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Abstract

One common problem in applying formal methods to the analysis of realistic
industrial-size systems is that these methods often do not scale well. In order to
overcome such difficulty, formal languages and tools supporting modularization
and compositionality must be realized and used.

Under this respect, this thesis addresses the problem of designing techniques
and tools to support the formal specification and verification of large modular
real-time systems. The reference specification language for this analysis is the
temporal metric TRIO.

First, a mapping of the modular features of the TRIO language onto the
language of the theorem prover PVS is designed. In connection with this, a
number of automated proof strategies are designed to support the conduction
of TRIO proofs in the PVS environment.

Second, a rely/guarantee compositional framework for the language TRIO
is discussed and a compositional proof rule is derived. This framework is also
encoded in the PVS environment, so that it is practically usable.

Finally, the benefits of adopting the proposed rely/guarantee compositional
framework are discussed with the aid of working examples.



Chapter 1

Introduction

Today, computer-based time- and safety-critical systems are gaining more and
more importance. Examples of such systems are controllers operating in critical
environments such as nuclear and chemical plants, supervision systems for flight
control tasks, monitoring systems for patients under special treatements. These
are usually embedded systems working under critical constraints, or large sys-
tems characterized by their complexity. They also often are real-time systems,
that is with sharp timing requirements. More precisely, a real-time system [40]
is one where the correctness intrinsically depends on the temporal behavior; in
other words, the outcomes of the system must be fully time predictable. To put
it in another way, while the correctness of a common application only depends
on the values it outputs, the correctness of a real-time application depends also
on when those values are outputed. As a result, the whole development process
is a hard, complex and error-prone task.

A common division among real-time systems is between hard and soft real-
time. A hard real-time application is one where the failure in meeting the
timing requirements may result in totally catastrophic outcomes. Therefore, in
a hard real-time system we must absolutely guarantee that all the deadlines
are met, otherwise the design is unacceptable. On the other hand, a soft real-
time application is one where the failure in meeting the timing requirements is
undesirable but may be occasionally acceptable. In other words, in soft real-
time systems failure in meeting the deadlines has a sustainable, though still
highly undesirable, cost.

Formal methods [28], [14] are a valid technique to manage and overcome
the difficulties in the development of both hard and soft real-time systems:
writing formal unambiguous specifications can guide the traditional activities of
validation and testing, and makes the systematic deduction of desired properties
of the specified system feasible as early as possible in the development process.
To support the use of formal specification languages and to aid the designer, a
number of widely used analysis tools has been developed, for example theorem
provers (e.g. PVS [49], ACL2 [36]) and model checkers (e.g. SPIN [30], SMV
[43]).

However, a common difficulty in applying these methods and tools is that
they often do not scale well: they are used with success when dealing with
relatively small cases, but they tend to become too difficult to manage if the
system under analysis is really large and complex. So, we often face the need
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CHAPTER 1. INTRODUCTION 2

of applying formal methods to the analysis of realistic industrial-size systems,
while they are usually fit for the use on small “toy” problems only. Consider for
example the state explosion problem in model checking or the heavy user inter-
action required in deductive methods when large, realistic problems are tried.
In order to overcome this substantial limitation we need to develop adequate
methods to let those basic techniques scale well on large problems, so that they
can become more widely used in the development process of critical systems
and efficiently help to increase the accuracy and the correctness of the whole
process.

1.1 Modularization and compositionality

It is widely acknowledged that an effective way to manage complexity is by
means of modularitazion: instead of facing the analysis of a large system as a
whole, we consider separately the parts into which it is divided and perform
local analysis on them. Then, we merge the local results together, to get a
global analysis of the whole system. In order to do that, we need specification
languages with modularization and object orientation constructs, to compose
incrementally the formal descriptions and to reuse them. Moreover, the analysis
tools must manage these modular features of the language as well, to support
the complexity in the verification process and automate the activity as much as
possible. Usually, we refer to the practice of modularization for formal languages
and tools as compositional methods.

Many of the interesting ideas presented in the literature about compositional
methods (reviewed in chapter 2) have been rarely, if ever, concretely applied
to the analysis of large systems, as often deplored by the authors themselves.
In our opinion, this depends to a certain extent on the fact that the proposed
techniques are too often embedded in a rather abstract framework, that requires
a noticeable effort to be understood and put into practice. What the average
user would require is some form of automation in the process of verification,
embedded in a friendly framework. More precisely, the support tools should
not only help to carry out the verification of simple, small modules (in-the-
small verification), but should furthermore aid the user in the conduction of
proofs about global properties of the system, putting together properties of
single modules, thus guiding the application of compositional techniques at least
in the more commonly occurring cases.

Under these respects, the overall goal of this thesis is to design compositional
techniques and tools to support and, as much as possible, automate, the spec-
ification and verification of formally specified, large, modular systems. More
precisely, the main focus in our work will be on the composition of modules,
rather than on the decomposition and refinement aspects (as defined in chap-
ter 2). These latter aspects would require a careful analysis of object-oriented
constructs and inheritance rules. On the contrary, we want to focus on the
scenario where a large modular system has been specified by the user by com-
posing simple modules together. We want to analyze such a system, proving
and disproving global properties and checking its consistency and realizability.
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1.2 Choice of the reference specification language

Another important preliminary choice we have to make is the formal specifica-
tion language to use in performing our analysis. Let us briefly consider what
are the most desirable features a formal language should have, with respect to
the specification and verification of real-time systems.

First, we want it to be not too low-level or requiring a deep expertise to be
used. Of course, we know that the proficient use of formal methods necessarily
requires a specific training with its theoretical foundational aspects. However,
we would like that at least the very basic concepts of our specification language
are understandable even by non experts, even if only at an intuitive level. In
this case, the domain experts may quickly contribute in the process of writing
a formal specification even if their backgrounds do not encompass much logics
and computer science.

Second, we want the language to be flexible and expressive enough so that it
can be used through all the stages of the development process, stepwise. Under
this respect, we do not want it to force the user to introduce details since the
very first stages of specification, when one usually wants a certain freedom and
does not like to be constrained under one view only.1

Third, since our focus is on specifying large systems, we want the language to
be endowed with modular features that permit the division of the specification
into parts and the reuse of modules whenever it is possible.

Finally, we want that the language has (or may be given) an adequate sup-
port with tools to automate relevant parts of the specification and verification
process. More precisely, we want that the tools guarantee that every detail is
in place, while limitating the exposure of the user to the lower-level aspects.

We think that the TRIO specification language [26], [46] fullfills nicely sev-
eral of the above requirements. TRIO has been created and developed in the
Dipartimento di Elettronica e Informazione 2 of Politecnico di Milano 3. It has
been, and still is, the preferred reference specification language for the research
on formal methods going on in the department. This fact also influenced the
choice of the language.

All in all, we choose TRIO as the base reference language for this work.
However, we also believe that some of the results that will be obtained can be
applied with success to other specification formalisms as well, mutatis mutandis.

As discussed above, a very important goal to permit the usability of formal
methods on large systems is an adequate support with suitable analysis tools.
Currently, a number of analysis tools are available for the TRIO language. In
particular, an encoding of the basics (i.e. non modular aspects) of the language
is available in PVS [49]. Moreover, an integrated environmet offering various
verification functionalities, ranging from model checking to theorem proving and
test-case generation, is currently being developed. At the moment, an adequate
support of the modular features of the language in PVS is lacking; this support
should encompass both the mapping of the modular features onto the PVS
language, and a support for the computer-aided conduction of proofs.

1As a folkloristic note, we remind that, in the computer jargon, languages enforcing one
single narrow view of doing things are nicknamed bondage-and-discipline languages [54], [53],
as opposite to liberal languages.

2i.e. Electronics and Computer Science Department; http://www.elet.polimi.it
3http://www.polimi.it

http://www.elet.polimi.it
http://www.polimi.it


CHAPTER 1. INTRODUCTION 4

This work aims at providing such a support. Therefore, we will focus on
deductive methods, and more precisely we are going to consider syntactical
techniques, since the PVS encoding of TRIO constitutes a basically syntactical
tool4.

1.3 Goals of the work

After considering all the aforementioned issues, the goal of this thesis is three-
fold.

• To provide an encoding of the modular features of the TRIO language in
PVS, extending the current in-the-small tool. This will consist of both a
mapping of the modular constructs onto the PVS language and a set of
proof strategies to provide an adequate automated support for the con-
duction of modular proofs.

• To provide a compositionality framework for the language TRIO. More
precisely, we are considering how to apply the rely/guarantee paradigm
to our specification language, considering the methodological issues that
arise and explaining how the results can be concretely employed in PVS
encodings of TRIO specifications.

• To analyze and discuss the benefits of adopting the devised rely/guarantee
framework in terms of manageability of large systems and proofs, basing
our discussion on working examples.

1.4 Structure of the work

This thesis is articulated as follows.
Chapter 2 reviews the recent literature about the topic of compositionality;

it also constitutes a general introduction to compositional techniques that are
to be employed in the remainder of the work.

Chapter 3 describes the TRIO language and its current in-the-small encoding
in PVS.

Chapter 4 introduces a mapping of the modular features of TRIO onto the
PVS language; this mapping will be the basis for the conduction of automated
proofs with our reference language.

Chapter 5 devises a compositionality framework for the language TRIO.
More precisely, we consider how a rely/guarantee specification should be written
in TRIO and we prove an inference rule to carry out compositional proofs.

Chapter 6 considers how to effectively help and automate the conduction
of proofs in TRIO/PVS. To achieve this, we design a number of PVS proof
strategies to be used with the TRIO/PVS tool to facilitate both general modular
proofs and rely/guarantee proofs. Moreover, we compare two proofs of the same
system done with and without adopting the rely/guarantee methodology and
the PVS proof strategies and describe how this affects the complexity of the
job.

4The fact that the encoding of TRIO in PVS (described in chapters 3 and 4) is a semantical

encoding must not be confused with the fact that the resulting tool is instead a syntactical

tool.
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Chapter 7 illustrates a complete example of specification and verification of a
composite system, and namely a reservoir system. This example is then used to
suggest some methodological remarks about the actual use of the rely/guarantee
framework introduced in chapter 5.

Chapter 8 draws the most important conclusions to the work and also hints
at what its future developments may be.

Appendices A and B list the PVS theories and proof strategies as they have
been coded, while appendix C describes the lower-level details of the two PVS
proofs considered in chapter 6.

Finally, appendix D contains a structured, extended summary of the whole
thesis, written in Italian.



Chapter 2

Related works on
compositionality

Nowadays, the urge to overcome the inherent limits of scalability of the most
popular formal methods is a common awareness among the research and in-
dustrial communities. The usual term by which these techniques, aiming at
applying formal languages and methods to large problems, are usually labeled
is compositionality. Roughly speaking, by this term we mean any method where
a large problem is divided into related parts, so that the burden of the anal-
ysis of the original task is split into smaller, more manageable subproblems.
The method should then allow to verify certain desired global properties by
composing intermediate results, provable independently on the parts in which
the problem has been divided with traditional in-the-small techniques. The fol-
lowing general introduction to the issue of compositionality follows the survey
[16].

2.0.1 The compositional paradigm

Strictly speaking, compositionality is the technical property of a language or
a method by which it is possible to verify that a formalized system meets its
specification only on the basis of the verified specifications of its constituent com-
ponents, usually called modules, and on how they are combined (composed). To
be more formally precise, let us consider a system Π for which we want to prove
that some specification property ϕ holds. If Π can be expressed as a compo-
sition of n parts Π1, . . . ,Πn as in Π ≡ Π1 ‖ . . . ‖ Πn where “‖” denotes some
defined form of composition, then a compositional proof of ϕ can be conducted
as follows:

1. Find suitable properties ϕi for each of the parts Πi, i = 1, . . . , n such
that the next step is possible. The verification of these properties can be
performed by means of traditional in-the-small verification techniques if
the Πi are small enough. Otherwise we can further subdivide them into
parts and apply the algorithm recursively.

2. Prove that from the fact that each of the Πi satisfies property ϕi it can

6



CHAPTER 2. RELATED WORKS ON COMPOSITIONALITY 7

be inferred that the whole system Π satisfies ϕ, i.e.

|=

(

∧

i=1...n

(Πi |= ϕi)

)

⇒ (Π |= ϕ)

The technical property of compositionality specifies under which condi-
tions this inference step is sound.

Hence, compositional techniques are yet another application of the divide et
impera (divide and conquer) paradigm, to the specification and verification of
large systems.

2.0.2 Decomposing and composing

Compositional methods can be considered under two complementary aspects
with respect to the development process of a system.

The first one is the decomposition aspect. The development of a system can
start from a very high-level and terse specification, that includes some desired
global properties it must respect. The developer refines this initial specification
through a series of steps, hierarchically ordered (see for example [18]). Each
step produces a lower-level version of the specification, which will be eventually
implementable. This is the well-known top-down paradigm for the development
of programs. By applying formal methods to this process we can ensure that
each step in the development is correct with respect to the originally specified
properties, so that errors can be identified and corrected as early as possible.
This stepwise verification paradigm is usually known as verify-while-develop.
Well-known formalisms adopting this paradigm are the B method [6] and the
Z specification language [59], [61]. Moreover, a compositional technique allows
the developer to perform such kind of a priori refinement process: at each
step the higher-level specification is split into parts which describe lower-level
details. The correctness of these new details is verified independently and then
the global correctness of the composite system formed by these parts is inferred
according to compositional rules. Section 2.1.1 below discusses some ideas about
this aspect of compositionality found in the recent literature.

The second aspect is instead the composition aspect. Not every develop-
ment process can be performed as discussed in the paragraph above. One often
has to deal with a complete specification of a complex system which should be
verified for consistency and correctness with respect to certain properties. Such
a a posteriori verification can still take advantage of the partitioning of the sys-
tem into parts to reduce the overall complexity of the process. Moreover, such
an approach allows the reusability of individually specified and developed com-
ponents, since they can be combined into larger systems in different manners,
in a bottom-up style of composition, without the need to re-verify their indi-
vidual properties every time, but simply relying on compositional proof rules
to infer the global properties of the system. Articles about such paradigms for
composing individually specified modules are reviewed in section 2.1.2.

To mirror the distinction between these two aspects of compositionality, the
terminology has evolved into the term modularity to refer to the composition
aspect, while using the term compositionality in a narrower sense to refer to
the decomposition in a top-down refinement process. However, these uses of
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the vocabulary are neither accepted by all authors, nor used with perfect con-
sistency even by those who adopt them. That is why we will not bother to
adhere to a precise distinction, but we will use them both, rather freely. More
precisely, hereinafter we will generally use the term compositionality to refer to
the technical property in use, while referring to the parts in which a system is
decomposed as modules.

2.0.3 The origins of compositionality

The principle of compositionality was first formulated within the context of
propositional logic and philosophy of language by Gottlob Frege [23]. In a
broad sense, a compositional system is a system where the global properties
are function of the properties of the parts in which the system is divided. Most
natural and artificial artifacts intuitively exhibit this property. Natural language
is compositional as well, since the meaning of a sentence in English depends on
the meaning of its parts.1

It is interesting to note that several formal techniques for the analysis of
computer programs have evolved from an initial non-compositional stage to a
structured compositional one, as the programs under analysis become more com-
plex. For example, for sequential programs, the first non-compositional method
was the one by Floyd [22]; two years later a new axiomatic compositional tech-
nique was proposed by Hoare [29]. It is no surprise that a similar evolution
is happening in the analysis of real-time systems as they grow in importance.
What we are seeking is to extend the structured paradigm for program devel-
opment to the analysis of real-time concurrent systems.

2.1 Compositional techniques for the verifica-

tion of real-time systems

2.1.1 Decomposition of systems

The first framework for applying compositionality to the decomposition of high-
level specifications into lower level ones is proposed by Abadi and Lamport [4].
Let us consider a system or a program specified using TLA formulae [37]. If M
generically indicates the complete system, we want to find a refinement, i.e. a
lower-level description, M l of it which implements M , that is such that every
behavior of the world which satisfies M l also satisfies M ; in formulae: M l ⇒M .
In order to prove that, one has to find a refinement mapping [1], that is, roughly
speaking, a suitable function which maps the state variables of M l into state
variables of M so that any formula true for M l is also true for M .

However, being M in general a complex system, finding such a mapping
may be impractical. What we want to do is to exploit modularization to render
the process easier. If M1, . . . ,Mn are TLA formulae representing the n parts

1Contemporary linguists tend to consider the principle of compositionality valid in a nar-
rower sense, that is when atomic representations make the same semantic contribution in
every context in which they occur. In this sense, natural language is not fully compositional,
since the meaning of a noun or of a verb is not completely independent of its context: a typical
example of this is the different meaning of the verb “to kick” in the sentences “he kicked the
ball” and “he kicked the bucket”. However, the compositionality principle is commonly used
in its original, broader sense.
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into which M is split, then their conjunction represents the whole system M :
M ≡M1∧· · ·∧Mn. In fact, every possible history of the universe is compatible
with M if and only if it is compatible with all the Mi, i = 1, . . . , n.

Let us now refine each of these modules individually into lower-level de-
scriptions M l

1, . . . ,M
l
n. Our original proof that M l ⇒ M is now equivalent to

M l
1∧· · ·∧M

l
n ⇒M1∧· · ·∧Mn. We would like to decompose this proof into the

presumably simpler proofs M l
i ⇒ Mi for i = 1, . . . , n. In general, this reduc-

tion requires some additional assumptions about the modules Mi, to assure the
soundness of the reasoning. We usually refer to these additional assumptions as
Ei. If these assumptions are carefully chosen, a Decomposition Theorem holds,
that assures the soundness of the decomposition process. More precisely, but
avoiding any technical detail of the TLA formalism, we may roughly say that
the theorem has as hypotheses:

1. That the conjunction of the higher-level specifications Mi satisfies each of
the assumptions Ei, modulo some additional technical details

2. That Ei ∧M l
i ⇒ Mi for each i = 1, . . . , n, that is that the modules indi-

vidually implements the higher-level specifications, with some additional
technical assumptions.

These hypotheses let us conclude the desired result that M l
1 ∧ · · · ∧ M l

n ⇒
M1 ∧ · · · ∧Mn that is M l ⇒ M . The assumptions Ei are all similar to those
used in what is called the rely/guarantee paradigm, discussed in more detail
below (see section 2.1.2) in the context of composition of open systems. In fact,
the aforementioned Decomposition Theorem can be reduced to a consequence
of the analogous, but more powerful, Composition Theorem.

The framework proposed by Abadi and Lamport naturally refers to a dis-
crete temporal model of the world with states and transitions. The language
TLA is rather low-level and requires the user to deal with a number of tech-
nicalities. Moreover, the approach is an abstract one, strongly modeled after
purely mathematical formalisms. A substantial practice would be required for
any user, before being able to put into practice some of the principles or to
translate informal specifications into a canonical formula of this framework.
For what concerns machine support for the conduction of proofs, the basic of
the logic is low-level enough so that it could be implemented fairly simply into
any theorem prover. However, the user would still be completely responsible for
the management of all the compositional details, along with the main choices
for the conduction of the proofs.

Hooman [31] proposes a framework to support the top-down design of real-
time systems based on logical formulae at the semantic level. This very simple
formalism has been implemented in the language of PVS to have some mecha-
nized support to the conduction of proofs. The approach explicitly wants to be
as general as possible with respect to both language-dependent implementation
choices and the time model (i.e. discrete or continuous).

The basic primitive to express properties of a system is the observation
function, a function from the time domain to a set of events from Ev:

ObsFunct : Time→ 2Ev
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The values assumed by these functions completely describe the temporal be-
havior of a module. If we have two or more modules, we define their parallel
composition as a module completely described by the pointwise union of the
composed observation functions, over a set of events given by the union of the
set of events of each function. To guarantee consistency, we must also add the
restriction that the observation functions of the various modules are equal on
the events that are in more than one event set. So, if a module M1 is described
by an observation function obs1 over a set of events Ev1, and similarly for a
module M2, their parallel composition defines the module M , described by the
observation function over:

M ≡M1 ‖M2 : obs : Time→ 2Ev1∪Ev2

and assuming values:

evt ∈ obs(t) ⇔

























evt ∈ Ev1 ∩ Ev2

∧
∀u ∈ Time(evt ∈ obs1(u)⇔ evt ∈ obs2(u))





∨




evt ∈ Ev1 ∧ evt /∈ Ev2

∨
evt /∈ Ev2 ∧ evt ∈ Ev2

























Hooman defines this notion of parallel composition in the higher-order logic
of PVS and shows that alternative but equivalent definitions are possible.

Tightly connected with the notion of observation function is the notion of
specification of a component. This is just an observation function for a set of
events Ev characterized by a certain property P :

spec(Ev, P ) : obs : Time→ 2Ev s.t. P (obs(t)) ∀t ∈ Time

With these definitions, we are now ready to formulate a compositional proof
rule, that basically states under which conditions the parallel composition of two
modules with given specifications implements a module with a global property
given by the conjunction of the specification properties of the two modules. If
the two specifications are given as spec(Ev1, P1) and spec(Ev2, P2) we simply
require that the validity of P1 only depends on events in Ev1 and similarly for
P2. We denote this fact with predicates of the form OnlyDep(P1, Ev1). Under
these assumption, the following Compositional Rule holds:

OnlyDep(P1, Ev1) ∧OnlyDep(P2, Ev2)
⇒

spec(Ev1, P1) ‖ spec(Ev2, P2) v spec(Ev1 ∪ Ev2, P1 ∧ P2)

where v indicates the refinement relation between modules, basically reducible
to a logical implication between properties of specifications, plus some techni-
cal details, omitted here. Again, alternative semantic definitions for parallel
compositions are proposed and shown to be equivalent to the previous one.

The author also analyzes the Hiding operation, another way to modify a
module in a refinement process. This basically consists in removing from an
observation function a number of elements of its event set. A sound inference
rule for modules obtained by hiding events is shown.
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Finally, a system described by both discrete and continuous events is speci-
fied and analyzed according to the given definitions for observation functions.

Hooman’s proposal for a framework is indeed very general and basic. It
is probably even too general and basic to be applied to large system analysis
where a purely semantic description is too low level to be used in early phases
of the specification process. It may be possible to extend and add more expres-
siveness to this framework, in particular by allowing more complex notions of
composition and hiding, and by using a richer and more intuitive language to
express properties of a system. The simplicity of the underlying structure of the
framework may be instead an advantage in providing an implementation into
an automated proof checker like PVS.

Olderog and Dierks [48] propose a paradigm to decompose specifications of
real-time applications so that time-critical aspects are confined in some modules
only.

Starting with a specification written in Duration Calculus [13], or more pre-
cisely into a subset of it that is implementable into executable timed programs,
it is always possible to decompose the specification into two parts, such that one
is a completely untimed version of the system, while the other is a pure timer.
By adequate communication, the composition of these two modules is an imple-
mentation of the original real-time system, that is exhibits the same temporal
behavior. The kind of composition considered here is obtained by asynchronous
communications between modules so that output of one module serves as input
of the other and vice-versa. A general algorithm to perform automatically this
decomposition is discussed and shown on an example.

The work by Olderog and Dierks, even if tightly modeled after a single
formal language of specification (Predicate Calculus), could also be regarded
to as a general guideline in writing specifications of real-time applications to
facilitate a formal analysis. In other words, a specification written with a sharp
division between temporal and non-temporal aspects may be useful to allow
some form of automated analysis. Of course, in general it is rather difficult
and counterintuitive to write a specification with this division in mind from
scratch, so it is higly desireable to have a general decomposition algorithm to
automatically do so.

2.1.2 Composition of systems

The rely/guarantee paradigm

An independently specified module is in general an open system, that is a sys-
tem interacting with an external environment which provides its inputs. When
proving properties of an open system, we would generally want to express them
independent of the possible behavior of the outside world interacting with the
component. This would guarantee the highest reusability of the component,
which could then be plugged into any system without changing its behavior.

However, this is in general not possible, since it is often the case that a com-
ponent behaves correctly only if the environment does the same. For example,
the environment providing the inputs may be required to adhere to a certain
communication protocol or, in the context of digital circuits, to input a nominal
voltage value, with some fixed tolerance, but without intermediate acceptable
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values.
In order to deal with this issue, a solution was first proposed by Misra

and Chandy [44] for synchronous communications and shortly after by Jones
[32], [33] for shared variable concurrency. They proposed what goes under
the name of rely/guarantee paradigm, according to the terminology intro-
duced by Jones. Other names for basically the same paradigm are assump-
tion/commitment (Misra and Chandy) or assumption/guarantee. The rely/guar-
antee paradigm for writing the specification of a module simply consists in mak-
ing explicit assumptions about the behavior of the environment under which the
module behaves as specified. In other words, the specification of the component
is of the form: assuming the environment to behave as E, we can guarantee
that the module exhibits property M . It is advisable to choose E to be the
minimal assumption on the environment to guarantee the behavior M , to per-
mit the maximum reusability of the component. Moreover, it is important that
the environment property E does not refer in any manner to implementation
details of the environment, considered as a black-box. It is interesting to note
that the rely/guarantee paradigm can be considered as a generalization of the
well-known precondition/postcondition style for specifications of sequential pro-
grams. Frameworks based on the rely/guarantee paradigm are discussed in the
following paragraphs.

Abadi and Lamport conduct an in-depth analysis of the many technical de-
tails that should be taken into account when considering composition of modules
specified under the rely/guarantee paradigm. [4] considers the problem strictly
connected with the decomposition aspect, in the context of TLA [37] as a spec-
ification language. The same authors in [2] use a more complicated semantic
model with agents to analyze the same problem from an even more theoretical
point of view. Finally, Abadi and Merz [5] discuss rely/guarantee composition
with reference to the logics TLA and CTL* and derive some proof rules for
these logics, in the spirit of the other two papers. We discuss these three related
works together, with main reference to [4], since it is probably the most general
and most self-contained of them, at least with respect to our interests.

According to the proposal of Abadi and Lamport, we describe the rely/guar-
antee paradigm for the specification of an open system, considering an under-
lying discrete temporal model with states and transitions. A rely/guarantee
specification of an open system Π should be written as a formula of the form
E +−. M where the derived TLA operator +−. means that M holds at least one
step longer than E does or, in other words, that M becomes false only after E
has become false. More precisely, if we consider a history of the system (also
called a behavior), E +−. M is true if and only if E ⇒M is true and, for every
n ≥ 0, if E holds for the first n states, then M holds for the first n + 1 states.
This is the best way to describe a rely/guarantee assumption, because it states
exactly that:

1. the system guarantees an expected behavior, provided the environment
evolves as modeled

2. if the environment stops following its model, the system may behave in-
correctly. However, it does that only one time step after the failure of the
environment.
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This corresponds to our intuitive notion of rely/guarantee paradigm and also
has the additional advantage that it leads to simpler rules for composition of
modules.

Let us now consider two systems Π1 and Π2 whose rely/guarantee speci-
fications are E1

+−. M1 and E2
+−. M2, respectively. In the simple case that

E1 ≡ M2 and E2 ≡ M1 one would expect to conclude that the composite sys-
tem Π exhibits property M1 ∧ M2 without any additional assumption, since
each module satisfies the other module’s environment assumption. However,
this conclusion is not valid in the general case, but depends on the kind of en-
vironment assumptions we have: if they are safety properties or not. A safety
property, as defined in [7], [58], is one that is finitely refutable, i.e. a violation
at a single finite instant of time suffices to make it false. With safety proper-
ties as environment assumptions, compositional reasoning has simpler rules. In
order to deal with general environment properties, we have to define the safety
closure C(F ) of any TLA formula F , as the strongest safety property such that
|= F ⇒ C(F ).

We are now ready to formulate a general Composition Theorem, that states
a sound inference rule to manage the composition of modules specified under the
rely/guarantee paradigm. Let us consider n modules, each with a specification
of the form Ei

+−. Mi for i = 1, . . . , n. We want to prove that the composition
(i.e. conjunction in this approach) of the modules satisfies a global rely/guar-
antee specification E +−. M . The hypotheses to the theorem are roughly the
following (we are still omitting a number of technical details):

1. The closure of the global environment assumption C(E) and the conjunc-
tion of the closures of the modules’ properties C(Mi) imply all the envi-
ronment assumptions Ei and the closure of the global property C(M).

2. The global environment assumption E and the conjunction of the modules’
properties Mi imply the global property M .

Under these assumptions, we can conclude the soundness of the global specifi-
cation, that is:

|=
∧

i=1,...,n

(Ei
+−. Mi)⇒ (E +−. M)

This rather general result is treated with even more technical considerations
in a more complex semantic model in [2]. A normal form for a specification in
the rely/guarantee style is proposed, with restrictions to deal with issues like
partial program specifications, machine-realizability and safety closures. In par-
ticular, it is shown how the non-safety part of the environent assumption can be
pushed into the M part of the model, so that the Composition Theorem can be
stated in a simpler way. However, this interesting consideration is instead more
of intellectual interest than of practical use, as also remarked by the authors
themselves in [4], since it would be highly innatural to write a specification in
that constrained form.

Abadi and Merz get to a similar Composition Theorem [5], adopting the tem-
poral logics TLA and CTL*. They first briefly study the concept of composition
in a rather general abstract logic framework, then they infer the compositional
rules for the chosen languages. It is likely that such an approach could be
extended to other temporal logic formalisms as well, under the same general
paradigm.
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The proposal by Abadi and Lamport nicely points out some fundamental
facts we must deal with whenever conducting proofs in a compositional frame-
work. A concrete application of such principles would still require a considerable
effort in order to make all the complex technical details as hidden as possible
from the user, allowing an approach to the specification process as smooth as
possible. The authors point out that the Composition Theorem has only been
applied to toy examples, and propose an approach based on mechanized verifi-
cation for larger system, using the Composition Theorem to divide the labor.
To put into practice this suggested direction of work would definitely be an
interesting achievement.

Namjoshi and Trefler [47] consider the compositional inference rule proposed
by Abadi and Lamport in [4], together with similar ones, in order to analyze
them with respect to the problem of completeness. In fact, while all the proposed
compositional proof rules are sound rules, that is they infer true facts from
true premises, many of them show to be incomplete, that is there are true
properties of the global system which cannot be proved using those inference
rules. More precisely, this is the case with the rule in [4] and with other similar
rules exploiting circular reasoning. By circular rules, we mean proof rules where
the guarantee of a module is constrained not only by the assumption of the same
module but also by the guarantee of the other modules. A noticeable fact is that
the counterexamples used to show the incompleteness are neither particularly
complex nor involve large systems: this suggests that the incompleteness of
those rules may well be a practical problem in the verification of systems, and
not just a theoretical nuisance.

However, modifying the available inference rules to make them complete is
possible and does not require to sacrifice substantially the formal simplicity of
the rules. In particular, it is not necessary to use non-circular rules instead
of circular ones: another result drawn by the authors is that circular and non-
circular proof rules can be equivalent and it is always possible to pass from a cir-
cular description of a modular system to a non-circular one. What can be done
to obtain complete inference rules is to strengthen the hypotheses by adding
some form of auxiliary assertion, i.e. an additional property that strengthen
the guarantee part of each module. The effort needed to find those additional
assertions may affect the complexity of the proof and require substantial user
interaction. The authors precisely formulate a complete proof rule, using the
formalism of communicating processes and common linear temporal logic. The
most relevant aspect is the fact that there is a sort of trade-off between the ease
of applicability of a compositional proof rule and the completeness of such a
rule: simpler rules do not require additional intermediate assertions, which are
often non-trivial to be formulated, but they do not allow some true facts to be
proven; conversely, more complex rules are complete but are more difficult to
be applied automatically.

The lazy approach

The rely/guarantee approach to the specification of open systems is the most
studied and analyzed in the literature about compositional verification. How-
ever, practical difficulties have prevented it from being concretely and widely
used on large cases. The biggest of such difficulties is probably the fact that the
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compositional inference rules for this paradigm require that the assumptions
about the environment of each module are subsumed by the specifications of
the other modules of the system providing inputs to the first module. This fact
is often a practical problem because it forces the specification to be detailed
enough to discharge these constraints since the very first stages of the formal
analysis. This in turn requires to anticipate a number of implementation details
that would not pertain at all to the initial specification phases and are also too
complex to be considered there.

Shankar proposes an alternate framework for the study of compositionality
with open systems, called the lazy approach [56]. In lazy composition, if we
want to prove that a certain component Π1 has a property M1 under certain
environment assumptions, we prove M1 to be valid for the composite system
Π1 ‖ E1 obtained by composing Π1 with an abstract environment specification
E1 which captures the expected behavior of the environment. Later, the com-
ponent Π1 will be eventually composed with another module, say Π2, to form
a system Π1 ‖ Π2. In order to guarantee that the property M1 is still valid
for the global system, the lazy paradigm considers the modified global system
Π , Π1 ‖ (Π2 ∧E1). M1 surely holds on Π, since the environment behavior E1

is made explicit part of the model. Later, during the following refinements of
the system specification, we will have to show that Π1 ‖ (Π2 ∧E1) is refined by
Π1 ‖ Π2 so that the environment assumptions will be correctly discharged. This
later, lazy analysis of the environment specifications does not force the model
to be too detailed since the first stages, but permits the user to care about envi-
ronment assumptions only at the end of the specification process, when enough
implementation details have naturally come into the picture. The lazy compo-
sitional approach seems general enough to be applied to a variety of formalisms
and specification models. However, Shankar details the analysis with respect to
a discrete-time model of computation, the asynchronous transition systems.

Let us briefly analyze the main differences and similarities between the
rely/guarantee and the lazy approaches.

• Rely/guarantee verification does not allow the later use of any implemen-
tation detail of a component to discharge the environment assumptions,
but requires to anticipate all those component properties needed to sat-
isfy the environment constraints. The lazy approach allows instead to
discharge those constraints lazily as the specification is refined, hence us-
ing implementation details when they are available.

• The rely/guarantee proof rules as proposed in [4] consider composition as
conjunction. This is compatible with the notion of composition for most
formalisms, but it may be the case that it is needed to consider different
kinds of composition, that do not fit under the idea of conjunction. The
lazy approach does not consider any specific paradigm of composition, but
its inference rules are compatible with whatever notion is adopted by the
chosen formal language.

• The accumulation of environment assumptions done in the lazy compo-
sitional verifications fits well with the fact that specifications are often
partial and not so strong during the initial phases of analysis, so that we
do not have to care about details of consistency during those phases. On
the other hand, this approach does not allow each component to be refined
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independently from the others, since this is possible only when its whole
specification already subsumes all the environment constraints attached
to that module.

• The lazy compositional approach may yield inconsistent specifications,
since it may be impossible to refine a component so that it matches all
the required environment assumptions. This is a price to pay to have more
freedom during the initial stages of analysis.

Shankar also proves a number of proof rules that allow one to deduce that
a component of the form Π1 ‖ Π2 ∧ E1 is refined by the simpler component
Π1 ‖ Π2. These proof rules are tailored to the asynchronous state transition
formalism but, once all the language details are removed, they show to be gen-
eral and simple rules to deduce when a global property ϕ is preserved under the
refinement. It is interesting to note that also with this approach, liveness prop-
erties are harder to handle than safety properties, so that stronger hypotheses
must be considered. We omit here the details about these issues.

