Modeling the Environment
in Software-Intensive Systems

Carlo A. Furia, Matteo Rossi, and Dino Mandrioli
Dipartimento di Elettronica e Informazione, Politecnico di Milano
{furia, rossi, mandrioli}@elet.polimi.it

Abstract

In this paper we argue that the modeling activity in the development
of software-intensive systems should formalize as much as possible of the
environment in which the application being developed operates. We also
show that a rich formal model of the environment helps developers clearly
state requirements that might typically be considered intrinsically infor-
mal (or non-formalizable in general). To illustrate this point, we show how
a requirement for “orderly safe traffic” in a traffic system can be modeled,
and we briefly discuss the benefits thereof.

1 Introduction

In today’s engineering practice, we witness the ever increasing pervasiveness of
software in a wide and heterogeneous variety of systems — where it was absent
in the past. From a software engineering viewpoint, a natural consequence of
this fact is the growing need to understand modeling of such software-intensive
systems.

A software-intensive system (SIS) is a heterogeneous system whose software
components are entangled with — and thus deeply interact with — other non-
software components, such as mechanical parts, chemical processes, or even
social organizations. The non-software components have in common their being
part of the physical world. We denote by the term environment the non-software
components together with the physical world to which they belong. Therefore,
a SIS can be defined as a system with software components that interact with
an external environment. Embedded systems constitute a very large part of
such class of systems.

When it comes to modeling (and analyzing) a SIS, the central role of the
environment constitutes the main concern of the software engineer. More pre-
cisely, there are at least two broad sets of properties of the environment that
have to be modeled in a SIS: indicative properties and optative properties [4].
Indicative properties constitute a model of the physical world as it is; optative
properties are instead properties that we would like to hold in the environment,

as a consequence of the functionality (in a broad sense) of the whole system we
build. Optative properties of the environment constitute the requirements of
the system [4]. Therefore, in a SIS the interaction of the software components
with the environment should meet the requirements.

Notice that, although a conspicuous number of SIS can be considered as
controlled systems, the (more or less) traditional modeling techniques for con-
trol systems are not enough to fulfill all the modeling needs of a SIS. In fact,
the difficulty of modeling a SIS lies precisely in the tight interaction of two
traditionally distinct domains. Namely, one has to find ways to join software
modeling techniques with physical modeling paradigms, without giving up the
peculiarities of either.

In other words, analyzing the correctness of a SIS requires an accurate model:
(1) of the environment; (2) of the software system; and (3) of their interaction.
The optative part of the environment’s model constitutes the requirements,
whereas the software system model, at the highest level of abstraction, con-
stitutes its specification. Then, verifying the system amounts to proving that
the specification entails the requirements, with the given assumptions about the
interaction between software and environment.

Traditionally, requirements engineering has been the realm of informal mod-
eling and reasoning. To some extent, it is inevitable that some parts of the
requirements may be given only an informal characterization, as they ulti-
mately reside in customers’ expectations about what the system should achieve.
Nonetheless, it is increasingly argued that formalization can (and should) play
a role even at the requirements level, and thus in dealing with properties of the
environment [5].

However, how deep the formal modeling of environmental properties should
(or can) be is still a debated issue. Even if “a formalized requirement is al-
ways incomplete” [5], how much effort and accuracy should be invested in in-
troducing the formalization of a significant part of a SIS’s requirements (and
environment)?

In this paper, we argue that formalization can be pushed very deep in the
environment domain. We also demonstrate that this is not only possible, but
also desirable, as it brings several advantages and capabilities in the analysis
of the modeled system. In fact, the boundary between what can be formalized
and what cannot is often fuzzy and application-dependent. Therefore, attempts
at formalizing aspects that are “deeper in the environment” [5] of a SIS often
result in a better understanding of the system and of the boundaries themselves.
This usually offers the possibility of achieving a better system design, a more
accurate verification process, and, more generally, a higher confidence in the
dependability of the system that is built.

Some recent work to which we contributed [7, 1] has provided, among other
things, additional evidence to these claims. In this paper we develop the theme
further, with particular focus on SIS, through an example (a traffic system),
shown in Section [3

2 Pushing Formalization Deep in the Environ-
ment

In order to deepen the level of formality in modeling a SIS, two key “ingredients”
should be available: a meta-model of the aspects involved and a suitable formal
notation.

