
Tomorrow and All Our Yesterdays:
MTL Satisfiability over the Integers

Carlo A. Furia1 and Paola Spoletini2

1 DEI, Politecnico di Milano, Milano, Italy
2 DSCPI, Università degli Studi dell’Insubria, Como, Italy

Abstract. We investigate the satisfiability problem for metric temporal
logic (MTL) with both past and future operators over linear discrete
bi-infinite time models isomorphic to the integer numbers, where time is
unbounded both in the future and in the past. We provide a technique
to reduce satisfiability over the integers to satisfiability over the well-
known mono-infinite time model of natural numbers, and we show how
to implement the technique through an automata-theoretic approach.
We also prove that MTL satisfiability over the integers is EXPSPACE-
complete, hence the given algorithm is optimal in the worst case.

1 Introduction

Temporal logic has become a very widespread notation for the formal specifica-
tion of systems, temporal properties, and requirements. Its popularity is signifi-
cantly due to the fact that it provides highly effective conceptual tools to model,
specify, and reason about systems [7], and it is amenable to fully automated
verification techniques, the most notable being model-checking [4].

In temporal logic frameworks it is customary to model time as infinite in the
future and finite in the past, i.e., with an origin; in other words, time is mono-
infinite. On the contrary, models where time is infinite both in the future and in
the past — i.e., it is bi-infinite [12] — have been routinely neglected. The reasons
for this strong preference are mainly historical, as it has been pointed out by
various authors [7, 13]. Namely, temporal logic has been originally introduced for
the purpose of reasoning about the behavior of “ongoing concurrent programs”
[7], hence a model of time with an origin is appropriate since “computation
begins at an initial state” [7]. However, there are various motivations in favor
of the adoption of bi-infinite time models [13] as well, and they go beyond the
obvious theoretical interest.

The first of such reasons has to do with the usage of temporal logics with
operators that reference to the past of the current instant. If past is bounded,
we may have to deal with past operators referring to instants that are before
the origin of time: this gives rise to so-called border effects [5]. For instance,
consider yesterday operator Y of LTL3: Yp evaluates to true at some instant t
if and only if its argument p holds at the previous instant t− 1. Then, consider
3 Throughout the paper we assume temporal logics with past operators.

formula Yalarm which models an alarm being raised at the previous instant. If
we evaluate the formula at the origin, the reference to the “previous” instant
of time is moot as there is no such instant, and whether the evaluation should
default to true or to false depends on the role the formula plays in the whole
specification. A possible solution to these problems is to introduce two variants
of every past operator, one defaulting to true and the other to false [5]; however,
this is often complicated and cumbersome, especially in practical applications.
On the contrary, the adoption of bi-infinite time gets rid of such border effects
single-handedly, in a very uniform and natural manner, because there are simply
no “inaccessible” instants of time.

The second main motivation for considering bi-infinite time models is derived
from a reason for adopting mono-infinite time models: the fact that ongoing non-
terminating processes are considered. Similarly, when modeling processes that
are “time invariant” (whose behavior does not depend on absolute time values)
and where initialization can be abstracted away, a time model which is infinite
both in the past and in the future is the most natural and terse assumption.

This paper investigates temporal logic over bi-infinite discrete-time models.
More precisely, we consider a linear-time model which is isomorphic to the in-
teger numbers. Correspondingly, Metric Temporal Logic (MTL) [1] is taken as
temporal logic notation. It will be clear that, over the adopted discrete-time
model, MTL boils down to LTL with a succinct encoding of constants in for-
mulas. Hence, our results will be easily stateable in terms of LTL as well. The
main contributions are as follows. First, we present a general technique to re-
duce the satisfiability problem for MTL over the integers to the same problem
over the more familiar mono-infinite time model isomorphic to the natural num-
bers. Second, we show how the technique can be practically implemented with
an automata-theoretic approach — derived from previous work of ours [15] —
which can work on top of the Spin model-checker [10]. Third, the complexity
of the MTL satisfiability problem over the integer is assessed, and it is shown
that, unsurprisingly, it matches the well-known upper and lower bounds for the
same problem over mono-infinite discrete time domain [1]. To the best of our
knowledge, this is the first work which analyzes the complexity of MTL (and
LTL) satisfiability over bi-infinite time and provides a practical algorithm for it.

For the sake of space limits, we omit some proofs and inessential details,
while providing some intuitive examples. Missing details can be found in [8].

2 Definitions and Preliminaries

The symbols Z and N denote respectively the set of integer numbers and the
set of nonnegative integers. For greater clarity, connectives and quantifiers of the
meta-language are typeset in a bold underlined font.

2

2.1 Metric Temporal Logic

We define Metric Temporal Logic (MTL) [1] over mono-infinite and bi-infinite
linear discrete time. We always consider the variant with both past and future
operators (called MTLP by some authors [1]).

Syntax. Let Π = {p, q, . . .} be a finite set of propositions. MTL formulas are
given by φ ::= p | ¬φ | φ1 ∧φ2 | φ1 UI φ2 | φ1 SI φ2, where p ∈ Π, I is an interval
of the naturals (possibly unbounded to the right), and the symbols UI , SI
denote the bounded until and since operator, respectively.

