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Abstract

Static code analysis tools such as FindBugs and SonarQube are widely used
on open-source and industrial projects to detect a variety of issues that may
negatively affect the quality of software. Despite these tools’ popularity and high
level of automation, several empirical studies report that developers normally
fix only a small fraction (typically, less than 10% [1]) of the reported issues—
so-called “warnings”. If these analysis tools could also automatically provide
suggestions on how to fix the issues that trigger some of the warnings, their
feedback would become more actionable and more directly useful to developers.
In this work, we investigate whether it is feasible to automatically generate
fix suggestions for common warnings issued by static code analysis tools, and
to what extent developers are willing to accept such suggestions into the code-
bases they are maintaining. To this end, we implemented SpongeBugs, a Java
program transformation technique that fixes 11 distinct rules checked by two
well-known static code analysis tools (SonarQube and SpotBugs). Fix sugges-
tions are generated automatically based on templates, which are instantiated
in a way that removes the source of the warnings; templates for some rules are
even capable of producing multi-line patches. Based on the suggestions provided
by SpongeBugs, we submitted 38 pull requests, including 946 fixes generated
automatically by our technique for various open-source Java projects, including
Eclipse Ul—a core component of the Eclipse IDE—and both SonarQube and
SpotBugs. Project maintainers accepted 87% of our fix suggestions (97% of
them without any modifications). We further evaluated the applicability of our
technique on software written by students and on a curated collection of bugs.
All results indicate that our approach to generating fix suggestions is feasible,
flexible, and can help increase the applicability of static code analysis tools.
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1. Introduction

Static code analysis tools (SATs) are becoming increasingly popular as a way
of detecting possible sources of defects earlier in the development process [2].
By working statically on the source or byte code of a project, these tools are
applicable to large code bases [3, 4], where they quickly search for patterns that
may indicate problems—bugs, questionable design choices, or failures to follow
stylistic conventions [5, 6]—and report them to users. There is evidence [7]
that using these tools can help developers monitor and improve software code
quality; indeed, static code analysis tools are used for both commercial and
open-source software development [1, 2, 4]. Some projects’ development rules
even require that code has to clear the checks of a certain SAT before it can be
released [1, 7, 8.

At the same time, some features of SATs limit their wider applicability in
practice. One key problem is that SATs are necessarily imprecise in checking
for rule violations; in other words, they report warnings that may or may not
correspond to an actual mistake. As a result, the first time a static analysis
tool is run on a project, it is likely to report thousands of warnings [2, 3], which
saturates the developers’ capability of sifting through them to select those that
are more relevant and should be fixed [1]. Another related issue with using
SATs in practice is that understanding the problem highlighted by a warning
and coming up with a suitable fix is often nontrivial [1, 3].

Our research aims at improving the practical usability of SATs by automat-
ically providing fix suggestions: modifications to the source code that make
it compliant with the rules checked by the analysis tools. We developed an
approach, called SpongeBugs and described in Section 3, whose current imple-
mentation works on Java code. SpongeBugs detects violations of 11 different
rules checked by SonarQube and SpotBugs (successor to FindBugs [2])—two
well-known static code analysis tools, routinely used by very many software
companies and consortia, including large ones such as the Apache Software
Foundation and the Eclipse Foundation. The rules checked by SpongeBugs are
among the most widely used in these two tools, and cover different kinds of code
issues (ranging from performance, to correct behavior, style, and other aspects).
For each violation it detects, SpongeBugs automatically suggests and presents
a fix to the user.

By construction, the fixes SpongeBugs suggests remove the origin of a rule’s
violation, but the maintainers still have to decide—based on their overall knowl-
edge of the project—whether to accept and merge each suggestion. To assess
whether developers are indeed willing to accept SpongeBugs’s suggestions, Sec-
tion 5 presents the result of an empirical evaluation where we applied it to 12
open-source Java projects, and submitted 946 fix suggestions as pull requests
to the projects. Project maintainers accepted 825 (87%) fix suggestions—97%
of them without any modifications. This high acceptance rate suggests that
SpongeBugs often generates patches of high quality, which developers find ade-
quate and useful.

The empirical evaluation also indicates that SpongeBugs is applicable with



good performance to large code bases (1.2 minutes to process 1,000 lines of code
on average). SpongeBugs is also accurate, as it generates false positives (spurious
rule violations) in less than 0.6% of all reported violations. We actually found
several cases where SpongeBugs correctly detected cases of rule violations that
were missed by SonarQube (Section 5.1.1).

To further demonstrate SpongeBugs’s versatility, Section 5 also discusses
how SpongeBugs complements program repair tools (e.g., AVATAR [4]) and how
it performs on software whose main contributors are non-professionals (i.e., stu-
dents). With few exceptions—which we discuss throughout Section 5 to inform
further progress in this line of work—SpongeBugs worked as intended: it pro-
vides sound, easy to apply suggestions to fix static rule violations.

The work reported in this paper is part of a large body of research (see
Section 2) that deals with helping developers detecting and fixing bugs and code
smells. SpongeBugs’ approach is characterized by the following features: 7) it
targets static rules that correspond to frequent mistakes that are often fixable
syntactically; i) it builds fix suggestions that remove the source of warning by
construction; i) it scales to large code bases because it is based on lightweight
program transformation techniques. Despite the focus on conceptually simple
rule violations, SpongeBugs can generate nontrivial patches, including some
that modify multiple hunks of code at once. In summary, SpongeBugs’s focus
privileges generating a large number of practically useful fixes over being as
broadly applicable as possible. Based on our empirical evaluation, Section 6
discusses the main limitations of SpongeBugs’s approach, and Section 7 outlines
directions for further progress in this line of work.

Ezxtended Version. This journal article extends a previous conference publica-
tion [9] by significantly expanding the empirical evaluation of SpongeBugs with:
(1) an extended and updated evaluation on SpongeBugs’ applicability in Sec-
tion 5.1, using a revised implementation with numerous bug fixes; (2) a detailed
analysis of accuracy (false positives and false negatives, in Section 5.1.2 and
Section 5.1.3); (3) a smaller-scale evaluation involving student projects (Sec-
tion 5.1.4); (4) an experimental assessment (Section 5.3.2) of how SpongeBugs’s
three-stage process trade-offs a modicum of precision for markedly better per-
formance; and (5) an experimental comparison with the Defects4J curated col-
lection of real-world Java bugs (Section 5.4).

2. Background and Related Work

Static analysis techniques reason about program behavior statically, that is with-
out running the program [10]. This is in contrast to dynamic analysis techniques,
which are instead driven by specific program inputs (provided, for example, by
unit tests). Thus, static analysis techniques are often more scalable (because
they do not require complete executions) but also less precise (because they
over-approximate program behavior to encompass all possible inputs) than dy-
namic analysis techniques. In practice, there is a broad range of static analysis
techniques from purely syntactic ones—based on code patterns—to complex



semantic ones—which infer behavioral properties that can be used to perform
program optimization [11, 12] as well as performance problems and other kinds
of vulnerabilities [13, 14].

2.1. Static Code Analysis Tools

Static code analysis tools (SATs) typically combine different kinds of analyses.
This paper focuses on the output of tools such as SonarQube, FindBugs, and
SpotBugs, because they are widely available and practically used [2]. The anal-
ysis performed by a SAT consists of several independent rules, which users can
select in every run of the tool. Each rule describes a requirement that correct,
high-quality code should meet. For example, a rule may require that Con-
structors should not be used to instantiate String—that is, one should write
String s = "SpongeBugs” instead of instantiating new String objects in the
heap with String s = new String("SpongeBugs").

Whenever a SAT finds a piece of code that violates one of the rules, it outputs
a warning, typically reporting the incriminated piece of code and a reference to
the rule that it violates. It is then up to the developer to inspect the warning
to decide whether the violation is real and significant enough to be addressed; if
it is, the developer also has to come up with a fiz that modifies the source code
and removes the rule violation without otherwise affecting program behavior.

Empirical Studies on Static Code Analysis Tools. Software engineering research-
ers have become increasingly interested [2]| in studying how SATs are used in
practice by developers, and how to increase their level of automation.

Rausch et al. [15] performed an extensive study on the build failures of
14 projects, finding a frequent association between build failures and issues
reported by SATs (when the latter are used as a component of continuous inte-
gration). Zampetti et al. [16] found that lack of a consistent coding style across
a project is a frequent source of build failures.

Recent studies focused on the kinds of rule violations developers are more
likely to fix. Liu et al. [17] compared a large number of fized and not fized Find-
Bugs rule violations across revisions of 730 Java projects. They characterized
the categories of violations that are often fixed, and reported several situations
in which the violations are systematically ignored. They also concluded that
developers disregard most of FindBugs violations as not being severe enough to
be fixed during development process.

Digkas et al. [18] performed a similar analysis for SonarQube rules, revealing
that a small number of all rules account for the majority of programmer-written
fixes. Marcilio et al. [1] characterized the use of SonarQube in 246 Java projects,
reporting a low resolution rate of issues (around 9% of the projects’ issues have
been fixed), and also finding that a small subset of the rules reveal real design
and coding flaws that developers consider serious. These findings suggest that
a fix generation tool that focuses on a selection of rules is likely to be highly
effective and relevant in practice to real project developers.



2.2. Automatic Fix Suggestions

Aftandilian et al. [19] presented error-prone: an extension of the OpenJDK
compiler that detects potential bugs and recommends fixes at compile time,
based on patterns that are similar to some of those used by SATs like FindBugs.
More precisely, error-prone targets bugs that admit simple fixes, which usually
“should change the behavior of the program” [19]; for example, adding a null
check to a method to avoid null-deferencing errors. In contrast, SpongeBugs
targets violations of rules that are primarily about style and design; therefore,
its fixes are mostly behavior-preserving.

Other approaches learn transformations from examples, using sets of bug
fixes [20], bug reports [21], or source-code editing patterns [22]. Commercial
project CodeLingo! is also based on learning, which it performs while monitoring
and assisting the code reviewing process. We directly implemented SpongeBugs’
transformations based on our expertise and the standard recommendations for
fixing warnings from static analysis tools. SpongeBugs cannot learn new fix-
ing rules at the moment, but this is an interesting direction for improving its
capabilities.

Coccinelle [23] is an approach to automatically apply code-transformation
templates to large code bases. Unlike SpongeBugs, which works automatically
on a predefined set of templates, Coccinelle supports the user definition of mod-
ular, complex patterns that capture semantic information. Its implementation
represents patterns as CTL formulas and expresses their application as a model-
checking problem on the program’s control-flow graph. Coccinelle’s main ap-
plication has been to support evolution of large codebases: when an API or a
language feature changes, manual refactoring is error-prone because there’s a
high risk of introducing inconsistencies or other mistakes. Using Coccinelle, it
has been possible to support evolution of the Linux kernel (written in C) in a
much more robust and streamlined way.

Several researchers have developed techniques that propose fix suggestions
for rules of the popular FindBugs in different ways: interactively, with the user
exploring different alternative fixes for the same warning [5]; and automati-
cally, by systematically generating fixes by mining patterns of programmer-
written fixes [4, 17]. These studies focus on behavioral bugs such as those in
Defects4J [24]—a curated collection of hundreds of real bugs of open-source
Java projects. In contrast, SpongeBugs mainly targets rules that character-
ize so-called code smells—patterns that may be indicative of poor programming
practices, and mainly encompass design and stylistic aspects. We focus on these
because they are simpler to characterize and fix “syntactically” but are also the
categories of warnings that developers using SATs are more likely to address
and fix [1, 17, 18]. This focus helps SpongeBugs achieve high precision and
scalability, as well as be practically useful.

Thttps://codelingo.it
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2.8. Automated Program Repair

Behavioral bugs are also the primary focus of techniques for “automated program
repair”, a research area that has grown considerably in the last decade [25].
The most popular approaches to automated program repair are mainly driven
by dynamic analysis (i.e., tests) [26, 25] and target generic bugs. In contrast,
SpongeBugs’s approach is based on static code-transformation techniques, which
make it simpler and of more limited scope but also more easily and widely
applicable.