Shankar proposes a different and new approach to the compositional veri-
fication of modular open systems. The approach has a number of advantages
over the more used rely/guarantee paradigm, and a number of disadvantages
as well. In view of an implementation of a lazy compositional mechanism into
an automated analysis tool, a noticeably advantageous aspect is that the lazy
approach requires no ad hoc machinery since it relies on existing techniques for
proving refinement properties only. On the other hand, it is still to be under-
stood if the approach can be effectively used on really large system, without the
specification becoming too complex to tackle.

Finkbeiner, Manna and Sipma [21] propose a formal framework for the anal-
ysis and verification of modular systems, modeled as fair transition systems [41],
with linear temporal logic as specification language to express properties. To
solve the problem of discharging environment assumptions when composing a
number of open modules, they propose a paradigm similar to the lazy approach
proposed by Shankar (see the previous paragraph), where if an assumption can-
not be discharged, it is simply made part of the composite model and eventually
discharged later, by implementation choices. However, in this new framework, it
is also possible to discharge immediately the assumptions by means of properties
of other composed components, similarly in this sense to the rely/guarantee ap-
proach. The general technique tries to avoid anticipating any assumption about
a module made by other modules, and guarantees that properties are preserved
under parallel composition.

Every module is formalized as a fair transition system, which basically con-
sists of an interface and a body. The body defines the private parts of the
module and its internal behavior; the interface is instead the public part of the
module and consists of a number of variables (representing state values or state
functions) and of transitions. Different modules can be combined together and
modified to form a larger system, by means of the following operations:

Parallel composition, which merges two modules into one, merging the in-
terfaces and synchronizing transitions with the same name, while guaran-
teeing the non interference of the private parts of the two modules.
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Hiding, which removes a number of variables or transitions from a module’s
interface.

Renaming, which renames variables or transitions of the interface.

Augmenting, which adds new variables to the interface of the module; they
assume values specified as an expression of other public and private vari-
ables of the module.

Restricting, which replaces variables of the interface by expressions over other
variables only.

In order to guarantee that the application of these operation does not yield in-
consistent specifications, a number of compatibility conditions between modules
are formulated and discussed with some detail, together with the precise se-
mantics of the above operations. Compositionality really comes into the picture
when a number of property inheritance rules are shown. A property inheritance
rule states under which conditions a property valid for a module Π is still valid
when the module is modified with one of the aforementioned operations. In the
spirit of lazy composition, no specific assumptions are made on the module’s en-
vironment before the application of the operation. On the contrary, the required
assumptions are carried over the composite system and can be discharged later
when it becomes possible. Another advantage of this approach is that these
compositional rules are rather simple in their forms, since all the details about
the nature of the environmental assumptions are not explicit part of the verifi-
cation paradigm. The soundness of the given inference rules can be proved, by
showing that a refinement mapping [1] exists between the original module and
the one modified after the application of the operation.

Another interesting discussed issue is module abstraction. They show an
inference rule which makes it possible to replace a module with an internally
simpler one with the same external behavior. This justifies the use of higher-level
abstractions to replace a part of a large system, in order to focus the analysis
on the other parts of the system and avoid any insignificant detail. Another
extension of the ideas about property inheritance is done with a proof rule that
handles recursive definitions of composite modules and applies an induction
principle to derive global properties. This rule is rather simple and intuitive,
and is applied to an example of recursively defined system.

Finkbeiner, Manna and Sipma propose a rather liberal approach to the ver-
ification of modular systems, where assumptions to guarantee results are gener-
ated naturally in the course of the proof, and whose correctness is proven lazily
when possible during later phases of the specification process, by refinement
or by properties of other modules composed together. As often the case with
these abstract frameworks, a considerable effort need be made in order to im-
plement these ideas with suitable analysis tools, extend the framework to other
formalisms and hide most details of the proofs to the user. In particular, we
point out that this approach would require some form of automatic high-level
generation of intermediate assertions during the conduction of a proof [8].

Bjørner, Manna, Sipma and Uribe [9] propose a framework similar to the
one in [21] and consider how to provide it with some form of automation in the
conduction of proofs, by exploiting the capabilities of the tool STeP [11], [10]. In
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what is basically an evolution of the previously seen framework [21] and of the
similar one [12] to describe real-time systems, they adopt the computational
model of clocked transition systems [42] with a dense time model. As usual,
properties of the systems are expressed with linear temporal logic formulae.

The resulting framework allows the straightforward extension of the afore-
mentioned operations of parallel composition, hiding, renaming, etc., to modules
of a real-time system. This also allows the reuse of some of the compositional
inference rules seen before in this new, broader context. Moreover, the authors
point out some additional facts we must consider when modeling a real-time
system in a continuous time framework. In particular, a fundamental require-
ment a system must satisfy in order to be implementable is that it must exhibit a
non-Zeno behavior. This requirement can be expressed in several different ways
[3], [25]; for now it suffices to say that it means that each variable of the system
can change its value only a finite number of times in any finite time interval.
Non-Zenoness is not preserved under composition of modules; however there is
a closely related condition called receptiveness that implies non-Zenoness and is
preserved under composition. This notion is discussed in the context of compos-
ite clocked transition systems. Finally, it is shown with a significative example
how the ideas introduced before can be implemented into the STeP system to
provide a support for formal analysis. In particular, it is shown how the tool
can aid the verification of non-Zenoness properties and of safety properties, by
exploiting the capabilities STeP has to generate invariants in a given transition
system.

The work by Bjørner, Manna, Sipma and Uribe is one of the first attempts
to really put into practice some of the interesting ideas about compositional
reasoning found in the literature. In particular, we point out once again the
importance of an adequate machine support in the conduction of proofs not
only in-the-small, where a number of tools is already available and automated
approaches like model-checking are viable, but also in-the-large, where compo-
sitional techniques must come into play.

2.1.3 Compositionality in non-deductive frameworks

The compositional paradigm is general enough so that it can be applied to a
variety of formal languages. Our main interests are for deductive frameworks,
that is where verification of global properties is done by finding out formal proofs
of those properties in the chosen language.

A different issue is how to carry out the verification of the properties that
are local to each base module. A possibility is to use algorithmic model checking
techniques [15], [39] to automatically verify those properties, thus using deduc-
tive proofs only to compose local properties into global ones. This is suitable
whenever the finite state model used in model checking is appliable locally. On
the other hand, we can also carry out the entire verification of the system in a
deductive framework, without any fully automatic technique. This permits the
in-the-small verification also of those subsytems where the finite state model is
not appliable. Of course, we can also have the best of both worlds, by choosing
which technique to adopt for the verification of local properties on a per case
basis. A really powerful and complete framework should encompass both ways,
and it should be supported by a tool suite to perform such a flexible approach
to the verification of large systems.
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Even if our main interests in this work are for a deductive framework, in
this section we very briefly hint at some articles found in the literature where
compositionality is considered from a different perspective, that is in a fully
state-based model checking framework. This means that these approaches con-
sider the problem of devising automated algorithmic techniques that scale well
on large state-based systems.

In order to allow global properties verification a model checker should first
of all have a way to represent modules and their composition in a natural man-
ner. Moreover, it should allow the verification of properties of single modules
with respect to any possible behavior of its environment. The behavior of the
environment should be expressible both as temporal logic formulae and as state-
based machines. Finally, it should allow the development of a system both in
a top-down and in a bottom-up process similarly to what discussed above with
reference to deductive frameworks. [27] discusses some of these issues in depth
and formulates a number of algorithms and techniques. The reference temporal
logic is CTL* and the results are of rather general applicability.

Another approach is the one proposed with reference to the widely used
modeling formalism of Petri nets. These other techniques consider composi-
tional verification based on condensation rules, that is rules for simplification
and abstraction of subsystems of a given modular net. These techniques allow a
significant reduction of the overall complexity in the verification of global prop-
erties. In particular, [35] considers compositional condensation rules for asyn-
chronous processes and heuristic techniques for large concurrent systems, with
particular emphasis on the state reachability problem. Similar techniques are
discussed, together with many others, in a more general framework in [34], where
a wide range of problems is considered. We point out that these approaches,
based on condensation rules, are really compositional techniques, unlike other
rule-based reduction schemas [57], [19], even if they both can be applied to the
same class of problems.

2.1.4 Another use of compositionality in system analysis

In this section we make a brief detour from the topic of compositional proofs
to review a couple of papers that consider different uses of a formal modular
specification of a system other than deductive reasoning. We believe this related
topic may share some basic ideas with the deductive approach.

Morzenti, Morasca and San Pietro [45], [55] propose methods for the sys-
tematic generation of execution sequences from the formal modular specification
of a real-time system. These execution sequences can be used to automate an
activity of functional testing, that is an extensive testing of the system driven
by system requirements formalized during the specification phase. A modular
system is specified with the temporal metric TRIO [26], [46], even if the frame-
work applies to other temporal-logic formalisms as well. We also suppose to
have working algorithms for the generation of execution sequences for simple
modules, that is non-composite basic modules.

In order to exploit the topological information associated with a modular
specification, a connection graph is built to represent such information. Every
simple module is represented by a node in the graph; arcs link connected mod-
ules of the specification, with direction going from the module providing the
output to the module using it as input. Two different algorithms are presented,
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one for acyclic graphs and the other for the general case of cyclic graphs. The
two algorithms basically exploit the topological ordering of nodes induced by
the graph in order to systematically generate execution sequences. User guid-
ance is then needed to choose the desired degree of adequacy of the generated
execution sequences. Correctness and time complexity of the given algorithms
are also analyzed. In particular it is shown which properties of regularity of
the specification must be assumed in order to guarantee the termination and
convergence of the given procedures. In order to apply the same algorithms
to arbitrarily large and complex modular specifications, graph theoretical tech-
niques are discussed to manipulate and rearrange the connection graph into
a simpler but equivalent one. How to deal efficiently with specifications with
many hierarchical levels of encapsulation is also discussed. Finally, a prototype
tool to perform the automated analysis is implemented and shown on a case
study, with interesting results.

We think that the idea of representing the topological structure of a compos-
ite system with a graph may aid the analysis of strategies for proof conduction,
by exploiting possible implicit cause/effect relations between modules. The
possibility of applying a large variety of graph analysis techniques to the repre-
sentation may lead to interesting results even on really large and complicated
systems. Of course, this paradigm must be adapted to the case of compositional
deductive reasoning, requiring a number of substantial changes.

2.2 The complexity of compositional techniques

A primary concern for the concrete applicability of the methods for the analysis
of large systems is that their complexity is as small as possible, as neatly pointed
out by Dijkstra [17] in 1969:

On a number of occasions I have stated the requirements that if we
ever want to be able to compose really large programs reliably, we
need a discipline such that the intellectual effort E (measured in
some loose sense) needed to understand a program does not grow
more rapidly than proportional to the program length L (measured
in an equally loose sense) and that if the best we can attain is a
growth of E proportional to, say, L2, we had better admit defeat.
As an aside I used to express my fear that many programs were
written in such a fashion that the functional dependence was more
like an exponential growth!

Unfortunately, compositional specification methods have a worst-case com-
plexity that depends exponentially on the number of modules we are considering.
This happens in the most general case, that is when we allow any possible kind
of composition between modules, and we want to analyze all the possible reached
states of the resulting global system. In order to make this consideration more
concrete, let us consider a common application of modular techniques: modular
model checking with the rely/guarantee paradigm. It has been shown in [60]
that this problem is EXPSPACE-complete, so that it is inherently intractable.
Lamport [38] points out some other negative facts about compositional theo-
rem proving. First of all, the application of decomposition proof rules usually
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does not shorten the length of a proof, but just changes its high-level struc-
ture, thus rearranging its lower-level steps, and even adds extra work to handle
environment specifications or liveness properties. Second, he points out that
the empirical laws that seem to govern the complexity of compositional proving
suggest that the length of a proof is quadratic in the length of the low-level
specification, which is an unacceptable result. If we add the fact that deduc-
tive verification is furthermore a semi-decidible problem, the situation seems
definitely hopeless for modular composition.

However, this is fortunately one of the cases where the worst-case scenario
happens rather rarely in practice, while the average-case shows a much lower
complexity. Submodules of a complex system usually exhibit an interaction
which is not too tight, in the sense that only a small part of their variables is in
direct relation. We usually identify the public parts of a module that interact
with other components as the interface. Processes’ interaction is recorded by
observing the changes occurring in the modules’ interfaces and not the internal
quantities. It is often the case that the items in the interface are a small part of
the total of a module. This usually implies that there is a number of externally
visible changes that is not too big, with respect to the number of internal states
corresponding to the same observed interface, so that the total number of in-
teresting combinations does not grow too fast when composing modules. These
assumptions are also supported by the fact that composite systems of interest
are artifacts invented by human beings, and human beings cannot manage an
exponential complexity, so that these systems must be effectively describable
by a not too high number of modules interacting rather loosely. As a result,
compositional techniques applied to the analysis of real systems usually show
a complexity that is linear in the number of subsystems. Cases of higher com-
plexity may happen in practice but are rare and usually pertain to small parts
of the global system only.

All in all, compositional reasoning is the main tool we have to seriously
tackle complexity, since it makes reduction to smaller problems and abstraction
work together in an effective way.

We have briefly reviewed and summarized a significant part of the literature
about compositional techniques for the conduction of proofs. A number of ideas
and paradigms from these articles are interesting and are going to be applied
to our particular framework. Other aspects of the problem are instead scarcely
represented in the current literature, so that our work should cover some of
these other issues.



Chapter 3

The TRIO specification
language

This chapter presents the TRIO specification language [26], [46] and its current
encoding in the PVS theorem prover. More specifically, section 3.1 considers the
basic non-modular constructs of the language and their encodings in PVS, while
section 3.2 introduces the reader to the modular and object-oriented features of
the language.

3.1 TRIO and its encoding in PVS

3.1.1 TRIO in-the-small

TRIO is a typed, linear, metric temporal logic enhanced with object-oriented
and modular features, for writing specifications of complex systems. Whenever a
distinction is needed, we will refer to the basic aspects of the language, that is the
syntax and semantics of formulae predicating about time-dependent and time-
independent items, as “TRIO in-the-small”, while referring to the remainder
of the language as “modular features of TRIO”. Following this division, this
section describes the former group of features and section 3.2 refers to the latter
one.

The truth value of each TRIO formula is given with respect to a current
time instant which is left implicit1. The basic temporal operator is called Dist
and relates the current implicit time instant to another time instant. For exam-
ple, the formula Dist(F, t) where F is a time-dependent formula and t a time
distance, means that F holds at a time instant which is t time units from the
current one.

Together with this basic temporal operator, TRIO allows the use of all com-
mon propositional operators and quantifiers of first-order logic. Combining these
with the Dist operator, we define a number of derived temporal operators, that
naturally express common time relationships. Table 3.1 lists the formal defini-
tion of all derived TRIO operators: F and G are any time-dependent formulae
and t is a time distance. Moreover, note that each standard operator can have a

1In fact, the name TRIO stands for “Tempo Reale ImplicitO”, Italian for “implicit real-
time”
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modified version with explicit inclusion/exclusion of time bounds. For example,
the definition of Lastsei(F, t) is ∀d(0 < d ≤ t→ Dist(F, d))).

Operator Definition

Past(F, t) t > 0 ∧Dist(F,−t)
Futr(F, t) t > 0 ∧Dist(F, t)
Som(F ) ∃dDist(F, d)
Alw(F ) ¬Som(¬F )

SomP (F ) ∃d(d > 0 ∧Dist(F,−d))
SomF (F ) ∃d(d > 0 ∧Dist(F, d))
AlwP (F ) ¬SomP (¬F )
AlwF (F ) ¬SomF (¬F )

Lasted(F, t) ∀d(0 < d < t→ Dist(F,−d))
Lasts(F, t) ∀d(0 < d < t→ Dist(F, d))

WithinP (F, t) ¬Lasted(¬F, t)
WithinF (F, t) ¬Lasts(¬F, t)
Since(F,G) ∃d(d > 0 ∧ Lasted(F, d) ∧Dist(G,−d))
Until(F,G) ∃d(d > 0 ∧ Lasts(F, d) ∧Dist(G, d))

UpToNow(F ) ∃d(d > 0 ∧ Lasted(F, d)); Dist(F,−1) if Time is discrete
NowOn(F ) ∃d(d > 0 ∧ Lasts(F, d)); Dist(F, 1) if Time is discrete

LastT ime(F, t) t ≥ 0 ∧Dist(F,−t) ∧ Lasted(¬F, t)
NextT ime(F, t) t ≥ 0 ∧Dist(F, t) ∧ Lasts(¬F, t)
Becomes(F ) UpToNow(¬F ) ∧ (F ∨NowOn(F ))

Table 3.1: TRIO derived temporal operators

In TRIO, we call items the primitive entities used to represent the system
under specification. Among them we have values, predicates, functions, events
and states. We distinguish between time-dependent (TD) items, whose value
varies over time, and time-independent (TI) items, whose value does not. In
particular, events and states are a specialization of time-dependent predicates
useful to represent a system in an operational way. An event models instan-
taneous facts, such as the pushing of a button or a change of state. A generic
time-dependent predicate E represents an event if it obeys the following behav-
ior [25]:

UpToNow(¬E) ∧NowOn(¬E)

Conversely, a state models Boolean values that hold over time intervals and
whose transitions are pointwise (i.e. they are events); for example, the value
held by a flip-flop device may be modeled as a state. A generic time-dependent
predicate S represents a state if it obeys the following behavior [25]:

(UpToNow(S) ∧ S ∧NowOn(S))

∨ (UpToNow(¬S) ∧ ¬S ∧NowOn(¬S))

∨ (UpToNow(S) ∧NowOn(¬S))

∨ (UpToNow(¬S) ∧NowOn(S))

Every TRIO formula is considered implicitly temporally closed with a uni-
versal quantification, that is as if it was enclosed by a Alw operator, unless
explicit existential quantification is provided, for example with a Som operator.
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Universal quantification over time expresses the fact that the formula is valid
over the whole temporal axis.

TRIO formulae fall into one of three types: axioms, assumptions and theo-
rems.

An axiom is a formula which is simply assumed to be valid. When describing
a system in a specification, its basic behavior should be captured by a set of
axioms relating the items it is composed of.

An assumption is a formula whose truth is postulated, but should be proved
in a later phase of the development. In particular, we usually name external
assumption a formula whose truth should be guaranteed by other parts of the
specification composed with the present one. Conversely, an internal assumption
is one that should be demonstrated by refinement, that is when details are added
to the current specification. Note that the TRIO language does not distinguish
between the two kinds of assumptions, which only pertain to metodological
aspects, such as those considered in chapter 5.

Finally, a theorem is a formula whose validity can be proved formally through
demonstration from other formulae. For sake of convenience, we will often use
the word lemma to mean a theorem expressing an intermediate property, that
is one which is not meaningful per se but only encapsulates a significant step to
obtain a broader result. However, TRIO makes no distinction between theorems
and lemmas, in that it only contemplates the former ones.

One last important feature of the TRIO language is that it is parametric
with respect to the time model to be adopted, usually named Time. Hence, we
can choose, between discrete and dense time models, what is best suited for our
specification. In the remainder of this work, we will refer to a continuous time
model, unless otherwise explicitly stated.

3.1.2 PVS encoding of TRIO in-the-small

An encoding of TRIO in-the-small in PVS [49], [50], [51], [52] constitutes what is
usually called TVS (TRIO Verification System) or TRIO/PVS. More precisely,
this tool consists of two parts: a set of theories containing the definitions of
TRIO items and operators translated into the higher-order logic of PVS, and a
set of proof strategies to automate and simplify the conduction of proofs with
TRIO formulae in PVS. The TVS is extensively described in [25], [20]. In this
section we give the basic ideas about the encoding needed to understand the
following chapters of this work.

TVS focuses mainly on TRIO specifications where the time domain is con-
tinuous, that is where Time = R. The basic items are time-dependent terms
(that is TD values) and formulae (that is TD propositions): they are simply de-
fined as functions mapping Time onto a generic codomain D and onto Booleans,
respectively.

TD_Term: TYPE = [Time -> D]

TD_Fmla: TYPE+ = TD_Term[bool]

Unlike TRIO formulae, where the current time instant is implicit, in TVS it
is explicit so that every term is evaluated with respect to a given time instant.
For example, consider the definition of the Dist operator in PVS:

Dist(T, t)(ct): D = T(ct+t)
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where T is a time-dependent term whose codomain is D and ct stands for current
time.

Of course, we need to extend the definitions of common Boolean connectives
and of quantificators to handle time-dependent terms. For example, consider
the AND operator representing conjunction; this is extended to time-dependent
formulae as:

AND (A, B: TD_Fmla)(ct): bool = A(ct) AND B(ct)

Note that the result is still a function of time ct, that is a time-dependent
formula. The definition means that A ∧B is true at time instant ct if and only
if both A and B are true at ct.

Consider also the translation, under the name FA, of the universal quantifi-
cation for time-dependent terms:

FA (A: [D -> TD_Fmla]): TD_Fmla =

LAMBDA(ct): FORALL(x: D) : A(x)(ct)

The definition means that ∀xA(x) is true at time instant ct if and only if A(x)
is true at ct for all possible values of the free variable x.

With these basic encodings, all the derived TRIO operators are translated
naturally from their definitions. As an example, consider the translation of the
operator Lastsee:

Lasts_ee(A: TD_Fmla, t: nnt)(ct): bool =

FORALL (d : {d: Time | 0 < d AND d < t}) : A(ct+d)

where nnt is non-negative time (i.e. R+).

While in TRIO every formula is implicitly temporally closed with a universal
quantification over time, in TVS it is not so, and the user must provide explicit
quantification with the Alw operator. On the other hand, free variables are im-
plicitly universally quantified by PVS, unless the user adopts explicitly another
kind of quantification.

Obviously, TRIO axioms and theorems can be translated naturally into PVS
axioms and theorems (and lemmas). On the other hand, the PVS keyword
ASSUMPTION has a peculiar semantics which does not reflect the use TRIO does
of the same keyword. TRIO assumptions may be translated using the PVS
keyword CONJECTURE, which is a synonim for theorem, in the PVS language.
More will be said about using TRIO assumptions in PVS in chapter 5.

Describing TVS proof strategies in a certain detail is out of the scope of this
work. As a general idea, these strategies basically achieve two different goals.

First, a set of so called pretty-printing strategies serves to rewrite the proof
sequent at each step in order to change its formulae to make them more TRIO-
like, thus hiding the details of the encoding of TRIO in PVS. These strategies
consist of a number of auto-rewrite rules and are applied automatically by the
proof engine each time the sequent changes.

Second, other strategies enrich the PVS proof commands with a number of
new (derived) commands, to make proofs of translated TRIO formulae easier to
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carry out in PVS. These commands take charge of ordinary formula manipula-
tions, instantiations and rewritings to let the prover realize when two formulae
are equivalent, to expand common definitions of TRIO operators, etc.

In chapter 6 we are going to design new proof strategies to handle the mod-
ular features of TRIO.

3.2 Modular features of TRIO

The TRIO language has a number of object-oriented constructs to support in-
heritance, genericity and modularization when specifying large and complex
systems. The basic encapsulation unit is the class: a TRIO class is a collection
of items, formulae and objects, that is instances of other classes. Note that
TRIO does not have the notion of object construction and destruction, since
it is a logic language. Objects encapsulated in classes are called modules of
the class. Each class has an interface, defined as the set of items and formulae
declared as visible in the signature section of the class. Defining an interface
allows information hiding when writing modular specifications.

We usually distinguish between simple classes, that is classes without inner
modules, and structured classes, that is classes built composing other classes
together. Whether simple or structured, the semantics of a class is defined by
the logical conjunction of all formulae of the class and of its modules. We can
also define arrays of modules, containing multiple instances of the same class.

Classes can be generic with respect to a number of parameters; these param-
eters must be instantiated when the class is used as a module of another class.
More precisely, a parameter can be any of values, domains or other classes.

An important feature, which is also typical of object-oriented languages,
is inheritance. Each class can inherit from other classes, thus getting their
items, formulae and modules. Inherited things can also be redefined or renamed,
exploiting polimorphism, and multiple inheritance is allowed.

A special clause of the language is used to define connections between items
of two modules: if two items are connected it means they are to be considered
logically equivalent. Connections can be of three kinds: direct, cartesian and
broadcast.

A direct connection connects items of the same arity: for example a time-
dependent predicate I1 to another time-dependent predicate I2. This would be
written in TRIO as (direct I_1 I_2).

A cartesian connection connects each of the items of a (1, . . . ,m) predicate
I1 to each of the items of another (1, . . . , n) predicate I2, pairwise. This would
be written in TRIO as (cartesian I_1 I_2) and its semantics is:

∀i ∈ {1, . . . ,m} : ∀j ∈ {1, . . . , n} : (I1(i) = I2(j))

Finally, a broadcast connection connects a simple time-dependent predicate
I1 to each of the items of a (1, . . . , n) predicate I2. This would be written in
TRIO as (broadcast I_1 I_2), and its semantics is:

∀i ∈ {1, . . . , n} : (I1 = I2(i))

Note that TRIO semantics does not associate any direction to a given connec-
tion, even if most of the times one naturally thinks of a direction associated to a
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Figure 3.1: Graphical representation of a TRIO class

pair of connected items, as if information flowed from one end of the connection
to the other.

Each class also has a graphical representation. This is often of help to
visualize better a complex specification and to understand its structure. Figure
3.1 represents a sample structured class, whose TRIO specification is given
below. This also serves as an example of the syntax of some of the modular
features.

class C

//class parameters

( const cst, domain DOM )

//class C inherits from class B

inherit: B [ redefine it1;

rename it2 as it3 ]

//classes to be used as modules must be imported

import: A

signature:

//visible items and formulae of the class

visible: it3, it4, th1;
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//temporal model is assumed continuous

temporal domain: real;

//items of the class

items:

TD it1 (arg1: DOM); //this is a redefinition

event it4;

state it5;

//modules (i.e. class instances)

modules:

M1: A;

M2: array [1..cst] of A; //array of modules

//connections of the class

connections:

(direct M1.a1, M2[4].a1);

//formulae of the class

formulae:

axiom ax1:

it4 -> SomF(Lasts(it5, 3));

theorem th1:

Becomes(it3) -> WithinP(it4, 8);

end

Currently, there is no encoding of the modular features of TRIO in PVS.
Chapter 4 will provide such an encoding, while chapter 6 will describe proof
strategies to help the conduction of modular proofs in PVS with the given
encoding.



Chapter 4

The encoding of TRIO in
PVS

As described in chapter 3, an encoding of TRIO in-the-small in PVS is currently
available and used. In order to provide a verification system that allows the
use of the modular features of the TRIO language, the first thing to do is to
devise an encoding of these features into the PVS system, based on the current
implementation of TRIO in-the-small. This chapter describes such an encoding.

More precisely, section 4.1 describes the mapping of classes, both basic and
structured, thus showing how to translate the TRIO importing mechanisms.
Section 4.2 considers the issue of visibility and namely to which extent it is pos-
sible to preserve in PVS the information hiding provided by the visibility clauses
of TRIO classes. Finally, section 4.3 considers the inheritance mechanisms of
TRIO and how they can be translated into PVS.

Before discussing these issues, a general consideration on the mapping is of
order here. When describing the encodings of the modular features of TRIO, we
should always think as if an automatic translation system from TRIO to PVS
was available. Hence, the end user (that is she/he who writes a specification
in TRIO) does not ideally have to know the details of the encodings but can
concentrate only on the higher level description of the system.

4.1 TRIO classes

4.1.1 Basic issues

The basic encapsulation mechanism in TRIO is the class: a TRIO class is
mapped onto a PVS theory. Each class is parametric with respect to an arbitrary
number of parameters; each parameter can be a constant value, a domain or a
class. This realizes the feature of genericity of the TRIO language.

PVS theories can have parameters as well. Hence, each TRIO parameter is
naturally mapped onto a parameter in a PVS theory: constants are mapped onto
constants and domains are mapped onto types. Unfortunately, PVS theories
cannot be parametric with respect to other theories. There does not seem to be
any solution to this limitation at the moment, so let us avoid this case for now.

29
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Furthermore, each PVS theory that represents a TRIO class has an ad-
ditional mandatory parameter named instances of a generic non empty type
TYPE+. This parameter should be listed as the first in each PVS theory and it
is used to translate in PVS the notion of TRIO module, as will be discussed
shortly.

Each item in a TRIO class is obviously translated into a PVS item of the
same type, using the encoding of TRIO in-the-small. However, each item
should be made parametric with respect to a parameter of type instances.
In other words, whenever we have a TRIO item I that whould be translated
into the PVS item I: T of type T, we need instead to translate it to the
item I: [instances -> T] of type [instances -> T], i.e. function from
instances to T. This allows the declaration of arrays of modules, as will be
discussed shortly.

As an example, consider the translation of the following very simple TRIO
class.

class simple

signature:

visible:

A, B;

temporal domain: real;

items:

event A;

state B;

TI total C(natural): integer;

formulae:

axiom ax:

A -> Lasts(B, 3);

theorem th:

B -> SomP(A);

end

It should be translated into the following PVS theory.

simple [instances: TYPE+]

: THEORY

BEGIN

IMPORTING trio_base, states_and_events

A: [instances -> Event]

B: [instances -> State]

C: [instances -> [natural -> integer]]
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inst: VAR instances

ax: AXIOM

Alw( A(inst) IMPLIES Lasts(B(inst), 3) )

th: THEOREM

Alw( B(inst) IMPLIES SomP(A(inst)) )

END

As clearly shown in the example, since every item has been made parametric
with respect to a variable of type instances, we need to make explicit that value
whenever we reference any item in the theory.

4.1.2 Importing multiple instances

Let us now describe how the instances parameter should be used. The main
problem we encounter in translating modules is that PVS cannot distinguish
between different instances of the same theory, so that we have to simulate
this mechanism somehow. In fact, we can use theories from within other theo-
ries by using the importing keyword. However, we cannot import multiple in-
stances of the same theory, since PVS would consider them as indistinguishable,
while TRIO considers different modules of the same class as logically distinct
components. To solve this problem, we introduced the additional parameter
instances. Whenever we import a theory as a module into another theory, we
declare a new type of our choice. Then, we import the theory with that type
as parameter (coupled with the instances type of the importing class, to allow
the current class to become, in turn, module of another class). Hereinafter,
whenever we reference to that module we give its full instantiation parameters,
so that PVS can distinguish between different importings of the same module.
For example, consider a class structured that has two modules of class simple.
Its TRIO declaration is:

class structured

import: simple;

temporal domain: real;

modules:

M1, M2: simple;

end

Its PVS translation would then be:

structured [instances: TYPE+]

: THEORY
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BEGIN

M1_type: TYPE = {n: nat | n = 0} CONTAINING 0

M2_type: TYPE = {n: nat | n = 0} CONTAINING 0

IMPORTING simple[[instances, M1_type]], simple[[instances, M2_type]]

END

Even if the choice for the importing types is in general free, using an integer
number is often a good choice since it is simple and works well with PVS (differ-
ently than, for example, enumeration types which are not very flexible in PVS).
Note that the choice of the integer constant to represent the type is absolutely
arbitrary, unless arrays are involved (they are discussed below). In particular, in
the example we used the same integer twice, for two different modules, which is
perfectly acceptable. After an importing, whenever we reference an item of the
imported class we have to fully list the instantiation parameters, so that PVS
can disambiguate between the two importings. For example a TRIO theorem
of the form

theorem struc_th:

M1.A -> NowOn(M2.B)

should be translated into the PVS theorem

M1: VAR [instances, M1_type]

M2: VAR [instances, M2_type]

struc_th: THEOREM

Alw( A(M1) IMPLIES NowOn(B(M2)) )

In case we want to give explicit representation of the class the modules come
from, we may verbosely write the same theorem as:

struc_th: THEOREM

Alw( simple[[instances, M1_type]].A(M1) IMPLIES

NowOn(simple[[instances, M2_type]].B(M2)) )

PVS allows the user to give a particular name, or alias, to a theory whenever
it is imported into another. This is done with the AS clause of the importings.
It may seem at first that this may be used to better simulate the TRIO dotted
notation to reference items of imported classes. Unfortunately, this does not
work in general, since the AS alias is lost whenever the importing class is in turn
imported into another one. Therefore, it should not be used in general. On the
contrary, we will sometimes use it in the examples in the following chapters.
The only reason to do that is to let the user read the PVS code more easily. For
the same reason, we will sometimes import a class without instantiating it with
the pair [instances, module_type], using simply module_type when we are
sure that we will not use the same class as module of another class. However,
it is generally not advisable to do that and should be considered only as an
explanatory aid usable whenever no other abiguities may arise.
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Let us now consider the translation of array of modules from TRIO to PVS.
This is where the parametrization of items with respect to a instances variable
comes into play. Let us suppose we want to translate the following importing
of a TRIO array of simple modules.

M3: array[2..4] of simple;

To do that, we declare an instances type corresponsing to the type of the index
of the array. Then we use that as importing type for the class simple.

M3_type: TYPE = {n: nat | 2 <= n AND n <= 4} CONTAINING 2

IMPORTING simple[[instances, M3_type]];

Now, since every item in simple was parametric with respect to the importing
type, we have as a result that each index in the range 2..4 refers to a logically
distinct version of those items, one for each instance of the module in the array.

4.1.3 Connections

Another important feature of structured TRIO classes is the notion of connec-
tion. A connection is a logical equivalence between two items of two classes. A
connection can be translated into a PVS equality (=). We chose to use the equal-
ity instead of the IFF operator, because equalities are automatically treated as
rewrites in proofs, so that they are used more effectively by the automated
prover, requiring less user interaction.

More precisely, we introduce a predicate connect() to indicate connections:
it simply is a synonym for equality and is declared as a binary operator in the
theory TRIO_modular that serves as a container for definitions used in PVS
translations of modular features of TRIO. Obviously, this service theory should
be imported whenever we use those constructs in another theory.

H1, H2: VAR T %T is a generic type

connect(H1, H2): boolean = (H1 = H2)

Connections should then be declared as axioms in PVS theories. We also give
a standard naming for the connection axioms, to allow automatic translation of
TRIO classes and to make the definition of proof strategies simpler (see chapter
6). If we have just one connection axiom listing all the connection equalities,
linked by ANDs, we call it connections. On the other hand, if we choose to split
the connections among n axioms, we name them connection_1, connection_2,
..., connection_n. We note explicitly that all the TRIO connections can be
translated with this mechanism, not only those of type direct. In fact, we just
need to use correctly the instantiation variables we have seen in action above.
For example, consider a direct connection between M1.A and M2.A. This would
be written in PVS as:

connections: AXIOM

connect( A(M1), A(M2) )

A cartesian connection declared in TRIO as:

(cartesian M1.B M3.B);
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would instead be translated in PVS with the aid of the instantiation variable
M3.

M3: VAR [instances, M3_Type]

connect( B(M1), B(M3) )

This has the same semantics as in TRIO, since it corresponds to the formula:

∀M1 ∈ {0} : ∀M3 ∈ {2, 3, 4} : B(M1) = B(M3)

4.2 The visibility issue

Up to now, we avoided discussing how to translate the notion of visibility of
items and formulae from TRIO to PVS. We discuss this issue in this section,
but we immediately have to say that the results will be rather negative.

The first idea that comes into mind is to use the EXPORTING clause of PVS to
translate TRIO visibility. Whenver an item or a formula is visible we export it
from the corresponding PVS theory. By doing this, the importing theories will
only have access to those items and formulae declared as visible in the imported
class.