Standard abbreviations are assumed such as >,⊥,∨,⇒,⇔. In addition, we
introduce some useful derived temporal operators: eventually FIφ = > UI φ;
always GIφ = ¬FI¬φ; next Xφ = ⊥ Uφ; release φ1 RI φ2 = ¬(¬φ1 UI ¬φ2).
Each of these operators has its past counterpart; that is, respectively: eventually
in the past PIφ = > SI φ; historically HIφ = ¬PI¬φ; previous or yesterday
Ykφ = P[k,k]φ; trigger φ1TI φ2 = ¬(¬φ1SI ¬φ2). Note that, whenever no interval
is specified, I = (0,∞) is assumed for all operators; also, the singleton interval
[k, k] is abbreviated by = k.

Precedence of operators is defined as follows: ¬ has the highest binding power,
then we have the temporal modalities UI , SI and derived ones, then ∧ and ∨,
⇒, and finally ⇔. φ̃ denotes the formula obtained from φ by switching every
future operator with its past counterpart, and vice versa.

The size |φ| of a formula φ is given by the product of its number of connectives
|φ|# times the size |φ|M of the largest constant used in its formulas, succinctly
encoded in binary. A future formula φ is a formula which does not use any
past operator; conversely, a past formula π is a formula which does not use any
future operator. A formula ψ is flat if it does not nest temporal operators.4 A
flat formula is propositional if it does not use temporal operators at all.

Words and operations on them. For a finite alphabet Σ, we introduce the sets of
right-infinite words (called ω-words), of left-infinite words (called ω̃-words), and
of bi-infinite words (called Z-words) over Σ, and we denote them as Σω, ωΣ, and
ΣZ, respectively. Correspondingly, an ω-language (resp. ω̃-language, Z-language)
is a subset of Σω (resp. ωΣ, ΣZ).

Given an ω-word w = w0w1w2 · · · , w̃ denotes the ω̃-word · · ·w−2w−1w0

defined by the bijection w−k = wk for k ∈ N. The same notation is used
for the inverse mapping from ω̃-words to ω-words. The mapping is also ex-
tended to languages as obvious, with the same notation. Given a Z-word x =
· · ·x−2x−1x0x1x2 · · · and k ∈ Z, xk denotes the ω-word obtained by truncating
x at xk on the left, i.e., xk = xkxk+1xk+2 · · · ; similarly, kx denotes the ω̃-word
obtained by truncating x at xk on the right, i.e., kx = · · ·xk−2xk−1xk.

The operations of intersection (∩), union (∪), and concatenation (.) for words
and languages are defined as usual. Let w and w be an ω- and an ω̃-word,
respectively. The Z-word w . w (right join) is defined as −1w.w, and the Z-
word w / w (left join) is defined as w.w1. The join operations are extended to
4 In the literature, there exist also different definitions of flatness, e.g., [3].

3

languages as obvious, with the same notation. Also, ↓Σ denotes the projection
homomorphism over Σ.

Semantics. We define the semantics of MTL formulas for infinite words over 2Π,
where Π is a finite set of atomic propositions. As it is standard, every letter yk ∈
2Π in such words represents the set of atomic propositions that are true at integer
time instant k (also called position). We introduce the predicate valid(y, i) which
holds iff i is a valid position in the infinite word y, i.e., iff y is a Z-word and
i ∈ Z, or y is an ω-word and i ∈ N, or y is an ω̃-word and −i ∈ N.

Let φ be an MTL formula, y a generic infinite word over 2Π, and i an integer
such that valid(y, i). The satisfaction relation |= is defined inductively as:
y, i |= p ⇔ p ∈ yi
y, i |= ¬φ ⇔ y, i 6|= φ
y, i |= φ1 ∧ φ2 ⇔ y, i |= φ1 ∧ y, i |= φ2

y, i |= φ1 UI φ2 ⇔ ∃d ∈ I: (valid(y, i+ d) ∧
y, i+ d |= ψ2∧∀0 < u < d : y, i+ u |= ψ1)

y, i |= φ1 SI φ2 ⇔ ∃d ∈ I: (valid(y, i− d) ∧
y, i− d |= ψ2∧∀0 < u < d : y, i− u |= ψ1)

y |= φ ⇔ ∀i ∈ Z : (valid(y, i) ⇒ y, i |= φ)
Note that we defined y |= φ to denote “global satisfiability”, i.e., the fact that
φ holds at all valid positions of y. This definition is especially natural over bi-
infinite words, where there is no initial instant at which to evaluate formulas.
On the contrary, “initial satisfiability” is more common over mono-infinite words
where an origin is unambiguously fixed. However, the global satisfiability prob-
lem is easily reducible to the initial satisfiability problem, as ∀i : y, i |= φ iff
y, 0 |= Alw(φ), where Alw(φ) ≡ Gφ ∧ φ ∧ Hφ denotes that φ holds always.

For instance, consider formula ν = H[0,3]p and its interpretation over ω-word
w+ in Figure 1. According to the semantics defined above, ν is true at 1 because
p holds for all valid positions between 1 and 1− 3 = −2. However, there may be
justifications in favor of evaluating ν false at 1: there is no complete interval of
size 4 where p holds continuously. This is an example of so-called border effect :
what is a “reasonable” evaluation of formulas near the origin is influenced by
the role the formulas play in a specification.

There is an interesting relation between the reverse φ̃ of a formula φ and the
reverse w̃ of ω-words w that are models of φ, as the following example shows.
Consider formula θ = H[0,3]p ⇒ Fq and its reverse θ̃ = G[0,3]p ⇒ Pq. θ asserts
that whenever p held continuously for 4 time units, q must hold somewhere in
the future (excluding the current instant), hence θ is true at position 4 and false
at position 11 over ω-word w+ in Figure 1. If we consider ω̃-word w− obtained
by reversing w+ (also in Figure 1), we see that θ̃ is true at position −4 and false
at position −11 over w−.

