40 minutes for each com-
mand; finally, the actual contract inference phase ran for an
average of 5.7 minutes per command.

6.2 Results and evaluation
The rightmost part of Table 1 summarizes the results of

the contract inference experiments. The seventh column
(#Inf) reports the total number of inferred postcondition
clauses of commands. We assess the quality of the inferred
contracts according to their soundness, completeness, and
redundancy. Future work (Section 8) will address the limi-
tations evidenced by the experiments.

6.2.1 Soundness
Dynamic inference techniques cannot guarantee that ev-

ery validated contract is sound. We manually inspected
the contracts inferred to determine their soundness. The
eighth column of Table 1 (%Snd) reports the percentage of
sound contract clauses. The percentage is quite high, and
in line with the results obtained with other state-of-the-art
dynamic inference tools for expressive specification inference
(see Section 7).

Table 2 breaks down the total number of inferred clauses
by type of assertion, revealing that clauses with implications
(Section 5.2) have the highest percentage of unsoundness.
This is the result of implications being the most sensitive to
biased or incomplete test suites. As a representative exam-
ple, consider command merge left (other : LINKED LIST)
of class LINKED LIST, which merges the list other to the
left of the cursor in the current list. During the experiments,
no pair of objects of class LINKED LIST created by the test
suite contained exactly the same elements, except for a few
distinct instances of empty lists. AutoInfer noticed this ac-
cidental fact and correspondingly inferred the postcondition
old is equal (other) implies is empty for merge left . This
postcondition is clearly unsound, as it is a mere reflection of
an insufficiently varied test suite.

6.2.2 Completeness
Completeness addresses the question: is some contract

clause missing? For each command c, we manually prepared

a detailed postcondition πc and demonstrated it complete
according to a definition introduced in previous work [26],
similar to the notion of relative completeness for algebraic
specifications [15]. Intuitively, the postcondition of a com-
mand is complete if it describes the effects of the command,
directly or indirectly, on every public query of the class.

We then used these complete postconditions as a yardstick
to assess the completeness of inferred contracts: whenever
the set of sound postcondition clauses inferred by AutoInfer
for a command c entails the complete postcondition πc, we
consider the inferred contracts of c as complete as well. The
method of [26] facilitates rigorous reasoning even without
tool support, hence we have reasonable confidence in our as-
sessment of completeness even if it was carried out manually.
The ninth column (%Cmp) of Table 1 lists the percentage
of commands for which AutoInfer inferred a complete set of
postconditions. Figures above 75% on average indicate that
the inferred contracts are often very expressive and of high
quality.

Let us also mention that the percentage of commands with
a complete inferred contract drops to 67% if inference of im-
plication expressions is disabled, and to 17% if inference of
expressions with universal quantification is disabled. The
few commands that admit a complete postcondition with-
out quantification or implication are typically creation pro-
cedures (constructors).

Table 1 also shows that it is harder to generate complete
postconditions for commands of classes implementing sets,
arrays, and hash tables. These data structures have a more
sophisticated semantics for commands than list data types;
in a set, for example, the effect of adding an element changes
according to whether the element is already present in the
set or not. Correspondingly, AutoInfer sometimes does not
generate a sufficiently varied set of objects or simply lacks a
template needed to express a certain postcondition clause.

6.2.3 Redundancy
A postcondition clause is redundant if it can be inferred by

the other clauses of the same command. More precisely, we
introduce two notions of redundancy, of different strength.
A postcondition clause is:

• A repetition if it is implied by the other postcondition
clauses using only first-order reasoning and arithmetic;
for example, forall i . count − 1 + i = old count + i
and count >old count are both repetitions of count =
old count + 1.

• A variation if it is implied by the other postcondition
clauses, assuming knowledge of all complete contracts
of queries mentioned. For example, post 7 in List-
ing 1 is a variation because it is implied by the combi-
nation of post 2 with post 3: the last element corre-
sponds to the element at position count, which equals
old count + 1 after executing extend; this reasoning
required knowledge of the exact contract of last .

Every repetition is a variation, while the converse does
not hold in general. A variation which is not a repetition is
likely to be a valuable form of redundancy, as it explicitly
expresses the effect of a command on the value of queries
not mentioned explicitly by other clauses, and makes the
postcondition self-contained.

The eleventh and twelfth columns of Table 1 list the (larg-
est) percentage of postcondition clauses that are variations

7



Table 1: Classes used in the experiments and inferred contracts statistics.
Class LOC #Cmd #Qry #Pre #Post #Inf %Snd %Cmp %V %R %A
ARRAY 1463 15 32 69 107 235 94 66 80 0 74
HASH TABLE 2021 14 36 49 102 200 94 50 74 8 22
LINKED LIST 2000 26 34 70 91 378 98 84 76 2 74
LINKED QUEUE 2099 6 20 78 94 61 96 100 62 2 84
LINKED SET 2352 19 37 99 101 294 88 68 68 2 36
LINKED STACK 2088 9 18 78 94 115 96 100 68 0 100
Total 12023 89 177 373 589 1283 94 75 72 2 56

of the others (%V) and the fraction of variations that are
also repetitions (%R). The figures suggest that most of the
redundant clauses are still useful and relevant: AutoInfer
typically reports postconditions which are valuable, read-
able, and with little spurious or insignificant information.