Unfortunately, this mechanism does not work for two reasons. On the one
hand, the exporting mechanism requires to export, together with the desired
items and formulae, all the other items, types and theories referenced to by the
exported objects. It is often difficult to correctly identify all the PVS dependen-
cies so that we often have to use the clause WITH CLOSURE that automatically
adds to the export list what is needed. This often results in exporting too many
things, even those we do not want to be visible outside the current class. On the
other hand, the exporting mechanism has a fundamental limitation: it does not
handle nested theories in a correct way. In fact, consider a class A importing a
class B. Then, class A cannot choose which items of B to export: it can either
export them all or none of them. This is obviously an unacceptable limitation,
since we often have the need to “propagate” the visibility of some items outside
the current class, while hiding some others. Note that redeclaring in A all the
items we want to export and connecting them with the corresponding items of
B is not a solution, since the PVS system would then ask to export all the items
in B as well, because of the dependency caused by the connection.

Another serious problem connected with the management of importings,
exportings and visibility is the fact that PVS does not keep an internal repre-
sentation of the nesting levels of the various theories we are using but simply
considers them all at the same level, thus flattenting the representation which
becomes very different from that in TRIO.

In consideration of these problems, we chose not to translate the visibility
notion of TRIO classes at all. By doing this, we implicitly rely on the role of
automatic translation tools in adhering to the semantics of the TRIO specifica-
tion and avoiding references not allowed by information hiding. We believe that
this solution, though not very satisfactory, is the best possible in consideration
of the present limitation of PVS. It is possible that new versions of PVS will
adopt better management of importing and exporting mechanisms, and that the
TRIO mapping will be consequently enhanced. For now, an additional effort is
required.
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4.3 Class inheritance

A powerful feature of the TRIO language that permits the reuse of specifica-
tion code is the inheritance mechanism. The PVS system guarantees the reuse
of code by means of its importing mechanism, already discussed in translating
TRIO modules in section 4.1. At a first glance, it may seem that the PVS
importing mechanism can be effectively used to translate inheritance between
TRIO classes, with even less problems than those encountered when mapping
TRIO modules. Unfortunately, this is not the case. The PVS importing mech-
anism has a semantics that is very different from that of TRIO inheritance, so
that we cannot provide a mapping which is both simple and effective. Let us
see where the problems lie.

Let us first consider what happens when we only add new items into an in-
heriting class. In this case the importing mechanism seems to translate correctly
the TRIO semantics. In fact, let us consider a basic class A with the following
simple declaration.

class A

...

items

TD it1;

...

end

Now consider another class B inheriting from A and adding another time-dependent
item it2.

class B

inherit: A;

...

items:

TD it2;

...

end

Class A would obviously be translated in PVS as:

A [instances: TYPE+]

: THEORY

BEGIN

...

it1: [instances -> TD_Fmla]

...

END A

On the other hand, B could be translated using the importing mechanism as:

B [instances: TYPE+]

: THEORY

BEGIN

...

IMPORTING A[instances]
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it2: [instances -> TD_Fmla]

...

END B

Now, consider what happens if a third class C has a module of class B and
an item also named it1, and wants to reference the item it1 of class A in one
of its formulae.

class C

...

import: B;

signature:

items: TD it1;

modules: M: B;

...

formulae:

axiom ax1:

M.it1 -> Past(it1, 4);

end

Here it is how to translate class C in PVS.

C [instances: TYPE+]

: THEORY

BEGIN

M_type: TYPE = {n: nat | n = 0} CONTAINING 0

IMPORTING B[[instances, M_type]]

it1: [instances -> TD_Fmla]

inst: VAR instances

M: VAR [instances, M_type]

ax1: AXIOM

Alw( it1(M) IMPLIES Past(it1(inst), 4) )

END C

As you can see, everything seems to work fine. However, it1 is still considered
by PVS an item of class A, ignoring the fact we are importing it from B instead.
This is due to the “flattening” of import chains done by PVS, so that is does
not contemplate an item B.it1. Obviously, this behavior is in general not
acceptable when translating a TRIO class, since the user instantiating class B
does not have to know which items come from class A and which have been
declared directly in B. In most cases, however, this discrepancy can be safely
ignored, since ambiguities can be solved by using the instantiation parameters.
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However, other problems arise when trying to translate inheriting classes
that also redefine items or formulae. The basic fact is that PVS does not have a
real renaming mechanism, but only allows overloading. Hence, if we redefine an
item from a inherited class, we do not really replace it with the new definition.
On the contrary, the inherited item is still there, and may provoque ambiguities
and indesired behaviors. Furthermore, whenever we redefine an item, that is we
give a new definition under the same name, all the formulae declared in the class
we are inheriting from are not considered applied automatically to the newly
defined item, but still refer to the previous one, which is still there. An example
will show more clearly this problem. Consider a TRIO class X that declares an
item x1 and a formula predicating about that item.

class X

...

items: TD x1;

...

formulae:

axiom x_ax1:

Som(x1);

...

end

Now consider another TRIO class Y that inherits from X and redefines its item
x1.

class Y

inherit: X [redefine x1];

...

items: event x1;

...

end

The TRIO semantics for inheritance tells that the axiom x_ax1 refers to the new
declaration of item x1 in class Y, as an effect of the redefinition. On the other
hand, the PVS translation of class Y would be, using the importing mechanism:

Y [instances: TYPE+]

: THEORY

BEGIN

IMPORTING X[instances]

x1: [instances -> Event]

...

END Y

Unfortunately, PVS does not refer axiom x_ax1 to the event x1, but still refers
it to time-dependent formula x1 declared in theory X. More precisely, this latter
item is still available under the name X.x1. This is because formulae always refer
to the “nearest” items, that is those declared in the same theory as the formula
is. In particular, the problem would not be solved by moving the importing
after the new declaration of x1 since the axiom would still refer to X.x1.
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All in all, it seems that there is no safe way to exploit the importing mech-
anism of PVS to map TRIO inheritance mechanisms. Hence, we still need to
rely on (still to be developed) automated translation tools to correctly map this
important TRIO feature. More precisely, the translator should rewrite the class
we are inheriting from, adding the things that need to be added, redefining the
things that need redefining and keeping the changes consistent with the TRIO
specification. As an aside, note that this guideline also works when dealing with
multiple inheritance, since the needed renamings can also be managed during
the translation.

A final example will now show a case of multiple inheritance and how it should
be translated in PVS. We are specifying a flip-flop logic device. We fist of all
describe it very generically as an object that has a Boolean state.

class flip_flop

signature

visible: Q;

items:

state Q;

TI total tau: real;

end

The class has no axioms. We first redefine it by adding a set command.

class set_flip_flop

inherit: flip_flop;

signature

visible: S;

items:

event S;

formulae:

axiom set:

S -> Futr(Q, tau);

end

Another, different refinement of flip_flop is obtained by adding a reset com-
mand.

class reset_flip_flop

inherit: flip_flop;
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signature

visible: R;

items:

event R;

formulae:

axiom set:

R -> Futr(not Q, tau);

end

Now we define a set-reset flip-flop as a device with both a set and a reset
command and whose state stays unchanged if no command is issued.

class set_reset_flip_flop

inherit: set_flip_flop, reset_flip_flop;

formulae:

axiom persistency:

(not S & not R) ->

((Q -> Lasts(Q, tau)) & (not Q -> Lasts(not Q, tau)));

end

Finally, a J-K flip-flop is a set-reset flip-flop where the state is complemented
if both S and R (now conventionally named J and K) are on at the same time.

class jk_flip_flop

inherit: set_reset_flip_flop [redefine set, reset;

rename S as J;

rename R as K];

formulae:

axiom set:

(J & not K) -> Futr(Q, tau);

axiom reset:

(K & not J) -> Futr(not Q, tau);

axiom commutation:

(J & K) -> (Q <-> Futr(not Q, tau));

end

The above classes would be translated in PVS as follows.
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flip_flop [instances: TYPE+]

: THEORY

BEGIN

Q: [instances -> State]

tau: [instances -> real]

END flip_flop

set_flip_flop [instances: TYPE+]

: THEORY

BEGIN

Q: [instances -> State]

tau: [instances -> real]

S: [instances -> Event]

inst: VAR instances

set: AXIOM

Alw( S(inst) IMPLIES Futr(Q(inst), tau) )

END set_flip_flop

reset_flip_flop [instances: TYPE+]

: THEORY

BEGIN

Q: [instances -> State]

tau: [instances -> real]

R: [instances -> Event]

inst: VAR instances

reset: AXIOM

Alw( R(inst) IMPLIES Futr(NOT Q(inst), tau) )

END reset_flip_flop

set_reset_flip_flop [instances: TYPE+]

: THEORY

BEGIN

Q: [instances -> State]

tau: [instances -> real]

S: [instances -> Event]

R: [instances -> Event]

inst: VAR instances

set: AXIOM
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Alw( S(inst) IMPLIES Futr(Q(inst), tau) )

reset: AXIOM

Alw( R(inst) IMPLIES Futr(NOT Q(inst), tau) )

persistency: AXIOM

Alw( (NOT S(inst) AND NOT R(inst)) IMPLIES

((Q(inst) IMPLIES Lasts(Q(inst), tau))

AND (NOT Q(inst) IMPLIES Lasts(NOT Q(inst), tau))) )

END set_reset_flip_flop

jk_flip_flop [instances: TYPE+]

: THEORY

BEGIN

Q: [instances -> State]

tau: [instances -> real]

J: [instances -> Event]

K: [instances -> Event]

inst: VAR instances

set: AXIOM

Alw( J(inst) IMPLIES Futr(Q(inst), tau) )

reset: AXIOM

Alw( K(inst) IMPLIES Futr(NOT Q(inst), tau) )

persistency: AXIOM

Alw( (NOT J(inst) AND NOT K(inst)) IMPLIES

((Q(inst) IMPLIES Lasts(Q(inst), tau))

AND (NOT Q(inst) IMPLIES Lasts(NOT Q(inst), tau))) )

commutation: AXIOM

Alw( (J(inst) AND K(inst))

IMPLIES (Q(inst) IFF Futr(NOT Q(inst), tau)) )

END jk_flip_flop



Chapter 5

A compositionality
framework with TRIO

When specifying the behavior of a component or of an open system, one often
needs to make some form of assumption about the behavior of the environment
interacting with the component, that is the outside part of the world that pro-
vides the inputs to the open system. In fact, it is often the case that a given
component mantains certain expected properties only if its environment behaves
in some constrained manner: if the inputs are instead completely unpredictable,
it may be impossible to design a system that still behaves correctly. For exam-
ple, the input channels may be communication channels where we expect that
every user of the channel adheres to a certain communication protocol. In other
cases, we may simply want to assume that a voltage signal is discrete, so that
it takes only a number of known values and avoids all the other possible ones.

It is easy to realize that this kind of situation often happens in practice, so
that we want to be able to specify and reason about such kind of systems. What
we need to do is to include the constraints imposed on the environment into our
formal model. Then, we can prove the properties of each module so that they
are satisfied if we assume the environment constraints to be true. Finally, when
we compose modules into a larger system, we want to guarantee that whenever
a module M1 provides input to another module M2, then M1 also satifies the
environment constraints required by M2, either directly or by demanding them
to its own environment.

In order to achieve this expressiveness into a formal specification, we can
basically choose between two approaches: the rely/guarantee approach or the
lazy compositional approach. See sections 2.1.2 and 2.1.2 respectively for a
review of the recent literature about these topics. It is important to point out
that these two paradigms must not be considered incompatible. In fact, it is
perfectly possible to mix them into the specification of the same system, using
the one more suited in each part.

In the following sections, we consider the rely/guarantee compositional ap-
proach with reference to the language TRIO and point out some aspects one
must take into account when doing a compositional proof of a system specified
as such with TVS.

42
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5.1 A rely/guarantee specification

Let us consider a module specified as a TRIO class C. The environment of C
is everything outside C that constrains in some manner its visible input items,
or a part of them.

In TRIO, there is no pre-defined notion of input, output or shared items;
even when we define a connection between the items of two modules, there is no
semantic notion of direction associated to it, so that it goes from an output to
an input. However, it is often the case that one has such a kind of distinction in
mind when specifying a system and partitioning it into submodules. In general,
we can say that even if rely/guarantee reasoning usually has some notion of
input/output variables, we can simply assume that an environment assumption
is a property characterizing the behavior of a number of visible items of the
class.

In TRIO, the environment assumptions of a class can be expressed with the
keyword assumption. Let us suppose that the class C has an assumption E
about its environment. Therefore, the declaration of the class is:

class C

signature:

visible:

i1, i2, ..., in;

formulae:

assumption E:

P_e(i1, i2, ..., in);

We have explicitly shown that the assumption E is a predicate over the visible
items i1, . . . , in of the class only. This is a well-defined restriction on the seman-
tics of the keyword assumption of the TRIO language. More precisely, we will
only refer to what is usually called an external assumption, that is one about
visible items only.

An assumption is used with reference to one or many derived properties of
the system, which in TRIO can be expressed with the keyword theorem. We
want to explicitly link a number of assumptions to a theorem that relies on them
to be proven. The TRIO language does not have an ad hoc feature to explicitly
show this. For sake of brevity, we adopt a new non-standard keyword rely on

as an optional part of every theorem. This will just be a shorthand for longer
TRIO formulae, as it is explained below, and is not meant to be considered a
feature of the TRIO language, but just an explanatory aid.

More precisely, we have the following general scenario in mind when writ-
ing rely/guarantee specifications in TRIO. One specifies the basic behavior of
a class in terms of axioms. The axioms are usually formulae over both visible
and non visible items, and usually rely on no assumptions about these items,
since they just state the basic behavior of the class. In order to characterize
the class externally, one usually derives a number of remarkable properties as
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theorems of the class. In order to prove them, she/he must usually make some
additional assumptions about the behavior of the environment (i.e. the visible
items), expressed as assumptions. Among the deducted properties, those pred-
icating about visible items only constitute the interface abstraction of the class
and characterize its external behavior under the given assumptions. Of course,
we can give different environment assumptions of different strengths, if more
than one possible environment scenario is possible. Usually, the stronger the
environment assumptions a theorem relies on, the stronger the property it can
express is.

The declaration for a theorem M of the aforementioned class C would be
written as:

formulae:

...

theorem M:

rely on: E;

P_m(...);

We need to understand the precise semantics of a rely/guarantee property, so
that we are able to carry out formal reasoning about it and we can implement
this TRIO formula into PVS to build automated proofs. One first obvious
meaning of a rely/guarantee formula is logical implication: property M relies
on the environment assumption E, meaning that the formula E ⇒M is a valid
property of the class C. Therefore, the above rely/guarantee theorem M could
be translated into plain TRIO as:

theorem M:

Alw(P_e(...)) -> Alw(P_m(...))

and in PVS as follows.

M: THEOREM

Alw(P_e(...)) => Alw(P_m(...))

We have chosen to use the operator => instead of the keyword IMPLIES in
order to distinguish between the operator used in TRIO formulae with time-
dependent items as arguments and the rely/guarantee implication which relates
temporally closed TRIO formulae that do not refer to a single instant of time (i.e.
quantified with a Alw() or Som() operator). Of course, whenever a theorem
relies on more than one assumption, this means that the conjunction of the
assumption formulae implies the formula of the theorem.

Let us now see a simple complete specification of a class using a rely/guar-
antee scheme. The module has just a Boolean input and a Boolean output.
Figure 5.1 shows the very simple interface of the module.

We adopt a discrete temporal model for this device because the following
results become simpler and more understandable. However, the same can be
done with the usual dense temporal model, just with some more details to be
put in place. The basic behavior of the module is the following: whatever it
receives on its input (true or false), it outputs it one time step later on its
output. Moreover, at the beginning (time 0) the module is initialized so that it
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echoer
input

output

Figure 5.1: Interface of the echoer class

outputs a true value, regardless of its input. This simple behavior is specified
as follows:

class echoer

signature:

visible:

input, output;

temporal domain: natural;

items:

TD input;

TD output;

formulae:

axiom init:

output(0);

axiom in_to_out:

(input -> Futr(output, 1)) &

(not input -> Futr(not (output), 1));

end

Note that axiom in_to_out can be equivalently written as:
(input ⇒ NowOn(output)) ∧ (¬input ⇒ NowOn(¬output)), a consequence of
the the temporal domain being discrete.

Now, we give a derived characterization of the behavior of the class with a
rely/guarantee property. The stated behavior is the following: assuming the
environment always inputs true, the component guarantees that its output is
always true. This behavior is formally written in TRIO, enriched with the
rely on notation, as:

assumption on_input:
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input;

theorem rely_guarantee:

rely on: on_input;

output;

where on_input is the assumption about the environment and rely_guarantee

is the property linked with the environment behavior.
Now that the specification of this simple class is complete, we can build the

proof for the (only) local derived property, that is the theorem rely_guarantee.
The proof is straightforward using the axioms and assuming on_input to be

true and is easily carried out in a handful of steps with TVS. We report here
a short summary of the proof, that can be safely skipped without compromis-
ing the understanding of the following sections. The goal to be proven is the
temporally-closed TRIO formula:

Alw(input)⇒ Alw(output)

Let t be a generic time instant. We distinguish two cases, whether t is equal to
0 or is not (that is it is greater than 0, the temporal domain being the natural
numbers). The first branch of the proof requires to prove:

output(0)

which can be done by the axiom init. The other branch of the proof is repre-
sented by the formula

Alw(input)⇒ (∀t > 0 : (output(t)))

and is closed by using the axiom in_to_out and applying it at time t− 1.

5.2 Compositional inference rules for rely/guar-

antee systems

Now, we want to consider compositional reasoning with classes specified with
the rely/guarantee paradigm. Whenever we compose a class C1 with another
class C2 so that we connect some items of the two classes together, we want to
be able to discharge the assumptions C1 makes about its environment by means
of some of the exhibited properties of C2, or, by transitivity, by means of the
environment assumptions of C2.

Let us define this idea more precisely, with reference to a system composed of
n modules C1, . . . , Cn. Each module Ci, i = 1, . . . , n has an interface abstraction
specified synthetically as Ei ⇒ Mi. This means that its externally visible
behavior is characterized by a rely/guarantee property of the form: if Ei is
true of Ci’s environment, then Ci exhibits the property Mi. Needless to say, Ei

and Mi can be arbitrarily complex TRIO formulae. Therefore, the composition
of the n modules can be characterized by the formula:

∧

i=1,...,n

(Ei ⇒Mi)
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where we do not show explicitly the connections of items (which can be consid-
ered simply as renamings).

The composite class C is the composition of the n simpler classes we have
just mentioned. In general, C also has its own environment and we can define
an assumption on this environment and name it E. What we want to prove of
C is that, assuming its environment behaves as in E, it guarantees a behavior
M , that is:

E ⇒M

Intuitively, one would expect the following circular inference rule to be valid.

Proposition 1 (Invalid rely/guarantee inference rule) If, for
i = 1, . . . , n the following two conditions hold:

1. E ∧
∧

j=1,...,n Mj ⇒ Ei

2.
∧

j=1,...,n Mj ⇒M

then

Alw





∧

j=1,...,n

(Ej ⇒Mj)



⇒ Alw(E ⇒M)

The intuitive meaning of Proposition 1 is simple: if the environment assump-
tion of each module can be discharged by the global environment assumption
E and the guarantees of the other modules (possibly including itself), and the
global guarantee M can be inferred from the guarantees of the other modules,
then the composition of the n modules has a rely/guarantee behavior E ⇒M .

However, this intuitively reasonable and simple inference rule is not valid in
general, since we have to make additional hypotheses about the assumptions of
each module and also about how the rely of each module is linked to the guar-
antee of the same module. In order to show that, we make two similar examples
where the hypotheses of proposition 1 hold, but nonetheless the conclusion is
wrong in one of the two examples and true in the other one. These examples
are modeled after those in [2], [4].

Let us consider a complete system built using two instances of the previously
declared class echoer. This system simply connects the input of one echoer to
the output of the other and vice-versa. It is shown in figure 5.2, while here we
list its TRIO specification:

class two_echoers

import: echoer;

signature:

temporal domain: natural;

modules:

P1, P2: echoer;
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P1

input

output

P2

two_echoers

output

input

Figure 5.2: Interface of the two echoers class

connections:

(direct P1.input, P2.output);

(direct P2.input, P1.output);

formulae:

theorem rely_guarantee:

P1.output & P2.output;

end

The given system is a closed system, so that it does not have any global
environment assumption. We apply the inference scheme of proposition 1 as
follows: if

1. P1.rely_guarantee ⇒ P2.on_input

2. P2.rely_guarantee ⇒ P1.on_input

3. P1.rely_guarantee ∧ P2.rely_guarantee ⇒ rely_guarantee

then we conclude rely_guarantee is true, having already proved the rely/guar-
antee formulae P1.rely_guarantee and P2.rely_guarantee to be valid locally.
And in fact the above conclusion is true and can be proved formally with TVS;
some commented details of the proof are shown in section 5.6.

However, an apparently minimal modification in the definition of the class
echoer suffices to make the whole reasoning incorrect. Let us consider this new
modified class echoer_2.

class echoer_2

signature:
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visible:

input, output;

temporal domain: natural;

items:

TD input;

TD output;

formulae:

axiom init:

output(0);

axiom in_to_out:

(input -> Futr(output, 1)) &

(not input -> Futr(not (output), 1));

assumption on_input:

Som(not input);

theorem rely_guarantee:

rely on: on_input;

Som(not output);

end

The only significant change is that we now adopt an existential closure of
the formulae with respect to time, instead of the standard implicit universal
closure. The consequently modified composite class two_echoers_2 would only
differ in the expected guaranteed property we want to prove:

class two_echoers_2

...

theorem rely_guarantee:

Som(not P1.output) & Som(not P2.output);

end

It is still very simple to prove that:

1. P1.rely_guarantee ⇒ P2.on_input

2. P2.rely_guarantee ⇒ P1.on_input

3. P1.rely_guarantee ∧ P2.rely_guarantee ⇒ rely_guarantee

and it also trivial to prove:

1. Som(not P1.input) ⇒ Som(not P1.output)
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2. Som(not P2.input) ⇒ Som(not P2.output)

However, it is not true that Som(not P1.output) or that Som(not P2.output).
In fact, it is instead true that Alw(P1.output & P2.output), since the axioms
of the classes on which the previous proof was built have not changed, hence
invalidating the inference rule in proposition 1.

In order to formulate a sound inference rule, we have to make additional
assumptions about the validity of the properties used as assumptions of the
classes. Moreover, we have to assume a stronger semantics for the rely/guar-
antee specifications of modules, i.e. stronger than simple implication. More
precisely, we must link temporally the behavior of the environment and the one
of the module, introducing a tight causal link between them.

Much of the work done about rely/guarantee compositional reasoning (see
section 2.1.2), and especially [2], [4], bases its results on the safety characteriza-
tion of the formulae used as assumptions and guarantees of the modules being
composed. In order to see if something similar applies to our framework, sec-
tion 5.3 investigates safety in TRIO. Unfortunately, the characterization will
be shown to be of little practical use in formulating a sound inference rule.
However, we can still get to a practically usable inference rule by considering
additional hypotheses.

Under these respects, section 5.4 discusses how to strengthen a rely/guar-
antee specification, while section 5.5 below finally formulates a valid inference
rule, based on the results of the previous sections.

5.3 Safety properties

An interesting classification of the temporal properties of a system is the one
between safety properties and non-safety properties. A safety property [7], [58]
is one that is finitely refutable, that is it can be proven false by observing a
single violation at a single finite instant of time. The term “safety” intuitively
indicates that we have such a class of properties whenever we specify the “safe”
behavior of a system. In fact, by safe we usually mean a behavior where no
bad thing ever happens. As it is clear from this informal definition, it is easy
to disprove a safety property, since it suffices to find a single finite instant of
time where the property does not hold. Most of the literature about rely/guar-
antee compositional reasoning (see section 2.1.2) bases its results on the safety
characterization of the formulae used as assumptions and guarantees. This
section tries to understand if this can be extended to the TRIO framework. We
warn the reader that the results will be negative, in that the safety of TRIO
formulae cannot be given a completely syntactical characterization.

First of all, let us precisely define what is a safety property. The basic idea
is that we observe the validity of the formula over a finite time interval; if this
suffices to falsify the formula, we have a safety property. In order to give a
formal characterization, we use the notion of history: a history is any possible
evolution of all the items of interest (i.e. those referred to in the formula we are
considering) over the whole temporal axis: in other words, it is an interpretation
for the given formula, or a candidate model of it. If h is a history and I ⊆ Time is
a time interval, by the expression h[I] we denote the subset of the facts described
by the history h over the time interval I only. A completion of a history h with
respect to a non-empty time interval I ⊆ Time is any other complete history
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h′ such that: h[I] = h′[I], and we write h′ ∼I h (h′ is a completion of h with
respect to time interval I). This means that h′ is the same as h over the time
interval I, while can be anything anywhere else on the temporal axis. As a side
remark, we note that the binary relation ∼I is an equivalence relation, for any
given time interval I. With this in mind, we give the following definition.

Definition 1 (Safety) Let T be a TRIO formula.
T is a safety property if and only if for every history h:

h 2 T ⇒ exists a finite nonempty I ⊆ Time : (∀h′ : (h′ ∼I h)⇒ (h′ 2 T ))

That is, if T is false we can prove it so by considering its behavior only over a
finite time interval.

Note that the time interval I can be, in general, any finite union of disjoint
finite time intervals; however, most of the practically interesting cases involve
only one contiguos interval or even simply a point on the temporal axis.

We now want to give some practical characterizations of safety TRIO for-
mulae, to see if this can be of use in formulating a rely/guarantee inference rule.
Unfortunately, we cannot give a condition for safety which is both necessary
and sufficient, and purely syntactical, as we will show below. Therefore, we
just give one characterization of safety which is purely syntactical but is just a
sufficient condition (i.e. there are formulae which do not satisfy the criterion
but are nonetheless safety formulae).

5.3.1 Conditions for safety preservation

Let P be a primitive time-dependent formula, that is one defined without using
any logical or temporal TRIO operator. Then P is by definition a safety prop-
erty, since if it is false it is so at some instant. Every time-independent formula
is also by definition a safety property, since safety is a temporal property and
time-independent items do not affect it.

Let now T be a TRIO formula representing a safety property. If we use T as
an argument of a TRIO operator, the resulting formula is still a safety property
if the operator is one of those listed in table 5.1. In fact, for each of them we
can decide if the formula is true or false for a given history by just considering
what happens to the argument of the operator over a finite time interval. Since
the argument is in turn a safety formula, this implies that its truth can also
be decided on the basis of a finite time interval, so that the overall analysis is
finite.

Therefore, we say that the TRIO operators Dist, Past, Futr, Alw, AlwP ,
AlwF , Lasted, Lasts, Within, WithinP , WithinF , LastT ime, NextT ime,
UpToNow, NowOn and Becomes preserve safety.

On the other hand, the other TRIO operators do not preserve safety. In fact,
if T, T1, T2 are TRIO formulae expressing safety properties, the derived formulae
listed in table 5.2 are non-safety properties. For each of them, we may have to
consider an infinite time interval to prove the property false, when nothing can
be said for sure by observing the behavior over a finite time interval only.

Following what has just been explained, it may seem that to decide the
safety of a TRIO formula we can simply consider the temporal operators used to
build the formula, on a purely syntactical basis: if they all are safety-preserving
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Safety formula Finite interval(s) sufficient to determine the truth value
Dist(T, t) [t, t]
Past(T, t) [−t,−t]
Futr(T, t) [t, t]
Alw(T ) [t, t] for any time t
AlwP (T ) [−t,−t] for any positive time t
AlwF (T ) [t, t] for any positive time t

Lasted(T, t) [−t′,−t′] for any positive time t′ < t
Lasts(T, t) [t′, t′] for any positive time t′ < t
Within(T, t) [−t, t]
WithinP (T, t) [−t, 0]
WithinF (T, t) [0, t]
LastT ime(T, t) [−t,−t] for T or [−t, 0] for ¬T
NextT ime(T, t) [t, t] for T or [0, t] for ¬T
UpToNow(T ) [−t, 0] for any positive time t
NowOn(T ) [0, t] for any positive time t
Becomes(T ) [−t, 0] or [0, t] for any positive time t

Table 5.1: Safety-preserving TRIO temporal operators

NON-safety formula Infinite interval(s) needed to determine the truth value
Som(T ) [−∞,+∞]
SomP (T ) [−∞, 0]
SomF (T ) [0,+∞]

Until(T1, T2) [0,+∞] for T1 and ¬T2

Since(T1, T2) [−∞, 0] for T1 and ¬T2

Table 5.2: Non safety-preserving TRIO temporal operators

operators, then the formula is a safety formula. Unfortunately, this is not true
in general. In fact, we now pass to analyze what happens to the safety of a
formula when we use the Boolean connectives ¬, ∧ and ∨ and when we use
explicit quantification over free variables. The result will be that we cannot
formulate a purely syntactical condition for safety that is both necessary and
sufficient.

In fact, let T1 and T2 be two safety formulae. Then the formulae T1 ∧ T2

and T1 ∨ T2 are both still safety formulae. In fact, if the AND formula is false,
then there is by definition some instant at which either T1 or T2 is false; this is
recognizable since T1 and T2 are safety formulae and their truth can be decided
analyzing finite intervals only. Similarly, if the OR formula is false, then there
is some instant at which both T1 and T2 are false; this is also recognizable
since it suffices to take the intersection of the intervals where T1 and T2 are
independently false.

Let us now consider what happens to the safety of a formula when we apply
quantification. It is trivial to note that, whenever the quantification is done
on a non-temporal variable, safety is simply preserved. In fact, safety concerns
the temporal properties of a formula, which are unchanged by a quantification
over other domains. On the other hand, rules for safety preservation when
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quantification is done on temporal variables are hard to formulate. To see this,
consider the following two quantified formulae.

∃t : (0 < t ∧ t < 10 ∧Dist(T, t)) (5.1)

∃t : (0 < t ∧ −1 < t ∧Dist(T, t)) (5.2)

The two formulae are syntactically the same, in that they are both existen-
tial quantifications of a temporal variable which is used in two time-independent
items and in one time-dependent item (i.e. Dist(T, t)). However, 5.1 is equiva-
lent to the TRIO formula WithinF (T, 10) and is a safety formula. On the other
hand, 5.2 is equivalent to SomF (T ) which is not a safety formula.

In order to distinguish these cases one needs to abandon a purely syntactical
characterization and analyze the temporal intervals over which the quantified
variables are allowed to vary. In fact, let us consider the subdomain for the
quantified variable t which is mapped to TRUE values in the time-independent
terms. This can be expressed as the set D ⊆ Time : t ∈ D ⇒ f(t) where f() is
the Boolean functions we are considering. Another way to say the same thing
is that D is the set defined by the Boolean formula f(t) (i.e. 0 < t < 10 and
t > 0 respectively). Then, D is the bounded set [0, 10] in 5.1 and is instead the
unbounded set [0,+∞] in 5.2. So, in the first case safety is preserved because we
can observe the term T over a finite interval only to determine its truth value,
while in the second case we need to analyze the whole positive semiaxis.

Note that this particular behavior does not happen when we apply universal
quantification. In fact, the formulae

∀t : ¬((0 < t ∧ t < 10) ∧ ¬Dist(T, t)) (5.3)

∀t : Dist(T, t) (5.4)

are both safety formulae: the first one is just a counterintuitive way of writing
Lasts(T, 10) and the second corresponds to Alw(T ).

However, the presence of an unbounded interval within an existential quan-
tification does not always mean the loss of safety of a formula. Consider for
example the definition of the NowOn() operator in dense domains.

NowOn(T ) , ∃t(t > 0 ∧ Lasts(T, t))

Even if the quantified variable t is allowed to vary in [0,+∞], nonetheless the
formula expresses a safety property. This is because the second argument of the
Lasts() operator can be rewritten as part of a time-independent term. To see
this better, we can expand the Lasts() operator in the NowOn() definition.

NowOn(T ) , ∃t(t > 0 ∧ (∀t′(0 < t′ < t⇒ Dist(T, t′))))

So the variable appearing as an argument to the Dist() operator is t′ which is
bounded by t.

The effect of the Boolean unary operator ¬ on the safety of formulae can
similarly be understood in connection with the behavior of the existential quan-
tification. In fact, consider the two formulae

AlwF (T ) (5.5)
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Lasts(T, 10) (5.6)

which are both safety formulae.
The negation of the first one produces ¬AlwF (T ) ≡ SomF (¬T ) which is no

more a safety property. On the other hand, the negation of the other formula
is ¬Lasts(T, 10) ≡ WithinF (¬T, 10) which is instead still a safety property. If
we rewrite the two formulae in terms of the only Dist() operator and bring the
negation inside the quantification, we have the following.

¬(∀t(t ≤ 0 ∨Dist(T, t))) ≡ (∃t(t > 0 ∧ ¬Dist(T, t))) (5.7)

¬(∀t((t ≤ 0 ∨ t ≥ 10) ∨Dist(T, t))) ≡ (∃t(0 < t ∧ t < 10 ∧ ¬Dist(T, t))) (5.8)

So in 5.7 we have an existential quantification over an unbounded domain and
we lose safety; in 5.8 the domain is bounded and safety stays. In other words,
what the negation has done in these two examples is to complement temporal
intervals; when this complementing has produced an unbounded interval inside
the domain of an existential quantification, safety has been lost.

5.3.2 A sufficient syntactical condition for safety

As seen in the previous section, finding out whether a TRIO formula expresses
a safety property or not is far from trivial in the general case. However, if we
restrict ourselves to a proper subset of all the TRIO formulae we can get to a
sufficient condition for the safety of a formula which is purely syntactical. This
condition may be too restrictive in the general case, but is surely of use in many
practical situations.

The basic considerations about safety preserving and non-safety preserving
TRIO operators done in the previous section can be applied. We avoid ex-
plicit quantification on temporal variables (while we allow it on variables other
than time) and only use safety preserving operators on basic time-dependent
items. We allow negation only if directly on basic time-dependent terms. To
summarize, we have the following sufficient condition for safety.

Proposition 2 (Sufficient syntactical condition for safety) Let F be any
TRIO formula. If F is built from basic time-dependent and time-independent
items by observing the following rules.

1. There is no use of explicit quantification over time variables

2. There is no use of TRIO operators other than the safety-preserving ones,
listed in table 5.1

3. There is use of the negation operator directly on basic time-dependent and
time-independent items only

4. There is use of the logical connectives ∧ and ∨ only

Then F is a safety formula.
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This proposition can be proved inductively starting from basic time-depen-
dent and time-independent items.

As an example, if we consider the formula Alw(Lasts(WithinP (T1∨T2, t)))
this is a safety formula, since Alw(), Lasts() and WithinP () are all safety-
preserving operators. Conversely, consider the formulaAlw(Lasts(Until(T1, T2))).
This is clearly a non-safety formula, since proving it false cannot be done by
considering its behavior on finite intervals only, because of the Until() operator.

