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Abstract

The basic modal operator bounded until of Metric Temporal Logic
(MTL) comes in several variants. In particular it can be strict (when it
does not constrain the current instant) or not, and matching (when it re-
quires its two arguments to eventually hold together) or not. This paper
compares the relative expressiveness of the resulting MTL variants over
dense time. We prove that the expressiveness is not affected by the varia-
tions when considering non-Zeno interpretations and arbitrary nesting of
temporal operators. On the contrary, the expressiveness changes for flat
(i.e., without nesting) formulas, or when Zeno interpretations are allowed.
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1 Introduction

In the last few decades, the formal description and analysis of real-time systems
has become an increasingly important research topic. This has resulted, among
other things, in the development of several formal notations for the description
of real-time properties and systems. In particular, a significant number of ex-
tensions of classical temporal logics to deal with metric (quantitative) time has
been introduced and used (see e.g., [AH92b, AH93, FMMR07]). Among them,
Metric Temporal Logic (MTL) [Koy90, AH93] is one of the most popular. An
appealing feature of MTL is its being a straightforward extension of well-known
Linear Temporal Logic (LTL), a classical temporal logic. In MTL, an interval
parameter is added to LTL’s modal operators (such as the until operator). The
interval specifies a range of distances over which the arguments of the modality
must hold, thus allowing the expression of real-time properties.

MTL formulas can be interpreted over a variety of temporal models; in
particular both discrete (e.g., N,Z) and dense (e.g., R) time domains are pos-
sible. Metric operators over discrete time can be regarded as simple “syntactic
sugar”, i.e., as a succinct way of expressing metric constraints that are however
expressible with LTL’s next modality. This entails that all well-known tech-
niques and results about the expressiveness of LTL and its variants [Eme90]
can often be “lifted” to the real-time case [AH93]. On the contrary, the anal-
ysis for dense-time models usually requires novel techniques, as additional dif-
ficulties and complications are commonly encountered. In fact, after Alur and
Henzinger’s seminal work [AH93], only in more recent years a detailed expres-
siveness analysis of MTL over dense-time domains is being carried out (e.g.,
[HR04, HR06, BCM05, DP07, PD06, OW07, BMOW07]).

Another aspect where the use of MTL (and temporal logics in general) over
metric dense-time models shows a substantial difference with respect to discrete
time is in the robustness of the language expressiveness with respect to changes
in its (syntactic) definitions or in the choice of the underlying interpretation
structures. In other words, it is often the case that apparently minimal changes
in the definition of the basic modal operators, or in the choice of the interpreta-
tion structures (e.g., timed words rather than timed interval sequences), of the
logics yield substantial differences in the resulting expressiveness. Also, these
differences are usually more difficult to predict and assess than in the discrete-
time case. One significant example is the use of a “natural” extension such
as the introduction of past operators: it is well-known that adding them does
not change the expressive power over discrete time [GPSS80, Eme90] (while it
increases the succinctness [LMS02]), but it does over dense time for both LTL
[GHR94, HR03] and MTL over various models [BCM05, PD06] (Alur and Hen-
zinger [AH92a] were the first to analyze this issue for an MTL subset known as
MITL [AFH96]).

This paper contributes to enriching the emerging picture about the ex-
pressiveness of MTL and its common variants. The reference interpretation
structure is the behavior, that is generic mappings that associate with every
instant of time the propositions that are true at that instant. When behav-
iors are restricted to be non-Zeno [GM01, AL94] (also called finitely variable

[Rab03, HR04]) they are an equivalent way of expressing the well-known timed
interval sequences [Asa04]. We consider two basic language features to be var-
ied in MTL definitions: strictness and matchingness. The basic until operator
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U(φ1, φ2) is called strict (in its first argument) if it does not constrain its first
argument φ1 to hold at the current instant (i.e., it constraints strictly the fu-
ture); on the other hand the same operator is called matching if it requires the
second argument φ2 to hold together with the first argument φ1 at some instant
in the future. The most common MTL definition uses an until operator that is
strict and non-matching; it is simple to realize that this does not restrict the
expressiveness as the matching and non-strict untils are easily expressible in
terms of strict non-matching untils. However, some applications dealing with
MTL or closely related languages (e.g., [MNP05, MNP06, FR06]) are based on
the matching or non-strict variants, or both. Therefore it is interesting to ana-
lyze if these syntactic restrictions imply restrictions in the expressiveness of the
language.

Another dimension that we consider in our analysis is the restriction to
flat MTL formulas, i.e., formulas that do not nest temporal operators. These
have also been used, among others, in some previous work of ours [FR06], as
well as in several works with classical (qualitative) temporal logic (see “Related
work” sub-section). It is an easy guess that flat MTL is less expressive than
its full “nesting” counterpart; in this paper we prove this intuition and then we
analyze how the relationships between the various (non-)matching and (non-
)strict variants change when restricted to flat formulas. In order to do so,
we develop techniques to handle two different definitions in the satisfaction
semantics of formulas: initial satisfiability — where the truth of a formula is
evaluated only at some initial time (typically 0) — and global satisfiability
— where the truth of a formula is evaluated at all time instants. While the
two semantics are easily reconcilable when nesting is allowed, passing from the
initial semantics to the global one with flat formulas is more challenging and
requires some ingenuity. We consider also the less common global satisfiability
semantics because the expressiveness of the flat fragment is non-trivial under
such semantics (in fact, it corresponds to an implicit nesting of a qualitative
temporal operator), and most common real-time properties such as bounded
response and bounded invariance [Koy90] can be easily expressed.

Finally, we also consider what happens to (relative) expressiveness if Zeno
behaviors are allowed. In particular, we show that some equivalences between
MTL variations that hold over non-Zeno behaviors are no more valid with Zeno
behaviors. In this sense, allowing Zeno behaviors weakens the robustness of
MTL expressiveness with respect to definitions, and it renders the picture more
complicated and less intuitive.

Related works. As mentioned above, in recent years several works have ana-
lyzed the expressiveness of different MTL variants over dense time. Let us recall
briefly the main results of a significant subset thereof.

Bouyer et al. [BCM05] compare the expressiveness of MTL with that of
TPTL (another real-time temporal logic [AH94]) and they are the first to prove
the conjecture that the latter is strictly more expressive than the former, over
both timed words and timed interval sequences. As a corollary of their results,
they show that past operators increase the expressiveness of MTL over both
interpretation structures.

Since the work of Alur and Henzinger [AH93] it is known that (full) MTL
is undecidable over dense-time models. This shortcoming has been long at-
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tributed to the possibility of expressing punctual (i.e., exact) timing constraints;
in fact Alur et al. [AFH96] have shown that MITL, a MTL subset where punc-
tual intervals are disallowed, is decidable. However, punctuality does not al-
ways entails undecidability. In fact, Ouaknine and Worrel [OW07] have been
the first to prove that MTL is decidable over finite timed words, albeit with
non-primitive recursive complexity; their proofs rely on automata-based tech-
niques, and in particular on the notion of timed automata with alternation
[LW05]. On the other hand, they show that several significant fragments of
MTL are still undecidable over infinite timed words. In the same vein, Bouyer
et al. [BMOW07] have identified significant MTL fragments that are instead de-
cidable (with primitive complexity) even if one allows the expression of punctual
timing constraints.

D’Souza and Prabhakar [DP07] compare the expressiveness of MTL over the
two interpretation structures of timed words and timed interval sequences (more
precisely, a specialization of the latter called “continuous” semantics). Building
upon Ouaknine and Worrel’s decidability results for MTL [OW07], they show
that MTL is strictly more expressive over timed interval sequences than it is over
timed words. The same authors [PD06] analyze a significant number of MTL
variations, namely those obtained by adding past operators or by considering
qualitative operators rather than metric ones, over both timed words and timed
interval sequences, both in their finite and infinite forms. Still the same authors
[DMP07] have shown how to rewrite MTL formulas in flat form, and without
past operators, by introducing additional propositions (a similar flattening has
been shown for another temporal logic in [Fur07]). While these latter results do
not pertain directly to the expressiveness of the language (because of the new
propositions that are introduced) they help assessing the decidability of MTL
variations.

In previous work [FR07a] we proved the equivalence between the strict and
non-strict non-matching variants of MTL over non-Zeno behaviors and with
arbitrarily nested formulas. Section 3 uses techniques similar to those in [FR07a]
to prove new equivalence results.

All these articulated results, that we do not report with further details for
the lack of space, show how relative expressiveness relations are much more
complicated over dense time than they are over discrete time. In fact, some
authors (e.g., [Asa04, HR04, AH92b]) have suggested that these additional dif-
ficulties are an indication that the “right” semantic model for dense time has
not been found yet. In particular, Hirshfeld and Rabinovich [HR04, HR06] have
made a strong point that most approaches to the definition of temporal logics
for real-time and to their semantics depart from the “classical” approach to
temporal logic and are too ad hoc, which results in unneeded complexity and
lack of robustness. While we agree with several of their remarks, we must also
acknowledge that MTL (and other similar logics) has become a popular nota-
tion, and it has been used in several works. As a consequence, it is important to
assess precisely the expressiveness of the language and of its common variants
because of the impact on the scope of those works, even if focusing on different
languages might have opened the door to more straightforward approaches.

Finally, let us mention that several works dealing with classical (qualitative)
temporal logic considered variants in the definition of the basic modalities, and
their impact on expressiveness and complexity. Let us mention the work by
Demri and Schnoebelen [DS02] where the complexity of LTL without nesting,
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or with a bounded nesting depth, over discrete time is thoroughly investigated.
Also, several works have given a very detailed characterization of how the ex-
pressiveness of LTL varies with the number of nested modalities [EW96, TW04,
KS05]; and several other works, such as [MC85, DG99, Dam99, CC00], have
used and characterized a flat fragment of LTL where nesting is only allowed in
the second argument of any until formula.

Reynolds [Rey03] has proved that, over dense time, LTL with strict until
is strictly more expressive than LTL with a variant of non-strict until which
includes the current instant. Note that Reynold’s non-strict until has a differ-
ent (weaker) semantics than the one we consider in this paper, because of the
restriction to include the current instant. In other words, according to the no-
tation that we are introducing in Section 2, [Rey03] compares the strict Ũ(0,+∞)

to the non-strict U[0,+∞); as a consequence, Reynold’s result is orthogonal to
ours.

Outline. The paper is organized as follows. Section 2 presents the syntax and
semantics of MTL and its variants over dense time; Section 3 presents proofs
that all these variants are equally expressive over non-Zeno behaviors, for MTL
formulas with arbitrary nesting; on the contrary, Section 4 considers flat MTL
formulas and proves several separation results between the previously introduced
variants; Section 5 reconsiders the MTL nesting formulas of Section 3 and shows
that the equivalence results no longer holds over Zeno behaviors. Finally, Section
6 summarizes the expressiveness results of the paper and outlines future work.

2 MTL and Its Variants

This section defines the syntax and semantics of MTL and its variants over
dense-time models.

