COMPOSITIONAL PROOFS

FOR REAL-TIME MODULAR SYSTEMS

BY

CARLO ALBERTO FURIA
Bachelor in Computer Engineering, Politecnico di Milano, 2001

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Chicago, 2003

Chicago, Illinois

Copyright by
Carlo Alberto Furia

2003

ACKNOWLEDGMENTS

I would like to thank my advisor Professor Dino Mandrioli for giving me the opportunity
to work on this interesting subject and for his support and valuable experience.

I would also like to thank Matteo Rossi for his help, remarks and suggestions during the
preparation of this work: they all have been well addressed, fruitful and indispensable.

I also thank Professor Angelo Morzenti for addressing me to the right literature related to
this work, an important step and a source of ideas.

Finally, I thank all the members of the UIC faculty whom I have met during my staying in
Chicago, for their roles in the enriching experience this Master has been.

Adhering to the policy “professional acknowledgements only” I am not listing here all the
people, friends and relatives, whose personal support has been of the greatest importance for

my life as a whole. Instead, I expect to thank them all in more direct ways.

CAF

iii

TABLE OF CONTENTS

CHAPTER PAGE
I INTRODUCTION., 1
1.1 Modularization and compositionality] 2

1.2 Choice of the reference specification languagd 4

1.3 Goalsof the workl 6

1.4 Structure of the workl 7
RELATED WORK N MPOSITIONALITY] 9
p.0.1 The compositional paradigm] 9
P.0.2 Decomposing and composing 10

.0.3 The origins of compositionality] 12

P.1 Compositional techniques for the verification of real-time systemsg 13

D.1.1 Decomposition of systemd 13

1.2 Composition of systemd 19
D.1.2.1 The rely/guarantee paradiem| 19
p.1.2.2 The lazy approachl 25
R.1.3 Compositionality in non-deductive frameworkd 33
P14 Another use of compositionality in system analysid. 35

R.2 The complexity of compositional techniqued 36
THE TRI PECIFICATION LANGUAGH 40

B.1 TRIO and its encoding in PV .« . o v v oo i 40
B.1.1 TRIO in-the-small 40
B.1.2 PVS encoding of TRIO in-the-smalll. 44

B.2 Modular features of TRIO| 47

i THE ENCODING OF TRIOINPVS 52
1.1 TRIO classeg 53

1.1.1 Basicissued 53

1.1.2 Importing multiple instanced 55

1.1.3 Connectiond 58

1.2 The visibility issud 60

1.3 Class inheritancd 61

b A COMPOSITIONALITY FRAMEWORK WITH TRIQ. 71
b.1 A rely/guarantee specification| 72

2 Compositional inference rules for rely/guarantee systemy . . . 78

5.3 Safety propertied 84

iv

TABLE OF CONTENTS (Continued)

CHAPTER

H.3.1 Conditions for safety preservation|

5.3.2 A sufficient syntactical condition for safety]
b.3.3 Safety is of little use in a TRIO rely/guarantee framework] . .

b.4 A stronger semantics for rely/guarantee propertied.

b.5 A valid inference rule for rely/guarantee systemg

b.6 The complexity of compositional proofs|

b AUTOMATED COMPOSITIONAL PROOFS
b.1 Using modular TRIO in PVY. .+« o o v v i oo

b.1.1 Strategies for class instantiationd

6.1.2 Strategies for use of connectiond

b.2 Rely/guarantee proofs in PVY

5.2.1 Encoding of a rely/guarantee specification|

p.2.2 Strategies for rely/guarantee proofd

b.3 A comparative example of modular proofl

b.3.1 System description and specification]
p.3.2 Proof without strategies and rely/guarantee proof rulq
6.3.3 Proof with strategies and rely/guarantee proof rule
p.3.4 Comparison of the two proofd

7 CONCLUSIONS s s
[7.1 Future workl

[APPENDICES
Appendix Al
Appendix Bl.

| Appendix (.
[CITED LITERATURE
...

86
92
94
96
104
108

112
114
114
120
122
122
127
128
128
130
133
134

143
144

147
148
151
160
190

196

LIST OF TABLES

TABLE PAGE
L TRIO derived temporal operatory 42
T Safety-preserving TRIO temporal operatord 87
[L11 Non safety-preserving TRIO temporal operatord. 88
v Comparison of length of the two proofs (in proof commands) . . . 138
V Comparison of leaves of the two proofd 140
VI open-fl proof strategy 151
VII set-def-inst proof strategy] 152
[VIII clear-def-inst proof strategy|. 152
X def-inst proof strategyl 152

lm-def-inst proof strategy] 153
X1 Im-def-use proof strategy|. 153
X 11 connect proof strategyl Lo 154
X TT1 rg-use-definitions proof strategy| 154
XIV rg-i-case proof strategy 155

vi

LIST OF FIGURES

FIGURE PAGE
[L Graphical representation of a TRIO clas§ 49
P Interface of the echoer class 76
3 Interface of the two_echoersclasd 81
Y Induction on temporal intervald 102
5 Proof dependencies in normal prooff. 136
6 Proof dependencies in rely/guarantee proof 137

vii

LIST OF ABBREVIATIONS

PVS Prototype Verification System ([[§)
R/G Rely/Guarantee (see section P.1.2.1))
R-T Real-Time

TCC Type Correctness Constraint

TD Time Dependent

TI Time Independent

TLA Temporal Logic of Actions (B6])

TVS Trio Verification System (also known as TRIO/PVS)

viii

SUMMARY

One common problem in applying formal methods to the analysis of realistic industrial-size
systems is that these methods often do not scale well. In order to overcome such difficulty,
formal languages and tools supporting modularization and compositionality must be realized
and used.

Under this respect, this thesis addresses the problem of designing techniques and tools
to support the formal specification and verification of large modular real-time systems. The
reference specification language for this analysis is the temporal metric TRIO.

First, a mapping of the modular features of the TRIO language onto the language of the the-
orem prover PVS is designed. In connection with this, a number of automated proof strategies
are designed to support the conduction of TRIO proofs in the PVS environment.

Second, a rely/guarantee compositional framework for the language TRIO is discussed and
a compositional proof rule is derived. This framework is also encoded in the PVS environment,
so that it is practically usable.

Finally, the benefits of adopting the proposed rely/guarantee compositional framework are

discussed with the aid of working examples.

ix

CHAPTER 1

INTRODUCTION

Today, computer-based time- and safety-critical systems are gaining more and more im-
portance. Examples of such systems are controllers operating in critical environments such as
nuclear and chemical plants, supervision systems for flight control tasks, monitoring systems for
patients under special treatements. These are usually embedded systems working under critical
constraints, or large systems characterized by their complexity. They also often are real-time
systems, that is with sharp timing requirements. More precisely, a real-time system (B9) is
one where the correctness intrinsically depends on the temporal behavior; in other words, the
outcomes of the system must be fully time predictable. To put it in another way, while the
correctness of a common application only depends on the values it outputs, the correctness of
a real-time application depends also on when those values are outputed. As a result, the whole
development process is a hard, complex and error-prone task.

A common division among real-time systems is between hard and soft real-time. A hard
real-time application is one where the failure in meeting the timing requirements may result
in totally catastrophic outcomes. Therefore, in a hard real-time system we must absolutely
guarantee that all the deadlines are met, otherwise the design is unacceptable. On the other
hand, a soft real-time application is one where the failure in meeting the timing requirements
is undesirable but may be occasionally acceptable. In other words, in soft real-time systems

failure in meeting the deadlines has a sustainable, though still highly undesirable, cost.

1

Formal methods (P7), ([4) are a valid technique to manage and overcome the difficulties in
the development of both hard and soft real-time systems: writing formal unambiguous specifi-
cations can guide the traditional activities of validation and testing, and makes the systematic
deduction of desired properties of the specified system feasible as early as possible in the devel-
opment process. To support the use of formal specification languages and to aid the designer,
a number of widely used analysis tools has been developed, for example theorem provers (e.g.
PVS (B), ACL2 (Bg)) and model checkers (e.g. SPIN (R9), SMV (E2)).

However, a common difficulty in applying these methods and tools is that they often do
not scale well: they are used with success when dealing with relatively small cases, but they
tend to become too difficult to manage if the system under analysis is really large and complex.
So, we often face the need of applying formal methods to the analysis of realistic industrial-
size systems, while they are usually fit for the use on small “toy” problems only. Consider for
example the state explosion problem in model checking or the heavy user interaction required in
deductive methods when large, realistic problems are tried. In order to overcome this substantial
limitation we need to develop adequate methods to let those basic techniques scale well on large
problems, so that they can become more widely used in the development process of critical

systems and efficiently help to increase the accuracy and the correctness of the whole process.

1.1 Modularization and compositionality

It is widely acknowledged that an effective way to manage complexity is by means of mod-
ularitazion: instead of facing the analysis of a large system as a whole, we consider separately

the parts into which it is divided and perform local analysis on them. Then, we merge the

local results together, to get a global analysis of the whole system. In order to do that, we
need specification languages with modularization and object orientation constructs, to com-
pose incrementally the formal descriptions and to reuse them. Moreover, the analysis tools
must manage these modular features of the language as well, to support the complexity in the
verification process and automate the activity as much as possible. Usually, we refer to the
practice of modularization for formal languages and tools as compositional methods.

Many of the interesting ideas presented in the literature about compositional methods (re-
viewed in chapter E) have been rarely, if ever, concretely applied to the analysis of large systems,
as often deplored by the authors themselves. In our opinion, this depends to a certain extent on
the fact that the proposed techniques are too often embedded in a rather abstract framework,
that requires a noticeable effort to be understood and put into practice. What the average user
would require is some form of automation in the process of verification, embedded in a friendly
framework. More precisely, the support tools should not only help to carry out the verification
of simple, small modules (in-the-small verification), but should furthermore aid the user in
the conduction of proofs about global properties of the system, putting together properties of
single modules, thus guiding the application of compositional techniques at least in the more
commonly occurring cases.

Under these respects, the overall goal of this thesis is to design compositional techniques
and tools to support and, as much as possible, automate, the specification and verification of
formally specified, large, modular systems. More precisely, the main focus in our work will be

on the composition of modules, rather than on the decomposition and refinement aspects (as

defined in chapter). These latter aspects would require a careful analysis of object-oriented
constructs and inheritance rules. On the contrary, we want to focus on the scenario where a
large modular system has been specified by the user by composing simple modules together.
We want to analyze such a system, proving and disproving global properties and checking its

consistency and realizability.

1.2 Choice of the reference specification language

Another important preliminary choice we have to make is the formal specification language
to use in performing our analysis. Let us briefly consider what are the most desirable features
a formal language should have, with respect to the specification and verification of real-time
systems.

First, we want it to be not too low-level or requiring a deep expertise to be used. Of course,
we know that the proficient use of formal methods necessarily requires a specific training with its
theoretical foundational aspects. However, we would like that at least the very basic concepts of
our specification language are understandable even by non experts, even if only at an intuitive
level. In this case, the domain experts may quickly contribute in the process of writing a formal
specification even if their backgrounds do not encompass much logics and computer science.

Second, we want the language to be flexible and expressive enough so that it can be used

through all the stages of the development process, stepwise. Under this respect, we do not want

it to force the user to introduce details since the very first stages of specification, when one
usually wants a certain freedom and does not like to be constrained under one view only.]

Third, since our focus is on specifying large systems, we want the language to be endowed
with modular features that permit the division of the specification into parts and the reuse of
modules whenever it is possible.

Finally, we want that the language has (or may be given) an adequate support with tools to
automate relevant parts of the specification and verification process. More precisely, we want
that the tools guarantee that every detail is in place, while limitating the exposure of the user
to the lower-level aspects.

We think that the TRIO specification language (F), ([]) fullfills nicely several of the above
requirements. TRIO has been created and developed in the Dipartimento di Elettronica e
Informazione ﬁ of Politecnico di Milano . It has been, and still is, the preferred reference
specification language for the research on formal methods going on in the department. This

fact also influenced the choice of the language.

! As a folkloristic note, we remind that, in the computer jargon, languages enforcing one single narrow
view of doing things are nicknamed bondage-and-discipline languages (E), (@), as opposite to liberal
languages.

%i.e. Electronics and Computer Science Department; http://www.elet.polimi.it

3http://wuw.polimi.it]

http://www.elet.polimi.it
http://www.polimi.it

All in all, we choose TRIO as the base reference language for this work. However, we also
believe that some of the results that will be obtained can be applied with success to other
specification formalisms as well, mutatis mutandis.

As discussed above, a very important goal to permit the usability of formal methods on large
systems is an adequate support with suitable analysis tools. Currently, a number of analysis
tools are available for the TRIO language. In particular, an encoding of the basics (i.e. non
modular aspects) of the language is available in PVS (). Moreover, an integrated environmet
offering various verification functionalities, ranging from model checking to theorem proving
and test-case generation, is currently being developed. At the moment, an adequate support of
the modular features of the language in PVS is lacking; this support should encompass both the
mapping of the modular features onto the PVS language, and a support for the computer-aided
conduction of proofs.

This work aims at providing such a support. Therefore, we will focus on deductive methods,
and more precisely we are going to consider syntactical techniques, since the PVS encoding of
TRIO constitutes a basically syntactical toolf].

1.3 Goals of the work

After considering all the aforementioned issues, the goal of this thesis is threefold.

e To provide an encoding of the modular features of the TRIO language in PVS, extend-

ing the current in-the-small tool. This will consist of both a mapping of the modular

IThe fact that the encoding of TRIO in PVS (described in chapters fland [i) is a semantical encoding
must not be confused with the fact that the resulting tool is instead a syntactical tool.

constructs onto the PVS language and a set of proof strategies to provide an adequate

automated support for the conduction of modular proofs.

e To provide a compositionality framework for the language TRIO. More precisely, we
are considering how to apply the rely/guarantee paradigm to our specification language,
considering the methodological issues that arise and explaining how the results can be

concretely employed in PVS encodings of TRIO specifications.

e To analyze and discuss the benefits of adopting the devised rely/guarantee framework
in terms of manageability of large systems and proofs, basing our discussion on working

examples.

1.4 Structure of the work

This thesis is articulated as follows.

Chapter [reviews the recent literature about the topic of compositionality; it also con-
stitutes a general introduction to compositional techniques that are to be employed in the
remainder of the work.

Chapter [J describes the TRIO language and its current in-the-small encoding in PVS.

Chapter Hl introduces a mapping of the modular features of TRIO onto the PVS language;
this mapping will be the basis for the conduction of automated proofs with our reference
language.

Chapter [| devises a compositionality framework for the language TRIO. More precisely,
we consider how a rely/guarantee specification should be written in TRIO and we prove an

inference rule to carry out compositional proofs.

Chapter [g considers how to effectively help and automate the conduction of proofs in
TRIO/PVS. To achieve this, we design a number of PVS proof strategies to be used with the
TRIO/PVS tool to facilitate both general modular proofs and rely /guarantee proofs. Moreover,
we compare two proofs of the same system done with and without adopting the rely/guarantee
methodology and the PVS proof strategies and describe how this affects the complexity of the
job.

Chapter [] draws the most important conclusions to the work and also hints at what its
future developments may be.

Finally, appendices [A] and [list the PVS theories and proof strategies as they have been
coded, while appendix [] describes the lower-level details of the two PVS proofs considered in

chapter ff.

CHAPTER 2

RELATED WORKS ON COMPOSITIONALITY

Nowadays, the urge to overcome the inherent limits of scalability of the most popular formal
methods is a common awareness among the research and industrial communities. The usual
term by which these techniques, aiming at applying formal languages and methods to large
problems, are usually labeled is compositionality. Roughly speaking, by this term we mean
any method where a large problem is divided into related parts, so that the burden of the
analysis of the original task is split into smaller, more manageable subproblems. The method
should then allow to verify certain desired global properties by composing intermediate results,
provable independently on the parts in which the problem has been divided with traditional
in-the-small techniques. The following general introduction to the issue of compositionality

follows the survey ([L6).

2.0.1 The compositional paradigm

Strictly speaking, compositionality is the technical property of a language or a method by
which it is possible to verify that a formalized system meets its specification only on the basis
of the verified specifications of its constituent components, usually called modules, and on how
they are combined (composed). To be more formally precise, let us consider a system II for

which we want to prove that some specification property ¢ holds. If Il can be expressed as a

10

composition of n parts IIy,...,II, as in IT = II; || ... || II,, where “||” denotes some defined

form of composition, then a compositional proof of ¢ can be conducted as follows:

1. Find suitable properties ¢; for each of the parts II;, ¢ = 1,...,n such that the next step
is possible. The verification of these properties can be performed by means of traditional
in-the-small verification techniques if the II; are small enough. Otherwise we can further

subdivide them into parts and apply the algorithm recursively.

2. Prove that from the fact that each of the II; satisfies property ¢; it can be inferred that

the whole system II satisfies ¢, i.e.

= ((H¢F¢i))=>(ﬂ)=s0)
i=1...n

The technical property of compositionality specifies under which conditions this inference

step is sound.

Hence, compositional techniques are yet another application of the divide et impera (divide and
conquer) paradigm, to the specification and verification of large systems.

2.0.2 Decomposing and composing

Compositional methods can be considered under two complementary aspects with respect
to the development process of a system.

The first one is the decomposition aspect. The development of a system can start from
a very high-level and terse specification, that includes some desired global properties it must

respect. The developer refines this initial specification through a series of steps, hierarchically

11

ordered (see for example ([[§)). Each step produces a lower-level version of the specification,
which will be eventually implementable. This is the well-known top-down paradigm for the
development of programs. By applying formal methods to this process we can ensure that each
step in the development is correct with respect to the originally specified properties, so that
errors can be identified and corrected as early as possible. This stepwise verification paradigm is
usually known as verify-while-develop. Well-known formalisms adopting this paradigm are the
B method (f]) and the Z specification language (5g), (F0)). Moreover, a compositional technique
allows the developer to perform such kind of a priori refinement process: at each step the higher-
level specification is split into parts which describe lower-level details. The correctness of these
new details is verified independently and then the global correctness of the composite system
formed by these parts is inferred according to compositional rules. Section below discusses
some ideas about this aspect of compositionality found in the recent literature.

The second aspect is instead the composition aspect. Not every development process can
be performed as discussed in the paragraph above. One often has to deal with a complete
specification of a complex system which should be verified for consistency and correctness with
respect to certain properties. Such a a posteriori verification can still take advantage of the
partitioning of the system into parts to reduce the overall complexity of the process. Moreover,
such an approach allows the reusability of individually specified and developed components,
since they can be combined into larger systems in different manners, in a bottom-up style of

composition, without the need to re-verify their individual properties every time, but simply

12

relying on compositional proof rules to infer the global properties of the system. Articles about
such paradigms for composing individually specified modules are reviewed in section R.1.2.

To mirror the distinction between these two aspects of compositionality, the terminology
has evolved into the term modularity to refer to the composition aspect, while using the term
compositionality in a narrower sense to refer to the decomposition in a top-down refinement
process. However, these uses of the vocabulary are neither accepted by all authors, nor used
with perfect consistency even by those who adopt them. That is why we will not bother
to adhere to a precise distinction, but we will use them both, rather freely. More precisely,
hereinafter we will generally use the term compositionality to refer to the technical property in

use, while referring to the parts in which a system is decomposed as modules.

2.0.3 The origins of compositionality

The principle of compositionality was first formulated within the context of propositional
logic and philosophy of language by Gottlob Frege (P3). In a broad sense, a compositional
system is a system where the global properties are function of the properties of the parts
in which the system is divided. Most natural and artificial artifacts intuitively exhibit this
property. Natural language is compositional as well, since the meaning of a sentence in English

depends on the meaning of its parts.[]

!Contemporary linguists tend to consider the principle of compositionality valid in a narrower sense,
that is when atomic representations make the same semantic contribution in every context in which
they occur. In this sense, natural language is not fully compositional, since the meaning of a noun or of
a verb is not completely independent of its context: a typical example of this is the different meaning
of the verb “to kick” in the sentences “he kicked the ball” and “he kicked the bucket”. However, the
compositionality principle is commonly used in its original, broader sense.

13

It is interesting to note that several formal techniques for the analysis of computer programs
have evolved from an initial non-compositional stage to a structured compositional one, as the
programs under analysis become more complex. For example, for sequential programs, the
first non-compositional method was the one by Floyd (RJ); two years later a new axiomatic
compositional technique was proposed by Hoare (R§). It is no surprise that a similar evolution
is happening in the analysis of real-time systems as they grow in importance. What we are
seeking is to extend the structured paradigm for program development to the analysis of real-

time concurrent systems.

2.1 Compositional techniques for the verification of real-time systems

2.1.1 Decomposition of systems

The first framework for applying compositionality to the decomposition of high-level specifi-
cations into lower level ones is proposed by Abadi and Lamport ([]). Let us consider a system or
a program specified using TLA formulae (B€]). If M generically indicates the complete system,
we want to find a refinement, i.e. a lower-level description, M of it which implements M,
that is such that every behavior of the world which satisfies M* also satisfies M; in formulae:
M! = M. In order to prove that, one has to find a refinement mapping (), that is, roughly
speaking, a suitable function which maps the state variables of M' into state variables of M so
that any formula true for M is also true for M.

However, being M in general a complex system, finding such a mapping may be impractical.
What we want to do is to exploit modularization to render the process easier. If M1, ..., M, are

TLA formulae representing the n parts into which M is split, then their conjunction represents

14

the whole system M: M = M; A --- A M,. In fact, every possible history of the universe is
compatible with M if and only if it is compatible with all the M;,i =1,...,n.

Let us now refine each of these modules individually into lower-level descriptions M {, o, ML
Our original proof that M! = M is now equivalent to M{ A AMY = MyA---AM,. We would
like to decompose this proof into the presumably simpler proofs le = M; fori=1,...,n. In
general, this reduction requires some additional assumptions about the modules M;, to assure
the soundness of the reasoning. We usually refer to these additional assumptions as F;. If these
assumptions are carefully chosen, a Decomposition Theorem holds, that assures the soundness
of the decomposition process. More precisely, but avoiding any technical detail of the TLA

formalism, we may roughly say that the theorem has as hypotheses:

1. That the conjunction of the higher-level specifications M; satisfies each of the assumptions

FE;, modulo some additional technical details

2. That EiAMf = M, for each i = 1, ..., n, that is that the modules individually implements

the higher-level specifications, with some additional technical assumptions.

These hypotheses let us conclude the desired result that M! A -~ A ML = My A--- A M, that is
M! = M. The assumptions F; are all similar to those used in what is called the rely/quarantee
paradigm, discussed in more detail below (see section P.1.2.1)) in the context of composition
of open systems. In fact, the aforementioned Decomposition Theorem can be reduced to a
consequence of the analogous, but more powerful, Composition Theorem.

The framework proposed by Abadi and Lamport naturally refers to a discrete temporal

model of the world with states and transitions. The language TLA is rather low-level and

15

requires the user to deal with a number of technicalities. Moreover, the approach is an abstract
one, strongly modeled after purely mathematical formalisms. A substantial practice would
be required for any user, before being able to put into practice some of the principles or to
translate informal specifications into a canonical formula of this framework. For what concerns
machine support for the conduction of proofs, the basic of the logic is low-level enough so that
it could be implemented fairly simply into any theorem prover. However, the user would still
be completely responsible for the management of all the compositional details, along with the

main choices for the conduction of the proofs.

Hooman (B0) proposes a framework to support the top-down design of real-time systems
based on logical formulae at the semantic level. This very simple formalism has been imple-
mented in the language of PVS to have some mechanized support to the conduction of proofs.
The approach explicitly wants to be as general as possible with respect to both language-
dependent implementation choices and the time model (i.e. discrete or continuous).

The basic primitive to express properties of a system is the observation function, a function

from the time domain to a set of events from Ev:

ObsFunct : Time — 25V

The values assumed by these functions completely describe the temporal behavior of a module.

If we have two or more modules, we define their parallel composition as a module completely

16

described by the pointwise union of the composed observation functions, over a set of events
given by the union of the set of events of each function. To guarantee consistency, we must
also add the restriction that the observation functions of the various modules are equal on the
events that are in more than one event set. So, if a module M; is described by an observation
function obs; over a set of events Evy, and similarly for a module My, their parallel composition

defines the module M, described by the observation function over:

M=M || Ms: obs : Time — 2Ev1UEv:

and assuming values:

evt € Evy N By
A
Vu € Time(evt € obsy(u) < evt € obsa(u))
evt € obs(t) & V
evt € Evy A evt ¢ Evg

\

evt ¢ Evg A evt € Evg

Hooman defines this notion of parallel composition in the higher-order logic of PVS and

shows that alternative but equivalent definitions are possible.

17

Tightly connected with the notion of observation function is the notion of specification of
a component. This is just an observation function for a set of events Fv characterized by a

certain property P:

spec(Ev, P) : obs : Time — 2EY s.t. P(obs(t)) Vt € Time

With these definitions, we are now ready to formulate a compositional proof rule, that
basically states under which conditions the parallel composition of two modules with given
specifications implements a module with a global property given by the conjunction of the
specification properties of the two modules. If the two specifications are given as spec(Ev1, Pp)
and spec(Ewvy, P») we simply require that the validity of P; only depends on events in Ev; and
similarly for P,. We denote this fact with predicates of the form OnlyDep(P;, Evi). Under

these assumption, the following Compositional Rule holds:

OnlyDep(Py, Evi) A OnlyDep(Ps, Evy)
=

spec(Ev1, Pr) || spec(Eva, P2) T spec(Evi U Evy, Py A\ Py)

where C indicates the refinement relation between modules, basically reducible to a logical im-
plication between properties of specifications, plus some technical details, omitted here. Again,
alternative semantic definitions for parallel compositions are proposed and shown to be equiv-

alent to the previous one.

18

The author also analyzes the Hiding operation, another way to modify a module in a
refinement process. This basically consists in removing from an observation function a number
of elements of its event set. A sound inference rule for modules obtained by hiding events is
shown.

Finally, a system described by both discrete and continuous events is specified and analyzed
according to the given definitions for observation functions.

Hooman’s proposal for a framework is indeed very general and basic. It is probably even
too general and basic to be applied to large system analysis where a purely semantic description
is too low level to be used in early phases of the specification process. It may be possible to
extend and add more expressiveness to this framework, in particular by allowing more complex
notions of composition and hiding, and by using a richer and more intuitive language to express
properties of a system. The simplicity of the underlying structure of the framework may be

instead an advantage in providing an implementation into an automated proof checker like PVS.

Olderog and Dierks ([]) propose a paradigm to decompose specifications of real-time ap-
plications so that time-critical aspects are confined in some modules only.

Starting with a specification written in Duration Calculus (@)7 or more precisely into a
subset of it that is implementable into executable timed programs, it is always possible to
decompose the specification into two parts, such that one is a completely untimed version of
the system, while the other is a pure timer. By adequate communication, the composition of

these two modules is an implementation of the original real-time system, that is exhibits the

19

same temporal behavior. The kind of composition considered here is obtained by asynchronous
communications between modules so that output of one module serves as input of the other
and vice-versa. A general algorithm to perform automatically this decomposition is discussed
and shown on an example.

The work by Olderog and Dierks, even if tightly modeled after a single formal language
of specification (Predicate Calculus), could also be regarded to as a general guideline in writ-
ing specifications of real-time applications to facilitate a formal analysis. In other words, a
specification written with a sharp division between temporal and non-temporal aspects may be
useful to allow some form of automated analysis. Of course, in general it is rather difficult and
counterintuitive to write a specification with this division in mind from scratch, so it is higly

desireable to have a general decomposition algorithm to automatically do so.

2.1.2 Composition of systems

2.1.2.1 The rely/guarantee paradigm

An independently specified module is in general an open system, that is a system interacting
with an external environment which provides its inputs. When proving properties of an open
system, we would generally want to express them independent of the possible behavior of the
outside world interacting with the component. This would guarantee the highest reusability of
the component, which could then be plugged into any system without changing its behavior.

However, this is in general not possible, since it is often the case that a component behaves
correctly only if the environment does the same. For example, the environment providing

the inputs may be required to adhere to a certain communication protocol or, in the context

20

of digital circuits, to input a nominal voltage value, with some fixed tolerance, but without
intermediate acceptable values.

In order to deal with this issue, a solution was first proposed by Misra and Chandy (&) for
synchronous communications and shortly after by Jones (B), (B2) for shared variable concur-
rency. They proposed what goes under the name of rely/gquarantee paradigm, according to the
terminology introduced by Jones. Other names for basically the same paradigm are assump-
tion/commitment (Misra and Chandy) or assumption/gquarantee. The rely /guarantee paradigm
for writing the specification of a module simply consists in making explicit assumptions about
the behavior of the environment under which the module behaves as specified. In other words,
the specification of the component is of the form: assuming the environment to behave as F,
we can guarantee that the module exhibits property M. It is advisable to choose E to be the
minimal assumption on the environment to guarantee the behavior M, to permit the maxi-
mum reusability of the component. Moreover, it is important that the environment property
FE does not refer in any manner to implementation details of the environment, considered as a
black-box. It is interesting to note that the rely/guarantee paradigm can be considered as a
generalization of the well-known precondition/postcondition style for specifications of sequen-
tial programs. Frameworks based on the rely /guarantee paradigm are discussed in the following

paragraphs.