5.3.3 Safety is of little use in a TRIO rely/guarantee frame-
work

Definition 1 above gives a characterization of safety properties based on what
is needed to falsify them: if we can prove the property is false by observing its
behavior over a finite time interval, then it is a safety property. If we reverse
the implication used in definition 1, we can get to another equivalent character-
ization of a safety property: if the property is true on every finite time interval
(arbitrarily completed) then it is true on the whole temporal axis (otherwise we
could falsify it). This is shown in the following definition.

Definition 2 (Safety - second definition) Let T be a TRIO formula.
T is a safety property if and only if for every history h:

(for all finite nonempty I ⊆ Time : (∃h′ : (h′ ∼I h) ∧ (h′ ² T ))) ⇒ h ² T

That is, if T is true on every finite time interval, then it is true on the whole
temporal axis.

To show the meaning of this definition better, let us use it to determine the
safety of the two formulae: SomF (P ) and WithinF (P, t), where P is a basic
time-dependent formula.

First, we show that WithinF (P, t) is a safety formula. To do so, let us
consider its evaluation at generic time instant τ . Let us now consider a generic
history h. If h ² WithinF (P, t)(τ) then there is nothing to show since the
implication of the definition surely holds. If instead h 2 WithinF (P, t)(τ) then
we must show that the antecedent to the implication is false. Since the formula
is false for that history, it means that on the whole interval Iτ = (τ, τ + t) P is
false. Now, take any finite time interval I such that I ⊇ Iτ . Whatever h′ that
completes h[I] we choose, it surely is h′ 2 WithinF (P, t)(τ), since the critical
interval Iτ is already set to false. Hence the implication in the definition holds,
so that we have shown the formula is a safety formula.

Now, we show that SomF (P ) is not a safety formula. Let us consider its
evaluation at generic time instant τ . We just need to find a history h for
which the antecedent of the implication is true and the consequent is false.
Let us consider the history h such that P is false on the whole temporal axis.
Obviously, h 2 SomF (P )(τ). On the other hand, take any finite time interval I.
Consider the following completion h′ of h[I]: take any time instant tτ such that
tτ > τ and tτ /∈ I and make P to be true there. Obviously h′ ² SomF (P )(τ)
so that the implication is false. This shows that the formula is not a safety
formula.
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Both definitions 1 and 2 characterize safety in terms of models; in other words
the characterization is semantical. On the other hand, the TRIO encoding in
PVS, which we would like to use to carry out compositional reasoning, relies on
purely syntactical inference rules.

In the previous sections we tried to formulate an equivalent definition of
safety expressible as a TRIO formula. Unfortunately, it seems it is not fea-
sible in a reasonably simple manner, nor formulating a condition subsuming
safety and expressible as a TRIO formula seems feasible. This means that we
could not “transfer” the characterization of safety formulae, which is inherently
semantical, to a syntax-based formalism.

As a result, there does not seem to be a simple and interesting use of safety
formulae in expressing a rely/guarantee inference rule in TRIO. Nonetheless,
the results obtained above about safety are still valid, and we will be able to
formulate a sound and practical rely/guarantee inference rule, without the need
to use them (see section 5.5).

5.4 A stronger semantics for rely/guarantee prop-

erties

In order to obtain an inference rule for composite systems which is both sound
and simply expressible, we give a stronger semantics to a rely/guarantee specifi-
cation. This means that instead of simple logical implication between temporally
closed formulae we want to make stronger assumptions about how our specified
system behaves with respect to an assumed behavior of its environment.

In the TLA temporal logic formalism [37], two operators are often used to
formally describe systems in a rely/guarantee framework. These operators are
usually represented as: −. and +−., the second being a stronger version of the
first one (i.e. if +−. holds then so −. does, while the converse is in general not
true). Their meaning in TLA is briefly explained on page 12.

Now, we propose something similar to those operators, but usable in the
TRIO language.

Let P and Q be two time-dependent formulae, either primitive or built from
primitive formulae using any TRIO operator. We define the +−. TRIO operator
as a shorthand for the formula:

P +−. Q ,

{

AlwPe(P )⇒ AlwPi(Q) ∧NowOn(Q) if Time is dense
AlwPe(P )⇒ AlwPi(Q) if Time is discrete

The operator +−. is usually called “while plus” operator and its symbol may be
called “rely/guarantee arrow plus”.

Informally speaking, the formula P +−. Q means that Q lasts at least as long
as P does and even a bit longer, so that when P becomes false Q is still true
for some instants (or more precisely for at least one time step, when the time
model is discrete).

By considering this informal explanation of the meaning of the operators, we
can understand that a rely/guarantee specification can be conveniently written
as E +−. M , where as usual E is the assumed behavior of the environment and M
is the guaranteed behavior of the module being considered. Hence, the formula
E +−. M means that:
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1. As long as the environment behaves as in E the module guarantees a
property M

2. If the environment stops behaving as in E the module can fail meeting its
specification M only a bit later than the failure of the environment occurs

Moreover, note that the formula links the behavior of the environment and
that of the module since the beginning, in that we consider a behavior where
everything is correct since its start, that is at “time” −∞ (or 0 if the time
domain is natural).

It is obvious that any rely/guarantee specification must meet condition 1.
Condition 2 is reasonable as well. In fact, every real system must be a causal one,
that is must base the future behavior of its outputs on the present behavior of
its inputs. Therefore, to fail condition 2 while respecting condition 1, a system
must be able to stop respecting the property M at the same instant of time
as when the environment stops respecting E. But, since the system bases its
present behavior on the past behavior of the inputs and on its state, the only way
it can do so is by predicting the future, which is clearly a non causal behavior.
Hence, the use of the operator +−. to specify a rely/guarantee system should be
a reasonable way to write specifications.

We now give some properties of the new operator +−..

Lemma 1 For any formulae P and Q

Alw(P +−. Q) ∧Alw(P )⇒ Alw(Q)

Lemma 2 For any formulae P , Q and R

Alw(P +−. Q) ∧Alw(Q⇒ R)⇒ Alw(P +−. R)

Lemma 3 For any formulae Pi and Qi, for i = 1, . . . , n

Alw

(

n
∧

i=1

(

Pi
+−. Qi

)

)

⇒ Alw

(

(

n
∧

i=1

Pi)
+−. (

n
∧

i=1

Qi)

)

The proofs of lemmas 1, 2 and 3 are trivial and are omitted.
Now we enunciate and prove the following lemma.

Lemma 4 For any formulae P , Q and R, if:

1. Som(AlwPe(P ))

2. Alw(Q ∧R⇒ P )

then:
Alw(P +−. Q) ⇒ Alw(R +−. Q)

Proof for dense time models Assume the following to be true:

1. Som(AlwPe(P ))

2. Alw(Q ∧R⇒ P )

3. Alw(AlwPe(P )⇒ AlwPi(Q) ∧NowOn(Q))
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4. AlwPe(R) at generic time instant t

Assumptions 1 and 2 are the two hypotheses of the lemma. Assumption 3
is the definition of the +−. operator for formulae P and Q and dense time
models. Assumption 4 is instead a translation of the antecedent in the
definition of the +−. operator for formulae R and Q. We want to prove
that AlwPi(Q) ∧NowOn(Q) holds at time t.

Assumption 1 can be equivalently rewritten as AlwPe(P )(u0), that is by
making explicit the time instant u0 at which it holds. Let us now distin-
guish two cases, whether u0 ≥ t or u0 < t.

The first case: u0 ≥ t is very simple. In fact, if we consider assump-
tion 3 evaluated at time instant u0, we can immediately conclude that
AlwPi(Q)∧NowOn(Q) holds at time u0. This also implies thatAlwPi(Q)∧
NowOn(Q) holds trivially for any time instant less or equal than u0. Since
t ≤ u0 by hypothesis, this case is concluded.

Let us now consider the case u0 < t. The proof of this branch relies on
what is a sort of induction done on temporal intervals instead of a discrete
temporal domain. Very roughly speaking, starting from a condition true
on a base interval, we propagate the condition using the assumptions, till
we can show that this behavior is prolonged over the entire interval of
interest. The basics of this technique have been proposed in [25] under
the name “temporal induction” and have been implemented and proved
in PVS in [20].

By assumption 1, we have a base point (u0) on the temporal axis before
which P is always true. So P is true on the open interval (−∞, u0). By
assumption 3, Q is also true on this interval, as well as in u0 and for some
more time ε0 > 0. So Q is true on the open interval (−∞, u1) where
u1 = u0+ ε0. Now, it is either u1 > t or u1 ≤ t. In the first case, the proof
is concluded, since we have shown that Q lasts a bit longer than R does.
If, instead, u1 ≤ t we can use assumption 2 to conclude that P is true on
the open interval (−∞, u1) since on the same interval both Q and R are
true. But this means that AlwPe(P ) holds at time u1 > u0. This allows
us to iterate the reasoning to get a new quantity ε1 > 0 so that Q is true
on (−∞, u1 + ε1) ⊃ (−∞, u0 + ε0). Now, by considering the sequence of
points u1, u2, . . . , un where each ui is defined as ui−1+εi−1, we can realize
that we must eventually reach a point after t. In other words, there must
exist a j such that uj > t. This in turn means that Q holds on the interval
(−∞, uj) and, consequently, that AlwPi(Q) ∧ NowOn(Q) holds at time
t, thus concluding the proof.

It is important to note that there must exist such j and the series of points
cannot accumulate before t. In other words, the value u0 +

∑

i εi must
eventually become bigger than t. This can be shown by contradiction:
assume the opposite, that is there exists an infinite series of values εi such
that:

u0 +
∑

i=0,...,∞

εi = uδ < t

This implies that we can assure that Q holds till time uδ only, that is
AlwPe(Q) at time uδ. Now, since uδ < t by hypothesis, we can conclude
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Figure 5.3: Induction on temporal intervals

that R holds as well till time uδ. But then we can apply hypothesis 2
to conclude that P holds till time uδ, or that AlwPe(P ) at time uδ. So,
we use assumption 3 and conclude that there exists a positive quantity εδ
such that Lastsie(Q, εδ) holds at time uδ. This contradicts the hypothesis
that uδ is the last time instant till which Q holds, thus showing that the
series cannot converge to such a value.

Another way to explain temporal induction is by observing that this rea-
soning reduces to an ordinary induction over a discrete domain, where we
induct on the sequence of points ui. More precisely, the induction relies
on the following scheme:

Base step At time u0: AlwPe(Q)

Inductive step At time ui: AlwPe(Q) ⇒ At time ui+1 > ui: AlwPe(Q)

Figure 5.3 gives some graphical intuition to the above reasoning. ¤

Proof for discrete time models Assume the following to be true:

1. Som(AlwPe(P ))

2. Alw(Q ∧R⇒ P )

3. Alw(AlwPe(P )⇒ AlwPi(Q))

4. AlwPe(R) at generic time instant t

Assumptions 1 and 2 are the two hypotheses of the lemma. Assumption
3 is the definition of the +−. operator for formulae P and Q and discrete
time models. Assumption 4 is instead a translation of the antecedent in
the definition of the +−. operator for formulae R and Q. We want to prove
that AlwPi(Q) holds at time t.

Assumption 1 can be equivalently rewritten as AlwPe(P )(u0), that is by
making explicit the time instant u0 at which it holds. Let us now distin-
guish two cases, whether u0 ≥ t or u0 < t.

The first case: u0 ≥ t is very simple. In fact, if we consider assumption 3
evaluated at time instant u0, we can immediately conclude that AlwPi(Q)
holds at time u0. This also implies that AlwPi(Q) holds trivially for any
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time instant less or equal than u0. Since t ≤ u0 by hypothesis, this case
is concluded.

Let us now consider the case u0 < t. If we define ui = u0 + i for all
i = 0, . . . , (t − u0), it can be proved by induction on i. We apply the
following induction scheme:

Base step At time u0: AlwPi(Q)

Inductive step At time ui < t: AlwPi(Q) ⇒ At time ui+1: AlwPi(Q)

The base step follows immediately by combining hypotheses 1 and 3. Now,
for the inductive step, assume AlwPi(Q) at time ui < t. By hypothesis
4, and by the fact that ui < t, it is also AlwPi(R) at time ui. Hence,
we apply assumption 2 to deduce that AlwPi(P ) at time ui. From the
definition of AlwPi, this is the same as saying that AlwPe(P ) holds at
time ui + 1 = ui+1. Now, we can consider hypothesis 3 at time ui to
deduce that AlwPi(Q) holds at time ui+1.

The induction scheme allows us to conclude that ∀i = 1, . . . , (t − u0)
AlwPi(Q) holds at time ui. In particular, for i = t − u0 we have that
AlwPi(Q) holds at time ut−u0

= u0 + (t − u0) = t which is exactly what
we had to prove. ¤

Hypothesis 1 in lemma 4 requires that P is true on a base interval, un-
bounded on the left. Whenever such a condition Som(AlwPe(P )) holds for
a formula P we say that P is “initialized”, since we can guarantee that it is
initially satisfied in the model we are considering.

5.5 A valid inference rule for rely/guarantee sys-

tems

We now have all the ingredients to formulate and prove a sound inference rule
for rely/guarantee compositional reasoning. As discussed above, this rule is very
similar to the invalid proposition 1 but with additional assumptions on the kind
of semantics given to a rely/guarantee specification (i.e. use of the +−. operator)
and on the initial conditions for the formulae representing the assumptions (i.e.
we want them to be initialized). We give the following inference rule.

Proposition 3 (Valid rely/guarantee inference rule) If, for
i = 1, . . . , n (finite) the following conditions hold:

1. Som(AlwPe(Ei)), that is Ei is initialized

2. Alw
(

E ∧
∧

j=1,...,n Mj ⇒ Ei

)

3. Alw
(

∧

j=1,...,n Mj ⇒M
)

then

Alw





∧

j=1,...,n

(Ej
+−. Mj)



⇒ Alw(E +−. M)
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Proof If Alw
(

∧

j=1,...,n(Ej
+−. Mj)

)

, then by lemma 3:

Alw









∧

j=1,...,n

Ej





+−.





∧

j=1,...,n

Mj









also holds.

Now, we note that Som(AlwPe(
∧

i=1,...,n Ei)) holds. In fact, thanks to
hypothesis 1, for each i = 1, . . . , n there exists an unbounded interval of
the form (−∞, pi) such that Ei is true on that interval. Hence, if we
just consider the intersection of all those intervals

⋂

i=1,...,n(−∞, pi) =
(−∞,mini pi), the conjunction

∧

i=1,...,n Ei holds on this derived interval.

Moreover, we note that Alw
(

E ∧
∧

j=1,...,n Mj ⇒
∧

j=1,...,n Ej

)

, since as-

sumption 2 holds for every i = 1, . . . , n.

Therefore, we can apply lemma 4 by substituting
∧

j=1,...,n Ej for P ,
∧

j=1,...,n Mj for Q and E for R. We get:

Alw









∧

j=1,...,n

Ej





+−.





∧

j=1,...,n

Mj







⇒ Alw



E +−.





∧

j=1,...,n

Mj









Finally, by assumption 3 and lemma 2 we get the desired result. ¤

We want to point out that the formulae E, Ei, M and Mi can be temporally
closed or not. If they are temporally closed, it simply means that the explicit
universal closures with the Alw operators found in the inference rule are just
superfluous. However, it is likely that the more interesting cases are with non
temporally closed rely/guarantee formulae.

We also give an immediate corollary to proposition 3 that may be straight-
forward to use with systems without a global environment assumption (such as
closed systems).

Corollary 1 (Closed system rely/guarantee inference rule) If, for
i = 1, . . . , n (finite) the following conditions hold:

1. Som(AlwPe(Ei)), that is Ei is initialized

2. Alw
(

∧

j=1,...,n Mj ⇒ Ei

)

3. Alw
(

∧

j=1,...,n Mj ⇒M
)

then

Alw





∧

j=1,...,n

(Ej
+−. Mj)



⇒ Alw(M)

Proof From proposition 3, if we take E = true, we can conclude:

Alw





∧

j=1,...,n

(Ej
+−. Mj)



⇒ Alw(true +−. M)

Then, by applying lemma 1 substituting true for P and M for Q, the
desired result follows. ¤
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What can we do whenever we are specifying a system where the inference
scheme just proposed does not apply? Do we have to give up rely/guarantee
reasoning completely and use only general purpose proof rules? A thorough
answer would involve a long discussion and the analysis of several cases, which
is out of the scope of this work. In this paragraph, we just sketch out the very
basic developments.

Even though we did not investigate this issue in detail, it is possible that
the rely/guarantee proof rule discussed above is not complete. This means
that there are composite systems where some valid global properties cannot be
proven with this rule, no matter how we apply it. It is important to have this
in mind, so that we also know what are the possible ways out of it. The first
one is to formulate different rely/guarantee proof rules to achieve completeness.
This is possible and is shown in [47] with reference to temporal logic formalisms
and the proof rules of [4]. The major drawback is that complete proof rules
cannot be applied mechanically like the ones seen in this chapter and require
the prover to formulate some “auxiliary assertions” which usually cannot be
done automatically, hence complicating the proof. The other way to achieve
completeness is simply to use the basic proof rules of PVS (or any other general-
purpose inference rules), which are complete, to achieve the goal, leaving out
rely/guarantee proof rules.

On the other hand, we still believe that the rely/guarantee paradigm for
writing modular specifications is useful in practice even when it cannot be fully
applied. In fact, the paradigm still gives an interesting and often fruitful guide-
line in organizing a large specification, thus aiding the user in dividing the
system in an effective manner. This organization often helps the verification
process even if rely/guarantee inference rules cannot be applied, so it may still
be useful in practice.

5.6 The complexity of compositional proofs

In this section, we want to analyze what are the benefits of adopting a rely/guar-
antee style for writing specifications, which allows the use of an ad hoc proof
rule but requires to write a specification with stronger constraints. In order to
do that, we analyze the proof of the theorem rely_guarantee in the composite
class two_echoers, without using any rely/guarantee proof rule but relying
entirely on the base proof commands of PVS. However, we are not going to
describe the PVS proof steps in fine detail, but we just want to give a general
idea of the overall structure of the proof. The reader who is uninterested can
safely skip to the last paragraphs, where the conclusions are discussed.

The proof in PVS is rather simple in its essential steps, though not as short
as one would expect. It relies on the following 2-steps induction scheme, which
is directly derivable from the common 1-step induction scheme.

∀P : P (0) ∧ P (1) ∧ (∀j ∈ N : P (j)⇒ P (j + 2)) ⇒ ∀i ∈ N : P (i)

where P is any predicate over naturals.
The basic sequent to be proved can be written as:

(Alw(P1.input)⇒ Alw(P1.output))
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∧ (Alw(P2.input)⇒ Alw(P2.output))

Alw(P1.output) ∧Alw(P2.output)

Its proof can be split into two similar substeps. They are:

1 Prove that Alw(P1.output)

2 Prove that Alw(P2.output)

Since they are very similar, we will only describe the proof of subgoal 1, being
the one of subgoal 2 easily derivable, using items of module P2 instead of those
of module P1 and vice-versa.

The formula we want to prove represents the basic property of the system
we want to prove: it always outputs true. To prove that, we use the induction
scheme discussed above, so that we split to proof into:

1.1 Prove that P1.output at time 0

1.2 Prove that P1.output at time 1

1.3 Prove that ∀j: if P1.output at time j then P1.output at time j + 2

Subgoals 1.1 and 1.2 are the base step (which is two-fold in this particular
induction scheme), while subgoal 1.3 is the inductive step.

Subgoal 1.1 is directly subsumed by the axiom init of class P1.
Subgoal 1.2 can be proved by using axioms init of class P2 and in_to_out

of class P1. In fact, by the first axiom we have P2.output at time 0. By the con-
nections, this also means that P1.input at time 0. Hence, by axiom in_to_out,
it is P1.output one instant later, that is at time 1.

Subgoal 1.3 requires to prove that, if class P1 outputs a true at generic
time j, it will also output a true two time instants later. This can be done
by using the axioms in_to_out of the two classes, which describe the basic
output mechanism of the echoer. So, let us assume P1.output at generic time
j. By the connection axioms, this also means P2.input at time j. Now, by
axiom in_to_out for class P2, we deduce that P2.output at time j + 1. Using
the connections again, this means that P1.input holds at time j + 1. Now we
apply axiom in_to_out for class P1 and deduce that P1.output holds at time
(j + 1)+ 1 = j + 2, so that subgoal 1.3 is concluded, thus concluding the whole
proof.

How hard was this proof, done without use of rely/guarantee inference rules?
The total proof was carried out by issuing 88 prover commands and consisted of
12 leaf sequents. This is definitely not a huge proof per se, however we should
evaluate its complexity by relating it to the complexity of the specified system
and the complexity of the property we want to prove.

The system is the composition of two equal modules (P1 and P2) which are
very simple, being described by only two short axioms. The property to be
proven is also extremely simple, and its validity can be understood by a small
amount of ordinary reasoning. Therefore, we believe that the proof is simply
too long and complex to be acceptable. The same method with a slightly larger
system, not to say a realistic-size system, is likely to carry poor results, in
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that the proof would be unacceptably large. Note that the complexity of the
proof does not lie in the fact that it involves sofisticated techniques, since it is
always clear what one has to do. The complexity lies entirely in the length and
repetivity of the proof, since the same sequences of commands must be issued
several times with some variations (e.g. different instantiations or different
classes being considered).

The same proof, done with the system specified under the rely/guarantee
paradigm, would instead involve just the application of the base proof rule, as
discussed above. Hence, this would be a much simpler verification process, with
fewer details to be considered.

All in all, there is (among many) a basic trade-off in specifying composite
systems and proving their properties.

On the one hand we have freedom in writing specifications, so that we can
express properties and formulae the way we believe it appropriate, concentrating
mainly on ease of specification and on the clarity.

On the other hand we may want to sacrifice total freedom in writing a
specification with respect to the ease with which we can carry out proofs. So,
we may want to restrict the expressiveness of our models, choosing to adhere
to a certain style in writing the specification, like the rely/guarantee paradigm.
This may cause some more troubles in writing the specifications, but can provide
much simpler proofs relying on tailored and powerful proof rules.



Chapter 6

Automated compositional
proofs

In chapter 4 we discussed how to translate a specification written in TRIO into
the higher-order logic language of PVS [50]. After that, we want to use the
PVS proof checker to carry out computer-aided proofs of the system specified
in TRIO, thus validating the specification or finding out errors, inconsistencies
and flaws so that they can be promptly corrected.

The TVS (TRIO Verification System, sometimes also called TRIO/PVS)
provides a mapping of the basic TRIO non-modular constructs onto PVS, to-
gether with a number of PVS proof strategies that automate several passages
one often has to do when building a proof in PVS of an encoded TRIO speci-
fication. It was described in chapter 3. In this chapter we describe new proof
strategies to be used with PVS encodings of modular TRIO specifications.

More precisely, a PVS proof strategy is a script, written in the LISP-alike
PVS prover language [51], that describes a number of proof commands to be
issued according to its parameters and current proof sequent. Once a strategy
has been defined, it can be used as any other predefined proof command during
the conduction of a proof.

The purposes of the proof strategies defined in the TVS system are basically
two. First, we want them to be a shortcut for sequences of commands frequently
applied sequentially during a proof, so that we do not have to type similar
sequences of commands over and over with minimal changes; by doing this,
proofs become shorter and also more readable. Second, we want them to hide
the logic of the PVS system as much as possible from the point of view of the
user building the proof, so that she/he does not have to know many details of
the encoding but can reason as if the proof checker was built specifically for the
TRIO language, except some minor details.

In this work, we focus mainly on realizing the first purpose, because it is
more directly connected with the work on the mapping done in chapter 4 and
it is of immediate use in shortening modular proofs, thus rendering possible the
use of the modular features of the language with a certain ease. The second
purpose would instead involve the implementation of so called pretty-printing
PVS strategies, that are applied automatically by the system every time the se-
quent changes. They basically rewrite formulae in a nicer and simpler format to

65
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be read. These pretty-printing mechanisms already exist for TRIO in-the-small
and can also be employed proficiently in modular proofs, since they basically
rewrite basic TRIO formulae in a more readable way.

The proof strategies we designed are of two kinds. The first one is composed
by strategies that make the use of the modular features of TRIO simpler and
more automated. It is described in section 6.1. The second group is instead
composed by strategies to be used with modular TRIO specifications in the
rely/guarantee style. The need for these strategies arises naturally from the
use of rely/guarantee proof rules in TVS. Hence, in section 6.2 below we first
describe how to translate a rely/guarantee specification into the PVS language
and we then describe the related proof strategies. Section 6.3 shows the benefits
of the use of both rely/guarantee proof rules and of the described proof strategies
in building a proof of a modular system similar to that described in chapter 5.

Finally, appendix B lists the full code of the PVS strategies described in this
chapter, together with their syntax and a pseudo-code description of what they
do.

6.1 Using modular TRIO in PVS

As discussed in chapter 4, TRIO classes are mapped onto PVS theories. Hence,
we want to design proof strategies to handle two sets of common tasks in a
modular proof: instantiation of formulae with proper parameters according to
the class they belong to, and use of the connections to show the prover when
two items are to be considered the same. These two aspects are discussed in
the following two subsections.

Before doing that, we introduce now a very simple proof strategy that does
not exploit any modular aspect of TRIO but is nonetheless rather useful in
practice. In fact, it often happens that we need to manipulate a new formula
by first expanding all the outer operators (typically, Boolean connectives) and
finally flattening it so that it is distributed over new sequent formulae. As a
simple example, consider the formula

(A!1 AND B!1)(tt!1)

We want to rewrite it into the two formulae

A!1 (tt!1)

B!1 (tt!1)

To handle such trivial but very often happening situations, we designed the
strategy open-fl. Table B.1 in appendix B shows its simple pseudo-code de-
scription.

6.1.1 Strategies for class instantiations

We have seen, in chapter 4, that every TRIO class is translated into a PVS
parametric theory. The first parameter of the theory is a non-empty type we
usually name instances and is used when we import the theory into other theo-
ries to represent TRIO’s use of modules. Moreover, every item of the base class
is also parametric with respect to a constant of the given type instances. This
is done to allow the definition of arrays of items of any TRIO class.
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All this implies that, whenever we want to use that class into another class
as a module, we first define a new non-empty type and we then import the para-
metric theory instantiating it with the new type. This allows a non-ambiguous
naming of imported theories and also the importing of more than one instance
of the same class, keeping them as separated modules as they are in TRIO.

When writing axioms and theorems for a given imported class, we usually
want them to reference to all the elements of the array of identical items to-
gether, so that we use a universally quantified variable of type instances as the
parameter of the items in the axioms and theorems. As a result of this prac-
tice, almost every formula is universally quantified with respect to a number of
parameters of instantiation types.

Hence, whenever we prove such formulae in PVS, the first thing we do to
make them usable is replacing the universal quantifications over parameters with
Skolem variables. Then, each time we introduce other axioms or theorems in
the same proofs, we usually instantiate their parameters of type instances with
the same Skolem variables we have introduced at the beginning of the proofs, so
that the prover knows we are referencing the same items, parametrically. This
means that we have a noticeable number of new instantiations done with the
same value, which results in typing the same instantiation commands over and
over in various parts of the proof.

The strategies we consider in this section aim at simplifying this kind of
situation. What we devised is a set of commands to repeat instantiations of
new axioms or theorems by reusing instantiation values (i.e. Skolem variables
or constants) introduced earlier during the proof. To do that, we first introduce
a global variable that stores a hash table mapping arbitrary keys (i.e. either
numbers or strings) to instantiation values, that is to a list of values to be used
in instantiations of formulae. This global variable is initialized whenever the
PVS LISP environment is first started and is changed only by the commands
set-def-inst and clear-def-inst described below. It is deallocated only
when the LISP environment is killed on exiting PVS.

Whenever we have an instantiation we think to be reusable during the proof,
we issue the command set-def-inst to store its value into the hash table with
a given key. Note that the value for the argument key has a default value of 0.
This means that we have a sort of default mapping that is meant to store the
most frequently used instantiation. This will typically be a full instantiation
with Skolem variables for items of all the involved classes. The command is
schematically described in table B.2 in appendix B.

If we decide to clear all the current mappings and re-initialize the hash ta-
ble, we can do so with the command clear-def-inst, shown in table B.3 in
appendix B. Note that this command basically behaves as a skip, so that it
is not stored into proof records since it does not change the proof sequent but
only has side effect. On the other hand, the other command set-def-inst has
been written so that it is recorded into proof reports even if it does not directly
change the proof sequent, otherwise proofs which use this command would not
be re-runnable correctly.
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The first proof strategy that reuses strored instantiation values is def-inst.
This simply does an instantiation (thus calling the instantiate command) on
all the given formulae in the current sequent with the values for the given key.
It is described in table B.4 in appendix B.

As discussed above, default instantiation is often useful when we introduce
axioms, lemmas or theorems in the current proof. Under this respect, the proof
strategy lm-def-inst combines a lemma introduction with a default instan-
tiation. It is described in table B.5 in appendix B. We point out one more
thing about this strategy: the labelling of the newly introduced lemma. This
simple thing is often very useful since it helps the user a lot in distinguishing
which instances of lemmas appear in a given sequent. In fact, once a lemma is
introduced we have no traces of which class it comes from, unless we label it
with its full name. This helps a lot when we introduce formulae and we need to
remember from which module we imported them from.

The strategy lm-def-use tries to take charge of the whole ordinary sequence
of commands we usually issue when we introduce a lemma (i.e. an axiom or the-
orem) into a PVS proof of a modular specification. Therefore, it first introduces
the lemma and instantiates its class parameters with pre-stored values. Then,
it opens the external time quantification and tries to instantiate it according
to the current context. This strategy may safely replace the usual sequences of
commands we issue whenever we introduce a new formula, in that if any of its
tasks fails, it simply skips it, so that in the worst case we end up with a simple
introduction of a lemma. The strategy is described in table B.6 in appendix B.

An example will show clearly how these proof strategies work in practice. Note
that this example is not meant to be meaningful with respect to the system it
describes, but is only introduced to show how the strategies behave.

Let us consider a base class foo which has two items named it1 and it2.
Another class bar imports two instances of foo, one with instantiation type
f1_type and the other with instantiation type f2_type, as F1 and F2 respec-
tively.

Let us also assume that class bar has the following two axioms and one
theorem declared.

a1: AXIOM

Alw( F1.it1(f1) AND F1.it2(f1) )

a2: AXIOM

Alw( F1.it2(f1) IMPLIES F2.it1(f2) )

t1: THEOREM

Alw( F1.it1(f1) AND F1.it2(f1) AND F2.it1(f2) )

We start proving t1 so that PVS shows the sequent:

t1 :

|-------
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{1} FORALL (f1: f1_type, f2: f2_type):

Alw(F1.it1(f1) AND F1.it2(f1) AND F2.it1(f2))

Obviously, we first of all introduce Skolem variables to replace the FORALL quan-
tification. This leads to the formula to be proven:

{1} Alw(F1.it1(f1!1) AND F1.it2(f1!1) AND F2.it1(f2!1))

We now want to set some instantiation values. More precisely, we want
the default value (i.e. the one for key 0) to be the one corresponding to both
variables f1!1 and f2!1. We also want to keep an entry just for f1!1 to be
used in some other formulae. Hence we give the commands:

(set-def-inst ("f1!1" "f2!1"))

(set-def-inst ("f1!1") "one_only")

to store the two choices.
Now let us suppose we want to introduce axiom a1 without opening its

Alw() operator. We issue the command (lm-def-inst "a1" "one_only") so
that the new formula introduced is:

{-1,(a1)}

Alw(F1.it1(f1!1) AND F1.it2(f1!1))

with proper label and instantiation with the specified value.
Now, if we want to introduce axiom a2 and also instantiate its Alw() oper-

ator at time tt!1 + 4, where tt!1 is some valid Skolem variable, we issue the
command lm-def-use getting the new formula:

{-1,(a2)}

F1.it2(f1!1)(tt!1 + 4) IMPLIES F2.it1(f2!1)(tt!1 + 4)

which is ready for further manipulations and uses in the remainder of the proof.

6.1.2 Strategies for use of connections

The PVS axioms describing TRIO connections deserve a dedicated proof strat-
egy to use them with ease during proofs. As discussed in chapter 4 a TRIO
connection is mapped onto a PVS identity. Let us consider an item A con-
nected to an item B in the current class. Let us assume we are building a proof
that wants to state some property of the item B. It often happens that we
get to a proof of the same property but for item A. At that time, we want to
use the definitions of the connections, to tell the prover that the proof is really
concluded, thanks to the identity we are using. To do that, we need to introduce
the axioms describing the connections and instantiate them with proper instan-
tiation values, if needed. Then, if the situation is the one just described, with
the same formula among the antecedents and among the consequents, except
for a connection identity, a grind command will simply close the sequent, by
automatically applying the rewritings (i.e. the substitutions) induced by the
identities. Usually, the sequent is closed with less powerful commands as well,
but they are simply subsumed by a grind which is more likely to succeed.

One may think that the use of a dedicated strategy to introduce connections
is not necessary, and can be safely replaced by the use of auto-rewrites declara-
tions in the PVS theory. Informally, a rewriting rule is an equality which can be
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used autonomously by the PVS prover. More precisely, if the equality has the
form LHS = RHS, whenever PVS has a term of the form LHS it knows it can
replace it with RHS and vice-versa. The PVS language has a particular direc-
tive (AUTO_REWRITE) that, whenever put in a theory declaration, tells the prover
that, as soon as it has started, it has to load the rewriting corresponding to the
specified formula. So, we may think that if each connection axiom had an auto-
rewrite declaration associated with it, the prover would autonomously recognize
when it can be used. Unfortunately, this is in general not true. The problem
is that the connection axioms must be instantiated with the instantiation pa-
rameters before being used. The PVS heuristics usually fail in determining the
right instantiation values, so that some user interaction is needed to choose the
right actuals.

Therefore, we designed the connect proof strategy, described in table B.7
in appendix B. It combines the basic sequence of commands described above
with the knowledge of how connection axioms should be named, according to
the rules defined in chapter 4. So, if the connection axiom is just one, it is called
connections, while if there are N connection axioms they are named connection i
for i = 1, . . . , N . The strategy introduces all the connection axioms it finds in
a given class (parameter prefix ) and provides default instantiations as needed.
It then tries to close the sequent with a grind if the user wants that.

As a very simple example to see the use of this strategy, consider the classes
foo and bar described in the previous section. Now assume bar has the following
two connection axioms.

connection_1: AXIOM

connect(F1.it1(f1), F2.it1(f2))

connection_2: AXIOM

connect(F1.it2(f1), F2.it2(f2))

Hence, if we have a sequent like the following

[-1] F1.it1(0)(tt!1)

[-2] F1.it2(0)(tt!1)

|-------

[1] F2.it1(f2!1)(tt!1) AND F2.it2(f2!1)(tt!1)

it can be closed by means of the connections. In fact, if the default instantiation
has been set to (0 f2!1), the sequent is closed by the command (connect t).

6.2 Rely/guarantee proofs in PVS

In this section we want to discuss some details about how a modular system spec-
ified in TRIO according to the rely/guarantee paradigm, introduced in chapter
5, can be proficiently translated in PVS, in order to exploit the rely/guarantee
proof rule of proposition 3, together with the automated proof capabilities of
the PVS environment.