Using dynamic analysis, bug detection is straightforward—a failing test is
a bug—whereas fault localization and fix synthesis are the challenging parts.
Therefore, early work in automated program repair [27, 28, 29] introduced the
idea of expressing the search for a fix as a search problem, which can be tackled
using genetic programming or other kinds of general-purpose search algorithms.
These works pioneered key concepts and problems in automated program repair,
but were still quite limited in the number of correct fixes (identical to those writ-
ten by a programmer) they could produce [30]. More recently, approaches such
as SapFix [31] revisited several of the same techniques and concepts as the early
work, in a way that they have become applicable on a larger scale with higher
precision: SapFix has been deployed in a continuous integration environment at
Facebook, where it was able to generate fixes to several applications.

Several recently developed automated program repair techniques are based
on machine learning, which they use to automatically build source-code modi-
fication patterns that are similar to those used by programmers in fixing bugs.
The key challenge in patch mining [32] is how to summarize changes in a way
that is sufficiently fine-grained to capture correct fixes, but also sufficiently
general that it is applicable to different instances of the same kind of bug.
Getafix [33] uses clustering algorithms to this effect. Prophet [34] builds ab-
stractions of conditionals that lead to failed tests, and modifies them, according
to a probabilistic model that ranks possible fixes, using techniques based on ex-
pression synthesis. Genesis [35] applies the idea of patch mining (inferring fixing
patterns that can be used to generate new fixes) to program repair, focusing on
null-dereferencing bugs. In contrast, SpongeBugs does not use any learning: on
the one hand, this limits its flexibility and the range of issues it can address; on
the other hand, this makes it much faster (machine learning is typically time
consuming) and precise in its application domain.

Liu et al.’s study [4] presented the AVATAR automatic program repair sys-
tem. AVATAR recommends code changes based on the output of SAT tools, and
hence it is somewhat comparable to SpongeBugs. In its experimental evalua-
tion, AVATAR generated correct fixes for 34 bugs among those of the Defects4J
benchmark. This suggests that responding to warnings of SATs can be an effec-
tive way to fix some behavioral “semantic” bugs. Despite these high-level sim-
ilarities, AVATAR’s and SpongeBugs’ approaches are quite different, since their
scopes are mostly complementary in the kind of design trade-offs they target.
AVATAR uses the output of SATs indirectly to help its fault localization process,
and to guide mining programmer-written fixes for patterns. Getafix [33] (which



we mentioned above among the techniques based on learning) uses a similar
approach, focusing on fixes that solve issues reported by SATs. The idea is that
if a human-written fix removes a SAT warning, it may be indicative of a useful
bug-fixing transformation, and hence AVATAR or Getafix abstract it into a fixing
pattern that can be used on new bugs. In contrast, our approach focuses on
“syntactic” design flaws that often admit simple yet effective fixes, with the main
goal of being immediately and generally useful for the kinds of static analysis
flaws that developers fix more often.

Bavishi et al. [36] proposed PHOENIX, a system that learns fix patches for
violations detected by SATs. Similarly to AVATAR, PHOENIX primarily uses SATs
offline: in the experiments [36], PHOENIX ran FindBugs on revisions of 517
selected GitHub projects to identify programmer-written fixes of violations and
to learn fix patterns from them. Based on them, PHOENIX built a large number
of fix suggestions for faults in various projects; manually-selected fix suggestions
among them were included in 19 pull requests that were accepted by the projects’
developers. Some of these suggestions fix violations of rules that SpongeBugs
also targets (see Section 3.1; the rules in question are B1, C3, and CT7).

3. SpongeBugs: Approach and Implementation

SpongeBugs provides fix suggestions for violations of selected rules that are
checked by SonarQube and SpotBugs. Section 3.1 discusses how we selected the
rules to check and suggest fixes for. SpongeBugs works by means of source-to-
source transformations, implemented as we outline in Section 3.2. This approach
has advantages but also limitations in its applicability, which we discuss in
Section 3.3.

3.1. Rule Selection

One key design decision for SpongeBugs is which static code analysis rules it
should target. Crucially, SATs are prone to generating a high number of false
positives [37]. To avoid creating fixes to spurious warnings, we base our design
on the assumption that rules whose violations are frequently fixed by developers
are more likely to correspond to real issues of practical relevance [1, 17].

We collected and analyzed the publicly available datasets from three previ-
ous studies that explored developer behavior in response to output from Sonar-
Qube [1, 18] and FindBugs [17]. These three studies combined analyzed 1,033
projects with 18 million violations of over 400 rules. We initially selected the
top 50% most frequently fixed rules in each of the three datasets, corresponding
to 156 rules, extended with another 10 rules whose usage was not studied in the
literature but appear to be widely applicable.

Then, we went sequentially through each rule, starting from the most fre-
quently fixed ones, and manually selected those that are more amenable to
automatic fix generation. The main criterion to select a rule is that it should
be possible to define a syntactic fix template that is guaranteed to remove the
source of warning without obviously changing the behavior. This led to dis-
carding all rules that are not modular, that is, that require changes that affect



clients in any files. An example is the rule Method may return null, but its
return type is @onnull.2 Although conceptually simple, the fix for a violation
of this rule entails a change in a method’s signature that weakens the guaran-
tees on its return type. This is impractical, since we would need to identify and
check every call of this method—potentially introducing a breaking change [38].
We also discarded rules when automatically generating a syntactic fix would be
cumbersome or would require additional design decisions. An example is the
rule Code should not contain a hard coded reference to an absolute pathname,
whose recommended solution involves introducing an environment variable. To
provide an automated fix for this violation, our tool would need an input from
developers, since pathnames are context specific; it would also need access to
the application’s execution environment, which is clearly beyond the scope of
the source code under analysis.

We selected the top rules (in order of how often developers fix the corre-
sponding warnings) that satisfy these feasibility criteria, leading to the 11 rules
listed in Table 1. Note that SonarQube and SpotBugs rules largely overlap, but
the same rule may be expressed in slightly different terms in either tool. Since
SonarQube includes all 11 rules we selected, whereas SpotBug only includes 7
of them, we use SonarQube rule identifiers3.

Consistently with SonarQube’s classification of rules, we assign an identifier
to each rule according to whether it represents a bug (B1 and B2) or a code smell
(C1-C9). While the classification is fuzzy and of somewhat limited practical
usefulness, most of our rules are code smells consistently with how we selected
them.

Rules C1 and C5 were selected indirectly on top of the feasibility criteria
discussed above (which were used directly to select the other 9 rules). We
selected rule C1 because it features very frequently among the open issues of
many projects; its fixes are somewhat challenging since they involve multiple
lines and the insertion of a constant. We selected rule C5 because it can be fixed
in conjunction with fixes to rule B1 (see Listing 1), making the code shorter while
also avoiding NullPointerException from being thrown.

- if (render !'= null && render != "")
+ if (!"".equals(render))

Listing 1: Fixes for rules B1 (Strings and boxed types should be compared using equals())
and C5 (Strings literals should be placed on the left-hand side when checking for equality)
applied in conjunction.

Behavioral Changes. May the refactorings needed to comply with the rules in
Table 1 change program behavior? The majority of rules require purely stylistic
changes that cannot affect meaning. Complying with rules B1, C5, C6, and
C7, however, might introduce behavioral changes if the original code relies on
reference equality or a specific allocation of objects.

2https://spotbugs.readthedocs.io/en/latest/bugDescriptions.html#
np-method-may-return-null-but-is-declared-nonnull-np-nonnull-return-violation
3https://rules.sonarsource.com/java
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Table 1: The 11 static code analysis rules that SpongeBugs can provide fix suggestions for.
The rule descriptions are based on SonarQube’s, which classifies rules in (B)ugs and (C)ode
smells.

ID SONARQUBE ID RULE DESCRIPTION

B1 54973 Strings and boxed types should be compared using equals()

B2 S2111 BigDecimal (double) should not be used

C1 S1192 String literals should not be duplicated

Cc2 S3027 String functions use should be optimized for single characters

C3 51643 Strings should not be concatenated using + in a loop

C4 S2130 Parsing should be used to convert strings to primitive types

C5 S1132 Strings literals should be placed on the left-hand side when
checking for equality

C6 S2129 Constructors should not be used to instantiate String,
BigInteger, BigDecimal, and primitive wrapper classes

Cc7 S2864 entrySet() should be iterated when both key and value are
needed

C8 S1155 Collection.isEmpty() should be used to test for emptiness

c9 S1596 Collections.EMPTY_LIST, EMPTY_MAP, and EMPTY_SET should

not be used

For example, rule Bl suggests to use object equality instead of reference
equality to compare strings. This recommendation implicitly assumes that a
program does not rely on a behavior where different string objects representing
the same sequence of characters should not be considered equal. Indirectly, it
also implicitly assumes that all string variables are not null—since you cannot
compare two null references using equals(). Similar issues may affect the behav-
ior when enforcing rules C5 (no null strings) and C6 (different objects with the
same content). Rule C7 is a bit different: here the problem is that entrySet()
may return elements in a different order than keySet()—even though an im-
plementation should not generally rely on the order of elements in a set.

We remark that the situations where complying with a rule may introduce
a behavioral change are still very specific and uncommon to occur in programs
that follow widely accepted practices. However, we found a few instances where
this happens in the evaluation of SpongeBugs (Section 5.2).

3.2. How SpongeBugs Works
SpongeBugs looks for rule violations and builds fix suggestions in three steps:
1. Find textual patterns that might represent a rule violation.

2. For every match identified in step 1, perform a full search in the AST
looking for rule violations.

3. For every match confirmed in step 2, instantiate the rule’s fix templates—
producing the actual fix for the rule violation.



We implemented SpongeBugs using Rascal [39], a domain-specific language
for source code analysis and manipulation. Rascal facilitates several common
meta-programming tasks, including implementing a first-class visitor language
constructor, advanced pattern matching based on concrete syntax, and defining
templates for code generation. We used Rascal’s latest Java grammar [40], which
targets Java 8; thus, our evaluation (Section 5) is limited to Java projects that
can be built using this version of the language.

Let’s illustrate how SpongeBugs’s three steps work for rule C2 (String func-
tions use should be optimized for single characters). Step 1 performs a fast, but
potentially imprecise, textual search that is based on some necessary conditions
for a rule to be triggered. For rule C2, step 1 looks for files that have a method
call to either lastIndex0f () or indexOf ()—as shown in Listing 2.

boolean shouldContinueWithASTAnalysis(loc filelLoc) {
javaFileContent = readFile(fileloc);
return findFirst(javaFileContent, ".lastIndexOf(\"") != -1 ||
findFirst(javaFileContent, ".indexOf(\"") != -1;

Listing 2: Excerpt of the implementation of step 1 for rule C2: find textual patterns that
might represent a violation of rule C2.

Step 1 may report false positives: for rule C2, the call to lastIndex0f() or
index0f () may not actually involve an instance of a String, or the argument
of the function might not be a single character. Step 2 is more precise, but also
more computationally expensive, as it performs a full AST matching; therefore,
it is only applied after step 1 identifies code that has a high likelihood of con-
taining rule violations. In our example of rule C2, step 2 checks that the target
of the possibly offending call to index0f() is indeed of type String and that
the argument is a single character—as shown in Listing 3.

case (MethodInvocation)
‘<Primary varName>.<TypeArguments? ts>indexOf (<ArgumentList? args>)‘: {
if (isVarAString(mdl, varName) && isSingleArgOfInterest(args)) {

Listing 3: Excerpt of the implementation of step 2 for rule C2: full AST search for rule
violations.

If step 2 returns a positive match, step 3 executes and generates a patch to fix
the rule violation. Step 3’s generation is entirely based on code-transformation
templates defined on the concrete program syntax and corresponding to the
AST matched in step 2. In other words, abstract syntax is used for detection in
step 2, whereas concrete syntax is used for modification in step 3—which makes
it possible to apply the transformations directly on the original source code.
For rule C2, step 3’s template is straightforward: replace a single character
string (double quotes) with a character (single quotes)—its implementation is
in Listing 4. (Steps 2 and 3 for rule C2 also handle other patterns not shown in
this example for brevity.)

argAsChar = parseSingleCharStringToCharAsArgumentlList(argsStr);

insert (MethodInvocation) ‘<Primary varName>.<TypeArguments? ts>indexOf(<ArgumentlList
< argAsChar>)‘;

Listing 4: Excerpt of the implementation of step 3 for rule C2: instantiate the fix templates
corresponding to the violated rule.

10



Steps 1 and 2 achieve different trade-offs between speed and precision. Step 1
is very fast but also sensitive to differences in layout that should be immaterial
(for example, presence of extra newline characters). In contrast, step 2 is consid-
erably slower but robust against textual changes that don’t affect the program
semantics. The experiments in Section 5.3.2 demonstrate how the combination
of these two steps achieves a fast performance without significantly compromis-
ing overall precision.