Abadi and Lamport conduct an in-depth analysis of the many technical details that should

be taken into account when considering composition of modules specified under the rely/guar-

21

antee paradigm. (f]) considers the problem strictly connected with the decomposition aspect,
in the context of TLA (Bf]) as a specification language. The same authors in (P]) use a more
complicated semantic model with agents to analyze the same problem from an even more
theoretical point of view. Finally, Abadi and Merz (f]) discuss rely/guarantee composition with
reference to the logics TLA and CTL* and derive some proof rules for these logics, in the spirit
of the other two papers. We discuss these three related works together, with main reference to
(@), since it is probably the most general and most self-contained of them, at least with respect
to our interests.

According to the proposal of Abadi and Lamport, we describe the rely /guarantee paradigm
for the specification of an open system, considering an underlying discrete temporal model with
states and transitions. A rely/guarantee specification of an open system II should be written
as a formula of the form E > M where the derived TLA operator > means that M holds at
least one step longer than E does or, in other words, that M becomes false only after E has
become false. More precisely, if we consider a history of the system (also called a behavior),
E P> M is true if and only if E = M is true and, for every n > 0, if E holds for the first n
states, then M holds for the first n+ 1 states. This is the best way to describe a rely/guarantee

assumption, because it states exactly that:

1. the system guarantees an expected behavior, provided the environment evolves as modeled

2. if the environment stops following its model, the system may behave incorrectly. However,

it does that only one time step after the failure of the environment.

22

This corresponds to our intuitive notion of rely /guarantee paradigm and also has the additional
advantage that it leads to simpler rules for composition of modules.

Let us now consider two systems II; and I, whose rely/guarantee specifications are Ey “>
My and Ey > My, respectively. In the simple case that By = M, and Ey = M; one would
expect to conclude that the composite system II exhibits property M; A My without any ad-
ditional assumption, since each module satisfies the other module’s environment assumption.
However, this conclusion is not valid in the general case, but depends on the kind of environ-
ment assumptions we have: if they are safety properties or not. A safety property, as defined
in ([), (F7), is one that is finitely refutable, i.e. a violation at a single finite instant of time
suffices to make it false. With safety properties as environment assumptions, compositional
reasoning has simpler rules. In order to deal with general environment properties, we have to
define the safety closure C(F') of any TLA formula F, as the strongest safety property such that
= F = C(F).

We are now ready to formulate a general Composition Theorem, that states a sound inference
rule to manage the composition of modules specified under the rely/guarantee paradigm. Let
us consider n modules, each with a specification of the form E; > M; for i = 1,...,n. We
want to prove that the composition (i.e. conjunction in this approach) of the modules satisfies
a global rely/guarantee specification E > M. The hypotheses to the theorem are roughly the

following (we are still omitting a number of technical details):

23

1. The closure of the global environment assumption C(E) and the conjunction of the closures
of the modules’ properties C(M;) imply all the environment assumptions E; and the closure

of the global property C(M).

2. The global environment assumption £ and the conjunction of the modules’ properties M;

imply the global property M.

Under these assumptions, we can conclude the soundness of the global specification, that is:

This rather general result is treated with even more technical considerations in a more
complex semantic model in (f). A normal form for a specification in the rely/guarantee style
is proposed, with restrictions to deal with issues like partial program specifications, machine-
realizability and safety closures. In particular, it is shown how the non-safety part of the
environent assumption can be pushed into the M part of the model, so that the Composition
Theorem can be stated in a simpler way. However, this interesting consideration is instead
more of intellectual interest than of practical use, as also remarked by the authors themselves
in (), since it would be highly innatural to write a specification in that constrained form.

Abadi and Merz get to a similar Composition Theorem (ﬂ), adopting the temporal logics
TLA and CTL*. They first briefly study the concept of composition in a rather general abstract

logic framework, then they infer the compositional rules for the chosen languages. It is likely

24

that such an approach could be extended to other temporal logic formalisms as well, under the
same general paradigm.

The proposal by Abadi and Lamport nicely points out some fundamental facts we must deal
with whenever conducting proofs in a compositional framework. A concrete application of such
principles would still require a considerable effort in order to make all the complex technical
details as hidden as possible from the user, allowing an approach to the specification process
as smooth as possible. The authors point out that the Composition Theorem has only been
applied to toy examples, and propose an approach based on mechanized verification for larger
system, using the Composition Theorem to divide the labor. To put into practice this suggested

direction of work would definitely be an interesting achievement.

Namjoshi and Trefler ({§) consider the compositional inference rule proposed by Abadi
and Lamport in (fI), together with similar ones, in order to analyze them with respect to the
problem of completeness. In fact, while all the proposed compositional proof rules are sound
rules, that is they infer true facts from true premises, many of them show to be incomplete, that
is there are true properties of the global system which cannot be proved using those inference
rules. More precisely, this is the case with the rule in (@) and with other similar rules exploiting
circular reasoning. By circular rules, we mean proof rules where the guarantee of a module is
constrained not only by the assumption of the same module but also by the guarantee of the
other modules. A noticeable fact is that the counterexamples used to show the incompleteness

are neither particularly complex nor involve large systems: this suggests that the incompleteness

25

of those rules may well be a practical problem in the verification of systems, and not just a
theoretical nuisance.

However, modifying the available inference rules to make them complete is possible and
does not require to sacrifice substantially the formal simplicity of the rules. In particular, it
is not necessary to use non-circular rules instead of circular ones: another result drawn by the
authors is that circular and non-circular proof rules can be equivalent and it is always possible
to pass from a circular description of a modular system to a non-circular one. What can be
done to obtain complete inference rules is to strengthen the hypotheses by adding some form
of auxiliary assertion, i.e. an additional property that strengthen the guarantee part of each
module. The effort needed to find those additional assertions may affect the complexity of the
proof and require substantial user interaction. The authors precisely formulate a complete proof
rule, using the formalism of communicating processes and common linear temporal logic. The
most relevant aspect is the fact that there is a sort of trade-off between the ease of applicability
of a compositional proof rule and the completeness of such a rule: simpler rules do not require
additional intermediate assertions, which are often non-trivial to be formulated, but they do
not allow some true facts to be proven; conversely, more complex rules are complete but are

more difficult to be applied automatically.

2.1.2.2 The lazy approach

The rely/guarantee approach to the specification of open systems is the most studied and
analyzed in the literature about compositional verification. However, practical difficulties have

prevented it from being concretely and widely used on large cases. The biggest of such difficulties

26

is probably the fact that the compositional inference rules for this paradigm require that the
assumptions about the environment of each module are subsumed by the specifications of the
other modules of the system providing inputs to the first module. This fact is often a practical
problem because it forces the specification to be detailed enough to discharge these constraints
since the very first stages of the formal analysis. This in turn requires to anticipate a number
of implementation details that would not pertain at all to the initial specification phases and
are also too complex to be considered there.

Shankar proposes an alternate framework for the study of compositionality with open sys-
tems, called the lazy approach (B). In lazy composition, if we want to prove that a certain
component II; has a property M; under certain environment assumptions, we prove M; to be
valid for the composite system II; || E; obtained by composing II; with an abstract environ-
ment specification F; which captures the expected behavior of the environment. Later, the
component IT; will be eventually composed with another module, say Ils, to form a system
IT; || IIs. In order to guarantee that the property M; is still valid for the global system, the
lazy paradigm considers the modified global system II £ II; || (IIy A Ey). M; surely holds on
II, since the environment behavior E; is made explicit part of the model. Later, during the
following refinements of the system specification, we will have to show that II; || (IIx A Ey)
is refined by II; || Iz so that the environment assumptions will be correctly discharged. This
later, lazy analysis of the environment specifications does not force the model to be too detailed
since the first stages, but permits the user to care about environment assumptions only at the

end of the specification process, when enough implementation details have naturally come into

27

the picture. The lazy compositional approach seems general enough to be applied to a variety
of formalisms and specification models. However, Shankar details the analysis with respect to
a discrete-time model of computation, the asynchronous transition systems.

Let us briefly analyze the main differences and similarities between the rely/guarantee and

the lazy approaches.

e Rely/guarantee verification does not allow the later use of any implementation detail of a
component to discharge the environment assumptions, but requires to anticipate all those
component properties needed to satisfy the environment constraints. The lazy approach
allows instead to discharge those constraints lazily as the specification is refined, hence

using implementation details when they are available.

e The rely/guarantee proof rules as proposed in (E) consider composition as conjunction.
This is compatible with the notion of composition for most formalisms, but it may be
the case that it is needed to consider different kinds of composition, that do not fit under
the idea of conjunction. The lazy approach does not consider any specific paradigm of
composition, but its inference rules are compatible with whatever notion is adopted by

the chosen formal language.

e The accumulation of environment assumptions done in the lazy compositional verifications
fits well with the fact that specifications are often partial and not so strong during the
initial phases of analysis, so that we do not have to care about details of consistency

during those phases. On the other hand, this approach does not allow each component

28

to be refined independently from the others, since this is possible only when its whole

specification already subsumes all the environment constraints attached to that module.

e The lazy compositional approach may yield inconsistent specifications, since it may be
impossible to refine a component so that it matches all the required environment assump-

tions. This is a price to pay to have more freedom during the initial stages of analysis.

Shankar also proves a number of proof rules that allow one to deduce that a component
of the form II; || Iy A Ej is refined by the simpler component II; || IIs. These proof rules
are tailored to the asynchronous state transition formalism but, once all the language details
are removed, they show to be general and simple rules to deduce when a global property ¢ is
preserved under the refinement. It is interesting to note that also with this approach, liveness
properties are harder to handle than safety properties, so that stronger hypotheses must be
considered. We omit here the details about these issues.

Shankar proposes a different and new approach to the compositional verification of modular
open systems. The approach has a number of advantages over the more used rely/guarantee
paradigm, and a number of disadvantages as well. In view of an implementation of a lazy
compositional mechanism into an automated analysis tool, a noticeably advantageous aspect
is that the lazy approach requires no ad hoc machinery since it relies on existing techniques
for proving refinement properties only. On the other hand, it is still to be understood if the
approach can be effectively used on really large system, without the specification becoming too

complex to tackle.

29

Finkbeiner, Manna and Sipma (1)) propose a formal framework for the analysis and ver-
ification of modular systems, modeled as fair transition systems ([i), with linear temporal
logic as specification language to express properties. To solve the problem of discharging en-
vironment assumptions when composing a number of open modules, they propose a paradigm
similar to the lazy approach proposed by Shankar (see the previous paragraph), where if an
assumption cannot be discharged, it is simply made part of the composite model and eventu-
ally discharged later, by implementation choices. However, in this new framework, it is also
possible to discharge immediately the assumptions by means of properties of other composed
components, similarly in this sense to the rely /guarantee approach. The general technique tries
to avoid anticipating any assumption about a module made by other modules, and guarantees
that properties are preserved under parallel composition.

Every module is formalized as a fair transition system, which basically consists of an interface
and a body. The body defines the private parts of the module and its internal behavior;
the interface is instead the public part of the module and consists of a number of variables
(representing state values or state functions) and of transitions. Different modules can be

combined together and modified to form a larger system, by means of the following operations:

Parallel composition, which merges two modules into one, merging the interfaces and syn-
chronizing transitions with the same name, while guaranteeing the non interference of the

private parts of the two modules.
Hiding, which removes a number of variables or transitions from a module’s interface.

Renaming, which renames variables or transitions of the interface.

30

Augmenting, which adds new variables to the interface of the module; they assume values

specified as an expression of other public and private variables of the module.

Restricting, which replaces variables of the interface by expressions over other variables only.

In order to guarantee that the application of these operation does not yield inconsistent speci-
fications, a number of compatibility conditions between modules are formulated and discussed
with some detail, together with the precise semantics of the above operations. Composition-
ality really comes into the picture when a number of property inheritance rules are shown. A
property inheritance rule states under which conditions a property valid for a module II is still
valid when the module is modified with one of the aforementioned operations. In the spirit of
lazy composition, no specific assumptions are made on the module’s environment before the
application of the operation. On the contrary, the required assumptions are carried over the
composite system and can be discharged later when it becomes possible. Another advantage
of this approach is that these compositional rules are rather simple in their forms, since all the
details about the nature of the environmental assumptions are not explicit part of the verifi-
cation paradigm. The soundness of the given inference rules can be proved, by showing that
a refinement mapping (fl]) exists between the original module and the one modified after the
application of the operation.

Another interesting discussed issue is module abstraction. They show an inference rule
which makes it possible to replace a module with an internally simpler one with the same
external behavior. This justifies the use of higher-level abstractions to replace a part of a

large system, in order to focus the analysis on the other parts of the system and avoid any

31

insignificant detail. Another extension of the ideas about property inheritance is done with
a proof rule that handles recursive definitions of composite modules and applies an induction
principle to derive global properties. This rule is rather simple and intuitive, and is applied to
an example of recursively defined system.

Finkbeiner, Manna and Sipma propose a rather liberal approach to the verification of mod-
ular systems, where assumptions to guarantee results are generated naturally in the course
of the proof, and whose correctness is proven lazily when possible during later phases of the
specification process, by refinement or by properties of other modules composed together. As
often the case with these abstract frameworks, a considerable effort need be made in order to
implement these ideas with suitable analysis tools, extend the framework to other formalisms
and hide most details of the proofs to the user. In particular, we point out that this approach
would require some form of automatic high-level generation of intermediate assertions during

the conduction of a proof ().

Bjgrner, Manna, Sipma and Uribe (fl) propose a framework similar to the one in (R1]) and
consider how to provide it with some form of automation in the conduction of proofs, by
exploiting the capabilities of the tool STeP ([t), ([0). In what is basically an evolution of the
previously seen framework (R1)) and of the similar one ([[2) to describe real-time systems, they
adopt the computational model of clocked transition systems ([[I]) with a dense time model. As

usual, properties of the systems are expressed with linear temporal logic formulae.

32

The resulting framework allows the straightforward extension of the aforementioned opera-
tions of parallel composition, hiding, renaming, etc., to modules of a real-time system. This also
allows the reuse of some of the compositional inference rules seen before in this new, broader
context. Moreover, the authors point out some additional facts we must consider when modeling
a real-time system in a continuous time framework. In particular, a fundamental requirement a
system must satisfy in order to be implementable is that it must exhibit a non-Zeno behavior.
This requirement can be expressed in several different ways (), (B4); for now it suffices to say
that it means that each variable of the system can change its value only a finite number of
times in any finite time interval. Non-Zenoness is not preserved under composition of modules;
however there is a closely related condition called receptiveness that implies non-Zenoness and
is preserved under composition. This notion is discussed in the context of composite clocked
transition systems. Finally, it is shown with a significative example how the ideas introduced
before can be implemented into the STeP system to provide a support for formal analysis. In
particular, it is shown how the tool can aid the verification of non-Zenoness properties and
of safety properties, by exploiting the capabilities STeP has to generate invariants in a given
transition system.

The work by Bjgrner, Manna, Sipma and Uribe is one of the first attempts to really put into
practice some of the interesting ideas about compositional reasoning found in the literature.
In particular, we point out once again the importance of an adequate machine support in the

conduction of proofs not only in-the-small, where a number of tools is already available and

33

automated approaches like model-checking are viable, but also in-the-large, where compositional

techniques must come into play.

2.1.3 Compositionality in non-deductive frameworks

The compositional paradigm is general enough so that it can be applied to a variety of formal
languages. Our main interests are for deductive frameworks, that is where verification of global
properties is done by finding out formal proofs of those properties in the chosen language.

A different issue is how to carry out the verification of the properties that are local to
each base module. A possibility is to use algorithmic model checking techniques ([15), (BS)
to automatically verify those properties, thus using deductive proofs only to compose local
properties into global ones. This is suitable whenever the finite state model used in model
checking is appliable locally. On the other hand, we can also carry out the entire verification of
the system in a deductive framework, without any fully automatic technique. This permits the
in-the-small verification also of those subsytems where the finite state model is not appliable.
Of course, we can also have the best of both worlds, by choosing which technique to adopt
for the verification of local properties on a per case basis. A really powerful and complete
framework should encompass both ways, and it should be supported by a tool suite to perform
such a flexible approach to the verification of large systems.

Even if our main interests in this work are for a deductive framework, in this section we very

briefly hint at some articles found in the literature where compositionality is considered from a

different perspective, that is in a fully state-based model checking framework. This means that

34

these approaches consider the problem of devising automated algorithmic techniques that scale
well on large state-based systems.

In order to allow global properties verification a model checker should first of all have a
way to represent modules and their composition in a natural manner. Moreover, it should
allow the verification of properties of single modules with respect to any possible behavior of
its environment. The behavior of the environment should be expressible both as temporal logic
formulae and as state-based machines. Finally, it should allow the development of a system
both in a top-down and in a bottom-up process similarly to what discussed above with reference
to deductive frameworks. (P@) discusses some of these issues in depth and formulates a number
of algorithms and techniques. The reference temporal logic is CTL* and the results are of
rather general applicability.

Another approach is the one proposed with reference to the widely used modeling formalism
of Petri nets. These other techniques consider compositional verification based on condensation
rules, that is rules for simplification and abstraction of subsystems of a given modular net. These
techniques allow a significant reduction of the overall complexity in the verification of global
properties. In particular, (B4) considers compositional condensation rules for asynchronous
processes and heuristic techniques for large concurrent systems, with particular emphasis on
the state reachability problem. Similar techniques are discussed, together with many others, in
a more general framework in (B3)), where a wide range of problems is considered. We point out

that these approaches, based on condensation rules, are really compositional techniques, unlike

35

other rule-based reduction schemas (p@), ([9), even if they both can be applied to the same

class of problems.

2.1.4 Another use of compositionality in system analysis

In this section we make a brief detour from the topic of compositional proofs to review a
couple of papers that consider different uses of a formal modular specification of a system other
than deductive reasoning. We believe this related topic may share some basic ideas with the
deductive approach.

Morzenti, Morasca and San Pietro (§4), (54) propose methods for the systematic genera-
tion of execution sequences from the formal modular specification of a real-time system. These
execution sequences can be used to automate an activity of functional testing, that is an ex-
tensive testing of the system driven by system requirements formalized during the specification
phase. A modular system is specified with the temporal metric TRIO (BH), (E), even if the
framework applies to other temporal-logic formalisms as well. We also suppose to have working
algorithms for the generation of execution sequences for simple modules, that is non-composite
basic modules.

In order to exploit the topological information associated with a modular specification, a
connection graph is built to represent such information. Every simple module is represented by
a node in the graph; arcs link connected modules of the specification, with direction going from
the module providing the output to the module using it as input. Two different algorithms
are presented, one for acyclic graphs and the other for the general case of cyclic graphs. The

two algorithms basically exploit the topological ordering of nodes induced by the graph in

36

order to systematically generate execution sequences. User guidance is then needed to choose
the desired degree of adequacy of the generated execution sequences. Correctness and time
complexity of the given algorithms are also analyzed. In particular it is shown which properties
of regularity of the specification must be assumed in order to guarantee the termination and
convergence of the given procedures. In order to apply the same algorithms to arbitrarily large
and complex modular specifications, graph theoretical techniques are discussed to manipulate
and rearrange the connection graph into a simpler but equivalent one. How to deal efficiently
with specifications with many hierarchical levels of encapsulation is also discussed. Finally, a
prototype tool to perform the automated analysis is implemented and shown on a case study,
with interesting results.

We think that the idea of representing the topological structure of a composite system with
a graph may aid the analysis of strategies for proof conduction, by exploiting possible implicit
cause/effect relations between modules. The possibility of applying a large variety of graph
analysis techniques to the representation may lead to interesting results even on really large
and complicated systems. Of course, this paradigm must be adapted to the case of compositional

deductive reasoning, requiring a number of substantial changes.

2.2 The complexity of compositional techniques

A primary concern for the concrete applicability of the methods for the analysis of large
systems is that their complexity is as small as possible, as neatly pointed out by Dijkstra ([L7)

in 1969:

37

On a number of occasions I have stated the requirements that if we ever want to
be able to compose really large programs reliably, we need a discipline such that
the intellectual effort E (measured in some loose sense) needed to understand a
program does not grow more rapidly than proportional to the program length L
(measured in an equally loose sense) and that if the best we can attain is a growth
of E proportional to, say, L?, we had better admit defeat. As an aside I used
to express my fear that many programs were written in such a fashion that the

functional dependence was more like an exponential growth!

Unfortunately, compositional specification methods have a worst-case complexity that de-
pends exponentially on the number of modules we are considering. This happens in the most
general case, that is when we allow any possible kind of composition between modules, and we
want to analyze all the possible reached states of the resulting global system. In order to make
this consideration more concrete, let us consider a common application of modular techniques:
modular model checking with the rely/guarantee paradigm. It has been shown in (F9) that this
problem is EXPSPACE-complete, so that it is inherently intractable. Lamport (B7) points out
some other negative facts about compositional theorem proving. First of all, the application of
decomposition proof rules usually does not shorten the length of a proof, but just changes its
high-level structure, thus rearranging its lower-level steps, and even adds extra work to handle
environment specifications or liveness properties. Second, he points out that the empirical laws
that seem to govern the complexity of compositional proving suggest that the length of a proof

is quadratic in the length of the low-level specification, which is an unacceptable result. If we

38

add the fact that deductive verification is furthermore a semi-decidible problem, the situation
seems definitely hopeless for modular composition.

However, this is fortunately one of the cases where the worst-case scenario happens rather
rarely in practice, while the average-case shows a much lower complexity. Submodules of a
complex system usually exhibit an interaction which is not too tight, in the sense that only
a small part of their variables is in direct relation. We usually identify the public parts of a
module that interact with other components as the interface. Processes’ interaction is recorded
by observing the changes occurring in the modules’ interfaces and not the internal quantities.
It is often the case that the items in the interface are a small part of the total of a module.
This usually implies that there is a number of externally visible changes that is not too big,
with respect to the number of internal states corresponding to the same observed interface,
so that the total number of interesting combinations does not grow too fast when composing
modules. These assumptions are also supported by the fact that composite systems of interest
are artifacts invented by human beings, and human beings cannot manage an exponential
complexity, so that these systems must be effectively describable by a not too high number of
modules interacting rather loosely. As a result, compositional techniques applied to the analysis
of real systems usually show a complexity that is linear in the number of subsystems. Cases
of higher complexity may happen in practice but are rare and usually pertain to small parts of
the global system only.

All in all, compositional reasoning is the main tool we have to seriously tackle complexity,

since it makes reduction to smaller problems and abstraction work together in an effective way.

39

We have briefly reviewed and summarized a significant part of the literature about com-
positional techniques for the conduction of proofs. A number of ideas and paradigms from
these articles are interesting and are going to be applied to our particular framework. Other
aspects of the problem are instead scarcely represented in the current literature, so that our

work should cover some of these other issues.

CHAPTER 3

THE TRIO SPECIFICATION LANGUAGE

This chapter presents the TRIO specification language (), ([I5]) and its current encoding
in the PVS theorem prover. More specifically, section B.J] considers the basic non-modular
constructs of the language and their encodings in PVS, while section B.9 introduces the reader
to the modular and object-oriented features of the language.

3.1 TRIO and its encoding in PVS

3.1.1 TRIO in-the-small

TRIO is a typed, linear, metric temporal logic enhanced with object-oriented and modular
features, for writing specifications of complex systems. Whenever a distinction is needed, we
will refer to the basic aspects of the language, that is the syntax and semantics of formulae
predicating about time-dependent and time-independent items, as “TRIO in-the-small”, while
referring to the remainder of the language as “modular features of TRIO”. Following this
division, this section describes the former group of features and section .9 refers to the latter
one.

The truth value of each TRIO formula is given with respect to a current time instant which
is left implicitﬂ. The basic temporal operator is called Dist and relates the current implicit

time instant to another time instant. For example, the formula Dist(F,t) where F is a time-

Tn fact, the name TRIO stands for “Tempo Reale ImplicitO”, Italian for “implicit real-time”

40

41

dependent formula and ¢ a time distance, means that F' holds at a time instant which is ¢ time
units from the current one.

Together with this basic temporal operator, TRIO allows the use of all common propositional
operators and quantifiers of first-order logic. Combining these with the Dist operator, we define
a number of derived temporal operators, that naturally express common time relationships.
lists the formal definition of all derived TRIO operators: F and G are any time-
dependent formulae and ¢ is a time distance. Moreover, note that each standard operator can
have a modified version with explicit inclusion/exclusion of time bounds. For example, the
definition of Lastse;(F,t) is Vd(0 < d <t — Dist(F,d))).

In TRIO, we call items the primitive entities used to represent the system under specifi-
cation. Among them we have values, predicates, functions, events and states. We distinguish
between time-dependent (TD) items, whose value varies over time, and time-independent (TT)
items, whose value does not. In particular, events and states are a specialization of time-
dependent predicates useful to represent a system in an operational way. An event models
instantaneous facts, such as the pushing of a button or a change of state. A generic time-

dependent predicate E represents an event if it obeys the following behavior (P4)):

UpToNow(—=E) AN NowOn(—E)

Conversely, a state models Boolean values that hold over time intervals and whose transitions

are pointwise (i.e. they are events); for example, the value held by a flip-flop device may be

OPERATOR DEFINITION
Past(F,t) t > 0 A Dist(F,—t)
Futr(F,t) t > 0A Dist(F,t)
Som/(F) AdDist(F,d)
Alw(F) —Som(—F)
SomP(F) 3d(d > 0 A Dist(F, —d))
SomF(F) 3d(d > 0 A Dist(F,d))
AlwP(F) ~SomP(—F)
AlwF (F) —SomF (—F)
Lasted(F,t) Vd(0 < d <t — Dist(F,—d))
Lasts(F,t)

Vd(0 < d <t — Dist(F,d))
WithinP(F,t) —Lasted(—F,t)
WithinF (F,t) —Lasts(—F,t)
Since(F, Q) 3d(d > 0 A Lasted(F,d) A Dist(G,—d))
Until(F, Q) 3d(d > 0 A Lasts(F,d) A Dist(G,d))
UpToNow(F) | 3d(d > 0 A Lasted(F,d)); Dist(F,—1) if Time is discrete

NowOn(F) 3d(d > 0 A Lasts(F,d)); Dist(F,1) if Time is discrete
LastT'ime(F,t) t > 0A Dist(F,—t) A Lasted(—F,t)
NextTime(F,t) t > 0 A Dist(F,t) A\ Lasts(—F,t)

Becomes(F)

UpToNow(—F) A (F V NowOn(F))

TABLE 1

TRIO derived temporal operators

modeled as a state. A generic time-dependent predicate S represents a state if it obeys the

following behavior (R4):

(UpToNow(S) A S A NowOn(S))
vV (UpToNow(=S) A =S A NowOn(=S))

v (UpToNow(S) A NowOn(—S))

43

v (UpToNow(—S) A NowOn(S))

Every TRIO formula is considered implicitly temporally closed with a universal quantifica-
tion, that is as if it was enclosed by a Alw operator, unless explicit existential quantification is
provided, for example with a Som operator. Universal quantification over time expresses the
fact that the formula is valid over the whole temporal axis.

TRIO formulae fall into one of three types: axioms, assumptions and theorems.

An aziom is a formula which is simply assumed to be valid. When describing a system in
a specification, its basic behavior should be captured by a set of axioms relating the items it is
composed of.

An assumption is a formula whose truth is postulated, but should be proved in a later
phase of the development. In particular, we usually name external assumption a formula whose
truth should be guaranteed by other parts of the specification composed with the present one.
Conversely, an internal assumption is one that should be demonstrated by refinement, that is
when details are added to the current specification. Note that the TRIO language does not
distinguish between the two kinds of assumptions, which only pertain to metodological aspects,
such as those considered in chapter fj.

Finally, a theorem is a formula whose validity can be proved formally through demonstration
from other formulae. For sake of convenience, we will often use the word lemma to mean a

theorem expressing an intermediate property, that is one which is not meaningful per se but only

44

encapsulates a significant step to obtain a broader result. However, TRIO makes no distinction
between theorems and lemmas, in that it only contemplates the former ones.

One last important feature of the TRIO language is that it is parametric with respect to
the time model to be adopted, usually named Time. Hence, we can choose, between discrete
and dense time models, what is best suited for our specification. In the remainder of this work,

we will refer to a continuous time model, unless otherwise explicitly stated.

3.1.2 PVS encoding of TRIO in-the-small

An encoding of TRIO in-the-small in PVS (i), (£9), (Bd), (1) constitutes what is usually
called TVS (TRIO Verification System) or TRIO/PVS. More precisely, this tool consists of
two parts: a set of theories containing the definitions of TRIO items and operators translated
into the higher-order logic of PVS, and a set of proof strategies to automate and simplify the
conduction of proofs with TRIO formulae in PVS. The TVS is extensively described in (P4)),
(). In this section we give the basic ideas about the encoding needed to understand the
following chapters of this work.

TVS focuses mainly on TRIO specifications where the time domain is continuous, that is
where Time = R. The basic items are time-dependent terms (that is TD values) and formulae
(that is TD propositions): they are simply defined as functions mapping T'ime onto a generic

codomain D and onto Booleans, respectively.