6.2.1 Encoding of a rely/guarantee specification

The basic modular description of a TRIO class in PVS is just the same as
discussed before. Now, we need to add the implementation of the rely/guaran-
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tee operator and a statement of the proof rule usable in practice. To do that, we
define a new PVS theory named TRIO_relyguarantee parametric with respect
to a natural number N. This parameter represents the number of modules we are
composing, so it is basically the same n as that of the rely/guarantee proof rule
of proposition 3. Therefore, let us suppose we are translating a TRIO class C
into a PVS theory with the same name. If C is composed by k modules and we
want to prove results about this composition, we first of all need to specify an
importing clause IMPORTING TRIO_relyguarantee[k]. The same theory must
be imported in the PVS description of each of the submodules, since it contains
the definition of the operator +−.. In this case, we may give an arbitrary value
for the parameter N, for instance a 0.

The operator +−. is implemented in the theory TRIO_relyguarantee as the
PVS infix operator >>=. Note that the symbol >>= has been chosen only because
it is a PVS infix operators available to the user for redefining, and any other
meaning it may have because of other declarations in other theories is just co-
incidental. Obviously, its definition is just a translation of the formal definition
of the operator in TRIO.

t: VAR Time

E, M: VAR TD_Fmla

%\rgarrowplus operator

>>=(E, M)(t): boolean = ( AlwP_e(E)(t)

IMPLIES (AlwP_i(M)(t) AND NowOn(M)(t)) )

Notice that a more natural way to translate it would have been as a time-
dependent formula instead of an explicit function of time, thus relying on the
corresponding TRIO operators for time-dependent formulae. So, >>= could have
been equivalently written as:

>>=(E, M): TD_Fmla = AlwP_e(E)

IMPLIES (AlwP_i(E) AND NowOn(M))

However, the definition we used showed to be a lot better in practice when used
during PVS proofs, since it requires a smaller number of opening and rewritings.
In fact, it often makes proofs much shorter.

The next thing to denote in a rely/guarantee specification is when a given
formula is initialized. To achieve this, we introduce a subtype of time-dependent
formulae, named Initialized_Fmla. An Initialized_Fmla is simply a TD_Fmla
E for which Som(AlwPe(E)) is true.

%Initialized formula

Initialized?(E): boolean = Som( AlwP_e(E) )

Initialized_Fmla: TYPE+ = { E | Initialized?(E) }

Now, we can write the statement of the rely/guarantee proof rule seen in
proposition 3 as a PVS theorem. Since we have to relate the behavior of N
subclasses with the one of the upper level class importing them, we need an
extension of the TRIO operator +−. to handle the N classes altogether. More
precisely, we first of all define a range type to enumerate all N subclasses:

rng: TYPE+ = {i: nat | 0 < i AND i <= N} % 1..N classes

Rng_Fmla_Type: TYPE+ = [rng -> TD_Fmla]
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Now, we define an extension of the +−. operator to predicate on variables of
Rng_Fmla_Type instead of simple time-dependent formulae. So, we introduce
the following definitions.

j: VAR rng

P_i, Q_i: VAR Rng_Fmla_Type

>>=(P_i, Q_i): Rng_Fmla_Type = (LAMBDA j: (P_i(j) >>= Q_i(j)))

rwrt: FORMULA

(P_i >>= Q_i)(j)(t) = (P_i(j) >>= Q_i(j))(t)

AUTO_REWRITE+ rwrt

The directive AUTO_REWRITE+ tells PVS to autonomously activate this rewriting
rule whenever the current theory is imported in another; this is of great help
during proofs.

Then, we introduce four variables to represent the formulae E, M , Ei, Mi

(i = 1, . . . , n) and we name them E_g, M_g, E_i and M_i respectively (the
subscript g stands for “global”). In particular, we require the formulae E_i to
be initialized.

E_i: VAR [rng -> Initialized_Fmla]

M_i: VAR Rng_Fmla_Type

E_g, M_g: VAR TD_Fmla

Finally, we can formulate the rely/guarantee inference rule of proposition 3
by using the operators we have just defined.

Rely_Guarantee_inference_rule: THEOREM

( Alw( E_g AND FA(M_i) IMPLIES FA(E_i) )

AND Alw( FA(M_i) IMPLIES M_g )

AND Alw( FA(E_i >>= M_i) ) )

IMPLIES

Alw( E_g >>= M_g )

We want to point out three things about this implementation to explain it better.
First, the FA operator is a universal quantification over a variable of type rng

and it comes from the importing of the basic TVS theory trio_quantif[rng].
Second, the requirement that E_i is initialized is implicit in the statement of
the theorem, since E_i has been declared as a range of initialized formulae.
This will result in a TCC (Type Correctness Constraint) generated during the
instantiation of the term E_i requiring to prove that the actual replacing E_i is
an initialized formula. Third, the first hypothesis of the theorem simply rewrites
the hypothesis to proposition 3

∧

i=1,...,n



E ∧
∧

j=1,...,n

Mj ⇒ Ei





in the equivalent form

E ∧
∧

j=1,...,n

Mj ⇒
∧

i=1,...,n

Ei
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Before describing the proof strategies for rely/guarantee proofs, we still need
to say something about what is a convenient way to carry out rely/guarantee
proofs in PVS using the above declarations and definitions. In fact, when one
wants to employ the proof rule seen above, she/he has to introduce its statement
in the proof sequent and then to instantiate its variables referring to what E_g,
M_g, E_i and M_i are in the specification. We think a convenient way to do that
is by means of four definitions and four axioms, so that they can be promtly
used during proofs. If we have a class adopting compositional reasoning on k

subclasses, we should introduce the following declarations.

E: TD_Fmla

E_def: AXIOM

E = ...

E_i: Rng_Fmla_Type[k]

E_i_def: AXIOM

(E_i(1) = ...) AND (E_i(2) = ...) AND ...

AND (E_i(k) = ...)

M: TD_Fmla

M_def: AXIOM

M = ...

M_i: Rng_Fmla_Type[k]

M_i_def: AXIOM

(M_i(1) = ...) AND (M_i(2) = ...) AND ...

AND (M_i(k) = ...)

The proof strategies we are now discussing rely on this conventional naming for
the declarations.

Similarly to what happens with other naming conventions for base TRIO,
as discussed in chapter 4, we realize that the traslation from a TRIO class to
its corresponding PVS mapping can be fully automated by developing adequate
translation tools. In fact, this is what is currently being developed in a tools
suite for the TRIO language. Hence, the above instructions on how to trans-
late a rely/guarantee specification from TRIO to PVS are not meant to be
followed directly by a human user, since it would be extremely annoying and
time-consuming, but must be considered with respect to an automatic transla-
tion support that, once more, lets the user concentrate on the TRIO language
rather than the encoding details in PVS.

6.2.2 Strategies for rely/guarantee proofs

Just like in a generic modular proof we often need to use the axioms describing
the connections, in a rely/guarantee proof we often need to use the definitions for
the formulae E, M , Ei and Mi. We can implement this use into a PVS strategy
very easily, by using the previously seen strategies for default instantiations
of lemmas. In fact, assuming correct instantiation values have been stored,
and that the axioms defining E, M , Ei and Mi have been named as discussed
in the previous paragraph, we just need to call the strategy lm-def-use four
times. This extremely simple strategy is named rg-use-definitions and is
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described in table B.8 in appendix B. Note that, for the same reasons as with the
connection axioms described above, an auto-rewriting is not enough to handle
these axioms effectively, so that a proof strategy is needed.

Now, we want an ad hoc strategy to deal with the parametric representation of
the 2N formulae Ei and Mi. In fact, they are represented in PVS as a mapping
from an index ranging in the interval 1, . . . , N to time-dependent formulae.
Since the axioms and theorems of the subclasses we use during a proof refer
to a single formula, we usually have statements representing predicates of the
form P (Ei(i!1),Mi(i!1)), that is where we represent the parametrization with
respect to the index i with a Skolem variable (in fact, i!1 is meant to be of
type rng[N]). What happens during the (usually) last steps of a subgoal for
a given rely/guarantee proof is that we have to distinguish the cases for each
i = 1, . . . , N . In simpler situations, that is typically when the N submodules
are all of the same class, we can conclude each case with the same sequence of
commands. In more general situations each case may require its own dedicated
proof. However, the strategy rg-i-case handles the splitting of a proof sequent
into N subgoals for each value of the given var argument ranging from 1 to N
included. The strategy also tries to close each generated sequent with the usual
grind heuristic, unless required not to do so. This strategy is schematically
described in table B.9 in appendix B.

6.3 A comparative example of modular proof

In this section, we want to illustrate an example proof of a composite sys-
tem. We are going to do the same proof first without use of any of the proof
strategies described above and without use of the rely/guarantee paradigm and
proof rule. Then, we will redo the same proof using both the new strategies
and the rely/guarantee proof rule. We want to show the differences of the two
approaches, the different organization of the proofs and the benefits of adopt-
ing the rely/guarantee proof rule and in using the proof strategies in terms of
readability, simplicity and length of the resulting proofs.

In order not to expose the reader to too many details, the proofs are described
very synthetically in this chapter, just to convey a general idea and to be able to
draw comparisons and conclusions. However, a longer and much more detailed
report of the proofs is available in appendix C.

6.3.1 System description and specification

The system we work on is similar to that described in chapter 5. The main
difference is that we now adopt a continuous time model. We know TRIO can
be used with any time model, but we need to remind that the present TVS
implementation for TRIO in-the-small handles the continuous time case only.
In continuity with the current implementation, we focus on a continuous model
as well. Another difference in this new system with respect to the one of chapter
5 is in the definition of the base axiom in_to_out of the class echoer. Let us
consider the new class, named echoer_rg.

class echoer_rg
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signature:

visible:

input, output;

temporal domain: real;

items:

state input;

state output;

formulae:

axiom init:

AlwP_i(output)(0);

axiom in_to_out:

input -> output & Lasts_ii(output, 1);

end

As it is obvious from the axiom in_to_out the system is somewhat under-
specificated. In fact, the axiom describes the behavior of the class when input

is true but does not specify it when input is false. This is not a problem with
respect to our goals; on the contrary, it renders the system a bit simpler both
in its description and in the proofs, so that it is more profitable as an example.
Another feature of the specification that may seem annoying is the redundancy
in the same axiom. In fact, obviously Lastsii(item, t)⇒ item so that we could
drop the first term of the conjunction. However, once again this redundant
notation is going to render the proofs a bit simpler in some passages, so we will
adopt it, even if it may be considered inelegant.

Let us now consider the class two_echoers_rg which is all identical to the
previously seen class two_echoers, except for its time model. So, here is its
definition in TRIO.

class two_echoers_rg

import:

echoer_rg;

signature:

temporal domain: real;

modules:

P1, P2: echoer_rg;

connections:
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(direct P1.output, P2.input);

(direct P2.output, P1.input);

formulae:

theorem Rely_guarantee:

P1.output & P2.output;

end

We now analize the two proofs of the same theorem, in the two following
sections.

6.3.2 Proof without strategies and rely/guarantee proof
rule

The proof of the Rely_guarantee theorem is too long to be done in a single shot,
so that we need to enunciate and prove some auxiliary lemmas to encapsulate
fundamental steps in the proof and introduce them when needed to get to the
final result.

More precisely, the proof of the result Alw(P1.output) can be split into the
following steps:

1. AlwPi(P1.output) at time 0

2. AlwFe(P1.output) at time 0, by proving that:

(a) Alw(P1.input⇒ Futr(P1.input, 1))

(b) P1.input at time 0

Obviously, we have a similar situation for the item P2.output, except that we
consider items of the class P2 instead of P1.

The above proof scheme leads naturally to the following intermediate results
to be proved within the class echoer_rg.

theorem now_and_nexttime:

( Alw(input -> Futr(input, 1)) & input(t) )

-> (all i: Dist(input, i))(t)

theorem alw_output:

( Alw(input -> Futr(input, 1)) & input(t) )

-> AlwF_i(output)(t)

where t is a variable of type Time (i.e. real) and i is of type natural.
The first theorem basically says that if condition 2.a holds and there is an

initial time instant in which input holds, then input holds at every integer time
unit. The second theorem extends the first one, in that it says that, under the
same conditions, output holds at every time in the future.

Let us now consider the proofs of the two theorems. We just sketch out the
proofs in this section; all the details are available in appendix C.

The proof of theorem now_and_nexttime is really simple and relies on induc-
tion on variable i. Both the base case and the inductive step can be discharged
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by using the antecedents of the implication combined with the inductive hy-
pothesis.

The proof of theorem alw_output is basically divisible in two parts. The
first part is to prove Dist(output, u)(t) when u is a natural number. This
reduces to the other theorem now_and_nexttime. The second part is to prove
Dist(output, u)(t) when u is not a natural number. In this case we take the
floor of u, apply theorem now_and_nexttime to it and then “propagate” the
output till the desired time by means of axiom in_to_out, which guarantees a
duration of 1 time unit.

Before being able to prove the main theorem, we still need to prove another
intermediate result, that is we have to show that step 2.a above holds for class
two_echoers.

theorem rg_aux:

P1.input -> Futr(P1.input, 1)

and the analogous for module P2. The formula is proven by using the axioms
in_to_out from both modules P1 and P2. This allows us to show that:

P1.input⇒ P1.output⇒ P2.input⇒ Futr(P2.output, 1)⇒ Futr(P1.input, 1)

Note that the second and fourth implications are derived by using the informa-
tion available from the connections in the global class.

After these preparatory theorems, we can get to the global result, that is
Alw(P1.output) and Alw(P2.output). We distinguish the cases for time t ≤ 0
and t > 0. The first case is simply subsumed by the initialization axioms init
of the two classes. The other case requires the intermediate lemmas alw_output
and rg_aux to be proved, together with the information about the connections.

6.3.3 Proof with strategies and rely/guarantee proof rule

Now, we are going to build a different proof of the same global property of
the class two_echoers_rg, where we use both the PVS strategies described in
sections 6.1 and 6.2, and the rely/guarantee paradigm to specify the system
and build the proof. As usual, we only sketch out the proof here, while all the
details are available in appendix C.

We do not have to devise a division of the proof into intermediate auxiliary
lemmas, since the rely/guarantee paradigm already prescribes how to divide
the proof among the classes. More precisely, we have a property to be proven
which is local to the two modules P1 and P2 and is simply described by the
rely/guarantee formula input +−. output.

After proving that, we can build the proof of the global property Rely_guarantee
using this theorem together with the general proof rule for rely/guarantee sys-
tems.

To prove input +−. output we need to expand the +−. operator into its defini-
tion and prove it. Hence, we reduce to the substeps:

1. AlwPe(input)⇒ AlwPi(output)

2. AlwPe(input)⇒ NowOn(output)
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Subgoal 1 relies on axiom in_to_out, exploiting the consequent Lastsii(output, 1)
to show that output also holds at the current time instant. Subgoal 2 is also
similarly proven, that is we use the derivable term Lastsii(output, 1) to show
that there exists a non-empty time interval in the future over which output

holds.
The proof of the global property Alw(P1.output ∧ P2.output) is done by

using the rely/guarantee proof rule of proposition 3. More precisely, we have to
show that the following hypotheses hold:

1. P1.output ∧ P2.output⇒ P1.input ∧ P2.input

2. P1.output ∧ P2.output⇒ P1.output ∧ P2.output

3. P1.input +−. P1.output

4. P2.input +−. P2.output

5. P1.input and P2.input are initialized

Now, condition 2 is trivially true. Condition 3 and 4 are just the rely/guarantee
theorems for the modules P1 and P2 which we have already proven. Condition
1 is deducible by using the information associated with the connections. Con-
dition 5 is a consequence of the axiom init for modules P1 and P2 and of the
connections of the system. Then, the rely/guarantee proof rule allows us to
conclude the global property holds. Building the proof in PVS requires indeed
to cover some more technical details, that are shown in appendix C.

6.3.4 Comparison of the two proofs

In this section we want to draw a comparison between the two proofs of the same
property, that is the proof done without using the rely/guarantee proof rule and
the new PVS proof strategies described in section 6.3.2, against the proof done
using the rely/guarantee paradigm and the PVS strategies introduced in this
chapter, listed in section 6.3.3.

We want to compare the two proofs in terms of length, of intricacy, of mod-
ularization of the steps and of how readable and simple to follow they are. Let
us try to give a more precise characterization of the features of a proof we have
just listed.

We introduce a metric for the length: we measure the length of a proof in
terms of the number of PVS commands we issue in the prover environment to
conclude the proof. Since it is common that the proof of a theorem requires
the introduction of other previously declared theorems, lemmas and axioms, we
should count the length of the proofs of those as well. Otherwise, we could make
any proof to be of minimal length by redeclaring and proving our theorem under
another name, and then introducing it to get to the conclusion immediately.

To introduce, in the main formula, a simple representation of the dependen-
cies in the proof, we use a directed graph. Each node in the graph represents a
lemma or theorem used in the proof of the formula we are considering, including
the formula itself. We exclude from the nodes the axioms and the definitions,
since they do not require a proof themselves. There is an arc from a node N1 to
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Rely_guarantee (56)

rg_aux (58)

2

alw_output (31)

2

2

now_and_nexttime (11)

Figure 6.1: Proof dependencies in normal proof

Rely_guarantee (53)

rely_guarantee (26)

2

Figure 6.2: Proof dependencies in rely/guarantee proof

a node N2 if and only if N1 requires N2 in its proof, that is there is some com-
mand for lemma introduction (e.g. lemma, forward-chain, use, lm-def-use,
etc.) with N2 as argument. Each arc is weighted with the number of times
N1 has introduced N2 in its proof. Moreover, we store in each node a number
representing the number of proof commands the proof of that node has required
directly in PVS.

In figure 6.1 we have the dependencies graph for the proof done without
rely/guarantee proof rule and without new PVS strategies as described in section
6.3.2.

In figure 6.2 we have instead the dependencies graph for the other proof with
rely/guarantee proof rules and new PVS strategies, described in section 6.3.3.
Note that the rely/guarantee proof rule which is used has not been considered
as an auxiliary lemma, since it is a powerful rule proved once and for all and
may be considered like an additional extended propositional rule like those PVS
has built-in.

Once the graph representing the dependencies for a given proof has been
built, we can give two measures of how long the proof is. The first, simpler
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measure just sums up the values contained in each node, thus counting the
total number of proof commands typed in by the user to get to the final result.
We call this value “modularized proof length”.

This measure, however, does not take into account the effort made to break
the proof into several lemmas and how this division is done: this basically means
how well the proof was modularized and more precisely if the intermediate lem-
mas are sufficiently independent and well chosen. Measuring all these things
is obviously rather difficult and is also somewhat a subjective matter. How-
ever, we introduce a different metric on the graphs that tries to take some of
these issues into account. More precisely, we want to try to give a comparative
metric which tells how many proof commands we should approximately issue if
the proof was done in one single shot, without identifying and using auxiliary
lemmas of any kind. So, every time we introduce a lemma we should count as if
we immediately prove it before its use. Hence, if the same lemma is introduced
more than once, we should count its weight every time, as if we had to prove it
again and again. By doing this, if the division into lemmas was well done, and
more precisely if the parts of the proofs are sufficiently well decoupled and inde-
pendent, then the auxiliary lemmas are not introduced too many times during
the main proof, thus keeping this count acceptably low. In order to be more
formal, we notice that the dependencies graph is by definition an acyclic graph.
Hence, we can define an ordering of the nodes which is compatible with the
topological order relation induced by the arcs. So, starting from the leaves we
calculate the value for each node, given by the sum of the current value in each
child node times the weight of the arc which goes to that child, for every node
among the children of the curren one. We do not explain this calculation in
more detail, since we are confident that every reader who has some familiarity
with simple graph optimization algorithms will easily understand it. We call
this metric “monolithic proof length” since it is an estimation of the length of
a single proof encompassing all the intermediate results.

Table 6.1 compares the results in terms of length in the two proofs we are
considering, with both metrics.

Proof Modularized proof length Monolithic proof length
Normal proof 156 278

Rely/guarantee proof 79 105
Improvement 197 % 265 %

Table 6.1: Comparison of length of the two proofs (in proof commands)

It is clear from this data that the use of the rely/guarantee proof rule,
together with the new PVS proof strategies has greatly shortened the proof,
reducing it to one of a simply manageable size. Since the class of which we have
proven the global property is rather simple to describe informally, we expected
a similarly acceptably short and simple proof.

We can introduce another simple metric to evaluate the complexity of a proof:
the number of leaves of the proof tree. Every PVS proof can be represented by a
tree: each node in the tree is a proof command. Starting from the base sequent,
whenever the command causes the current goal to be split into n subgoals, the
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node in the tree has n children. Recursively, the proof of each of the subgoals is
a subtree rooted at the corresponding branch. PVS can generate automatically
these trees from a proof. A measure on these trees which may be considered as
an indication of the complexity of the proof is the number of leaves. In fact,
counting the leaves is the same as counting how many distinct subgoals had
to be proven. Usually, the fewer the subgoals a proof is split into, the simpler
the proof is to follow. Of course this may be not always true. For example,
if the splitting into subgoals corresponds to strongly independent parts of the
proof, it may even divide proficiently a long proof, thus rendering it simple to be
understood. However, most of the times if the leaves are too many it probably
means that the proof was rather hard to follow. Table 6.2 compares the number
of leaves for the two proofs of the global property.

Lemma Number of leaves

echoer rg.now and nexttime 2
echoer rg.alw output 4
two echoers rg.rg aux 4

two echoers rg.Rely guarantee 8
Total for normal proof 18

echoer rg.rely guarantee 3
two echoers rg.Rely guarantee 5
Total for rely/guarantee proof 8

Table 6.2: Comparison of leaves of the two proofs

Also according to this metric, the proof using the rely/guarantee proof rule
and the PVS strategies is visibly simpler than the other one, also because it
involves a smaller number of intermediate lemmas (and namely just one).

Besides these numerical comparison of the two proofs, we can also give some
informal comments about how different they were to be completed. The first
thing to notice is the different use of modularization in the proofs, that is the
way they have been divided into intermediate lemmas.

The basic fact is that the rely/guarantee paradigm has given a basic layout
to organize the proof into lemmas. More precisely, we know that each class
must have a local rely/guarantee property. This property can be proven locally,
that is by using axioms and items of the class only. By composing these local
lemmas, we build up the global property we want prove, and use a predefined
proof rule to carry out the final result. This proof rule helps a lot in dividing the
global proof into subparts, one for each of the hypotheses in the rely/guarantee
proof rule. This proof rule also defines clearly how the local properties should
be used into the global proof and how are to be combined. All these guidelines
greatly help in building the desired proof, since we have less things to consider
and we can rely on a rather powerful method. Moreover, the rely/guarantee
paradigm helps a lot in building a proof that is well modularized, in that each
of the intermediate lemmas we build and prove is well decoupled from the others
and from the global statement. This can be seen, among other things, by the
fact that the dependencies graph of figure 6.2 is simple, so that we do not have
to use the same intermediate result over and over during the proof. On the
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contrary, the intermediate lemma only represents a sort of “macro step” of the
proof encapsulated nicely: it basically encompasses the proof of what can be
proved locally.

On the other hand, the normal proof required the user to “invent” from
scratch intermediate lemmas, according to her/his intuition and experience on
how to carry out the proof. This surely is an advantage in terms of flexibility and
freedom of specification, a quality often sought for. However, it is true that this
also implies that building the whole proof results longer, more difficult and time-
consuming. Whenever a large flexibility and freedom of specification is not really
needed, it is usually better to exchange them with a smaller effort to complete a
correct specification and verification. Also notice that the modularization of the
proof represented in figure 6.1 shows an higher coupling between the lemmas of
the proof, since the weights on the arcs are always greater than 1. This may
indicate that another, better modularization is probably possible, even if the
one we used is intuitive and rather neat.

All in all, we think that it is absolutely clear that using the rely/guaran-
tee paradigm has brought many benefits with respect to the ease in carrying
out the proof. Together with that, the new PVS strategies have also played
an important role, encapsulating recurrent routinary sequences of commands
and closing in a few commands sequents that would have otherwise required
many more. The rely/guarantee paradigm is also useful per se in guiding the
specification of the system, at least in those cases when it is applicable without
loss of generality or whenever a total freedom in writing the specification is not
needed.



Chapter 7

The reservoir system: an
example

In order to apply the compositional framework proposed in chapter 5 to an
example more significant than the very simple two_echoers class analyzed in
section 6.3, this chapter considers a controlled reservoir system, its stepwise
specification and the verification of some remarkable properties. Besides its
usefulness as another application of the rely/guarantee inference rule of propo-
sition 3, this example will serve as a testbed to introduce some methodological
remarks about the rely/guarantee style for writing specifications and, more gen-
erally, about aspects of the specification and verification of modular systems.

More specifically, section 7.1 introduces a TRIO specification of the reser-
voir system, while section 7.2 describes the verification of the most important
properties of such system. Finally, section 7.3 summarizes some remarkable as-
pects of the application of the framework, underlying the benefits and difficulties
encountered in the process.

7.1 System specification

In this section, we specify a simple reservoir system consisting of one reservoir
under the control of a controller that must ensure that the level of fluid in the
reservoir never goes below a fixed lower bound (named Ll) or above a fixed
upper bound (named Lu). The specification will be built incrementally through
refinement steps, introducing gradually higher-level descriptions of the system.
Under this respect, section 7.1.1 describes a simpler version of the classes, while
section 7.1.2 refines the basic classes into the actual versions we are going to
use in the verification phase, introducing remarkable derived properties and
assumptions which will be proved in section 7.2.

7.1.1 A basic reservoir system

The reservoir system consists of a reservoir and a controller. Let us introduce
two TRIO classes, named basic_reservoir and basic_controller, that de-
scribe the basic behavior of the two entities by means of axioms.

83
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basic reservoir class

The reservoir consists of a tank containing a fluid. The level of fluid in the
tank is represented by the positive real item level. The level item should be
considered an output item, since its behavior is completely formalized inside the
reservoir class and other classes should simply use its value without changing it
directly. Two state items represent two possible situations the reservoir can be
in.

The leaking state indicates a leaking is occurring in the tank, so that some
fluid is being wasted. Therefore, when leaking is true, the level decreases at
a constant rate of lr level units per time unit. Leaking is a non-visible item,
so that its state is not accessible outside the class (and therefore also by the
controller).

The filling state indicates that new fluid is being pumped into the tank.
Therefore, when filling is true, the level increases at a constant rate of fr
level units per time unit. Filling is a visible item and should be considered an
input item, since its activation will be formalized in the controller class.

Obviously, leaking and filling can occurr at the same time; in this case the
level of the reservoir changes at a constant rate of fr−lr level units per time unit.
If no filling and no leaking occur, then the level stays unchanged. Moreover, we
state as reasonable assumptions that all of the lr, fr, Ll (the lower bound on the
reservoir level), Lu (the upper bound on the reservoir level) are positive reals,
that Lu > Ll and that the filling rate is greater than the leaking rate (fr > lr),
so that a filling action can always make up the loss of fluid caused by a leaking.
(These conditions are grouped in the axiom TCCs whose name stands for “Type
Correctness Conditions”). Finally, we introduce an initialization condition on
the level of the reservoir: somewhere in the past, the tank is filled (level = Lu)
and leakings or fillings have never occurred before.

All of the above behavior is formally described by the TRIO class basic_reservoir,
listed below and whose interface is shown in figure 7.1.

reservoir

leaking

level

filling

Figure 7.1: Interface of the reservoir classes
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class basic_reservoir (const L_l, const L_u, const fr, const lr)

// level lower bound , level upper bound, filling rate, leaking rate

signature:

visible: level, filling;

temporal domain: real;

items:

TD total level: real;

state leaking;

state filling;

formulae:

vars: l,t: real;

assumption TCCs:

level > 0 & lr > 0 & fr > lr & L_l > 0 & L_u > L_l;

axiom init:

Som(AlwP( level = L_u & not filling & not leaking ));

axiom level_behavior_1:

(Lasted(filling & leaking, t) & Past(level = l, t))

-> level = l + (fr - lr) * t;

axiom level_behavior_2:

(Lasted(filling & not leaking, t) & Past(level = l, t))

-> level = l + fr * t;

axiom level_behavior_3:

(Lasted(not filling & leaking, t) & Past(level = l, t))

-> level = max(l - lr * t, 0);

axiom level_behavior_4:

(Lasted(not filling & not leaking, t) & Past(level = l, t))

-> level = l;

end
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basic controller class

The controller is responsible for mantaining the level of fluid of a reservoir
between fixed bounds. The level of fluid is represented by the positive real item
level. With respect to the controller class, level is an input item, a measured
value that can be changed only by indirect actions.

The control action is represented by the filling state, which represents the
act of pumping new fluid into the reservoir. We specialize filling to be a left-
continuous interval-based predicate. This means that at every state transition
the value of filling is defined to be the one that has been in the near past (as
defined by the UpToNow TRIO operator). This is an arbitrary, yet perfectly
legitimate, assumption in describing a system; [25] thoroughly discusses this
issue and related ones. Moreover, filling is an output item for the controller
class, since its value over time is described directly by axioms of the class.
More specifically, the control policy adopted by the basic_controller class is
extremely simple and is based on a reaction time ∆. Whenever the level of the
reservoir stays below the fixed upper bound Lu for more than ∆ time units, a
filling action is issued. This action lasts until the level grows back to a value
greater than or equal to Lu.

Similarly to what is in the basic_reservoir class, reasonable assumptions
are postulated about the bounds Ll, Lu and about the time distance ∆ (it must
be a positive real number).

The behavior of the controller is formally described by the TRIO class
basic_controller, listed below and whose interface is shown in figure 7.2.

controller

filling

level

Figure 7.2: Interface of the controller classes

class basic_controller (const L_l, const L_u, const delta)

// level lower bound , level upper bound, reaction time

signature:

visible: filling, level;

temporal domain: real;
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items:

TD total level: real;

state filling;

formulae:

vars: l, t: real;

assumption TCCs:

L_l > 0 & L_u > L_l & delta > 0 & level > 0;

// filling is a left-continuous interval predicate

axiom filling_behavior:

(UpToNow(not filling) -> not filling)

& (UpToNow(filling) -> filling);

// filling iff the level goes below the upper bound

// for a certain amount of (reaction) time

axiom filling_def:

filling <-> Lasted(level < L_u, delta);

end

basic reservoir system class

The overall system is built by connecting the corresponding items of one instance
of a reservoir and of a controller. Together with the consistency assumptions we
postulated in the other classes about the value of the parameters fr, lr, Lu, Ll

and ∆, we also require the condition that the leaking rate is small enough that
it cannot bring the level of a full reservoir below Ll in less than ∆ time units.
This is expressed by the inequality ∆ ≤ (Lu − Ll)/lr.

The system is formally described by the TRIO class basic_reservoir_system,
listed below and whose interface is shown in figure 7.3.

class basic_reservoir_system (const L_l, const L_u, const fr, const lr, const delta

// level lower bound , level upper bound, filling rate, leaking rate, reaction time

class Controller_class, class Reservoir_class)

import: Controller_class, Reservoir_class

signature:

temporal domain: real;
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modules:

Controller : Controller_class[L_l is const L_l, L_u is const L_u,

delta is const delta];

Reservoir : Reservoir_class[L_l is const L_l, L_u is const L_u,

fr is const fr, lr is const lr];

connections:

(direct Reservoir.level, Controller.level)

(direct Controller.filling, Reservoir.filling)

formulae:

assumption TCCs:

L_l > 0 & L_u > L_l & fr > lr & delta > 0

& delta <= (L_u - L_l) / lr & level > 0;

end

7.1.2 Refinement of the system

In this section, we are going to use the inheritance mechanism of the TRIO
language to reuse the code of the previously declared classes basic_reservoir
and basic_controller to build a more detailed specification of the system.

More precisely, we will state a number of derived properties as theorems
and conjecture a number of assumptions that will be discharged later, during

reservoir

leaking

controller

fillingfilling

level level

reservoir_system

Figure 7.3: Interface of the reservoir system classes
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the verification process of section 7.2. Finally, we will compose the two refined
classes (named reservoir_under_control and controller_in_control) into
the class reservoir_system that will be used in the verification phase. This
class will also state the global correctness property of the controlled system,
that is that the level of fluid is always between the lower and upper bounds.

reservoir under control class

First of all, we notice that the level time-dependent item is a continuous,
non-Zeno function of time.

Continuous means that the following holds at every time instant t ∈ Time:

lim
s→t+

level(s) = lim
s→t−

level(s) = level(t)

Non-Zeno basically means that the item is piecewise analytic as a function
of time. The non-Zeno property is formalized as (see [25]):

∃f, g : f, g ∈ AF0∧∃d∀t(0 < t < d⇒ Past(level = f(t), t)∧Futr(level = g(t), t))

where AF0 indicates the set of functions that are analytic at 0 1. Notice that
the property must hold at every time instant.

However, we are not using these properties as such in TRIO. Instead, we use
continuity to derive a couple of properties of the level item. These properties
basically say that:

• if level has been greater than a certain value l up to now, then it still is
greater than or equal to l at the current instant

• if level has been less than a certain value l up to now, then it still is less
than or equal to l at the current instant

Similar properties hold “to the right”, if we consider right-continuity instead
of left-continuity. These results are stated by the theorems level_behavior_5
and level_behavior_6 of class reservoir_under_control and will in turn be
used to prove higher-level properties of the class.

Moreover, continuity is used to formulate a sound temporal induction rule for
formulae predicating over level. Temporal induction is an inference rule usable
to prove temporal properties holding over a time interval. We do not present
here the motivations and correctness proofs of such a rule, that can be found
in [25], [20]. We just state the rule as we will use it: let A be a left-continuous
time-dependent formula and d > 0 a time duration; then, the following inference
rule is sound.

(A ∧ Lasts(A⇒ NowOn(A), d))⇒ Lasts(A, d) (7.1)

The level item is not only continuous and non-Zeno, but also piecewise
linear. Formally, this means that, at every time instant:

∃f, g : f, g ∈ LF∧∃d∀t(0 < t < d⇒ Past(level = f(t), t)∧Futr(level = g(t), t))
(7.2)

1i.e. each function in AF0 possesses derivatives of all orders at 0 and its Mac Laurin series
converges to the function itself.
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where LF indicates the set of linear functions. 2

From the piecewise linearity of level we derive the following property: at
every time instant level is piecewise monotone, that is there is a time interval
in the past and one in the future where level is constantly increasing, or con-
stantly decreasing, or just constant. This behavior is formalized by theorems
level_behavior_7 and level_behavior_8.

Let us now consider higher-level behaviors of the reservoir class.
First, we state that if filling is issued, there is a raising in the level of

fluid. In fact, even if the tank is leaking, the constraint fr > lr guarantees that
the net change in the level of fluid is positive. This fact is stated by theorem
res_controller_aux.

Second, we claim that there is a time constant within which the level cannot
drop from Lu down below Ll because lr is not infinite. Obviouly this time
constant is (Lu − Ll)/lr and will be an upper bound for the constant ∆ of the
controller class. This property is stated by the theorem res_controller_aux_2.