3.3. Limitations of SpongeBugs

SpongeBugs’s current implementation has some restrictions of applicability. A
few of them are deliberate design choices that help make detection more precise
or more efficient; others are limitations of the current implementation. Sec-
tion 5.1.3 shows concrete examples of code that incurred these limitations.

Local analysis. SpongeBugs’s analysis is strictly local to each method: if a
method m calls another method n, m’s analysis has no information about
n’s effects and results other than its local calling context. This limitation
may cause false negatives in the detection of all rules.

Contextual restrictions. SpongeBugs analyzes some rules with additional re-
strictions on their context of applicability. For example, it does not check
rules that may be violated inside lambda expressions, since supporting
their semantics would have significantly complicated SpongeBugs’s anal-
ysis just to handle a few additional cases.

Typing information. SpongeBugs’s analysis has access to typing information
that is incomplete. In particular, it keeps track of the type of variables and
expressions, but does not reconstruct how user-defined types are related
by inheritance—which may prevent it from detecting the violation of rule
C8 in some cases.

Toolchain. The remaining limitations of SpongeBugs follow from limitations
of the tools we used to build it. In particular, Rascal’s Java 8 grammar is
not complete. While implementing SpongeBugs, we extended the Rascal
grammar? to cover some of the missing cases, but a few language features
remain beyond its capabilities.

4. Empirical Evaluation of SpongeBugs: Experimental Design

The overall goal of this research is suggesting fixes to warnings generated by
static code analysis tools. Section 4.1 presents the research questions we answer
in this empirical study, which targets:

e Fifteen open-source projects selected using the criteria we present in Sec-
tion 4.2;

4Qur extension is now available in Rascal’s repository.
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e Five student projects developed as part of software engineering courses;

e Defects4d]: a curated collection of faulty Java programs, widely used to
evaluate automated program repair (see Section 2) tools.

All data created in this study and our tool implementation are available:

https://github.com/dvmarcilio/spongebugs

4.1. Research Questions

The empirical evaluation of SpongeBugs, whose results are described in Sec-
tion 5, addresses the following research questions, which are based on the orig-
inal motivation behind this work: automatically providing fix suggestions that
helps to improve the practical usability of SATs.

RQ1. How widely applicable is SpongeBugs?
The first research question looks into how many rule violations Sponge-
Bugs can detect and suggest a fix for. We also analyze cases in which
SpongeBugs’s detection of rule violations are not accurate.

RQ2. Does SpongeBugs generate fixes that are acceptable?
The second research question evaluates SpongeBugs’s effectiveness by look-
ing into how many of its fix suggestions were accepted by project main-
tainers and passed the projects’ test suites.

RQ3. How efficient is SpongeBugs?
The third research question evaluates SpongeBugs’s scalability in terms
of running time on large code bases.

RQ4. How does SpongeBugs work on code with semantic bugs?
The fourth research question runs SpongeBugs on Defects4J, a curated
collection of semantic bugs in real-world Java program; while SpongeBugs
is not designed to fix these kinds of behavioral bugs, it is interesting to
see how its heuristics interact with code that has different kinds of errors.

4.2. Selecting Projects for the Evaluation
The evaluation of SpongeBugs uses different Java projects, which we describe
in the following subsections.

4.2.1. Open-Source Projects

The bulk of the evaluation—addressing RQ1, RQ2, and RQ3—targets large
open-source Java projects, which provide a real-world usage scenario. We se-
lected 15 well-established open-source Java projects that can be analyzed with
SonarQube or SpotBugs. Three projects were natural choices: the SonarQube
and SpotBugs projects are obviously relevant for applying their own tools; and
the Eclipse Platform UI® project—a core component of the Eclipse IDE—is a
long-standing Java project one of whose lead maintainers requested® help with

5For brevity, we call it Eclipse Ul in the rest of the paper.
Shttps://twitter.com/vogella/status/1096088933144952832
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fixing SonarQube issues. We selected the other twelve projects, following ac-
cepted best practices [41], among those that satisfy all of the following:

1. the project is registered with SonarCloud (a cloud service that can be used

to run SonarQube on GitHub projects);

2. the project has at least 10 open issues related to violations of at least one

of the 11 rules handled by SpongeBugs (see Table 1);
3. the project has at least one fixed issue;
4. the project has at least 10 contributors;

5. the project has commit activity in the last three months.

Table 2: The 15 projects we selected for evaluating SpongeBugs. For each project, the table
reports its DOMAIN, and data from its GitHub repository:
CONTRIBUTORS, and the size in non-blank non-comment lines of code. Since Eclipse’s GitHub
repository is a secondary mirror of the main repository, the corresponding data may not reflect

the project’s latest state.

the number of STARS, FORKS,

PROJECT DOMAIN STARS FORKS CONTRIBUTORS LOC?
Eclipse Ul IDE 72 94 218 743 K
SonarQube Tool 3,700 1,045 91 500K
SpotBugs Tool 1,324 204 80 280 K
atomix Framework 1,650 282 30 550 K
Ant Media Server Server 682 878 16 43K
cassandra-reaper Tool 278 125 48 88.5 K
database-rider Test 182 45 14 21 K
db-preservation-toolkit Tool 26 8 10 377 K
ddf Framework 95 170 131 25 M
DependencyCheck Security 1,697 464 117 182K
keanu Math 136 31 22 145 K
matrix-android-sdk Framework 170 91 96 61 K
mssql-jdbc Driver 617 231 40 T K
Payara Server 680 206 66 1.95 M
primefaces Framework 1,043 512 110 310K

2 Non-blank non-comment lines of code calculated from Java source files using cloc

(https://github.com/AlDanial/cloc)

4.2.2. Student Projects

The effort devoted to improving code quality may be different in projects de-
veloped by students as opposed to large open-source projects such as those that
we identified in Section 4.2.1. SpongeBugs can still be effective on both kinds
of projects, but the impact and scope of its suggestions may differ.
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To investigate this aspect, and to demonstrate SpongeBugs’s applicability on
heterogeneous software, we considered 5 student projects from courses taught
at USI (the first and second author’s affiliation)” in the latest two years. The
student projects were developed before our analysis with SpongeBugs and in-
dependent of it. Table 3 summarizes the projects’ characteristics. We selected
these projects because they were (mainly) written in Java, of substantial size,
and developed by students with experience (that is, non-beginners).

Table 3: The student projects we analyzed using SpongeBugs. For each project, the table
reports whether it was developed by undergraduates or Master’s students (LEVEL); the number
of students working on the project (# STUDENTS); its size in non-blank non-comment lines of
code (Loc); and whether students already analyzed it using SonarQube (SQ7?).

PROJECT LEVEL  # STUDENTS Loc  SQ7?
Project 1 U 12 68K Yes
Project 2 U 13 52K Yes
Project 3 M 7 25K Yes
Project 4 M 8 24K Yes
Project 5 M 4 36K No

Projects 1 and 2 were developed by undergraduate students® of “Software
Atelier 47, a software engineering project course where groups of about 12 stu-
dents work to develop an application following realistic best practices of code
development and team coordination. The projects included a front-end written
in JavaScript, which we ignored for the purpose of evaluating SpongeBugs. The
projects required students to use SonarQube to spot potential problems in their
code, and to monitor test coverage.

Projects 3, 4, and 5 were developed by master’s students® of “Software Ana-
lytics”, a course about using and building tools to monitor software development
artifacts and their evolution; each project was developed by a group of 4-8 stu-
dents. As for projects 1 and 2, we only considered the project modules that are
written in Java. Project 5 did not require students to use SonarQube, whereas
projects 3 and 4 did.

4.2.8. Curated Collection of Bugs
As we discussed in detail in Section 3, SpongeBugs’s targets SAT rules that
are syntactic and modular. This is a deliberate restriction of SpongeBugs’s
applicability, but also one that makes it very effective in its domain (as we
demonstrate empirically in Section 5).

In contrast, the related work on “automated program repair” (see also Sec-
tion 2) typically targets the more diverse category of semantic (behavioral) bugs,

"However, the courses were not taught by the authors.
8The undergraduate program lasts 3 years.
9The master’s program lasts 2 years.

14



which include any program behavior that deviates from the intended one. De-
fects4J has become a popular benchmark to evaluate the performance of such
tools for Java. It is a curated collection of (mostly semantic) bugs found in
open-source Java projects. Each bug in Defects4dJ comes with some tests that
trigger it, as well with a programmer-written patch that corrects the behav-
ior as intended. Table 4 lists the basic characteristics of the code included in
Defects4J (version 1.5.0).

Table 4: A summary of the code included in Defects4J, grouped by the Java project it comes
from. For each group, we list the overall size in non-blank non-comment lines of code, the
number of available tests, and the number of bugs triggered by the tests.

PROJECT LOC TESTS BUGS

Chart JFreechart 96 K 2,278 26
Closure  Closure Compiler 90K 8,300 176
Lang Apache Commons-Lang 22K 2,341 65
Math Apache Commons-Math 84 K 3,619 106
Mockito Mockito Framework 11 K 1,546 38
Time Joda-Time 30 K 4,186 27
TOTAL 330.5 K 22,270 438

In order to get a better idea of the difference between syntactic and se-
mantic bugs, we ran SpongeBugs on all 438 Defects4J bugs. Precisely, we ran
SpongeBugs on the buggy version of each program in Defects4J. While we do
not expect SpongeBugs to repair the bugs (SpongeBugs targets violations of
different rules), this experiment can shed light on the interaction between the
syntactic modifications introduced by SpongeBugs and the semantic behavior
of programs (as checked by the tests in Defects4J). In other words, we would
like to ascertain that SpongeBugs’s suggestions do not adversely interfere with
the intended program behavior, and they can be applied even when the code is
buggy (as it often is).

4.8. Submitting Pull Requests With Fizes Made by SpongeBugs

After running SpongeBugs on the 15 open-source projects listed in Table 2, we
submitted the fix suggestions it generated as pull requests (PRs) in the project
repositories. Following suggestions to increase patch acceptability [42], before
submitting any pull requests we approached the maintainers of each project
through online channels (GitHub, Slack, maintainers’ lists, or email) asking
whether pull requests were welcome. (The only exception was SonarQube itself,
since we did not think it was necessary to check that they are OK with addressing
issues raised by their own tool.) When the circumstances allowed so, we were
more specific about the content of our potential PRs. For example, in the case
of mssql-jdbc, we also asked: “We noticed on the Coding Guidelines that new
code should pass SonarQube rules. What about already committed code?”, and
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mentioned that we found the project’s dashboard on SonarCloud. However,
we never mentioned that our fixes were generated automatically—but if the
maintainers asked us whether a fix was automatically generated, we openly
confirmed it.

We only submitted pull requests to projects that replied with an answer
that was not openly negative. As shown in Table 5, most answers were openly
positive—some developers even asked for a possible IDE integration of Sponge-
Bugs as a plugin, which may indicate interest. The single clearly negative
response pointed out as reason that the project (matrix-android-sdk) was being
discontinued.

Table 5: Responses to our inquiries about whether it is ok To suBMIT a pull request to each
project. For projects that accepted them, we report how many pull requests were SUBMITTED
and eventually APPROVED, and the average time (in hours) from submission to DECISION
(accept or reject a pull request), and from submission to MERGE (an approved pull request,
excluding one pull request of Ant Media Server that was approved but not merged).