By generalizing the example, we have the following proposition.

Proposition 1. Let w+ ∈ (2Σ
)ω be an ω-word, φ be an MTL formula, and

i ∈ N. Then w+, i |= φ iff w̃+,−i |= φ̃.

4

p p p p p p p pq

0 4 6 11
p p p p p p p pq

0−4−6−11

w+

w−

p

p

1

−1

Fig. 1. ω-word w+ (above) and its reverse eω-word w− (below).

Satisfiability and language of a formula. Satisfiability is the following problem:
“given a formula φ is there some word y such that y |= φ ?”. It is the verification
problem we consider in this paper. For an MTL formula φ, let Lω0 (φ) denote the
set of ω-words w such that w, 0 |= φ, let Lω(φ) denote the set of ω-words w such
that w |= φ, and let LZ(φ) denote the set of Z-words x such that x |= φ. Then,
the satisfiability problem for a formula φ is equivalent to the emptiness problem
for the corresponding language.

LTL and expressiveness. LTL is a well-known linear temporal logic based on
the unique modality U. We will consider the past-enhanced variant of the logic,
and call it simply LTL. For the time models we consider in this paper, MTL is
simply LTL with an exponentially succinct encoding (see [8] for a translation):
every MTL formula µ can be translated into an LTL formula λµ such that
|λµ| = |λµ|# = exp O(|µ|# |µ|M).

2.2 Automata over Infinite Words

Languages definable in MTL can also be described as languages accepted by
finite state automata such as Büchi automata (BA) [16]. The size |A| of a BA
A is defined as the number of its finite states.

Alternating automata (AA, [17]) are an equally expressive but possibly more
concise version of BA. AA have two kinds of transitions: nondeterministic tran-
sitions (also called existential, corresponding to ∨) just like vanilla BA, and
parallel transitions (also called universal, corresponding to ∧). Alternation can
represent concisely the structure of an LTL formula [17], avoiding the expo-
nential blow-up. In [15] we introduced Alternating Modulo Counting Automata
(AMCA), an enriched variant of AA which makes use of (bounded) counters; this
new feature can represent succinctly MTL formulas as well, i.e., it can encode
succinctly constants used in MTL modalities.

Definition 1 (Alternating Modulo Counting Automaton (AMCA) [15]).
An Alternating Modulo Counting Automaton is a tuple 〈Σ,Q, µ, q0, δ, F 〉 where:

– Σ is a finite alphabet,
– Q is a set of states,
– µ ∈ N≥1 such that C = [0..µ] denotes a modular finite counter,
– q0 ∈ Q is the initial state,

5

– δ : Q× C ×Σ → B
+(Q× C) is the transition relation,5

– F ⊆ Q is a set of accepting states.

For the sake of readability when indicating the elements in B+(Q× C) we will
use the symbol / to separate the component in Q from the component in C.

A run of an AMCA is defined as follows.

Definition 2 (Run of an AMCA). A run (T, ρ) of an AMCA A on the ω-
word w = w0w1 · · · ∈ Σω is a (Q × C ×N)-labeled tree, where ρ is the labeling
function defined as: ρ(ε) = (q0/0, 0); for all x ∈ T , ρ(x) = (q/k, n); and the set
{(q′/h, 1) | c ∈ N, x.c ∈ T, h ∈ C, ρ(x.c) = (q′/h, n + 1)} satisfies the formula
δ(q/k, wn).

The acceptance condition for AMCA is defined similarly as for regular BA:
a path is accepting iff it passes infinitely many times on at least one state in
F . Formally, for a sequence P ∈ Nω and a labeling function ρ, let inf(ρ, P) =
{s | ρ(n) ∈ {s} × N for infinitely many n ∈ P}. A run (T, ρ) of an AMCA is
accepting iff for all paths P of T it is inf(ρ, P)|Q ∩ F 6= ∅.
The size |A| of an AMCA A can be defined as the product of |Q| times the size
of the counter, succinctly encoded in binary: |A| = O(|Q| logµ). With the usual
notation, Lω(A) denotes the set of all ω-words accepted by an automaton A.

3 Automata-Based MTL Satisfiability over the Naturals

A widespread approach to testing the satisfiability of an MTL (or LTL) formula
over mono-infinite time models isomorphic to the natural numbers relies on the
well-known tight relationship between LTL and finite state automata. In order to
test the satisfiability of an MTL formula µ, one translates it into an LTL formula
λµ, and then builds a nondeterministic BA Aλµ that accepts precisely the models
of λµ, hence of µ. Correspondingly, an emptiness test on Aλµ is equivalent to a
satisfiability check of µ. This procedure, very informally presented, relies on the
following two well-known results.

Proposition 2 ([17]). (1) The emptiness problem for (nondeterministic) BA
of size n is decidable in time O(n) and space O(log2 n). (2) Given an LTL
formula φ, one can build a (nondeterministic) BA Aφ with |Aφ| = exp O(|φ|)
such that Lω(Aφ) = Lω(φ) and Lω0 (Aφ) = Lω0 (φ).

In practice, however, this unoptimized approach is inconvenient, because the
BA representing an MTL formula is in general doubly-exponential in the size of
the formula, hence algorithmically very inefficient. On the contrary, we would
like to exploit more concise classes of automata (such as AMCA) to represent
MTL formulas more efficiently in practice. With this aim, in [15] we proposed a
novel approach to model-checking and satisfiability checking over discrete mono-
infinite time domains for a propositional subset of the TRIO metric temporal
5
B

+(S) denotes the set of all positive Boolean combinations of elements in S.