As a further datum to assess informally the value of most
inferred clauses, consider the last column (%A) of Table 1;
it lists the percentage of programmer-written postcondition
clauses that are a repetition of those automatically inferred.
Given that an assertion written by programmers is certainly
relevant, the abundance of inferred clauses subsuming pro-
grammer-written ones is evidence of mostly useful redun-
dancies occurring.

Table 2: Type and soundness of inferred contracts.
Type #Inf #Snd (%)
Quantification 276 271 (98%)
Implication 242 220 (90%)
Equality 716 677 (94%)
Linear relation 49 49 (100%)

6.3 Limitations and threats to validity
The experiments demonstrate the effectiveness of the in-

ference techniques of the paper. The techniques also have
limitations, which future work will address (Section 8).

• We have so far applied the contract inference tech-
niques to classes representing data structure implemen-
tations. These are often classes with carefully designed
interfaces, including, in particular, a rich set of public
queries. The techniques of the present paper may not
apply as successfully to every class of programs; fur-
ther experimentation is needed to clarify this aspect.

• The inference techniques focus on postconditions of
commands. The empirical observation that program-
mers often write complete preconditions [25] justifies
the focus on postconditions. The current techniques
are not designed for inferring complex postconditions
of queries (functions that do not change the object
state). Improving this aspect will likely require new
techniques, since most contract inference techniques
treat queries as black boxes.

• All the experiments relied on automatically generated
test cases: we do not know to what extent the effec-
tiveness of the inference techniques is sensitive to how
the test cases are generated.

• The experiments performed significantly better with
two simplifications: consider only queries with at most

one argument, and do not create nested data structures
(e.g., lists of lists or sets of sets). Without these re-
strictions, AutoInfer must generate and analyze many
more candidate contracts, resulting in a much longer
running time for only a few more sound contracts. Op-
timizations and heuristics are needed to improve the
performance in these scenarios.

7. RELATED WORK
Various approaches have targeted the problem of automat-

ically inferring specifications of software components; a use-
ful classification is between static and dynamic techniques.

7.1 Static techniques
Static techniques analyze the source code and infer spec-

ification elements by applying analytical techniques. The
correct inference of all but the simplest classes of properties
is undecidable, hence static techniques are usually sound but
incomplete, and focus on tractable specifications.

For example, the abstract interpretation framework sup-
ports the inference of specifications such as interval con-
straints [3] or affine relations among variables [20]. Other
static techniques can infer extended typing information [24],
light-weight annotations ensuring the absence of out-of-
bound and void pointer dereferencing errors [11], sequence
diagrams describing the flow of information among objects
[29], and invariants of loops [17, 12].

7.2 Dynamic techniques
Dynamic techniques summarize properties that are invari-

ant over multiple runs of a program and suggest them as
likely specification elements. The dynamic approach is very
flexible in that it is applicable even if the source code is
not available and does not require a sophisticated analytical
framework. On the other hand, dynamic invariants come
with no guarantee of soundness or completeness and their
quality heavily depends on the choice of runs they summa-
rize. Regardless of these limitations, dynamic techniques
work quite well in practice.

To allow a closer comparison with the techniques of the
present paper, the rest of this section focuses on applications
of dynamic techniques to inferring specifications of compo-
nents, in particular data structure implementations.

7.2.1 Finite-state behavioral specifications
Behavioral specifications summarize the behavior of a com-

ponent as a finite-state automaton, constraining the sequences
of commands that can occur.

Ammons et al. [1] build probabilistic finite-state automata
which characterize order and data dependencies among invo-
cations of public routines; their technique exploits machine
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learning algorithms. Whaley et al. [33] complement dynamic
techniques with static techniques to deduce common and il-
legal call sequences.

Dallmeier et al. [6] capture the relationship between com-
mands and queries of a class with nondeterministic finite-
state automata. Automata states abstract object states as
a collection of queries; automata transitions are associated
with commands. Xie et al. [34] build similar automata with
multiple state abstractions, for example summarizing the in-
formation about the branch coverage. Lorenzoli et al. [21]
extend the finite-state model with information about the
values of attributes associated with each transition, and de-
scribe algorithms to learn such extended models.

Finite-state specifications are easy to read and analyze; on
the other hand, they are usually coarse-grained and hence
imprecise, especially to characterize the effects of a com-
mand. Algebraic specifications offer a more refined model.

7.2.2 Algebraic specifications
Algebraic specifications formalize component behavior in

terms of functions on objects and equational axioms that
describe the mutual relationship among such functions [15].