TD_Term: TYPE = [Time -> D]
TD_Fmla: TYPE+ = TD_Term[bool]

45

Unlike TRIO formulae, where the current time instant is implicit, in TVS it is explicit so
that every term is evaluated with respect to a given time instant. For example, consider the

definition of the Dist operator in PVS:

Dist(T, t)(ct): D = T(ct+t)

where T is a time-dependent term whose codomain is D and ct stands for current time.
Of course, we need to extend the definitions of common Boolean connectives and of quantifi-
cators to handle time-dependent terms. For example, consider the AN D operator representing

conjunction; this is extended to time-dependent formulae as:

AND (A, B: TD_Fmla) (ct): bool = A(ct) AND B(ct)

Note that the result is still a function of time ct, that is a time-dependent formula. The
definition means that A A B is true at time instant ct if and only if both A and B are true at
ct.

Consider also the translation, under the name FA, of the universal quantification for time-

dependent terms:

FA (A: [D -> TD_Fmlal]): TD_Fmla =
LAMBDA(ct): FORALL(x: D) : A(x)(ct)

The definition means that YxA(z) is true at time instant ct if and only if A(x) is true at ct for
all possible values of the free variable .
With these basic encodings, all the derived TRIO operators are translated naturally from

their definitions. As an example, consider the translation of the operator Lastsee:

Lasts_ee(A: TD_Fmla, t: nnt)(ct): bool =
FORALL (d : {d: Time | 0 < d AND d < t}) : A(ct+d)

46

where nnt is non-negative time (i.e. R1).

While in TRIO every formula is implicitly temporally closed with a universal quantification
over time, in TVS it is not so, and the user must provide explicit quantification with the Alw
operator. On the other hand, free variables are implicitly universally quantified by PVS, unless
the user adopts explicitly another kind of quantification.

Obviously, TRIO axioms and theorems can be translated naturally into PVS axioms and
theorems (and lemmas). On the other hand, the PVS keyword ASSUMPTION has a peculiar
semantics which does not reflect the use TRIO does of the same keyword. TRIO assumptions
may be translated using the PVS keyword CONJECTURE, which is a synonim for theorem, in the

PVS language. More will be said about using TRIO assumptions in PVS in chapter .

Describing TVS proof strategies in a certain detail is out of the scope of this work. As a
general idea, these strategies basically achieve two different goals.

First, a set of so called pretty-printing strategies serves to rewrite the proof sequent at each
step in order to change its formulae to make them more TRIO-like, thus hiding the details of
the encoding of TRIO in PVS. These strategies consist of a number of auto-rewrite rules and
are applied automatically by the proof engine each time the sequent changes.

Second, other strategies enrich the PVS proof commands with a number of new (derived)
commands, to make proofs of translated TRIO formulae easier to carry out in PVS. These

commands take charge of ordinary formula manipulations, instantiations and rewritings to let

47

the prover realize when two formulae are equivalent, to expand common definitions of TRIO
operators, etc.
In chapter f| we are going to design new proof strategies to handle the modular features of

TRIO.

3.2 Modular features of TRIO

The TRIO language has a number of object-oriented constructs to support inheritance,
genericity and modularization when specifying large and complex systems. The basic encap-
sulation unit is the class: a TRIO class is a collection of items, formulae and objects, that is
instances of other classes. Note that TRIO does not have the notion of object construction
and destruction, since it is a logic language. Objects encapsulated in classes are called modules
of the class. Each class has an interface, defined as the set of items and formulae declared as
visible in the signature section of the class. Defining an interface allows information hiding
when writing modular specifications.

We usually distinguish between simple classes, that is classes without inner modules, and
structured classes, that is classes built composing other classes together. Whether simple or
structured, the semantics of a class is defined by the logical conjunction of all formulae of the
class and of its modules. We can also define arrays of modules, containing multiple instances
of the same class.

Classes can be generic with respect to a number of parameters; these parameters must be
instantiated when the class is used as a module of another class. More precisely, a parameter

can be any of values, domains or other classes.

48

An important feature, which is also typical of object-oriented languages, is inheritance. Each
class can inherit from other classes, thus getting their items, formulae and modules. Inherited
things can also be redefined or renamed, exploiting polimorphism, and multiple inheritance is
allowed.

A special clause of the language is used to define connections between items of two modules:
if two items are connected it means they are to be considered logically equivalent. Connections
can be of three kinds: direct, cartesian and broadcast.

A direct connection connects items of the same arity: for example a time-dependent predi-
cate I to another time-dependent predicate I5. This would be written in TRIO as (direct I_1 I_2).

A cartesian connection connects each of the items of a (1,...,m) predicate I; to each
of the items of another (1,...,n) predicate I, pairwise. This would be written in TRIO as

(cartesian I_1 I_2) and its semantics is:

Vie{l,...,m}:Vje{l,...,n}: (I1(i) = Ir(j))

Finally, a broadcast connection connects a simple time-dependent predicate I; to each of the
items of a (1,...,n) predicate I5. This would be written in TRIO as (broadcast I_1 I_2),
and its semantics is:

Vie{l,...,n}: (I = I2(3))

49

M1
it1
— al
it3
@
it4
@
it5 M2
al[4]

Figure 1. Graphical representation of a TRIO class

Note that TRIO semantics does not associate any direction to a given connection, even if most
of the times one naturally thinks of a direction associated to a pair of connected items, as if
information flowed from one end of the connection to the other.

Each class also has a graphical representation. This is often of help to visualize better a
complex specification and to understand its structure. represents a sample structured
class, whose TRIO specification is given below. This also serves as an example of the syntax of

some of the modular features.

class C
//class parameters
(const cst, domain DOM)

//class C inherits from class B
inherit: B [redefine iti1;
rename it2 as it3]

//classes to be used as modules must be imported
import: A

signature:

//visible items and formulae of the class
visible: it3, it4, thi;

//temporal model is assumed continuous
temporal domain: real;

//items of the class

items:
TD itl (argl: DOM); //this is a redefinition
event it4;
state itbh;

//modules (i.e. class instances)
modules:
M1: A;
M2: array [1..cst] of A; //array of modules

//connections of the class
connections:
(direct Mil.al, M2[4].al);

//formulae of the class
formulae:

axiom axl:
it4 -> SomF (Lasts(it5, 3));

theorem thil:
Becomes (it3) -> WithinP(it4, 8);

50

51

end

Currently, there is no encoding of the modular features of TRIO in PVS. Chapter [will
provide such an encoding, while chapter] will describe proof strategies to help the conduction

of modular proofs in PVS with the given encoding.

CHAPTER 4

THE ENCODING OF TRIO IN PVS

As described in chapter], an encoding of TRIO in-the-small in PVS is currently available
and used. In order to provide a verification system that allows the use of the modular features
of the TRIO language, the first thing to do is to devise an encoding of these features into the
PVS system, based on the current implementation of TRIO in-the-small. This chapter describes
such an encoding.

More precisely, section describes the mapping of classes, both basic and structured, thus
showing how to translate the TRIO importing mechanisms. Section considers the issue of
visibility and namely to which extent it is possible to preserve in PVS the information hiding
provided by the visibility clauses of TRIO classes. Finally, section [£.3 considers the inheritance
mechanisms of TRIO and how they can be translated into PVS.

Before discussing these issues, a general consideration on the mapping is of order here.
When describing the encodings of the modular features of TRIO, we should always think as if
an automatic translation system from TRIO to PVS was available. Hence, the end user (that
is she/he who writes a specification in TRIO) does not ideally have to know the details of the

encodings but can concentrate only on the higher level description of the system.

52

93

4.1 TRIO classes

4.1.1 Basic issues

The basic encapsulation mechanism in TRIO is the class: a TRIO class is mapped onto a
PVS theory. Each class is parametric with respect to an arbitrary number of parameters; each
parameter can be a constant value, a domain or a class. This realizes the feature of genericity
of the TRIO language.

PVS theories can have parameters as well. Hence, each TRIO parameter is naturally mapped
onto a parameter in a PVS theory: constants are mapped onto constants and domains are
mapped onto types. Unfortunately, PVS theories cannot be parametric with respect to other
theories. There does not seem to be any solution to this limitation at the moment, so let us
avoid this case for now.

Furthermore, each PVS theory that represents a TRIO class has an additional mandatory
parameter named instances of a generic non empty type TYPE+. This parameter should be
listed as the first in each PVS theory and it is used to translate in PVS the notion of TRIO
module, as will be discussed shortly.

Each item in a TRIO class is obviously translated into a PVS item of the same type,
using the encoding of TRIO in-the-small. However, each item should be made parametric with
respect to a parameter of type instances. In other words, whenever we have a TRIO item I
that whould be translated into the PVS item I: T of type T, we need instead to translate it to
the item I: [instances -> T] of type [instances -> T], i.e. function from instances to

T. This allows the declaration of arrays of modules, as will be discussed shortly.

As an example, consider the translation of the following very simple TRIO class.

class simple
signature:

visible:
A, B;

temporal domain: real;

items:
event A;
state B;
TI total C(natural): integer;

formulae:
axiom ax:
A -> Lasts(B, 3);

theorem th:
B -> SomP(A);
end

It should be translated into the following PVS theory.

simple [instances: TYPE+]
: THEORY

BEGIN
IMPORTING trio_base, states_and_events
A: [instances -> Event]
B: [instances -> Statel]
C: [instances -> [natural -> integer]]

inst: VAR instances

ax: AXIOM

95

Alw(A(inst) IMPLIES Lasts(B(inst), 3))

th: THEOREM
Alw(B(inst) IMPLIES SomP(A(inst)))

END

As clearly shown in the example, since every item has been made parametric with respect
to a variable of type instances, we need to make explicit that value whenever we reference

any item in the theory.

4.1.2 Importing multiple instances

Let us now describe how the instances parameter should be used. The main problem we
encounter in translating modules is that PVS cannot distinguish between different instances of
the same theory, so that we have to simulate this mechanism somehow. In fact, we can use
theories from within other theories by using the importing keyword. However, we cannot import
multiple instances of the same theory, since PVS would consider them as indistinguishable,
while TRIO considers different modules of the same class as logically distinct components. To
solve this problem, we introduced the additional parameter instances. Whenever we import a
theory as a module into another theory, we declare a new type of our choice. Then, we import
the theory with that type as parameter (coupled with the instances type of the importing
class, to allow the current class to become, in turn, module of another class). Hereinafter,
whenever we reference to that module we give its full instantiation parameters, so that PVS
can distinguish between different importings of the same module. For example, consider a class

structured that has two modules of class simple. Its TRIO declaration is:

o6

class structured
import: simple;
temporal domain: real;

modules:
M1, M2: simple;

end

Its PVS translation would then be:

structured [instances: TYPE+]

: THEORY
BEGIN
Mi_type: TYPE = {n: nat | n = 0} CONTAINING O
M2_type: TYPE = {n: nat | n = 0} CONTAINING O

IMPORTING simple[[instances, Mi_typel], simple[[instances, M2_type]]

END

Even if the choice for the importing types is in general free, using an integer number is often a
good choice since it is simple and works well with PVS (differently than, for example, enumer-
ation types which are not very flexible in PVS). Note that the choice of the integer constant to
represent the type is absolutely arbitrary, unless arrays are involved (they are discussed below).
In particular, in the example we used the same integer twice, for two different modules, which
is perfectly acceptable. After an importing, whenever we reference an item of the imported
class we have to fully list the instantiation parameters, so that PVS can disambiguate between

the two importings. For example a TRIO theorem of the form

o7

theorem struc_th:
M1.A -> NowOn(M2.B)

should be translated into the PVS theorem

M1: VAR [instances, M1_typel
M2: VAR [instances, M2_typel

struc_th: THEOREM
Alw(A(M1) IMPLIES NowOn(B(M2)))

In case we want to give explicit representation of the class the modules come from, we may

verbosely write the same theorem as:

struc_th: THEOREM
Alw(simple[[instances, M1_typel].A(M1) IMPLIES
NowOn (simple[[instances, M2_typel] .B(M2)))

PVS allows the user to give a particular name, or alias, to a theory whenever it is imported
into another. This is done with the AS clause of the importings. It may seem at first that this
may be used to better simulate the TRIO dotted notation to reference items of imported classes.
Unfortunately, this does not work in general, since the AS alias is lost whenever the importing
class is in turn imported into another one. Therefore, it should not be used in general. On
the contrary, we will sometimes use it in the examples in the following chapters. The only
reason to do that is to let the user read the PVS code more easily. For the same reason, we will
sometimes import a class without instantiating it with the pair [instances, module_typel],
using simply module_type when we are sure that we will not use the same class as module of
another class. However, it is generally not advisable to do that and should be considered only

as an explanatory aid usable whenever no other abiguities may arise.

o8

Let us now consider the translation of array of modules from TRIO to PVS. This is where
the parametrization of items with respect to a instances variable comes into play. Let us

suppose we want to translate the following importing of a TRIO array of simple modules.

M3: array[2..4] of simple;

To do that, we declare an instances type corresponsing to the type of the index of the array.

Then we use that as importing type for the class simple.

M3_type: TYPE = {n: nat | 2 <= n AND n <= 4} CONTAINING 2

IMPORTING simple[[instances, M3_typell;

Now, since every item in simple was parametric with respect to the importing type, we have
as a result that each index in the range 2. .4 refers to a logically distinct version of those items,

one for each instance of the module in the array.

4.1.3 Connections

Another important feature of structured TRIO classes is the notion of connection. A con-
nection is a logical equivalence between two items of two classes. A connection can be translated
into a PVS equality (=). We chose to use the equality instead of the IFF operator, because
equalities are automatically treated as rewrites in proofs, so that they are used more effectively
by the automated prover, requiring less user interaction.

More precisely, we introduce a predicate connect() to indicate connections: it simply is a
synonym for equality and is declared as a binary operator in the theory TRIO_modular that

serves as a container for definitions used in PVS translations of modular features of TRIO.

99

Obviously, this service theory should be imported whenever we use those constructs in another

theory.
H1, H2: VAR T YT is a generic type

connect (H1, H2): boolean = (H1 = H2)

Connections should then be declared as axioms in PVS theories. We also give a standard
naming for the connection axioms, to allow automatic translation of TRIO classes and to make
the definition of proof strategies simpler (see chapter f). If we have just one connection axiom
listing all the connection equalities, linked by ANDs, we call it connections. On the other
hand, if we choose to split the connections among n axioms, we name them connection_1,
connection_2, ..., connection_n. We note explicitly that all the TRIO connections can be
translated with this mechanism, not only those of type direct. In fact, we just need to use
correctly the instantiation variables we have seen in action above. For example, consider a

direct connection between M1.A and M2.A. This would be written in PVS as:

connections: AXIOM
connect(A(M1), A(M2))

A cartesian connection declared in TRIO as:

(cartesian M1.B M3.B);

would instead be translated in PVS with the aid of the instantiation variable M3.
M3: VAR [instances, M3_Typel

connect(B(M1), B(M3))

This has the same semantics as in TRIO, since it corresponds to the formula:

VM, € {0} : VM; € {2,3,4} : B(M;) = B(Ms)

60

4.2 The visibility issue

Up to now, we avoided discussing how to translate the notion of visibility of items and
formulae from TRIO to PVS. We discuss this issue in this section, but we immediately have to
say that the results will be rather negative.

The first idea that comes into mind is to use the EXPORTING clause of PVS to translate
TRIO visibility. Whenver an item or a formula is visible we export it from the corresponding
PVS theory. By doing this, the importing theories will only have access to those items and
formulae declared as visible in the imported class.

Unfortunately, this mechanism does not work for two reasons. On the one hand, the export-
ing mechanism requires to export, together with the desired items and formulae, all the other
items, types and theories referenced to by the exported objects. It is often difficult to correctly
identify all the PVS dependencies so that we often have to use the clause WITH CLOSURE that
automatically adds to the export list what is needed. This often results in exporting too many
things, even those we do not want to be visible outside the current class. On the other hand,
the exporting mechanism has a fundamental limitation: it does not handle nested theories in a
correct way. In fact, consider a class A importing a class B. Then, class A cannot choose which
items of B to export: it can either export them all or none of them. This is obviously an un-
acceptable limitation, since we often have the need to “propagate” the visibility of some items
outside the current class, while hiding some others. Note that redeclaring in A all the items we

want to export and connecting them with the corresponding items of B is not a solution, since

61

the PVS system would then ask to export all the items in B as well, because of the dependency
caused by the connection.

Another serious problem connected with the management of importings, exportings and
visibility is the fact that PVS does not keep an internal representation of the nesting levels of
the various theories we are using but simply considers them all at the same level, thus flattenting
the representation which becomes very different from that in TRIO.

In consideration of these problems, we chose not to translate the visibility notion of TRIO
classes at all. By doing this, we implicitly rely on the role of automatic translation tools in
adhering to the semantics of the TRIO specification and avoiding references not allowed by
information hiding. We believe that this solution, though not very satisfactory, is the best
possible in consideration of the present limitation of PVS. It is possible that new versions of
PVS will adopt better management of importing and exporting mechanisms, and that the TRIO

mapping will be consequently enhanced. For now, an additional effort is required.

4.3 Class inheritance

A powerful feature of the TRIO language that permits the reuse of specification code is the
inheritance mechanism. The PVS system guarantees the reuse of code by means of its importing
mechanism, already discussed in translating TRIO modules in section [L.1. At a first glance, it
may seem that the PVS importing mechanism can be effectively used to translate inheritance
between TRIO classes, with even less problems than those encountered when mapping TRIO

modules. Unfortunately, this is not the case. The PVS importing mechanism has a semantics

62

that is very different from that of TRIO inheritance, so that we cannot provide a mapping
which is both simple and effective. Let us see where the problems lie.

Let us first consider what happens when we only add new items into an inheriting class. In
this case the importing mechanism seems to translate correctly the TRIO semantics. In fact,

let us consider a basic class A with the following simple declaration.

class A

items
TD it1;

end

Now consider another class B inheriting from A and adding another time-dependent item it2.

class B
inherit: A;

items:
TD it2;

end

Class A would obviously be translated in PVS as:

A [instances: TYPE+]
: THEORY
BEGIN

itl: [instances -> TD_Fmla]
END A
On the other hand, B could be translated using the importing mechanism as:

B [instances: TYPE+]
: THEORY

63

BEGIN
IMPORTING A[instances]
it2: [instances -> TD_Fmlal
END B
Now, consider what happens if a third class C has a module of class B and an item also

named it1, and wants to reference the item it1 of class A in one of its formulae.
class C
import: B;
signature:
items: TD it1l;
modules: M: B;

formulae:

axiom axl:
M.itl -> Past(itl, 4);

end

Here it is how to translate class C in PVS.

C [instances: TYPE+]
: THEORY

BEGIN
M_type: TYPE = {n: nat | n = 0} CONTAINING O
IMPORTING B[[instances, M_typel]

itl: [instances -> TD_Fmla]

inst: VAR instances
M: VAR [instances, M_type]

64

axl: AXIOM
Alw(it1(M) IMPLIES Past(itil(inst), 4))

END C

As you can see, everything seems to work fine. However, it1 is still considered by PVS an item
of class A, ignoring the fact we are importing it from B instead. This is due to the “flattening”
of import chains done by PVS, so that is does not contemplate an item B.it1. Obviously, this
behavior is in general not acceptable when translating a TRIO class, since the user instantiating
class B does not have to know which items come from class A and which have been declared
directly in B. In most cases, however, this discrepancy can be safely ignored, since ambiguities
can be solved by using the instantiation parameters.

However, other problems arise when trying to translate inheriting classes that also redefine
items or formulae. The basic fact is that PVS does not have a real renaming mechanism, but
only allows overloading. Hence, if we redefine an item from a inherited class, we do not really
replace it with the new definition. On the contrary, the inherited item is still there, and may
provoque ambiguities and indesired behaviors. Furthermore, whenever we redefine an item,
that is we give a new definition under the same name, all the formulae declared in the class we
are inheriting from are not considered applied automatically to the newly defined item, but still
refer to the previous one, which is still there. An example will show more clearly this problem.

Consider a TRIO class X that declares an item x1 and a formula predicating about that item.

class X

items: TD x1;

65

formulae:
axiom x_axl:
Som(x1);

end

Now consider another TRIO class Y that inherits from X and redefines its item x1.

class Y
inherit: X [redefine x1];
items: event x1;

end

The TRIO semantics for inheritance tells that the axiom x_ax1 refers to the new declaration
of item x1 in class Y, as an effect of the redefinition. On the other hand, the PVS translation

of class Y would be, using the importing mechanism:

Y [instances: TYPE+]
: THEORY
BEGIN
IMPORTING X[instances]
x1: [instances -> Event]
END Y
Unfortunately, PVS does not refer axiom x_ax1 to the event x1, but still refers it to time-
dependent formula x1 declared in theory X. More precisely, this latter item is still available

under the name X.x1. This is because formulae always refer to the “nearest” items, that is

those declared in the same theory as the formula is. In particular, the problem would not be

66

solved by moving the importing after the new declaration of x1 since the axiom would still refer
to X.x1.

All in all, it seems that there is no safe way to exploit the importing mechanism of PVS
to map TRIO inheritance mechanisms. Hence, we still need to rely on (still to be developed)
automated translation tools to correctly map this important TRIO feature. More precisely, the
translator should rewrite the class we are inheriting from, adding the things that need to be
added, redefining the things that need redefining and keeping the changes consistent with the
TRIO specification. As an aside, note that this guideline also works when dealing with multiple

inheritance, since the needed renamings can also be managed during the translation.

A final example will now show a case of multiple inheritance and how it should be translated
in PVS. We are specifying a flip-flop logic device. We fist of all describe it very generically as

an object that has a Boolean state.
class flip_flop
signature
visible: Q;
items:
state Q;

TI total tau: real;

end

The class has no axioms. We first redefine it by adding a set command.

class set_flip_flop

67

inherit: flip_flop;
signature
visible: S;

items:
event S;

formulae:

axiom set:
S -> Futr(Q, tau);

end
Another, different refinement of f1ip_flop is obtained by adding a reset command.
class reset_flip_flop
inherit: flip_flop;
signature
visible: R;

items:
event R;

formulae:

axiom set:
R -> Futr(not Q, tau);

end

Now we define a set-reset flip-flop as a device with both a set and a reset command and

whose state stays unchanged if no command is issued.

class set_reset_flip_flop

68

inherit: set_flip_flop, reset_flip_flop;
formulae:

axiom persistency:
(not S & not R) ->

((Q -> Lasts(QR, tau)) & (not Q -> Lasts(not Q, tau)));
end

Finally, a J-K flip-flop is a set-reset flip-flop where the state is complemented if both S and R

(now conventionally named J and K) are on at the same time

class jk_flip_flop

inherit: set_reset_flip_flop [redefine set, reset;
rename S as J;
rename R as K] ;

formulae:

axiom set:
(J & not K) -> Futr(Q, tau);

axiom reset:
(K & not J) -> Futr(not Q, tau);

axiom commutation:
(J & K) -> (Q <-> Futr(not Q, taw));

end

The above classes would be translated in PVS as follows.

flip_flop [instances: TYPE+]
: THEORY
BEGIN

Q: [instances -> State]
tau: [instances -> reall

END flip_flop

set_flip_flop [instances: TYPE+]
: THEORY
BEGIN

Q: [instances -> State]
tau: [instances -> reall
S: [instances -> Event]

inst: VAR instances

set: AXIOM
Alw(S(inst) IMPLIES Futr(Q(inst), tau))

END set_flip_flop

reset_flip_flop [instances: TYPE+]
: THEORY
BEGIN

Q: [instances -> State]
tau: [instances -> reall
R: [instances -> Event]

inst: VAR instances

reset: AXIOM
Alw(R(inst) IMPLIES Futr(NOT Q(inst), tau))

END reset_flip_flop

set_reset_flip_flop [instances: TYPE+]
: THEORY
BEGIN

Q: [instances -> State]
tau: [instances -> reall
S: [instances -> Event]
R: [instances -> Event]

inst: VAR instances

set: AXIOM

69

Alw(S(inst) IMPLIES Futr(Q(inst), tau))

reset: AXIOM
Alw(R(inst) IMPLIES Futr(NOT Q(inst), tau))

persistency: AXIOM
Alw((NOT S(inst) AND NOT R(inst)) IMPLIES
((Q(inst) IMPLIES Lasts(Q(inst), tau))
AND (NOT Q(inst) IMPLIES Lasts(NOT Q(inst), tau))))

END set_reset_flip_flop

jk_flip_flop [instances: TYPE+]
: THEORY
BEGIN

Q: [instances -> State]
tau: [instances -> reall
J: [instances —> Event]
K: [instances -> Event]

inst: VAR instances

set: AXIOM
Alw(J(inst) IMPLIES Futr(Q(inst), tau))

reset: AXIOM
Alw(K(inst) IMPLIES Futr(NOT Q(inst), tau))

persistency: AXIOM
Alw((NOT J(inst) AND NOT K(inst)) IMPLIES
((Q(inst) IMPLIES Lasts(Q(inst), tau))
AND (NOT Q(inst) IMPLIES Lasts(NOT Q(inst), tau))))

commutation: AXIOM
Alw((J(inst) AND K(inst))
IMPLIES (Q(inst) IFF Futr(NOT Q(inst), tau)))

END jk_flip_flop

70

CHAPTER 5

A COMPOSITIONALITY FRAMEWORK WITH TRIO

When specifying the behavior of a component or of an open system, one often needs to
make some form of assumption about the behavior of the environment interacting with the
component, that is the outside part of the world that provides the inputs to the open system.
In fact, it is often the case that a given component mantains certain expected properties only
if its environment behaves in some constrained manner: if the inputs are instead completely
unpredictable, it may be impossible to design a system that still behaves correctly. For example,
the input channels may be communication channels where we expect that every user of the
channel adheres to a certain communication protocol. In other cases, we may simply want to
assume that a voltage signal is discrete, so that it takes only a number of known values and
avoids all the other possible ones.

It is easy to realize that this kind of situation often happens in practice, so that we want
to be able to specify and reason about such kind of systems. What we need to do is to include
the constraints imposed on the environment into our formal model. Then, we can prove the
properties of each module so that they are satisfied if we assume the environment constraints
to be true. Finally, when we compose modules into a larger system, we want to guarantee
that whenever a module M; provides input to another module M, then M; also satifies the
environment constraints required by Mo, either directly or by demanding them to its own

environment.

71

72

In order to achieve this expressiveness into a formal specification, we can basically choose

between two approaches: the rely/guarantee approach or the lazy compositional approach. See

sections P.1.2.1] and R.1.2.2 respectively for a review of the recent literature about these topics.

It is important to point out that these two paradigms must not be considered incompatible. In
fact, it is perfectly possible to mix them into the specification of the same system, using the
one more suited in each part.

In the following sections, we consider the rely/guarantee compositional approach with refer-
ence to the language TRIO and point out some aspects one must take into account when doing

a compositional proof of a system specified as such with TVS.

5.1 A rely/guarantee specification

Let us consider a module specified as a TRIO class C. The environment of C' is everything
outside C that constrains in some manner its visible input items, or a part of them.

In TRIO, there is no pre-defined notion of input, output or shared items; even when we
define a connection between the items of two modules, there is no semantic notion of direction
associated to it, so that it goes from an output to an input. However, it is often the case that
one has such a kind of distinction in mind when specifying a system and partitioning it into
submodules. In general, we can say that even if rely/guarantee reasoning usually has some
notion of input/output variables, we can simply assume that an environment assumption is a

property characterizing the behavior of a number of visible items of the class.

73

In TRIO, the environment assumptions of a class can be expressed with the keyword
assumption. Let us suppose that the class C' has an assumption E about its environment.

Therefore, the declaration of the class is:

class C
signature:
visible:
i1, i2, ..., in;
formulae:
assumption E:
P_e(il, i2, ..., in);
We have explicitly shown that the assumption E is a predicate over the visible items ¢1,..., %,
of the class only. This is a well-defined restriction on the semantics of the keyword assumption
of the TRIO language. More precisely, we will only refer to what is usually called an external
assumption, that is one about visible items only.

An assumption is used with reference to one or many derived properties of the system, which
in TRIO can be expressed with the keyword theorem. We want to explicitly link a number of
assumptions to a theorem that relies on them to be proven. The TRIO language does not have
an ad hoc feature to explicitly show this. For sake of brevity, we adopt a new non-standard
keyword rely on as an optional part of every theorem. This will just be a shorthand for longer
TRIO formulae, as it is explained below, and is not meant to be considered a feature of the

TRIO language, but just an explanatory aid.

74

More precisely, we have the following general scenario in mind when writing rely/guar-
antee specifications in TRIO. One specifies the basic behavior of a class in terms of axioms.
The axioms are usually formulae over both visible and non visible items, and usually rely on
no assumptions about these items, since they just state the basic behavior of the class. In
order to characterize the class externally, one usually derives a number of remarkable proper-
ties as theorems of the class. In order to prove them, she/he must usually make some addi-
tional assumptions about the behavior of the environment (i.e. the visible items), expressed
as assumptions. Among the deducted properties, those predicating about visible items only
constitute the interface abstraction of the class and characterize its external behavior under
the given assumptions. Of course, we can give different environment assumptions of different
strengths, if more than one possible environment scenario is possible. Usually, the stronger the
environment assumptions a theorem relies on, the stronger the property it can express is.