6

logic. It is clear that the subset of TRIO considered in [15] corresponds to MTL
as we defined it in this paper. Hence, let us recall from [15] the following result
about the translation of MTL formulas in BA and AMCA over the naturals.

Proposition 3 ([15]). Given a past MTL formula π, one can build two deter-
ministic BA Aπω and Aπ0 such that Lω(Aπ0) = Lω0 (π), Lω(Aπω) = Lω(π),
and the size of both Aπ0 and Aπω is exp O(|π|). Given a future MTL for-
mula ϕ, one can build two AMCA Aϕω and Aϕ0 such that Lω(Aϕ0

)
= Lω0 (ϕ),

Lω(Aϕω) = Lω(ϕ), and the size of both Aϕ0 and Aϕω is O(|ϕ|).

More precisely, future formulas are translated into AMCA according to the
following schema: the AMCA for a future formula ϕ over alphabet Π is Aϕ =
〈Σ,Q, µ, q0, δ, F 〉 where:

– Σ = 2Π,
– Q = {ν | ν is a subformula of ϕ} ∪ {¬ν | ν is a subformula of ϕ},
– µ = |ϕ|M,
– q0 = ϕ,
– the transition relation δ is defined as follows:
• δ(χ/0, p) = >/0 for χ ∈ Π and χ = p,
• δ(χ/0, p) = ⊥/0 for χ ∈ Π and χ 6= p,
• δ(ψ ∧ υ/0, p) = δ(ψ/0, p) ∧ δ(υ/0, p),
• δ(¬ψ/0, p) = dual(δ(ψ/0, p)), where dual(φ) is a formula obtained from φ

by switching > and ⊥, ∧ and ∨, and by complementing all subformulas
of φ,

• δ(ψ U[a,b] υ/k, p) =
ψ U[a,b] υ/k + 1 k = 0

δ(ψ/0, p) ∧
(
ψ U[a,b] υ/k + 1

)
0 < k < a

δ(υ/0, p) ∨
(
δ(ψ/0, p) ∧

(
ψ U[a,b] υ/k + 1

))
a ≤ k ≤ b

⊥ k > b

for a ≤ b <∞,
• δ(ψ U υ/k, p) = δ(υ/0, p) ∨ (δ(ψ/0, p) ∧ (ψ U υ/0)),

– F = {ξ | ξ ∈ Q and ξ has the form ¬(ψ U υ)}

In the remainder we will show how to exploit such satisfiability checking
procedures over the naturals to perform satisfiability checking over the integers.

4 Automata-Based MTL Satisfiability over the Integers

This section presents the main contribution of the paper: a technique to reduce
the satisfiability problem for MTL formulas over the integers to the same problem
over the naturals, and an automata-based implementation thereof.

7

Flat normal form. We introduce a suitable normal form where each application
of temporal operators can be analyzed in isolation, and we show that any MTL
formula can be rendered into this normal form by introducing auxiliary atomic
proposition but without changing the asymptotic size of the formula.

An MTL formula φ is in flat normal form when it is written as:6 φ′ =
β ∧ ∧nk=1 Alw(pk ⇔ ψk), where β ∈ B(Π) and ψk is a flat formula, for all k =
1, . . . , n. In addition, if every ψk is a pure past formula or a pure future formula,
φ′ is named flat separated normal form (FSNF).

Theorem 1. Let φ be an MTL formula over Π; a φ′ in FSNF can be built
efficiently such that LZ(φ) =↓ΠLZ(φ′), |φ′|M = |φ|M, and |φ′|# = O(|φ|#).

For example, considering formula θ = H[0,3]p ⇒ Fq, we can build θ′ by
replacing H[0,3]p and Fq with two new Boolean literals p′ and q′ respectively.

Hence, θ′ = (p′ ⇒ q′) ∧Alw
(
p′ ⇔ H[0,3]p

)
∧Alw(q′ ⇔ Fq).

4.1 Splitting the Evaluation about the Origin

Let φ′ be an MTL formula in FSNF. The satisfiability of φ′ can be analyzed
by considering each of the n + 1 subformulas β, pk ⇔ ψk|1≤k≤n separately. In
fact, x |= φ′ iff x |= β and ∀k = 1, . . . , n : x |= pk ⇔ ψk. Hence, without loss
of generality, we focus on studying the satisfiability of formulas in the form β,
p ⇔ ψ+, and p ⇔ ψ−, where ψ+ and ψ− are flat until and since formulas,
respectively.

More precisely, let us start with the future formula: ψ = f ⇔ p UI q ≡
(¬f ∨ p UI q) ∧ (f ∨ ¬p RI ¬q) In turn, x |= ψ iff x |= ¬f ∨ p UI q and x |=
f ∨¬pRI ¬q. Correspondingly, we now focus on studying the satisfiability of the
simple formula ¬f ∨ p UI q over the integers. Then it will be straightforward to
extend it to handle the other formula f ∨¬pRI ¬q, as well as the corresponding
past formula f ⇔ p SI q.

Behavior about the origin. Let us consider a Z-word x such that x |= p U[l,u] q

for some 0 ≤ l ≤ u <∞. We aim at splitting the evaluation of x |= pU[l,u] q into
the evaluation of other related formulas over mono-infinite words x0 and 0x.