2.1 Syntax

MTL is built out of the single modal operator bounded until1 through propo-
sitional composition. Formulas are built as follows, where I is an interval 〈l, u〉
of the reals such that 0 ≤ l ≤ u ≤ +∞ and l ∈ Q, u ∈ Q ∪ {+∞}, and p ∈ P is
some atomic proposition from a finite set P.

φ ::= p | ŨI(φ1, φ2) | ¬φ | φ1 ∧ φ2

The tilde above the ŨI of the until operator denotes that it is strict, as it

will be apparent in the definition of its semantics; ŨI is also meant to be non-

matching. We denote the set of formulas generated by the rule above as M̃TL,
which is therefore strict non-matching.

From the basic strict operator we can define syntactically some variants:
the non-strict non-matching until UI , the strict matching until Ũ

↓
I , and the

non-strict matching until U
↓
I . They are defined in Table 1, together with a few

other derived modal operators of common use; derived propositional connectives
(such as ⇒,∨,⇔) are defined as usual. For derived operators we use the same

1In this paper we consider MTL with future operators only.
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notational conventions, i.e., a tilde denotes strictness and a ↓ denotes match-
ingness. Accordingly, we denote by MTL the set of non-strict non-matching

formulas (i.e., those using only the UI operator), by M̃TL
↓

the set of strict

matching formulas (i.e., those using only the Ũ
↓
I operator), and by MTL↓ the

set of non-strict matching formulas (i.e., those using only the U
↓
I operator). The

same notational convention is used for derived operators Also, we adopt the con-
vention of dropping the interval I when it is (0,+∞), and to denote punctual

intervals (i.e., intervals of the form [d, d] for some d) with the abbreviation = d.

Operator ≡ Definition

UI(φ1, φ2) ≡ if 0 6∈ I: φ1 ∧ eUI(φ1, φ2) else: φ2 ∨ (φ1 ∧ eUI(φ1, φ2))
eU
↓

I(φ1, φ2) ≡ if 0 6∈ I: eUI(φ1, φ2 ∧ φ1) else: φ2 ∨ (eUI(φ1, φ2 ∧ φ1))

U
↓

I(φ1, φ2) ≡ φ1 ∧ eUI(φ1, φ2 ∧ φ1) ≡ UI(φ1, φ2 ∧ φ2)
eR
↓

I(φ1, φ2) ≡ ¬eU
↓

I(¬φ1,¬φ2)

♦I(φ) ≡ eUI(⊤, φ)
�I(φ) ≡ ¬♦I(¬φ)
©(φ) ≡ U(0,+∞)(φ,⊤)
f©(φ) ≡ eU(0,+∞)(φ,⊤)

Table 1: MTL derived temporal operators

Granularity and nesting depth. The granularity ρ of a formula φ is defined
as the reciprocal of the product of all denominators of non-null finite interval
bounds appearing in φ. More formally, it is defined by the following recursive
expression.

ρ(φ) =





1 if φ = p

ρ(ψ) if φ = ¬ψ

ρ(ψ1) · ρ(ψ2) if φ = ψ1 ∧ ψ2 or φ = Ũ〈0,∞〉(ψ1, ψ2)
1
L · 1

U · ρ(ψ1) · ρ(ψ2) if φ = Ũ〈l/L,u/U〉(ψ1, ψ2) and l, u 6= 0,+∞
1
L · ρ(ψ1) · ρ(ψ2) if φ = Ũ〈l/L,+∞〉(ψ1, ψ2) and l 6= 0
1
U · ρ(ψ1) · ρ(ψ2) if φ = Ũ〈0,u/U〉(ψ1, ψ2) and u 6= +∞

The nesting depth (also called temporal height) of a formula φ is defined as
the maximum number of nested modalities. A formula is called flat if it does
not nest modal operators, and nesting otherwise. Given a set of formulas F ,
the subset of all its flat formulas is denoted by ♭F (for instance flat non-strict
non-matching formulas are denoted as ♭MTL).

2.2 Semantics

We define formally the semantics of M̃TL over generic Boolean behaviors. Given
a time domain T and a finite set of atomic propositions P, a Boolean behavior

over P is a mapping b : T → 2P from the time domain to subsets of P: for every
time instant t ∈ T, b maps t to the set of propositions b(t) that are true at t.
We denote the set of all mappings for a given set P as BP , or simply as B. In
practice, we are going to consider the dense sets R and R≥0 as time domains,
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or their rationals counterparts Q and Q≥0. All the results of this paper stand
regardless of which temporal domain, among R,R≥0,Q,Q≥0, is assumed.2

The semantics of M̃TL formulas is given through a satisfaction relation |=T:
given a behavior b ∈ B, an instant t ∈ T (sometimes called “current instant”)

and a M̃TL formula φ, the satisfaction relation is defined inductively as follows.
b(t) |=T p iff p ∈ b(t)

b(t) |=T ŨI(φ1, φ2) iff there exists d ∈ I such that b(t+ d) |=T φ2

and, for all u ∈ (0, d) it is b(t+ u) |=T φ1

b(t) |=T ¬φ iff b(t) 6|=T φ
b(t) |=T φ1 ∧ φ2 iff b(t) |=T φ1 and b(t) |=T φ2

For clarity, let us also write out explicitly the derived semantics of the R̃ oper-
ator: b(t) |=T R̃I(φ1, φ2) iff for all d ∈ I, it is b(t + d) |=R φ2 or there exists a
u ∈ (0, d) such that b(t+ u) |=R φ1.

From these definitions, we define initial satisfiability and global satisfiability
as follows: a formula φ is initially satisfiable over a behavior b iff b(0) |=T φ; a
formula φ is globally satisfiable over a behavior b iff ∀t ∈ T : b(t) |=T φ, and we
write b |=T φ. The initial and global satisfiability relations allow one to identify
a formula φ with the set of behaviors [[φ]]T that satisfy it according to each
semantics; hence we introduce the notation [[φ]]0T = {b ∈ B | b(0) |=T φ} and
[[φ]]T = {b ∈ B | b |=T φ}. Correspondingly, all formulas of some MTL variant
identify a set of sets of behaviors which characterize the expressive power of that

variant. We overload the notation and also denote by M̃TL, MTL, M̃TL
↓
, and

MTL↓ the set of sets of behaviors identified by all strict non-matching, non-strict
matching, strict matching, and non-strict non-matching formulas, respectively.
It will be clear from the context whether we are referring to a set of formulas
or to the corresponding set of sets of behaviors, and whether we are considering
the initial or global satisfiability semantics.

Since the non-strict and matching variants have been defined in terms of

M̃TL — and their definitions do not nest temporal operators — it is clear that

the following relations hold: MTL↓ ⊆ MTL ⊆ M̃TL, MTL↓ ⊆ M̃TL
↓
⊆ M̃TL,

♭MTL↓ ⊆ ♭MTL ⊆ ♭M̃TL, and ♭MTL↓ ⊆ ♭M̃TL
↓
⊆ ♭M̃TL.

2.2.1 Non-Zenoness

Behaviors over dense time are often subject to the non-Zenoness (also called
finite variability [HR04, Rab03]) requirement [AL94, GM01]. A behavior b ∈ B
is called non-Zeno if the truth value of any atomic proposition p ∈ P changes
in b only finitely many times over any bounded interval of time. Formally, we
require that for any t ∈ T there exists an ǫ > 0 such that, for all p ∈ P: (1)
either p ∈ b(u) for all u ∈ (t, t + ǫ) or p 6∈ b(u) for all u ∈ (t, t + ǫ); and (2)
either p ∈ b(v) for all v ∈ (t − ǫ, t) ∩ T or p 6∈ b(v) for all v ∈ (t − ǫ, t) ∩ T. In

particular, it can be easily seen that b |=R �[0,+∞)

(
©̃(p) ∨ ©̃(¬p)

)
must hold

for any non-Zeno behavior b and atomic proposition p.
This derived property can be “lifted” from atomic propositions to generic

MTL formulas, by observing that MTL operators preserve non-Zenoness (the

2Even if we only consider future operator, bi-infinite time domains R and Q are introduced
as they go “more naturally” with the global satisfiability semantics defined below.
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proof is straightforward by structural induction). Then, for any formula φ and
non-Zeno behavior b:

b |=T �[0,+∞)

(
©̃(φ) ∨ ©̃(¬φ)

)
(1)

Unless otherwise specified, in this paper we assume non-Zeno behaviors, with
the exception of Section 5 where the impact of allowing non-Zeno behaviors will
be analyzed. With non-Zeno behaviors, the following equivalence, which we

proved in [FR07a], shows that the strict ©̃ operator can be expressed with
non-strict © operator over non-Zeno behaviors.

©̃(φ) ≡ ©(φ) ∨ (¬φ ∧ ¬©(¬φ)) (2)

3 Nesting MTL over non-Zeno Behaviors

This section shows that the four MTL variants: M̃TL, MTL, M̃TL
↓
, and MTL↓

all have the same expressive power over non-Zeno behaviors, for both the ini-
tial and global satisfiability semantics. In fact, we provide a set of equivalences
according to which one can replace each occurrence of strict until in terms of
non-strict until , and each occurrence of non-matching until in terms of match-

ing until . This shows that MTL = M̃TL = M̃TL
↓

= MTL↓. Note that the
result holds regardless of whether the global or initial satisfiability relation in
considered.

3.1 Non-Strict as Expressive as Strict

In [FR07a] we have shown that MTL = M̃TL; more precisely, the following
equivalences have been proved, for a > 0 (and b > 0 in (6)).

Ũ(a,b〉(φ1, φ2) ≡ ♦(a,b〉(φ2) ∧ �(0,a]

(
U(0,+∞)(φ1, φ2)

)
(3)

Ũ[a,b〉(φ1, φ2) ≡ Ũ(a,b〉(φ1, φ2) ∨
(
�(0,a)(φ1) ∧ ♦=a(φ2)

)
(4)

Ũ(0,b〉(φ1, φ2) ≡ ♦(0,b〉(φ2) ∧ ©̃
(
U(0,+∞)(φ1, φ2)

)
(5)

Ũ[0,b〉(φ1, φ2) ≡ Ũ(0,b〉(φ1, φ2) ∨ φ2 (6)

Ũ[0,0](φ1, φ2) ≡ φ2 (7)

Note that the ♦ operator (and correspondingly the � operator as well) can
be equivalently expressed with any of the until variants introduced beforehand,
i.e., ♦I(φ) ≡ ŨI(⊤, φ) ≡ UI(⊤, φ) ≡ Ũ

↓
I(⊤, φ) ≡ U

↓
I(⊤, φ). In particular, (3–7)

provide a means to replace each occurrence of strict until with non-strict untils
only. Now notice the following: if we replace each occurrence of formula φ2 in
(3–7) with φ2∧φ1 — except for (6) which requires a slightly different treatment,

which is however routine — we also have a proof that M̃TL
↓

= MTL↓, according
to the definition of the matching variants of the until operators.
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3.2 Matching as Expressive as Non-Matching

This section provides a set of equivalences to replace each occurrence of a strict
non-matching operator with a formula that contains only strict matching opera-

tors; this shows that M̃TL = M̃TL
↓
. To this end, let us first prove the following

equivalence.