2.1 Meta-Model

A meta-model lays out precise definitions for the three macro components of
a SIS that we have outlined above; namely: the environment (and its require-
ments), the software system (and its specification), and the interface between
the two. A well-understood meta-model is very important to guide the formal-
ization of the system, and even to set the boundaries between what is formalized
and what is not. In this paper, we will refer to the meta-model that we have
recently proposed in [7], which enhances Gunter et al.’s well-known reference
model [2]|, and which we omit for reasons of brevity.

2.2 Formal Notation

The other basic ingredient for a deep formalization of a SIS is a suitable formal
notation.

As we have outlined in Section[I, SISs are characterized by the heterogeneity
of their components. Therefore, the formal notation should be very flexible,
rich, and expressive, so that it can be used to describe a variety of aspects of
the system: the diverse components, their dynamics (i.e., how they evolve over
time), the data they exchange, etc. As SISs often have real-time requirements,
the notation should permit to easily describe a rich set of temporal features.
Finally, the notation should deal with the description of modules and their
composition in a natural and powerful way, since SISs are inherently modular
(and their analysis benefits greatly from a modular model).

ArchiTRIO [6] is a UML-compatible formal language which, at its core, has
a very expressive and general metric temporal logic that permits to describe
the dynamics and temporal constraints of the phenomena of interest (be they
in the environment or in the machine domain). It is endowed with the modular
constructs and encapsulation mechanisms of UML such as class and interface,
which retain the same meaning and graphical representation they have in UML.

We will use the ArchiTRIO language for the development of the example of
Section [3] While we will explain the features of ArchiTRIO when appropriate,
a presentation of its syntax and semantics is beyond the scope of the present
article, and is omitted; the interested reader can refer to [6] for further details
about the notation. Of course, other notations with similar features could be
used to pursue the same approach.

3 Example: Traffic System
In [5], Jackson argues that:

“Although a physical and human environment is a nonformal
domain, the engineering task of developing the system must rely—
somewhat as in established branches of engineering—on formalized
descriptions of the physical world and on reasoning about those de-
scriptions. It’s possible to bring these formalizations and the as-
sociated reasoning within the program specification’s purview, and
hence within the scope of some formal verification tools and tech-
niques.”

Our point of view is similar to the one presented by Jackson, but with some
differences. We maintain that it is important, for the correct development of
a SIS, to provide a mathematical (i.e., formal) model of the environment that
is as accurate as possible without it becoming unwieldy. Also, we argue that
such a model need not exist only in relation to the application’s specification;
rather, as discussed also in [7], it should be developed separately (i.e., using
only environment-specific variables), and then “connected” to the specification
through a suitable set of axioms. Finally, we hold that the verification activity on
the formal model of the environment should begin as soon as possible, possibly
(if not preferably) before the latter has been related to the system’s specification.

In this section, we illustrate our approach and point of view on modeling
through a common example taken from [5], a traffic system. The goal of the
traffic system is to ensure “orderly safe traffic”. Let us formally define it through
the ArchiTRIO formal language [6].

® Propery > M_ROADS
® Propery > D_SAFE
© Intersection

1 © QueueOfVehicles

N_ROADS Fxehicled «binds T8 Qlass>T
diaads - " T - Yehicle @ DynamicQueue
© RoadEnd O axstates s Que_ue i

1

@ sevents arrive (e:T)

o Tl dir : Direction :
“Tls hinds @ sevents departie:T)

+ pedestrians
1 T-> Pedestrian

1 @ QueueOiPedestrians

Figure 1: Elements of the environment of the traffic system.

As mentioned in [5], the requirement of such a system is “deep in the en-
vironment”, so that a model of a number of physical elements (roads, vehicles,
pedestrians, etc.) must be introduced before one can formulate it. Figure [1
shows a fragment of a UML class diagram (which is also an ArchiTRIO class

diagram) representing the physical elements that are necessary to formulate the
requirement. As the figure shows, we focus our attention on a single intersec-
tion, which is the terminus of N_ROADS roads, where N_ROADS is a parameter
of the intersection (a road that continues after the intersection is represented
through two separate RoadEnds). At every road end vehicles and pedestrians
arriving at the intersection can accumulate in queues; both the queue of ve-
hicles and the queue of pedestrians are represented as instances of the generic
class DynamicQueue: whenever a new vehicle v (resp. pedestrian p) arrives at
the intersection, this is represented through an occurrence of event arrive(v)
(resp. arrive(p)) in QueueOfVehicles (resp. QueueOfPedestrians); similarly, event
depart(v) (resp. depart(p)) represents a vehicle (resp. pedestrian) leaving the
intersection.