Before introducing the formal results, let us provide some intuition about our
technique, and let l = 3, u = 7. First of all, x |= p U[3,7] q requires in particular
that x0 |= p U[3,7] q: until is a future operator, thus its evaluation over x0 is
independent of all instant before the origin, hence x0 |= p U[3,7] q iff ∀k ≥ 0 :
x, k |= p U[3,7] q. For instance this is the case of instant 3 in Figure 2. Similarly,
let us consider any position k of x such that the interval (k, k + 7] ⊂ (−∞, 0] is
contained completely to the left of the origin, such as position −8 in Figure 2.
The evaluation of p U[3,7] q at k is independent of all instants after the origin,
hence x, k |= pU[3,7] q iff 0x, k |= pU[3,7] q, for all k+ 7 ≤ 0, i.e., k ≤ −7. Finally,

6
B(Π) denotes the set of all Boolean combinations of elements in Π.

8

pp

4 6

p, q p p p p p pq qqppp

0 10 1 2 3 5 7 8 9−1−2−3−4−5−6−7−8−9

p

pU[3,7]q pU[3,7]q pU[3,7]q

x00̃x

Fig. 2. Splitting the evaluation of p U[3,7] q about the origin.

let us consider what happens to the evaluation of p U[3,7] q at instants k such
that the interval (k, k + 7] 3 0 contains the origin; for instance let k = −4 and
consider again Figure 2. Hence, there exists a h ∈ [−1, 3] such that x, h |= q
and for all −4 < j < h it is x, j |= p. Here, we have to distinguish two cases
and handle them differently. If h ≤ 0 such as for h = −1 in Figure 2, the
evaluation of p U[3,7] q at −4 is still independent of instants after the origin,
hence x, k |= p U[3,7] q iff 0x, k |= p U[3,7] q. Otherwise, if h > 0 such as for h = 2
in Figure 2, we consider separately the adjacent intervals (k, 0] and (0, k+7]. The
fact that p holds throughout (k, 0] is independent of instants after the origin,
so x, k |= G(0,−k]p iff 0x, k |= Gp. Moreover, p UI q holds at the origin for the
“residual” interval (0, 3], thus x, 0 |= p U[1,3] q iff x0, 0 |= p U[1,3] q.

By generalizing the above informal reasoning, we get the following.

Lemma 1. For x ∈ (2Π)Z, 0 ≤ l ≤ u <∞ such that u 6= 0,7 1− u ≤ i ≤ −1:

x, i |= p U[l,u] q ⇔
x, i |= p U[l,−i] q

∨(
x, i |= G[1,−i]p ∧ x, 0 |= p U[max(1,i+l),i+u] q

) (1)

Proof. Let us start with the ⇒ direction: assume x, i |= p U[l,u] q. Hence, there
exists a d ∈ [l, u] such that x, i+ d |= q and for all i < j < i+ d it is x, j |= p. If
i+ d ≤ 0 then 0 ≤ d ≤ −i, hence x, i |= pU[l,−i] q holds. Otherwise, i+ d > 0; in
this case, p holds throughout (i, 0] and thus x, i |= G[1,−i]p holds. In addition, let
d′ = i+d; note that 1 ≤ d′ ≤ i+u and also i+l ≤ d′, so x, 0 |= pU[max(1,i+l),i+u] q
holds.

Let us now consider the⇐ direction. If x, i |= pU[l,−i] q, from 1−u ≤ i ≤ −1
we get 1 ≤ −i ≤ u−1, thus [l,−i] ⊆ [l, u] which entails x, i |= pU[l,u] q. Otherwise,
let x, i |= G[1,−i]p and x, 0 |= p U[max(1,i+l),i+u] q. That is, p holds throughout
(i, 0], and there exists a k ∈ [max(1, i+ l), i+ u] such that x, k |= q and p holds
throughout (0, k). Let d = −i+k; from k ∈ [max(1, i+ l), i+u] we get d ∈ [l, u],
which establishes x, i |= p U[l,u] q. ut

Lemma 1 shows how to “split” the evaluation of an until formula into the
evaluation of two derived formulas, one to be evaluated to the left of the origin,
7 This restriction is clearly without loss of generality, as φ1 U[0,0] φ2 ≡ φ2.

9

and one to its right. Next, we use that result to express the satisfiability of a
formula of the form ¬f ∨pU[l,u] q over a bi-infinite word x as the satisfiability of
several different formulas, each evaluated separately either on the whole mono-
infinite word x0 or on the whole mono-infinite word 0̃x.8

Lemma 2. Let x ∈ (2Π)Z and 0 ≤ l ≤ u <∞ such that u 6= 0; then:

x |= ¬f ∨ p U[l,u] q ⇔

x0 |= ¬f ∨ p U[l,u] q ∧ f0x |= ¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)

∧

∀1 ≤ i ≤ u− 1 :

0B@f0x |= P=i> ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

∨
x0, 0 |= p U[max(1,−i+l),−i+u] q

1CA (2)

Let ΦL and ΦR be the sets of all MTL formulas appearing in left- and right-
hand side of Formula (2), respectively (for all values of 1 ≤ i ≤ u−1). Note that
u = exp O(|ΦL|M), due to the succinct encoding of constants assumption. Then,
|ΦR|M = O(|ΦL|M) and |ΦR|# = O(u · |ΦL|#) = |ΦL|# exp O(|ΦL|M).

It is not difficult to show that the equivalence of Formula (2) can be exploited
to derive an equivalent formulation of the bi-infinite language LZ

(
¬f ∨ p U[l,u] q

)
in terms of mono-infinite ω-languages and composition operations on them.