Ũ(0,b〉(φ1, φ2) ≡ Ũ
↓
(0,b〉(φ1, φ2)

∨ (♦(0,b〉(φ2) ∧ ©̃(φ1) ∧ R̃
↓
(0,b〉(φ2,©(φ1))

(8)

Proof of Formula 8. Let us start with the ⇒ direction, and let t be the current
instant. Assume that there exists a d ∈ (0, b〉 such that b(t+ d) |=R φ2 and for

all u ∈ (t, t + d) it is b(u) |=R φ1. If also b(t + d) |=R φ1 or b(t) |=R ©̃(φ2)

then b(t) |=R Ũ
↓
(0,b〉(φ1, φ2), so assume that b(t + d) |=R ¬φ1 and b(t) |=R

©̃(¬φ2). Therefore, it is well-defined d′, the smallest instant in (t, t + b〉 such

that b(d′) |=R φ2∨©̃(φ2); note that d′ ≤ t+d. Note that clearly b(t) |=R ©̃(φ1)
and b(t) |=R ♦(0,b〉(φ2).

Let us first consider the case b(d′) |=R φ2, and let v ∈ (t, t+ b〉. If v ≥ t+ d,
there exists a w = t + d such that w ∈ (t, v] and b(w) |=R φ2. If v < t + d
instead, then v ∈ (t, t + d) so b(v) |=R ©(φ1). All this shows that b(t) |=R

R̃
↓
(0,b〉(φ2,©(φ1)), which completes the proof in this case.

Let us now consider the case b(d′) |=R ¬φ2∧©̃(φ2); hence d′ < t+d. So, let
us assume that φ2 holds over the interval (d′, d′ + ǫ) for some ǫ > 0. Now, let
v ∈ (t, t+b〉. If v > d′, there exists a w = d′+min(v−d′, ǫ)/2 such that w ∈ (t, v]
and b(w) |=R φ2. If v ≤ d′ instead, then v ∈ (t, d′] ⊂ (t, t+d) so b(v) |=R ©(φ1),

as φ1 holds throughout (t, t+ d). All this shows that b(t) |=R R̃
↓
(0,b〉(φ2,©(φ1)),

which completes the proof in this case as well.
Let us now consider the ⇐ direction, and let t be the current instant. If

b(t) |=R Ũ
↓
(0,b〉(φ1, φ2) clearly also b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori. So let us

assume that Ũ
↓
(0,b〉(φ1, φ2) is false at t; note that this subsumes that b(t) |=R

¬©̃(φ2 ∧ φ1).

Let us remark that we can assume that ©̃(¬φ2) holds at t, because ©̃(φ1)

and ¬©̃(φ2 ∧ φ1) both hold. Therefore, it is well-defined u, the smallest instant

in (t, t + b〉 such that b(u) |=R φ2 ∨ ©̃(φ2). Note that this implies that φ2 is
false throughout (t, u〉, with the interval right-open iff φ2 holds at u.

Let us first consider the case b(u) |=R φ2. Let v be a generic instant in (t, u);
recall that φ2 is false throughout (t, u) ⊃ (t, v]. Therefore it must be b(v) |=R

©(φ1) for b(t) |=R R̃
↓
(0,b〉(φ2,©(φ1)) to be true. So, φ1 holds throughout (t, u)

and φ2 holds at u, which means that b(t) |=R Ũ(0,b〉(φ1, φ2).

Let us now consider the other case b(u) |=R ¬φ2∧©̃(φ2). Let v be a generic
instant in (t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v]. From b(t) |=R

R̃
↓
(0,b〉(φ2,©(φ1)) it must be b(v) |=R ©(φ1). Overall, φ1 holds throughout

(t, u + ǫ] for some ǫ > 0, as in particular b(t + u) |=R ©(φ1). Clearly, this

subsumes b(t) |=R Ũ(0,b〉(φ1, φ2).
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The case for a > 0 can be handled simply by relying on the previous equiv-
alence. In fact, the following equivalence is easily seen to hold.3

Ũ(a,b〉(φ1, φ2) ≡ Ũ
↓
(a,b〉(φ1, φ2)

∨
(
�(0,a](φ1) ∧ ♦=a

(
Ũ(0,b−a〉(φ1, φ2)

)) (9)

The cases for left-closed intervals are also derivable straightforwardly as:

Ũ[0,b〉(φ1, φ2) ≡ φ2 ∨ Ũ(0,b〉(φ1, φ2) (10)

and

Ũ[a,b〉(φ1, φ2) ≡
(
♦=a(φ2) ∧ �(0,a)(φ1)

)
∨ Ũ(a,b〉(φ1, φ2) (11)

Finally, let us note that the ©(φ) operator can be expressed equivalently

with strict matching operators as φ ∧ Ũ
↓
(0,+∞)(φ,⊤). In fact, ©(φ) means that

φ holds over an interval [x, x+ ǫ) for some ǫ > 0; therefore, φ also holds over a

closed interval such as [x, x + ǫ/2], as required by φ ∧ Ũ
↓
(0,+∞)(φ,⊤), and vice

versa.
All in all (8–11) provide a means to replace every occurrence of strict non-

matching until with a formula that contains only strict matching untils. This

shows that M̃TL = M̃TL
↓
, completing our set of equivalences for non-Zeno

behaviors.

4 Flat MTL

Section 3 has shown the equivalence of all (non-)strict and (non-)matching MTL
variants for non-Zeno behaviors. It is apparent, however, that the equivalences
between the various until variants introduce nesting of temporal operators, that
is they change flat formulas into nesting ones. This section shows that this is
inevitable, as the relative expressiveness relations change if we consider flat for-
mulas only. More precisely, we prove that both non-strictness and matchingness
lessen the expressive power of MTL flat formulas, so that the strict non-matching
variant is shown to be the most expressive. We also show that, as one would
expect, even this most expressive flat variant is less expressive than any nesting
variant. All separation results are proved under both the initial satisfiability
and the global satisfiability semantics.

4.1 Non-Strict Less Expressive Than Strict

This section shows that ♭MTL ⊂ ♭M̃TL; let us outline the technique used to

prove this fact. We provide a strict flat formula α ∈ ♭M̃TL and we prove
that it has no equivalent non-strict flat formula. The proof goes adversarially:
assume β ∈ ♭MTL is a non-strict flat formula equivalent to α, and let ρ be the
granularity of β. From ρ we build two behaviors bρ⊤ and bρ⊥ such that any ♭MTL

3Although (9) and (11) introduce punctual intervals, it is possible to avoid the use of
such intervals, following an approach similar to that in [FR07a] for the translation of strict
operators to strict ones.
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Figure 1: The behaviors bρ⊤, b
ρ
⊥, c

ρ
⊤, c

ρ
⊥.

formula of granularity ρ (and β in particular) cannot distinguish between them,
i.e. it is either satisfied by both or by none. On the contrary, α is satisfied
by bρ⊤ but not by bρ⊥, for all ρ. This shows that no equivalent non-strict flat

formula can exist, and thus ♭M̃TL 6⊆ ♭MTL. From ♭MTL ⊆ ♭M̃TL we conclude

that ♭MTL ⊂ ♭M̃TL.
As in all separation results, the details of the proofs are rather involved;

this is even more the case when considering the global satisfiability semantics;
throughout we will try to provide some intuition leaving out the lowest-level
details that are straightforward.

Let us define the following families of behaviors over {p}. For any given
ρ > 0, let bρ⊤ and bρ⊥ be defined as follows: p ∈ bρ⊤(t) iff t ≤ 0 or t ≥ ρ/4; and
p ∈ bρ⊥(t) iff t ≤ 0 or t > ρ/4. Similarly, for any given ρ > 0, cρ⊤ and cρ⊥ are
defined as follows: p ∈ cρ⊤(t) iff p ∈ bρ⊤(t) and t 6= 0; and p ∈ cρ⊥(t) iff p ∈ bρ⊥(t)
and t 6= 0. Note that bρ⊤(t) = bρ⊥(t) and cρ⊤(t) = cρ⊥(t) for all t 6= ρ/4, and that
bρ⊤(t) = cρ⊤(t) and bρ⊥(t) = cρ⊥(t) for all t 6= 0. Let us also define the sets of
behaviors B⊤ =

⋃
ρ∈R>0

bρ⊤ and B⊥ =
⋃

ρ∈R>0
bρ⊥. The behaviors bρ⊤, b

ρ
⊥, c

ρ
⊤, c

ρ
⊥

are pictured in Figure 1.

4.1.1 Initial Satisfiability

Let us first assume the initial satisfiability semantics; we show that no ♭MTL
formula φ with granularity ρ distinguishes initially between bρ⊤ and bρ⊥. To this
end, we prove the following.

Lemma 1. For any ♭MTL formula φ of granularity ρ, it is bρ⊤(0) |=R φ iff

bρ⊥(0) |=R φ.

Proof. We prove the lemma by induction on the structure of φ.

• φ = β, where β is a Boolean combination of p and ¬p. Since bρ⊤(0) =
bρ⊥(0) this case follows trivially. Also note that β is equivalent to one of
p,¬p,⊤,⊥ over both bρ⊤ and bρ⊥.

• φ = ¬φ′. By inductive hypothesis it is bρ⊤(0) |=R φ′ iff bρ⊥(0) |=R φ′, so
clearly bρ⊤(0) |=R ¬φ′ iff bρ⊥(0) |=R ¬φ′.

12



• φ = φ1 ∧ φ2. By inductive hypothesis, bρ⊤(0) |=R φ1 iff bρ⊥(0) |=R φ1, and
bρ⊤(0) |=R φ2 iff bρ⊥(0) |=R φ2. Thus bρ⊤(0) |=R φ1∧φ2 iff bρ⊥(0) |=R φ1∧φ2.

• φ = UI(β1, β2), with I = 〈l, u〉 and: (1) l = k1ρ for some k1 ∈ N; and (2)
u = k2ρ or u = +∞, for some k1 ≤ k2 ∈ N. Note that we can assume
0 6∈ I without loss of generality, as U[0,u〉(β1, β2) ≡ β2 ∨U(0,u〉(β1, β2). We
also assume that I is non-empty; this is also without loss of generality.

We consider several cases for β1, β2.

– If β1 ≡ β2 ≡ ⊤ then clearly bρ⊤(0) |=R φ and bρ⊥(0) |=R φ.

– If β2 ≡ ⊥ then clearly bρ⊤(0) 6|=R φ and bρ⊥(0) 6|=R φ.

– If β1 ≡ ⊥ then bρ⊤(0) 6|=R φ and bρ⊥(0) 6|=R φ, as 0 6∈ I.

– If β1 ≡ ⊤ and β2 is one of p or ¬p, we have φ ≡ ♦I(β2).

If l = 0, then u > l, which entails u ≥ ρ. Any interval of the form
〈0, ρ〉 encompasses both instants where p holds and instants where
¬p holds. Thus, bρ⊤(0) |=R φ and bρ⊥(0) |=R φ in this case.