Finally, we are almost ready to formulate a local correctness property using
the rely/guarantee framework of chapter 5. The property we want to guarantee
is that the level item always stays below the upper bound Lu. In order to
guarantee that, we have to assume of the environment that:

• the level item has been below the upper bound up to now

• the controller, which manages the filling item, does not issue a filling
command if the level is above or equal to Lu

Since the second assumption is a closed formula (i.e. universally quantified
over the whole time axis), we do not directly embed it in the statement of the
rely/guarantee theorem, but we isolate it as an assumption of the whole class.
Then, this assumption will be discharged at integration time by means of prop-
erties of the controller class and will be used in the proof of the rely/guarantee
theorem reservoir_behavior of the reservoir class. Notice that this use of an
assumption formula is logically equivalent to the direct embedding of the for-
mula in the rely/guarantee theorem. What changes is a methodological aspect:
this class has an assumption about the behavior of the controller attached to it.
If the assumption is actually discharged by the controller (as it will be), then
all the theorems of the class (and in particular reservoir_behavior) are also
guaranteed to hold.

All the informally previouly described properties are now stated in TRIO
by building the class reservoir_under_control, whose interface is still repre-
sented by figure 7.1.

2i.e. ∀f ∈ LF : ∃k, c ∈ R : f(t) = k · t+ c. Strictly speaking, this is a terminological abuse,
since linear functions are those respecting the condition f(αx+ βy) = αf(x) + βf(y), for all
α, β ∈ R. A more accurate terminology for functions in LF as we mean them would be “poly-
nomial of order 1 with constant coefficients”, but we acknowledge that the aforementioned
abuse is really widespread and should arise no major ambiguities.
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class reservoir_under_control (const L_l, const L_u, const fr, const lr)

// level lower bound , level upper bound, filling rate, leaking rate

inherit: basic_reservoir[L_l is const L_l; L_u is const L_u;

fr is const fr; lr is const lr]

signature:

visible: level, filling;

temporal domain: real;

formulae:

vars: l,t: real;

// this property is implied by the left-continuity of the real variable level

theorem level_behavior_5:

(UpToNow(level > l) -> level >= l) & (UpToNow(level < l) -> level <= l);

// this property is implied by the right-continuity of the real variable level

theorem level_behavior_6:

(NowOn(level > l) -> level >= l) & (NowOn(level < l) -> level <= l);

//this is implied by the fact that level is piecewise linear as a function of time

theorem level_behavior_7:

level = l -> (NowOn(level > l) | NowOn(level < l) | NowOn(level = l));

//this is implied by the fact that level is piecewise linear as a function of time

theorem level_behavior_8:

level = l -> (UpToNow(level > l) | UpToNow(level < l) | UpToNow(level = l));

//if level is above the upper bound there’s no filling

assumption no_filling_when_full:

level >= L_u -> NowOn(not filling);

// assume: level is below the upper bound

// and [assumption no_filling]

// guarantee: level will stay below the upper bound

theorem reservoir_behavior:

(level <= L_u) -+> (level <= L_u);

// if filling level raises

theorem res_controller_aux:

Lasts(filling, t) & level = l -> Futr(level > l, t);
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// this relates the leaking rate to the difference of levels (L_u - L_l)

theorem res_controller_aux_2:

(level >= L_u & (t <= (L_u - L_l) / lr)) -> Futr(level >= L_l, t);

end

controller in control class

The first high-level property we state of the class controller_in_control is
what is also an assumption of the class reservoir_under_control: if the level
item is above the upper bound Lu, then the controller issues no filling command.
This statement is represented by the con_reservoir_aux theorem of the class.

Conversely, to formulate a rely/guarantee property for the controller class,
we need to assume some of the derived properties of the reservoir class. More
precisely, we state as assumptions:

• the level item behaves as a piecewise right-monotone function of time

• if a filling command is issued, the level of fluid raises in any case

• if the level is now greater than or equal to Lu, then it will stay above
the lower bound Ll within ∆ time unit, in any case (i.e. even if no filling
command is issued)

As it is simple to realize, these assumptions have been stated as theorems
in the reservoir_under_control class (except some global constraints like
the definition of the ∆ constant) and require no further explanation. In the
controller class, they are named level_monotonicity, filling_raises_level
and delta_definition respectively.

Now, we can formulate the local rely/guarantee correctness property. We
guarantee that the level item always stays above the lower bound Ll. To
guarantee that, we assume that level has been above Ll up to now and we
rely on the assumptions level_monotonicity, filling_raises_level and
delta_definition. Similarly to what done in the reservoir_under_control

class, we have used stand-alone TRIO assumption formulae instead of embed-
ding the assumptions of the rely/guarantee theorem directly in its statement.
This also contributed to render the specification more terse and easier to read.

Finally, we list the code of the class controller_in_control, whose inter-
face is still represented by figure 7.2.

class controller_in_control (const L_l, const L_u, const delta)

// level lower bound , level upper bound, reaction time

inherit: basic_controller[L_l is const L_l; L_u is const L_u;

delta is const delta]

signature:

visible: filling, level;

temporal domain: real;
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formulae:

// level is a piecewise right-monotone function of time

assumption level_monotonicity

level = l -> (NowOn(level > l) | NowOn(level < l) | NowOn(level = l));

// if filling level raises

assumption filling_raises_level

Lasts(filling, t) & level = l -> Futr(level > l, t);

// level does not lower "too fast" (within delta time units)

assumption delta_definition

level >= L_u & t <= delta -> Futr(level >= L_l, t);

// assume: level is above the lower bound

// and [assumption level_monotonicity]

// and [assumption filling_raises_level]

// and [assumption delta_definition]

// guarantee: level will stay above the lower bound

theorem controller_behavior:

(level >= L_l) -+> (level >= L_l);

// if level is above the upper bound there’s no filling

theorem con_reservoir_aux

level >= L_u -> NowOn(not filling);

end

reservoir system class

As we expect, the reservoir_system class inherits from the basic_reservoir_system
class, instantiating the controller and reservoir modules with the new classes
controller_in_control and reservoir_under_control respectively. More-
over, we state the global correctness property for the system: the level of fluid
is always between Ll and Lu. Here it is the code for the class, whose interface
is in figure 7.3.

class reservoir_system (const L_l, const L_u, const fr, const lr, const delta)

// level lower bound , level upper bound, filling rate, leaking rate, reaction time

inherit: basic_reservoir_system[L_l is const L_l; L_u is const L_u

fr is const fr; lr is const lr; delta is const delta;

Controller_class is class controller_in_control;

Reservoir_class is class reservoir_under_control]

signature:
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temporal domain: real;

formulae:

theorem level_stays_between_bounds:

Reservoir.level >= L_l & Reservoir.level <= L_u;

end

Our final target in this specification and verification example is to prove the
theorem level_stays_between_bounds.

7.2 System verification

In this section, we outline the proofs of the derived properties stated in sec-
tion 7.1.2, thus formally verifying the global correctness property that the level
of fluid in the reservoir is always between the bounds Ll and Lu. More precisely,
section 7.2.1 contains the proofs of the theorems of class reservoir_under_control,
section 7.2.2 contains the proofs of the theorems of class controller_in_control
and section 7.2.3 uses the local theorems to prove the global correctness prop-
erty, showing the application of the rely/guarantee inference rule of chapter
5.

7.2.1 Reservoir verification

Continuity, non-Zenoness and linearity of level

First of all let us prove that the level item is continuous, non-Zeno and piece-
wise linear as a function of time. It is simple to realize that a piecewise linear
function of time is also a fortiori continuous and non-Zeno; therefore we just
need to prove the linearity and the other two properties will be immediately
subsumed.

Let us first prove that level is piecewise linear to the left. Combining
definition 7.2 with the definition of left-continuity, this is the same as requiring
that, at every time instant:

∃k, c ∈ R : ∃d∀t(0 < t < d⇒ Past(level = k · t+ c, t)) (7.3)

Since filling is a state, at every time instant it is true that either UpToNow(filling)
or UpToNow(¬filling). leaking is also a state, and a similar property holds
for it. Now, if we combine these two facts with the definition of the UpToNow
operator, we can conclude that, for every time instant:

UpToNow(filling ∧ leaking) (7.4)

∨ UpToNow(¬filling ∧ leaking)

∨ UpToNow(filling ∧ ¬leaking)

∨ UpToNow(¬filling ∧ ¬leaking)
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In each of the cases we can apply one of the axioms level_behavior_i for
i = 1, 2, 3, 4, so that the following is also true at every time instant:

∃d : Past(level = l, d) ∧ ∀t(0 < t < d⇒ Past(level = l + (fr − lr) · t, t))

∨ ∃d : Past(level = l, d) ∧ ∀t(0 < t < d⇒ Past(level = l + fr · t, t))

∨ ∃d : Past(level = l, d) ∧ ∀t(0 < t < d⇒ Past(level = l − lr · t, t))

∨ ∃d : Past(level = l, d) ∧ ∀t(0 < t < d⇒ Past(level = l, t))

This satisfies equation 7.3.
Obviously, the same reasoning can be applied in the future, by considering

the NowOn operator in place of the UpToNow operator, thus proving right-
linearity. Combining the two results, we immediately conclude the piecewise
linearity of the level item. Being logically implicated, continuity and non-
Zenoness of level are also proved.

Properties derived from continuity and linearity of level

Let us first of all prove theorem level_behavior_5 from the continuity of the
level item. Let us just prove the first term of the conjunction UpToNow(level >
l) ⇒ level ≥ l, being the proof of the other one all similar and very simply
derivable. Let us assume the left-continuity of level. This means that, for
every t ∈ Time: lims→t−level(s) = level(t) = l′. If we expand the definition
of the limit, this is the same as:

∀ε > 0,∃∆ > 0 : ∀s ∈ (t−∆, t) : |l′ − level(s)| < ε

Let us now assume UpToNow(level > l) and l′ < l to show that a contradiction
arises. This immediately implies that UpToNow(level−l′ > l−l′ > 0). Clearly,
this contradicts the definition of the limit for any ε < l − l′, thus proving that
l′ ≥ l at the current time. This in turns proves theorem level_behavior_5, if
we redo the same proof for the other term of the conjunction.

Obviously, theorem level_behavior_6 is proved all similarly to theorem
level_behavior_5, but exploiting right-continuity instead of left-continuity.
Therefore, we omit the simply derivable proof.

The proof of theorems level_behavior_7 and level_behavior_8 is straight-
forward from the fact that level is a piecewise linear function of time. In fact,
since a linear function is also monotone, piecewise monotonicity is implied. We
do not discuss these proofs with any more detail.

Theorem res controller aux

The proof of the theorem res_controller_aux relies on the temporal induc-
tion inference rule of equation 7.1. More precisely, to show that level > l
holds t time units in the future, we instantiate the inference rule for A =
NowOn(level > l) 3. Therefore, the proof is split into the steps (remind
that l is the value of level at the current time instant):

1. NowOn(level > l)

3We omit the simple proof that the time-dependent formula NowOn(level > l) is left-
continuous, since it is similar to step 2 of the following proof.
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2. Lasts(NowOn(level > l)⇒ NowOn(NowOn(level > l)), t)

3. Lasts(NowOn(level > l), t) ⇒ Futr(level > l, t)

Step 1 is proved by combining the antecedent Lasts(filling, t) with the
fact that level is piecewise monotone. More precisely, since filling is true
over a time interval in the future, the behavior of the fluid level is described
by one of the axioms level_behavior_1 or level_behavior_2, according to
the state of the leaking item. In both cases, the level is increasing because
fr > lr > 0. Therefore, in the near future level will increase, thus becoming
greater than l.

The proof of step 2 requires some careful manipulation of the definitions of
the nested NowOn operators. In fact, NowOn(level > l) means:

∃d∀t(0 < t < d⇒ Futr(level > l, t)) (7.5)

NowOn(NowOn(level > l)) means instead:

∃e∀t(0 < t < e⇒ Futr((∃f∀u(0 < u < f)⇒ Futr(level > l, u)), t)) (7.6)

Now, if we take, for example, e = d/2 and f = d/3, 7.6 is the same as:

∀t(0 < t < (d/2 + d/3)⇒ Futr(level > l, t))

which is obviously implied by equation 7.5 (since d/2 + d/3 < d). Since this
demonstration can be repeated for every time between the current one and t,
this concludes the proof of step 2.

The proof of step 3 consists in proving the goal Futr(level > l, t) by assum-
ing the following:

a. Lastsee(filling, t)

b. Lastsee(NowOn(level > l), t)

Since leaking is a state, it is eitherNowOn(leaking) orNowOn(¬leaking).
In either case, there is a time interval (indicated by the NowOn operator) over
which the level is increasing at rate fr − lr or fr according to whether the
reservoir is leaking or not. However, we can conclude that NowOn(level > l)
holds at the current time instant. This fact combined with hypothesis b. can
be written as Lastsie(NowOn(level > l), t). By considering the definitions of
the TRIO operators Lasts and NowOn this implies that Lastsee(level > l, t).

Now, let us analyze what happens at time t with respect to the current
time instant. UpToNow(filling) holds definitely at t because of hypothesis
a. Once again, it is either UpToNow(leaking) or UpToNow(¬leaking) at t.
Therefore we can identify a time interval immediately before t over which the
level is increasing. Since we have shown that over the same time interval level
is also greater than l, we conclude that level will be strictly greater than l
at time instant t, thanks to axioms level_behavior_1 or level_behavior_2.
This result is written as Futr(level > l, t), that is the final goal of the theorem.
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Theorem res controller aux 2

This proof is similar to that of theorem res_controller_aux, in that it uses
the temporal induction formula 7.1 and a similar general argument. First, we
instantiate 7.1 for A = NowOn(level > Ll). Hence, the proof reduces to
proving the following steps:

1. NowOn(level > Ll)

2. Lasts(NowOn(level > Ll), t) ⇒ Futr(level > Ll, t)

3. Lasts(NowOn(level > Ll)⇒ NowOn(NowOn(level > Ll)), t)

where t is in this case a time distance less than or equal to (Lu − Ll)/lr.
Step 1 is simple to prove exploiting the usual enumeration of cases for the

states leaking and filling. In particular, since level is greater than or equal
to Lu at the beginning, there is a time interval within which the level stays
above Ll, even if the reservoir is leaking without being filled (after all, this is
exactly what the theorem proves).

Step 2 is solved just like the analogous step 2 of the proof of theorem
res_controller_aux, seen in the previous section: basically we just need to
rewrite the definition of the NowOn operator carefully to show the implication
holding trivially. We do not repeat here the already seen proof.

Step 3 is also done similarly to step 3 of the theorem res_controller_aux

of the previous section. More precisely, the proof is even slightly simpler. In
fact, once we have shown that Lastsee(level > Ll, t) we can immediately con-
clude that Futr(level > Ll, t), thaks to the theorem level_behavior_5 (which
exploits continuity).

Theorem reservoir behavior

Because of the definition of the +−. operator in TRIO (see chapter 5), the proof
of this theorem is basically split in two parts: prove AlwPe(level ≤ Lu) ⇒
AlwPi(level ≤ Lu) and prove AlwPi(level ≤ Lu)⇒ NowOn(level ≤ Lu).

Obviously to prove AlwPe(level ≤ Lu) ⇒ AlwPi(level ≤ Lu) is the
same as proving AlwPe(level ≤ Lu) ⇒ (level ≤ Lu) because of the mean-
ing of the subscripts about inclusion and exclusion of temporal bounds. This
proof is in turn basically split in two cases: whether UpToNow(filling) or
UpToNow(¬filling). As usual tertium non datur, because filling is a state,
as explained by equation 7.4.

Let us assume UpToNow(¬filling). Clearly, this is the simpler case, be-
cause if filling is false the level of fluid can only lower (if it is leaking) or stay
the same (if it is not). Let d be the time distance in the past over which the
UpToNow guarantees that filling is false. By hypothesis, over the same time
distance level ≤ Lu holds. Therefore we have a situation characterized by the
TRIO formula:

Lasted(¬filling ∧ (leaking ∨ ¬leaking), d) ∧ Past(level ≤ Lu, d)

Whether UpToNow(leaking) or UpToNow(¬leaking) we can apply axioms
level_behavior_3 or level_behavior_4 respectively. In both cases, we are
guaranteed that level is less than or equal to Lu at the current time.
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Conversely, let us now assume UpToNow(filling). This case is a bit more
difficult since the level may actually be increasing. Again, we split the proof
into two steps: whether UpToNow(level < Lu) or its negation holds. If
UpToNow(level < Lu) we can immediately conclude level ≤ Lu thanks
to the continuity of the level item, and more precisely applying theorem
level_behavior_5. Let us now assume ¬UpToNow(level < Lu) or, equiva-
lently, ∀d∃s(0 < s < d∧Past(level ≥ Lu, s)). Let d be the time distance in the
past over which the UpToNow guarantees that filling is true. Because of what
we have just said about level, there is a time s < d such that Past(level ≥
Lu, s). Therefore, we can use assumption no_filling_when_full at time s
in the past to deduce NowOn(¬filling) at the same time s in the past. As
it is simple to realize by considering the inclusion of the time intervals, this
arises a contradiction, since there is at least one point (more precisely it is a
nonempty time interval) between s in the past and the current time instant
where ¬filling ∧ filling.

After that, since we have considered all the cases, we are able to conclude
that level is less than or equal to Lu at the current time.

Now, we discuss the proof of AlwPi(level ≤ Lu) ⇒ NowOn(level ≤ Lu).
Similarly to what we have previously seen, this proof is split in two cases:
whether NowOn(filling) or NowOn(¬filling).

First, let us consider the case NowOn(¬filling). Since filling is false
the level of fluid can only lower (if it is leaking) or stay the same (if it is not).
More formally, let d be the time distance in the future over which the NowOn
guarantees that filling is false. Moreover, level ≤ Lu at the current time
(because of the AlwPi operator). Therefore we have a situation characterized
by the TRIO formula:

Futr(Lasted(¬filling∧ (leaking∨¬leaking), s) ∧ Past(level ≤ Lu, s)), s)

which holds for all s ≤ d. Whether NowOn(leaking) or NowOn(¬leaking)
we can apply axioms level_behavior_3 or level_behavior_4 respectively. In
both cases, we are guaranteed that level is less than or equal to Lu over a
nonempty time interval in the future, thus proving this branch of the theorem.

Let us now assumeNowOn(filling) and, by contradiction, ¬NowOn(level <
Lu). This is the same as assuming ∀d∃s(0 < s < d∧Futr(level ≥ Lu, s)). Let
d be the time distance in the future over which the NowOn guarantees that
filling is true. Because of what we have just said about level, there is a
time s < d such that Futr(level ≥ Lu, s). Therefore, we can use assumption
no_filling_when_full at time s in the future to deduce NowOn(¬filling)
at the same time s in the future. By carefully considering the inclusion of the
time intervals, we realize that this arises a contradiction, since there is at least
one point (more precisely it is a nonempty time interval) between the current
time and s in the future where ¬filling ∧ filling.

This concludes the whole proof of the theorem reservoir_behavior.
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7.2.2 Controller verification

Theorem con reservoir aux

We want to prove NowOn(¬filling) from the fact that level ≥ Lu at the
current time.

As usual, it is either NowOn(¬filling) or NowOn(filling) since filling
is a state. Let us assume NowOn(filling) or, equivalently, ∃d(d > 0 ∧
Lasts(filling, d)).

In particular, the Lasts operator assures us that filling is true at min(d,∆)/2
time units in the future. If we consider the axiom filling_def at this point
in the future, we can deduce that Futr(Lasted(level < Lu,∆),min(d,∆)/2).
If we now notice that min(d,∆)/2 < ∆ because ∆ > 0, we conclude that
Futr(Past(level < Lu,min(d,∆)/2),min(d,∆)/2) or, equivalently, level <
Lu at the current time instant. This contradicts the hypothesis of the theorem,
thus proving that NowOn(¬filling).

Theorem controller behavior

Because of the definition of the +−. operator in TRIO (see chapter 5), the proof
of this theorem is basically split in two parts: prove AlwPe(level ≥ Ll) ⇒
AlwPi(level ≥ Ll) and prove AlwPi(level ≥ Ll)⇒ NowOn(level ≥ Ll).

The first branch requires to prove AlwPe(level ≥ Ll)⇒ AlwPi(level ≥ Ll)
or, equivalently, AlwPe(level ≥ Ll)⇒ (level ≥ Ll). As we have done several
times in the proofs of the theorems of this example, we distinguish two cases
whether UpToNow(filling) or UpToNow(¬filling), the only two possible
cases, being filling a state.

If UpToNow(filling), there is a time distance d such that Lasted(filling, d).
Therefore, we can apply assumption filling_raises_level at time distance d
in the past, to deduce Past(Futr(level > Ll, d), d), thanks to the hypothesys
AlwPe(level ≥ Ll). Obviously, this implies level ≥ Ll, what we wanted to
prove.

Let us now consider the case UpToNow(¬filling). We immediately ap-
ply axiom filling_behavior to deduce that ¬filling at the current time.
Now, we also use the double implication of axiom filling_def at the current
time. This lets us deduce ¬Lasted(level < Lu,∆) or, equivalently ∃d(d < ∆∧
Past(level ≥ Lu, d)). Let us now instantiate axiom delta_definition substi-
tuting d for t and considering it d time units in the past. Past(level ≥ Lu, d) is
true and d < ∆ by definition, therefore we deduce Past(Futr(level ≥ Ll, d), d)
that is level ≥ Ll at the current time instant, what we wanted to prove.

Let us now analyze the other branch of the proof: AlwPi(level ≥ Ll) ⇒
NowOn(level ≥ Ll). This proof requires some more substeps branching than
the other ones. The first branch is, as usual, on whether NowOn(filling) or
NowOn(¬filling).

If NowOn(filling) we can exploit assumption filling_raises_level to
conclude immediately NowOn(level > Ll), since we can instantiate the as-
sumption for every time instant in the future within the interval of definition of
the NowOn operator, and since level ≥ Ll by hypothesis.
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Let us pass to the branch NowOn(¬filling), where we immediately dis-
tinguish whether filling or ¬filling at the current time instant.

If ¬filling let us apply axiom filling_def and we deduce ¬Lasted(level <
Lu,∆), that is ∃d(d < ∆∧Past(level ≥ Lu, d)). Now, we consider assumption
delta_definition d time instants in the past, substituting all the values s such
that ∆ − d < s < ∆ for t. In other words, we have deduced ∀s(∆ − d < s <
∆⇒ Past(Futr(level ≥ Ll, s)), d) or, equivalently, Lasts(level ≥ Ll,∆− d),
that clearly implies NowOn(level ≥ Ll).

On the other hand, let us assume filling at the current time. Moreover,
let us consider assumption level_monotonicity, reminding that level ≥ Ll.
Obviously, the case NowOn(level ≥ l), where l is level at the current time
instant is trivial and requires no further explanation. Instead, let us discuss
what happens if NowOn(level < l). Once more, let us divide the proof into
two branches, whether level is greater than or equal to Lu at the current time
or it is less than Lu.

The case level ≥ Lu is simpler and similar to other passages of the proof.
In fact, under this hypothesis we can apply assumption delta_definition for
all time instants less than or equal to ∆ to conclude Lasts(level ≥ Ll,∆),
which implies the final goal.

Let us now finish with the case level < Lu. Since filling is true at the cur-
rent time instant, we apply axiom filling_def and deduce Lastedei(level <
Lu,∆). Moreover, it is NowOn(¬filling) and NowOn(level < Lu) or,
combining these two hypotheses and writing the NowOn operators explicitly,
∃dLasts(¬filling ∧ level < Lu, d). In particular, we have that ¬filling is
true min(d,∆)/2 time units in the future. Let us apply axiom filling_def at
that time and deduce Futr(WithinP (level ≥ Lu,∆),min(d,∆)/2). But this
arises a contradiction, since we have previously shown that Lastedei(level <
Lu,∆) and Lastsii(level < Lu,min(d,∆)/2) in this branch of the proof.

This finally concludes the whole verification of the controller.

7.2.3 Global correctness of the system

The verification of the global correctness of the reservoir system or, in other
words, the proof of the theorem level_stays_between_bounds is a rather
straightforward application of the inference rule of corollary 1 of chapter 5.

More precisely, let us number the Reservoirmodule with 1 and the Controller
module with 2. Therefore, the assumptions and guarantees of the two modules
and of the composite system are:

• E1 ≡ M1 ≡ level ≤ Lu

• E2 ≡ M2 ≡ level ≥ Ll

• M ≡ M1 ∧M2 ≡ Ll ≤ level ≤ Lu

Therefore the proof of theorem level_stays_between_bounds reduces to
the steps:

1. Som(AlwPe(E1 ∧ E2))

2. Alw(M1 ∧M2 ⇒ E1 ∧ E2)

3. Alw(M1 ∧M2 ⇒M)
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4. Alw(E1
+−. M1)

5. Alw(E2
+−. M2)

Step 1 is simply subsumed by the axiom init of module Reservoir, because
Ll < Lu as stated in the axioms TCCs. Steps 2 and 3 are trivial because of
the definitions of the Eis and Mis. Step 4 corresponds to the already proven
theorem reservoir_behavior of module Reservoir. Step 5 corresponds to the
already proven theorem controller_behavior of module Controller.

At this point, we can state that if all the assumptions of the composed
classes can be discharged by means of theorems or axioms of other classes (or
by any formula of the global class), then we can soundly conclude Alw(M) ≡
Alw(Ll ≤ level ≤ Lu), that is theorem level_stays_between_bounds holds.

Discharging the assumptions of the classes is easy, thanks to how we have
set up theorems and axioms in the classes. More precisely:

• Reservoir.TCCs and Controller.TCCs are discharged by assumption
TCCs of the enclosing class reservoir_system. This assumption will then
be discharged when providing suitable actuals for the parameters Ll, Lu,
fr, lr and ∆.

• Reservoir.no_filling_when_full is discharged by theorem con_reservoir_aux

of module Controller.

• Controller.level_monotonicity is discharged by theorem level_behavior_7

of module Reservoir.

• Controller.filling_raises_level is discharged by theorem res_controller_aux

of module Reservoir.

• Controller.delta_definition is discharged by theorem res_controller_aux_2

of module Reservoir and by assumption TCCs (∆ ≤ (Lu−Ll)/lr) of mod-
ule Controller.

Figure 7.4 shows the dependencies in the proof of the global correctness the-
orem (solid lines) and in the discharging of the assumptions of the two modules
(dashed lines). For the sake of clarity, proof dependencies for theorems which
are local to the two modules are not represented.

7.3 Summary remarks

In this section we try to summarize some lessons, mainly methodological ones,
learned from the example proposed in this chapter. We acknowledge that many
of the raised issues are only hinted at, while they would require a much deeper
and argumentative discussion. However, the purpose of this section is only to
recognize them, while we leave a thorough discussion to future related research.

The use of TRIO/PVS

The whole system specification has been translated into the PVS language and
the PVS tools has been used to verify the proofs of the theorems. As it often
happens in building proofs of TRIO specifications in PVS, the use of the tool
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Figure 7.4: Proof dependencies in reservoir system class

requires the user to consider a large number of low-level details that are usually
considered self-evident in a “paper and pencil” proof for a human reader. From
this experience we learned at least two lessons.

First, the need to consider many details of the proof sometimes reveals that
the demonstration we had in mind was incorrect or incomplete. What we just
called “self-evident” details may sometimes show to be instead misconceptive
details. In this direction, the use of the tool is useful to develop a really correct
specification and verification, without any fallacies.

On the other hand, we acknowledge that in a large number of cases the
proof we had in mind was indeed correct and taking care of the low-level details
was just an annoying chore. Therefore, the TRIO/PVS tool still has many
possible improvements to consider, to render such proof passages simpler and
self-automated. In particular, the example of this chapter often required two
sets of abilities. The first was the management of inclusions of temporal intervals
and of temporal inequalities. An epitomic example of this was the inability of
PVS to conclude that (fr − lr) · t is a positive quantity, from the fact that
fr > lr > 0 and t > 0: the user had to guide the tool by explicitly using
the basic properties of real inequalities. The second set of tasks was the case
discussion about state items. In fact, we often had to split the proof into two
branches according to whether NowOn a certain state item was true or false.
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It would have been of great help if PVS was instructed to manage such case
splittings with less user interaction.

General hints about specification and verification

The use of inheritance mechanisms and refinement to specify a modular system
often brings great benefits with respect to the clarity of the resulting specifica-
tion, its structure and organization. More specifically, it is often useful to distin-
guish at least two phases in the specification of a class modeling a component.
The first version of the class should be concerned solely with the basic behavior
of the component, without any additional assumptions or derived properties.
Therefore, this first version should contain axiom formulae only, and should
be the most general possible with respect to the environment it interacts with.
The second version of the class may instead refine the behavior assuming certain
constraints on the “clients” of the class and deriving summary properties based
on these constraints. Furthermore, while the first axiom-only version of the
classes is usually unique, we may instead provide several different refinements
of the same basic class, according to different operative scenarios (e.g. in our
reservoir example we may have adopted different control policies and therefore
derive different correctness properties).

Another point raised by the example is the usefulness of regularity properties
like continuity, non-Zenoness and linearity. Obviously, these properties may not
be holding for any type of system we specify. However, on the one hand they
often hold in practice, because they reflect almost “natural” assumption on the
behavior of temporal systems (at least for continuity and non-Zenoness, while
linearity is obviously much more constraining and may often not hold). On the
other hand, whenever they apply, it would be extremely useful to have their
statements and many derived formulae available as libraries of the TRIO/PVS
system. This would reduce verification time and usefully exploit reusability.

The actual use of the rely/guarantee paradigm

Let us now consider some issues specifically concerning the use of the rely/guar-
antee paradigm.

The first of such issues considers the already stated usefulness of regular-
ity properties like continuity and linearity for the rely/guarantee framework
proposed in chapter 5. In fact, in proposing the rely/guarantee inference rule
based on the +−. operator we speculated it was incomplete. In particular, this
was suggested by the fact that the +−. operator requires to infer the validity of a
property “one time step longer” in the future. This condition seems restrictive
enough to be incompatible with some possible system specifications, so that it
is likely to bring incompleteness (for example, we should consider what happens
with zero-time transitions [24]). However, if we can count on, say, non-Zenoness
and linearity, it is usually simpler to guarantee this validity in the future of a
property, so that in these simpler cases the (possible) incompleteness may not
be practically relevant.

Another issue we hinted at during the discussion of the proofs is the use of
TRIO assumptions in rely/guarantee theorems. More specifically, it happens
often to use temporally closed formulae as assumptions in a rely/guarantee the-
orem. In these cases, it is often simpler to separate them into stand-alone TRIO
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assumption formulae. Then, they can be used as valid formulae of the class in
proving the rely/guarantee theorems. When we integrate the modules in the
final system, we will have the additional task to discharge these assumptions in
order to validate all the formulae depending on them. This procedure is method-
ologically different from that of embedding the assumptions in the statements of
the theorems, but clearly brings logically equivalent results. However, we believe
that this use of TRIO assumption can ameliorate the organization of the proofs
and of the specification. More specifically, a class with TRIO assumptions is a
specialized class that assumes a certain behavior of the environment. This use
of the assumption (external assumptions) works better with a stepwise specifi-
cation process, where we introduce the assumptions only in a specialization of
the class, as also discussed above.

The main difficulty in applying the rely/guarantee proof rule of chapter 5 lies
probably in choosing the right formulae to serve as Eis and Mis of the system.
Once we are able to choose them effectively, the remainder of the specification
and verification is guided by this choice and is in fact simpler to do. A good
choice for the Eis and Mis is one that effectively distributes the burden of the
verification of the global property among the classes of the composite system,
without tightening excessively the mutual assumptions among classes (in this
case it would mean that their proof would have probably been simpler if done
directly at integration time). Obviously, being able to choose suitably the Eis
and Mis is often not simple and requires practice, trials and errors. We believe
that many more methodological aspects should be considered with respect to
this problem, and we demand a thorough discussion of the matter to further
research.

Under this respect, we have something to say about situations where the
applicability of the rely/guarantee framework of chapter 5 seems easier. When-
ever there is a sort of “feedback” among items of different modules, so that a
loop is formed, the framework seems to bring the best results. More specifically,
in these cases the +−. operator often has a straightforward application, in that it
links the validity of a property “up to now” to its validity in the future, ensured
by the feedback action in the loop. In particular, the example of a controlled
system (and namely of the reservoir system of this chapter) represents exactly
what we are referring to: the feedback loop links the controller with the device
under control and the control action reacts to a past state of the controlled
device to enforce a desired behavior in the near future. On the other hand,
when specifying systems without closed loops among items, we usually deal
with temporally closed formulae only. In this case the rely/guarantee paradigm
still applies, but in a simpler version where the +−. operator basically reduces to
logical implications and we rely on usual mechanisms to discharge assumptions.
These issues may well suggest new directions for other inference rules or other
compositional paradigms than the rely/guarantee (e.g. the lazy approach).



Chapter 8

Conclusions

This work constitutes an attempt to concretely design a compositional frame-
work to specify and verify large modular systems under the rely/guarantee
paradigm and with reference to the TRIO specification language. More pre-
cisely, we basically achieved the following results.

We provided an effective mapping of the modular features of the TRIO
language onto PVS, based on the current encoding for the non-modular features
of TRIO. Based on this mapping, a number of proof strategies to automate
frequently occurring passages of compositional proofs were designed and made
available as a part of the support tool TVS.

We introduced the rely/guarantee paradigm in TRIO, giving general guide-
lines on how a composite rely/guarantee specification should be written and
also proving a proof rule to infer properties of composed modules. We believe
that this proof rule is not only of methodological interest but also of practical
usefulness.

To show this, we made the TRIO rely/guarantee proof rule supported in
PVS, as another extension of the basic TVS. The use of these extensions showed
to bring strong benefits in conducting some example compositional proofs. We
believe the benefits will surely increase as the systems under analysis become
larger and more complex.

As a final remark, we point out that no technique, method or language for
the specification and verification of systems is likely to be a magic bullet. The
formal analysis of large systems is an unavoidably hard task, because of the
inherent complexity of the systems; therefore no technique is likely to make it
become trivial. However, we firmly believe that the application of modulariza-
tion techniques, the use of neat specification languages, the adequate support
of analysis tools and a constant practice can surely make the analysis of large
systems a practically doable task, thus ensuring the development of reliable
industrial-size real-time systems.

8.1 Future work

While achieving its basic goals, this thesis also suggested several new directions
for future work. Let us briefly consider the most interesting of these suggestions.

The need for automatic translators from TRIO to PVS is clear. In fact,
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the details of the mapping of all the features of the TRIO language are usually
uninteresting for the user who should deal directly with TRIO code only. In par-
ticular, the translators (better if in the form of integrated editing environment
to develop large specifications) would be responsible for the correct management
of visibility and inheritance into PVS, which is at the moment largely deficitary.

Another aspect of the same problem of hiding the details of PVS as much as
possible from the TRIO user arises during the conduction of automated proofs.
Pretty-printing strategies should then be developed to show a proof environment
as much “TRIO-like” as possible, including a coherent representation of the
importing hierarchy between modules.

Altough the TVS tool is a fundamentally prototypal tool, a TRIO open and
integrated environment is currently on the way. It will encompass front-ends
to model checkers and theorem provers, test-case generators, etc. When in its
maturity, this project will surely fulfill many of the needs discussed above.

Another interesting direction for future work is an accurate analysis of the
completeness of the compositional rely/guarantee proof rule given in chapter 5.
We speculated it is probably not complete, but this important feature deserves
more investigation to draw provable results. Moreover, in case the proof rule
showed to be incomplete, efforts should be made to see how and if it can be
made complete, or if other, more general rely/guarantee proof rules can be
formulated.