Theorem 2. Let 0 ≤ l ≤ u <∞ and u 6= 0; then:

LZ
(
¬f ∨ p U[l,u] q

)
=

fLω“¬f ∨ p S[l,u] q ∨ (Hp ∧ H=u⊥)
”
. Lω

“
¬f ∨ p U[l,u] q

”
∩

Tu−1
i=1

0BB@
fLω“P=i> ∧ H=i+1⊥ ⇒ ¬f ∨ p S[l,u] q

”
.
“

2Π
”ω

∪
ω
“

2Π
”
. Lω0

“
p U[max(1,−i+l),−i+u] q

”
1CCA (3)

Other operators. So far, we have provided a characterization of flat formu-
las only in the form ¬f ∨ p U[l,u] q, for finite l ≤ u. In order to handle ev-
ery possible subformula in FSNF, we have to present similar characterizations
for the subformulas: (1) ¬f ∨ p U[l,∞) q; (2) f ∨ p RI q, for any interval I; (3)
f ⇔ p SI q ≡ (¬f ∨ p SI q) ∧ (f ∨ ¬p TI ¬q), for any interval I; (4) β ∈ B(Π′).
Such characterizations are derivable similarly as for the bounded until. Hence,
in the following we just collect the final results for (1) and (2), while the easily
derivable results for past operators are provided only in [8].

LZ(¬f ∨ p U q) =
L̃ω(¬f ∨ p S q ∨ Hp) . Lω(¬f ∨ p U q)

∩(
L̃ω(¬f ∨ p S q) /

(
2Π
)ω ∪ ω

(
2Π
)
. Lω0 (p U q)

) (4)

LZ
(
f ∨ p R[l,u] q

)
=

fLω“f ∨ p T[l,u] q
”
. Lω

“
f ∨ p R[l,u] q

”
∩

Tu−1
i=1

0BB@
fLω`P=i> ∧ H=i+1⊥ ⇒ Pp

´
.
“

2Π
”ω

∪
ω
“

2Π
”
. Lω0

“
p R[max(1,−i+l),−i+u] q

”
1CCA (5)

8 Note that H=k⊥ holds exactly at all positions j < k of any ω-word.

10

LZ(f ∨ p R q) =
L̃ω(f ∨ (p T q ∧ Pp)) . Lω(f ∨ p R q)

∪
L̃ω(f ∨ p T q) . (Lω0 (p R q) ∩ Lω(f ∨ p R q))

(6)

In fact, to give some intuition about the formulas for the past operators,
consider the example of formula θ = H[0,3]p ⇒ Fq. θ in separated normal form
becomes θ′ = (p′ ⇒ q′) ∧ (p′ ⇔ H[0,3]p) ∧ (q′ ⇔ Fq). Then, subformula λ =
p′ ∨ ¬H[0,3]p = p′ ∨ P[0,3]¬p = p′ ∨ > S[0,3] ¬p can be directly decomposed into:

x |= p′ ∨ P[0,3]¬p ⇔

fx0 |= p′ ∨ F[0,3]¬p ∧ x0 |= p′ ∨ P[0,3]¬p ∨ H=u⊥
∧

∀1 ≤ i ≤ 2 :

0B@ x0 |= P=i> ∧ H=i+1⊥ ⇒ p′ ∨ P[0,3]¬p
∨f0x, 0 |= F[1,−i+3]¬p

1CA (7)

4.2 From Languages to Automata (to ProMeLa)

In Section 3 we recalled that one can build an automaton that accepts any
given MTL ω-language. On the other hand, in the previous section we showed
how to reduce MTL satisfiability over Z-languages to MTL satisfiability over
ω-languages composed through the operations of ., /, ∪, ∩, and ↓Π.

Indeed, the reduction can be fully implemented. In fact, in [8] we substantiate
the claim that both BA and AMCA are closed under intersection and union, in
such a way that if A1 and A2 are two automata (either BA or AMCA), then
|A1 ∪ A2| = O(|A1|+ |A2|) and |A1 ∩ A2| = O(|A1| · |A2|).

Moreover, consider . and let L be a Z-language defined as L̃1 .L2. Then a Z-
word x is in L iff −̃1x ∈ L1 and x0 ∈ L2. Hence, if we have two automata A1,A2

such that Lω(A1) = L1 and Lω(A2) = L2 the emptiness of L can be checked
noting that L = ∅ iff Lω(A1) = ∅ or Lω(A2) = ∅. A very similar reasoning
holds for /. Finally consider the projection: for any MTL formula φ over Π let
φ′ be an equi-satisfiable MTL formula over Π′ ⊇ Π. Then, ↓Π LZ(φ′) = LZ(φ),
and LZ(φ) = ∅ iff LZ(φ′) = ∅. Correspondingly, the technique to check the
satisfiability over the extended alphabet suffices to complete the satisfiability
check on the original formula.

Implementing automata. In [2] we presented TRIO2ProMeLa, a tool that trans-
lates TRIO formulas (or, equivalently, MTL formulas) into a ProMeLa represen-
tation of the automata presented in Section 3. ProMeLa is the input language to
the Spin model-checker [10], hence the tool allows one to check the satisfiability
of an MTL formula on top of Spin. This approach is very efficient in prac-
tice, since it translates directly compositions (through union and intersection)
of BA and AMCA to ProMeLa, obtaining a code of the same size as the origi-
nal automata composition description. In a nutshell, every state of an AMCA is
implemented with a ProMeLa process, existential transitions are implemented

11

as nondeterministic choices, and universal transitions as the parallel run of con-
current processes. The tool also introduces some useful optimizations, such as
merging processes when possible. When Spin is run on the automata described
in ProMeLa, it unfolds them on-the-fly. This unfolding may lead to a blow-up
in the dimension of the automata but it is performed by the model-checker only
when needed. This approach is convenient, since in many practical cases, when
the original formulas are large, the direct translation to BA and then to ProMeLa
is simply unfeasible. We refer the reader to [2, 15] for a detailed description of
the translation from AMCA and BA to ProMeLa code.