If l > 0 then l ≥ ρ. Then, whatever u ≥ l is, it is clear that p

holds throughout the non-empty interval 〈l, u〉. Therefore, if β2 ≡ p

we have bρ⊤(0) |=R φ and bρ⊥(0) |=R φ; otherwise β2 ≡ ¬p, and
bρ⊤(0) 6|=R φ and bρ⊥(0) 6|=R φ.

– If β1 ≡ p or β1 ≡ ¬p, then φ does not hold unless ©(β1) holds (still
because 0 6∈ I). Since the value of p changes from 0 to its immediate
future, it is bρ⊤(0) 6|=R φ and bρ⊥(0) 6|=R φ.

Lemma 1 leads straightforwardly to the desired separation result.

Theorem 2. Under the initial satisfiability semantics, ♭MTL ⊂ ♭M̃TL.

Proof. Let us show that the ♭M̃TL formula Σ = Ũ(0,+∞)(¬p, p) has no equivalent

♭MTL formula. Σ can distinguish initially between the families of behaviors
B⊤,B⊥, as for any b ∈ B⊤, b

′ ∈ B⊥, it is b(0) |=R Σ and b′(0) 6|=R Σ. Let us
assume that σ is an ♭MTL formula of granularity ρ equivalent to Σ. However,
from Lemma 1 it follows that bρ⊤(0) |=R σ iff bρ⊥(0) |=R σ. Therefore, σ is not
equivalent to Σ.

4.1.2 Global Satisfiability

Let us now prove an analogous of Theorem 2 for the global satisfiability seman-
tics.

Consequences of Lemma 1 for Global Satisfiability. First of all, let us
recall that, in the global satisfiability semantics, b |=T φ means that for all
t ∈ T it is b(t) |=T φ, whereas b 6|=T φ means that there exists a t ∈ T such that
b(t) 6|=T φ. Note that there is an duality between the definitions of satisfiability
and unsatisfiability.

For the sake of argument, let us pretend that ♭M̃TL and ♭MTL have equiv-
alent expressiveness and see what the consequences of this fact would be. This

means that there exists a mapping τ from formulas in ♭M̃TL to formulas in

♭MTL such that, for any ♭M̃TL formula φ and any behavior b it is b |=T φ iff
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b |=T τ(φ). However, as a consequence of Lemma 1, any such translation τ must
be non-local and non-homomorphic or non-idempotent.

Non-local means that τ cannot be such that b(t) |=T φ iff b(t) |=T τ(φ) for

all t ∈ T, and any behavior b. Otherwise, let Σ be the ♭M̃TL formula as in
the proof of Theorem 2. Then, the ♭MTL formula τ(Σ) would be such that, for
any bρ⊤ ∈ B⊤, b

ρ
⊥ ∈ B⊥, bρ⊤(0) |=T τ(Σ) and bρ⊥(0) 6|=T τ(Σ), which contradicts

Lemma 1.
Non-homomorphic or non-idempotent means that τ cannot be such that

τ(φ1 ∨ φ2) = τ(φ1) ∨ τ(φ2) and τ(τ(φ)) = τ(φ); in other words it is not an
homomorphism with respect to disjunction or it is not an idempotence. In fact,

let Ω be the ♭M̃TL formula Σ ∨©(¬p) ∨ ©̃(p), and let ρ be the granularity of
τ(Ω). Then one can check that bρ⊤ |=T Ω and bρ⊥ 6|=T Ω, so it must be bρ⊤ |=T τ(Ω)

and bρ⊥ 6|=T τ(Ω). Now, consider the ♭M̃TL formula Ω∨τ(Ω). Notice that Ω holds
over bρ⊥ for all t 6= 0, and recall that, from Lemma 1, it must be bρ⊤(0) |=T τ(Ω)
and bρ⊥(0) |=T τ(Ω). Therefore, both bρ⊤ |=T Ω ∨ τ(Ω) and bρ⊥ |=T Ω ∨ τ(Ω). If
τ is compositional, however, it would be τ(Ω ∨ τ(Ω)) = τ(Ω) ∨ τ(Ω) = τ(Ω).
Then, bρ⊤ |=T τ(Ω∨τ(Ω)) and bρ⊥ 6|=T τ(Ω∨τ(Ω)) so that the resulting non-strict
formula is not equivalent to the strict one.

Since locality, idempotence and homorphicity are reasonable properties of a
translation function τ , the above reasoning suggests that τ does not exist. We
are now going to prove this intuition.

Proofs for Global Satisfiability. Let us now prove that ♭MTL formulas
cannot distinguish between the three families of behaviors bρ⊤, b

ρ
⊥, c

ρ
⊥ for all

instants t < 0.

Lemma 3. For any ♭MTL formula φ of granularity ρ and any instant t < 0, it

is: bρ⊤(t) |=R φ iff bρ⊥(t) |=R φ, or bρ⊥(t) |=R φ iff cρ⊥(t) |=R φ.

Proof. The proof is by induction on the structure of φ; throughout, t is any
fixed instant less than 0.

• φ = β. Since bρ⊤(t) = bρ⊥(t) = cρ⊥(t), this case follows trivially.

• φ = ¬φ′. By inductive hypothesis, either bρ⊤(t) |=R φ′ iff bρ⊥(t) |=R φ′, or
bρ⊥(t) |=R φ′ iff cρ⊥(t) |=R φ′. In the former case, bρ⊤(t) |=R φ iff bρ⊥(t) |=R φ,
otherwise bρ⊥(t) |=R φ iff cρ⊥(t) |=R φ.

• φ = UI(β1, β2). We consider several cases for β1, β2.

– If β1 ≡ β2 ≡ ⊤, then bρ⊤(t) |=R φ, bρ⊥(t) |=R φ, cρ⊥(t) |=R φ.

– If β1 ≡ ⊥ or β2 ≡ ⊥, then bρ⊤(t) 6|=R φ, bρ⊥(t) 6|=R φ, cρ⊥(t) 6|=R φ.

– If β1 ≡ ⊤ and β1 is one of p,¬p, we have φ ≡ ♦I(β2). If l = u = kρ
and t+ kρ 6= ρ/4, we have bρ⊤(t) |=R φ iff bρ⊥(t) |=R φ iff cρ⊥(t) |=R φ.
If l = u = kρ and t + kρ = ρ/4, we have bρ⊤(t) 6|=R φ iff bρ⊥(t) |=R φ
iff cρ⊥(t) |=R φ. If l < u (and thus u − l ≥ ρ) and β2 ≡ p, then
bρ⊤(t) |=R φ and bρ⊥(t) |=R φ and cρ⊥(t) |=R φ, as any interval of size ρ
contains instants where p holds. If l < u and β2 ≡ ¬p, we have: (1)
(t+ l > ρ/4)∨ (t+ u < 0)∨ (t+ l = ρ/4∧ l 6∈ I)∨ (t+ u = 0∧ u 6∈ I)
and bρ⊤(t) 6|=R φ and bρ⊥(t) 6|=R φ and cρ⊥(t) 6|=R φ; or (2) t+ l = ρ/4
and l ∈ I and bρ⊤(t) 6|=R φ and bρ⊥(t) |=R φ and cρ⊥(t) |=R φ; or (3)
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t+u = 0 and u ∈ I and bρ⊤(t) 6|=R φ and bρ⊥(t) 6|=R φ and cρ⊥(t) |=R φ;
or (4) t+ l < ρ/4 and t+ u > 0 and bρ⊤(t) |=R φ and bρ⊥(t) |=R φ and
cρ⊥(t) |=R φ.

– If β1 ≡ β2 ≡ p and l = 0, then φ holds iff ©(p), so bρ⊤(t) |=R φ and
bρ⊥(t) |=R φ and cρ⊥(t) |=R φ. If instead l > 0 and (t+ l < 0) then also
bρ⊤(t) |=R φ and bρ⊥(t) |=R φ and cρ⊥(t) |=R φ. If l > 0 but t + l > 0
or t+ l = 0∧ l 6∈ I then bρ⊤(t) 6|=R φ and bρ⊥(t) 6|=R φ and cρ⊥(t) 6|=R φ.
Finally, if l > 0, t + l = 0 ∧ l ∈ I then bρ⊤(t) |=R φ and bρ⊥(t) |=R φ
and cρ⊥(t) 6|=R φ.

– If β1 ≡ ¬p, φ holds only if ©(¬p) holds; therefore bρ⊤(t) 6|=R φ and
bρ⊥(t) 6|=R φ and cρ⊥(t) 6|=R φ.

– If β1 ≡ p and β2 ≡ ¬p then surely bρ⊤(t) 6|=R φ and bρ⊥(t) 6|=R φ and
cρ⊥(t) 6|=R φ.

Overall, notice that it is bρ⊤ |=R φ iff bρ⊥ |=R φ iff cρ⊥ |=R φ, unless: (a)
bρ⊤ 6|=R φ iff bρ⊥ |=R φ iff cρ⊥ |=R φ and t+ kρ = ρ/4 or t+ kρ = 0 for some
positive integer k; or (b) bρ⊤ |=R φ iff bρ⊥ |=R φ iff cρ⊥ 6|=R φ and t+ hρ = 0
for some positive integer h.

• φ = φ1 ∧ φ2. If bρ⊤(t) |=R φi iff bρ⊥(t) |=R φi iff cρ⊥(t) |=R φi for both
i = 1, 2, then clearly bρ⊤(t) |=R φ iff bρ⊥(t) |=R φ iff cρ⊥(t) |=R φ and we are
done.

Otherwise, assume that bρ⊤(t) |=R φi iff bρ⊥(t) |=R φi iff cρ⊥(t) |=R φi for
some i, and bρ⊤(t) 6|=R φj iff bρ⊥(t) |=R φj iff cρ⊥(t) |=R φj and t+ kρ = ρ/4
for j 6= i. In this case we have bρ⊤(t) 6|=R φ iff bρ⊥(t) |=R φ iff cρ⊥(t) |=R φ
and t+ kρ = ρ/4. Similarly, if bρ⊤(t) |=R φi iff bρ⊥(t) |=R φi iff cρ⊥(t) |=R φi

for some i, and bρ⊤(t) |=R φj iff bρ⊥(t) |=R φj iff cρ⊥(t) 6|=R φj and t+hρ = 0
for j 6= i, we have bρ⊤(t) |=R φ iff bρ⊥(t) |=R φ iff cρ⊥(t) 6|=R φ and t+hρ = 0.

Finally, consider the case bρ⊤(t) 6|=R φi iff bρ⊥(t) |=R φi iff cρ⊥(t) |=R φi and
t+ kρ = ρ/4 for some i, and bρ⊤(t) |=R φj iff bρ⊥(t) |=R φj iff cρ⊥(t) 6|=R φj

and t + hρ = 0 for j 6= i. This case, however, is not possible as t + kρ =
ρ/4 = ρ/4 + t + hρ implies (k − h)ρ = ρ/4 which is impossible as k and
h are integers. To give some intuition, this is due to the granularity:
in other words, from the same t we cannot reference both 0 and ρ/4,
since they are less than ρ time instants apart. Finally also note that
this restriction can be “lifted” to the conjunction itself, to go with the
inductive hypothesis.