Another interesting analysis could be what we may call “semantical char-
acterization of formulae”. In fact, in chapter 5 we discussed safety of formulae
and showed how it is impossible to give a completely syntactical characteriza-
tion of safety in TRIO. This issue could be analyzed in more detail, for example
to see if alternative (non equivalent) definitions of safety are possible in TRIO
and if they can be of any use in defining inference rules. Similarly, liveness of
TRIO formulae could be analyzed, in connection or not with a possible use in
rely/guarantee specifications.

An effort should be made in developing some form of high-level heuristics to
guide and automate proofs of global properties in composite systems, at least
in the most frequently occurring cases. These techniques could benefit from the
analysis of the topology of the system and may aid the user in dividing a large
proof and in building it.

Finally, it would be interesting to apply the proposed techniques to the
specification and verification of a system larger than the simple ones discussed
as examples in the thesis, possibly formalizing relevant parts of a realistic real-
time system. Such a case study would constitute an interesting test bed for
the applicability of the proposed methods and a step towards more realistic
and industrial-size applications. Moreover, it would stimulate the analysis of
the methodological aspects of the application of the rely/guarantee framework,
which have been summarized in chapter 7. It is currently in preparation.



Appendix A

TRIO/PVS theories

This appendix lists the PVS code of the auxiliary theories used to encode the
modular extensions of TRIO (section A.1, described in chapter 4) and the
rely/guarantee proof rule (section A.2, described in chapter 6).

A.1 Theory for modular TRIO extensions

TRIO_modular [T: TYPE]

: THEORY

BEGIN

H1, H2: VAR T

connect(H1, H2): boolean = (H1 = H2)

% usage:

% connections: AXIOM

% connect(e1, e2) AND connect(e3, e4) AND ...

%

% or:

% connection_1: AXIOM

% connect(e1, e2)

%

% connection_2: AXIOM

% connect(e3, e4)

%

% ...

END TRIO_modular

A.2 Theory for rely/guarantee reasoning

TRIO_relyguarantee [N: nat] % N is the number of classes we are composing

: THEORY

BEGIN
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IMPORTING trio_base, trio_lemmas

t: VAR Time

E, M: VAR TD_Fmla

%\rgarrowplus operator (this definition is better for rewrites)

>>=(E, M)(t): boolean = ( AlwP_e(E)(t)

IMPLIES (AlwP_i(M)(t) AND NowOn(M)(t)) )

%Initialized formula

Initialized?(E): boolean = Som( AlwP_e(E) )

Initialized_Fmla: TYPE+ = { E | Initialized?(E) }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% RELY/GUARANTEE PROOF RULE FOR N COMPOSED CLASSES %%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rng: TYPE+ = {i: nat | i > 0 AND i <= N} % 1..N classes

IMPORTING trio_quantif[rng]

Rng_Fmla_Type: TYPE+ = [rng -> TD_Fmla]

P_i, Q_i: VAR Rng_Fmla_Type

j: VAR rng

>>=(P_i, Q_i): Rng_Fmla_Type = (LAMBDA j: (P_i(j) >>= Q_i(j)))

rwrt: FORMULA

Alw( (P_i >>= Q_i)(j) IFF (P_i(j) >>= Q_i(j)) )

rwrt_2: FORMULA

(P_i >>= Q_i)(j)(t) = (P_i(j) >>= Q_i(j))(t)

AUTO_REWRITE+ rwrt_2

E_i: VAR [rng -> Initialized_Fmla]

M_i: VAR Rng_Fmla_Type

E_g, M_g: VAR TD_Fmla

Rely_Guarantee_inference_rule: THEOREM

(Alw( E_g AND FA(M_i) IMPLIES FA(E_i) )

AND Alw( FA(M_i) IMPLIES M_g )

AND Alw( FA(E_i >>= M_i) ) )

IMPLIES

Alw( E_g >>= M_g )



APPENDIX A. TRIO/PVS THEORIES 109

END TRIO_relyguarantee



Appendix B

PVS strategies for TRIO

This appendix lists the full LISP code for the PVS proof strategies described in
chapter 6 and a pseudo-code description of what each strategy does, together
with the required syntax for its invocation.

B.1 Proof strategies descriptions

syntax: (open-fl &optional fnum[*])

repeat
open given fnum

until no more operators to open
flatten given fnum

Table B.1: open-fl proof strategy

syntax: (set-def-inst inst-str &optional key[0])
{inst-str is a list of instantiation values}

Add mapping of key to the instantiation value inst-str
Notify the user of the new mapping

Table B.2: set-def-inst proof strategy

syntax: (clear-def-inst)

Clear all global instantiations mappings

Table B.3: clear-def-inst proof strategy
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syntax: (def-inst fnums &optional key[0])

exprs← mapping of key
if exprs = ∅ then {key is not mapped to anything}

error: notify the user
else
for each fnum in fnums do
instantiate fnum with values exprs

end for
end if

Table B.4: def-inst proof strategy

syntax: (lm-def-inst lemma &optional key[0])

if lemma exists then
lemma lemma {introduce definition of lemma lemma}
label new formula with the full name of lemma
def-inst of new formula with mapping of key

else
error: notify the user

end if

Table B.5: lm-def-inst proof strategy

syntax: (lm-def-use lemma &optional key[0] time)

lm-def-inst of lemma with key
if time= ∅ then {argument time not given}
open new formula and try heuristic instantiation of time

else
open-inst new formula at time

end if

Table B.6: lm-def-use proof strategy
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syntax: (connect &optional dogrind? prefix key[0])

lmname ← concatenation of prefix. and “connections”
if lmname exists then
lemma lmname

label it with its full name
def-inst of the new formula with key

else
idx← 1
lmname ← concatenation of prefix. “connection ” and idx
while lmname exists do
lemma lmname

label it with its full name
def-inst of the new formula with key
idx← idx+ 1
lmname ← concatenation of prefix. “connection ” and idx

end while
end if
if dogrind? 6= ∅ then
grind

end if

Table B.7: connect proof strategy

syntax: (rg-use-definitions &optional key[0])

lm-def-use of axiom “E def” with key
lm-def-use of axiom “E i def” with key
lm-def-use of axiom “M def” with key
lm-def-use of axiom “M i def” with key

Table B.8: rg-use-definitions proof strategy

syntax: (rg-i-case var N &optional dogrind?[T])

if N ≤ 1 then
if dogrind? = T then
grind

end if
else
case var = N
if dogrind? = T then
grind

end if
recursive call of rg-i-case with arguments var N−1 dogrind?

end if

Table B.9: rg-i-case proof strategy



APPENDIX B. PVS STRATEGIES FOR TRIO 113

B.2 Code of the proof strategies

B.2.1 General purpose strategies

(defstep open-fl (&optional (fnum *))

(then (repeat

(open fnum))

(flatten fnum))

"Does (open)*, then a flatten"

"Opening and flattening formula ~a")

B.2.2 Strategies for class instantiations

;Hash table that maps keys to default instantiation sets

;Note that it remains the same through different proofs

;You can use both strings and numbers (since test #’equal is used)

(setf trio::def-inst-ht (make-hash-table :test #’equal) )

(setf trio::base-dummy-name "trio_dummy_name_")

(setf trio::cur-dummy-number 0)

(defhelper meaningful-skip ()

(let ( (dummy_name (concatenate ’string trio::base-dummy-name

(prin1-to-string trio::cur-dummy-number)))

(dummy_var (setf trio::cur-dummy-number

(+ 1 trio::cur-dummy-number))) )

;This is a dummy command so that the step is considered as actful

;and is recorded in the proof

(then (name dummy_name "0")

(delete -1))) ;Delete what the dummy command has done

"Does nothing but makes the sequent be considered changed"

"")

(defstep clear-def-inst ()

(let ((dummy_var (setf trio::def-inst-ht (clrhash trio::def-inst-ht))))

(comment "Default instantiation table cleared"))

"Clears the table with all the default instantiations"

"Clearing default instantiations table")

(defstep set-def-inst (inst-str &optional (key 0))

(let ( (dummy_var (setf (gethash key trio::def-inst-ht) inst-str))

(cmsg (format nil "Default instantiation for key: ~a ~a set as: ~a"

key (if (equal 0 key) "(default)" "") inst-str)) )

(then (meaningful-skip)

(skip-msg cmsg)) )

"Sets the default instantiations for class parametric lemmas.

To be used in connection with def-inst"

"Default instantiation set")
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;This is just for recursive calls of def-inst strategy

(defhelper def-inst-aux (fnums exprs)

(let ( (fnum (car fnums))

(other-fnums (cdr fnums)) )

(if (null fnum)

(skip)

(then (instantiate fnum exprs)

(def-inst-aux other-fnums exprs))) )

"Recursively does instantiation for each element of list of fnums"

"")

(defstep def-inst (fnums &optional (key 0))

(let ( (exprs (gethash key trio::def-inst-ht))

(smsg (format nil

"There are no instantiation values for key: ~a" key))

(list-fnums (if (listp fnums) fnums (list fnums))) )

(if (null exprs)

(skip-msg smsg)

(def-inst-aux list-fnums exprs)) )

"Instantiates all the fnums with default instantiation values

stored under given key"

"Providing default instantiations")

(defstep lm-def-inst (lemma &optional (key 0))

(try (then (lemma lemma) (label lemma -1))

(def-inst -1 key)

(skip))

"Introduces lemma and instantiates it with default instantiation values"

"Instantiating lemma ~a with default instantiation values")

(defstep lm-def-use (lemma &optional (key 0) time)

(try (lm-def-inst lemma key)

(try (if (null time) (open-inst -1) (open-inst -1 time))

(open-fl -1)

(skip))

(skip))

"Introduces lemma, instantiates it with default instantiation values,

open and instantiates it at time, then does open-fl"

"Introducing lemma ~a with default values and opening it")

B.2.3 Strategies for use of connections

(defstep connect (&optional dogrind? prefix (key 0))

;dogrind = nil not to do grind after connect,

; any other value (e.g. t) to do it

;prefix is the name of the class where the connection are taken
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; (can be omitted if it’s unabiguous)

;key is passed to def-inst

(let ( (lm-name (concatenate ’string prefix (if (null prefix) "" ".")

"connections"))

(dummy_var (setf trio::idx 0)) )

(try (lemma lm-name)

;there’s only one connection axiom: instantiate it and grind

(try (then (label lm-name -1) (def-inst -1 key))

(if (null dogrind?) (skip) (grind))

(skip-msg "Default instantiation does not work

on the connection axioms"))

;need to instantiate all axioms connection_i

(try

(repeat (let ( (dummy_var_2 (setf trio::idx (+ 1 trio::idx)))

(lm-name (concatenate ’string prefix

(if (null prefix) "" ".")

"connection" "_"

(prin1-to-string trio::idx))) )

(try (lemma lm-name)

(try (then (label lm-name -1) (def-inst -1 key))

(skip)

(skip-msg "Default instantiation does not work

on the connection axioms"))

(skip))))

(if (null dogrind?) (skip) (grind))

(skip-msg "Couldn’t find some of the connection axioms") ) ) )

"Introduces and tries to instantiate according to default parameters

the connection axioms for class <prefix>"

"Using connection axioms")

B.2.4 Strategies for rely/guarantee proofs

(defstep rg-use-definitions (&optional (key 0))

(then (lm-def-use "E_def" key)

(then (lm-def-use "E_i_def" key)

(then (lm-def-use "M_def" key)

(lm-def-use "M_i_def" key))))

"Introduces definitions for E, E_i, M and M_i assuming

axioms of corresponding names exist"

"Introducing definitions")

(defstep rg-i-case (var N &optional (dogrind? t))

;var = Skolem variable to switch on

;N = number of classes to be handled

;dogrind = t: tries to close cases with a grind,

; any other value (e.g. nil) not to do it

(if (<= N 1)

(if dogrind? (grind) (skip))

(spread@ (let ((rule (list ’case (concatenate ’string var

" = " (prin1-to-string N)))))

(quote rule))

( (if dogrind? (grind) (skip))
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(let ((nN (- N 1)))

(rg-i-case var nN dogrind?)) ) ))

"Splits into N cases for each i (i.e. var) = 1, ..., N and grinds"

"Splitting into subcases and grinding")



Appendix C

A full example of
automated proof

This appendix lists the PVS theories translating the corresponding TRIO classes
of the example in section 6.3 and illustrates with several details the proofs
discussed in the same section, as they have been done in PVS.

C.1 System specification in PVS

echoer_rg [instances: TYPE+]

: THEORY

BEGIN

IMPORTING trio_base, TRIO_modular, TRIO_relyguarantee[0]

%% ITEMS

input, output: [instances -> TD_Fmla] % in, out

%% AXIOMS

inst: VAR instances

init: AXIOM

AlwP_i(output(inst))(0)

in_to_out: AXIOM

Alw( input(inst) IMPLIES

output(inst) AND Lasts_ii(output(inst), 1) )

END echoer_rg

two_echoers_rg [instances: TYPE+]

: THEORY

117
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BEGIN

IMPORTING trio_base, TRIO_modular, TRIO_relyguarantee[2]

%% INSTANCES TYPES

P1_Type: TYPE = { n: nat | n = 0} CONTAINING 0

P2_Type: TYPE = { n: nat | n = 1} CONTAINING 1

%% MODULES

IMPORTING

echoer_rg[P1_Type] AS P1,

echoer_rg[P2_Type] AS P2

%% CONNECTIONS

p1: VAR P1_Type

p2: VAR P2_Type

connections: AXIOM

connect(P1.output(p1), P2.input(p2)) AND

connect(P2.output(p2), P1.input(p1))

%% THEOREMS

Rely_guarantee: THEOREM

Alw(P1.output(p1) AND P2.output(p2))

END two_echoers_rg

C.2 Proof without strategies and rely/guaran-

tee proof rule

C.2.1 Auxiliary lemmas for class echoer rg

To follow the division of the proof we have discussed, we first of all introduce
these two lemmas into the class echoer_rg.

now_and_nexttime: LEMMA

Alw( input(inst) IMPLIES Futr(input(inst), 1) ) AND input(inst)(t)

IMPLIES (FORALL i: input(inst)(t + i))

alw_output: LEMMA
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Alw( input(inst) IMPLIES Futr(input(inst), 1) ) AND input(inst)(t)

IMPLIES AlwF_i(output(inst))(t)

Note that t is a variable of type Time (i.e. real), while i is a variable of type
natural.

Let us now consider the proof of these two lemmas. This proof is local to the
class echoer_rg, so that it does not require any element which is not declared
in this class.

Let us first prove now_and_nexttime, since the other one relies on this to be
proven.

now_and_nexttime :

|-------

{1} FORALL (inst: instances, t: Time):

Alw(input(inst) IMPLIES Futr(input(inst), 1))

AND input(inst)(t)

IMPLIES (FORALL i: input(inst)(t + i))

After obvious introduction of Skolem variables and routinary formula manipu-
lation, we get to the sequent:

now_and_nexttime :

{-1} Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

{-2} input(inst!1)(t!1)

|-------

{1} FORALL i: input(inst!1)(t!1 + i)

We use induction on variable i to prove it.
The base case (i = 0) is trivial and is closed by an assert.
The inductive step:

now_and_nexttime.2 :

[-1] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-2] input(inst!1)(t!1)

|-------

{1} FORALL j: input(inst!1)(t!1 + j)

IMPLIES input(inst!1)(t!1 + (j + 1))

is rather simple as well, since it only requires to manipulate the formulae [-1]

and [1] with skolemizations and instantiations. So this proof is concluded
easily.

Now, we consider the proof of the other lemma alw_output.

alw_output :

|-------

{1} FORALL (inst: instances, t: Time):

Alw(input(inst) IMPLIES Futr(input(inst), 1))

AND input(inst)(t) IMPLIES AlwF_i(output(inst))(t)
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After the usual skolemizations and flattening of formulae, we get to the sequent:

alw_output :

[-1] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-2] input(inst!1)(t!1)

|-------

{1} output(inst!1)(nnt!1 + t!1)

Here we need to distinguish two cases: nnt!1 = 0 and nnt!1 6= 0 so we issue
the command (case ‘‘nnt!1=0’’) which yields two subgoals.

alw_output.1 :

{-1} nnt!1 = 0

[-2] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-3] input(inst!1)(t!1)

|-------

[1] output(inst!1)(nnt!1 + t!1)

alw_output.2 :

[-1] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-2] input(inst!1)(t!1)

|-------

{1} nnt!1 = 0

[2] output(inst!1)(nnt!1 + t!1)

Subgoal 1 is closed by a handful of commands: we need to introduce the axiom
in_to_out, instantiate it at time t!1 and finally launch a grind.

Subgoal 2 requires instead another case splitting: (case integer?(nnt!1)),
so that we have the two following sequents, according to whether nnt!1 is a nat-
ural number (since it is also nonnegative) or not.

alw_output.2.1 :

{-1} integer?(nnt!1)

[-2] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-3] input(inst!1)(t!1)

|-------

[1] nnt!1 = 0

[2] output(inst!1)(nnt!1 + t!1)

alw_output.2.2 :

[-1] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-2] input(inst!1)(t!1)

|-------

{1} integer?(nnt!1)

[2] nnt!1 = 0

[3] output(inst!1)(nnt!1 + t!1)
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To elaborate subgoal 2.1 we need to introduce the lemma now_and_nexttime
we have just proved. We instantiate it at time t!1, call a ground to apply
propositional reasoning with its IMPLIES operator and get to the formula

{-1} FORALL i: input(inst!1)(i + t!1)

which we instantiate with nnt!1. Now we introduce axiom in_to_out one more
time, instantiating it at t!1 + nnt!1 so that a grind can conclude that

output(inst!1)(nnt!1 + t!1)

thus closing the sequent.
Subgoal 2.2 also needs the use of lemma now_and_nexttime with a ground

command, getting to:

alw_output.2.2 :

{-1} FORALL i: input(inst!1)(i + t!1)

[-2] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-3] input(inst!1)(t!1)

|-------

[1] integer?(nnt!1)

[2] nnt!1 = 0

[3] output(inst!1)(nnt!1 + t!1)

Since nnt!1 is not an integer in this sequent, we need to instantiate the universal
quantifier in formula -1 with the biggest integer which is also smaller than
nnt!1. This quantity is by definition the floor function, so we instantiate with
the command (inst -1 ‘‘floor(nnt!1)’’), knowing that the function floor
is defined in the PVS Prelude1. The next thing to do is to introduce the axiom
in_to_out and instantiate it at time t!1 + floor(nnt!1) thus getting:

alw_output.2.2 :

{-1} (input(inst!1) IMPLIES output(inst!1) AND

Lasts_ii(output(inst!1), 1))

(t!1 + floor(nnt!1))

[-2] input(inst!1)(floor(nnt!1) + t!1)

[-3] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-4] input(inst!1)(t!1)

|-------

[1] integer?(nnt!1)

[2] nnt!1 = 0

[3] output(inst!1)(nnt!1 + t!1)

We now exploit the implication of formula {-1} with an open and a ground, so
that we get:

alw_output.2.2 :

{-1} (output(inst!1) AND Lasts_ii(output(inst!1), 1))

1The PVS Prelude is a built-in library of PVS theories with many mathematical functions
of common use, together with their properties, available to the PVS system.
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(floor(nnt!1) + t!1)

[-2] input(inst!1)(floor(nnt!1) + t!1)

[-3] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))

[-4] input(inst!1)(t!1)

|-------

[1] integer?(nnt!1)

[2] nnt!1 = 0

[3] output(inst!1)(nnt!1 + t!1)

We are now interested in the Lasts_ii subformula. We open it and instantiate
at time nnt!1 - floor(nnt!1) to get the formula:

{-2} output(inst!1)(nnt!1 - floor(nnt!1) + (floor(nnt!1) + t!1))

which can be recognized as the goal by a grind command which closes the
sequent 2.2 and therefore the whole proof.

C.2.2 Auxiliary lemma for class two echoers rg

Before getting to the global property, we still need to introduce and prove a
lemma in the class two_echoers_rg. We name the lemma rg_aux.

rg_aux: LEMMA

Alw( P1.input(p1) IMPLIES Futr(P1.input(p1), 1) )

AND Alw( P2.input(p2) IMPLIES Futr(P2.input(p2), 1) )

The meaning of the lemma is simple. It basically says that, for both class P1 and
P2, the first hypothesis of lemmas now_and_nexttime and alw_output holds.
This is a global property, since proving it requires the application of the axioms
of both classes P1 and P2.

The sequent to be proven is the following.

rg_aux :

|-------

{1} FORALL (p1: P1_Type, p2: P2_Type):

Alw(P1.input(p1) IMPLIES Futr(P1.input(p1), 1)) AND

Alw(P2.input(p2) IMPLIES Futr(P2.input(p2), 1))

After skolemization of universally quantified variables, this can be split into
two subgoals.

rg_aux.1 :

{-1} P1.input(p1!1)(tt!1)

|-------

{1} Futr(P1.input(p1!1), 1)(tt!1)

rg_aux.2 :

{-1} P2.input(p1!1)(tt!1)

|-------

{1} Futr(P2.input(p1!1), 1)(tt!1)
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As we can immediately understand, the proofs of the two subgoals are the same
in their structures, except that in the second one we must use axioms and items
of P2 whenever in the first one we used axioms of P1 and vice-versa. Being the
two proofs so similar, we only analyze the one for rg_aux.1. Once that is built,
we can modify its listing directly in PVS and redo the commands, adequately
modified, to close the second part as well.

The first thing to do is to introduce the axiom in_to_out for class P1, label
it to remind it is from class P1 and instantiate it at time tt!1. This produces
the sequent:

{-1,(P1.in_to_out)}

(input(p1!1) IMPLIES output(p1!1)

AND Lasts_ii(output(p1!1), 1))(tt!1)

[-2] P1.input(p1!1)(tt!1)

|-------

[1] Futr(P1.input(p1!1), 1)(tt!1)

After opening formula {-1}, a ground command recognizes the implication in
the same formula and let us conclude that the consequent holds.

{-1,(P1.in_to_out)}

(output(p1!1) AND Lasts_ii(output(p1!1), 1))(tt!1)

[-2] P1.input(p1!1)(tt!1)

|-------

[1] Futr(P1.input(p1!1), 1)(tt!1)

Let us open formula {-1} and isolate the Lasts formula with a flatten, getting
to the formula

{-2,(P1.in_to_out)}

Lasts_ii(output(p1!1), 1)(tt!1)

We now expand the Lasts operator, which results in a universal quantification
over the interval [0, 1]. We need to instantiate it at its upper bound, that is at
1. This leads us to the formula:

{-2,(P1.in_to_out)}

output(p1!1)(1 + tt!1)

To use it, we have to introduce the axiom in_to_out for class P2, this time
instantiating it at time tt!1 + 1.

{-1,(P2.in_to_out)}

input(p2!1)(tt!1 + 1) IMPLIES

(output(p2!1) AND Lasts_ii(output(p2!1), 1))(tt!1 + 1)

[-2,(P1.in_to_out)]

output(p1!1)(tt!1)

[-3,(P1.in_to_out)]

output(p1!1)(1 + tt!1)

[-4] P1.input(p1!1)(tt!1)

|-------

[1] Futr(P1.input(p1!1), 1)(tt!1)
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On this sequent, we can issue a ground command to split the proof into two
subgoals.

rg_aux.1.1 :

{-1,(P2.in_to_out)}

output(p2!1)(1 + tt!1)

AND Lasts_ii(output(p2!1), 1)(1 + tt!1)

[-2,(P1.in_to_out)]

output(p1!1)(tt!1)

[-3,(P1.in_to_out)]

output(p1!1)(1 + tt!1)

[-4] P1.input(p1!1)(tt!1)

|-------

[1] Futr(P1.input(p1!1), 1)(tt!1)

rg_aux.1.2 :

[-1,(P1.in_to_out)]

output(p1!1)(tt!1)

[-2,(P1.in_to_out)]

output(p1!1)(1 + tt!1)

[-3] P1.input(p1!1)(tt!1)

|-------

{1,(P2.in_to_out)}

input(p2!1)(1 + tt!1)

[2] Futr(P1.input(p1!1), 1)(tt!1)

In sequent 1.1, we separate the Lasts from the other term in the AND formula.
Moreover, we hide all the formula we no longer need to prove this sequent,
getting to

[-1,(P2.in_to_out)]

output(p2!1)(1 + tt!1)

|-------

[1] Futr(P1.input(p1!1), 1)(tt!1)

This is closed by means of the connection axiom, so we introduce it, instantiate
for class parameters p1!1 and p2!1 and close the sequent with a grind.

Subgoal 1.2 is simple as well, since it reduces to:

[-1,(P1.in_to_out)]

output(p1!1)(1 + tt!1)

|-------

[1,(P2.in_to_out)]

input(p2!1)(1 + tt!1)

once the useless formulae have been hidden. This can be closed with the intro-
duction of the connections, too.

This concludes the proof of subgoal 1. As discussed, subgoal 2 is very similar
and is not analyzed.
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C.2.3 Proof of the global property of class two echoers rg

Now, we have all the ingredients to prove the global property of the composite
class two_echoers_rg, that is:

Rely_guarantee: THEOREM

Alw(P1.output(p1) AND P2.output(p2))

As it is clear from all the previously seen cases, the proof of the theorem
is divisible into two macro steps, where the second is structurally identical to
the first one, except that it refers to class P2 whenever the first step refers to
class P1 and vice-versa. Once again, we only discuss the proof for the first part,
being the second easily extrapolable for any human reader (though not fully
automatizable, since it requires the systematic changes to handle the different
situation).

So, after initial routinary skolemizations and splitting into the two subgoals,
the sequent we want to prove is:

Rely_guarantee.1 :

|-------

{1} P1.output(p1!1)(tt!1)

where tt!1 is a Skolem variable representing a generic time instant.
A case splitting is immediately needed, since the remainder of the proof is

radically different whether we are considering time instants before or after 0.
So, we issue the command (case ‘‘tt!1<=0’’) and get the two subgoals:

Rely_guarantee.1.1 :

{-1} tt!1 <= 0

|-------

[1] P1.output(p1!1)(tt!1)

Rely_guarantee.1.2 :

|-------

{1} tt!1 <= 0

[2] P1.output(p1!1)(tt!1)

where in 1.2, the condition tt!1 <= 0 among the consequents is equivalent to
the negation of the same condition among the antecedents, that is tt!1 > 0.

The proof of 1.1 is simple since it relies entirely on the initialization axiom of
class P1. Hence, we introduce it with (lemma ‘‘P1.init’’), label it, open its
universal time quantification and instantiate it at time - tt!1, so that we have
the formula:

{-1,(P1.init)}

output(p1!1)(--tt!1 + 0)

It is simple to recognize this is the same as the current goal, so that a grind

closes it, togeter with an additional TCC (Type Correctness Contraint) gener-
ated autonomously by PVS.
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The proof of sequent 1.2 is basically based on the axiom alw_output for class
P1, so first of all we introduce it, label it and instantiate its free variable t at
time 0 and its free variable inst with Skolem variable p1!1

{-1,(P1.alw_output)}

Alw(input(p1!1) IMPLIES Futr(input(p1!1), 1))

AND input(p1!1)(0)

IMPLIES AlwF_i(output(p1!1))(0)

|-------

[1] tt!1 <= 0

[2] P1.output(p1!1)(tt!1)

In order to show to the prover that the antecedent of the implication in
formula {-1} is true, we need the axiom P2.init and the lemma rg_aux. More
precisely, the former formula proves the truth of the second term of the conjunc-
tion, that is input(p1!1)(0); the latter proves instead that the implication in
the first term of the conjunction is also true.

Thus, we first introduce the lemma rg_aux and instantiate its instantiation
parameters with the Skolem variables p1!1 and p2!1. We get:

{-1} Alw(P1.input(p1!1) IMPLIES Futr(P1.input(p1!1), 1)) AND

Alw(P2.input(p2!1) IMPLIES Futr(P2.input(p2!1), 1))

[-2,(P1.alw_output)]

Alw(input(p1!1) IMPLIES Futr(input(p1!1), 1))

AND input(p1!1)(0)

IMPLIES AlwF_i(output(p1!1))(0)

|-------

[1] tt!1 <= 0

[2] P1.output(p1!1)(tt!1)

Since the second term of the conjunction in formula {-1} refers to class P2, it
is not needed in this branch of the proof. So we split that formula and hide
it.

Now, we introduce the axiom P2.init and instantiate it at time 0 and for
paramter p2!1. The sequent is now:

{-1,(P2.init)}

output(p2!1)(-0 + 0)

[-2] Alw(P1.input(p1!1) IMPLIES Futr(P1.input(p1!1), 1))

[-3,(P1.alw_output)]

Alw(input(p1!1) IMPLIES Futr(input(p1!1), 1))

AND input(p1!1)(0)

IMPLIES AlwF_i(output(p1!1))(0)

|-------

[1] tt!1 <= 0

[2] P1.output(p1!1)(tt!1)

It is now time to issue a ground command to exploit the implication if
formula [-3]. This leads to the two subgoals:

Rely_guarantee.1.2.1 :
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[-1,(P1.alw_output)]

AlwF_i(output(p1!1))(0)

|-------

[1] tt!1 <= 0

[2] P1.output(p1!1)(tt!1)

Rely_guarantee.1.2.2 :

[-1,(P2.init)]

output(p2!1)(0)

|-------

[1,(P1.alw_output)]

input(inst)(0)

[2] tt!1 <= 0

where we have already hidden the unnecessary formulae with a hide command.
Subgoal 1.2.1 is simply closed by first expanding the definition of the AlwF

operator, instantiating the resulting universal quantifier at time tt!1 and finally
calling the usual grind command.

Subgoal 1.2.2 requires instead the connection axiom. Introducing it with a
(lemma ‘‘connections’’), instantiating its free variables and calling a grind

suffices to close the sequent.
This also concludes the whole proof of the global property.

C.3 Proof with strategies and rely/guarantee proof

rule

C.3.1 Proof of the local property

The initial sequent is:

rely_guarantee :

|-------

{1} FORALL (inst: instances): Alw(input(inst) >>= output(inst))

As usual, we first of all manipulate it by opening and skolemizing its Alw oper-
ator. Moreover, while introducing Skolem variable inst!1 we also set it as the
default instantiation value.

rely_guarantee :

{-1} AlwP_e(input(inst!1))(tt!1)

|-------

{1} (AlwP_i(output(inst!1))(tt!1) AND NowOn(output(inst!1))(tt!1))

Now, we open, flatten and split the formula in {1}, getting two subgoals.

rely_guarantee.1 :

[-1] AlwP_e(input(inst!1))(tt!1)
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|-------

{1} AlwP_i(output(inst!1))(tt!1)

rely_guarantee.2 :

[-1] AlwP_e(input(inst!1))(tt!1)

|-------

{1} NowOn(output(inst!1))(tt!1)

Let us consider the sequent 1 first. We open and skolemize the goal formula,
thus introducing a new Skolem variable nnt!1 indicating the instants of time
in which we need to prove output holds. We need to distinguish two cases,
whether nnt!1 is greater than 0 or it is less or equal to it. The two resulting
subgoals are expressed by the sequents:

rely_guarantee.1.1 :

{-1} nnt!1 > 0

[-2] AlwP_e(input(inst!1))(tt!1)

|-------

[1] output(inst!1)(-nnt!1 + tt!1)

rely_guarantee.1.2 :

[-1] AlwP_e(input(inst!1))(tt!1)

|-------

{1} nnt!1 > 0

[2] output(inst!1)(-nnt!1 + tt!1)

In 1.1 we expand the definition of the AlwP_e operator and instantiate
it at time nnt!1. Now, we need to show to the prover that input at time
tt!1 - nnt!1 also implies output at the same time. So we introduce the ax-
iom in_to_out at time tt!1 - nnt!1 and grind to close the sequent.

Subgoal 1.2 requires instead to instantiate the quantification of the AlwP_e

operator at some time instant before tt!1 but not before tt!1 - 1. We choose,
for instance, to instantiate it at tt!1 - 1/2 with the command open-inst.
This produces the sequent:

{-1} input(inst!1)(-(1 / 2) + tt!1)

|-------

[1] nnt!1 > 0

[2] output(inst!1)(-nnt!1 + tt!1)

Now, we introduce the axiom in_to_out and instantiate it at time tt!1 - 1/2.
A ground command recognizes that the following now holds:

{-1,(in_to_out)}

(output(inst!1) AND Lasts_ii(output(inst!1), 1))

(tt!1 - (1 / 2))

[-2] input(inst!1)(-(1 / 2) + tt!1)

|-------
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[1] nnt!1 > 0

[2] output(inst!1)(-nnt!1 + tt!1)

We are only interested in the term of the conjunction with the Lasts oper-
ator. So we separate it into a new formula with an open-fl command. Then,
we expand the definition of the Lasts and instantiate the universal quantifier
with value 1/2. Finally, a grind command solves the mathematical equalities
needed to recognize that subgoal 1 can be closed.

Let us prove subgoal 2. Similarly to what done in the other branch of the
proof, we first of all need to instantiate the AlwP operator at some time before
tt!1 and after tt!1 - 1. We choose tt!1 - 1/2.

{-1} input(inst!1)(-(1 / 2) + tt!1)

|-------

[1] NowOn(output(inst!1))(tt!1)

Now, we introduce the axiom in_to_out once more, still instantiating it a time
tt!1 - 1/2.

After that, a ground command produces the new sequent:

{-1,(in_to_out)}

(output(inst!1) AND Lasts_ii(output(inst!1), 1))

(tt!1 - (1 / 2))

[-2] input(inst!1)(-(1 / 2) + tt!1)

|-------

[1] NowOn(output(inst!1))(tt!1)

We separate the Lasts formula into its own formula with and open-fl com-
mand. After that, we expand the definition of the NowOn operator. We need
to instantiate the resulting existential quantifier for any value smaller than 1/2.
We choose, for instance, 1/3, and get the sequent:

[-1,(in_to_out)]

output(inst!1)(tt!1 - (1 / 2))

[-2,(in_to_out)]

Lasts_ii(output(inst!1), 1)(tt!1 - (1 / 2))

[-3] input(inst!1)(-(1 / 2) + tt!1)

|-------

{1} Lasts_ee(output(inst!1), 1 / 3)(tt!1)

Now, a handful of commands can close the sequent. More precisely, we
apply open-skolem to formula {1} and make explicit the type for the newly
introduced Skolem variable it!1. Then, we instantiate the expanded Lasts

operator for the value it!1 + 1/2. After that, a simple grid command closes
the sequent, thus concluding the proof.

C.3.2 Proof of the global property of class two echoers rg

We are ready to build the proof of the global property of the composite class
two_echoers_rg using the rely/guarantee proof rule directly in PVS. In section
6.2 we have shown a basic guideline in defining additional items and definitions
to use proficiently the rely/guarantee proof rule in PVS. Adhering to those
guidelines, we add the following definitions to the class two_echoers_rg.
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E: TD_Fmla = TRUE

E_i: Rng_Fmla_Type[2]

E_i_def: AXIOM

(E_i(1) = P1.input(p1)) AND (E_i(2) = P2.input(p2))

M: TD_Fmla

M_def: AXIOM

M = (P1.output(p1) AND P2.output(p2))

M_i: Rng_Fmla_Type[2]

M_i_def: AXIOM

(M_i(1) = P1.output(p1)) AND (M_i(2) = P2.output(p2))

Note that we did not define an axiom for the global environment assumption E

since it is trivial and can be defined directly when we introduce the item E.
Now that the additional definitions have been introduced, the whole proof

of the global property can be done without need for additional lemmas, directly
from the basic proof sequent:

Rely_guarantee :

|-------

{1} FORALL (p1: P1_Type, p2: P2_Type):

Alw(P1.output(p1) AND P2.output(p2))

We will only use the lemma for the local properties, proved in the previous
section, the connection axiom, the definitions of the global and local assumptions
and guarantees and the initialization axioms of the subclasses.