TRIO2ProMeLa can be reused to provide an implementation of our satisfia-
bility checking procedure over the integers. Once a formula is decomposed as ex-
plained in the previous sections, each component is translated into the ProMeLa
process that represents the equivalent automaton. All the obtained processes are
then suitably composed and coordinated by starting them together at time 0.
The results of the various emptiness checks are then combined to have a response
about the satisfiability of the original formula.

4.3 Summary and Complexity

Let us briefly summarize the satisfiability checking technique we presented in
this section and let us analyze its worst-case asymptotic complexity.

Summary of the satisfiability checking algorithm. Given an MTL formula φ over
Π, the satisfiability over Z-words is checked according to the following steps.

1. From φ, build a formula φ′ in FSNF such that LZ(φ) =↓ΠLZ(φ′) (Theorem
1).

2. For each subformula φ′i of φ′, build a set of formulas {φ′i,j}j , whose combined
satisfiability over ω-words is equivalent to the satisfiability of φ′i over Z-words
(e.g., according to (3) for the bounded until). Let φ′′i =

⋃
j{φ′i,j}.

3. Translate each subformula φ′i,j into an automaton Ai,j according to what is
described in Section 3.

4. For each i, compose the various automata Ai,j according to the structure
of the corresponding language equivalences (e.g., according to (3) for the
bounded until). In practice, for every i we can assume to have two automata
A+
i ,A−i such that L̃ω(A−i) ∼ Lω(A+

i

)
= LZ(φ′i), where ∼ is . or /.

5. Let A+,A− be the automata resulting from the intersection of the various
A±i ’s according to the structure of LZ(φ′).

6. Since the equivalence ↓Π LZ(φ′) = LZ(φ) holds by construction, the empti-
ness test on Lω(A+) and on Lω(A−) is equivalent to the satisfiability check
of φ over Z-words.

Let us go back to our previous example of θ = H[0,3]p ⇒ Fq, and let θ′

be θ in FSNF. One of the subformulas in θ′ is λ = p′ ∨ P[0,3]p, which can be
decomposed according to the left-hand side of 2. Correspondingly, we would
build the following automata: A1 for p′ ∨ P[0,3]¬p; A2 for p′ ∨ P[0,3]¬p ∨ H=u⊥;

12

Aj3 for P=j>∧H=j+1⊥ ⇒ p′∨P[0,3]¬p, j = 1, 2; Aj4 for F[1,−j+3]¬p, j = 1, 2. The

automata would then be composed into: A−λ = A1; A+
λ = A2∩

⋂2
j=1

(
Aj3 ∪ Aj4

)
.

Overall, we build two such automata A−i and A+
i for each of the 5 subformulas θ′

can be decomposed into. Let A+ =
⋂5
i=1A+

i and A− =
⋂5
i=1A−i . We conclude

that θ is satisfiable iff Lω(A+) is non-empty and Lω(A−) is non-empty.

Complexity of satisfiability checking over the integers. Let us now evaluate an
upper bound on the complexity of the above procedure. The worst-case occurs
when overall automata A± are expanded entirely into nondeterministic BA,
thus losing entirely the conciseness of AMCA and the implicit representation of
intersections.

First of all, let us estimate the size of every Ai,j with respect to the size of φ′i.
In Proposition 2 we recalled that the size |B| of a Büchi automaton B encoding
an LTL formula θ of size |θ| is exp O(|θ|). Also, every MTL formula η can be
translated into an equivalent LTL formula of size exp O(|η|# |η|M). In our case,
every formula φ′i,j is translated into an automaton of size:

|Ai,j | = exp exp O
(∣∣φ′i,j∣∣# ∣∣φ′i,j∣∣M) = exp exp O

(∣∣φ′i,j∣∣M)
because every subformula φ′i,j has a constant (i.e., independent of |φ|) number
of connectives. Also, we noted that

∣∣φ′i,j∣∣M = |φ′i|M, so:

|Ai,j | = exp exp O (|φ′i|M)

Next, let us estimate the size of A±i . Roughly, A±i is the intersection
⋂
j Ai,j ,

hence its size is upper-bounded by the product of the sizes |Ai,j |:
∣∣A±i ∣∣ =

∏
j

|Ai,j | ≤
(

max
j
|Ai,j |

)|φ′′i |
= (exp exp O(|φ′i|M))exp O(|φ′i|M)

where the equivalence between |φ′′i | and exp O(|φ′i|M) was highlighted in Section
4.1. After some manipulation, we get:∣∣A±i ∣∣ = exp

(
(exp O(|φ′i|M)) (exp O(|φ′i|M))

)
= exp exp O (|φ′i|M)

Then, the overall size of A+ and A− can be computed as:∣∣A+
∣∣+∣∣A−∣∣ = O(

∣∣A±∣∣) =
∏
i

∣∣A±i ∣∣ ≤ (max
i
|Ai|

)|φ′|# = exp
(|φ′|# exp O(|φ′|M)

)
thanks to the equivalence between |φ′i|M and O(|φ′|M) stated in Remark 4.1.