3.1 Environment Formalization

With a formal language as expressive as ArchiTRIO one can formally define
the behavior of the queues informally described above. In fact, by exploit-
ing the object-oriented features of ArchiTRIO, this can be achieved simply by
adding formulas to class DynamicQueue, of which both QueueOfVehicles and
QueueOfPedestrians are instances.

For example, the following formula of class DynamicQueue defines how the
state s of a queue evolves over time whenever a new arrival or departure occurs.

Vq : Queue[T](—¢.isEmpty =
(s=q
—
Since(Be; : T(arrive(ey) V depart(ey)),
Jes : T,q : Queue[T](
(arrive(es) As = ¢’ A g = ¢'.enqueue(es))V
(depart(es) As = ¢ A q = ¢ .dequeue)))))

More precisely, the formula defines that, in any instant, the state of the queue is
q (with g a value of generic type Queue, which will be further described below),
and there is at least one queued “actor” (i.e. an element of a generic type T)
if and only if there is an element e that either previously arrived (and queued
up) or departed (and left the queue), and noone has arrived nor left since.

For simplicity, we could also specify that one can leave the queue only if
he/she is at its head (which, for example, in the case of a queue of vehicles
represents the fact that overtaking a vehicle at the front of the queue is not
allowed, nor one can make a U-turn and leave the queue). This would be
described by the following formula (also of class DynamicQueue):

Ve : T(depart(e) = e = s.head)

The value of state s of a DynamicQueue at a certain instant ¢ describes what
elements are queued at ¢, and in what order. Since elements enter and leave the
queue in a First-In-First-Out policy, it is most natural to model the possible

values of s through a classic “queue data type”, such as for example the one
defined in [3] [' Hence, the value of state s is defined to be of generic type Queue.
Type Queue can also be formally defined, in a manner similar to that of [3]. For
example, the following formula of class Queue defines (in a “classic” fashion)
what element is the head of a queue (which essentially states the FIFO nature
of Queue):

Vq : Queue[T],e e’ : T(
(g.enqueue(e)).head = €’
<~
(gisEmpty A e/ =€) V (—g.isEmpty A ¢’ = ¢g.head))

where g.enqueue(e) is the queue (say, ¢’) obtained by appending element e (of
generic type T) to queue ¢, hence (g.enqueue(e)).head is the head of ¢'.

3.2 Requirements Formalization

After having introduced the elements of Figure 1, we can now state a possible
requirement of “orderly safe traffic”. Informally, we state that the traffic is
orderly and safe if vehicles and pedestrians arriving at the intersection from
directions that are “incompatible” with each other (e.g., perpendicular ones)
enter the intersection with sufficient delays from each other.

To formalize this requirement, we first introduce a predicate, conflicting(ry, r2),
in class Intersection (where 71 and 72 are RoadEnds of the Intersection itself); in-
tuitively, predicate conflicting describes which roads are “incompatible”, and it
is true for all those pairs of roads from which vehicles (or pedestrians) cannot
flow into the intersection at the same time. Finally, the requirement above can
be represented by the following ArchiTRIO formula of class Intersection:

OrderlySafeTrafficReq:
Vri, 79 : RoadEnd(
conflicting(rq,r2) A
Jvq : Vehicle(ry.vehicles.depart(vy))
_—
Puy - Vehicle(Within(r,.vehicles.depart(vs), D_SAFE)) A
Pp : Pedestrian(Within(ry.pedestrians.depart(p), D_SAFE)))

Formula OrderlySafeTrafficReq states that, if r; and r are two conflict-
ing roads of the intersection and a vehicle enters the intersection from road
r1, then no vehicles and no pedestrians enter (or have entered) the intersection
from road ro within D_SAFE time units from the current instant. Note that, in
this model, D_SAFE is a constant delay that is a parameter of class Intersection;
however, in a different (and a little more sophisticated) model it could depend
on the speed of the vehicle, its direction, etc.

INote that there is no notion of “implementation” or “programming” here: We use the
queue data type only as a device to model information, without any reference to any program-
ming activity.

3.3 Discussion

Let us immediately note that the notion of “orderly safe traffic” stated above is
by no means the only possible one (it is probably not the most accurate, either).
For example, one may employ different notions, which take into account not only
the road from which vehicles or pedestrians come, but also the one they wish
to take; also, another possible definition of “orderly safe traffic” could be “the
absence of accidents”. Such notions could be formalized in ways that are similar
to the one shown above, provided suitable additional elements are introduced
in the model (e.g., the notions of “next road” and “position” for vehicles and
pedestrians).