After introducing Skolem variables to replace the universal quantification of
the goal, we want to save these new variables so that successive instantiations
of lemmas can be done automatically by the prover. Thus, we set the default
instantiation with the command set-def-inst as p1!1 p2!1. Moreover, we set
other instantiation defaults for the values p1!1 and p2!1 alone, mapping keys 1
and 2 respectively. After that we open and skolemize the universal quantification
on time of formula {1}, thus introducing the time Skolem variable tt!1. Now we
are ready to apply the rely/guarantee inference rule we have defined in theory
TRIO_relyguarantee. The sequent becomes:

{-1} FORALL (E_g: TD_Fmla, E_i: [rng[2] -> Initialized_Fmla[2]],

M_g: TD_Fmla, M_i: Rng_Fmla_Type[2]):

(Alw(E_g AND FA(M_i) IMPLIES FA(E_i)) AND

Alw(FA(M_i) IMPLIES M_g) AND Alw(FA(E_i >>= M_i)))

IMPLIES Alw(E_g >>= M_g)

|-------

[1] (P1.output(p1!1) AND P2.output(p2!1))(tt!1)

To use it we have to choose which formulae represent the E_g, E_i, M_g and
M_i. Since we have introduced in the theory the adequate items just before
beginning this proof, we can immediately provide the instantiation with the
command (inst -1 "E" "E_i" "M" "M_i"). This causes the proof to be split
into two parts. The first one is the main branch and represents the use of the
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rely/guarantee proof rule. The second one is instead a TCC (Type Correctness
Constraint) requiring to prove that E_i is initialized; this is needed to guarantee
that the rule is sound.

Let us first consider how we discharge the TCC, represented by the sequent:

Rely_guarantee.2 (TCC):

|-------

{1} FORALL (x1: rng[2]): Initialized?[2](E_i(x1))

After skolemizing the universal quantification in {1} we introduce the axioms
P1.init and P2.init with instantiation values corresponding to keys 1 and 2

respectively. After that, we introduce the definition of E_i and expand that of
the Initialized predicate, so that the sequent becomes:

Rely_guarantee.2:

{-1,(E_i_def)}

(E_i(1) = P1.input(p1!1)) AND (E_i(2) = P2.input(p2!1))

[-2,(P2.init)]

AlwP_i(output(p2!1))(0)

[-3,(P1.init)]

AlwP_i(output(p1!1))(0)

|-------

[1] Som(AlwP_e(E_i(x1!1)))

Now, we realize that the prover must be aware that AlwPi(A)⇒ AlwPe(A) for
any formula A. Thus, we introduce the formula AlwP_i2AlwP_e from the basic
TRIO lemmas available in TVS theories. We provide two different instantiation
for this lemma: one for E_i(1) and the other for E_i(2), both at time 0. Now
the sequent is:

Rely_guarantee.2 :

[-1] AlwP_i(P1.output(p1!1))(0) =

(AlwP_e(P1.output(p1!1))(0) AND P1.output(p1!1)(0))

{-2} AlwP_i(P2.output(p2!1))(0) =

(AlwP_e(P2.output(p2!1))(0) AND P2.output(p2!1)(0))

[-3,(E_i_def)]

(E_i(1) = P1.input(p1!1)) AND (E_i(2) = P2.input(p2!1))

[-4,(P2.init)]

AlwP_i(output(p2!1))(0)

[-5,(P1.init)]

AlwP_i(output(p1!1))(0)

|-------

[1] AlwP_e(E_i(x1!1))(0)

Finally, we introduce the information about the connections and use the com-
mand rg-i-case on variable x1!1 to close this branch of the proof.

Now, back to the main branch. The first thing to do is to introduce the
definitions of the E_i, E, M_i and M items, so that the prover can use them
as rewriting rules whenever needed during the proof. To do that we use the
command rg-use-definitions, so that the sequent becomes:
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Rely_guarantee.1 :

{-1,(M_i_def)}

(M_i(1) = P1.output(p1!1))

{-2,(M_i_def)}

(M_i(2) = P2.output(p2!1))

[-3,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

{-4,(E_i_def)}

(E_i(1) = P1.input(p1!1))

{-5,(E_i_def)}

(E_i(2) = P2.input(p2!1))

[-6,(E_def)]

(Alw(E AND FA(M_i) IMPLIES FA(E_i)) AND

Alw(FA(M_i) IMPLIES M) AND Alw(FA(E_i >>= M_i)))

IMPLIES Alw(E >>= M)

|-------

[1] (P1.output(p1!1) AND P2.output(p2!1))(tt!1)

In order to exploit the implication of the rely/guarantee proof rule, we call
a ground command which yields four different subgoals.

Rely_guarantee.1.1 :

{-1,(E_def)}

Alw(E >>= M)

[-2,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-3,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-4,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-5,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-6,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1] (P1.output(p1!1) AND P2.output(p2!1))(tt!1)

Rely_guarantee.1.2 :

[-1,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-2,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-3,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-4,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-5,(E_i_def)]

(E_i(2) = P2.input(p2!1))
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|-------

{1,(E_def)}

Alw(E AND FA(M_i) IMPLIES FA(E_i))

[2] (P1.output(p1!1) AND P2.output(p2!1))(tt!1)

Rely_guarantee.1.3 :

[-1,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-2,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-3,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-4,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-5,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

{1,(E_def)}

Alw(FA(M_i) IMPLIES M)

[2] (P1.output(p1!1) AND P2.output(p2!1))(tt!1)

Rely_guarantee.1.4 :

[-1,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-2,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-3,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-4,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-5,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

{1,(E_def)}

Alw(FA(E_i >>= M_i))

[2] (P1.output(p1!1) AND P2.output(p2!1))(tt!1)

Subgoal 1.1 requires to prove that the goal is subsumed by the global rely/guar-
antee formula E +−. M , for the given E and M. This is trivial, and just requires to
instantiate the rely/guarantee formula in -1 at time tt!1 and calling a grind.
Subgoal 1.2 requires to prove the following hypothesis of the rely/guarantee
proof rule we are using holds: E ∧

∧

i=1,...,n Mi ⇒
∧

i=1,...,n Ei. Subgoal 1.3
requires to prove the other hypothesis to the rely/guarantee proof rule: E ∧
∧

i=1,...,n Mi ⇒ M . Finally, subgoal 1.4 requires to prove that the antecedent

in the rely/guarantee proof rule statement holds, that is:
∧

i=1,...,n(Ei
+−. Mi).

Subgoals 1.2 through 1.4 are proved in the following paragraphs.
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Proof of subgoal 1.2 The sequent to prove is, after hiding unnecessary for-
mulae, introducing Skolem variables for Alw universal quantifications and flat-
tening formulae:

[-1,(E_def)]

FA(M_i)(tt!2)

[-2,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-3,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-4,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-5,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-6,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1,(E_def)]

FA(E_i)(tt!2)

In particular, we have hidden the formula E(tt!2) among the antecedents since
it simplifies to TRUE.

We remind that the FA operators are universal quantifications over variable of
type rng, that is the range of numbers 1, 2 in this case, being two the subclasses
we are composing. Thus, we introduce the Skolem variable x!1 to indicate this
parametrization with respect to rng, getting to the sequent:

{-1,(E_def)}

FORALL (x: rng[2]): M_i(x)(tt!2)

[-2,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-3,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-4,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-5,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-6,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1,(E_def)]

E_i(x!1)(tt!2)

In order to avoid unnecessary splitting of the sequent, we make a copy of the
formula {-1} so that we can instantiate it for x = 1 and its copy for x = 2.
Moreover, we introduce the connection axiom with the command connect since
it will be needed shortly.

{-1} M_i(2)(tt!2)

[-2,(connections)]

(P1.output(p1!1) = P2.input(p2!1)) AND

(P2.output(p2!1) = P1.input(p1!1))
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[-3,(E_def)]

M_i(1)(tt!2)

[-4,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-5,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-6,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-7,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-8,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1,(E_def)]

E_i(x!1)(tt!2)

Now we can realize that everything is complete to close the sequent. In fact, the
M_i items are output items of the two classes, as described in their definitions.
Moreover, the connections tell that each output is the input of the other class.
Finally, the input items are by definition the E_i items. Thus, we just need
to consider each case 1, 2 separately with a command (rg-i-case ‘‘x!1’’ 2).
This completes the proof of subgoal 1.2.

Proof of subgoal 1.3 Subgoal 1.3 is rather simple to prove. First of all, we
hide some unnecessary formulae, open and flatten other formulae and introduce
a Skolem temporal variable tt!2 to indicate the time of the Alw operator. So,
the sequent we have to prove is:

{-1,(E_def)}

FA(M_i)(tt!2)

[-2,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-3,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-4,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-5,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-6,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1,(E_def)]

M(tt!2)

Similarly to what done in proof of subgoal 2, we expand the FA operator in
formula {-1}, copy it and make two different instantiations for 1 and 2 (thus
representing both classes P1 and P2). We end up with the sequent:

{-1} M_i(2)(tt!2)

[-2,(E_def)]

M_i(1)(tt!2)
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[-3,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-4,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-5,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-6,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-7,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1,(E_def)]

M(tt!2)

Now a simple grind command recognizes that M, whose definition is in for-
mula [-6], holds, since both M_1 and M_2 hold. So the sequent is closed.

Proof of subgoal 1.4 The proof of subgoal 1.4 is rather simple as well,
since it is basically reducible to the local theorem for class echoer_rg we have
proved right above. Needless to say, we first of all introduce skolemizations for
quantified time variables and hide some unnecessary formulae. We have the
sequent:

[-1,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-2,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-3,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-4,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-5,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

{1,(E_def)}

FA(E_i >>= M_i)(tt!2)

We now expand the definition of the FA operator with an open and replace
the resulting universal quantification over a variable of type rng with a Skolem
variable x!1. This leads to the sequent:

[-1,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-2,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-3,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-4,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-5,(E_i_def)]

(E_i(2) = P2.input(p2!1))
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|-------

{1,(E_def)}

(E_i(x!1) >>= M_i(x!1))(tt!2)

Now, we introduce the fundamental local lemmas of the subclasses. We
adopt default instantiations and set the time at tt!2, that is we issue the
command lm-def-use twice, for modules P1 and P2. The sequent is now:

{-1,(P2.rely_guarantee)}

(AlwP_e(input(p2!1))(tt!2) IMPLIES

(AlwP_i(output(p2!1))(tt!2) AND NowOn(output(p2!1))(tt!2)))

[-2,(P1.rely_guarantee)]

(AlwP_e(input(p1!1))(tt!2) IMPLIES

(AlwP_i(output(p1!1))(tt!2) AND NowOn(output(p1!1))(tt!2)))

[-3,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-4,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-5,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-6,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-7,(E_i_def)]

(E_i(2) = P2.input(p2!1))

|-------

[1,(E_def)]

(E_i(x!1) >>= M_i(x!1))(tt!2)

We are almost done: we still need to expand the definition of the >>= operator
in the goal, which can be done with a open. Now, the sequent:

[-1,(P2.rely_guarantee)]

(input(p2!1)(tt!2) IMPLIES output(p2!1)(tt!2))

[-2,(P2.rely_guarantee)]

(AlwP_e(input(p2!1))(tt!2) IMPLIES

(AlwP_i(output(p2!1))(tt!2) AND NowOn(output(p2!1))(tt!2)))

[-3,(P1.rely_guarantee)]

(input(p1!1)(tt!2) IMPLIES output(p1!1)(tt!2))

[-4,(P1.rely_guarantee)]

(AlwP_e(input(p1!1))(tt!2) IMPLIES

(AlwP_i(output(p1!1))(tt!2) AND NowOn(output(p1!1))(tt!2)))

[-5,(M_i_def)]

(M_i(1) = P1.output(p1!1))

[-6,(M_i_def)]

(M_i(2) = P2.output(p2!1))

[-7,(M_def)]

M = (P1.output(p1!1) AND P2.output(p2!1))

[-8,(E_i_def)]

(E_i(1) = P1.input(p1!1))

[-9,(E_i_def)]

(E_i(2) = P2.input(p2!1))
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|-------

{1,(E_def)}

(AlwP_e(E_i(x!1))(tt!2) IMPLIES

(AlwP_i(M_i(x!1))(tt!2) AND NowOn(M_i(x!1))(tt!2)))

can be closed by issuing the command rg-i-case on the variable x!1. This
triggers a very long sequence of rewritings which finally ends the whole proof.



Appendix D

Extended summary in
Italian

Rem tene, verba sequentur

Questa appendice contiene un consistente estratto della tesi, scritto in ital-
iano. Più precisamente, ogni sezione di questa appendice corrisponde ad un
capitolo della tesi, di cui costituisce un riassunto più o meno dettagliato. In
particolare, maggior dettaglio è stato concesso all’introduzione e alle conclusioni
del lavoro, mentre i capitoli intermedi sono stati sintetizzati maggiormente.

Qui di seguito è invece riportata la traduzione dell’abstract della tesi.

Un problema comune incontrato nell’applicare i metodi formali
all’analisi di sistemi di dimensioni realistiche è che questi metodi
spesso non scalano bene. Per superare tale difficoltà, si devono re-
alizzare ed usare linguaggi formali e strumenti che supportino la
modularizzazione e la composizionalità.

Alla luce di ciò, questa tesi affronta il problema di progettare
tecniche e strumenti per supportare la specifica e verifica formale di
grandi sistemi modulari in tempo reale. Il linguaggio di riferimento
per questa analisi è la metrica temporale TRIO.

In primo luogo, si progetta una traduzione dei costrutti modulari
di TRIO nel linguaggio del dimostratore PVS. In relazione a questa,
si costruiscono un certo numero di strategie di prova automatizzate
per supportare la conduzione di dimostrazioni TRIO nell’ambiente
PVS.

In secondo luogo, si discute un framework composizionale rely/guar-
antee per il linguaggio TRIO e si deriva una regola di inferenza
composizionale. Questo framework è anche codificato nell’ambiente
PVS, cos̀ı da essere usabile in pratica.

Infine, si discutono, mediante l’aiuto di esempi, i benefici nell’a-
dottare il framework rely/guarantee che si è proposto.

139
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D.1 Introduzione

Questa sezione contiene il riassunto del capitolo 1 della tesi.
Al giorno d’oggi acquistano una importanza sempre maggiore i sistemi time-

e safety-critical implementati su calcolatori. Spesso questi sistemi sono anche
sistemi in tempo reale. Come noto, un sistema in tempo reale è uno la cui cor-
rettezza dipende intrinsecamente dal proprio comportamento temporale, ovvero
non solo dai valori computati ma anche da quando i risultati delle computazioni
sono disponibili.

I metodi formali sono una tecnica valida per gestire le difficoltà inerenti
lo sviluppo dei sistemi in tempo reale. In particolare, si accoppia l’uso di un
linguaggio di specifica formale con l’uso di strumenti di analisi come dimostratori
(ad esempio PVS).

Un problema che oggi spesso si incontra nell’uso dei metodi formali è la
loro scarsa scalabilità: essi tendono a diventare troppo complicati da gestire
se il sistema che si analizza è grande e complesso. Per superare questi limiti
sostanziali, dobbiamo sviluppare metodi adeguati a permettere la scalabilità di
queste tecniche, cos̀ı che possano essere usate con successo nell’intero processo
di sviluppo di sistemi critici.

Modularizzazione e composizionalità

È noto che la modularizzazione è un modo valido per gestire la complessità: si
considerano separatamente le parti nelle quali un sistema è diviso e si effettua
un’analisi locale delle loro proprietà. In seguito, si fondono insieme i risultati
locali per giungere ad un’analisi globale. Si è soliti riferirsi alla pratica della
modularizzazione nei metodi formali col termine di composizionalità.

Constatiamo che molti dei risultati presenti in letteratura sui metodi com-
posizionali sono stati raramente applicati all’analisi concreta di grandi sistemi.
Secondo noi, questo è dipeso molto spesso dallo scarso supporto (e automazione)
orientato all’uso dei framework proposti, che invece rimangono puramente su un
livello astratto.

Alla luce di ciò, l’obiettivo di questa tesi è di progettare tecniche e strumenti
composizionali per supportare e, quanto possibile, automatizzare la specifica e
verifica di sistemi modulari grandi.

Scelta del linguaggio di specifica di riferimento

Una scelta preliminare importante che dobbiamo fare è quella del linguaggio
di specifica formale da usare nel nostro lavoro. Vorremmo che tale linguaggio
avesse il maggior numero di queste caratteristiche:

• non troppo di basso livello e dall’uso abbastanza intuitivo (nei limiti del
possibile, trattandosi pur sempre di un linguaggio formale)

• flessibile ed espressivo, cos̀ı da poter essere usato in tutti gli stadi del
provesso di sviluppo

• con caratteristiche e costrutti modulari, per permettere la divisione della
specifica in parti e il riutilizzo di codice
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• supportato (o supportabile) da strumenti di automazione in tutto il pro-
cesso di specifica e verifica

Riteniamo che il linguaggio TRIO [26, 46], sviluppato da un gruppo di ricerca
del Dipartimento di Elettronica e Informazione del Politecnico di Milano, sod-
disfi adeguatamente molti dei requisiti sopracitati, pertanto lo abbiamo adottato
come linguaggio di riferimento per questo lavoro.

Al momento, esiste una codifica dei costrutti di base del linguaggio TRIO
in PVS. Quello che manca, e che forniremo in questa tesi, è il supporto in PVS
per i costrutti modulari di TRIO.

Obiettivi di questo lavoro

Gli obiettivi di questo lavoro sono essenzialmente tre.

• fornire una codifica delle caratteristiche modulari di TRIO in PVS

• fornire un framework composizionale per il linguaggio TRIO, in particolare
secondo il paradigma rely/guarantee

• analizzare e discutere i benefici nell’uso del framework rely/guarantee,
costruendo l’analisi su sistemi di esempio

Struttura del lavoro

La tesi è cos̀ı articolata. Il capitolo 2 recensisce la letteratura sulla compo-
sizionalità e costituisce una introduzione generale alle tecniche composizionali
che saranno sviluppate nel resto del lavoro. Il capitolo 3 descrive il linguag-
gio TRIO. Il capitolo 4 introduce una codifica delle caratteristiche modulari di
TRIO nel linguaggio di PVS. Il capitolo 5 propone un framework composizionale
per il linguaggio TRIO, con una regola di inferenza usabile per costruire prove
composizionali. Il capitolo 6 tratta l’uso concreto dello strumento TRIO/PVS
con specifiche modulari e rely/guarantee, descrivendo una serie di strategie di
prova per facilitare ed automatizzare questo tipo di prove. Inoltre, confronta
due prove dello stesso sistema fatte con e senza il framework rely/guarantee, in
particolare analizzandone la complessità. Il capitolo 7 illustra un esempio com-
pleto di specifica e verifica di un sistema composito, precisamente un serbatoio.
Questo esempio suggerisce anche alcune considerazioni metodologiche sull’uso
del framework rely/guarantee e sulle specifiche modulari in generale. Il capitolo
8 traccia le conclusioni salienti del lavoro e suggerisce quali potrebbero essere
suoi successivi sviluppi.

D.2 Letteratura sulla composizionalità

Questa sezione contiene il riassunto del capitolo 2 della tesi.
La composizionalità è la proprietà di un linguaggio o di un metodo per cui è

possibile verificare che un sistema rispetta la propria specifica unicamente sulla
base delle specifiche dei componenti che lo compongono, detti moduli, e su come
sono composti.

L’uso della composizionalità è solitamente considerato sotto i due aspetti
complementari della composizione e della decomposizione. Per decomposizione
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intendiamo l’uso di tecniche composizionali in uno sviluppo top-down di un sis-
tema, per raffinamenti successivi. Le tecniche composizionali servono in questo
caso a verificare che il raffinamento di un modulo in una serie di sottomod-
uli soddisfi la specifica voluta. Per composizione intendiamo invece il riuso a
posteriori di moduli già specificati, composti a formare un sistema modulare.
In questo caso le tecniche composizionali servono a verificare proprietà globali
dalle, già note, proprietà locali dei moduli che si vanno a comporre.

Parlando di composizione di moduli, esistono sostanzialmente due paradigmi
per la scrittura di specifiche composizionali. Solitamente siamo di fronte a speci-
fiche di sistemi aperti, ovvero interagenti con un ambiente esterno. Pertanto, le
nostre specifiche devono tener conto di ciò, nel senso che il comportamento spec-
ificato del componente deve assumere un certo comportamento dell’ambiente nel
quale esso lavora. Una prima soluzione consiste nel paradigma rely/guarantee:
in poche parole, si rendono esplicite le assunzioni volute sull’ambiente in una
formula E. A questo punto, la specifica rely/guarantee del componente ha la
seguente forma: se assumiamo che l’ambiente si comporti come in E, possi-
amo garantire che il modulo esibisce una certa proprietà M . Un’altra soluzione
è invece il paradigma “lazy”: in questo caso l’ambiente è modellizzato da un
componente aggiuntivo e composto col modulo che stiamo specificando. Nei
raffinamenti successivi del sistema, arriveremo ad un punto nel quale si potrà
abbandonare questo componente aggiuntivo, dimostrando che le altri parti del
sistema soddisfano, da sole, le stesse caratteristiche modellizzate da esso. Questa
verifica è però fatta più avanti nel processo, quando possibile (“pigramente”
come il nome lazy indica).

Tra la letteratura più rilevante sul paradigma rely/guarantee dobbiamo senz’altro
ricordare i lavori di Abadi e Lamport [2, 4], nei quali si conduce un’analisi appro-
fondita del paradigma rely/guarantee applicato alla logica TLA. Rimandiamo
al capitolo 2, e in particolare alla sezione 2.1.2, per dettagli su questo e altri
lavori inerenti il paradigma rely/guarantee.

D.3 Il linguaggio di specifica TRIO

Questa sezione contiene il riassunto del capitolo 3 della tesi.
TRIO è una logica temporale dotata di metrica, tipizzata e lineare, con

costrutti orientati agli oggetti e modulari per la scriturra di specifiche di sistemi
complessi. Il valore di verità di ogni formula TRIO è dato rispetto a un istante
di tempo corrente, lasciato implicito. L’operatore temporale fondamentale è
chiamato Dist e mette in relazione l’istante di tempo corrente con un’altro
istante. Combinando l’operatore Dist con i comuni connettori e quantificatori
della logica booleana, si definiscono una serie di operatori temporali derivati
(vedi tabella 3.1).

Chiamiamo item ogni entità primitiva usata per rappresentare un sistema,
come costanti, predicati, funzioni, eventi e stati. Le formule sono ovviamente
costruite predicando cogli operatori TRIO su item primitivi. Esistono tre tipi
di formule TRIO: assiomi, assunzioni e teoremi. Un assioma è una formula la
cui validità è postulata. Un’assunzione è una formula che si considera valida,
ma che va provata (“scaricata”) durante uno stadio successivo di specifica (ad
esempio quando si compongono moduli insieme). Un teorema è una formula la
cui verità va dimostrata con una prova.
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Attualmente, è disponibile una codifica dei costrutti non modulari di TRIO
in PVS, che costituisce il cosiddetto strumento TVS o TRIO/PVS. Il capitolo
descrive alcuni dettagli di questo strumento.

Come detto, TRIO ha anche una serie di costrutti orientati agli oggetti
che permettono la pratica dell’ereditarietà, la genericità e la modularizzazione.
L’unità base di incapsulamento è la classe, che è una collezione di item, for-
mule e moduli, ovvero istanze di altre classi. Le classi possono essere generiche
rispetto ad un certo numero di parametri e possono essere costruite sfruttando
i noti meccanismi dell’ereditarietà. Ogni classe TRIO può anche avere una rap-
presentazione grafica intutiva: si veda la figura 3.1 come esempio e le pagine
contigue per esempi di sintassi di TRIO e dei suoi costrutti modulari.

D.4 La codifica di TRIO in PVS

Questa sezione contiene il riassunto del capitolo 4 della tesi.
Una codifica delle caratteristiche non modulari di TRIO in PVS è già disponi-

bile. Quello che vogliamo fornire è una codifica anche per le caratteristiche
modulari del linguaggio. Premettiamo che i dettagli della codifica richiedono di
considerare molti particolari estremamente seccanti da gestire a mano. Quello
che bisogna avere in mente è che i dettagli della codifica siano realizzati da
uno strumento di traduzione automatica, cos̀ı che l’utente possa concentrarsi
unicamente sulla specifica TRIO.

Ogni classe TRIO è tradotta in una teoria (“theory”) PVS. Dal momento
che anche le teorie PVS possono essere generiche rispetto a parametri, la gener-
icità è tradotta naturalmente. In più, il problema fondamentale che dobbiamo
risolvere nel tradurre l’uso dei moduli che fa TRIO è che PVS non permette
la dichiarazioni di istanze multiple di teorie, nè ha gerarchie di importazioni
che possano rispecchiare la semantica TRIO. Questo problema è risolto intro-
ducendo un parametro addizionale, indicante un tipo, in ogni traduzione di
classe TRIO in PVS. Effettuando importazioni della stessa teoria con valori at-
tuali diversi per il parametro addizionale, si può distinguere tra istanze diverse,
a costo di una sintassi più prolissa.

Un altro problema consistente è la traduzione della visibilità da TRIO a
PVS. Purtroppo, i costrutti di PVS per la visibilità sono molto diversi da quelli
di TRIO ed in particolare sono molto poco flessibili e inadeguati allo scopo.
Si è pertanto scelto di non codificare direttamente la visibilità TRIO in una
traduzione in PVS, lasciando ad uno strumento (che peraltro è correntemente
in fase di sviluppo) il compito di presentare all’utente che scrive la specifica
un’interfaccia che lo forzi a rispettare le regole di visibilità come sono in TRIO,
effettuando trasparentemente una traduzione coerente in PVS.

Similmente, anche per i costrutti di ereditarietà non si è potuto fornire una
traduzione adeguata in PVS, viste le notevoli differenze semantiche (in par-
ticolare PVS non ha costrutti di ereditarietà del tipo di quelli dei linguaggi
orientati agli oggetti). Si fa ancora affidamento ad uno strumento di traduzione
automatica per la gestione di questi dettagli in maniera corretta.
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D.5 Un framework composizionale con TRIO

Questa sezione contiene il riassunto del capitolo 5 della tesi.
Una specifica rely/guarantee assume la forma: se assumiamo che l’ambiente

in cui il modulo opera rispetta la proprietà E, allora possiamo garantire che il
modulo rispetta una certa proprietà M . Ora, supponiamo di formare un sistema
componendo nmoduli. Per ognuno di questi moduli vale una specifica rely/guar-
antee del tipo: assumendo Ei garantisco Mi, per ogni i = 1, . . . , n. Vogliamo
formulare una regola di inferenza valida per dedurre che vale la specifica globale:
assumendo E garantisco M , dal fatto che valgono le specifiche rely/guarantee
locali e da come i moduli sono composti.

Per fare ciò, introduciamo prima di tutto un nuovo operatore temporale
in TRIO, indicato dal simbolo +−.. Considerando per brevità solo il caso a
tempo continuo, date due formule TRIO E ed M , E +−. M è una abbreviazione
per la formula AlwPe(E) ⇒ AlwPi(M) ∧NowOn(M). Informalmente, questo
significa: se E è stata sempre vera nel passato, allora M è sempre stata vera
nel passato, è vera adesso e lo sarà ancora per un intervallo non nullo di tempo
nel futuro.

A questo punto possiamo formulare una regola di inferenza rely/guarantee
valida, quella della proposizione 3. In sintesi e informalmente, le ipotesi della
regola di inferenza sono:

• che ogni assunzione sull’ambiente Ei sia stata vera “sempre prima” nel
passato.

• che ciascuna delle assunzioni Ei segua logicamente dalle formule Mi ed
eventualmente dall’assunzione globale E

• che la congiunzione logica delle formule Mi implichi la validità della for-
mula M

Sotto queste ipotesi, se ciascun modulo i rispetta la specifica rely/guarantee
Ei

+−. Mi, possiamo dedurre che il sistema composito rispetta la specifica globale
E +−. M .

D.6 Prove composizionali automatizzate

Questa sezione contiene il riassunto del capitolo 6 della tesi.
Questo capitolo descrive una serie di strategie di prova che sono state im-

plementate in PVS per facilitare e automatizzare passaggi che si presentano di
frequente nella conduzione di prove modulari e, più specificamente, secondo il
paradigma rely/guarantee come proposto in TRIO nel capitolo 5.

In particolare, sono state implementate delle strategie per l’uso del parametro
di istanziazione, ovvero di quel parametro aggiuntivo che c’è in ogni teoria PVS
che traduce una classe TRIO, come discusso nel capitolo 4. L’uso di questo
parametro durante la conduzione di prove in PVS comporta spesso l’esecuzione
di una serie di comandi di routine, che allungano molto la prova e richiedono
di curare molti dettagli di bassissimo livello. Le strategie di prova proposte
cercano di migliorare l’automazione di questi compiti. Altre strategie di prova
sono state predisposte per l’uso colle connessioni, ovvero ogni volta che si deve
usare nella prova il fatto che due item di moduli diversi sono da considerarsi
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logicamente equivalenti perché la specifica TRIO li dichiara come “connessi”.
Infine, si sono approntate una serie di strategie specificamente per l’uso della
regola di inferenza rely/guarantee, introdotta nel capitolo 5, nell’ambiente PVS.

Questo capitolo si chiude colla sezione 6.3 che contiene due prove dello stesso
semplice sistema composto da due moduli interconnessi. La prima prova è
svolta senza l’uso di alcuna delle strategie introdotte del capitolo e senza us-
are il paradigma rely/guarantee e la sua regola di inferenza. La seconda prova
invece adotta il paradigma e sfrutta le strategie di prova implementate prece-
dentemente. I risultati sono che la seconda prova risulta decisamente più corta
(in termini di numero di comandi del dimostratore introdotti dall’utente) e
anche dalla struttura più semplice (meno lemmi intermedi introdotti e meno
diramazioni nella struttura delle prove).

D.7 Il sistema serbatoio: un esempio

Questa sezione contiene il riassunto del capitolo 7 della tesi.
Questo capitolo descrive un esempio completo di sistema modulare, la sua

specifica e verifica in TRIO secondo il paradigma rely/guarantee. Il sistema
consiste in un serbatoio che può essere riempito di fluido e può (casualmente)
avere delle perdite. Il serbatoio è collegato ad un controllore che ha il com-
pito di mantenere un certo livello di fluido. Per fare questo può comandare
il riempimento del serbatoio quando necessario. La proprietà del sistema che
vogliamo dimostrare è che il livello di fluido è sempre tra un limite inferiore ed
uno superiore, in ogni condizione operativa.

Come detto, la specifica e la verifica sfruttano il framework rely/guarantee
del capitolo 5. Oltre all’utilità dell’esempio in sè, come applicazione del frame-
work, possiamo formulare una serie di considerazioni su aspetti metodologici
della suddetta applicazione, oltre che, più in generale, sulla specifica e verifica
di sistemi modulari. In particolare, si sono evidenziate nuove situazioni nelle
quali lo strumento TRIO/PVS mostra i limiti, nel senso che obbliga l’utente a
gestire dettagli, di livello molto basso, un gran numero di volte durante le prove.
Inoltre, l’esempio sottolinea come la derivazione di una serie di proprietà di re-
golarità, come continuità e linearità, sia stato di aiuto nella conduzione delle
prove e nella formulazioni di proprietà rilevanti. Ovviamente tali proprietà non
valgono per tutti i sistemi, ma ogniqualvolta sia possibile evincerle possono
risultare di grande utilità. In particolare, la linearità può essere determinante
nel dimostrare che la proprietà M del paradigma rely/guarantee vale anche “un
intervallo nel futuro”, cosa che altrimenti può limitare l’applicabilità della re-
gola di inferenza del capitolo 5. Infine, si è potuto notare come gli esempi più
felici di applicazione del framework rely/guarantee siano quelli nei quali vi è una
sorta di retroazione tra item dei vari moduli, cos̀ı da formare un anello chiuso.
Negli altri casi invece, l’uso dell’operatore +−. si riduce spesso a una semplice
implicazione, rendendo meno significativa la regola di inferenza.

D.8 Conclusioni

Questa sezione contiene il riassunto del capitolo 8 della tesi.
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Questo lavoro costituisce un tentativo di progettare concretamente un frame-
work composizionale per la specifica e verifica di grandi sistemi modulari, sec-
ondo il paradigma rely/guarantee e con il linguaggio TRIO. I risultati ottenuti
sono stati i seguenti.

• Una codifica dei costrutti modulari di TRIO in PVS. A partire da questa
codifica, si sono fornite una serie di strategie di prova volte ad automa-
tizzare i passaggi che si svolgono più frequentemente nella conduzione di
prove modulari di specifiche TRIO in PVS.

• L’introduzione del paradigma rely/guarantee con il linguaggio TRIO, in
particolare colla dimostrazione di una regola di inferenza per sistemi com-
positi.

• Mediante esempi, abbiamo mostrato che l’uso del framework ha permesso
di portare buoni miglioramenti nella conduzione di prove modulari, miglio-
ramenti che confidiamo possano aumentare al crescere delle dimensioni dei
sistemi analizzati.

Per concludere, sottolineiamo che nessuna tecnica, metodo o linguaggio può
costituire una “soluzione magica” al problema della specifica e verifica di sistemi
complessi. Ciononostante, crediamo che l’applicazione di tecniche modulari,
l’uso di adeguati linguaggi di specifica, un supporto adeguato con strumenti
e una pratica costante possono sicuramente rendere l’analisi di tali sistemi un
compito fattibile in pratica, permettendo lo sviluppo affidabile di sistemi in
tempo reale di dimensioni realistiche.

Lavoro futuro

Oltre a raggiungere i propri obiettivi, questa tesi ha suggerito anche direzioni
per ulteriore ricerca. Ecco le principali.

• Lo sviluppo di un ambiente integrato per la traduzione automatica da
TRIO a PVS e per la conduzione di prove, trasparente rispetto al sis-
tema PVS, che presenti l’utente esclusivamente con un ambiente TRIO.
Tale ambiente integrato è in effetti correntemente in via di sviluppo, e
sicuramente costituirà una miglioria pratica notevole.

• L’analisi di completezza della regola di inferenza del capitolo 5. Regole
simili hanno mostrato di essere incomplete ed è probabile che la stessa
cosa avvenga per quella proposta.

• Lo sviluppo di euristiche di alto livello che guidino l’utente nella specifica
e nella dimostrazione di sistemi secondo il paradigma rely/guarantee. In
altre parole, questo aspetto rientra sostanzialmente nell’analisi di questioni
metodologiche.

• L’applicazione del framework enunciato a sistemi realistici, anche nelle
dimensioni. Questo lavoro è al momento in preparazione.
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