The declaration for a theorem M of the aforementioned class C' would be written as:

formulae:

theorem M:
rely on: E;
P_m(...);

We need to understand the precise semantics of a rely/guarantee property, so that we are
able to carry out formal reasoning about it and we can implement this TRIO formula into PVS
to build automated proofs. One first obvious meaning of a rely/guarantee formula is logical

implication: property M relies on the environment assumption F, meaning that the formula

75

E = M is a valid property of the class C. Therefore, the above rely/guarantee theorem M

could be translated into plain TRIO as:

theorem M:
Alw(P_e(...)) —> Alw(P_m(...))

and in PVS as follows.

M: THEOREM
Alw(P_e(...)) => Alw(P_m(...))

We have chosen to use the operator => instead of the keyword IMPLIES in order to distinguish
between the operator used in TRIO formulae with time-dependent items as arguments and the
rely/guarantee implication which relates temporally closed TRIO formulae that do not refer to
a single instant of time (i.e. quantified with a Alw() or Som() operator). Of course, whenever a
theorem relies on more than one assumption, this means that the conjunction of the assumption
formulae implies the formula of the theorem.

Let us now see a simple complete specification of a class using a rely/guarantee scheme.
The module has just a Boolean input and a Boolean output. shows the very simple
interface of the module.

We adopt a discrete temporal model for this device because the following results become
simpler and more understandable. However, the same can be done with the usual dense tem-
poral model, just with some more details to be put in place. The basic behavior of the module
is the following: whatever it receives on its input (true or false), it outputs it one time step
later on its output. Moreover, at the beginning (time 0) the module is initialized so that it

outputs a true value, regardless of its input. This simple behavior is specified as follows:

echoer

input

oytput

Figure 2. Interface of the echoer class

class echoer
signature:
visible:
input, output;
temporal domain: natural;
items:
TD input;
TD output;

formulae:

axiom init:
output (0) ;
axiom in_to_out:
(input -> Futr(output, 1)) &
(not input -> Futr(not (output), 1));

end

76

7

Note that axiom in_to_out can be equivalently written as:
(input = NowOn(output)) A (—input = NowOn(—output)), a consequence of the the temporal
domain being discrete.

Now, we give a derived characterization of the behavior of the class with a rely/guarantee
property. The stated behavior is the following: assuming the environment always inputs true,
the component guarantees that its output is always true. This behavior is formally written in

TRIO, enriched with the rely on notation, as:

assumption on_input:
input;

theorem rely_guarantee:

rely on: on_input;
output;

where on_input is the assumption about the environment and rely_guarantee is the property
linked with the environment behavior.

Now that the specification of this simple class is complete, we can build the proof for the
(only) local derived property, that is the theorem rely_guarantee.

The proof is straightforward using the axioms and assuming on_input to be true and is
easily carried out in a handful of steps with TVS. We report here a short summary of the proof,
that can be safely skipped without compromising the understanding of the following sections.

The goal to be proven is the temporally-closed TRIO formula:

Alw(input) = Alw(output)

78

Let t be a generic time instant. We distinguish two cases, whether ¢ is equal to 0 or is not (that
is it is greater than 0, the temporal domain being the natural numbers). The first branch of
the proof requires to prove:

output(0)

which can be done by the axiom init. The other branch of the proof is represented by the
formula

Alw(input) = (Yt > 0 : (output(t)))

and is closed by using the axiom in_to_out and applying it at time ¢ — 1.

5.2 Compositional inference rules for rely/guarantee systems

Now, we want to consider compositional reasoning with classes specified with the rely /guar-
antee paradigm. Whenever we compose a class C'; with another class Cs so that we connect some
items of the two classes together, we want to be able to discharge the assumptions C'; makes
about its environment by means of some of the exhibited properties of Cs, or, by transitivity,
by means of the environment assumptions of Cj.

Let us define this idea more precisely, with reference to a system composed of n modules
Cy,...,C,. Each module C;, i = 1,...,n has an interface abstraction specified synthetically
as E; = M;. This means that its externally visible behavior is characterized by a rely/guar-

antee property of the form: if F; is true of C;’s environment, then C; exhibits the property

79

M;. Needless to say, F; and M; can be arbitrarily complex TRIO formulae. Therefore, the

composition of the n modules can be characterized by the formula:

i=1,...,n

1 20y

where we do not show explicitly the connections of items (which can be considered simply as
renamings).

The composite class C' is the composition of the n simpler classes we have just mentioned. In
general, C' also has its own environment and we can define an assumption on this environment
and name it £. What we want to prove of C is that, assuming its environment behaves as in

FE, it guarantees a behavior M, that is:

Intuitively, one would expect the following circular inference rule to be valid.

Proposition 1 (Invalid rely/guarantee inference rule) If, for

i=1,...,n the following two conditions hold:

1. EANN M; = E;

Jj=1,...,n

2. /\j:l,...,n Mj =M

then

Alw (Ej = M;) | = Alw(E = M)

80

The intuitive meaning of Proposition [l| is simple: if the environment assumption of each
module can be discharged by the global environment assumption E and the guarantees of the
other modules (possibly including itself), and the global guarantee M can be inferred from the
guarantees of the other modules, then the composition of the n modules has a rely/guarantee
behavior £ = M.

However, this intuitively reasonable and simple inference rule is not valid in general, since
we have to make additional hypotheses about the assumptions of each module and also about
how the rely of each module is linked to the guarantee of the same module. In order to show
that, we make two similar examples where the hypotheses of proposition [hold, but nonetheless
the conclusion is wrong in one of the two examples and true in the other one. These examples

are modeled after those in (), ().

Let us consider a complete system built using two instances of the previously declared class
echoer. This system simply connects the input of one echoer to the output of the other and

vice-versa. It is shown in [Figure 3, while here we list its TRIO specification:

class two_echoers
import: echoer;
signature:
temporal domain: natural;

modules:
P1, P2: echoer;

connections:

81

two_echoers

P1 P2

input output

output input

Figure 3. Interface of the two_echoers class

(direct P1.input, P2.output);
(direct P2.input, P1l.output);

formulae:

theorem rely_guarantee:
P1.output & P2.output;

end
The given system is a closed system, so that it does not have any global environment

assumption. We apply the inference scheme of proposition [l| as follows: if

1. Pl.rely_guarantee = P2.on_input

2. P2.rely_guarantee = Pl.on_input

3. Pl.rely_guarantee A P2.rely_guarantee = rely_guarantee

82

then we conclude rely_guarantee is true, having already proved the rely /guarantee formulae
Pl.rely_guarantee and P2.rely_guarantee to be valid locally. And in fact the above con-
clusion is true and can be proved formally with TVS; some commented details of the proof are
shown in section .4

However, an apparently minimal modification in the definition of the class echoer suffices

to make the whole reasoning incorrect. Let us consider this new modified class echoer_2.

class echoer_2

signature:
visible:
input, output;

temporal domain: natural;
items:

TD input;

TD output;

formulae:

axiom init:
output (0) ;

axiom in_to_out:
(input -> Futr(output, 1)) &
(not input -> Futr(not (output), 1));

assumption on_input:
Som(not input);

theorem rely_guarantee:
rely on: on_input;

Som(not output);

end

83

The only significant change is that we now adopt an existential closure of the formulae with
respect to time, instead of the standard implicit universal closure. The consequently modified
composite class two_echoers_2 would only differ in the expected guaranteed property we want

to prove:

class two_echoers_2

theorem rely_guarantee:
Som(not P1l.output) & Som(not P2.output);

end

It is still very simple to prove that:

1. P1.rely_guarantee = P2.on_input
2. P2.rely_guarantee = Pl.on_input

3. Pl.rely_guarantee A P2.rely_guarantee = rely_guarantee

and it also trivial to prove:

1. Som(not P1.input) = Som(not P1l.output)
2. Som(not P2.input) = Som(not P2.output)
However, it is not true that Som(not P1.output) or that Som(not P2.output). In fact, it is

instead true that Alw(P1.output & P2.output), since the axioms of the classes on which the

previous proof was built have not changed, hence invalidating the inference rule in proposition

84

In order to formulate a sound inference rule, we have to make additional assumptions about
the validity of the properties used as assumptions of the classes. Moreover, we have to assume
a stronger semantics for the rely /guarantee specifications of modules, i.e. stronger than simple
implication. More precisely, we must link temporally the behavior of the environment and the
one of the module, introducing a tight causal link between them.

Much of the work done about rely/guarantee compositional reasoning (see section P.1.2.1]),
and especially (B), (), bases its results on the safety characterization of the formulae used
as assumptions and guarantees of the modules being composed. In order to see if something
similar applies to our framework, section [.J investigates safety in TRIO. Unfortunately, the
characterization will be shown to be of little practical use in formulating a sound inference
rule. However, we can still get to a practically usable inference rule by considering additional
hypotheses.

Under these respects, section .4 discusses how to strengthen a rely/guarantee specification,
while section p.§ below finally formulates a valid inference rule, based on the results of the

previous sections.

5.3 Safety properties

An interesting classification of the temporal properties of a system is the one between safety
properties and non-safety properties. A safety property ([]), (57) is one that is finitely refutable,
that is it can be proven false by observing a single violation at a single finite instant of time.
The term “safety” intuitively indicates that we have such a class of properties whenever we

specify the “safe” behavior of a system. In fact, by safe we usually mean a behavior where no

85

bad thing ever happens. As it is clear from this informal definition, it is easy to disprove a safety
property, since it suffices to find a single finite instant of time where the property does not hold.
Most of the literature about rely/guarantee compositional reasoning (see section P.1.2.1]) bases
its results on the safety characterization of the formulae used as assumptions and guarantees.
This section tries to understand if this can be extended to the TRIO framework. We warn the
reader that the results will be negative, in that the safety of TRIO formulae cannot be given a
completely syntactical characterization.

First of all, let us precisely define what is a safety property. The basic idea is that we observe
the validity of the formula over a finite time interval; if this suffices to falsify the formula, we
have a safety property. In order to give a formal characterization, we use the notion of history: a
history is any possible evolution of all the items of interest (i.e. those referred to in the formula
we are considering) over the whole temporal axis: in other words, it is an interpretation for the
given formula, or a candidate model of it. If A is a history and I C Time is a time interval,
by the expression h[I] we denote the subset of the facts described by the history h over the
time interval I only. A completion of a history h with respect to a non-empty time interval
I C Time is any other complete history A’ such that: h[I] = h/[I], and we write b/ ~; h (b’ is a
completion of h with respect to time interval I). This means that b’ is the same as h over the
time interval I, while can be anything anywhere else on the temporal axis. As a side remark,
we note that the binary relation ~; is an equivalence relation, for any given time interval I.

With this in mind, we give the following definition.

Definition 1 (Safety) Let T be a TRIO formula.

86

T is a safety property if and only if for every history h:

h¥T = exists a finite nonempty I C Time : (Vh' : (W ~; h) = (W ET))

That is, if T is false we can prove it so by considering its behavior only over a finite time

mterval.

Note that the time interval I can be, in general, any finite union of disjoint finite time
intervals; however, most of the practically interesting cases involve only one contiguos interval
or even simply a point on the temporal axis.

We now want to give some practical characterizations of safety TRIO formulae, to see if
this can be of use in formulating a rely/guarantee inference rule. Unfortunately, we cannot give
a condition for safety which is both necessary and sufficient, and purely syntactical, as we will
show below. Therefore, we just give one characterization of safety which is purely syntactical
but is just a sufficient condition (i.e. there are formulae which do not satisfy the criterion but

are nonetheless safety formulae).

5.3.1 Conditions for safety preservation

Let P be a primitive time-dependent formula, that is one defined without using any logical
or temporal TRIO operator. Then P is by definition a safety property, since if it is false it is so
at some instant. Every time-independent formula is also by definition a safety property, since

safety is a temporal property and time-independent items do not affect it.

87

Let now T be a TRIO formula representing a safety property. If we use T as an argument
of a TRIO operator, the resulting formula is still a safety property if the operator is one of
those listed in [Table 11 In fact, for each of them we can decide if the formula is true or false
for a given history by just considering what happens to the argument of the operator over a
finite time interval. Since the argument is in turn a safety formula, this implies that its truth

can also be decided on the basis of a finite time interval, so that the overall analysis is finite.

Safety formula | Finite interval(s) sufficient to determine the truth value
Dist(T,t) [t, 1]
Past(T,t) [—t, —t]
Futr(T,t) [t,t]

Alw(T) [t,t] for any time ¢
AlwP(T) [—t, —t] for any positive time ¢
AlwF (T) [t,t] for any positive time ¢

Lasted(T,t) [—t/, —t] for any positive time ¢’ <t
Lasts(T,t) [/,] for any positive time ¢’ < t
Within(T, t) [—t,]
WithinP(T,t) [—t, 0]
WithinF (T, t) [0, ¢]
LastTime(T,t) [—t,—t] for T or [—t,0] for =T
NextTime(T,t) [t,t] for T or [0,t] for =T
UpToNow(T') [—t, 0] for any positive time ¢
NowOn(T) [0,t] for any positive time ¢
Becomes(T) [—t,0] or [0,¢] for any positive time ¢
TABLE II

Safety-preserving TRIO temporal operators

88

Therefore, we say that the TRIO operators Dist, Past, Futr, Alw, AlwP, AlwF, Lasted,
Lasts, Within, WithinP, WithinF, LastTime, NextTime, UpToNow, NowOn and Becomes
preserve safety.

On the other hand, the other TRIO operators do not preserve safety. In fact, if T,7T7,T5
are TRIO formulae expressing safety properties, the derived formulae listed in are
non-safety properties. For each of them, we may have to consider an infinite time interval to
prove the property false, when nothing can be said for sure by observing the behavior over a

finite time interval only.

NON-safety formula | Infinite interval(s) needed to determine the truth value
Som/(T) [—00, +00]
SomP(T) [—0o0, 0]
SomF(T) [0, +00]
Until(Tl, Tg) [0, —|—OO] for T1 and —|T2
Since(Ty1,Ts) [—00, 0] for T7 and —T5
TABLE III

Non safety-preserving TRIO temporal operators

Following what has just been explained, it may seem that to decide the safety of a TRIO
formula we can simply consider the temporal operators used to build the formula, on a purely

syntactical basis: if they all are safety-preserving operators, then the formula is a safety formula.

89

Unfortunately, this is not true in general. In fact, we now pass to analyze what happens to
the safety of a formula when we use the Boolean connectives =, A and V and when we use
explicit quantification over free variables. The result will be that we cannot formulate a purely
syntactical condition for safety that is both necessary and sufficient.

In fact, let 17 and T be two safety formulae. Then the formulae T3 A T> and 17 V T are
both still safety formulae. In fact, if the AND formula is false, then there is by definition some
instant at which either T} or T5 is false; this is recognizable since T} and T are safety formulae
and their truth can be decided analyzing finite intervals only. Similarly, if the OR formula is
false, then there is some instant at which both 77 and 75 are false; this is also recognizable since
it suffices to take the intersection of the intervals where 77 and T5 are independently false.

Let us now consider what happens to the safety of a formula when we apply quantification.
It is trivial to note that, whenever the quantification is done on a non-temporal variable,
safety is simply preserved. In fact, safety concerns the temporal properties of a formula, which
are unchanged by a quantification over other domains. On the other hand, rules for safety
preservation when quantification is done on temporal variables are hard to formulate. To see

this, consider the following two quantified formulae.

Jt: (0 <tAt <10 A Dist(T,t)) (5.1)

Jt:(0<tA—1<tA Dist(T,t)) (5.2)

90

The two formulae are syntactically the same, in that they are both existential quantifications
of a temporal variable which is used in two time-independent items and in one time-dependent
item (i.e. Dist(T,t)). However, is equivalent to the TRIO formula WithinF (T, 10)
and is a safety formula. On the other hand, is equivalent to SomF(T') which is
not a safety formula.

In order to distinguish these cases one needs to abandon a purely syntactical characterization
and analyze the temporal intervals over which the quantified variables are allowed to vary. In
fact, let us consider the subdomain for the quantified variable ¢ which is mapped to TRUE values
in the time-independent terms. This can be expressed as the set D C Time : t € D = f(t)
where f() is the Boolean functions we are considering. Another way to say the same thing is
that D is the set defined by the Boolean formula f(¢) (i.e. 0 < ¢ < 10 and ¢t > 0 respectively).
Then, D is the bounded set [0, 10] in and is instead the unbounded set [0, +o0] in
Equation 5.9. So, in the first case safety is preserved because we can observe the term T over
a finite interval only to determine its truth value, while in the second case we need to analyze
the whole positive semiaxis.

Note that this particular behavior does not happen when we apply universal quantification.
In fact, the formulae

Vit =((0 <t At <10) A —Dist(T,t)) (5.3)

vt : Dist(T,t) (5.4)

91

are both safety formulae: the first one is just a counterintuitive way of writing Lasts(T, 10)
and the second corresponds to Alw(T).

However, the presence of an unbounded interval within an existential quantification does
not always mean the loss of safety of a formula. Consider for example the definition of the

NowOn() operator in dense domains.

NowOn(T) = 3t(t > 0A Lasts(T,t))

Even if the quantified variable ¢ is allowed to vary in [0, +00], nonetheless the formula expresses
a safety property. This is because the second argument of the Lasts() operator can be rewritten
as part of a time-independent term. To see this better, we can expand the Lasts() operator in

the NowOn() definition.

NowOn(T) = 3t >0A (V' (0<t <t= Dist(T,t))))

So the variable appearing as an argument to the Dist() operator is ¢’ which is bounded by t.

The effect of the Boolean unary operator — on the safety of formulae can similarly be
understood in connection with the behavior of the existential quantification. In fact, consider
the two formulae

AlwF(T) (5.5)

92

Lasts(T,10) (5.6)

which are both safety formulae.

The negation of the first one produces —AlwF(T) = Som#F(—=T) which is no more a
safety property. On the other hand, the negation of the other formula is —Lasts(T,10) =
WithinF (=T, 10) which is instead still a safety property. If we rewrite the two formulae in
terms of the only Dist() operator and bring the negation inside the quantification, we have the
following.

~(Vt(t < 0V Dist(T,1))) = (3t(t > 0 A =Dist(T, 1))) (5.7)

~(V((t <0Vt > 10) Vv Dist(T,t))) = (3t(0 < t At < 10 A ~Dist(T,t))) (5.8)

So in we have an existential quantification over an unbounded domain and
we lose safety; in the domain is bounded and safety stays. In other words,
what the negation has done in these two examples is to complement temporal intervals; when
this complementing has produced an unbounded interval inside the domain of an existential
quantification, safety has been lost.

5.3.2 A sufficient syntactical condition for safety

As seen in the previous section, finding out whether a TRIO formula expresses a safety
property or not is far from trivial in the general case. However, if we restrict ourselves to a

proper subset of all the TRIO formulae we can get to a sufficient condition for the safety of a

93

formula which is purely syntactical. This condition may be too restrictive in the general case,
but is surely of use in many practical situations.

The basic considerations about safety preserving and non-safety preserving TRIO operators
done in the previous section can be applied. We avoid explicit quantification on temporal vari-
ables (while we allow it on variables other than time) and only use safety preserving operators
on basic time-dependent items. We allow negation only if directly on basic time-dependent

terms. To summarize, we have the following sufficient condition for safety.

Proposition 2 (Sufficient syntactical condition for safety) Let F' be any TRIO formula.
If F is built from basic time-dependent and time-independent items by observing the following
rules.

1. There is no use of explicit quantification over time variables

2. There is no use of TRIO operators other than the safety-preserving ones, listed in

3. There is use of the negation operator directly on basic time-dependent and time-independent

items only

4. There is use of the logical connectives N\ and V only

Then F is a safety formula.

This proposition can be proved inductively starting from basic time-dependent and time-
independent items.
As an example, if we consider the formula Alw(Lasts(WithinP(TyV Ts,t))) this is a safety

formula, since Alw(), Lasts() and WithinP() are all safety-preserving operators. Conversely,

94

consider the formula Alw(Lasts(Until(T1,T2))). This is clearly a non-safety formula, since
proving it false cannot be done by considering its behavior on finite intervals only, because of
the Until() operator.

5.3.3 Safety is of little use in a TRIO rely/guarantee framework

Definition [I| above gives a characterization of safety properties based on what is needed to
falsify them: if we can prove the property is false by observing its behavior over a finite time
interval, then it is a safety property. If we reverse the implication used in definition [, we can
get to another equivalent characterization of a safety property: if the property is true on every
finite time interval (arbitrarily completed) then it is true on the whole temporal axis (otherwise

we could falsify it). This is shown in the following definition.

Definition 2 (Safety - second definition) Let T be a TRIO formula.

T is a safety property if and only if for every history h:

(for all finite nonempty I C Time: (3h': (' ~f A)A(W ET))) = hET

That s, if T is true on every finite time interval, then it is true on the whole temporal axis.

To show the meaning of this definition better, let us use it to determine the safety of the
two formulae: SomF (P) and WithinF (P,t), where P is a basic time-dependent formula.

First, we show that WithinF (P, t) is a safety formula. To do so, let us consider its evaluation
at generic time instant 7. Let us now consider a generic history h. If h E WithinF(P,t)(T)

then there is nothing to show since the implication of the definition surely holds. If instead

95

h ¥ WithinF(P,t)(T) then we must show that the antecedent to the implication is false. Since
the formula is false for that history, it means that on the whole interval I, = (7,7 +t) P is
false. Now, take any finite time interval I such that I O I,. Whatever h’ that completes h[I]
we choose, it surely is h' ¥ WithinF (P, t)(7), since the critical interval I, is already set to false.
Hence the implication in the definition holds, so that we have shown the formula is a safety
formula.

Now, we show that SomF(P) is not a safety formula. Let us consider its evaluation at
generic time instant 7. We just need to find a history h for which the antecedent of the
implication is true and the consequent is false. Let us consider the history A such that P is
false on the whole temporal axis. Obviously, h ¥ SomF(P)(7). On the other hand, take any
finite time interval I. Consider the following completion h’ of h[I]: take any time instant ¢,
such that t, > 7 and ¢, ¢ I and make P to be true there. Obviously h' F SomF(P)(7) so that

the implication is false. This shows that the formula is not a safety formula.

Both definitions [I] and f| characterize safety in terms of models; in other words the charac-
terization is semantical. On the other hand, the TRIO encoding in PVS, which we would like
to use to carry out compositional reasoning, relies on purely syntactical inference rules.

In the previous sections we tried to formulate an equivalent definition of safety expressible
as a TRIO formula. Unfortunately, it seems it is not feasible in a reasonably simple manner, nor

formulating a condition subsuming safety and expressible as a TRIO formula seems feasible.

96

This means that we could not “transfer” the characterization of safety formulae, which is
inherently semantical, to a syntax-based formalism.

As a result, there does not seem to be a simple and interesting use of safety formulae in
expressing a rely/guarantee inference rule in TRIO. Nonetheless, the results obtained above
about safety are still valid, and we will be able to formulate a sound and practical rely/guar-

antee inference rule, without the need to use them (see section f.H).

5.4 A stronger semantics for rely /guarantee properties

In order to obtain an inference rule for composite systems which is both sound and simply
expressible, we give a stronger semantics to a rely/guarantee specification. This means that
instead of simple logical implication between temporally closed formulae we want to make
stronger assumptions about how our specified system behaves with respect to an assumed
behavior of its environment.

In the TLA temporal logic formalism (Bf]), two operators are often used to formally describe
systems in a rely/guarantee framework. These operators are usually represented as: —> and
¥, the second being a stronger version of the first one (i.e. if *> holds then so —> does, while
the converse is in general not true). Their meaning in TLA is briefly explained on page R1].

Now, we propose something similar to those operators, but usable in the TRIO language.

97

Let P and @ be two time-dependent formulae, either primitive or built from primitive
formulae using any TRIO operator. We define the > TRIO operator as a shorthand for the

formula:

AlwP,(P) = AlwP;(Q) A NowOn(Q) if Time is dense

AlwP,(P) = AlwP;(Q) if Time is discrete

The operator * is usually called “while plus” operator and its symbol may be called “rely/guar-
antee arrow plus”.

Informally speaking, the formula P > () means that Q lasts at least as long as P does
and even a bit longer, so that when P becomes false Q is still true for some instants (or more
precisely for at least one time step, when the time model is discrete).

By considering this informal explanation of the meaning of the operators, we can understand
that a rely/guarantee specification can be conveniently written as E “> M, where as usual F
is the assumed behavior of the environment and M is the guaranteed behavior of the module

being considered. Hence, the formula F %> M means that:
1. As long as the environment behaves as in E the module guarantees a property M
2. If the environment stops behaving as in E the module can fail meeting its specification

M only a bit later than the failure of the environment occurs

Moreover, note that the formula links the behavior of the environment and that of the module
since the beginning, in that we consider a behavior where everything is correct since its start,

that is at “time” —oo (or 0 if the time domain is natural).

98

It is obvious that any rely/guarantee specification must meet condition 1. Condition 2 is
reasonable as well. In fact, every real system must be a causal one, that is must base the future
behavior of its outputs on the present behavior of its inputs. Therefore, to fail condition 2 while
respecting condition 1, a system must be able to stop respecting the property M at the same
instant of time as when the environment stops respecting £. But, since the system bases its
present behavior on the past behavior of the inputs and on its state, the only way it can do so is
by predicting the future, which is clearly a non causal behavior. Hence, the use of the operator

1> to specify a rely/guarantee system should be a reasonable way to write specifications.

We now give some properties of the new operator .

Lemma 1 For any formulae P and Q)
Alw(P %> Q) A Alw(P) = Alw(Q)
Lemma 2 For any formulae P, Q and R
Alw(P *> Q) A Alw(Q = R) = Alw(P *> R)

Lemma 3 For any formulae P; and Q;, fori=1,...,n

i=1 i=1

Alw (/n\ (P, %QJ) = Alw ((/n\ P) > (/n\ @))

The proofs of lemmas [I, P and [are trivial and are omitted.

Now we enunciate and prove the following lemma.

Lemma 4 For any formulae P, QQ and R, if:
1. Som(AlwP,.(P))
2. Alw(Q N R = P)

then:

Alw(P > Q) = Alw(R Q)

Proof for dense time models Assume the following to be true:

1. Som(AlwP.(P))
2. Alw(Q AR = P)
3. Alw(AlwP,.(P) = AlwP;(Q) A NowOn(Q))

4. AlwP.(R) at generic time instant ¢

99

Assumptions 1 and 2 are the two hypotheses of the lemma. Assumption 3 is the definition

of the *> operator for formulae P and @ and dense time models. Assumption 4 is instead

a translation of the antecedent in the definition of the “> operator for formulae R and Q.

We want to prove that AlwP;(Q)) A NowOn(Q) holds at time ¢.

Assumption 1 can be equivalently rewritten as AlwP,.(P)(up), that is by making explicit

the time instant ug at which it holds. Let us now distinguish two cases, whether ug > ¢

or ug < t.

100

The first case: ug > t is very simple. In fact, if we consider assumption 3 evaluated at
time instant ug, we can immediately conclude that AlwP;(Q) A NowOn(Q) holds at time
ug. This also implies that AlwP;(Q) A NowOn(Q) holds trivially for any time instant less

or equal than ug. Since t < ug by hypothesis, this case is concluded.

Let us now consider the case ug < t. The proof of this branch relies on what is a sort of
induction done on temporal intervals instead of a discrete temporal domain. Very roughly
speaking, starting from a condition true on a base interval, we propagate the condition
using the assumptions, till we can show that this behavior is prolonged over the entire
interval of interest. The basics of this technique have been proposed in (P4) under the

name “temporal induction” and have been implemented and proved in PVS in (R().

By assumption 1, we have a base point (u) on the temporal axis before which P is always
true. So P is true on the open interval (—oo, ug). By assumption 3, @ is also true on this
interval, as well as in ug and for some more time €y > 0. So () is true on the open interval
(—o0,u1) where u; = ug + €9. Now, it is either uy > ¢ or u; < t. In the first case, the
proof is concluded, since we have shown that) lasts a bit longer than R does. If, instead,
u; <t we can use assumption 2 to conclude that P is true on the open interval (—oo,u1)
since on the same interval both @ and R are true. But this means that AlwP.(P) holds
at time u; > wug. This allows us to iterate the reasoning to get a new quantity ¢; > 0
so that @ is true on (—oo,u; + €1) D (—00,up + €9). Now, by considering the sequence
of points ui,uo,...,u, where each u; is defined as u;_1 + ¢;_1, we can realize that we

must eventually reach a point after t. In other words, there must exist a j such that

101

uj > t. This in turn means that @ holds on the interval (—oo,u;) and, consequently, that

AlwP;(Q) AN NowOn(Q) holds at time ¢, thus concluding the proof.