PULL REQUESTS AVERAGE TIME [h]
PROJECT OK TO SUBMIT? SUBMITTED APPROVED DECISION MERGE
Eclipse Ul Positive 9 9 82.6 88.0
SonarQube - 1 1 25.7 27.0
SpotBugs Neutral 1 1 2.1 5.1
atomix Positive 2 2 299.3  487.5
Ant Media Server Positive 3 3 18.3 18.3
database-rider Positive 4 4 14.7 14.7
ddf Positive 3 2 55.9 4168.0
DependencyCheck Neutral 1 1 10.2 10.2
keanu Positive 3 0 - -
mssql-jdbc Positive 1 1 650.4  650.7
Payara Positive 6 6 9.0 170.1
primefaces Positive 4 4 0.3 6.9
cassandra-reaper No reply - - - -
db-preservation-toolkit No reply - - - -
matrix-android-sdk Negative - - - -

Total: 38 34

While the actual code patches in submitted pull requests were generated
automatically by SpongeBugs, we manually added information to present them
in a way that was accessible by human developers—following good practices
that facilitate code reviews [43]. We paid special attention to four aspects:
1. change description, 2. change scope, 3. composite changes, and 4. nature of
the change. To provide a good change description and clarify the scope of a
change, we always mentioned which rule a patch was fixing—also providing a
link to SonarQube’s official textual description of the rule. In a few cases we
wrote a more detailed description to better explain why the fix made sense,
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and how it followed recommendations issued by the project maintainers. For
example, mssql-jdbc recommends to “try to create small alike changes that are
easy to review”; we tried to follow this guideline in all projects. To keep our
changes within a small scope, we separated fixes of violations of different rules
into different pull requests; in case of fixes touching several different modules
or files, we further partitioned them into separate pull requests per module or
per file. This was straightforward thanks to the nature of the fix suggestions
built by SpongeBugs: fixes are mostly independent, one fix never spans multiple
classes, and each rule can be analyzed independent of the others.

Overall, our manual effort to compile the pull requests was low. The most
time-consuming task was complying with some projects’ style requirements,
which we discuss in more detail in Section 6. Other tasks that we had to
attend to involved artifacts other than the source code. For instance, projects
Eclipse Ul, Payara, and mssql-jdbc require every contributor to sign a Contributor
Agreement License to handle intellectual property concerns. Project Eclipse Ul
uses the Gerrit Code Review platform;'° thus, we had to sign up for an account
in Gerrit and configure the Eclipse Ul itself to use it. Another complication
came from Eclipse Ul’s versioning process,'! which requires updates to a file
MANIFEST.MF in a way that they match modifications in the source code. Project
Ant-Media-Server’s GitHub repository only accepts pull requests from members
of the group of maintainers; therefore, the first author’s GitHub account had to
be added to the group.

We consider a pull request approved when reviewers indicate so in the GitHub
interface (or, for project Eclipse Ul, when the code changes receive positive review
points in Gerrit). Only one pull request was approved but not merged at the
time of writing. Since merging depends on other aspects of the development
process'? that are independent of the correctness of a fix, we treat the pull
request that was approved but not merged like the others (which were also
merged).

As shown in Table 5, the time to review a pull request and reach a decision
spans a range that goes from less than 20 minutes (project primefaces) to over 27
days (project mssql-jdbc), not counting the one case (project keanu) where our
pull requests were never reviewed. As indicated by related work [44], the time to
review pull requests depends on a number of factors, including the extent of the
changes, the complexity of the reviewing process, and the amount of resources
that each project devotes to reviewing. In most cases, however, the reviewing
time was reasonably short, which corroborates the evidence that SpongeBugs’s
fixes are local and readable.

The reviewing process may approve a patch with or without modifications.'3

1Ohttps://www.gerritcodereview.com/

Hhttps://www.vogella.com/tutorials/EclipsePlatformDevelopment/article.html#
gerrit-verification-failures-due-to-missing-version-update

12The only case is a pull request to Ant Media Server which was approved but violates the
project’s constraint that new code must be covered by tests.

13 All of the artifacts and discussions part of the pull request process, which we report in this
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For each approved patch generated by SpongeBugs we record whether it was
approved with or without modifications.

For most projects, merging occurred within a couple of hours after a pull
request was accepted—for four projects within a few minutes. The outliers
were projects atomix, ddf, and Payara where merging took as long as (or longer
than) deciding whether to approve a pull request. In projects where merging
occurred very quickly, it is typically an automated step of the reviewing process.
In contrast, heterogeneous reasons can explain a long merging time: in some
projects, code changes are merged only in batches at predefined times; in others,
contingencies delay the formal approval of a merge.

5. Empirical Evaluation of SpongeBugs: Results and Discussion

The results of our empirical evaluation of SpongeBugs answer the four research
questions presented in Section 4.1. For uniformity, the experiments'# related
to RQ1-3 target the 12 projects whose maintainers accepted the pull requests
fixing static analysis warnings (top portion of Table 5).

5.1. RQI1: Applicability

To answer RQ1 (“How widely applicable is SpongeBugs?”), we ran SonarQube
on each selected open-source project, counting the warnings triggering viola-
tions of any of the 11 rules SpongeBugs handles. Then, we ran SpongeBugs
and applied all its fix suggestions. Finally, we ran SonarQube again on the
fixed project, counting how many warnings had been fixed. Table 6 shows the
results of these experiments. Overall, SpongeBugs removes 85% of all warnings
violating the rules we considered in this research. Another encouraging result
is that all fix suggestions generated by SpongeBugs compiled successfully.

These results justify our decision of focusing on a limited number of rules. In
particular, the two rules (C3 and C4) with the lowest percentages of fixing are
responsible for approximately 3% of the triggered violations. In contrast, a small
number of rules trigger the vast majority of violations—on which SpongeBugs
is extremely effective.

A widely applicable kind of suggestion are those for violations of rule C1
(String literals should not be duplicated), shown in Listing 5, which Sponge-
Bugs can successfully fix in 91% of the cases in our experiments. Generating
automatically these suggestions is quite challenging. First, fixes to violations of
rule C1 change multiple lines of code, and add a new constant. This requires
to automatically introducing a descriptive name for the constant, based on the
content of the string literal. The name must comply with Java’s rules for identi-
fiers (e.g., it cannot start with a digit). The name must also not clash with other
constant and variable names that are in scope. SpongeBugs’s fix suggestions

paper, are public according to GitHub’s terms of service or Eclipse’s contributor agreement.
14With the exception of Section 5.1.4, which describes a complementary set of experiments
targeting student projects.
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Table 6: For each project and each rule checked by SonarQube, the table reports two numbers
z/y: x is the number of warnings violating that rule found by SonarQube on the original
project; y is the number of warnings that have been fixed after running SpongeBugs on the
project and applying all its fix suggestions for the rule. The two rightmost columns summa-
rize the data per project (ToTaL), and report the percentage of warnings that SpongeBugs
successfully fixed (FIXED %). The two bottom rows summarize the data per rule in the same
way.

PROJECT B1 B2 C1 Cc2 C3 C4 C5 C6 Cc7 C8 C9 ‘ TOTAL FIXED %
Eclipse Ul 41/5 13/10 214/199 4/4  3/2  19/3 189/176  17/11 —  138/94  102/97 | 740/601 81%
SonarQube - - 104/94 - - - )7 - - - - 111/101 91%
SpotBugs 12/8  1/0 289/247 2/1  1/0  11/1 141/141 30/26 486,424 87%
atomix 1/1 - 57/57 - - - 9/9 - - 1/0 2/1 70/68 97%
Ant Media Server - - 28/28 3/2  1/0 2/1 23/23 3/0 - 4/2 4/4 68,60 88%
database-rider - - 5/5 5/5 - - 2/2 - 1/1 1/1 - 14/14 100%
ddf 1/0 - 104/98 - 1/0 - 88/86 ~ 11 45/37 8/8 | 247/230 93%
DependencyCheck - - 61/51 10/9 - - 3/3 - - 4/2 - 78/65 83%
keanu 1/1 - - - - - 4/4 —12/12 5/5 - 22/22 100%
mssql-jdbc 4/1 314/282 14/1 7/1 58/58 2/0 14/14 413/357 86%
Payara 39/36 - 1,413/1,305 214/169 61/14 114/10 1,830/1,627 200/88 50/44 438/301 58/50 | 4,417/3,644 82%
primefaces - - 336,286 11/9  6/6 3/3 336/329 - 11 1/0 4/4 | 698/638 91%
TOTAL 99/52  14/10 2,925/2,652 263/200 71/22 156/19 2,690/2,465 222/99 65/59 681/448 178/164 | 7,364/6,224 -
FIXED % 53% 1% 91% 76% 31% 12% 92% 45% 91% 1% 92% 85% -

can also detect whether there is already another string constant with the same
value—reusing that instead of introducing a duplicate.

public class AccordionPanelRenderer extends CoreRenderer {
+ private static final String FUNCTION_PANEL = "function(panel)";

@@ -130,13 +133,13 @@ public class AccordionPanelRenderer extends CoreRenderer {
if (acco.isDynamic()) {
wb.attr("dynamic”, true).attr("cache”, acco.isCache());

}

wb.attr(”"multiple”, multiple, false)
- .callback("onTabChange"”, "function(panel)", acco.getOnTabChange())
- .callback("onTabShow"”, "function(panel)", acco.getOnTabShow())
- .callback("onTabClose", "function(panel)”, acco.getOnTabClose());
.callback("onTabChange"”, FUNCTION_PANEL, acco.getOnTabChange())
.callback("onTabShow", FUNCTION_PANEL, acco.getOnTabShow())
.callback("onTabClose", FUNCTION_PANEL, acco.getOnTabClose());

+ o+ o+

Listing 5: Fix suggestion for a violation of rule C1 (String literals should not be duplicated)
in project primefaces.

We also highlight that our approach is able to perform distinct transforma-
tions in the same file and statement. Listing 6 shows the combination of a fix for
rule C1 (String literals should not be duplicated) applied in conjunction with a
fix for rule C5 (Strings literals should be placed on the left side when checking
for equality).

public class DataTableRenderer extends DataRenderer {
+ private static final String BOTTOM = "bottom";

- if (hasPaginator && !paginatorPosition.equalsIgnoreCase("bottom”)) {
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\ + if (hasPaginator && !BOTTOM.equalsIgnoreCase(paginatorPosition)) {

Listing 6: Fix suggestion for a violation of rules C1 and C5 in the same file and statement
found in project primefaces.

5.1.1. Detection Accuracy

To better evaluate SpongeBugs’s applicability, we investigate when its analysis
produces false positives and false negatives. A false positive is a rule violation
that is erroneously reported; in these cases, SpongeBugs produces a suggestion
that changes something that need not be changed. A false negative is a rule
violation that is not reported; in these cases, SpongeBugs should produce some
suggestion that is instead missing.

From the point of view of usability, false positives are those with the greater
potentially negative impact. Indeed, a high false-positive rate is one of the key
reasons that limit the adoption of SATs [37]: a user flooded with many false
positives quickly concludes that the tool is not reliable because it points to a
lot of violations that are incorrect or irrelevant [17]. In contrast, false negatives
can be seen as a minor problem, as long as a tool is still widely applicable and
reports suggestions that help improve the design or other quality attributes of
the program.

Since SpongeBugs provides suggestions to enforce rules that are checked by
SonarQube, we use SonarQube’s detected rule violations as ground truth!® to
count SpongeBugs’s false positives and false negatives:

e A suggestion provided by SpongeBugs for which SonarQube reports no
rule violation is a false positive;

e A rule violation reported by SonarQube for which SpongeBugs provides
no suggestions is a false negative.

Since it is known that SonarQube’s detection algorithm can incur false pos-
itives [45] as well as false negatives (a few of which we encountered in our
experiments of Section 5.1.2), using it as ground truth may affect SpongeBugs’s
estimates of the same measures. Precisely, SonarQube’s false positives lead to
overestimating SpongeBugs’s false negatives; and SonarQube’s false negatives
lead to overestimating SpongeBugs’s false positives. Despite these limitations,
there is still value in using SonarQube as ground truth: since SpongeBugs is
designed to respond to SonarQube’s warnings, their output should usually be
consistent. On the other hand, we also point out some cases in which Sonar-
Qube’s misdetections affect what should be considered the “right” false positive
and false negative rate of SpongeBugs.

As we discuss in detail in the following subsections, SpongeBugs generates
very few false positives (0.6% of all violations it detects), and many of these
are actually misdetections by SonarQube. In contrast, SpongeBugs generates

15Remember that SpongeBugs does not use SonarQube’s output to identify rule violations
but performs its own detection; otherwise this discussion would be moot.
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a more significant number of false negatives (15% of all violations SonarQube
detects); but these are not so problematic for applicability since they simply re-
flect some design decisions that trade-off some detection capabilities in exchange
for soundness.

5.1.2. False Positives

Table 7 reports SpongeBugs’s false-positive rate in each project and for each
rule. Overall, only 0.6% of all fix suggestions provided by SpongeBugs do not
correspond to a violation reported by SonarQube. Such a low rate of false pos-
itives corroborates the data about SpongeBugs’s accuracy and hence practical
relevance.