Through Lemma 3 we can extend Theorem 2 to the global satisfiability
semantics.

Theorem 4. Under the global satisfiability semantics, ♭MTL ⊂ ♭M̃TL.

Proof. Let us show that the ♭M̃TL formula:

Ω = Ũ(0,+∞)(¬p, p) ∨©(¬p) ∨ ©̃(p)

has no equivalent ♭MTL formula. It is simple to check that, for all b ∈ B⊤, b
′ ∈

B⊥ it is b |=R≥0
Ω and b′ 6|=R≥0

Ω; more precisely, it is b′(0) 6|=R Ω and, for all
t > 0, b′(t) |=R Ω. Also, for all b′′ ∈

⋃
ρ c

ρ
⊥, it is b′′ |=R Ω.
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Now the proof goes by reductio ad absurdum. Let ω be an ♭MTL formula
of granularity ρ equivalent to Ω. Thus it must be bρ⊤ |=R ω, bρ⊥ 6|=R ω, and
cρ⊥ |=R ω. So, there exists a t such that bρ⊥(t) 6|=R ω. Let us show that no such
t can exist.

Lemma 1 mandates that bρ⊥(0) |=R ω, so it must be t 6= 0.
If t > 0, recall that cρ⊥ |=R ω. This subsumes that cρ⊥(u) |=R ω for all u > 0,

and thus in particular at t. However, note that cρ⊥(x) = bρ⊥(x) for all x > 0;
since ω is a future formula, its truth value to the future of 0 cannot change when
just one past instant has changed and the future has not changed. So it must
be bρ⊥(t) |=R ω: a contradiction.

Let us now assume t < 0. From Lemma 3 for formula ω, it is either (1)
bρ⊤(t) |=R ω iff bρ⊥(t) |=R ω; or (2) bρ⊥(t) |=R ω iff cρ⊥(t) |=R ω. However,
bρ⊤(t) |=R ω and bρ⊥(t) 6|=R ω, so (1) is false and (2) must be true. Hence, it
must be cρ⊥(t) 6|=R ω. But this implies cρ⊥ 6|=R ω, whereas it should be cρ⊥ |=R ω
since ω is supposed equivalent to Ω: a contradiction again.

All in all, no such ω equivalent to Ω can exist.

A side remark to better understand the above proofs: the fact that the
non-strict formula ν = ¬p ⇒ ©(¬p) distinguishes between the two families of
behaviors B⊤,B⊥ does not contradict the proof of Theorem 4. In fact, what the
theorem shows is that ν cannot be equivalent to Ω for all behaviors; the fact
that it is for some is still possible (in fact notice that cρ⊥ 6|=R ν).

4.2 Matching Less Expressive Than Non-Matching

This section provides an indirect simple proof that ♭M̃TL
↓
⊂ ♭M̃TL. To this

end we first show the equivalence of non-strict and strict flat matching MTL
when restricted to a unary set of propositions.

Lemma 5. Over a unary set of propositions P : |P| = 1, ♭MTL↓ = ♭M̃TL
↓
.

Proof. Let us show that any ♭M̃TL
↓

formula φ = Ũ
↓
I(β1, β2) has an equivalent

♭MTL↓ formula; without loss of generality assume 0 6∈ I. If β1 = p and β2 = ¬p,
or if β1 = ¬p and β2 = p, then φ = ⊥ because we are considering matching until ;
clearly ⊥ ∈ ♭MTL↓. If β1 = β2 = p or β1 = β2 = ¬p then φ holds if and only if

©̃(β1). Now, we already discussed how ©̃(β1) ≡ Ũ
↓
(0,+∞)(β1,⊤). From (2) we

can also express it through matching non-strict operators as: U
↓
(0,+∞)(β1,⊤) ∨

(¬β1 ∧ ¬U
↓
(0,+∞)(¬β1,⊤)). So φ ∈ ♭MTL↓ in this case as well. The remaining

cases are trivial. Finally, recall that ♭MTL↓ ⊆ ♭M̃TL
↓
, hence the lemma.

As a corollary of Lemma 5 we can separate ♭M̃TL
↓

and ♭M̃TL (over general
set of propositions).

Theorem 6. ♭M̃TL
↓
⊂ ♭M̃TL.

Proof. Recall that ♭M̃TL
↓
⊆ ♭M̃TL and ♭MTL↓ ⊆ ♭MTL. Let us first assume

a unary alphabet. Then, it is ♭MTL↓ = ♭M̃TL
↓
⊆ ♭M̃TL, and also ♭MTL↓ ⊆

♭MTL ⊂ ♭M̃TL, the latter from Theorems 2 and 4. If we assume ♭M̃TL
↓

=
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♭M̃TL we get: ♭M̃TL = ♭M̃TL
↓

= (from Lemma 5) = ♭MTL↓ ⊆ ♭MTL ⊂

♭M̃TL, a contradiction. So it is ♭M̃TL
↓
⊂ ♭M̃TL over unary alphabet, which

implies the same holds over generic alphabet.

4.3 Non-Strict Matching Less Expressive Than Matching

Section 5 shows that strict flat MTL is strictly more expressive than its non-
strict flat counterpart, when both of them are in their non-matching version.
This section shows that the same relation holds if we consider the matching
versions of strict and non-strict operators, that is we prove that ♭MTL↓ ⊂

♭M̃TL
↓
.

First of all, we remark that Lemma 5 entails that any separation proofs

for ♭MTL↓ and ♭M̃TL
↓

must consider behaviors over alphabets of size at least
two. In fact, we provide such a separation proof by considering behaviors over
a binary alphabet, with a technique similar to that of Section 4.1. The use of a
binary alphabet renders the various case analyses even more tedious; thus, for
the sake of exposition, we only sketch some details which can be derived from
the proof of the previous Section 4.1.

Let us define four families of behaviors eρ
⊤, e

ρ
⊥, f

ρ
⊤, f

ρ
⊥ over the binary alpha-

bet {p, q} as follows. First of all: p ∈ eρ
⊤(t) iff p ∈ bρ⊤(t); p ∈ eρ

⊥(t) iff p ∈ bρ⊥(t);
p ∈ fρ

⊤(t) iff p ∈ cρ⊤(t) iff p ∈ fρ
⊥(t) iff p ∈ cρ⊥(t). Then, q ∈ eρ

⊤(t) iff q ∈ eρ
⊥(t)

iff q ∈ fρ
⊤(t) iff q ∈ fρ

⊥(t) iff 0 < t ≤ ρ/4. The behaviors eρ
⊤, e

ρ
⊥, f

ρ
⊤, f

ρ
⊥ are

pictured in Figure 2.

4.3.1 Initial Satisfiability

Let us first assume the initial satisfiability semantics; we show that no ♭MTL↓

formula φ with granularity ρ distinguishes initially between eρ
⊤ and eρ

⊥. To this
end, we prove the following.

Lemma 7. For any ♭MTL↓ formula φ of granularity ρ, it is eρ
⊤(0) |=R φ iff

eρ
⊥(0) |=R φ.

Proof sketch. Note that q is the same over both eρ
⊤ and eρ

⊥. Therefore, any
Boolean combination β involving both p and q cannot be used to distinguish
between eρ

⊤(0) and eρ
⊥(0) unless it can do the same using p only. So, a similar

case analysis as in the proof of Lemma 1, only lengthier, leads to the present
lemma.

As usual, Lemma 7 leads to separation for the initial semantics.

Theorem 8. Under the initial satisfiability semantics, ♭MTL↓ ⊂ ♭M̃TL
↓
.

Proof. Let us show that the ♭M̃TL
↓

formula Σ↓ = Ũ
↓
(0,+∞)(q, p) has no equiv-

alent ♭MTL↓ formula. Σ↓ can distinguish initially between the families of be-
haviors

⋃
ρ e

ρ
⊤,

⋃
ρ e

ρ
⊥, as for any b ∈

⋃
ρ e

ρ
⊤ and b′ ∈

⋃
ρ e

ρ
⊥, it is b(0) |=R Σ↓

and b′(0) 6|=R Σ↓. Let us assume that σ↓ is a ♭MTL↓ formula of granularity
ρ equivalent to Σ↓. However, from Lemma 7 it follows that eρ

⊤(0) |=R σ↓ iff
eρ
⊥(0) |=R σ↓. Therefore, σ↓ is not equivalent to Σ↓.
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Figure 2: The behaviors eρ
⊤, e

ρ
⊥, f

ρ
⊤, f

ρ
⊥.

4.3.2 Global Satisfiability

Also the extension to the global satisfiability semantics is along the usual lines
(cmp. Lemma 3).

Lemma 9. For any ♭MTL↓ formula φ of granularity ρ and any instant t < 0,
it is: eρ

⊤(t) |=R φ iff eρ
⊥(t) |=R φ, or eρ

⊥(t) |=R φ iff fρ
⊥(t) |=R φ.

Proof sketch. The only way a ♭MTL↓ formula φ of granularity ρ can distinguish
between eρ

⊤(t) and eρ
⊥(t) is by “referencing” the instant ρ/4, the only instant at

which eρ
⊤ and eρ

⊥ differ. However, if φ “references” ρ/4 then it cannot reference
0 in any way, because the distance between these two points is less then its
granularity. Therefore, its truth value at t cannot change if we change the
value of p at 0. That is, whenever eρ

⊤(t) 6|=R φ iff eρ
⊥(t) |=R φ it must also be

eρ
⊥(t) |=R φ iff fρ

⊥(t) |=R φ.

Finally we extend Theorem 8 to the global satisfiability semantics.

Theorem 10. Under the global satisfiability semantics, ♭MTL↓ ⊂ ♭M̃TL
↓
.

Proof. Let us show that the ♭M̃TL
↓

formula Ω↓ = Ũ
↓
(0,+∞)(q, p)∨©(q)∨ ©̃(p)

has no equivalent ♭MTL↓ formula. By contradiction, let ω↓ be an equivalent
♭MTL↓ formula, and let ρ be its granularity. Since eρ

⊤ |=R Ω↓ and eρ
⊥ 6|=R Ω↓, it

must be eρ
⊤ |=R ω↓ and eρ

⊥ 6|=R ω↓. In particular, let t be an instant such that
eρ
⊥(t) 6|=R ω↓ and eρ

⊤(t) |=R ω↓.
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It cannot be t > ρ/4, as eρ
⊤, e

ρ
⊥ coincide over (ρ/4,+∞) and we are consid-

ering future formulas. If 0 < t ≤ ρ/4, let us consider the behavior fρ
⊥. Since

fρ
⊥ |=R Ω↓ it must be fρ

⊥(t) |=R ω↓; but it is not possible that the truth value
of ω↓ changes by only modifying an instant which is before the current one. If
t = 0 we know that eρ

⊤(t) |=R ω↓ iff eρ
⊥(t) |=R ω↓ from Lemma 7. So, it must

be t < 0. However in this case it must also be fρ
⊥(t) 6|=R ω↓ from Lemma 9; this

is in contradiction with fρ
⊥ |=R Ω↓, which concludes the proof.