It is important to note that there must exist such j and the series of points cannot
accumulate before ¢. In other words, the value ug+), €; must eventually become bigger
than ¢. This can be shown by contradiction: assume the opposite, that is there exists an

infinite series of values ¢; such that:

ug + Z €6 =us <t

1=0,...,00

This implies that we can assure that @ holds till time us only, that is AlwP.(Q) at time
us. Now, since us < t by hypothesis, we can conclude that R holds as well till time
ug. But then we can apply hypothesis 2 to conclude that P holds till time ug, or that
AlwP,(P) at time us. So, we use assumption 3 and conclude that there exists a positive
quantity €5 such that Lasts;.(Q,es) holds at time us. This contradicts the hypothesis
that us is the last time instant till which @ holds, thus showing that the series cannot

converge to such a value.

Another way to explain temporal induction is by observing that this reasoning reduces to
an ordinary induction over a discrete domain, where we induct on the sequence of points

u;. More precisely, the induction relies on the following scheme:

Base step At time ug: AlwP.(Q)

Inductive step At time u;: AlwP.(Q) = At time u;+1 > u;: AlwP(Q)

102

uo ul=u0+epsO u2=ul+epsl

Figure 4. Induction on temporal intervals

Fig 4 gives some graphical intuition to the above reasoning. [

Proof for discrete time models Assume the following to be true:

1. Som(AlwP.(P))

[\V)

. Alw(Q AR = P)
3. Alw(AlwP.(P) = AlwP;(Q))

4. AlwP.(R) at generic time instant ¢

Assumptions 1 and 2 are the two hypotheses of the lemma. Assumption 3 is the definition
of the > operator for formulae P and Q and discrete time models. Assumption 4 is instead
a translation of the antecedent in the definition of the “> operator for formulae R and Q.

We want to prove that AlwP;(Q)) holds at time ¢.

103

Assumption 1 can be equivalently rewritten as AlwP,.(P)(ug), that is by making explicit
the time instant ug at which it holds. Let us now distinguish two cases, whether ug >t

or ug < t.

The first case: ug > t is very simple. In fact, if we consider assumption 3 evaluated at
time instant ug, we can immediately conclude that AlwP;(Q) holds at time ug. This also
implies that AlwP;(Q) holds trivially for any time instant less or equal than ug. Since

t < ug by hypothesis, this case is concluded.

Let us now consider the case ug < t. If we define u; = wug+i foralli =0,...,(t — up), it

can be proved by induction on ¢. We apply the following induction scheme:

Base step At time ug: AlwP;(Q)

Inductive step At time u; < t: AlwP;(Q) = At time u;11: AlwP;(Q)

The base step follows immediately by combining hypotheses 1 and 3. Now, for the induc-
tive step, assume AlwP;(Q) at time u; < t. By hypothesis 4, and by the fact that u; < ¢,
it is also AlwP;(R) at time u;. Hence, we apply assumption 2 to deduce that AlwP;(P)
at time u;. From the definition of AlwPF;, this is the same as saying that AlwP,.(P) holds
at time u; + 1 = u;41. Now, we can consider hypothesis 3 at time u; to deduce that

AlwP;(Q) holds at time ;4.

The induction scheme allows us to conclude that Vi = 1,...,(t — ug) AlwP;(Q) holds
at time w;. In particular, for i = ¢ — up we have that AlwP;(Q) holds at time w;_,, =

up + (t — up) = t which is exactly what we had to prove. O

104

Hypothesis 1 in lemma [requires that P is true on a base interval, unbounded on the left.
Whenever such a condition Som(AlwP,.(P)) holds for a formula P we say that P is “initialized”,

since we can guarantee that it is initially satisfied in the model we are considering.

5.5 A valid inference rule for rely/guarantee systems

We now have all the ingredients to formulate and prove a sound inference rule for rely/guar-
antee compositional reasoning. As discussed above, this rule is very similar to the invalid
proposition [but with additional assumptions on the kind of semantics given to a rely/guar-
antee specification (i.e. use of the “> operator) and on the initial conditions for the formulae

representing the assumptions (i.e. we want them to be initialized). We give the following

inference rule.

Proposition 3 (Valid rely /guarantee inference rule) If, for
i=1,...,n (finite) the following conditions hold:

1. Som(AlwP,.(E;)), that is E; is initialized

2. Atw (BN Ny, Mj = E;)

3. Alw (/\j:L...,n Mj = M)

then

105

Proof If Alw (/\ (B, *» Mj)), then by lemma [

7j=1,...,n

=1,...,n

J ERE) J=1,..., n

also holds.

Now, we note that Som(AlwPe(A,; _, £i)) holds. In fact, thanks to hypothesis 1, for
each i = 1,...,n there exists an unbounded interval of the form (—oo,p;) such that E;
is true on that interval. Hence, if we just consider the intersection of all those inter-
vals ﬂizl"“’n(—oo,pi) = (—o0, min; p;), the conjunction /\izl,...,n E; holds on this derived

interval.

Moreover, we note that Alw <E A /\j:1 M; = /\j:1 o Ej>, since assumption 2 holds

forevery i =1,...,n.

Therefore, we can apply lemma [by substituting /\jzl,.‘.,n E; for P, /\j:Lm’n M; for Q

and F for R. We get:

Alw N B> AN M||=A4w|[ES| A\ M
i=1,...,n

j:17'“7n j:1,...,7’L J PARE]

Finally, by assumption 3 and lemma] we get the desired result. OJ

We want to point out that the formulae E, F;, M and M; can be temporally closed or not.

If they are temporally closed, it simply means that the explicit universal closures with the Alw

106

operators found in the inference rule are just superfluous. However, it is likely that the more
interesting cases are with non temporally closed rely/guarantee formulae.
We also give an immediate corollary to proposition [that may be straightforward to use

with systems without a global environment assumption (such as closed systems).

Corollary 1 (Closed system rely/guarantee inference rule) If, for

i=1,...,n (finite) the following conditions hold:
1. Som(AlwP,.(E;)), that is E; is initialized
2. Alw (Njy, . M = E)
8. Atw (Ao, My = M)

then

J LA

Alw [N (B &> M) | = Alw(M)
=1,....n

Proof From proposition [, if we take E = true, we can conclude:
Alw /\ (E; > M;) | = Alw(true %> M)

Then, by applying lemma [[] substituting true for P and M for @, the desired result

follows. [

What can we do whenever we are specifying a system where the inference scheme just

proposed does not apply? Do we have to give up rely/guarantee reasoning completely and use

107

only general purpose proof rules? A thorough answer would involve a long discussion and the
analysis of several cases, which is out of the scope of this work. In this paragraph, we just
sketch out the very basic developments.

Even though we did not investigate this issue in detail, it is possible that the rely/guarantee
proof rule discussed above is not complete. This means that there are composite systems where
some valid global properties cannot be proven with this rule, no matter how we apply it. It is
important to have this in mind, so that we also know what are the possible ways out of it. The
first one is to formulate different rely/guarantee proof rules to achieve completeness. This is
possible and is shown in (ff) with reference to temporal logic formalisms and the proof rules
of (). The major drawback is that complete proof rules cannot be applied mechanically like
the ones seen in this chapter and require the prover to formulate some “auxiliary assertions”
which usually cannot be done automatically, hence complicating the proof. The other way to
achieve completeness is simply to use the basic proof rules of PVS (or any other general-purpose
inference rules), which are complete, to achieve the goal, leaving out rely /guarantee proof rules.

On the other hand, we still believe that the rely/guarantee paradigm for writing modular
specifications is useful in practice even when it cannot be fully applied. In fact, the paradigm
still gives an interesting and often fruitful guideline in organizing a large specification, thus
aiding the user in dividing the system in an effective manner. This organization often helps the
verification process even if rely/guarantee inference rules cannot be applied, so it may still be

useful in practice.

108

5.6 The complexity of compositional proofs

In this section, we want to analyze what are the benefits of adopting a rely/guarantee style
for writing specifications, which allows the use of an ad hoc proof rule but requires to write a
specification with stronger constraints. In order to do that, we analyze the proof of the theorem
rely_guarantee in the composite class two_echoers, without using any rely/guarantee proof
rule but relying entirely on the base proof commands of PVS. However, we are not going to
describe the PVS proof steps in fine detail, but we just want to give a general idea of the overall
structure of the proof. The reader who is uninterested can safely skip to the last paragraphs,

where the conclusions are discussed.

The proof in PVS is rather simple in its essential steps, though not as short as one would
expect. It relies on the following 2-steps induction scheme, which is directly derivable from the

common 1-step induction scheme.

vP: PO)AP)A(VjeN:P() = P(j+2) = VieN:P()

where P is any predicate over naturals.

The basic sequent to be proved can be written as:

(Alw(P;.input) = Alw(P;.output))

A (Alw(Py.input) = Alw(Ps.output))

109

Alw(Py.output) N Alw(Py.output)

Its proof can be split into two similar substeps. They are:

1 Prove that Alw(P;.output)

2 Prove that Alw(Ps.output)

Since they are very similar, we will only describe the proof of subgoal 1, being the one of subgoal
2 easily derivable, using items of module P2 instead of those of module P1 and vice-versa.

The formula we want to prove represents the basic property of the system we want to prove:
it always outputs true. To prove that, we use the induction scheme discussed above, so that

we split to proof into:
1.1 Prove that P;.output at time 0
1.2 Prove that Pj.output at time 1
1.3 Prove that Vj: if Pj.output at time j then Pj.output at time j + 2
Subgoals 1.1 and 1.2 are the base step (which is two-fold in this particular induction scheme),
while subgoal 1.3 is the inductive step.
Subgoal 1.1 is directly subsumed by the axiom init of class P1.

Subgoal 1.2 can be proved by using axioms init of class P2 and in_to_out of class P1. In

fact, by the first axiom we have Ps.output at time (0. By the connections, this also means that

110

Py.input at time 0. Hence, by axiom in_to_out, it is Pj.output one instant later, that is at
time 1.

Subgoal 1.3 requires to prove that, if class P1 outputs a true at generic time j, it will also
output a true two time instants later. This can be done by using the axioms in_to_out of
the two classes, which describe the basic output mechanism of the echoer. So, let us assume
P .output at generic time j. By the connection axioms, this also means Ps.input at time j. Now,
by axiom in_to_out for class P2, we deduce that Ps.output at time j+1. Using the connections
again, this means that P;.input holds at time j + 1. Now we apply axiom in_to_out for class
P1 and deduce that Pj.output holds at time (j+1)+1 = j+2, so that subgoal 1.3 is concluded,

thus concluding the whole proof.

How hard was this proof, done without use of rely/guarantee inference rules? The total
proof was carried out by issuing 88 prover commands and consisted of 12 leaf sequents. This is
definitely not a huge proof per se, however we should evaluate its complexity by relating it to
the complexity of the specified system and the complexity of the property we want to prove.

The system is the composition of two equal modules (P1 and P2) which are very simple,
being described by only two short axioms. The property to be proven is also extremely simple,
and its validity can be understood by a small amount of ordinary reasoning. Therefore, we
believe that the proof is simply too long and complex to be acceptable. The same method with
a slightly larger system, not to say a realistic-size system, is likely to carry poor results, in that

the proof would be unacceptably large. Note that the complexity of the proof does not lie in

111

the fact that it involves sofisticated techniques, since it is always clear what one has to do. The
complexity lies entirely in the length and repetivity of the proof, since the same sequences of
commands must be issued several times with some variations (e.g. different instantiations or
different classes being considered).

The same proof, done with the system specified under the rely /guarantee paradigm, would
instead involve just the application of the base proof rule, as discussed above. Hence, this would
be a much simpler verification process, with fewer details to be considered.

All in all, there is (among many) a basic trade-off in specifying composite systems and
proving their properties.

On the one hand we have freedom in writing specifications, so that we can express properties
and formulae the way we believe it appropriate, concentrating mainly on ease of specification
and on the clarity.

On the other hand we may want to sacrifice total freedom in writing a specification with
respect to the ease with which we can carry out proofs. So, we may want to restrict the expres-
siveness of our models, choosing to adhere to a certain style in writing the specification, like
the rely/guarantee paradigm. This may cause some more troubles in writing the specifications,

but can provide much simpler proofs relying on tailored and powerful proof rules.

CHAPTER 6

AUTOMATED COMPOSITIONAL PROOFS

In chapter [l we discussed how to translate a specification written in TRIO into the higher-
order logic language of PVS (9). After that, we want to use the PVS proof checker to carry
out computer-aided proofs of the system specified in TRIO, thus validating the specification or
finding out errors, inconsistencies and flaws so that they can be promptly corrected.

The TVS (TRIO Verification System, sometimes also called TRIO/PVS) provides a mapping
of the basic TRIO non-modular constructs onto PVS, together with a number of PVS proof
strategies that automate several passages one often has to do when building a proof in PVS of
an encoded TRIO specification. It was described in chapter . In this chapter we describe new
proof strategies to be used with PVS encodings of modular TRIO specifications.

More precisely, a PVS proof strategy is a script, written in the LISP-alike PVS prover
language (BQ), that describes a number of proof commands to be issued according to its param-
eters and current proof sequent. Once a strategy has been defined, it can be used as any other
predefined proof command during the conduction of a proof.

The purposes of the proof strategies defined in the TVS system are basically two. First, we
want them to be a shortcut for sequences of commands frequently applied sequentially during
a proof, so that we do not have to type similar sequences of commands over and over with
minimal changes; by doing this, proofs become shorter and also more readable. Second, we

want them to hide the logic of the PVS system as much as possible from the point of view of

112

113

the user building the proof, so that she/he does not have to know many details of the encoding
but can reason as if the proof checker was built specifically for the TRIO language, except some
minor details.

In this work, we focus mainly on realizing the first purpose, because it is more directly
connected with the work on the mapping done in chapter [] and it is of immediate use in
shortening modular proofs, thus rendering possible the use of the modular features of the
language with a certain ease. The second purpose would instead involve the implementation
of so called pretty-printing PVS strategies, that are applied automatically by the system every
time the sequent changes. They basically rewrite formulae in a nicer and simpler format to be
read. These pretty-printing mechanisms already exist for TRIO in-the-small and can also be
employed proficiently in modular proofs, since they basically rewrite basic TRIO formulae in a
more readable way.

The proof strategies we designed are of two kinds. The first one is composed by strategies
that make the use of the modular features of TRIO simpler and more automated. It is described
in section [6.]. The second group is instead composed by strategies to be used with modular
TRIO specifications in the rely/guarantee style. The need for these strategies arises naturally
from the use of rely/guarantee proof rules in TVS. Hence, in section below we first describe
how to translate a rely/guarantee specification into the PVS language and we then describe the
related proof strategies. Section p.3 shows the benefits of the use of both rely/guarantee proof
rules and of the described proof strategies in building a proof of a modular system similar to

that described in chapter .

114

Finally, appendix [B lists the full code of the PVS strategies described in this chapter,
together with their syntax and a pseudo-code description of what they do.

6.1 Using modular TRIO in PVS

As discussed in chapter [, TRIO classes are mapped onto PVS theories. Hence, we want to
design proof strategies to handle two sets of common tasks in a modular proof: instantiation
of formulae with proper parameters according to the class they belong to, and use of the
connections to show the prover when two items are to be considered the same. These two
aspects are discussed in the following two subsections.

Before doing that, we introduce now a very simple proof strategy that does not exploit any
modular aspect of TRIO but is nonetheless rather useful in practice. In fact, it often happens
that we need to manipulate a new formula by first expanding all the outer operators (typically,
Boolean connectives) and finally flattening it so that it is distributed over new sequent formulae.

As a simple example, consider the formula

(A'1 AND B!'1) (tt!1)

We want to rewrite it into the two formulae

Al (tt!1)
B!1 (tt!1)

To handle such trivial but very often happening situations, we designed the strategy open-£1.

in appendix [§ shows its simple pseudo-code description.

6.1.1 Strategies for class instantiations

We have seen, in chapter], that every TRIO class is translated into a PVS parametric

theory. The first parameter of the theory is a non-empty type we usually name instances and

115

is used when we import the theory into other theories to represent TRIO’s use of modules.
Moreover, every item of the base class is also parametric with respect to a constant of the given
type instances. This is done to allow the definition of arrays of items of any TRIO class.

All this implies that, whenever we want to use that class into another class as a module,
we first define a new non-empty type and we then import the parametric theory instantiating
it with the new type. This allows a non-ambiguous naming of imported theories and also the
importing of more than one instance of the same class, keeping them as separated modules as
they are in TRIO.

When writing axioms and theorems for a given imported class, we usually want them to
reference to all the elements of the array of identical items together, so that we use a universally
quantified variable of type instances as the parameter of the items in the axioms and theorems.
As a result of this practice, almost every formula is universally quantified with respect to a
number of parameters of instantiation types.

Hence, whenever we prove such formulae in PVS, the first thing we do to make them
usable is replacing the universal quantifications over parameters with Skolem variables. Then,
each time we introduce other axioms or theorems in the same proofs, we usually instantiate
their parameters of type instances with the same Skolem variables we have introduced at
the beginning of the proofs, so that the prover knows we are referencing the same items,
parametrically. This means that we have a noticeable number of new instantiations done with
the same value, which results in typing the same instantiation commands over and over in

various parts of the proof.

116

The strategies we consider in this section aim at simplifying this kind of situation. What
we devised is a set of commands to repeat instantiations of new axioms or theorems by reusing
instantiation values (i.e. Skolem variables or constants) introduced earlier during the proof.
To do that, we first introduce a global variable that stores a hash table mapping arbitrary
keys (i.e. either numbers or strings) to instantiation values, that is to a list of values to
be used in instantiations of formulae. This global variable is initialized whenever the PVS
LISP environment is first started and is changed only by the commands set-def-inst and
clear-def-inst described below. It is deallocated only when the LISP environment is killed

on exiting PVS.

Whenever we have an instantiation we think to be reusable during the proof, we issue the
command set-def-inst to store its value into the hash table with a given key. Note that the
value for the argument key has a default value of 0. This means that we have a sort of default
mapping that is meant to store the most frequently used instantiation. This will typically be a

full instantiation with Skolem variables for items of all the involved classes. The command is

schematically described in [Table VII] in appendix [B.

If we decide to clear all the current mappings and re-initialize the hash table, we can do
so with the command clear-def-inst, shown in [Table VIII| in appendix B. Note that this
command basically behaves as a skip, so that it is not stored into proof records since it does

not change the proof sequent but only has side effect. On the other hand, the other command

117

set-def-inst has been written so that it is recorded into proof reports even if it does not
directly change the proof sequent, otherwise proofs which use this command would not be

re-runnable correctly.

The first proof strategy that reuses strored instantiation values is def-inst. This simply
does an instantiation (thus calling the instantiate command) on all the given formulae in the

current sequent with the values for the given key. It is described in in appendix B}

As discussed above, default instantiation is often useful when we introduce axioms, lemmas
or theorems in the current proof. Under this respect, the proof strategy 1m-def-inst combines
a lemma introduction with a default instantiation. It is described in in appendix
B. We point out one more thing about this strategy: the labelling of the newly introduced
lemma. This simple thing is often very useful since it helps the user a lot in distinguishing
which instances of lemmas appear in a given sequent. In fact, once a lemma is introduced we
have no traces of which class it comes from, unless we label it with its full name. This helps
a lot when we introduce formulae and we need to remember from which module we imported

them from.

The strategy 1lm-def-use tries to take charge of the whole ordinary sequence of commands
we usually issue when we introduce a lemma (i.e. an axiom or theorem) into a PVS proof

of a modular specification. Therefore, it first introduces the lemma and instantiates its class

118

parameters with pre-stored values. Then, it opens the external time quantification and tries
to instantiate it according to the current context. This strategy may safely replace the usual
sequences of commands we issue whenever we introduce a new formula, in that if any of its

tasks fails, it simply skips it, so that in the worst case we end up with a simple introduction of

a lemma. The strategy is described in [Table X] in appendix [B]

An example will show clearly how these proof strategies work in practice. Note that this
example is not meant to be meaningful with respect to the system it describes, but is only
introduced to show how the strategies behave.

Let us consider a base class foo which has two items named it1 and it2. Another class
bar imports two instances of foo, one with instantiation type f1_type and the other with
instantiation type £2_type, as F1 and F2 respectively.

Let us also assume that class bar has the following two axioms and one theorem declared.

al: AXIOM
Alw(F1.it1(f1) AND F1.it2(f1))

a2: AXIOM
Alw(F1.it2(f1) IMPLIES F2.it1(f2))

t1: THEOREM
Alw(F1.it1(f1) AND F1.it2(f1) AND F2.it1(f2))

We start proving t1 so that PVS shows the sequent:

t1

{1} FORALL (f1: fi_type, f2: f2_type):
Alw(F1.it1(f1) AND F1.it2(f1) AND F2.it1(£f2))

119

Obviously, we first of all introduce Skolem variables to replace the FORALL quantification. This

leads to the formula to be proven:

{1} Alw(F1.it1(£f1'1) AND F1.it2(f1!1) AND F2.it1(f2!1))

We now want to set some instantiation values. More precisely, we want the default value
(i.e. the one for key 0) to be the one corresponding to both variables £1!1 and £2!1. We also
want to keep an entry just for £1!'1 to be used in some other formulae. Hence we give the

commands:

(set-def-inst ("f1!1" "£f211"))
(set-def-inst ("f1!'1") "one_only")

to store the two choices.
Now let us suppose we want to introduce axiom al without opening its Alw() operator. We

issue the command (1lm-def-inst "al" "one_only") so that the new formula introduced is:

{-1,(@D}
Alw(F1.it1(£f1!1) AND F1.it2(f1!1))

with proper label and instantiation with the specified value.
Now, if we want to introduce axiom a2 and also instantiate its Alw() operator at time
tt!1l + 4, where tt!1 is some valid Skolem variable, we issue the command 1m-def-use getting

the new formula:

{-1,@2)}
F1.it2(f1!1) (tt!1 + 4) IMPLIES F2.it1(f2!1)(tt!1 + 4)

which is ready for further manipulations and uses in the remainder of the proof.

120

6.1.2 Strategies for use of connections

The PVS axioms describing TRIO connections deserve a dedicated proof strategy to use
them with ease during proofs. As discussed in chapter ff a TRIO connection is mapped onto
a PVS identity. Let us consider an item A connected to an item B in the current class. Let
us assume we are building a proof that wants to state some property of the item B. It often
happens that we get to a proof of the same property but for item A. At that time, we want
to use the definitions of the connections, to tell the prover that the proof is really concluded,
thanks to the identity we are using. To do that, we need to introduce the axioms describing
the connections and instantiate them with proper instantiation values, if needed. Then, if
the situation is the one just described, with the same formula among the antecedents and
among the consequents, except for a connection identity, a grind command will simply close
the sequent, by automatically applying the rewritings (i.e. the substitutions) induced by the
identities. Usually, the sequent is closed with less powerful commands as well, but they are
simply subsumed by a grind which is more likely to succeed.

One may think that the use of a dedicated strategy to introduce connections is not neces-
sary, and can be safely replaced by the use of auto-rewrites declarations in the PVS theory.
Informally, a rewriting rule is an equality which can be used autonomously by the PVS prover.
More precisely, if the equality has the form LHS = RH .S, whenever PVS has a term of the form
LHS it knows it can replace it with RHS and vice-versa. The PVS language has a particular
directive (AUTO_REWRITE) that, whenever put in a theory declaration, tells the prover that, as

soon as it has started, it has to load the rewriting corresponding to the specified formula. So,

121

we may think that if each connection axiom had an auto-rewrite declaration associated with
it, the prover would autonomously recognize when it can be used. Unfortunately, this is in
general not true. The problem is that the connection axioms must be instantiated with the
instantiation parameters before being used. The PVS heuristics usually fail in determining the
right instantiation values, so that some user interaction is needed to choose the right actuals.

Therefore, we designed the connect proof strategy, described in [[able XII in appendix
Bl It combines the basic sequence of commands described above with the knowledge of how
connection axioms should be named, according to the rules defined in chapter il So, if the
connection axiom is just one, it is called connections, while if there are N connection axioms
they are named connection_i fori = 1,..., N. The strategy introduces all the connection axioms
it finds in a given class (parameter prefir) and provides default instantiations as needed. It
then tries to close the sequent with a grind if the user wants that.

As a very simple example to see the use of this strategy, consider the classes foo and bar

described in the previous section. Now assume bar has the following two connection axioms.

connection_1: AXIOM
connect(F1.it1(f1), F2.it1(£f2))

connection_2: AXIOM
connect(F1.it2(f1), F2.it2(£f2))

Hence, if we have a sequent like the following

[-1] F1.it1(0)(tt!'1)
[-2] F1.it2(0) (tt!1)

[1] F2.it1(£f2!1) (tt!1) AND F2.it2(f2!1) (tt!1)

122

it can be closed by means of the connections. In fact, if the default instantiation has been set

to (0 £2!1), the sequent is closed by the command (connect t).

6.2 Rely/guarantee proofs in PVS

In this section we want to discuss some details about how a modular system specified in
TRIO according to the rely/guarantee paradigm, introduced in chapter [, can be proficiently
translated in PVS, in order to exploit the rely/guarantee proof rule of proposition B|, together

with the automated proof capabilities of the PVS environment.

6.2.1 Encoding of a rely/guarantee specification

The basic modular description of a TRIO class in PVS is just the same as discussed be-
fore. Now, we need to add the implementation of the rely/guarantee operator and a state-
ment of the proof rule usable in practice. To do that, we define a new PVS theory named
TRIO_relyguarantee parametric with respect to a natural number N. This parameter repre-
sents the number of modules we are composing, so it is basically the same n as that of the
rely /guarantee proof rule of proposition f|. Therefore, let us suppose we are translating a TRIO
class C into a PVS theory with the same name. If C' is composed by k£ modules and we want
to prove results about this composition, we first of all need to specify an importing clause
IMPORTING TRIO_relyguarantee[k]. The same theory must be imported in the PVS descrip-
tion of each of the submodules, since it contains the definition of the operator %>. In this case,
we may give an arbitrary value for the parameter N, for instance a 0.

The operator “> is implemented in the theory TRIO_relyguarantee as the PVS infix oper-

ator >>=. Note that the symbol >>= has been chosen only because it is a PVS infix operators

123

available to the user for redefining, and any other meaning it may have because of other dec-
larations in other theories is just coincidental. Obviously, its definition is just a translation of

the formal definition of the operator in TRIO.

t: VAR Time
E, M: VAR TD_Fmla

%\rgarrowplus operator

>>=(E, M) (t): boolean = (AlwP_e(E) (t)
IMPLIES (AlwP_i(M) (t) AND NowOn(M) (t)))

Notice that a more natural way to translate it would have been as a time-dependent formula
instead of an explicit function of time, thus relying on the corresponding TRIO operators for

time-dependent formulae. So, >>= could have been equivalently written as:

>>=(E, M): TD_Fmla = AlwP_e(E)
IMPLIES (AlwP_i(E) AND NowOn(M))

However, the definition we used showed to be a lot better in practice when used during PVS
proofs, since it requires a smaller number of opening and rewritings. In fact, it often makes
proofs much shorter.

The next thing to denote in a rely/guarantee specification is when a given formula is initial-
ized. To achieve this, we introduce a subtype of time-dependent formulae, named Initialized_Fmla.

An Initialized_Fmla is simply a TD_Fmla E for which Som(AlwP,(FE)) is true.

%Initialized formula
Initialized?(E): boolean = Som(AlwP_e(E))
Initialized_Fmla: TYPE+ = { E | Initialized?(E) }

Now, we can write the statement of the rely/guarantee proof rule seen in proposition

as a PVS theorem. Since we have to relate the behavior of N subclasses with the one of the

124

upper level class importing them, we need an extension of the TRIO operator “> to handle
the N classes altogether. More precisely, we first of all define a range type to enumerate all N

subclasses:

rng: TYPE+ = {i: nat | O < i AND i <= N} % 1..N classes
Rng_Fmla_Type: TYPE+ = [rng -> TD_Fmla]

Now, we define an extension of the “> operator to predicate on variables of Rng_Fmla_Type

instead of simple time-dependent formulae. So, we introduce the following definitions.

j: VAR rng
P_i, Q_i: VAR Rng_Fmla_Type

>>=(P_i, Q_i): Rng_Fmla_Type = (LAMBDA j: (P_i(j) >>= Q_i(j)))

rwrt: FORMULA
(P_i >>= Q_1) (G (&) = (P_i(j) >>= Q_i(§)) (%)

AUTO_REWRITE+ rwrt

The directive AUTO_REWRITE+ tells PVS to autonomously activate this rewriting rule whenever
the current theory is imported in another; this is of great help during proofs.

Then, we introduce four variables to represent the formulae E, M, E;, M; (i = 1,...,n)
and we name them E_g, M_g, E_i and M_i respectively (the subscript g stands for “global”). In

particular, we require the formulae E_i to be initialized.

E_i: VAR [rng -> Initialized_Fmla]
M_i: VAR Rng_Fmla_Type
E_g, M_g: VAR TD_Fmla

Finally, we can formulate the rely/guarantee inference rule of proposition B by using the

operators we have just defined.