To better understand the few cases in which SpongeBugs generates false
positives, we classify all of them into categories according to their origin. We
found out that the majority of false positives (23 out of 37 cases) are actually
likely not false positives but rather false negatives of SonarQube’s detection.

Table 7: For each project and each rule checked by SonarQube, the table reports the number
of false positives (a fix suggestion provided by SpongeBugs for which SonarQube reported no
rule violation). The bottom rows summarize the TOTAL number of false positives, and what
percentage of the overall violations reported by SonarQube these false positives correspond
to; similarly the rightmost column reports the TOTAL per project.

proscT | Bl B2 Cl C2 C3 C4 C5 C6 CT C8 C9|rToraL
Eclipse Ul 0 0 3 0 0 4 0 0 1 3 1 12
SonarQube 1 0 0 0 0 1 0 0 2 0 0 4
ddf 0 0 6 0 0 0 0 0 0 0 0 6
Payara 0 0 2 0 0 120 0 0 1 0 15
TOTAL 1 0 11 0 0 17 0 0 3 4 1 37
FP % 1.9% 0% 0.4% 0% 0% 47.2% 0% 0% 4.8% 0.8% 0.6% | 0.6%

True Positives According to SonarLint. SonarLint'® is a plugin that integrates

SonarQube inside the Eclipse IDE. Somewhat surprisingly, SonarLint disagrees
with SonarQube’s analysis on four rule violations that were fixed by Sponge-
Bugs but not reported by SonarLint. It is possible this disagreement is due
to different filtering rules (or warning prioritization rules) used by SonarLint
and SonarQube. In any case, these four violations can be considered true posi-
tives (even though we classified them as false positives when using SonarQube’s
output as ground truth).

True Positives According to Developers. Out of all fix suggestions built by
SpongeBugs that were accepted as pull requests by developers (see Section 4.3),
17 do not correspond to any rule violation reported by SonarQube. All but
one of these fix suggestions correspond to violations of rule C4 (Parsing should
be used to convert strings to primitive types); 4 of them were accepted by the

16 Available at: https://www.sonarsource.com/products/sonarlint/
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maintainers of Eclipse Ul and 12 by the maintainers of Payara. This convincingly
indicates that most, if not all, of these cases are true positives (and false nega-
tives of SonarQube); at the very least, SpongeBugs’s suggestions are considered
not harmful by maintainers of the code.

Listing 7 shows an example of SpongeBugs fix suggestion that does not
correspond to a rule violation according to SonarQube. In order to understand
why SonarQube failed to report this as a violation, we looked for other similar
violations of rule C4 that were instead reported by SonarQube as well as fixed
by SpongeBugs, such as line 9 in Listing 8. It turns out that if we remove the
outer parentheses in subexpression (Double.valueOf(value)) SonarQube will
report a violation of rule C4 in Listing 7 as well. The sensible conclusion is that
this is a miss in SonarQube’s detection algorithm.

public static double asDouble(String value) throws DataFormatException {
try {
- return (Double.valueOf(value)).doubleValue();
+ return Double.parseDouble(value);
} catch (NumberFormatException e) {
throw new DataFormatException(e.getMessage());
}
3

Listing 7: Fix suggestion generated by SpongeBugs for a violation of rule C4 not detected by
SonarQube.

1 public int getInt(String key) throws NumberFormatException {

2 String setting = items.get(key);

3 if (setting == null) {

4 // Integer.valueOf(null) will throw a NumberFormatException and

5 // meet our spec, but this message is clearer.

6 throw new NumberFormatException(

7 "There is no setting associated with the key \"" + key +
— "\"");//$NON-NLS-1$ //$NON-NLS-2$

8 }

9 return Integer.valueOf(setting).intValue();

10 }

Listing 8: Violation of rule C4 detected by both SonarQube and SpongeBugs.

We found several other examples of fragile behavior of SonarQube detecting
violations of rule C4, which indicate failures of its analysis algorithm. Like
every static analyzer, SonarQube sometimes limits the cases in which a rule is
checked, to improve scalability and precision of detection in the other cases.
SpongeBugs is no different, but it sometimes achieves different trade-offs than
SonarQube—hence the discrepancies we observed in these experiments. By and
large, however, SpongeBugs and SonarQube’s detection results are consistent
and correct.

Actual False Positives. Only 17 out of all fix suggestions produced by Sponge-
Bugs are actual false positives: they correspond to spurious rule violations. In
five of these cases we could find a programmer’s annotation that explicitly turns
off checking of certain rules; unfortunately, SpongeBugs does not process these
annotations, and hence it will obliviously flag what it considers a violation.
Listing 9 shows examples of such annotations that should suppress detection.
On line 1 a generic annotation suppresses checking all rules in the whole class;
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on lines 4-7 an annotation turns of two specific rules within a method; on line
15 a special comment turns off checking a specific rule on the same line where
the comment appears.'”

@SuppressWarnings(”all”) // prevents detection of all rules within the entire class
public class JavaClass {
@SuppressWarnings({ // suppress detection of two rules within aMethod()
"squid:S$1192", // S1192 is SonarQube’s identifier for rule C1
"squid:S106"
)]
public static void aMethod() {
/...
}

public static void anotherMethod(String s1, String s2) {
// the following comment suppresses detection of the rule on the line where NOSONAR
— appears
if (s1 == s2) { // NOSONAR false-positive: Compare Objects With Equals

}

Listing 9: Examples of annotations used to suppress detection in SonarQube. SpongeBugs
ignores them.

We also found two fix suggestions corresponding to a violation of rule C7
(entrySet() should be iterated when both key and value are needed) in project
SonarQube that are spuriously reported by SpongeBugs. Listing 10 shows the
corresponding code, where there is an important difference between an iteration
over keySet() and one over entrySet(). Since a TreeSet is created passing Map
prop as keys, the map is directly used as underlying implementation of the set
of keys. An enumeration over keySet() will then follow the ordering defined
over keys—alphabetical order in this case; in contrast, an enumeration over
entrySet() may list the elements in a different order (the one in which they are
stored in the map). Since method writeGlobalSettings produces user output,
alphabetical order is expected and should not be changed.

private void writeGlobalSettings(BufferedWriter fileWriter) throws IOException {
fileWriter.append("Global server settings:\n");
Map<String, String> props = globalServerSettings.properties();
for (String prop : new TreeSet<>(props.keySet())) {
dumpPropIfNotSensitive(fileWriter, prop, props.get(prop));
}

Listing 10: A spurious violation of rule C7 on line 4 reported by SpongeBugs.

The remaining 11 cases of false positives correspond to spurious violations
of rule C1 (String literals should not be duplicated) where string literals occur
inside Java annotations. Listing 9 shows an example of spurious fix generated by
SpongeBugs. The fix does not alter program behavior in any way; it is just not
idiomatic since it mixes program code (a static field) and annotations (which
should only be used by the compiler or runtime).

17Curiously, SonarQube includes a rule (S1291), which checks that NOSONAR annotations are
not used. This rule is, however, disabled by default.
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1 public class JCDIServiceIMPL {

2 + private static final String UNCHECKED = "unchecked”;

3

4 - @SuppressWarnings("unchecked")

5 + @SuppressWarnings (UNCHECKED)

6 @Override

7 public <T> void injectEJBInstance(JCDIInjectionContext<T> injectionCtx) {

8 JCDIInjectionContextImpl<T> injectionCtxImpl = (JCDIInjectionContextImpl<T>)
< injectionCtx;

9 /...

10 }

11 }

Listing 11: Fix suggestion generated by SpongeBugs for a spurious violation of rule C1 on
line 4. SonarQube does not report this as a violation.

5.1.3. False Negatives

Table 8 reports SpongeBugs’s false-negative rate in each project and for each
rule. Overall, 15% of rule violations reported by SonarQube were not detected—
and hence not fixed—by SpongeBugs. As we mentioned above, this significant
false negative rate is not much detrimental to SpongeBugs’s practical applica-
bility, since the tool still provides thousands of useful, accurate suggestions for
rule violations. As we discuss in Section 3, we designed SpongeBugs to make
sure that, when it detects a rule violation, it has all the necessary informa-
tion to produce a suitable fix suggestion. Therefore, part of the false negative
are a consequence of design decisions to trade-off some detection capability for
additional precision.

Table 8: For each project and each rule checked by SonarQube, the table reports the number
of false negatives (a rule violation reported by SonarQube for which SpongeBugs provides no
suggestions). The bottom rows summarize the ToTAL number of false negatives, and what
percentage of the overall violations reported by SonarQube these false negatives correspond
to; similarly the rightmost column reports the ToTAL per project.

PROJECT BL B2 CI C2 C3 C4 C5 C6 C7 C8 C9 | roraL
Eclipse Ul 36 3 15 0 1 15 13 6 44 5 138
SonarQube - - 10 - - - 0 - - - - 10
SpotBugs 4 1 42 1 0 10 0 - - 4 - 62
atomix 0 — 0 - - — 0 — - 1 1 2
Ant Media Server - - 0 1 1 1 0 3 - 2 0 8
database-rider — — 0 0 — — 0 - 0 0 - 0
ddf 1 - 6 - 0 - 2 - 0 8 0 17
DependencyCheck 10 1 0 2 13
keanu 0 - - - - - 0 - 0 0 - 0
mssql-jdbc 3 - 32 13 - 7 0 2 - 0 - 57
Payara 3 - 108 45 47 104 203 112 6 137 8 773
primefaces — — 50 2 0 0 7 - 0 1 0 60
TOTAL # 47 4 273 63 49 137 223 123 6 199 14 1,140
OVERALL % 52%  29% 9% 24% 69% 88% 8% 55% 9% 29% 8% 15%

The percentage of false negatives changes considerably with different rules.
To better understand SpongeBugs limitations in practice, the rest of this section
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presents several examples of false negatives—with at least one example per kind
of limitation (see Section 3.3).

Local Analysis. Listing 12 shows a violation of rule C4 (Parsing should be used
to convert strings to primitive types) that is detected by SonarQube but is
not fixed by SpongeBugs. The latter’s analysis of line 5 is oblivious to the fact
that method getStatementTimeout returns a String. Without this information,
SpongeBugs cannot detect that rule C4 is being violated by passing a string to
valueOf instead of parselnt.

public String getStatementTimeout() {
return spec.getDetail (DataSourceSpec.STATEMENTTIMEOUT);

3
/...

int statementTimeout = Integer.valueOf(getStatementTimeout());

Listing 12: Violation of rule C4 on line 5, which is not detected by SpongeBugs.

It may seem that providing SpongeBugs with the information that is needed
to detect violations such as the one in Listing 12 is straightforward: after all,
method getStatementTimeout is defined in the same class as where the violation
occurs. In our experiments, however, most of the false negatives due to local
analysis involve a method that is called in one class but is defined in a different
class. Listing 13 shows another violation of rule C4 that SpongeBugs does not
detect. In this case, the offending method getSecurityEnabled is called in class
IIOPSSLSocketFactory but is declared in interface IiopListener.

public interface IiopListener {
String getSecurityEnabled();
3}

public class IIOPSSLSocketFactory {
public void aMethod() {
for (IiopListener listener : iiopListeners) {
boolean securityEnabled = Boolean.valueOf (listener.getSecurityEnabled());
}
}

}
Listing 13: Violation of rule C4 on line 8, which is not detected by SpongeBugs.

Extending SpongeBugs’s analysis beyond purely local would require to pro-
cess multiple files at once, and to collect more detailed typing information.
While such an extension is beyond SpongeBugs’s current design—which privi-
leges simplicity and precision over broader applicability—we may consider it in
future work. In order to do it efficiently, we may pre-process the whole codebase
at once [46]; then, each individual analysis could access this system-wide infor-
mation as needed in an efficient way. To be truly system-wide, this approach
would also need to track dependencies outside a project’s source code—such as
in calls to pre-compiled or even native libraries.

Contextual Restrictions. SpongeBugs checks rule C3 (Strings should not be con-
catenated using + in a loop) only when the concatenated string is eventually
returned by a method. Thus, SpongeBugs misses the violation of rule C3 on
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line 7 in Listing 14 because string containerStyleClass, which is built by con-
catenation in a loop, is not returned by method encodeElements.

protected void encodeElements(Menu menu, List<MenuElement> elements) {
boolean toggleable = menu.isToggleable();
for (MenuElement element : elements) {
String containerStyleClass = menultem.getContainerStyleClass();

if (toggeable) {
containerStyleClass = containerStyleClass + " " + Menu.SUBMENU_CHILD_CLASS;
}

Listing 14: Violation of rule C3 on line 7, which is not detected by SpongeBugs.