4.4 Non-Strict Matching Less Expressive Than Non-Strict

Section 4.1 shows that flat non-matching MTL is strictly more expressive than
its matching flat counterpart, when both of them are in their strict version. This
section shows that the same relation holds if we consider the non-strict versions
of matching and non-matching operators, that is we prove that MTL↓ ⊂ MTL.
We sketch a proof similar to the one in the previous Section 4.3, that is based
on behaviors over a binary set of propositions.4 All the details can be filled in
exactly as in the previous cases.

Let us define four more families of behaviors gρ
⊤, g

ρ
⊥, h

ρ
⊤, h

ρ
⊥ over the alphabet

{p, q} as follows. First of all: p ∈ gρ
⊤(t) iff p ∈ bρ⊤(t); p ∈ gρ

⊥(t) iff p ∈ bρ⊥(t);
p ∈ hρ

⊤(t) iff p ∈ cρ⊤(t) iff p ∈ hρ
⊥(t) iff p ∈ cρ⊥(t). Then, q ∈ gρ

⊤(t) iff q ∈ gρ
⊥(t)

iff q ∈ hρ
⊤(t) iff q ∈ hρ

⊥(t) iff t ≤ 0. The behaviors gρ
⊤, g

ρ
⊥, h

ρ
⊤, h

ρ
⊥ are pictured

in Figure 3.

4.4.1 Initial Satisfiability

We show that no ♭MTL↓ formula φ with granularity ρ distinguishes initially
between gρ

⊤ and gρ
⊥. To this end we prove the following.

Lemma 11. For any ♭MTL↓ formula φ of granularity ρ, it is gρ
⊤(0) |=R φ iff

gρ
⊥(0) |=R φ.

Proof sketch. Note that q is the same over both eρ
⊤ and eρ

⊥. Therefore, any
Boolean combination β involving both p and q cannot be used to distinguish
between gρ

⊤(0) and gρ
⊥(0) unless it can do the same using p only. So, a similar

case analysis as in the proof of Lemma 1, only longer, leads to the present
lemma.

As usual, Lemma 11 leads to separation for the initial semantics.

Theorem 12. Under the initial satisfiability semantics, ♭MTL↓ ⊂ ♭MTL.

Proof. Let us show that the ♭MTL formula Σ′ = U(0,+∞)(q ∨ ¬p, p) has no

equivalent ♭MTL↓ formula. Σ′ can distinguish initially between the families of
behaviors

⋃
ρ g

ρ
⊤,

⋃
ρ g

ρ
⊥, as for any b ∈

⋃
ρ g

ρ
⊤ and b′ ∈

⋃
ρ g

ρ
⊥, it is b(0) |=R Σ′

and b′(0) 6|=R Σ′. Let us assume that σ′ is a ♭MTL↓ formula of granularity
ρ equivalent to Σ′. However, from Lemma 11 it follows that gρ

⊤(0) |=R σ′ iff
gρ
⊥(0) |=R σ′. Therefore, σ′ is not equivalent to Σ.

4We conjecture that a unary alphabet is not enough, but we are currently unable to provide
a proof of this fact.
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Figure 3: The behaviors gρ
⊤, g

ρ
⊥, h

ρ
⊤, h

ρ
⊥.

4.4.2 Global Satisfiability

Also the extension to the global satisfiability semantics is along the usual lines.

Lemma 13. For any ♭MTL↓ formula φ of granularity ρ and any instant t < 0,
it is: gρ

⊤(t) |=R φ iff gρ
⊥(t) |=R φ, or gρ

⊥(t) |=R φ iff hρ
⊥(t) |=R φ.

Proof sketch. The only way a ♭MTL↓ formula φ of granularity ρ can distinguish
between gρ

⊤(t) and gρ
⊥(t) is by “referencing” the instant ρ/4, the only instant at

which gρ
⊤ and gρ

⊥ differ. However, if φ “references” ρ/4 then it cannot reference
0 in any way, because the distance between these two points is less then its
granularity. Therefore, its truth value at t cannot change if we change the
value of p at 0. That is, whenever gρ

⊤(t) 6|=R φ iff gρ
⊥(t) |=R φ it must also be

gρ
⊥(t) |=R φ iff hρ

⊥(t) |=R φ.

Finally we extend Theorem 12 to the global satisfiability semantics.

Theorem 14. Under the global satisfiability semantics, ♭MTL↓ ⊂ ♭MTL.

Proof. Let us show that the formula Ω′ = U(0,+∞)(q ∨ ¬p, p) ∨©(¬p) ∨ ©̃(p)

has no equivalent ♭MTL formula. By contradiction, let ω′ be an equivalent
♭MTL↓ formula, and let ρ be its granularity. Since gρ

⊤ |=R Ω′ and gρ
⊥ 6|=R Ω′, it

must be gρ
⊤ |=R ω′ and gρ

⊥ 6|=R ω′. In particular, let t be an instant such that
gρ
⊥(t) 6|=R ω′ and gρ

⊤(t) |=R ω′.
It cannot be t > ρ/4, as gρ

⊤, g
ρ
⊥ coincide over (ρ/4,+∞) and we are consid-

ering future formulas. If 0 < t ≤ ρ/4, let us consider the behavior hρ
⊥. Since
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hρ
⊥ |=R Ω′ it must be hρ

⊥(t) |=R ω′; but it is not possible that the truth value
of ω′ changes by only modifying an instant which is before the current one. If
t = 0 we know that gρ

⊤(t) |=R ω′ iff gρ
⊥(t) |=R ω′ from Lemma 11. So, it must

be t < 0. However in this case it must be hρ
⊥(t) 6|=R ω′ from Lemma 13; this is

in contradiction with hρ
⊥ |=R Ω′, which concludes the proof.

4.5 Flat Less Expressive Than Nesting

This section shows that ♭M̃TL ⊂ MTL through a technique similar to that used
in Section 4.1.

Let us define the following families of behaviors. For any given ρ > 0, let
dρ
⊤ and dρ

⊥ be defined as follows: p ∈ dρ
⊤(t) iff ρ/4 ≤ t < 3ρ/4; and p ∈ dρ

⊥(t)
iff t = ρ/4 or t = ρ/2. The behaviors dρ

⊤, d
ρ
⊥ are pictured in Figure 4. Also, for

any u ∈ R, ǫ > 0, let dǫ
u be defined as follows: p ∈ dǫ

u(t) iff u ≤ t < u + ǫ or
t = ρ/4 or t = ρ/2.

4.5.1 Initial Satisfiability

Let us first assume the initial satisfiability semantics and show that no ♭M̃TL
formula of granularity ρ can distinguish initially between dρ

⊤, d
ρ
⊥. To this end

we prove the following.

Lemma 15. For any ♭M̃TL formula φ of granularity ρ, it is dρ
⊤(0) |=R φ iff

dρ
⊥(0) |=R φ.

Proof. As usual the proof is by induction on the structure of φ.

• φ = β, where β is a Boolean combination of p and ¬p. Since dρ
⊤(0) =

dρ
⊥(0) this case follows trivially. Also note that β is equivalent to one of

p,¬p,⊤,⊥ over both dρ
⊤ and dρ

⊥.

• φ = ¬φ′. By inductive hypothesis it is dρ
⊤(0) |=R φ′ iff dρ

⊥(0) |=R φ′, so
clearly dρ

⊤(0) |=R ¬φ′ iff dρ
⊥(0) |=R ¬φ′.

• φ = φ1 ∧ φ2. By inductive hypothesis, dρ
⊤(0) |=R φ1 iff dρ

⊥(0) |=R φ1, and
dρ
⊤(0) |=R φ2 iff dρ

⊥(0) |=R φ2. Thus dρ
⊤(0) |=R φ1∧φ2 iff dρ

⊥(0) |=R φ1∧φ2.

• φ = ŨI(β1, β2), with I = 〈l, u〉 and: (1) l = k1ρ for some k1 ∈ N; and (2)
u = k2ρ or u = +∞, for some k1 ≤ k2 ∈ N. Note that we can assume
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0 6∈ I without loss of generality, as Ũ[0,u〉(β1, β2) ≡ β2 ∨ Ũ(0,u〉(β1, β2). We
also assume that I is non-empty; this is also without loss of generality.

We consider several cases for β1, β2.

– If β1 ≡ β2 ≡ ⊤ then clearly dρ
⊤(0) |=R φ and dρ

⊥(0) |=R φ.

– If β2 ≡ ⊥ then clearly dρ
⊤(0) 6|=R φ and dρ

⊥(0) 6|=R φ.

– If β1 ≡ ⊥ then dρ
⊤(0) 6|=R φ and dρ

⊥(0) 6|=R φ, as 0 6∈ I.

– If β1 ≡ ⊤ and β2 is one of p or ¬p, we have φ ≡ ♦I(β2).

If l = 0, then u > l, which entails u ≥ ρ. Any interval of the form
〈0, ρ〉 encompasses both instants where p holds and instants where ¬p

holds. Thus, dρ
⊤(0) |=R φ and dρ

⊥(0) |=R φ in this case. If l > 0 then
l ≥ ρ. Since dρ

⊤ and dρ
⊥ are the same for all t ≥ ρ, it is dρ

⊤(0) |=R φ
iff dρ

⊥(0) |=R φ.

– If β1 ≡ p, then φ does not hold unless ©̃(p) holds (still because

0 6∈ I). Since it is ©̃(¬p) for both behaviors at 0, it is dρ
⊤(0) 6|=R φ

and dρ
⊥(0) 6|=R φ.

– If β1 ≡ ¬p and β2 ≡ ⊤ or β2 ≡ ¬p, then φ is equivalent to ©̃(¬p)
(still because 0 6∈ I). So dρ

⊤(0) |=R φ and dρ
⊥(0) |=R φ.

– If β1 ≡ ¬p and β2 ≡ p, and I = (0, u〉, then it is clear that ŨI(¬p, p)
is true at 0, since p switches to true at ρ/4 right-continuously in dρ

⊤

and point-wisely in dρ
⊥. So dρ

⊤(0) |=R φ and dρ
⊥(0) |=R φ in this case.

In instead l 6= 0 then l ≥ ρ. Thus φ does not hold at 0 unless
�(0,ρ)(¬p) holds at the same instant. But p takes both truth values

within the interval (0, ρ), thus dρ
⊤(0) 6|=R φ and dρ

⊥(0) 6|=R φ.

Lemma 15 leads straightforwardly to the desired separation result.

Theorem 16. Under the initial satisfiability semantics, ♭M̃TL ⊂ MTL.