125

Rely_Guarantee_inference_rule: THEOREM
(Alw(E_g AND FA(M_i) 1IMPLIES FA(E_i))
AND Alw(FA(M_i) IMPLIES M_g)
AND Alw(FA(E_i >>= M_i)))
IMPLIES
Alw(E_g >>= M_g)

We want to point out three things about this implementation to explain it better. First, the
FA operator is a universal quantification over a variable of type rng and it comes from the
importing of the basic TVS theory trio_quantif [rng]. Second, the requirement that E_i is
initialized is implicit in the statement of the theorem, since E_i has been declared as a range
of initialized formulae. This will result in a TCC (Type Correctness Constraint) generated
during the instantiation of the term E_i requiring to prove that the actual replacing E_i is an
initialized formula. Third, the first hypothesis of the theorem simply rewrites the hypothesis

to proposition

AN [Er N M=E
i=1,...,n

? PARSE]]:17"'7”

in the equivalent form

Before describing the proof strategies for rely/guarantee proofs, we still need to say some-
thing about what is a convenient way to carry out rely/guarantee proofs in PVS using the
above declarations and definitions. In fact, when one wants to employ the proof rule seen
above, she/he has to introduce its statement in the proof sequent and then to instantiate its

variables referring to what E_g, M_g, E_i and M_1i are in the specification. We think a convenient

126

way to do that is by means of four definitions and four axioms, so that they can be promtly
used during proofs. If we have a class adopting compositional reasoning on k subclasses, we

should introduce the following declarations.

E: TD_Fmla
E_def: AXIOM
E= ...

E_i: Rng_Fmla_Type [k]
E_i_def: AXIOM

(E_i(1) = ...) AND (E_i(2) = ...) AND ...
AND (E_i(k) = ...)

M: TD_Fmla

M_def: AXIOM

M= ...

M_i: Rng_Fmla_Type [k]

M_i_def: AXIOM

(M_i(1) = ...) AND (M_i(2) = ...) AND ...
AND (M_i(k) = ...)

The proof strategies we are now discussing rely on this conventional naming for the declarations.

Similarly to what happens with other naming conventions for base TRIO, as discussed in
chapter fll we realize that the traslation from a TRIO class to its corresponding PVS mapping
can be fully automated by developing adequate translation tools. In fact, this is what is
currently being developed in a tools suite for the TRIO language. Hence, the above instructions
on how to translate a rely/guarantee specification from TRIO to PVS are not meant to be
followed directly by a human user, since it would be extremely annoying and time-consuming,
but must be considered with respect to an automatic translation support that, once more, lets

the user concentrate on the TRIO language rather than the encoding details in PVS.

127

6.2.2 Strategies for rely/guarantee proofs

Just like in a generic modular proof we often need to use the axioms describing the connec-
tions, in a rely/guarantee proof we often need to use the definitions for the formulae E, M, E;
and M;. We can implement this use into a PVS strategy very easily, by using the previously
seen strategies for default instantiations of lemmas. In fact, assuming correct instantiation
values have been stored, and that the axioms defining £, M, E; and M; have been named as
discussed in the previous paragraph, we just need to call the strategy lm-def-use four times.
This extremely simple strategy is named rg-use-definitions and is described in
in appendix Bl Note that, for the same reasons as with the connection axioms described above,
an auto-rewriting is not enough to handle these axioms effectively, so that a proof strategy is

needed.

Now, we want an ad hoc strategy to deal with the parametric representation of the 2N
formulae E; and M;. In fact, they are represented in PVS as a mapping from an index ranging
in the interval 1, ..., N to time-dependent formulae. Since the axioms and theorems of the sub-
classes we use during a proof refer to a single formula, we usually have statements representing
predicates of the form P(FE;(i!l), M;(i!1)), that is where we represent the parametrization with
respect to the index i with a Skolem variable (in fact, i!1 is meant to be of type rng[N]). What
happens during the (usually) last steps of a subgoal for a given rely/guarantee proof is that we
have to distinguish the cases for each ¢ = 1,..., N. In simpler situations, that is typically when

the N submodules are all of the same class, we can conclude each case with the same sequence of

128

commands. In more general situations each case may require its own dedicated proof. However,
the strategy rg-i-case handles the splitting of a proof sequent into N subgoals for each value
of the given var argument ranging from 1 to N included. The strategy also tries to close each

generated sequent with the usual grind heuristic, unless required not to do so. This strategy

is schematically described in [Table XIV] in appendix [B|.

6.3 A comparative example of modular proof

In this section, we want to illustrate an example proof of a composite system. We are going
to do the same proof first without use of any of the proof strategies described above and without
use of the rely/guarantee paradigm and proof rule. Then, we will redo the same proof using
both the new strategies and the rely /guarantee proof rule. We want to show the differences of
the two approaches, the different organization of the proofs and the benefits of adopting the
rely/guarantee proof rule and in using the proof strategies in terms of readability, simplicity
and length of the resulting proofs.

In order not to expose the reader to too many details, the proofs are described very syn-
thetically in this chapter, just to convey a general idea and to be able to draw comparisons
and conclusions. However, a longer and much more detailed report of the proofs is available in
appendix [d.

6.3.1 System description and specification

The system we work on is similar to that described in chapter fl. The main difference is
that we now adopt a continuous time model. We know TRIO can be used with any time model,

but we need to remind that the present TVS implementation for TRIO in-the-small handles

129

the continuous time case only. In continuity with the current implementation, we focus on a
continuous model as well. Another difference in this new system with respect to the one of
chapter fj is in the definition of the base axiom in_to_out of the class echoer. Let us consider

the new class, named echoer_rg.

class echoer_rg
signature:

visible:
input, output;

temporal domain: real;
items:
state input;
state output;

formulae:

axiom init:
AlwP_i (output) (0) ;

axiom in_to_out:
input -> output & Lasts_ii(output, 1);

end

As it is obvious from the axiom in_to_out the system is somewhat underspecificated. In
fact, the axiom describes the behavior of the class when input is true but does not specify it
when input is false. This is not a problem with respect to our goals; on the contrary, it renders
the system a bit simpler both in its description and in the proofs, so that it is more profitable
as an example. Another feature of the specification that may seem annoying is the redundancy

in the same axiom. In fact, obviously Lasts;;(item,t) = item so that we could drop the first

130

term of the conjunction. However, once again this redundant notation is going to render the

proofs a bit simpler in some passages, so we will adopt it, even if it may be considered inelegant.

Let us now consider the class two_echoers_rg which is all identical to the previously seen

class two_echoers, except for its time model. So, here is its definition in TRIO.

class two_echoers_rg

import:
echoer_rg;
signature:
temporal domain: real;
modules:
P1, P2: echoer_rg;
connections:
(direct Pl.output, P2.input);
(direct P2.output, P1.input);
formulae:

theorem Rely_guarantee:
P1.output & P2.output;

end

We now analize the two proofs of the same theorem, in the two following sections.

6.3.2 Proof without strategies and rely/guarantee proof rule

The proof of the Rely_guarantee theorem is too long to be done in a single shot, so that
we need to enunciate and prove some auxiliary lemmas to encapsulate fundamental steps in the

proof and introduce them when needed to get to the final result.

131

More precisely, the proof of the result Alw(P1l.output) can be split into the following steps:

1. AlwP;(Pl.output) at time 0

2. AlwF,(Pl.output) at time 0, by proving that:

(a) Alw(Pl.input = Futr(Pl.input, 1))

(b) Pl.input at time 0O

Obviously, we have a similar situation for the item P2.output, except that we consider items of
the class P2 instead of P1.
The above proof scheme leads naturally to the following intermediate results to be proved

within the class echoer_rg.

theorem now_and_nexttime:

(Alw(input -> Futr(input, 1)) & input(t))
-> (all i: Dist(input, 1)) (t)

theorem alw_output:

(Alw(input -> Futr(input, 1)) & input(t))
-> AlwF_i(output) (t)

where t is a variable of type Time (i.e. real) and i is of type natural.

The first theorem basically says that if condition 2.a holds and there is an initial time instant
in which input holds, then input holds at every integer time unit. The second theorem extends
the first one, in that it says that, under the same conditions, output holds at every time in the
future.

Let us now consider the proofs of the two theorems. We just sketch out the proofs in this

section; all the details are available in appendix [

132

The proof of theorem now_and_nexttime is really simple and relies on induction on variable
i. Both the base case and the inductive step can be discharged by using the antecedents of the
implication combined with the inductive hypothesis.

The proof of theorem alw_output is basically divisible in two parts. The first part is to
prove Dist (output, u)(t) when u is a natural number. This reduces to the other theorem
now_and_nexttime. The second part is to prove Dist (output, u) (t) when u is not a natural
number. In this case we take the floor of u, apply theorem now_and_nexttime to it and then
“propagate” the output till the desired time by means of axiom in_to_out, which guarantees
a duration of 1 time unit.

Before being able to prove the main theorem, we still need to prove another intermediate

result, that is we have to show that step 2.a above holds for class two_echoers.

theorem rg_aux:
P1.input -> Futr(P1l.input, 1)

and the analogous for module P2. The formula is proven by using the axioms in_to_out from

both modules P1 and P2. This allows us to show that:

Pl.nput = Pl.output = P2.input = Futr(P2.output, 1) = Futr(Pl.input, 1)

Note that the second and fourth implications are derived by using the information available
from the connections in the global class.
After these preparatory theorems, we can get to the global result, that is Alw(P1.output)

and Alw(P2.output). We distinguish the cases for time ¢ < 0 and ¢ > 0. The first case is

133

simply subsumed by the initialization axioms init of the two classes. The other case requires
the intermediate lemmas alw_output and rg_aux to be proved, together with the information

about the connections.

6.3.3 Proof with strategies and rely/guarantee proof rule

Now, we are going to build a different proof of the same global property of the class
two_echoers_rg, where we use both the PVS strategies described in sections and p.2,
and the rely/guarantee paradigm to specify the system and build the proof. As usual, we only
sketch out the proof here, while all the details are available in appendix [J.

We do not have to devise a division of the proof into intermediate auxiliary lemmas, since
the rely/guarantee paradigm already prescribes how to divide the proof among the classes.
More precisely, we have a property to be proven which is local to the two modules P1 and P2
and is simply described by the rely/guarantee formula input “&> output.

After proving that, we can build the proof of the global property Rely_guarantee using
this theorem together with the general proof rule for rely/guarantee systems.

To prove input “> output we need to expand the > operator into its definition and prove

it. Hence, we reduce to the substeps:
1. AlwP,(input) = AlwP;(output)
2. AlwP,(input) = NowOn(output)

Subgoal 1 relies on axiom in_to_out, exploiting the consequent Lasts;;(output, 1) to show that

output also holds at the current time instant. Subgoal 2 is also similarly proven, that is we

134

use the derivable term Lasts;;(output,1) to show that there exists a non-empty time interval
in the future over which output holds.

The proof of the global property Alw(P1.output A P2.output) is done by using the rely /guar-
antee proof rule of proposition . More precisely, we have to show that the following hypotheses

hold:

1. Pl.output A P2.output = Pl.input A P2.input

2. Pl.output A P2.output = Pl.output A P2.output

3. Pl.input > P1l.output

4. P2.input > P2.output

5. Pl.input and P2.input are initialized
Now, condition 2 is trivially true. Condition 3 and 4 are just the rely/guarantee theorems for
the modules P1 and P2 which we have already proven. Condition 1 is deducible by using the
information associated with the connections. Condition 5 is a consequence of the axiom init
for modules P1 and P2 and of the connections of the system. Then, the rely/guarantee proof

rule allows us to conclude the global property holds. Building the proof in PVS requires indeed

to cover some more technical details, that are shown in appendix [J.

6.3.4 Comparison of the two proofs

In this section we want to draw a comparison between the two proofs of the same property,

that is the proof done without using the rely/guarantee proof rule and the new PVS proof

135

strategies described in section [p.3.2, against the proof done using the rely/guarantee paradigm
and the PVS strategies introduced in this chapter, listed in section p.3.3.

We want to compare the two proofs in terms of length, of intricacy, of modularization of
the steps and of how readable and simple to follow they are. Let us try to give a more precise

characterization of the features of a proof we have just listed.

We introduce a metric for the length: we measure the length of a proof in terms of the
number of PVS commands we issue in the prover environment to conclude the proof. Since it
is common that the proof of a theorem requires the introduction of other previously declared
theorems, lemmas and axioms, we should count the length of the proofs of those as well.
Otherwise, we could make any proof to be of minimal length by redeclaring and proving our
theorem under another name, and then introducing it to get to the conclusion immediately.

To introduce, in the main formula, a simple representation of the dependencies in the proof,
we use a directed graph. Each node in the graph represents a lemma or theorem used in the
proof of the formula we are considering, including the formula itself. We exclude from the nodes
the axioms and the definitions, since they do not require a proof themselves. There is an arc
from a node N;j to a node Ny if and only if N; requires No in its proof, that is there is some
command for lemma introduction (e.g. lemma, forward-chain, use, lm-def-use, etc.) with
N5 as argument. Each arc is weighted with the number of times N1 has introduced N in its
proof. Moreover, we store in each node a number representing the number of proof commands

the proof of that node has required directly in PVS.

136

[now_and_nexttime (11))

2
[alw_output (31) j

2

[Rely_guarantee (56)|

¢2

rg_aux (58)

Figure 5. Proof dependencies in normal proof

In we have the dependencies graph for the proof done without rely/guarantee proof
rule and without new PVS strategies as described in section f.3.9.

In we have instead the dependencies graph for the other proof with rely/guarantee
proof rules and new PVS strategies, described in section f.3.3. Note that the rely/guarantee
proof rule which is used has not been considered as an auxiliary lemma, since it is a powerful
rule proved once and for all and may be considered like an additional extended propositional
rule like those PVS has built-in.

Once the graph representing the dependencies for a given proof has been built, we can give

two measures of how long the proof is. The first, simpler measure just sums up the values

137

| rely_guarantee (26) j

E

| Rely_guarantee (53)|

Figure 6. Proof dependencies in rely/guarantee proof

contained in each node, thus counting the total number of proof commands typed in by the
user to get to the final result. We call this value “modularized proof length”.

This measure, however, does not take into account the effort made to break the proof into
several lemmas and how this division is done: this basically means how well the proof was
modularized and more precisely if the intermediate lemmas are sufficiently independent and
well chosen. Measuring all these things is obviously rather difficult and is also somewhat a
subjective matter. However, we introduce a different metric on the graphs that tries to take
some of these issues into account. More precisely, we want to try to give a comparative metric
which tells how many proof commands we should approximately issue if the proof was done in
one single shot, without identifying and using auxiliary lemmas of any kind. So, every time we
introduce a lemma we should count as if we immediately prove it before its use. Hence, if the
same lemma is introduced more than once, we should count its weight every time, as if we had

to prove it again and again. By doing this, if the division into lemmas was well done, and more

138

precisely if the parts of the proofs are sufficiently well decoupled and independent, then the
auxiliary lemmas are not introduced too many times during the main proof, thus keeping this
count acceptably low. In order to be more formal, we notice that the dependencies graph is by
definition an acyclic graph. Hence, we can define an ordering of the nodes which is compatible
with the topological order relation induced by the arcs. So, starting from the leaves we calculate
the value for each node, given by the sum of the current value in each child node times the
weight of the arc which goes to that child, for every node among the children of the curren
one. We do not explain this calculation in more detail, since we are confident that every reader
who has some familiarity with simple graph optimization algorithms will easily understand it.
We call this metric “monolithic proof length” since it is an estimation of the length of a single
proof encompassing all the intermediate results.

compares the results in terms of length in the two proofs we are considering, with

both metrics.

Proor Modularized proof length | Monolithic proof length
Normal proof 156 278
Rely/guarantee proof 79 105
Improvement 197 % 265 %
TABLE 1V

Comparison of length of the two proofs (in proof commands)

139

It is clear from this data that the use of the rely/guarantee proof rule, together with the new
PVS proof strategies has greatly shortened the proof, reducing it to one of a simply manageable
size. Since the class of which we have proven the global property is rather simple to describe

informally, we expected a similarly acceptably short and simple proof.

We can introduce another simple metric to evaluate the complexity of a proof: the number
of leaves of the proof tree. Every PVS proof can be represented by a tree: each node in the
tree is a proof command. Starting from the base sequent, whenever the command causes the
current goal to be split into n subgoals, the node in the tree has n children. Recursively, the
proof of each of the subgoals is a subtree rooted at the corresponding branch. PVS can generate
automatically these trees from a proof. A measure on these trees which may be considered as
an indication of the complexity of the proof is the number of leaves. In fact, counting the leaves
is the same as counting how many distinct subgoals had to be proven. Usually, the fewer the
subgoals a proof is split into, the simpler the proof is to follow. Of course this may be not
always true. For example, if the splitting into subgoals corresponds to strongly independent
parts of the proof, it may even divide proficiently a long proof, thus rendering it simple to be
understood. However, most of the times if the leaves are too many it probably means that the
proof was rather hard to follow. compares the number of leaves for the two proofs of

the global property.

140

LEMMA \ NUMBER OF LEAVES
echoer_rg.now_and_nexttime 2
echoer_rg.alw_output 4
two_echoers rg.rg_aux 4
two_echoers_rg.Rely_guarantee 8
Total for normal proof 18
echoer_rg.rely_guarantee 3
two_echoers_rg.Rely_guarantee)
Total for rely/guarantee proof 8

TABLE V

Comparison of leaves of the two proofs

Also according to this metric, the proof using the rely/guarantee proof rule and the PVS
strategies is visibly simpler than the other one, also because it involves a smaller number of

intermediate lemmas (and namely just one).

Besides these numerical comparison of the two proofs, we can also give some informal
comments about how different they were to be completed. The first thing to notice is the
different use of modularization in the proofs, that is the way they have been divided into
intermediate lemmas.

The basic fact is that the rely/guarantee paradigm has given a basic layout to organize the
proof into lemmas. More precisely, we know that each class must have a local rely/guarantee

property. This property can be proven locally, that is by using axioms and items of the class

141

only. By composing these local lemmas, we build up the global property we want prove, and
use a predefined proof rule to carry out the final result. This proof rule helps a lot in dividing
the global proof into subparts, one for each of the hypotheses in the rely/guarantee proof rule.
This proof rule also defines clearly how the local properties should be used into the global proof
and how are to be combined. All these guidelines greatly help in building the desired proof,
since we have less things to consider and we can rely on a rather powerful method. Moreover,
the rely/guarantee paradigm helps a lot in building a proof that is well modularized, in that
each of the intermediate lemmas we build and prove is well decoupled from the others and from
the global statement. This can be seen, among other things, by the fact that the dependencies
graph of is simple, so that we do not have to use the same intermediate result over
and over during the proof. On the contrary, the intermediate lemma only represents a sort of
“macro step” of the proof encapsulated nicely: it basically encompasses the proof of what can
be proved locally.

On the other hand, the normal proof required the user to “invent” from scratch intermediate
lemmas, according to her/his intuition and experience on how to carry out the proof. This surely
is an advantage in terms of flexibility and freedom of specification, a quality often sought for.
However, it is true that this also implies that building the whole proof results longer, more
difficult and time-consuming. Whenever a large flexibility and freedom of specification is not
really needed, it is usually better to exchange them with a smaller effort to complete a correct
specification and verification. Also notice that the modularization of the proof represented

in shows an higher coupling between the lemmas of the proof, since the weights on

142

the arcs are always greater than 1. This may indicate that another, better modularization is

probably possible, even if the one we used is intuitive and rather neat.

All in all, we think that it is absolutely clear that using the rely/guarantee paradigm has
brought many benefits with respect to the ease in carrying out the proof. Together with that,
the new PVS strategies have also played an important role, encapsulating recurrent routinary
sequences of commands and closing in a few commands sequents that would have otherwise
required many more. The rely/guarantee paradigm is also useful per se in guiding the specifi-
cation of the system, at least in those cases when it is applicable without loss of generality or

whenever a total freedom in writing the specification is not needed.

CHAPTER 7

CONCLUSIONS

This work constitutes an attempt to concretely design a compositional framework to specify
and verify large modular systems under the rely/guarantee paradigm and with reference to the
TRIO specification language. More precisely, we basically achieved the following results.

We provided an effective mapping of the modular features of the TRIO language onto PVS,
based on the current encoding for the non-modular features of TRIO. Based on this mapping,
a number of proof strategies to automate frequently occurring passages of compositional proofs
were designed and made available as a part of the support tool TVS.

We introduced the rely/guarantee paradigm in TRIO, giving general guidelines on how a
composite rely /guarantee specification should be written and also proving a proof rule to infer
properties of composed modules. We believe that this proof rule is not only of methodological
interest but also of practical usefulness.

To show this, we made the TRIO rely/guarantee proof rule supported in PVS, as another
extension of the basic TVS. The use of these extensions showed to bring strong benefits in
conducting some example compositional proofs. We believe the benefits will surely increase as
the systems under analysis become larger and more complex.

As a final remark, we point out that no technique, method or language for the specification
and verification of systems is likely to be a magic bullet. The formal analysis of large systems

is an unavoidably hard task, because of the inherent complexity of the systems; therefore no

143

144

technique is likely to make it become trivial. However, we firmly believe that the application
of modularization techniques, the use of neat specification languages, the adequate support of
analysis tools and a constant practice can surely make the analysis of large systems a practically

doable task, thus ensuring the development of reliable industrial-size real-time systems.

7.1 Future work

While achieving its basic goals, this thesis also suggested several new directions for future
work. Let us briefly consider the most interesting of these suggestions.

The need for automatic translators from TRIO to PVS is clear. In fact, the details of the
mapping of all the features of the TRIO language are usually uninteresting for the user who
should deal directly with TRIO code only. In particular, the translators (better if in the form
of integrated editing environment to develop large specifications) would be responsible for the
correct management of visibility and inheritance into PVS, which is at the moment largely
deficitary.

Another aspect of the same problem of hiding the details of PVS as much as possible from the
TRIO user arises during the conduction of automated proofs. Pretty-printing strategies should
then be developed to show a proof environment as much “TRIO-like” as possible, including a
coherent representation of the importing hierarchy between modules.

Altough the TVS tool is a fundamentally prototypal tool, a TRIO open and integrated
environment is currently on the way. It will encompass front-ends to model checkers and
theorem provers, test-case generators, etc. When in its maturity, this project will surely fulfill

many of the needs discussed above.

145

Another interesting direction for future work is an accurate analysis of the completeness of
the compositional rely/guarantee proof rule given in chapter fl. We speculated it is probably
not complete, but this important feature deserves more investigation to draw provable results.
Moreover, in case the proof rule showed to be incomplete, efforts should be made to see how
and if it can be made complete, or if other, more general rely/guarantee proof rules can be
formulated.

Another interesting analysis could be what we may call “semantical characterization of for-
mulae”. In fact, in chapter] we discussed safety of formulae and showed how it is impossible
to give a completely syntactical characterization of safety in TRIO. This issue could be ana-
lyzed in more detail, for example to see if alternative (non equivalent) definitions of safety are
possible in TRIO and if they can be of any use in defining inference rules. Similarly, liveness of
TRIO formulae could be analyzed, in connection or not with a possible use in rely/guarantee
specifications.

An effort should be made in developing some form of high-level heuristics to guide and
automate proofs of global properties in composite systems, at least in the most frequently
occurring cases. These techniques could benefit from the analysis of the topology of the system
and may aid the user in dividing a large proof and in building it.

Finally, it would be interesting to apply the proposed techniques to the specification and
verification of a system larger than the simple ones discussed as examples in the thesis, possibly

formalizing relevant parts of a realistic real-time system. Such a case study would constitute

146

an interesting test bed for the applicability of the proposed methods and a step towards more

realistic and industrial-size applications. It is currently in preparation.

APPENDICES

147

Appendix A

TRIO/PVS THEORIES

148

This appendix lists the PVS code of the auxiliary theories used to encode the modular

extensions of TRIO (section [A.1], described in chapter f]) and the rely/guarantee proof rule

(section A.3, described in chapter [f).

A.1 Theory for modular TRIO extensions

TRIO_modular [T: TYPE]
: THEORY

BEGIN

H1, H2: VAR T

connect(H1, H2): boolean = (H1 = H2)

% usage:
% connections: AXIOM
% connect(el, e2) AND connect(e3, e4) AND ...
yA
% or:
% connection_1: AXIOM
% connect(el, e2)
%
% connection_2: AXIOM
% connect(e3, e4d)
%
%

END TRIO_modular

A.2

Theory for rely/guarantee reasoning

TRIO_relyguarantee

: THEORY

BEGIN

[N: nat] % N is the number of classes we are composing

149
Appendix A (Continued)

IMPORTING trio_base, trio_lemmas

t: VAR Time
E, M: VAR TD_Fmla

%\rgarrowplus operator (this definition is better for rewrites)
>>=(E, M) (t): boolean = (AlwP_e(E) (t)

IMPLIES (AlwP_i(M) (t) AND NowOn(M) (t)))
%Initialized formula

Initialized?(E): boolean = Som(AlwP_e(E))
Initialized_Fmla: TYPE+ = { E | Initialized?(E) }

T T T T T s T T o T T o s T T o T o o T o o T o T oo oo T oo T oo o T e

%% RELY/GUARANTEE PROOF RULE FOR N COMPOSED CLASSES %%

T It T ToToto oo Toto 1o s ToToto o o To o o o To To o o o To o o o To T o o o To o o o T T o o o To o o o T T 1o o

rng: TYPE+ = {i: nat | i > O AND i <= N} % 1..N classes
IMPORTING trio_quantif [rng]

Rng_Fmla_Type: TYPE+ = [rng -> TD_Fnmla]

P_i, Q_i: VAR Rng_Fmla_Type

j: VAR rng

>>=(P_i, Q_i): Rng_Fmla_Type = (LAMBDA j: (P_i(j) >>= Q_i(j)))

rwrt: FORMULA
Alw((P_i >>= Q_i)(j) IFF (P_i(j) >>= Q_i(j)))

rwrt_2: FORMULA
(P_i >>= Q1) () () = (P_i(§) >>= Q_i(j)) (£

AUTO_REWRITE+ rwrt_2
E_i: VAR [rng -> Initialized_Fmla]

M_i: VAR Rng_Fmla_Type
E_g, M_g: VAR TD_Fmla

Rely_Guarantee_inference_rule: THEOREM
(Alw(E_g AND FA(M_i) 1IMPLIES FA(E_i))

150
Appendix A (Continued)

AND Alw(FA(M_i) IMPLIES M_g)
AND Alw(FA(E_i >>= M_i)))
IMPLIES
Alw(E_g >>= M_g)

END TRIO_relyguarantee

151

Appendix B

PVS STRATEGIES FOR TRIO

This appendix lists the full LISP code for the PVS proof strategies described in chapter
and a pseudo-code description of what each strategy does, together with the required syntax

for its invocation.