We argue that the mere exercise of precisely expressing the vague and im-
precise notion of what constitutes “orderly and safe traffic” is a necessary step
when one sets out to design a traffic control system. In fact, different notions
of “orderly and safe traffic” might entail different solutions to the problem. For
example, the requirement above is probably best satisfied by employing traffic
lights; on the other hand, a requirement that asked for “minimum separation”
between cars entering the intersection might be satisfied through a roundabout,
and so on. Even this simple example shows that deepening the formalization of
requirements sheds early light on the design decisions to be taken (later).

After the requirement has been precisely stated, the next design decision is
how to meet it. As hinted above, requirement OrderlySafeTrafficReq does
not mention the use of traffic lights; in fact the choice of employing traffic lights
to ensure “orderly and safe traffic” is already a design decision (one taken in
the early stages of the development process, but still a design decision). If,
however, it is decided to use traffic lights, from the modeling point of view the
next step would be to introduce the elements on which the specification will
be built (i.e., as remarked in [7], the machine-domain variables). Following the
lead of [7], then, one would introduce new elements such as light units, traffic
sensors, system controller, and build a suitable set of axioms that describe how
these elements are related to the physical components of Section 3|

While such an exercise is outside the scope of this article, let us hint at how
it could be proved that the designed system actually satisfies the requirement
of Section [3| If, for example, we assumed “good behavior” by pedestrians and
drivers (which could be formalized by formulas stating that “a vehicle will not
enter the intersection with a red light”), then a control system which ensures
that no green lights are on at the same time on conflicting roads and that
periodically all lights are red for a certain amount of time (which will depend in
some way from D_SAFE) could be formally shown to guarantee the requirement as
a logical consequence of such properties, and of the indicative properties of the
environment, e.g., the formal description of the queues (see [1] for further details
on this issue). Finally, let us note that proving properties in a deductive fashion
is not a requisite in our approach; utility requirements stating a desired average
traffic of vehicles through the intersection could be analyzed using different
mathematical tools such as, for example, Markov chains.

4 Conclusion

In this paper we argued through a simple common example that in software-
intensive systems great care should be given to the formal modeling of the
environment with which the application interacts. Also, we showed how formal
notations can be “pushed deep in the environment” and used to describe not
only the software parts of the application, but also the physical elements which
influence its behavior. This allowed us to formally express an “orderly safe
traffic” requirement that might typically be considered inherently informal.

Acknowledgments

The authors thank Elisabeth Strunk and John Knight for the fruitful discussions
and collaboration, which shaped several of the views expressed in this article.

References

[1] Carlo A. Furia, Matteo Rossi, Elisabeth A. Strunk, Dino Mandrioli, and
John C. Knight. Raising formal methods to the requirements level. Technical
Report 2006.64, Dipartimento di Elettronica e Informazione, Politecnico di
Milano, November 2006. Also: Technical Report CS-2006-24, Department
of Computer Science, University of Virginia.

[2] Carl A. Gunter, Elsa L. Gunter, Michael Jackson, and Pamela Zave. A refer-
ence model for requirements and specifications. IEEFE Software, 17(3):37-43,
2000.

[3] John V. Guttag and James J. Horning. Larch: Languages and Tools for
Formal Specification. Springer-Verlag, 1993.

[4] Michael Jackson. Software Requirements and Specifications. Addison-Wesley,
1995.

[6] Michael Jackson. What can we expect from program verification? IEEE
Computer, 39(10):65-71, 2006.

[6] Matteo Pradella, Matteo Rossi, and Dino Mandrioli. ArchiTRIO: A UML-
compatible language for architectural description and its formal semantics.
In Proceedings of FORTE 2005, volume 3731 of Lecture Notes in Computer
Science, pages 381-395. Springer-Verlag, 2005.

[7] Elisabeth A. Strunk, Carlo A. Furia, Matteo Rossi, John C. Knight, and
Dino Mandrioli. The engineering roles of requirements and specification.
Technical Report CS-2006-21, Department of Computer Science, University
of Virginia, October 2006. Also: Technical Report 2006.61, Dipartimento di
Elettronica e Informazione, Politecnico di Milano.

	Introduction
	Pushing Formalization Deep in the Environment
	Meta-Model
	Formal Notation

	Example: Traffic System
	Environment Formalization
	Requirements Formalization
	Discussion

	Conclusion