Extending SpongeBugs so that it can handle cases like this would trigger a
significant number of false positives unless we also sharpened its analysis with
much more contextual information. The current restriction on rule C3 is a good
trade-off because it curbs the number of rule violations that are detected while
still covering the most salient cases.

Other contextual restrictions mainly simplify the analysis, helping ensure
that a rule violation’s can be detected correctly. For example, SpongeBugs only
checks rule C8 (Collection.isEmpty() should be used to test for emptiness)
inside regular methods. Thus, it misses the violation in Listing 15 because it
appears inside a lambda expression, which makes the analysis of local variables
considerably more difficult.
public class LeaderElectorProxy {

private final Map<String, Set<LeadershipEventlListener<byte[]>>> topicListeners =
< Maps.newConcurrentMap();

public synchronized CompletableFuture<Void> removelListener(String topic, Listener<btye[]
— listener>) {

if (!topicListeners.isEmpty()) {
topicListeners.computeIfPresent(topic, (t, s) -> {
s.remove(listener);
return s.size() == @ ? null : s;
B
3
//

Listing 15: Violation of rule C8 on line 8, which is not detected by SpongeBugs.

Typing Information. Another restriction in the application of rule C8 follows
from SpongeBugs’s limited information about how types are related by inheri-
tance. Listing 16 shows a violation of this rule on line 5: CopyOnWriteArraylList
implements the List interface, and hence the conditional on line 5 should be ex-
pressed as !Collections.isEmpty(). However, SpongeBugs only knows about
the most common implementations of collection classes, and hence it misses this
violation. This restriction also affects the other rules that involve Collection
classes, that is rules C7 and C9.

import java.util.concurrent.CopyOnWriteArraylList;

protected CopyOnWriteArrayList<IPlayItem> items;
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4 /] ...
5 if (items.size > @)

Listing 16: Violation of rule C8 on line 5, which is not detected by SpongeBugs.

Toolchain. Because Rascal’s Java 8 grammar is incomplete, SpongeBugs could
not parse 16 classes that SonarQube could analyze. These include unsupported
syntax such as adding a semicolon after the closing bracket of a class declaration,
or casting a lambda expression. None of these are widely used features, and in
fact they appeared only in a tiny fraction of all analyzed code.

5.1.4. Student Projects

To further confirm the applicability and usefulness of SpongeBugs also on code
written by non-professionals, we ran additional experiments in which we applied
it to the five student projects presented in Section 4.2.2. While we have no a pri-
ori reason to expect that SpongeBugs would perform poorly on code written by
students, extending the pool of analyzed programs beyond open-source projects
helps strengthen the generalizability of the results of our empirical evaluation.

First of all, we ran SonarQube on these projects checking the usual 11 rules
supported by SpongeBugs. Table 9 shows the results in terms of number of
violations reported by SonarQube for every thousand lines of code. The table
also shows the same measure for the open-source projects used in the rest of the
evaluation. Overall, rule violations occur with higher frequencies in the student
projects than in the open-source projects—as it can be expected from code
written by non-professional. Nonetheless, the student code generally is of high
quality since its violations are not much higher. Remember that all projects
but Project 5 explicitly required students to check their code with SonarQube
and to modify it to reduce the number of reported violations. The only project
in which students were not required to use SonarQube is also the one with the
largest number of violations per line of code, but the difference with projects of
the same course is not big. Since all students knew SonarQube as a tool from
previous courses, it is possible that they used it regardless of whether it was
required by the project’s specification, and that they generally paid attention
to writing code that conforms with accepted coding guidelines.

Table 10 summarizes the results of applying SpongeBugs to the rule vio-
lations in student projects. For all violations but one (98% of all violations),
SpongeBugs produced a correct fix suggestion that avoided the violation. At a
high level, these results are comparable to those obtained on the open-source
projects.

The results on student projects are consistent with those on open-source
projects also in terms of which rules are most frequently violated and fixed.
The most frequent violations are of rules C1, C5, and C8—in this order in
both the student projects and in the open-source projects. On the other hand,
student projects violated none of rules B1, B2, C4, and C9; in the open-source
projects there were several violations of these rules, but they accounted for only
about the 6% of all violations, and did not occur in all projects. Students ran
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Table 9: Top half of table: for each student project, its size LOC in non-blank non-comment
lines of code and the number of violations of the 11 rules checked by SpongeBugs that are
detected by SonarQube per thousands of lines of code (vioLaTioNs/kLoc). Bottom half of
table: the same data about the open-source projects used in the rest of the evaluation.

PROJECT LOC VIOLATIONS / KLOC
Project 1 6.8 K 0.00
Project 2 5.2 K 4.23
Project 3 2.5 K 0.80
Project 4 24 K 4.60
Project 5 3.6 K 5.80
Eclipse Ul 743 K 1.03
SonarQube 500 K 0.22
SpotBugs 280 K 1.80
atomix 550 K 0.13
Ant Media Server 43 K 1.12
database-rider 21 K 0.67
ddf 25 M 0.01
DependencyCheck 182 K 0.43
keanu 145 K 0.15
mssql-jdbc 79 K 5.23
Payara 1.95 M 2.26
primefaces 310 K 2.23

SonarQube with a custom profile, which excluded some of the rules SpongeBugs
checks; as a result even projects that were required to use SonarQube still incur
some rule violations.

The lone violation that SpongeBugs could not fix is a false negative similar
to one discussed in Section 5.1.3 and Listing 14 for the same rule: SpongeBugs’s
detection of rule C3 only analyzes variables that are returned by a method.

Overall, these experiments confirm that SpongeBugs is usefully applicable
on a variety of projects, and can help programmers automatically address a
significant fraction of SonarQube warnings.

5.2. RQ2: Effectiveness and Acceptability

In order to answer RQ2 (“Does SpongeBugs generate fixes that are accept-
able?”), we assess the acceptability of SpongeBugs’s suggestions in two ways.
First, we submitted pull requests including a large selection of fixes for the
projects used in SpongeBugs’s evaluation. Second, we ran the official test suites
of each project on its implementation modified by including all of SpongeBugs’s
suggestions. The two following sections report the results of these experiments.
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Table 10: For each student project and each rule, the table reports two numbers z/y: x is the
number of warnings violating found by SonarQube on the original project; y is the number
of warnings that have disappeared after running SpongeBugs on the project and applying all
its fix suggestions for the rule. The two rightmost columns summarize the data per project
(ToTaL), and report the percentage of warnings that SpongeBugs successfully fixed (FIXED
%). The two bottom rows summarize the data per rule in the same way. For brevity, the
table only reports the rules for which SonarQube found at least one violation in some project.

PROJECT ‘ C1 C3 C5 Cr C8 ‘ TOTAL FIXED %
Project 1 - - - - — - -
Project 2 | 18/18  — - — 4/4| 22/22 100%
Project 3 - - 2/2 - - 2/2 100%
Project 4 | 2/2 - 8/8 1/1 ~| 11/11 100%
Project5 | 8/8 1/0  3/3 2/2  7/7| 21/20 95%
TOTAL 28/28 1/0 13/13  3/3 11/11 | 56/55 -
FIXED % | 100% 0% 100% 100% 100% 98% -

5.2.1. Acceptability Through Pull Requests

As discussed in Section 4.3, we only submitted pull requests after informally
contacting project maintainers asking to express their interest in receiving fix
suggestions for warnings reported by SATs. As shown in Table 5, project main-
tainers were often quite welcoming of contributions with fixes for SATs viola-
tions, with 9 projects giving clearly positive answers to our informal inquiries.
For example an Ant Media Server maintainer replied “ Absolutely, you’re welcome
to contribute. Please make your pull requests”. A couple of projects were not as
enthusiastic but still available, such as a maintainer of DependencyCheck who
answered “I’ll be honest that I obviously haven’t spent a lot of time looking at
SonarCloud since it was setup. .. That being said — PRs are always welcome”.
Even those that indicated less interest in pull requests ended up accepting most
fix suggestions. This indicates that projects and maintainers that do use SATs
are also inclined to find valuable the fix suggestions in response to their warn-
ings. We received one negative answer from a project, and no timely reply from
two other projects, and hence we did not submit any pull request to them (and
we excluded them from the rest of the evaluation).

Accordingly, we submitted 38 pull requests containing 946 fixes for the 12
projects that answered positively or neutrally to our inquiries. We did not
submit pull requests with all fix suggestions (more than 5,000) since we did not
want to overwhelm the maintainers. Instead, we sampled broadly (randomly in
each project) while trying to select a diverse collection of fixes.

Overall, 34 pull requests were accepted, some after discussion and with some
modifications. Table 5 breaks down this data by project. The non-accepted pull
requests were: 3 in project keanu that were ignored; and 1 in project ddf where
maintainers argued that the fixes were mostly stylistic. In terms of fixes, 825
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(87%) of all 946 submitted fixes were accepted; 797 (97%) of them were accepted
without modifications.

How to turn these measures into a precision measure depends on what we
consider a correct fix: one that removes the source of warnings (100% precision,
as all fixes compile correctly), one that was accepted in a pull request (precision:
87%), or one what was accepted without modifications (precision: 797/946 =
84%). Similarly, measures of recall depend on what we consider the total amount
of relevant fixes.

An aspect that we did not anticipate is how policies about code coverage of
newly added code may impact whether fix suggestions are accepted. At first we
assumed our transformations would not trigger test coverage differences. While
this holds true for single-line changes, it may not be the case for fixes that
introduce a new statement, such as those for rule C1 (String literals should not
be duplicated), rule C3 (Strings should not be concatenated using + in a loop),
and some cases of rule C7 (entrySet() should be iterated when both key and
value are needed). For example, the patch shown in Listing 17 was not accepted
because the 2 added lines were not covered by any test. One pull request to Ant
Media Server which included 97 fixes in 20 files was accepted but not merged,
due to insufficient test coverage of some added statements.

public class TokenServiceTest {
+ private static final String STREAMID = "streamId”;

- token.setStreamId("streamId");
+ token.setStreamId(STREAMID);

Listing 17: The lines added by this fix were flagged as not covered by any existing tests.

Sometimes a fix’s context affects whether it is readily accepted. In particular,
developers tend to insist that changes be applied so that the overall stylistic
consistency of the whole codebase is preserved. Let’s see two examples of this.

Listing 18 fixes three violations of rule C2; a reviewer asked if line 3 should
be modified as well to use a character ’*’ instead of the single-character string
nen.

“Do you think that for consistency (and maybe another slight perfor-
mance enhancement) this line should be changed as well?”

1 - if (pattern.indexOf("x") != @ && pattern.indexOf("?") != @ && pattern.indexOf(".") != @) {
2 + if (pattern.indexOf(’x’) != @ && pattern.indexOf(’?’) != @ && pattern.indexOf(’.’) != 0) {
3 pattern = "x" + pattern;

4 3

Listing 18: Fix suggestion for a violation of rule C2 that introduces a stylistic inconsistency.

The pull request was accepted after a manual modification. Note that we do
not count this as a modification to one of our fixes, as the modification was in
a line of code other than the one we fixed.

Commenting on the suggested fix in Listing 19, a reviewer asked:

“Although I got the idea and see the advantages on refactoring I
think it makes the code less readable and in some cases look like the
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code lacks a standard, e.g one may ask why only this map entry is a
constant?”

+ private static final String CASE_SENSITIVE_TABLE_NAMES = "caseSensitiveTableNames"”;

putIfAbsent(properties, "batchedStatements”, false);
putIfAbsent(properties, "qualifiedTableNames”, false);

- putIfAbsent(properties, "caseSensitiveTableNames"”, false)
+ putIfAbsent(properties, CASE_SENSITIVE_TABLE_NAMES, false);
putIfAbsent(properties, "batchSize", 100);
putIfAbsent(properties, "fetchSize", 100);
putIfAbsent(properties, "allowEmptyFields”, false);

Listing 19: Fix suggestion for a violation of rule C3 that introduces a stylistic inconsistency.

This fix was declined in project database-rider, even though similar ones were
accepted in other projects (such as Eclipse Ul) after the other string literals were
extracted as constants in a similar way.