Proof. Let us show that the MTL formula Ξ = ♦(0,+∞)(©(p)) has no equivalent

♭MTL formula. Ξ can distinguish initially between the families of behaviors⋃
ρ∈R>0

dρ
⊤,

⋃
ρ∈R>0

dρ
⊥, as for any b ∈

⋃
ρ∈R>0

dρ
⊤ and b′ ∈

⋃
ρ∈R>0

dρ
⊥, it is

b(0) |=R Ξ and b′(0) 6|=R Ξ. Let us assume that ξ is an ♭M̃TL formula of
granularity ρ equivalent to Ξ. However, from Lemma 1 it follows that dρ

⊤(0) |=R

ξ iff dρ
⊥(0) |=R ξ. Therefore, ξ is not equivalent to Ξ.

4.5.2 Global Satisfiability

Let us now extend Theorem 16 to the global satisfiability semantics. To this
end, we first prove the following non-distinguishability result.

Lemma 17. For any ♭M̃TL formula φ of granularity ρ and any instant t ≤ ρ/2,
there exist u, ǫ such that [u, u+ ǫ) ⊆ [ρ/4, 3ρ/4) and dρ

⊥(t) |=R φ iff dǫ
u(t) |=R φ.

Proof. The proof is by induction on the structure of φ; throughout t ≤ ρ/2.
Recall that for u = ρ/4 and ǫ = ρ/2 we have dρ

⊤ = dǫ
u.
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• φ = β. If t ≤ ρ/4 or t = ρ/2, note that dρ
⊤(t) = dρ

⊥(t), so this case follows
trivially. Otherwise ρ/4 < t < ρ/2 and take u = ρ/2 and ǫ = ρ/4; in this
case dρ

⊥(t) = dǫ
u.

• φ = ¬φ′. By inductive hypothesis, there exist u, ǫ such that d′ = dǫ
u and

d′(t) |=R φ′ iff dρ
⊥(t) |=R φ′. Thus also d′(t) |=R φ iff dρ

⊥(t) |=R φ.

• φ = ŨI(β1, β2), with I = 〈a, b〉, a = k1ρ, b = k2ρ ≥ a or b = +∞, for
k1, k2 nonnegative integers. Also, without loss of generality, we assume
0 6∈ I. We consider several cases for β1, β2.

– If β1 ≡ β2 ≡ ⊤, then dρ
⊤(t) |=R φ and dρ

⊥(t) |=R φ.

– If β1 ≡ ⊥ or β2 ≡ ⊥, then dρ
⊤(t) 6|=R φ and dρ

⊥(t) 6|=R φ.

– If β1 ≡ ⊤ and β2 is one of p,¬p, we have φ ≡ ♦I(β2). We further
consider several cases.

∗ If a = b = kρ and t+ kρ 6= ρ/4 and t+ kρ 6= ρ/2, let us discuss
the value of t+ kρ. If ρ/2 < t+ kρ ≤ 3ρ/4 then let u = ρ/4 and
ǫ = t + kρ − ρ/4; if t + kρ < ρ/4 or t + kρ > 3ρ/4 let u = ρ/4
and ǫ = ρ/2; if ρ/4 < t + kρ < ρ/2 let u = ρ/2 and ǫ = ρ/4.
Then note that, in all cases, dρ

⊥(t + kρ) = dǫ
u(t + kρ), therefore

dρ
⊥(t) |=R φ iff dǫ

u(t) |=R φ.

∗ If a = b = kρ and t + kρ = ρ/4, let u = ρ/2 and ǫ = ρ/4.
Then note that dρ

⊥(t + kρ) = dǫ
u(t + kρ), therefore dρ

⊥(t) |=R φ
iff dǫ

u(t) |=R φ.

∗ If a = b = kρ and t + kρ = ρ/2, let u = ρ/4 and ǫ = ρ/4.
Then note that dρ

⊥(t + kρ) = dǫ
u(t + kρ), therefore dρ

⊥(t) |=R φ
iff dǫ

u(t) |=R φ.

∗ If a < b then b − a ≥ ρ. If t + a < ρ/2 or t + a ≥ 3ρ/4 or
t+ a = ρ/2 ∧ a ∈ I, notice that the interval I of size ≥ ρ is such
that dρ

⊤(t) |=R ♦〈a,b〉(β2) iff dρ
⊥(t) |=R ♦〈a,b〉(β2). Therefore,

dρ
⊤(t) |=R φ iff dρ

⊥(t) |=R φ.
If instead t+ a = ρ/2∧ a 6∈ I, let u = ρ/4 and ǫ = ρ/4, and note
that dρ

⊥(t) |=R φ iff dǫ
u(t) |=R φ in this case since p is constantly

false within I.
Finally, assume ρ/4 < t+ a < ρ/2 and let u = ρ/2 and ǫ = ρ/4.
Note that dρ

⊥(t) |=R φ and dǫ
u(t) |=R φ, as both p and ¬p hold

within I.

– If β1 ≡ β2, then φ holds iff ©̃(β2). So, if t < ρ/4 or ρ/4 < t < ρ/2,
clearly dρ

⊥(t) |=R φ iff dρ
⊤(t) |=R φ. If t = ρ/4 instead, we pick

u = ρ/2 and ǫ = ρ/4, and if t = ρ/2, we pick u = ρ/4 and ǫ = ρ/4.
In both cases dρ

⊥(t) |=R φ iff dǫ
u(t) |=R φ.

– If β1 ≡ p, β2 ≡ ¬p, and t < ρ/4, then surely dρ
⊥(t) 6|=R φ and

dρ
⊤(t) 6|=R φ. If ρ/4 ≤ t < ρ/2 instead, we pick u = ρ/2 and ǫ = ρ/4,

so that again dρ
⊥(t) 6|=R φ and dǫ

u(t) 6|=R φ. Finally, if t = ρ/2 we pick
u = ρ/4 and ǫ = ρ/4, so that dρ

⊥(t) 6|=R φ and dǫ
u(t) 6|=R φ in this

case as well.

– Similarly, if β1 ≡ ¬p, β2 ≡ p, and t < ρ/4 then surely dρ
⊥(t) |=R φ and

dρ
⊤(t) |=R φ. If ρ/4 ≤ t < ρ/2 instead, we pick u = ρ/2 and ǫ = ρ/4,
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so that again dρ
⊥(t) |=R φ and dǫ

u(t) |=R φ. Finally, if t = ρ/2 we pick
u = ρ/4 and ǫ = ρ/4, so that dρ

⊥(t) 6|=R φ and dǫ
u(t) 6|=R φ in this

case.

Overall, notice that it is bρ⊥(t) |=R φ iff dǫ
u(t) |=R φ and u = ρ/4 and

ǫ > ρ/4 unless: (a) u = ρ/2, ǫ ≤ ρ/4 and ρ/4 ≤ t + kρ < ρ/2 for
some nonnegative k; or (b) u = ρ/4, ǫ ≤ ρ/4 and t + hρ = ρ/2 for some
nonnegative integer h.

• φ = φ1∧φ2. In the proof of this case, note how we can “lift” restrictions on
the value of t to the conjunction itself, to go with the inductive hypothesis.

If dρ
⊥(t) |=R φi iff dǫi

ui
(t) |=R φi with ui = ρ/4 and ǫi > ρ/4 for both

i = 1, 2, then it is not difficult to check that dρ
⊥(t) |=R φ iff dǫ′

u′(t) |=R φ
with u′ = ρ/4 and ǫ′ = min(ǫ1, ǫ2) > ρ/4 and we are done.

Otherwise, consider the case ui = ρ/4 and ǫi > ρ/4 for some i, and
uj = ρ/2, ǫj ≤ ρ/4, ρ/4 ≤ t+ kρ < ρ/2 for j 6= i. Then we can state that

dρ
⊥(t) |=R φ iff dǫ′

u′(t) |=R φ with u′ = ρ/2 and ǫ′ = min(ǫj , ǫi − ρ/4), and
ρ/4 ≤ t+ kρ < ρ/2. We are done, since clearly ǫ′ ≤ ρ/4.

If ui = ρ/4 and ǫi > ρ/4 for some i, and uj = ρ/4, ǫj ≤ ρ/4, t+ hρ = ρ/2

for j 6= i. Then we can state that dρ
⊥(t) |=R φ iff dǫ′

u′(t) |=R φ with u′ = ρ/4
and ǫ′ = ǫj ≤ ρ/4, and t+ hρ = ρ/2.

Finally, consider the case ui = ρ/2, ǫi ≤ ρ/4, ρ/4 ≤ t+ kρ < ρ/2 for some
i, and uj = ρ/4, ǫj ≤ ρ/4, t+hρ = ρ/2 for j 6= i. Substituting t = ρ/2−hρ
in ρ/4 ≤ t+ kρ < ρ/2 and simplifying, we get −ρ/4 ≤ (k−h)ρ < 0. Since
k−h is an integer, (k−h)ρ < 0 implies k−h ≤ −1 and thus (k−h)ρ ≤ −ρ,
which is incompatible with (k− h)ρ ≥ −ρ/4. Hence this case is closed by
contradiction.

Through Lemma 17 we can extend Theorem 16 to the global satisfiability
semantics.

Theorem 18. Under the global satisfiability semantics, ♭M̃TL ⊂ MTL.

Proof. Let us show that the MTL formula:

Γ = ♦[0,+∞)(©(p)) ∨ �[0,+∞)(¬p) ∨ U(0,+∞)

(
¬p, (p ∧ �(0,+∞)(¬p))

)

has no equivalent ♭M̃TL formula.

To the contrary, assume that there exists a ♭M̃TL formula γ equivalent to
Ω. Let ρ be the granularity of γ, and let us consider the behaviors dρ

⊤ and dρ
⊥.

Since you can check that dρ
⊤ |=R Γ and dρ

⊥ 6|=R Γ (in fact, a non-strict until is
used), it must be dρ

⊤ |=R γ and dρ
⊥ 6|=R γ, so γ must be false somewhere on dρ

⊥.
Let t be any instant such that dρ

⊥(t) 6|=R γ.

If t > ρ/2, then let us consider the behavior d′ = d
t−ρ/4
ρ/4 ; clearly d′ |=R Γ, so

it must be d′ |=R γ and, in particular, d′(t) |=R γ. However, d′ and dρ
⊥ coincide

over the interval [t,+∞), therefore dρ
⊥(t) = d′(t) 6|=R γ. This shows that it must

be t ≤ ρ/2.
If t ≤ ρ/2, Lemma 17 requires that there exists a d′′ = dǫ

u such that: [u, u+
ǫ) ⊆ [ρ/4, 3ρ/4) and dρ

⊥(t) |=R γ iff d′′(t) |=R γ. Thus d′′(t) 6|=R γ in our
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case, which entails d′′ 6|=R γ as well. On the contrary, d′′ |=R Γ, since the
sub-formula ♦[0,+∞)(©(p)) holds throughout (−∞, u + ǫ) and the other sub-

formula �[0,+∞)(¬p) ∨ U(0,+∞)

(
¬p, (p ∧ �(0,+∞)(¬p))

)
holds afterward, over

[u+ ǫ,+∞). This contradicts the supposed equivalence between γ and Γ.

5 Nesting MTL over Zeno Behaviors

This section re-considers some of the expressiveness results for nesting formulas
of Section 3 when Zeno behaviors are allowed as interpretation structures.