Henkel et al. [16] infer complex algebraic specifications of
abstract data type implementations from automatically gen-
erated test cases. Ghezzi et al. [13] generalize finite-state
models by means of graph-transformation systems, whose
rules correspond to equations of algebraic specifications; their
technique can build more accurate models than [16].

Algebraic specifications are quite expressive and appropri-
ate to document abstract data type implementations. Their
limitations include the difficulty of dealing with the frame
problem; on the contrary, the present paper’s techniques in-
fer frame properties quite effectively. Another characteristic,
shared by algebraic and finite-state models, is the fact that
the specification refers to a whole component and does not
describe the effects of each routine in isolation; this repre-
sentation may hinder the integration of the specifications
inferred in programming languages supporting user annota-
tions.

7.2.3 Contract specifications
Ernst et al. [10] pioneered the usage of dynamic techniques

with the Daikon tool. Daikon infers likely specifications in
the form of annotations. It works with a pre-defined set
of annotation templates which include relations among pro-
gram variables and conjunctions thereof. The success of the
approach has spawned derivative work extending the tech-
nique to target specific features or programs, such as poly-
morphic object-oriented languages [18, 4] or the consistency
of data structure implementations [7], and to support more
complex specifications.

A significant example of the latter are constraints in the
form of implication. Daikon uses splitting predicates [10]
as antecedents of implications; users provide such splitting
predicates based on their understanding of the program.
Follow-up work tried to automate the generation of split-
ting predicates, by extracting them from branch conditions
in the program text [19] or by means of clustering [8]. Most
of these proposals still lack a thorough evaluation; on the
other hand, the present paper’s solution (Section 5.2) proved
to be quite effective at building expressive postconditions of
data-structure routines.

Other work combined dynamic and static techniques, such

as symbolic execution [5, 30], to boost the quality of the
inferred specifications and to solve the problem of generating
a set of test cases that guarantee an accurate inference.

The techniques of the present paper support several of
these features with an original approach that leverages the
availability of simple programmer-written contracts and is
quite effective in terms of completeness and readability of
the inferred specifications.

8. FUTURE WORK
Integration in environment. We feel the results are

advanced enough to allow direct integration in the program-
ming environment. We are building into the Eiffel Verifi-
cation Environment (Eve) an advisory system that offers to
programmers suggestions to improve reliability and facilitate
verification. Inferred contracts are a prime example of such
suggestions. It is important to point out here that we do not
foresee adding assertions automatically; assertions and pro-
gram correctness in general are a delicate matter, and the
programmer must make the final decision. There may in
fact be cases in which the inferred assertion will not match
the programmer’s intention, prompting the programmer to
correct the program.

Soundness of inferred contracts. Some of the inferred
contracts are not sound; this happens more often with as-
sertions involving implications. We plan to identify unsound
contracts by trying to automatically generate test cases that
violate them. Soundness is clearly an essential requirement
even though, in our expected scenario, the programmer will
always make the final decision.

More forms for contracts. Inferring contracts for pro-
grams other than data structure implementations will re-
quire new forms for candidate assertions beyond univer-
sal quantifications and implications; for example, existential
quantifications and expressions based on models that occur
frequently in class abstractions, such as the bag [35].

Contracts of queries. Developing inference techniques
for contracts of queries, as opposed to commands, is chal-
lenging. A query’s postcondition describes the result re-
turned in terms of elementary features of the class. For
example, the postcondition of query occurrences (v: G) of
LINKED LIST must relate the nonnegative integer returned
by the query to the elements equal to v stored in the list.
We plan to rely on the notion of model of a class [26] to
formalize the semantics of queries.

9. CONCLUSIONS
The present paper described advanced techniques for in-

ferring complex contracts with clauses including universal
quantification and implication. The techniques, which we
have implemented in the AutoInfer tool, are based on dy-
namic analysis and data mining algorithms and are fully au-
tomatic. Experiments applying AutoInfer to standard Eiffel
implementations of data structures such as linked list, queue,
stack, array and hash table, inferred 75% of the complete
postconditions with few unsound, redundant, or irrelevant
clauses. These results suggest that AutoInfer can infer con-
tracts of very high quality with little noise, hence providing
accurate and readable documentation fully automatically.

The main consequence will be to provide programmers
with relevant, non-trivial invariant suggestions as part of the
routine feedback of the development environment, a key step
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towards making the tool-supported quest for high reliability
a standard part of the development process—“Verification
as a matter of course”.

AutoInfer is written in Eiffel and works on Eiffel classes.
The techniques described in the paper are, however, appli-
cable to other object-oriented languages that support con-
tracts, such as JML for Java and Spec# for C#. The source
code of AutoInfer, detailed experimental results and instruc-
tions to reproduce the experiments are available at:

http://se.inf.ethz.ch/research/autoinfer
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