Sometimes reviewers disagree on their opinion about pull requests. For in-
stance, we received four diverging reviews from four distinct reviewers about one
pull request containing two fixes for violations of rule C3 in project primefaces.
One developer argued for rejecting the change, others for accepting the change
with modifications (with each reviewer suggesting a different modification), and
others still arguing against other reviewers’ opinions. These are interesting cases
that may deserve further research, especially because several projects require at
least two reviewers to agree to approve a change.

Sometimes fixing a violation is not enough [5]. Developers may not be com-
pletely satisfied with the fix we generate, and may request changes. In some
initial experiments, we received several similar modification requests for fix sug-
gestions to violations of rule C7 (entrySet() should be iterated when both key
and value are needed); in the end, we changed the way the fix is generated
to accommodate the requests. For example, the fix in Listing 20 received the
following feedback from maintainers of Eclipse Ul:

“For readability, please assign entry.getKey() to the menuElement
variable”

- for (MMenuElement menuElement : new HashSet<>(modelToContribution.keySet())) {

if (menuElement instanceof MDynamicMenuContribution) {
+ for (Entry<MMenuElement, IContributionItem> entry : modelToContribution.entrySet()) {
+ if (entry.getKey() instanceof MDynamicMenuContribution) {

Listing 20: Fix suggestion for a violation of rule C7 generated in a preliminary version of
SpongeBugs.

We received practically the same feedback from developers of Payara, which
prompted us to modify how SpongeBugs generates fix suggestions for violations
of rule C7. Listing 21 shows the fixed suggestion with the new template. All
fixes generated using this refined fix template, which we used in the experiments
reported in this paper, were accepted by the developers without modifications.

- for (MMenuElement menuElement : new HashSet<>(modelToContribution.keySet())) {
+ for (Entry<MMenuElement, IContributionItem> entry : modelToContribution.entrySet()) {
+ MMenuElement menuElement = entry.getKey();
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\ if (menuElement instanceof MDynamicMenuContribution) {

Listing 21: Fix suggestion for a violation of rule C7 generated in the final version of
SpongeBugs.

Overall, SpongeBugs’s fix suggestions were often found of high enough qual-
ity perceived to be accepted—many times without modifications. At the same
time, developers may evaluate the acceptability of a fix suggestions within a
broader context, which includes information and conventions that are not di-
rectly available to SpongeBugs or any other static code analyzer. Whether to
enforce some rules may also depend on a developer’s individual preferences; for
example one developer remarked that fixes for rule C5 (Strings literals should be
placed on the left side when checking for equality) are “style preferences”. The
fact that many of such fix suggestions were still accepted is additional evidence
that SpongeBugs’s approach was generally successful.

5.2.2. Acceptability Through Testing

SpongeBugs’s suggestions should be refactorings: they should change the code’s
structure and style without otherwise changing its (input/output) behavior.
One of the main reasons software developers equip their projects with regression
test suites is precisely to easily detect unintended behavioral changes [26, 25].
Therefore, we used the projects’ test suites to help determine if SpongeBugs’s
suggestions may have introduced deleterious changes in program behavior.

We were able to run the test suites of 8 out of the 12 open-source projects
used in SpongeBugs’s evaluation. Running the tests of the other 4 projects
was not possible because we could not reproduce their testing setup. Namely:
1. Running tests in projects database-rider and mssql-jdbc requires a database in-
stance or a stub, neither of which is available in the projects’ repositories. 2. We
could not configure projects Eclipse Ul and Ant Media Server in a way suitable to
run their tests. These two projects’ build documentation'® strictly recommends
building without running tests, which probably indicates their testing configura-
tion requires a certain infrastructure or information that is not directly available
in the projects’ repositories.

Table 11 shows the results of running the test suites of these 8 projects.
By and large, they confirm that SpongeBugs suggestions are unlikely to alter
program behavior. Only a single test case that was passing on the original code
failed after introducing SpongeBugs’s suggestions; all other tests had the same
behavior—passing or failing—on the original code as on the code modified by
SpongeBugs. The lone failing test displays behavior similar to that of Listing 10,
and hence SpongeBugs’s suggestion is based on a false positive of its detection.

18See this paper’s replication package for details.
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Table 11: Summary of running test suites in all projects. Column KLOC reports the size (in
thousands of lines of code) of the test suites; column RAN TEsTS? indicates for which projects
we could run test suites; column #FAILING indicates the number of tests that failed on the
projects modified with all of SpongeBugs’s suggestions.

PROJECT KLOC RAN TESTS? #FAILING
Eclipse Ul 159 No? -
SonarQube 278 Yes 1
SpotBugs 3 Yes 0
Ant Media Server 11 No® -
atomix 17 Yes 0
database-rider 8 NoP -
ddf 164 Yes 0
DependencyCheck 9 Yes 0
keanu 25 Yes 0
mssql-jdbc 31 NoP

Payara 59 Yes

primefaces 4 Yes 0

& Recommends building without executing tests.
b Requires a database.

5.8. RQ3: Performance

To answer RQ3 (“How efficient is SpongeBugs?”), we report various runtime
performance measures of SpongeBugs on the projects. All experiments ran on
a Windows 10 laptop with an Intel-i7 processor and 16 GB of RAM; Rascal
was installed as a plugin in Eclipse, therefore we ran SpongeBugs in Eclipse.
We used Rascal’s native benchmark library!'® to measure how long our transfor-
mations take to run on the projects considered in Table 6. Table 12 show the
performance outcomes. For each of the measurements in this section, we follow
recommendations on measuring performance [47]: we restart the laptop after
each measurement, to avoid any startup performance bias (i.e., classes already
loaded); and summarize, through descriptive statistics, five repeated runs of
SpongeBugs on each project.

5.8.1. Owerall Performance
Table 12 shows SpongeBugs’s running time on the 12 open-source projects used
in the evaluation. The running time is roughly proportional to the number
of files analyzed in each project, and scales even to the largest, most complex
projects.

Project mssql-jdbc is an outlier due to its relatively low count of files analyzed
with a long measured time. This is because its files tend to be large—multiple

http://tutor.rascal-mpl.org/Rascal/Rascal.html#/Rascal/Libraries/util/Benchmark/
benchmark/benchmark.html
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Table 12: Descriptive statistics summarizing 5 repeated runs of SpongeBugs. Time is mea-
sured in minutes.

RUNNING TIME |min.]

PROJECT FILES ANALYZED MEAN ST. DEV.
Eclipse Ul 5,282  102.3 2.31
SonarQube 3,876 25.3 0.84
SpotBugs 2,564 30.6 1.20
Ant Media Server 228 3.9 0.14
atomix 1,228 10.1 0.74
database-rider 109 0.8 0.04
ddf 2,316 28.6 1.55
DependencyCheck 245 5.5 0.21
keanu 445 2.9 0.09
mssql-jdbc 158 23.2 0.62
Payara 8,156  166.1 8.88
primefaces 1,080 15.5 1.45

files with more than one thousand lines. Larger files might imply more complex
code, and therefore more complex ASTs, which consequently leads to more rule
applications. To explore this hypothesis, we ran our transformations on a subset
of these larger files. As seen in Table 13, five larger files are responsible for more
than 12 minutes (52%) of running time. Additionally, file dtv takes, on average
longer to run than SQLServerConnection, even though it is 36% smaller; the
reason is that file dtv has numerous class declarations and methods with more
than 300 lines, containing multiple switch, if, and try/catch statements.

Table 13: Descriptive statistics summarizing five repeated runs of SpongeBugs on the five
largest files in projects mssql-jdbc. Time is measured in seconds; size in non-blank non-
comment lines of code Loc.

RUNNING TIME [s]

FILE LOC MEAN ST. DEV.
SQLServerConnection 4,428 202 14.1
SQLServerResultSet 3,858 158 22.9
dtv 2,823 208 17.8
SQLServerBulkCopy 2,529 86 5.4
SQLServerPreparedStatement 2,285 78 6.9

Generating some fix suggestions takes longer than others. We investigated
this aspect more closely on the SpotBugs project, as it includes more than
a thousand files, and contains multiple test cases for the rules it implements.
While SpongeBugs normally excludes files in src/test/java, this does not work
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for SpotBugs, which puts tests in another location; therefore, SpongeBugs ends
up analyzing a much larger amount of code.

SpongeBugs takes considerably longer to run on rules B1, B2, C1, and C6.
The main reason is that step 1 in these rules raises several false positives, which
are then filtered out by the more computationally expensive step 2 (see Sec-
tion 3.2). For example, step 1’s filtering for rule B1 (Strings and boxed types
should be compared using equals()), shown in Listing 22, is not very restric-
tive. One can imagine that several files have a reference to a String (covered by
hasWrapper()) and also use == or != for comparison. Contrast this to step 1’s
filtering for rule C9 (Collections.EMPTY_LIST...should not be used), shown in
Listing 23, which is much more restrictive; as a result SpongeBugs runs in under
20 seconds for rule C9.

‘ return hasWrapper(javaFileContent) && hasEqualityOperator(javaFileContent);

Listing 22: Violation textual pattern in the implementation of rule Bl

‘ return findFirst(javaFileContent, "Collections.EMPTY") != -1;

Listing 23: Violation textual pattern in the implementation of rule C9

Overall, we found that SpongeBugs’s approach to fix warnings of SATs scales
on projects of realistic size. SpongeBugs could be reimplemented to run much
faster if it directly used the output of static code analysis tools, which indicate
precise locations of violations. While we preferred to make SpongeBugs’s im-
plementation self contained to decouple from the details of each specific SAT,
we plan to explore other optimizations in future work.

5.83.2. Precision vs. Performance Trade-Off

SpongeBugs’s detection process (described in Section 3.2) starts with a first step
that is fast but potentially imprecise: since it is based on textual matching,
it is sensitive to differences in layout such as extra whitespaces. How much
imprecision does step 1 introduce, and what performance gains does it bring in
return?

We ran our evaluation again using SpongeBugs with step 1 disabled; this
means that it directly performs the precise yet slower step 2, which is based on
AST matching. Table 14 and Table 15 show the results in comparison with the
rest of the experiments (where step 1 is enabled).

With step 1 disabled, SpongeBugs detected (and fixed) an additional 18 rule
violations; this is a tiny fraction of all rule violations detected by SpongeBugs
(with or without step 1). The new violations are all in project Payara, which
is responsible for almost 60% of all 7,364 warnings detected by SonarQube.
Listing 24 shows a violation of rule C5 (Strings literals should be placed on
the left side when checking for equality) that is only detected without step 1.
The blank space between the open parenthesis and the string argument fails the
strict textual pattern of step 1 for this rule.

\ if ( lookupName.equals( "java:comp/BeanManager” ) ) {

Listing 24: A violation of rule C5 that step 1 misses.
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Table 14: For each project and each rule checked by SonarQube, the table reports the number
of additional fixes generated by SpongeBugs without executing step 1 (see Section 3.2); that
is the fixes corresponding to rule violations that are missed by step 1. The bottom rows
summarize the ToTaAL number of such additional fixes, and what percentage of the overall
violations reported by SonarQube these additional fixes correspond to; similarly the rightmost
column reports the TOTAL per project.

PROJECT ‘ Bl B2 C1 C2 C3 C4 C5 C6 C7v C8 C9 ‘ TOTAL
Eclipse Ul 0 0 0 0 0 0 0 0 - 0 0 0
SonarQube - 0 - - - 0 - - - - 0
SpotBugs 0 0 0 0 0 0 0 - - 0 - 0
atomix 0 — 0 - - - 0 - - 0 0 0
Ant Media Server — — 0 0 0 0 0 0 - 0 0 0
database-rider - - 0 0 - - 0 - 0 0 - 0
ddf 0 0 0 0 0 0 0 0
DependencyCheck - - 0 0 - - 0 - 0 - 0
keanu 0 - - - - - 0 - 0 0 - 0
mssql-jdbc 0 - 0 0 — 0 0 0 - 0 - 0
Payara 0 — 10 1 0 0 7 0 0 0 0 18
primefaces - — 0 0 0 0 0 - 0 0 0 0
TOTAL # 0 0 10 1 0 0 7 0 0 0 0 18
OVERALL % - - 0.34% 0.38% - - 0.26% - - - -10.24%

To achieve such a modest increase in detection precision, the running time
more than doubled—mnearly tripling for projects SonarQube and keanu. In con-

Table 15: Summary of 5 repeated runs of SpongeBugs wiTH and wiTHOUT violation textual
pattern filtering (step 1), and the corresponding sLow DOWN ratio. Time is measured in
minutes.