Finally, Theorem 1 relates the size of φ′ to that of the original formula φ, so
we have: ∣∣A+

∣∣+
∣∣A−∣∣ = exp

(|φ|# exp O(|φ|M)
)

From the well-known result that emptiness check of a Büchi automaton takes
time polynomial (actually, linear) in the size of the automaton (see Proposition
2), we have established the following.

13

Theorem 3 (Upper-bound complexity). The verification algorithm of this
paper can check the satisfiability of an MTL formula φ over Z-words in time
doubly-exponential in the size |φ| of φ.

The doubly-exponential time performance is worst-case optimal, because the
satisfiability problem for MTL over the integers is an EXPSPACE-complete prob-
lem, as it is over the naturals [1].

Theorem 4 (Complexity of MTL over the integers). The satisfiability
problem for MTL over the integers is EXPSPACE-complete.

Proof (sketch). From the upper-bound analysis and Proposition 2 it follows also
that the problem is is decidable in nondeterministic (singly) exponential space,
hence it is in EXPSPACE. For the EXPSPACE-hardness proof, one reduces from
the satisfiability of future-MTL over integer-timed ω-words, which is also EX-
PSPACE-complete [1]. See [8] for details. ut

5 Discussion

As we discussed in the Introduction, bi-infinite time models for temporal logic
have been studied very rarely. Let us briefly consider a few noticeable exceptions.

On the more practical side, Pradella et al. [13] recently developed a tool-
supported technique for bounded model-checking of temporal logic specifications
over the integers. Bounded model-checking is a verification technique based on
reduction to the propositional satisfiability (SAT) problem, for which very ef-
ficient off-the-shelf tools exist. The technique is however incomplete, as it only
looks for words of length up to a given bound k, where k is a parameter of the
verification problem instance. [13] describes a direct encoding of MTL bounded
satisfiability as a SAT instance and reports on some interesting experimental
results with an implementation. [13] also discusses the appeal of bi-infinite time
from a system modeling perspective; some of its considerations are also discussed
in the Introduction of the present paper.

In the area of automata theory and formal languages, there exist a few works
considering bi-infinite time models. For instance Perrin and Pin [12] introduce
bi-infinite words and automata on them, and extend some classical results for
mono-infinite words to these new models. In the same vein, Muller et al. [11]
establish the decidability of LTL over the integers. However, to the best of our
knowledge the complexity of temporal logic over bi-infinite time has never been
investigated in previous work.

On the contrary, temporal logic over mono-infinite time models has been
extensively studied, and it has been the object of an impressive amount of both
practical and theoretical research (e.g., [7, 9, 17, 1, 6]). Satisfiability of both LTL
[14] and MTL [1] — also with past operators — over mono-infinite discrete
time models has been thoroughly investigated. Sistla and Clarke [14] proved
that LTL satisfiability over the naturals is PSPACE-complete, with a (singly)
exponential time algorithm. Correspondingly, Alur and Henzinger [1] proved

14

that MTL satisfiability over mono-infinite integer timed words is EXPSPACE-
complete, and provided a doubly-exponential time algorithm. The same holds
for bi-infinite discrete time, as we showed in this paper.

In the future, we plan to work on the implementation of an automated trans-
lator from integer-time MTL specifications to Spin models, and to experiment
with it to assess the practical feasibility of the approach, also in comparison
with similar tools for mono-infinite time models. Also, the related MTL model-
checking problem over integer time will be investigated.

References

1. R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness.
Information and Computation, 104(1):35–77, 1993.

2. D. Bianculli, A. Morzenti, M. Pradella, P. San Pietro, and P. Spoletini.
Trio2Promela: A model checker for temporal metric specifications. In ICSE Com-
panion, pages 61–62, 2007.

3. P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. The cost of punctuality. In
Proceedings of LICS’07, pages 109–120. IEEE Computer Society, 2007.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
5. A. Coen-Porisini, M. Pradella, and P. San Pietro. A finite-domain semantics for

testing temporal logic specifications. In Proceedings of FTRTFT’98, volume 1486
of LNCS, pages 41–54, 1998.

6. S. Demri and P. Schnoebelen. The complexity of propositional linear temporal
logics in simple cases. Information and Computation, 174(1):84–103, 2002.

7. E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 996–1072. Elsevier Science, 1990.

8. C. A. Furia and P. Spoletini. MTL satisfiability over the integers. Technical Report
2008.2, DEI, Politecnico di Milano, 2008.

9. D. M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic (vol. 1): mathe-
matical foundations and computational aspects. Oxford University Press, 1994.

10. G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual. 2003.
11. D. E. Muller, P. E. Schupp, and A. Saoudi. On the decidability of the linear Z-

temporal logic and the monadic second order theory. In Proc. of ICCI’92, pages
2–5, 1992.

12. D. Perrin and J.-É. Pin. Infinite Words, volume 141 of Pure and Applied Mathe-
matics. Elsevier, 2004.

13. M. Pradella, A. Morzenti, and P. San Pietro. The symmetry of the past and of the
future. In Proceedings of ESEC/FSE’07, pages 312–320, 2007.

14. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. Journal of the ACM, 32(3):733–749, 1985.

15. P. Spoletini. Verification of Temporal Logic Specification via Model Checking. PhD
thesis, DEI, Politecnico di Milano, May 2005.

16. W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B, pages 133–164. Elsevier Science, 1990.

17. M. Y. Vardi. Handbook of Modal Logic, chapter Automata-Theoretic Techniques
for Temporal Reasoning, pages 971–990. 2006.

15