B.1 Proof strategies descriptions

syntax: (open-fl &OPTIONAL fnum/[*/)

repeat

open given fnum
until no more operators to open
flatten given fnum

TABLE VI

open-f1 proof strategy

Appendix B (Continued)

syntax: (set-def-inst inst-str &OPTIONAL key[0])
{inst-str is a list of instantiation values}

Add mapping of key to the instantiation value inst-str
Notify the user of the new mapping

TABLE VII

set-def-inst proof strategy

syntax: (clear-def-inst)

Clear all global instantiations mappings

TABLE VIII

clear-def-inst proof strategy

syntax: (def-inst fnums &OPTIONAL key/[0])
exprs < mapping of key
if exprs = () then {key is not mapped to anything}
error: notify the user
else
for each fnum in fnums do
instantiate frnum with values exprs
end for
end if

TABLE IX

def-inst proof strategy

152

153
Appendix B (Continued)

syntax: (lm-def-inst lemma &OPTIONAL key/0])

if lemma exists then
lemma lemma {introduce definition of lemma lemma}
label new formula with the full name of lemma
def-inst of new formula with mapping of key

else
error: notify the user

end if

TABLE X

lm-def-inst proof strategy

syntax: (lm-def-use lemma &OPTIONAL key[0] time)

1lm-def-inst of lemma with key
if time= () then {argument time not given}
open new formula and try heuristic instantiation of time
else
open-inst new formula at time
end if

TABLE XI

1m-def-use proof strategy

Appendix B (Continued)

syntax: (connect &OPTIONAL dogrind? prefix key[0])

IMpame < concatenation of prefiz. and “connections”
if Imy,eme exists then
lemma {Myame
label it with its full name
def-inst of the new formula with key
else
idr «— 1
IMpame < concatenation of prefiz. “connection’’
while Im,,gme exists do

» and idx

lemma {Mpgme

label it with its full name

def-inst of the new formula with key
idx — idxr + 1

IMpame < concatenation of prefiz. “connection_”

and idx
end while

end if

if dogrind?+ () then
grind

end if

TABLE XII

connect proof strategy

syntax: (rg-use-definitions &OPTIONAL key/0])

1lm-def-use of axiom “E_def” with key
1lm-def-use of axiom “E_i_def” with key
1m-def-use of axiom “M_def” with key
1lm-def-use of axiom “M_i_def” with key

TABLE XIII

rg-use-definitions proof strategy

154

Appendix B (Continued)

syntax: (rg-i-case var N &OPTIONAL dogrind?[T])
if N <1 then
if dogrind? =T then
grind
end if
else
case var = N
if dogrind? =T then
grind
end if
recursive call of rg-i-case with arguments var N—1 dogrind?

end if

TABLE XIV

rg-i-case proof strategy

155

Appendix B (Continued)

B.2 Code of the proof strategies

B.2.1 General purpose strategies

(defstep open-fl (&optional (fnum *))
(then (repeat
(open fnum))
(flatten fnum))
"Does (open)*, then a flatten"
"Opening and flattening formula ~a")

B.2.2 Strategies for class instantiations

;Hash table that maps keys to default instantiation sets

;Note that it remains the same through different proofs

;You can use both strings and numbers (since test #’equal is used)
(setf trio::def-inst-ht (make-hash-table :test #’equal))

(setf trio::base-dummy-name "trio_dummy_name_")
(setf trio::cur-dummy-number O)

(defhelper meaningful-skip ()
(let ((dummy_name (concatenate ’string trio::base-dummy-name
(prinl-to-string trio::cur-dummy-number)))
(dummy_var (setf trio::cur-dummy-number
(+ 1 trio::cur-dummy-number))))
;This is a dummy command so that the step is considered as actful
;and is recorded in the proof
(then (name dummy_name "O")
(delete -1))) ;Delete what the dummy command has done
"Does nothing but makes the sequent be considered changed"

n Il)

(defstep clear-def-inst ()
(let ((dummy_var (setf trio::def-inst-ht (clrhash trio::def-inst-ht))))
(comment "Default instantiation table cleared"))
"Clears the table with all the default instantiations"
"Clearing default instantiations table")

(defstep set-def-inst (inst-str &optional (key 0))
(let ((dummy_var (setf (gethash key trio::def-inst-ht) inst-str))

156

157
Appendix B (Continued)

(cmsg (format nil "Default instantiation for key: “a “a set as:

key (if (equal O key) "(default)" "") inst-str)))
(then (meaningful-skip)

(skip-msg cmsg)))

"Sets the default instantiations for class parametric lemmas.
To be used in connection with def-inst"
"Default instantiation set")

”’all

;This is just for recursive calls of def-inst strategy
(defhelper def-inst-aux (fnums exprs)

(let ((fnum (car fnums))

(other-fnums (cdr fnums)))
(if (null fnum)

(skip)
(then (instantiate fnum exprs)
(def-inst-aux other-fnums exprs))))
"Recursively does instantiation for each element of list of fnums"
n ll)

(defstep def-inst (fnums &optional (key 0))

(let ((exprs (gethash key trio::def-inst-ht))
(smsg (format nil

"There are no instantiation values for key: ~a" key))

(1ist-fnums (if (listp fnums) fnums (list fnums))))
(if (null exprs)

(skip-msg smsg)
(def-inst-aux list-fnums exprs)))

"Instantiates all the fnums with default instantiation values
stored under given key"

"Providing default instantiations")

(defstep lm-def-inst (lemma &optional (key 0))
(try (then (lemma lemma) (label lemma -1))
(def-inst -1 key)
(skip))

"Introduces lemma and instantiates it with default instantiation values"
"Instantiating lemma “a with default instantiation values")

(defstep lm-def-use (lemma &optional (key 0) time)
(try (lm-def-inst lemma key)

158
Appendix B (Continued)

(try (if (null time) (open-inst -1) (open-inst -1 time))
(open-f1 -1)
(skip))
(skip))
"Introduces lemma, instantiates it with default instantiation values,
open and instantiates it at time, then does open-f1"
"Introducing lemma ~a with default values and opening it")

B.2.3 Strategies for use of connections

(defstep connect (&optional dogrind? prefix (key 0))
;dogrind = nil not to do grind after connect,
; any other value (e.g. t) to do it
;prefix is the name of the class where the connection are taken
; (can be omitted if it’s unabiguous)
;key is passed to def-inst
(let ((lm-name (concatenate ’string prefix (if (null prefix) "" ".")
"connections"))
(dummy_var (setf trio::idx 0)))
(try (lemma lm-name)
;there’s only one connection axiom: instantiate it and grind
(try (then (label lm-name -1) (def-inst -1 key))
(if (null dogrind?) (skip) (grind))
(skip-msg "Default instantiation does not work
on the connection axioms"))
;need to instantiate all axioms connection_i
(try
(repeat (let ((dummy_var_2 (setf trio::idx (+ 1 trio::idx)))
(Im-name (concatenate ’string prefix
(if (null prefix) "" ".")
"connection" "_"
(prinl-to-string trio::idx))))
(try (lemma lm-name)
(try (then (label lm-name -1) (def-inst -1 key))
(skip)
(skip-msg "Default instantiation does not work
on the connection axioms"))
(skip))))
(if (null dogrind?) (skip) (grind))
(skip-msg "Couldn’t find some of the connection axioms"))))
"Introduces and tries to instantiate according to default parameters
the connection axioms for class <prefix>"
"Using connection axioms")

159
Appendix B (Continued)

B.2.4 Strategies for rely/guarantee proofs

(defstep rg-use-definitions (&optional (key 0))
(then (1m-def-use "E_def" key)
(then (lm-def-use "E_i_def" key)
(then (1lm-def-use "M_def" key)
(Im-def-use "M_i_def" key))))
"Introduces definitions for E, E_i, M and M_i assuming
axioms of corresponding names exist"
"Introducing definitions")

(defstep rg-i-case (var N &optional (dogrind? t))
;var = Skolem variable to switch on
;N = number of classes to be handled
;dogrind = t: tries to close cases with a grind,
; any other value (e.g. nil) not to do it
(if (<= N 1)
(if dogrind? (grind) (skip))
(spread@ (let ((rule (list ’case (concatenate ’string var
" =" (prinl-to-string N)))))
(quote rule))
((if dogrind? (grind) (skip))
(let ((aN (- N 1)))
(rg-i-case var nN dogrind?)))))
"Splits into N cases for each i (i.e. var) =1,

., N and grinds"
"Splitting into subcases and grinding")

160

Appendix C

A FULL EXAMPLE OF AUTOMATED PROOF

This appendix lists the PVS theories translating the corresponding TRIO classes of the
example in section [.3 and illustrates with several details the proofs discussed in the same
section, as they have been done in PVS.

C.1 System specification in PVS

echoer_rg [instances: TYPE+]
: THEORY

BEGIN
IMPORTING trio_base, TRIO_modular, TRIO_relyguarantee[0]
%% ITEMS
input, output: [instances -> TD_Fmla] % in, out
%% AXIOMS
inst: VAR instances

init: AXIOM
AlwP_i(output (inst)) (0)

in_to_out: AXIOM
Alw(input(inst) IMPLIES
output (inst) AND Lasts_ii(output(inst), 1))

END echoer_rg

two_echoers_rg [instances: TYPE+]
: THEORY

BEGIN

161
Appendix C (Continued)

IMPORTING trio_base, TRIO_modular, TRIO_relyguarantee[2]

%% INSTANCES TYPES

P1_Type: TYPE
P2_Type: TYPE

0} CONTAINING O
1} CONTAINING 1

=]
)
ot

]
A
B B
=)

o
P
B B

%% MODULES

IMPORTING
echoer_rg[P1_Type] AS P1,
echoer_rg[P2_Typel AS P2

%/ CONNECTIONS

pl: VAR P1_Type
p2: VAR P2_Type

connections: AXIOM
connect (P1.output(pl), P2.input(p2)) AND
connect (P2.output(p2), P1l.input(pl))

%% THEOREMS

Rely_guarantee: THEOREM
Alw(P1.output(pl) AND P2.output(p2))

END two_echoers_rg

C.2 Proof without strategies and rely/guarantee proof rule

C.2.1 Auxiliary lemmas for class echoer_rg

To follow the division of the proof we have discussed, we first of all introduce these two

lemmas into the class echoer_rg.

162
Appendix C (Continued)

now_and_nexttime: LEMMA

Alw(input(inst) IMPLIES Futr(input(inst), 1)) AND input(inst) (t)
IMPLIES (FORALL i: input(inst)(t + 1))

alw_output: LEMMA

Alw(input(inst) IMPLIES Futr(input(inst), 1)) AND input(inst) (t)
IMPLIES AlwF_i(output(inst)) (t)

Note that t is a variable of type Time (i.e. real), while i is a variable of type natural.
Let us now consider the proof of these two lemmas. This proof is local to the class

echoer_rg, so that it does not require any element which is not declared in this class.

Let us first prove now_and_nexttime, since the other one relies on this to be proven.

now_and_nexttime :

{1} FORALL (inst: instances, t: Time):
Alw(input (inst) IMPLIES Futr(input(inst), 1))
AND input(inst) (t)
IMPLIES (FORALL i: input(inst)(t + 1))

After obvious introduction of Skolem variables and routinary formula manipulation, we get to

the sequent:

now_and_nexttime :

{-1} Alw(input(inst'1) IMPLIES Futr(input(inst!1), 1))
{-2} input(inst!1)(t!1)

{1} FORALL i: input(inst!1)(t!'l + i)

We use induction on variable i to prove it.
The base case (i = 0) is trivial and is closed by an assert.

The inductive step:

163
Appendix C (Continued)

now_and_nexttime.2 :

[-1] Alw(input(inst!l) IMPLIES Futr(input(inst!1l), 1))
[-2] input(inst!1)(t!'1)

{1} FORALL j: input(inst!1)(t!1 + j)
IMPLIES input(inst!1) (t!'1 + (j + 1))

is rather simple as well, since it only requires to manipulate the formulae [-1] and [1] with

skolemizations and instantiations. So this proof is concluded easily.

Now, we consider the proof of the other lemma alw_output.

alw_output :

{1} FORALL (inst: instances, t: Time):
Alw(input (inst) IMPLIES Futr(input(inst), 1))
AND input(inst) (t) IMPLIES AlwF_i(output(inst)) (t)

After the usual skolemizations and flattening of formulae, we get to the sequent:

alw_output :

[-1] Alw(input(inst!1l) IMPLIES Futr(input(inst!1), 1))
[-2] input(inst!1)(t!'1)

{1} output(inst!1l)(ant!l + t!1)

Here we need to distinguish two cases: nnt!l = 0 and nnt!l # 0 so we issue the command

(4

(case ‘‘nnt!1=0’’) which yields two subgoals.

alw_output.1 :

{-1} mnt!1 =0
[-2] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))
[-3] input(inst!1)(t!1)

164
Appendix C (Continued)

[1] output (inst!1) (nnt!1l + t!1)
alw_output.2 :

[-1] Alw(input(inst!1l) IMPLIES Futr(input(inst!1l), 1))
[-2] input(inst!1) (t!'1)

{1} mnt!1 =0
[2] output (inst!1) (nnt!1l + t!1)

Subgoal 1 is closed by a handful of commands: we need to introduce the axiom in_to_out,
instantiate it at time t!1 and finally launch a grind.

Subgoal 2 requires instead another case splitting: (case integer?(nnt!1)), so that we
have the two following sequents, according to whether nnt!1 is a natural number (since it is

also nonnegative) or not.

alw_output.2.1 :

{-1} integer?(nnt!'1)
[-2] Alw(input(inst!l) IMPLIES Futr(input(inst!1l), 1))
[-3] input(inst!1)(t!'1)

[1] nnt!1 =0
[2] output (inst!1) (nnt!1l + t!1)

alw_output.2.2 :

[-1] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))
[-2] input(inst!1)(t!'1)

{1} integer?(nnt!1)
[2] nnt!1 =0
[3] output(inst!1) (nnt!l + t!1)

165
Appendix C (Continued)

To elaborate subgoal 2.1 we need to introduce the lemma now_and_nexttime we have just
proved. We instantiate it at time t!1, call a ground to apply propositional reasoning with its

IMPLIES operator and get to the formula
{-1} FORALL i: input(inst!1)(i + t!'1)

which we instantiate with nnt!1. Now we introduce axiom in_to_out one more time, instan-

tiating it at t!1 + nnt!1 so that a grind can conclude that

output (inst!1) (nnt!1 + t!1)

thus closing the sequent.
Subgoal 2.2 also needs the use of lemma now_and_nexttime with a ground command,

getting to:

alw_output.2.2 :

{-1} FORALL i: input(inst!1)(i + t!1)

[-2] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))
[-3] input(inst!1) (t!1)

[1] integer?(nnt!1)

[2] nnt!l = 0
[3] output (inst!1) (nnt!1l + t!1)

Since nnt!1 is not an integer in this sequent, we need to instantiate the universal quantifier in
formula -1 with the biggest integer which is also smaller than nnt!1. This quantity is by defi-
nition the floor function, so we instantiate with the command (inst -1 ¢‘floor(ant!1)’’),
knowing that the function floor is defined in the PVS Preludef]. The next thing to do is to

introduce the axiom in_to_out and instantiate it at time t!1 + floor(ant!1l) thus getting:

!The PVS Prelude is a built-in library of PVS theories with many mathematical functions of common
use, together with their properties, available to the PVS system.

166
Appendix C (Continued)

alw_output.2.2 :

{-1} (input(inst!1) IMPLIES output(inst!1l) AND
Lasts_ii(output(inst!l), 1))
(t!'1 + floor(nnt!1))
input (inst!1) (floor(nnt!1) + t!1)
[-3] Alw(input(inst!1) IMPLIES Futr(input(inst!1), 1))
input (inst!1) (t!1)

[1] integer?(nnt!1)
[2] nnt!1 =0
[3] output (inst!1) (nnt!1l + t!1)

We now exploit the implication of formula {-1} with an open and a ground, so that we get:
alw_output.2.2 :
{-1} (output(inst!l) AND Lasts_ii(output(inst!l), 1))
(floor(nnt!1l) + t!1)

input (inst!1) (floor(nnt'1) + t!1)
[-3] Alw(input(inst!l) IMPLIES Futr(input(inst!1l), 1))
[-4] input(inst!1)(t!'1)
[1] integer?(mnt!1)

[2] nnt!l = 0
[3] output (inst!1) (nnt!1 + t!1)

We are now interested in the Lasts_ii subformula. We open it and instantiate at time

nnt!1l - floor(annt!l) to get the formula:
{-2} output(inst!1l)(nnt!l - floor(nnt!1l) + (floor(nnt!l) + t!1))

which can be recognized as the goal by a grind command which closes the sequent 2.2 and

therefore the whole proof.

C.2.2 Auxiliary lemma for class two_echoers_rg

Before getting to the global property, we still need to introduce and prove a lemma in the

class two_echoers_rg. We name the lemma rg_aux.

167
Appendix C (Continued)

rg_aux: LEMMA
Alw(P1.input(p1) IMPLIES Futr(P1l.input(pl), 1))
AND Alw(P2.input(p2) IMPLIES Futr(P2.input(p2), 1))

The meaning of the lemma is simple. It basically says that, for both class P1 and P2, the first
hypothesis of lemmas now_and_nexttime and alw_output holds. This is a global property,
since proving it requires the application of the axioms of both classes P1 and P2.

The sequent to be proven is the following.

rg_aux :

{1} FORALL (pl: P1_Type, p2: P2_Type):
Alw(P1.input(pl) IMPLIES Futr(P1.input(pl), 1)) AND
Alw(P2.input(p2) IMPLIES Futr(P2.input(p2), 1))

After skolemization of universally quantified variables, this can be split into two subgoals.

rg_aux.1l :

{-1} Pi.input(p1!1)(tt!'1)

{1} Futr(Pil.input(pl!1), 1)(tt!1)
rg_aux.2 :

{-1} P2.input(p1!1) (tt!'1)

{1} Futr(P2.input(p1'1), 1)(tt'1)

As we can immediately understand, the proofs of the two subgoals are the same in their struc-
tures, except that in the second one we must use axioms and items of P2 whenever in the first
one we used axioms of P1 and vice-versa. Being the two proofs so similar, we only analyze the
one for rg_aux.1. Once that is built, we can modify its listing directly in PVS and redo the

commands, adequately modified, to close the second part as well.

168
Appendix C (Continued)

The first thing to do is to introduce the axiom in_to_out for class P1, label it to remind it

is from class P1 and instantiate it at time tt!1. This produces the sequent:

{-1,(P1.in_to_out)}
(input(p1!1) IMPLIES output(pl!1l)
AND Lasts_ii(output(p1!1), 1)) (tt!1)
[-2] Pi.input(pl!1)(tt!1)

[1] Futr(Pl.input(pi!1l), 1) (tt!l)

After opening formula {-13}, a ground command recognizes the implication in the same formula

and let us conclude that the consequent holds.

{-1,(P1.in_to_out)}
(output(p1'1) AND Lasts_ii(output(pi'!1), 1)) (tt!1)
[-2] Pi.input(pl!1)(tt!1)

(1] Futr(Pl.input(pi!l), 1)(tt!1)

Let us open formula {-1} and isolate the Lasts formula with a flatten, getting to the formula

{-2,(P1.in_to_out)}
Lasts_ii(output(pi!1), 1)(tt!1)

We now expand the Lasts operator, which results in a universal quantification over the interval

[0,1]. We need to instantiate it at its upper bound, that is at 1. This leads us to the formula:

{-2,(P1.in_to_out)}
output (p1!1) (1 + tt!1)

To use it, we have to introduce the axiom in_to_out for class P2, this time instantiating it

at time tt'1 + 1.

{-1,(P2.in_to_out)}
input(p2!1) (tt!1 + 1) IMPLIES
(output(p2!1) AND Lasts_ii(output(p2!1), 1)) (tt!1l + 1)
[-2,(P1.in_to_out)]

Appendix C (Continued)

output (p1!1) (tt!1)
[-3,(P1.in_to_out)]

output(p1!1) (1 + tt!1)
[-4] Pil.input(pi!1) (tt!1)

[1] Futr(Pl.input(p1!1l), 1) (tt!1)

On this sequent, we can issue a ground command to split the proof into two subgoals.

rg_aux.1.1 :

{-1,(P2.in_to_out)}
output (p2!'1) (1 + tt!1)

AND Lasts_ii(output(p2!1), 1)(1 + tt!1)

[-2,(P1.in_to_out)]
output (p1!1) (tt!'1)
[-3,(P1.in_to_out)]
output(p1!1) (1 + tt!1)
[-4] Pi.input(pl!1)(tt!l)

[1] Futr(Pl.input(pi!1), 1) (tt!1)
rg_aux.1.2 :

[-1,(P1.in_to_out)]
output (p1!1) (tt!1)
[-2,(P1.in_to_out)]
output(p1!1) (1 + tt!1)
[-3] Pil.input(pi!1) (tt!1)

{1,(P2.in_to_out)}
input(p2!1) (1 + tt!1)
[2] Futr(Pl.input(pi!1l), 1)(tt!1)

169

In sequent 1.1, we separate the Lasts from the other term in the AND formula. Moreover,

we hide all the formula we no longer need to prove this sequent, getting to

[-1,(P2.in_to_out)]
output (p2!'1) (1 + tt!1)

[1] Futr(Pl.input(pi!1l), 1)(tt!l)

170
Appendix C (Continued)

This is closed by means of the connection axiom, so we introduce it, instantiate for class
parameters p1!1 and p2!1 and close the sequent with a grind.

Subgoal 1.2 is simple as well, since it reduces to:

[-1,(P1.in_to_out)]
output(p1!1) (1 + tt!1)

[1,(P2.in_to_out)]
input (p2!1) (1 + tt!1)

once the useless formulae have been hidden. This can be closed with the introduction of the
connections, too.

This concludes the proof of subgoal 1. As discussed, subgoal 2 is very similar and is not
analyzed.

C.2.3 Proof of the global property of class two_echoers_rg

Now, we have all the ingredients to prove the global property of the composite class

two_echoers_rg, that is:

Rely_guarantee: THEOREM
Alw(P1.output(pl) AND P2.output(p2))

As it is clear from all the previously seen cases, the proof of the theorem is divisible into two
macro steps, where the second is structurally identical to the first one, except that it refers to
class P2 whenever the first step refers to class P1 and vice-versa. Once again, we only discuss the
proof for the first part, being the second easily extrapolable for any human reader (though not
fully automatizable, since it requires the systematic changes to handle the different situation).

So, after initial routinary skolemizations and splitting into the two subgoals, the sequent we

want to prove is:

171
Appendix C (Continued)

Rely_guarantee.1

{1} Pil.output(pi!'1)(tt!'1)

where tt!1 is a Skolem variable representing a generic time instant.
A case splitting is immediately needed, since the remainder of the proof is radically dif-
ferent whether we are considering time instants before or after 0. So, we issue the command

(case “‘tt!1<=0’’) and get the two subgoals:

Rely_guarantee.1.1

{-1} +tt!'1 <=0

{1} tt!1 <=0
[2] Pl.output(pi!1)(tt!'1l)

where in 1.2, the condition tt!1 <= 0 among the consequents is equivalent to the negation of

the same condition among the antecedents, that is tt!1 > 0.

The proof of 1.1 is simple since it relies entirely on the initialization axiom of class P1. Hence,
we introduce it with (lemma ¢ ‘P1.init’’), label it, open its universal time quantification and

instantiate it at time - tt!1, so that we have the formula:

{-1,(P1.init)}
output(p1!1) (--tt!1 + 0)

172
Appendix C (Continued)

It is simple to recognize this is the same as the current goal, so that a grind closes it, togeter

with an additional TCC (Type Correctness Contraint) generated autonomously by PVS.

The proof of sequent 1.2 is basically based on the axiom alw_output for class P1, so first
of all we introduce it, label it and instantiate its free variable t at time 0 and its free variable

inst with Skolem variable p1!1

{-1,(P1.alw_output)}
Alw(input(p1!'1) IMPLIES Futr(input(pl!l), 1))
AND input(p1'1)(0)
IMPLIES AlwF_i(output(p1'1))(0)

[1] tt!1 <=0
[21 Pi.output(pl!l) (tt!1)

In order to show to the prover that the antecedent of the implication in formula {-1} is
true, we need the axiom P2.init and the lemma rg_aux. More precisely, the former formula
proves the truth of the second term of the conjunction, that is input(p1!1) (0); the latter
proves instead that the implication in the first term of the conjunction is also true.

Thus, we first introduce the lemma rg_aux and instantiate its instantiation parameters with

the Skolem variables p1!1 and p2!1. We get:

{-1} Alw(P1l.input(pl!'1) IMPLIES Futr(P1.input(pl!1), 1)) AND
Alw(P2.input(p2!1) IMPLIES Futr(P2.input(p2!1), 1))
[-2, (P1.alw_output)]
Alw(input(p1!'1) IMPLIES Futr(input(pi'1l), 1))
AND input(p1!1)(0)
IMPLIES AlwF_i(output(p1!1))(0)

[1] tt!1 <=0
[2] Pl.output(pi!1)(tt!1)

173
Appendix C (Continued)

Since the second term of the conjunction in formula {-1} refers to class P2, it is not needed in

this branch of the proof. So we split that formula and hide it.

Now, we introduce the axiom P2.init and instantiate it at time 0 and for paramter p2!1.

The sequent is now:

{-1,(P2.init)}
output (p2!1) (-0 + 0)
[-2] Alw(P1l.input(pi!1) IMPLIES Futr(P1l.input(pi'1l), 1))
[-3, (P1.alw_output)]
Alw(input(p1'1) IMPLIES Futr(input(pi'1l), 1))
AND input(p1'1)(0)
IMPLIES AlwF_i(output(p1!1)) (0)

[1] tt!l1 <=0
[2] Pl.output(pi!1)(tt!'1l)
It is now time to issue a ground command to exploit the implication if formula [-3]. This

leads to the two subgoals:

Rely_guarantee.1.2.1 :

[-1,(P1.alw_output)]
AlwF_i(output(p1!1)) (0)

[1] tt!l <= 0
[2] Pil.output(pi!1)(tt!'1l)

Rely_guarantee.1.2.2 :

[-1,(P2.init)]
output (p2!1) (0)

[1, (P1.alw_output)]

input (inst) (0)
[2] tt!1 <=0

where we have already hidden the unnecessary formulae with a hide command.

174
Appendix C (Continued)

Subgoal 1.2.1 is simply closed by first expanding the definition of the AlwF operator, in-
stantiating the resulting universal quantifier at time tt!1 and finally calling the usual grind
command.

Subgoal 1.2.2 requires instead the connection axiom. Introducing it with a (1emma ¢ ‘connections’’),
instantiating its free variables and calling a grind suffices to close the sequent.

This also concludes the whole proof of the global property.

C.3 Proof with strategies and rely/guarantee proof rule

C.3.1 Proof of the local property

The initial sequent is:

rely_guarantee :

{1} FORALL (inst: instances): Alw(input(inst) >>= output(inst))

As usual, we first of all manipulate it by opening and skolemizing its Alw operator. Moreover,

while introducing Skolem variable inst!1 we also set it as the default instantiation value.

rely_guarantee :
{-1} AlwP_e(input(inst!'1)) (tt!'1)

{1} (AlwP_i(output(inst!1)) (tt!1) AND NowOn(output(inst!1)) (tt!1))

Now, we open, flatten and split the formula in {1}, getting two subgoals.

rely_guarantee.l :
[-1] AlwP_e(input(inst!1)) (tt!1)

{1} AlwP_i(output(inst!1)) (tt'1)

175
Appendix C (Continued)

rely_guarantee.2 :
[-1] AlwP_e(input(inst!1)) (tt!1)

{1} NowOn(output(inst!1))(tt'1l)

Let us consider the sequent 1 first. We open and skolemize the goal formula, thus introducing
a new Skolem variable nnt!1 indicating the instants of time in which we need to prove output
holds. We need to distinguish two cases, whether nnt!1 is greater than 0 or it is less or equal

to it. The two resulting subgoals are expressed by the sequents:

rely_guarantee.1.1

{-1} mnt!1 > 0
[-2] AlwP_e(input(inst!1)) (tt!1)

[1] output (inst!1) (-nnt!'1 + tt!1)
rely_guarantee.1.2 :
[-1] AlwP_e(input(inst!1)) (tt!1)

{1} nnt!1 >0
[2] output (inst!1) (-nnt!1 + tt!1)

In 1.1 we expand the definition of the A1wP_e operator and instantiate it at time nnt!'1
Now, we need to show to the prover that input at time tt!1 - nnt!1l also implies output at
the same time. So we introduce the axiom in_to_out at time tt!1l - nnt!l and grind to

close the sequent.

176
Appendix C (Continued)

Subgoal 1.2 requires instead to instantiate the quantification of the A1wP_e operator at some
time instant before tt!1 but not before tt!1 - 1. We choose, for instance, to instantiate it at

tt!1l - 1/2 with the command open-inst. This produces the sequent:

[1] nont!1 >0
[2] output (inst!1) (-nnt!1 + tt!1)

Now, we introduce the axiom in_to_out and instantiate it at time tt!1 - 1/2. A ground

command recognizes that the following now holds:

{-1, (in_to_out)}
(output(inst!1) AND Lasts_ii(output(inst!l), 1))
(tt!1 - (1 / 2)
[-2] input(inst!1)(-(1 / 2) + tt!1)

[1] nnt!1 >0
[2] output (inst!1) (-nnt!1 + tt!1)

We are only interested in the term of the conjunction with the Lasts operator. So we
separate it into a new formula with an open-f1 command. Then, we expand the definition of
the Lasts and instantiate the universal quantifier with value 1/2. Finally, a grind command

solves the mathematical equalities needed to recognize that subgoal 1 can be closed.

Let us prove subgoal 2. Similarly to what done in the other branch of the proof, we first

of all need to instantiate the A1wP operator at some time before tt!1 and after tt!'1 - 1. We

choose tt!'1 - 1/2.

{-1} input(inst!1)(-(1 / 2) + tt!'1)

[1] NowOn(output(inst!1)) (tt!1)

177
Appendix C (Continued)

Now, we introduce the axiom in_to_out once more, still instantiating it a time tt!'1 - 1/2.

After that, a ground command produces the new sequent:

{-1,(in_to_out)}
(output(inst!1) AND Lasts_ii(output(inst!1), 1))
(tt!1 - (1 / 2))

[1] NowOn(output(inst!1)) (tt!1)

We separate the Lasts formula into its own formula with and open-f1 command. After that,
we expand the definition of the NowOn operator. We need to instantiate the resulting existential

quantifier for any value smaller than 1/2. We choose, for instance, 1/3, and get the sequent:

[-1,(in_to_out)]

output (inst!1) (tt!1 - (1 / 2))
[-2, (in_to_out)]

Lasts_ii(output(inst!1), 1) (tt!1 - (1 / 2))
[-3] input(inst!1)(-(1 / 2) + tt!1)

{1} Lasts_ee(output(inst!1), 1 / 3)(tt!'1)

Now, a handful of commands can close the sequent. More precisely, we apply open-skolem
to formula {1} and make explicit the type for the newly introduced Skolem variable it!1.
Then, we instantiate the expanded Lasts operator for the value it!'1 + 1/2. After that, a

simple grid command closes the sequent, thus concluding the proof.

C.3.2 Proof of the global property of class two_echoers_rg

We are ready to build the proof of the global property of the composite class two_echoers_rg
using the rely/guarantee proof rule directly in PVS. In section we have shown a basic

guideline in defining additional items and definitions to use proficiently the rely/guarantee

178
Appendix C (Continued)

proof rule in PVS. Adhering to those guidelines, we add the following definitions to the class

two_echoers_rg.