RUNNING TIME [min.]

PROJECT WITH STEP 1 WITHOUT STEP 1 SLOW DOWN
Eclipse Ul 102.3 235.6 2.3
SonarQube 25.3 74.6 2.9
SpotBugs 30.6 86.8 2.8
Ant Media Server 3.9 8.4 2.1
atomix 10.1 28.9 2.9
database-rider 0.8 2.0 2.5
ddf 28.6 67.2 2.3
DependencyCheck 5.5 11.3 2.1
keanu 2.9 8.5 2.9
mssql-jdbc 23.2 33.2 1.4
Payara 166.1 342.1 2.1
primefaces 15.5 31.4 2.0
OVERALL 414.6 930.0 2.2
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trast, project mssql-jdbc had the lowest increase in running time, which is prob-
ably due to abundance of large classes: as we discussed in Table 13, step 2 was
running on most of these classes anyway.

In conclusion, it seems that SpongeBugs’s two-step detection process achieves
a good balance between precision and performance: disabling step 1 increases
precision only marginally, but more than doubles the running time.

5.4. RQ4: Code with Behavioral Bugs

To answer RQ4, we ran SpongeBugs on all 438 bugs from Defects4J. Each
experiment targets one bug and consists of two steps:

1. Run SpongeBugs on the buggy code, and apply all suggested fixes.

2. Run the tests associated with the code (which include at least one failing
test) on the version with all SpongeBugs suggestions, and record which
tests are passing or failing.

By running the test suite that comes with every bug, we can assess whether
SpongeBugs’s suggestions interfere with the intended program behavior; and, if
they do, whether they improve or worsen correctness as captured by the tests.

Overall, SpongeBugs suggested 675 fix suggestions across all bugs in De-
fects4J; as usual, all suggestions compile without errors. In the overwhelming
majority of cases, SpongeBugs’s suggestions did not alter program behavior: for
22,253 out of 22,270 tests in DefectsdJ, tests that were previously passing were
still passing, and tests that were previously failing were still failing. SpongeBugs
did not fix any of the semantic bugs in Defects4J, which is what we expected
since its rules do not target behavioral correctness.

The exceptions involved 17 tests in Defects4J that were originally passing
(in the buggy version of each program) but turned into failing tests after we
applied SpongeBugs’s suggestions. In these cases, SpongeBugs altered program
behavior in a way that is inconsistent with the intended one captured by the
originally passing tests.

All these 17 cases involved spurious violations of rule B1 Strings and boxed
types should be compared using equals(). We observed one similar case of
spurious violation in SpongeBugs’s detection of rule Bl in the experiments of
Section 5.1.2, but the phenomenon is more prominent in Defects4J. Let’s outline
these cases of spurious detection to better understand where SpongeBugs fails.
In all cases, SonarQube reports the same spurious warnings.

Out of the 17 failing tests, 14 are from project Closure?’—a JavaScript
optimizing compiler written in Java. SpongeBugs found 5 violations of rule
B1 in the buggy project version included in Defects4J; all of these violations,
reported by both SpongeBugs and SonarQube, are spurious. The root cause of
these is the nature of project Closure, which relies on sophisticated optimizations
involving string manipulation. Reference equality == is used instead of object

20nttps://github.com/google/closure-compiler
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equality equals() as much as possible—when it is semantically correct—because
it is faster. SpongeBugs’s fix suggestions replace expressions like s == t with
s.equals(t); however, the latter implies the former only if s is not null. Thus,
some of SpongeBugs’s fix suggestions introduce a crash in test that exercise such
code with null strings. The following example—which is the single responsible
for the 14 failing tests—in project Closure is hard to miss, since the programmer
explicitly documented their intention to use reference equality:

//yes, s1 1= s2, not !s1.equals(s2)
if (lastSourceFile != sourceFile)

The other 3 tests that became failing after applying SpongeBugs’s sugges-
tions are from project Lang—Apache’s popular Commons Lang base library
for Java. SpongeBugs found 3 violations of rule Bl in the buggy project ver-
sion included in Defects4J; all of these violations, reported by both SpongeBugs
and SonarQube, are spurious. The root cause of these is again the way in which
null strings are handled. Project Lang’s API for strings uses defensive program-
ming, and hence it generally supports null values instead of valid String ob-
jects. Take, for example, method indexOfDifference(String s1, String s2)
of class StringUtils?!, which returns the lowest index at which s1 differs from
s2. The method’s JavaDoc documentation explicitly says that s1, s2, or both
may be null; correspondingly, reference equality is generally used before object
equality, so as to be able to reliably compare strings that are null. When
SpongeBugs introduces changes like:

if (str1 == str) — if (strl.equals(str2))

the program will throw a NullPointerException whenever strl is null.

Interestingly, in version 3.0 of the library, the developers of Apache Commons
modified method indexOfDifference so that it inputs two CharacterSequence
objects instead of strings. Comparing CharacterSequence objects by reference
is not considered an anti-pattern, and hence neither SonarQube nor SpongeBugs
would flag this more recent version of the library. While we could not verify the
actual intentions of the developers, it is possible that they did consider string
comparisons using == something to be avoided whenever possible—thus partially
vindicating SonarQube’s and SpongeBugs’s strict application of rule B1.

Another similar spurious violation of rule B1 occurs in Apache Commons
class BooleanUtils: Method toBoolean(String str) accepts null as argument
str, but SpongeBugs’s fix suggestion would crash with a NullPointerException
in this case:

if (str1 == "true") — if (strl.equals("true”))

Interestingly, if we combine SpongeBugs’s suggestion for rule B1 with its sug-
gestion for rule C5 (Strings literals should be placed on the left-hand side when

21 https://commons.apache.org/proper/commons-1lang/javadocs/api-2.0/org/apache/
commons/lang/StringUtils.html#indexOfDifference(java.lang.String, %20java.lang.String)
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checking for equality) the code reverts to handling the case str == null cor-
rectly:

if (stril.equals("true”)) — if ("true"”.equals(str1l))

This suggests that static analysis rules are sometimes not independent—and
hence stylistic guidelines should be followed consistently.

The main conclusions we can draw from the experiments with Defects4J are
as follows:

e As expected by its design, SpongeBugs cannot fix semantic (behavioral)
bugs because it targets syntactic (stylistic) rules.

e By and large, SpongeBugs’s fix suggestions are unlikely to alter program
behavior in unintended ways.

e For programs following unusual conventions or particular implementation
styles, the rules checked by SonarQube and SpongeBugs may sometimes
misfire. Often, it is still possible to refactor the program so that it follows
the intended behavior while also adhering to conventional stylistic rules.

5.5. Additional Findings

In this section we summarize findings we collected based on the feedback given
by reviews of our pull requests.

Some Fizes are Accepted without Modifications. Some fixes are uniformly ac-
cepted without modifications. For example those for rule C2 (String function
use should be optimized for single characters), which bring performance benefits
and only involve minor modifications (as shown in Listing 25: change string to
character).

myStr.lastIndexOf("r");

- int otherPos
myStr.lastIndexOf(’r’);

+ int otherPos

Listing 25: Example of a fix for a violation of rule C2.

SAT Adherence is Stricter in New Code. Some projects require SAT compli-
ance only on new pull requests. This means that previously committed code
represents accepted technical debt. For instance, mssql-jdbc’s contribution rules
state that “ New developed code should pass SonarQube rules”. A SpotBugs main-
tainer also said “I personally don’t check it so seriously. I use SonarCloud to
prevent from adding more problems in new PR”. Some use SonarCloud not only
for identifying violations, but for test coverage checks.

Fizing Violations as a Contribution to Open Source. Almost all the responses
to our questions about submitting fixes were welcoming—along the lines of help
is always welcome. Since one does not need a deep understanding of a project
domain to fix several SAT rules, and the corresponding fixes are generally easy
to review, submitting patches to fix violations is an approachable way to start
contributing to open source projects.
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Fizing Violations Induce Other Clean-Code Activities. Sometimes developers
requested modifications that were not the target of our fixes. While our trans-
formations strictly resolved the issue raised by static analysis, developers were
aware of the code as a whole and requested modifications to preserve and im-
prove code quality.

Fizing Issues Promotes Discussion. While some fixes were accepted “as is”, oth-
ers required substantial discussion. We already mentioned a pull request for
primefaces that was intensely debated by four maintainers. A maintainer even
drilled down on some Java Virtual Machine details that were relevant to the
same discussion. Developers are much more inclined to give feedback when it is
about code they write and maintain.

6. Limitations and Threats to Validity

Some of SpongeBugs’s transformations may violate a project’s stylistic guide-
lines [17]. Take, for example, project primefaces, which uses a rule?? about the
order of variable declarations within a class requiring that private constants
(private static final) be defined after public constants. SpongeBugs’s fixes
for rule C1 (String literals should not be duplicated) may violate this stylistic
rule, since constants are added as the first declaration in the class. Another
example of stylistic rule that SpongeBugs may violate is one about empty lines
between statements.??> Overall, these limitations appear minor, since stylis-
tic rules can often be enforced automatically using a pretty printer (the style
checker of most projects include one).

SATs are a natural target for fix suggestion generation, as one can auto-
matically check whether a transformation removes the source of violation by
rerunning the static analyzer [25]. In the case of SonarCloud, which runs in
the cloud, the appeal of automatically generating fixes is even greater, as any
technique can be easily scaled to benefit a huge numbers of users. We checked
the applicability of SpongeBugs on hundreds of different examples, but there
remain cases where our approach fails to generate a suitable fix suggestions.
There are two reasons when this happens:

1. Implementation limitations. One current limitation of SpongeBugs is that
its code analysis is restricted to a single file at a time, so it cannot generate
fixes that depend on information in other files. Another limitation is that
SpongeBugs does not not analyze methods’ return types.

2. Restricted fix templates. While manually designed templates can be ef-
fective, the effort to implement them can be prohibitive [4]. With this in
mind, we deliberately avoided implementing templates that were too hard
to implement relative to how often they would have been useful.

2Znttp://checkstyle.sourceforge.net/apidocs/com/puppycrawl/tools/checkstyle/checks/
coding/DeclarationOrderCheck.html
23http://checkstyle.sourceforge.net/config_whitespace.html#EmptylLineSeparator
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SpongeBugs’s current implementation does not rely on the output of SATs.
This introduces some occasional inconsistencies, as well as cases where Sponge-
Bugs cannot process a violation reported by a SAT. An example, discussed
above, is rule C3: SpongeBugs only considers violation of the rule that involve
a return statement. These limitations of SpongeBugs are not fundamental, but
reflect trade-offs between efficiency of its implementation and generality of the
technique it implements. We only ran SpongeBugs on projects that normally
used SonarQube or SpotBugs. Even though SpongeBugs is likely to be useful
on any kinds of projects, we leave a more extensive experimental evaluation to
future work.

7. Conclusions

In this work we introduced a new approach and a tool (SpongeBugs) that finds
and repairs violations of rules checked by static code analysis tools such as
SonarQube, FindBugs, and SpotBugs. We designed SpongeBugs to deal with
rule violations that are frequently fixed in both private and open-source projects.
We assessed SpongeBugs by running it on 12 popular open source projects,
and submitted a large portion (total of 946) of the fixes it generated as pull
requests in the projects. Overall, project maintainers accepted 825 (87%) of
those fixes—most of them (97%) without any modifications. A manual analysis
also confirmed that SpongeBugs is very accurate, as only a tiny fraction (0.6%)
of all its fix suggestions can be classified as false positives. We also assessed
SpongeBugs’s performance, showing that it scales to large projects (under 10
minutes on projects as large as half a million LOC); and its applicability to
student code and to the Defects4J curated collection of bugs. Overall, the results
suggest that SpongeBugs can be an effective approach to help programmers fix
warnings issued by static code analysis tools—thus contributing to increasing
the usability of these tools and, in turn, the overall quality of software systems.

For future work, we envision using SpongeBugs to prevent violations to static
code analysis rules from happening in the first place. One way to achieve this
is by making its functionality available as an IDE plugin, which would help
developers in real time. Another approach is integrating SpongeBugs as a tool in
a continuous integration toolchain. Since SpongeBugs does not provide commit
messages (which are typically needed in a pull request, and which we wrote
manually in SpongeBugs’s evaluation), we also plan to combine techniques we
developed in recent related work [48] to automatically generate meaningful pull
request descriptions.
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