E: TD_Fmla = TRUE

E_i: Rng_Fmla_Type[2]

E_i_def: AXIOM

(E_i(1) = Pl.input(pl)) AND (E_i(2) = P2.input(p2))
M: TD_Fmla

M_def: AXIOM

M = (P1l.output(pl) AND P2.output(p2))

M_i: Rng_Fmla_Type[2]

M_i_def: AXIOM
(M_i(1) = Pl.output(pl)) AND (M_i(2) = P2.output(p2))

Note that we did not define an axiom for the global environment assumption E since it is trivial
and can be defined directly when we introduce the item E.
Now that the additional definitions have been introduced, the whole proof of the global

property can be done without need for additional lemmas, directly from the basic proof sequent:

Rely_guarantee :

{1} FORALL (pl: P1_Type, p2: P2_Type):
Alw(P1.output(pl) AND P2.output(p2))

We will only use the lemma for the local properties, proved in the previous section, the con-
nection axiom, the definitions of the global and local assumptions and guarantees and the
initialization axioms of the subclasses.

After introducing Skolem variables to replace the universal quantification of the goal, we

want to save these new variables so that successive instantiations of lemmas can be done auto-

179
Appendix C (Continued)

matically by the prover. Thus, we set the default instantiation with the command set-def-inst
aspl!1l p2!1. Moreover, we set other instantiation defaults for the values p1!1 and p2!1 alone,
mapping keys 1 and 2 respectively. After that we open and skolemize the universal quantifica-
tion on time of formula {1}, thus introducing the time Skolem variable tt!1. Now we are ready
to apply the rely/guarantee inference rule we have defined in theory TRIO_relyguarantee. The

sequent becomes:

{-1} FORALL (E_g: TD_Fmla, E_i: [rng[2] -> Initialized_Fmla[2]],
M_g: TD_Fmla, M_i: Rng Fmla_Type[2]):
(Alw(E_g AND FA(M_i) IMPLIES FA(E_i)) AND
Alw(FA(M_i) IMPLIES M_g) AND Alw(FA(E_i >>= M_i)))
IMPLIES Alw(E_g >>= M_g)

[1] (P1.output(pl!1) AND P2.output(p2!1)) (tt!1)

To use it we have to choose which formulae represent the E_g, E_i, M_g and M_i. Since
we have introduced in the theory the adequate items just before beginning this proof, we can
immediately provide the instantiation with the command (inst -1 "E" "E_i" "M" "M_i").
This causes the proof to be split into two parts. The first one is the main branch and represents
the use of the rely/guarantee proof rule. The second one is instead a TCC (Type Correctness
Constraint) requiring to prove that E_i is initialized; this is needed to guarantee that the rule
is sound.

Let us first consider how we discharge the TCC, represented by the sequent:

Rely_guarantee.2 (TCC):

{1} FORALL (x1: rng[2]): Initialized?[2] (E_i(x1))

180
Appendix C (Continued)

After skolemizing the universal quantification in {1} we introduce the axioms P1.init and
P2.init with instantiation values corresponding to keys 1 and 2 respectively. After that, we

introduce the definition of E_i and expand that of the Initialized predicate, so that the

sequent becomes:

Rely_guarantee.2:

{-1,(E_i_def)}

(E_i(1) = Pl.input(pl!1)) AND (E_i(2) = P2.input(p2!1))
[-2, (P2.1init)]

AlwP_i (output (p2'!1)) (0)
[-3,(P1.init)]

AlwP_i (output(p1'1)) (0)

[1] Som(AlwP_e(E_i(x1'1)))

Now, we realize that the prover must be aware that AlwP;(A) = AlwP.(A) for any formula
A. Thus, we introduce the formula A1wP_i2A1wP_e from the basic TRIO lemmas available in
TVS theories. We provide two different instantiation for this lemma: one for E_i(1) and the

other for E_i(2), both at time 0. Now the sequent is:

Rely_guarantee.2 :

[-1] AlwP_i(P1.output(p1!1))(0) =
(AlwP_e(P1.output(p1!1)) (0) AND P1.output(p1!1)(0))
{-2} AlwP_i(P2.output(p2!1))(0) =
(AlwP_e(P2.output(p2!1)) (0) AND P2.output(p2!1) (0))
[-3,(E_i_def)]
(E_i(1) = P1l.input(pl!1)) AND (E_i(2) = P2.input(p2!1))
[-4,(P2.init)]
AlwP_i (output (p2'1)) (0)
[-5,(P1.init)]
AlwP_i (output (p1!1))(0)

[1] AlwP_e(E_i(x1!1))(0)

181
Appendix C (Continued)

Finally, we introduce the information about the connections and use the command rg-i-case
on variable x1!1 to close this branch of the proof.

Now, back to the main branch. The first thing to do is to introduce the definitions of the
E_i, E, M_i and M items, so that the prover can use them as rewriting rules whenever needed
during the proof. To do that we use the command rg-use-definitions, so that the sequent

becomes:

Rely_guarantee.l :

{-1,(M_i_def)}
(M_i(1) = P1l.output(pl!1))
{-2,(M_i_def)}
(M_i(2) = P2.output(p2!1))
[-3, (M_def)]
M = (Pl.output(pi!1l) AND P2.output(p2!1))
{-4,(E_i_def)}
(E_i(1) = P1l.input(pl!1))
{-5,(E_i_def)}
(E_i(2) = P2.input(p2!1))
[-6, (E_def)]
(Alw(E AND FA(M_i) IMPLIES FA(E_i)) AND
Alw(FA(M_i) IMPLIES M) AND Alw(FA(E_i >>= M_i)))
IMPLIES Alw(E >>= M)

[1] (P1.output(pl!1) AND P2.output(p2!1)) (tt!1)

In order to exploit the implication of the rely/guarantee proof rule, we call a ground com-

mand which yields four different subgoals.

Rely_guarantee.1.1 :

{-1,(E_def)}

Alw(E >>= M)
[-2, (M_i_def)]

(M_i(1) = P1.output(p1!1))
[-3, (M_i_def)]

Appendix C (Continued)

(M_i(2) = P2.output(p2!'1))
[-4,(M_def)]

M = (Pl.output(pl!1l) AND P2.output(p2!1))
[-5,(E_i_def)]

(E_i(1) = Pi.input(pl!l))
[-6,(E_i_def)]

(E_i(2) = P2.input(p2!1))

[1] (P1l.output(pl!l) AND P2.output(p2!1)) (tt!'l)
Rely_guarantee.1.2 :

[-1,(M_i_def)]
(M_i(1) = Pl.output(pl!l))
[-2,(M_i_def)]
(M_i(2) = P2.output(p2!1))
[-3, (M_def)]
M = (Pl.output(pi!1l) AND P2.output(p2!1))
[-4,(E_i_def)]
(E_i(1) = Pl.input(pi!l))
[-5,(E_i_def)]
(E_i(2) = P2.input(p2!1))

{1,(E_def)}
Alw(E AND FA(M_i) IMPLIES FA(E_i))
[2] (P1l.output(pl!'l) AND P2.output(p2!'1)) (tt!'l)

Rely_guarantee.1.3 :

[-1,(M_i_def)]
(M_i(1) = P1l.output(pi!1))
[-2,(M_i_def)]
(M_i(2) = P2.output(p2!1))
[-3, (M_def)]
M = (P1l.output(pl!'1l) AND P2.output(p2'1))
[-4,(E_i_def)]
(E_i(1) = Pl.input(pl!1))
[-5, (E_i_def)]
(E_i(2) = P2.input(p2!1))

{1, (E_def)}
Alw(FA(M_i) IMPLIES M)

182

183
Appendix C (Continued)

[2] (P1.output(pl!1) AND P2.output(p2!1)) (tt!1)
Rely_guarantee.1.4 :
(-1, (M_i_def)]
(M_i(1) = P1l.output(pi!l))
(-2, (M_i_def)]
(M_i(2) = P2.output(p2!1))
[-3,(M_def)]
M = (P1l.output(pl!1l) AND P2.output(p2!1))
[-4,(E_i_def)]
(E_i(1) = P1l.input(pl'1))
[-5,(E_i_def)]
(E_i(2) = P2.input(p2'1))
{1, (E_def)}

AMw(FA(E_i >>= M_i))
[2] (P1l.output(pi!l) AND P2.output(p2!1)) (tt!'l)

Subgoal 1.1 requires to prove that the goal is subsumed by the global rely/guarantee formula
E *> M, for the given E and M. This is trivial, and just requires to instantiate the rely/guar-
antee formula in -1 at time tt!1 and calling a grind. Subgoal 1.2 requires to prove the
following hypothesis of the rely/guarantee proof rule we are using holds: EAA,_; , M; =
/\Z.:me E;. Subgoal 1.3 requires to prove the other hypothesis to the rely/guarantee proof
rule: E'A /\izl,...,n M; = M. Finally, subgoal 1.4 requires to prove that the antecedent in the
rely/guarantee proof rule statement holds, that is: A;_; , (E; > M;). Subgoals 1.2 through

1.4 are proved in the following paragraphs.

C.3.2.0.1 Proof of subgoal 1.2

The sequent to prove is, after hiding unnecessary formulae, introducing Skolem variables

for Alw universal quantifications and flattening formulae:

Appendix C (Continued)

[-1,(E_def)]

FAM_1i) (tt!2)
[-2, (M_i_def)]

(M_i(1) = P1.output(p1!1))
[-3, (M_i_def)]

(M_i(2) = P2.output(p2!1))
[-4, (M_def)]

M = (P1l.output(pl!1l) AND P2.output(p2!'1))
[-5, (E_i_def)]

(E_i(1) = P1l.input(pl!1))
[-6,(E_i_def)]

(E_i(2) = P2.input(p2'1))

[1, (E_def)]
FA(E_i) (tt!2)

184

In particular, we have hidden the formula E(tt!2) among the antecedents since it simplifies to

TRUE.

We remind that the FA operators are universal quantifications over variable of type rng, that

is the range of numbers 1,2 in this case, being two the subclasses we are composing. Thus, we

introduce the Skolem variable x!1 to indicate this parametrization with respect to rng, getting

to the sequent:

{-1,(E_def)?}

FORALL (x: rngl[2]): M_i(x) (tt!2)
(-2, (M_i_def)]

(M_i(1) = P1.output(p1!1))
(-3, (M_i_def)]

(M_i(2) = P2.output(p2!1))
[-4, (M_def)]

M = (P1l.output(pl!1l) AND P2.output(p2!'1))
[-5,(E_i_def)]

(E_i(1) = P1l.input(pl!'1))
[-6,(E_i_def)]

(E_i(2) = P2.input(p2'1))

185
Appendix C (Continued)

[1, (E_def)]
E_i(x!1)(tt!2)

In order to avoid unnecessary splitting of the sequent, we make a copy of the formula {-1}
so that we can instantiate it for £ = 1 and its copy for x = 2. Moreover, we introduce the

connection axiom with the command connect since it will be needed shortly.

{-1} M_i(2) (tt!2)
[-2, (connections)]
(P1.output(pl!'1l) = P2.input(p2!'1)) AND
(P2.output(p2!1) = Pl.input(pi!'1))
[-3, (E_def)]
M_i(1) (£t!2)
[-4, (M_i_def)]
(M_i(1) = P1l.output(pl!1))
[-5, (M_i_def)]
(M_i(2) = P2.output(p2!1))
[-6, (M_def)]
M = (Pl.output(pl!1) AND P2.output(p2!1))
(-7, (E_i_def)]
(E_i(1) = P1l.input(pl!1))
(-8, (E_i_def)]
(E_i(2) = P2.input(p2'1))

[1, (E_def)]
E_i(x!'1) (tt!2)

Now we can realize that everything is complete to close the sequent. In fact, the M_i items are
output items of the two classes, as described in their definitions. Moreover, the connections
tell that each output is the input of the other class. Finally, the input items are by definition
the E_i items. Thus, we just need to consider each case 1,2 separately with a command

3

(rg-i-case ‘‘x!1’’ 2). This completes the proof of subgoal 1.2.

186
Appendix C (Continued)

C.3.2.0.2 Proof of subgoal 1.3

Subgoal 1.3 is rather simple to prove. First of all, we hide some unnecessary formulae, open
and flatten other formulae and introduce a Skolem temporal variable tt!2 to indicate the time

of the Alw operator. So, the sequent we have to prove is:

{-1, (E_def)}

FA(M_i) (3t!2)
[-2,(M_i_def)]

(M_i(1) = Pl.output(pl!l))
[-3,(M_i_def)]

(M_i(2) = P2.output(p2!1))
[-4, (M_def)]

M = (Pl.output(pi!1l) AND P2.output(p2!1))
[-5,(E_i_def)]

(E_i(1) = P1l.input(pi!1))
[-6,(E_i_def)]

(E_i(2) = P2.input(p2!1))

[1, (E_def)]
M(tt!2)

Similarly to what done in proof of subgoal 2, we expand the FA operator in formula {-1},
copy it and make two different instantiations for 1 and 2 (thus representing both classes P1 and

P2). We end up with the sequent:

{-1} M_i(2) (tt!'2)
[-2, (E_def)]

M_i(1) (£t!2)
[-3,(M_i_def)]

(M_i(1) = Pl.output(pl!l))
[-4,(M_i_def)]

(M_i(2) = P2.output(p2!1))
[-5, (M_def)]

M = (Pl.output(pi!1l) AND P2.output(p2!1))
[-6,(E_i_def)]

(E_i(1) = Pl.input(pi!l))
[-7,(E_i_def)]

187
Appendix C (Continued)

(E_i(2) = P2.input(p2'1))

[1, (E_def)]
M(tt!2)

Now a simple grind command recognizes that M, whose definition is in formula [-6], holds,

since both M_1 and M_2 hold. So the sequent is closed.

C.3.2.0.3 Proof of subgoal 1.4

The proof of subgoal 1.4 is rather simple as well, since it is basically reducible to the
local theorem for class echoer_rg we have proved right above. Needless to say, we first of all
introduce skolemizations for quantified time variables and hide some unnecessary formulae. We

have the sequent:

[-1,(M_i_def)]
(M_i(1) = Pl.output(pl!l))
[-2,(M_i_def)]
(M_i(2) = P2.output(p2!'1))
[-3, (M_def)]
M = (Pl.output(pi!1l) AND P2.output(p2!1))
[-4,(E_i_def)]
(E_i(1) = Pl.input(pi!1))
[-5,(E_i_def)]
(E_i(2) = P2.input(p2!1))

{1, (E_def)}
FA(E_i >>= M_i) (¢xt!2)

We now expand the definition of the FA operator with an open and replace the resulting
universal quantification over a variable of type rng with a Skolem variable x!1. This leads to

the sequent:

[-1,(M_i_def)]
(M_i(1) = Pl.output(pl!1))

188
Appendix C (Continued)

[-2, (M_i_def)]
(M_i(2) = P2.output(p2!1))
[-3, (M_def)]
M = (Pl.output(pl!1) AND P2.output(p2!1))
[-4,(E_i_def)]
(E_i(1) = P1l.input(pl!'1))
[-5,(E_i_def)]
(E_i(2) = P2.input(p2!1))

{1,(E_def)?}
(E_i(x!1) >>= M_i(x!'1))(tt!2)

Now, we introduce the fundamental local lemmas of the subclasses. We adopt default
instantiations and set the time at tt!2, that is we issue the command 1m-def-use twice, for

modules P1 and P2. The sequent is now:

{-1,(P2.rely_guarantee)}
(AlwP_e(input(p2!1)) (tt!2) IMPLIES
(AlwP_i(output (p2'1)) (tt!2) AND NowOn(output (p2'1)) (tt!2)))
[-2, (P1.rely_guarantee)]
(AlwP_e(input (p1!1)) (tt!2) IMPLIES
(AlwP_i(output(p1!'1)) (tt!2) AND NowOn(output(p1'1)) (tt'2)))
[-3, (M_i_def)]
(M_i(1) = Pl.output(pi!1))
[-4,(M_i_def)]
(M_i(2) = P2.output(p2!1))
[-5, (M_def)]
M = (P1l.output(pl'1l) AND P2.output(p2'1))
[-6,(E_i_def)]
(E_i(1) = P1l.input(pi!l))
[-7,(E_i_def)]
(E_i(2) = P2.input(p2!'1))

[1, (E_def)]
(E_i(x!1) >>= M_i(x!1)) (tt!2)

We are almost done: we still need to expand the definition of the >>= operator in the goal,

which can be done with a open. Now, the sequent:

189
Appendix C (Continued)

[-1, (P2.rely_guarantee)]
(input (p2!1) (tt!2) IMPLIES output(p2!1) (tt!2))
[-2, (P2.rely_guarantee)]
(AlwP_e(input (p2!'1)) (tt!2) IMPLIES
(AlwP_i(output (p2!1)) (tt!2) AND NowOn(output(p2!1)) (tt!2)))
[-3,(P1l.rely_guarantee)]
(input (p1!1) (tt!2) IMPLIES output(pi!l) (tt!2))
[-4, (P1.rely_guarantee)]
(AlwP_e(input(p1!1)) (tt!2) IMPLIES
(AlwP_i(output(p1!1)) (tt!2) AND NowOn(output(pl!1)) (tt!2)))
[-5,(M_i_def)]
(M_i(1) = P1.output(pl!1l))
[-6,(M_i_def)]
(M_i(2) = P2.output(p2!1))
[-7,(M_def)]
M = (Pl.output(pi!1l) AND P2.output(p2!1))
[-8,(E_i_def)]
(E_i(1) = Pl.input(pi!l))
[-9,(E_i_def)]
(E_i(2) = P2.input(p2!1))

{1, (E_def)}

(AlwP_e(E_i(x!'1)) (tt!2) IMPLIES
(AlwP_i(M_i(x'1)) (tt!'2) AND NowOn(M_i(x!'1))(tt!2)))

can be closed by issuing the command rg-i-case on the variable x!1. This triggers a very

long sequence of rewritings which finally ends the whole proof.

10.

11.

CITED LITERATURE

. Abadi, M. and Lamport, L.: The existence of refinement mappings. Theoretical Computer

Science, 82(2):253-284, May 1991.

. Abadi, M. and Lamport, L.: Composing specifications. ~ ACM Transactions on
Programming Languages and Systems, 15(1):73-132, Jan 1993.
. Abadi, M. and Lamport, L.: An old-fashioned recipe for real-time. ACM Transactions on

Programming Languages and Systems, 5(16):1543-1571, September 1994.

. Abadi, M. and Lamport, L.: Conjoining specifications. ~ ACM Transactions on

Programming Languages and Systems, 17(3):507-535, May 1995.

. Abadi, M. and Merz, S.: An abstract account of composition. Mathematical Foundations

of Computer Science, 1995.

. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press,

1996.

Alpern, B. and Schneider, F.: Defining liveness. Information Processing Letters, 21(4):181—
185, October 1985.

. Bjgrner, N., Browne, A., and Manna, Z.: Automatic generation of invariants and interme-

diate assertions. Theoretical Computer Science, 173(1):49-87, February 1997.

. Bjgrner, N., Manna, Z., Sipma, H., and Uribe, T. E.: Deductive verification of real-time

systems using STeP. Theoretical Computer Science, 253(1):27-60, 2001.

Bjorner, N., Browne, A., Chang, E., Colén, M., Kapur, A., Manna, Z., Sipma, H., and
Uribe, T.: STeP: the Stanford Temporal Prover, user’s manual. Technical report,
Computer Science Department, Stanford University, November 1995.

Bjorner, N., Browne, A., Chang, E., Colén, M., Kapur, A., Manna, Z., Sipma, H.,
and Uribe, T.: STeP: deductive-algorithmic verification of reactive and real-time
systems. In Proceeding of the 8th International Conference on Computer Aided

190

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

191

Verification, eds, R. Alur and T. Henzinger, volume 1102 of Lecture Notes in
Computer Science, pages 415—418. Springer-Verlag, July 1996.

Chang, E., Manna, Z., and Pnueli, A.: Compositional verification of real-time systems.
In Proceedings of the 9th IEEE Symposium on Logic in Computer Science, pages
458-465. IEEE Computer Society Press, 1994.

Chaochen, Z., Hoare, C., and Ravn, A.: A calculus of durations. Information Processing
Letters, 40(5):269-276, 1991.

Cheng, A. M. K.: Real-Time Systems: Scheduling, Analysis, and Verification. John Wiley
& Sons, August 2002.

Clarke, E., Emerson, E., and Sistla, A.: Automatic verification of finite-state concurrent
systems using temporal logic specifications. ACM Transactions on Programming
Languages and Systems, 8(2):244-263, 1986.

de Roever, W.-P.: The need for compositional proof systems: a survey. Lecture Notes in
Computer Science, 1536:1-22, 1998.

Dijkstra, E.: Structured programming. In Software Engineering Techniques, Report on
a conference sponsored by the NATO Science Committee, eds, J. Buxton and B.
Randell, pages 84-88. NATO Science Committee, 1969.

Dijkstra, E.: A discipline of programming. Prentice Hall, 1976.

Duri, S., Buy, U., Devarapalli, R., and Shatz, S.: Using state space reduction methods for
deadlock analysis in Ada tasking. In Proceedings of the International Symposium
on Software Testing and Analysis (ISSTA), pages 51-60, New York, 1993. ACM.

Fifi, A.: Un sistema per la conduzione di prove formali in TRIO basato su una codifica in
PVS e un’interfaccia astratta. Laurea degree thesis, 1998. Politecnico di Milano.

Finkbeiner, B., Manna, Z., and Sipma, H. B.: Deductive verification of modular systems.
Lecture Notes in Computer Science, 1536:239-275, 1998.

Floyd, R.: Assigning meanings to programs. In Proceedings of the AMS Symposium on
Applied Mathematics, volume 19, pages 19-31, Providence, R.I., 1967. American
Mathematical Society.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

192

Frege, G.: Gedankengefiige, Beitrage zur Philosophie des Deutschen Idealismus, volume
Band III, pages 36-51. 1923. Translation: Compound Thoughts, in P. Geach & N.
Black (eds.), Logical Investigations, Blackwells, Oxford, 1977.

Gargantini, A. and Morzenti, A.: Automated deductive requirement analysis of critical
systems. ACM Transactions on Software Engineering and Methodology (TOSEM),
10(3):255-307, July 2001.

Ghezzi, C., Mandrioli, D., and Morzenti, A.: TRIO: A logic language for executable specifi-
cations of real-time systems. The Journal of Systems and Software, 12(2):107-123,
May 1990.

Grumberg, O. and Long, D. E.: Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843-871, May 1994.

eds, C. Heitmeyer and D. Mandrioli Formal Methods for Real-Time Computing. Trends in
Software. John Wiley & Sons, 1996.

Hoare, C.: An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580,583, 1969.

Holzmann, G. J.: The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279-295, 1997.

Hooman, J.: Compositional verification of real-time applications. In Compositionality:
The Significant Difference (Revised lectures from International Symposium
COMPOS’97), eds, W.-P. de Roever, H. Langmaack, and A. Pnueli, volume 1536,
pages 276-300, Bad Malente, Germany, 1997. Springer-Verlag.

Jones, C.: Development methods for computer programs including a notion of interference.
Doctoral dissertation, Oxford University Computing Laboratory, 1981.

Jones, C.: Tentative steps towards a development method for interfering programs. ACM

Transactions on Programming Languages and Systems, 5(4):596-619, 1983.

Juan, E. Y. and Tsai, J. J.: Compositional Verification of Concurrent and Real-Time
Systems. Boston, MA, Kluwer Academic Publishers, 2002.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

193

Juan, E. Y., Tsai, J. J., and Murata, T.: Compositional verification of concurrent systems
using Petri-nets-based condensation rules. ACM Transactions on Programming
Languages and Systems, 20(5):917-979, 1998.

Kaufmann, M., Manolios, P., and Moore, J. S.: Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, June 2000.

Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, 16(3):872-923, 1994.

Lamport, L.: Composition: A way to make proofs harder. Lecture Notes in Computer
Science, 1536:402-423, 1998.

Lichtenstein, O. and Pnueli, A.: Checking that finite state concurrent programs satisfy
their linear specification. In Proceeding of the Twelfth Annual ACM Symposium
on Principles of Programming Languages, January 1985.

Liu, J. W. S.: Real-Time Systems. Prentice Hall, 2000.

Manna, Z. and Pnueli, A.: Temporal verification of reactive systems: safety. New York,
Springer-Verlag, 1995.

Manna, Z. and Pnueli, A.: Clocked transition systems. Technical report, Computer Science
Department, Stanford University, April 1996.

McMillan, K. L.: Symbolic model checking - an approach to the state explosion problem.
Doctoral dissertation, Carnegie Mellon University, 1992.

Misra, J. and Chandy, K.: Proofs of network of processes. IEEE Transactions on Software
Engineering, 7(7):417-426, 1981.

Morasca, S., Morzenti, A., and San Pietro, P.: A tool for automated system analysis based
on modular specifications. In The Thirteenth IEEE Conference on Automated
Software Engineering (ASE’98), pages 2—-11, Honolulu, Hawaii, USA, 1998. IEEE.

Morzenti, A. and San Pietro, P.: Object-oriented logical specification of time-critical sys-
tems. ACM Transactions on Software Engineering and Methodology, 3(1):56-98,
January 1994.

46.

47.

48.

49.

50.

o1.

52.

53.

54.

55.

56.

194

Namjoshi, K. S. and Trefler, R. J.: On the completeness of compositional reason-
ing. In Proceedings of the 12th Int. Conference on Computer Aided Verification
(CAV2000), number 1855, pages 139-153. Springer-Verlag, 2000.

Olderog, E.-R. and Dierks, H.: Decomposing real-time specifications. Lecture Notes in
Computer Science, 1536:465-489, 1998.

Owre, S., Rushby, J. M., and Shankar, N.: PVS: A Prototype Verifica-
tion System. In Proceedings of the 11th International Conference on Automated
Deduction (CADE-11), ed. D. Kapur, volume 607 of Lecture Notes in Computer
Science, pages 748-752, Saratoga Springs, NY, June 1992. Springer-Verlag. Also
available online at http://pvs.csl.sri.com/.

Owre, S., Shankar, N., Rushby, J., and Stringer-Calvert, D.: PVS language reference.
Computer Science Laboratory, SRI International, Menlo Park, CA. Also available
online at http://pvs.csl.sri.com/.

Owre, S., Shankar, N., Rushby, J., and Stringer-Calvert, D.: PVS prover guide. Computer
Science Laboratory, SRI International, Menlo Park, CA. Also available online at
http://pvs.csl.sri.com/].

Owre, S., Shankar, N., Rushby, J., and Stringer-Calvert, D.: PVS system guide. Computer
Science Laboratory, SRI International, Menlo Park, CA. Also available online at
http://pvs.csl.sri.com/]

Raymond, E. S.: The jargon file. http://www.catb.org/ “esr/jargon/l “bondage-and-
discipline language” entry.

ed. E. S. Raymond The new hacker’s dictionary, page 84. MIT press, third edition, 1996.

San Pietro, P., Morzenti, A., and Morasca, S.: Generation of execution sequences for mod-
ular time critical systems. IEEE Transactions on Software Engineering, 26(2):128—
149, 2000.

Shankar, N.: Lazy compositional verification. Lecture Notes in Computer Science,
1536:541-564, 1998.

Shatz, S., Tu, S., Murata, T., and Duri, S.: An application of Petri net reduction for Ada
tasking deadlock analysis. IEEE Transactions on Parallel and Distributed Systems,
7(12):1307-1322, December 1996.

http://pvs.csl.sri.com/
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/
http://pvs.csl.sri.com/
http://www.catb.org/~esr/jargon/

195

57. Sistla, A. P.: Safety, liveness and fairness in temporal logic. Formal Aspects in Computing,
6:495-511, 1994.

58. Spivey, J. M.: The Z Notation: A Reference Manual. Prentice Hall International Series in
Computer Science, 2nd edition, 1992.

59. Vardi, M. Y.: On the complexity of modular model checking. In Logic in Computer Science,
pages 101-111, 1995.

60. Woodcock, J. C. P. and Davies, J.: Using Z: Specification, Proof and Refinement. Prentice
Hall International Series in Computer Science, 1996.

VITA

Personal data

e Full name: Carlo Alberto Furia

Place and date of birth: Varese, Italy. September 16th, 1979

Nationality: Italian

Address: via Grandi 8, 21040 Venegono Inferiore (VA), Italy

E-mail address(es): cfurial@uic.edu kurio@inwind.it caf@greatdante.net

Undergraduate and graduate studies.

e Bachelor's degree: Politecnico di Milano, 2001.

e Master's degree: University of Illinois at Chicago, 2003, under the advising of Professor

Dino Mandrioli.

e Laurea degree: Politecnico di Milano, 2003, under the advising of Professor Dino Mandri-

oli.

Publications.

e Furia, C.A.: Compositional Proofs for Real-Time Modular Systems. Master’s thesis,

University of Illinois at Chicago, Chicago, 1L, 2003.

e Papers from the Master’s thesis are currently in preparation

196

197

Languages

e Written and spoken Italian.

e Written and spoken English.