A simplified MTL subset. First of all it is convenient to introduce some
additional notational simplifications. Henceforth, we denote the intervals (0, δ),
(0, δ], [δ, δ], and (δ,+∞) as < δ, ≤ δ, = δ, and > δ, respectively.

Then, φ
δ
≡ φ′ denotes that the truth value of φ coincides with that of φ′ over

behavior bδ (or bZδ when we write φ
Z
≡ φ′). That is, φ

δ
≡ φ′ iff ∀t ∈ T : (bδ(t) |=T

φ iff bδ(t) |=T φ
′), and φ

Z
≡ φ′ iff ∀t ∈ T : (bZδ (t) |=T φ iff bZδ (t) |=T φ

′).
Let us show that the following MTL fragment is expressively complete for

MTL formulas with granularity δ.

φ ::= p | U<δ(φ1, φ2) | U=δ(φ1, φ2) | U>δ(φ1, φ2) | ¬φ | φ1 ∧ φ2

To this end, it suffices to consider an MTL formula φ = UI(φ1, φ2) of gran-
ularity δ; therefore I = 〈aδ, bδ〉 for some a, b ∈ N. Let us consider several
cases.

• I = (0, δ): φ ≡ U<δ(φ1, φ2).

• I = (0, δ]: φ ≡ U<δ(φ1, φ2) ∨ U=δ(φ1, φ2).

• I = (0, bδ), b > 1: φ ≡
∨b−2

k=0 ♦=kδ

(
U≤δ(φ1, φ2)

)
∨ ♦=(b−1)δ

(
U<δ(φ1, φ2)

)
.

• I = (0, bδ], b > 1: φ ≡
∨b−1

k=0 ♦=kδ

(
U≤δ(φ1, φ2)

)
.

• I = [0, bδ〉, b ≥ 0: φ ≡ U(0,bδ〉(φ1, φ2) ∨ (φ1 ∧ φ2).

• I = (aδ, bδ), b > a > 0: φ ≡ �[0,aδ](φ1) ∧ ♦=aδ

(
U(0,(b−a)δ)(φ1, φ2)

)
.

• We omit the remaining cases as they are all similar to the previous ones.

5.1 Non-Strict Less Expressive Than Strict

This section proves that the equivalence between MTL and M̃TL of [FR07a] does
not hold if we allow Zeno behaviors. Intuitively, the equivalence (2) does not

hold if Zeno behaviors are disallowed, because it may be that ¬©̃(p)∧¬©̃(¬p)
for some item p over a Zeno behavior, thus failing to satisfy (1). In fact, we can

prove that MTL ⊂ M̃TL for Zeno behaviors.
To this end, we define behaviors bδ, b

Z
δ over P = {p}, for all δ > 0. bδ is

defined as: p ∈ bδ(t) iff t = kδ/2 for some k ∈ Z. bZδ is defined as: p ∈ bZδ (t)
iff t = (k + 2−n)δ, for some k ∈ Z, n ∈ N. Clearly, for all t ∈ T, p ∈ bδ(t)
implies p ∈ bZδ (t); moreover, notice that bZδ has Zeno behavior to the right of
any instant kδ.
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5.1.1 Primitive Behavior of MTL Formulas

This section shows that the behavior of any MTL formula over bδ and bZδ is
very simple, as it coincides with one of p,¬p,⊤,⊥. This fact will be used in the
following to tackle the separation proof.

Lemma 19. The truth value of any MTL formulas φ of granularity δ over bδ
coincides with one of p,¬p,⊤,⊥. That is, one of the following holds.

φ
δ≡ p (12)

φ
δ≡ ¬p (13)

φ
δ≡ ⊤ (14)

φ
δ≡ ⊥ (15)

Proof. The proof goes by induction on the structure of the formula φ.

Base case. The base case is for formulas φ that do not use operator at all,
i.e., φ is one of p, ⊤, or ⊥. The proof is trivial.

Inductive case. In the inductive case, we assume the statement of the
lemma to hold for all φ nesting up to k− 1 operators (both temporal operators
and propositional connectives), and we prove it for nesting depth equal to k as
well. We consider five cases for φ.

• φ = ¬ψ. By inductive hypothesis, the truth value of ψ over bδ coincides
with one of p, ¬p, ⊤, or ⊥. Therefore, the truth value of ¬ψ over bδ
coincides with ¬p, p, ⊥, or ⊤, respectively.

• φ = ψ1 ∧ ψ2. By inductive hypothesis, the truth values of ψ1, ψ2 over bδ
coincide with one of p, ¬p, ⊤, or ⊥. Therefore, it is easy to check that the
the truth value of ψ1 ∧ ψ2 over bδ coincides with one of p, ¬p, ⊤, or ⊥.

• φ = U<δ(ψ1, ψ2). By inductive hypothesis, we consider several cases.

– If the truth value of ψ1 coincides with ⊥ or p, then so does the truth
value of φ. In fact, bδ(t) |=T φ requires in particular that there exists
a u ∈ (t, t + δ) such that for all v ∈ [t, u) it is b(v) |=T ψ1. But ⊥
never holds, and p holds only at isolated points.

– If the truth value of ψ1 coincides with ⊤, φ is equivalent to ♦<δ(ψ2).
Moreover, by inductive hypothesis ψ2 coincides with one of p, ¬p, ⊤,
or ⊥. Since p holds periodically every δ/2 instants over bδ, and ¬p

holds everywhere except at isolated points, it is simple to realize that
the truth value of ♦<δ(ψ2) coincides either with ⊤ or with ⊥.

– If the truth value of ψ1 coincides with ¬p, φ is equivalent to
U<δ(¬p, ψ2). If ψ2 ≡ ⊥, then obviously φ ≡ ⊥. If ψ2 ≡ ⊤, then
φ ≡ ©(¬p); it is simple to check that ¬p ⇔ ©(¬p) everywhere, as
¬p holds over open intervals. Therefore, φ ≡ ¬p in this case. If
ψ2 ≡ p or ψ2 ≡ ¬p, then similarly one can show that φ ≡ ¬p.

• φ = U=δ(ψ1, ψ2). By inductive hypothesis, we consider several cases. We
omit the proofs whenever they are all similar to the previous U<δ case.
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– If the truth value of ψ1 coincides with ⊥ or p, then so does the truth
value of φ.

– If the truth value of ψ1 coincides with ⊤, φ is equivalent to ♦=δ(ψ2).
Moreover, by inductive hypothesis ψ2 coincides with one of p, ¬p,
⊤, or ⊥. Since bδ(t) |=T φ iff bδ(t + δ) |=T ψ2, and bδ(t) |=T p iff
bδ(t + δ) |=T p, it is simple to realize that the truth value of φ also
coincides with one of p, ¬p, ⊤, or ⊥.

– If the truth value of ψ1 coincides with ¬p, φ is equivalent to �[0,δ)(¬p)∧

♦=δ(ψ2). However, �[0,δ)(¬p) is always false, as any interval of length
δ also includes instants where p is true. Therefore, φ ≡ ⊥ in this case.

• φ = U>δ(ψ1, ψ2). By inductive hypothesis, we consider several cases. We
omit the proofs whenever they are all similar to the previous cases U<δ

and U=δ.

– If the truth value of ψ1 coincides with ⊥ or p, then so does the truth
value of φ.

– If the truth value of ψ1 coincides with ⊤, φ is equivalent to ♦>δ(ψ2).
Moreover, by inductive hypothesis ψ2 coincides with one of p, ¬p, ⊤,
or ⊥. Since p holds periodically every δ/2 instants over bδ, and ¬p

holds everywhere except at isolated points, it is simple to realize that
the truth value of ♦>δ(ψ2) coincides either with ⊤ or with ⊥.

– If the truth value of ψ1 coincides with ¬p, φ implies in particular that
�[0,δ+ǫ)(¬p) for some ǫ > 0. However, �[0,δ+ǫ)(¬p) is false for any
ǫ > 0, as any interval of length greater than δ also includes instants
where p is true. Therefore, φ ≡ ⊥ in this case.

Lemma 20. The truth value of any MTL formulas φ of granularity δ over bZδ
coincides with one of p,¬p,⊤,⊥. That is, one of the following holds.

φ
Z
≡ p (16)

φ
Z
≡ ¬p (17)

φ
Z
≡ ⊤ (18)

φ
Z
≡ ⊥ (19)

Proof. The proof goes by induction on the structure of the formula φ. We
consider only the relevant cases, that is those that differ from the proof of
Lemma 19. In particular, we only focus on a part of the inductive cases.

• φ = U<δ(ψ1, ψ2). By inductive hypothesis, we consider several cases.

– If the truth value of ψ1 coincides with ⊥ or p, then so does the truth
value of φ. In fact, bZδ (t) |=T φ requires in particular that there exists
a u ∈ (t, t + δ) such that for all v ∈ [t, u) it is b(v) |=T ψ1. But ⊥
never holds, and p holds only at isolated points, unless it accumulates
(at any point kδ, for some integer k). In particular, notice that any
interval of the form [kδ, kδ + ǫ) for some k ∈ Z, ǫ ∈ T>0 includes
both instants where p is true and instants where it is false.
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– If the truth value of ψ1 coincides with ⊤, φ is equivalent to ♦<δ(ψ2).
Moreover, by inductive hypothesis ψ2 coincides with one of p, ¬p,
⊤, or ⊥. Since p holds at least every δ/2 instants over bZδ , and ¬p

holds “infinitely often”, it is simple to realize that the truth value of
♦<δ(ψ2) coincides either with ⊤ or with ⊥.

– If the truth value of ψ1 coincides with ¬p, φ is equivalent to
U<δ(¬p, ψ2). If ψ2 ≡ ⊥, then obviously φ ≡ ⊥. If ψ2 ≡ ⊤, then
φ ≡ ©(¬p). Notice that bZδ (t) |=T ¬p ⇔ ©(¬p) for all t 6= kδ for
some integer k, and bZδ (kδ) |=T p ∧ ¬©(¬p). Therefore, φ ≡ ¬p in
this case. If ψ2 ≡ p or ψ2 ≡ ¬p, then similarly one can show that
φ ≡ ¬p.

• φ = U=δ(ψ1, ψ2). By inductive hypothesis, we consider several cases. We
omit the proofs whenever they are all similar to the previous U<δ case.

– If the truth value of ψ1 coincides with ⊥ or p, then so does the truth
value of φ.

– If the truth value of ψ1 coincides with ⊤, φ is equivalent to ♦=δ(ψ2).
Moreover, by inductive hypothesis ψ2 coincides with one of p, ¬p,
⊤, or ⊥. Since bZδ (t) |=T φ iff bZδ (t + δ) |=T ψ2, and bZδ (t) |=T p iff
bZδ (t + δ) |=T p, it is simple to realize that the truth value of φ also
coincides with one of p, ¬p, ⊤, or ⊥.

– If the truth value of ψ1 coincides with ¬p, φ is equivalent to �[0,δ)(¬p)∧

♦=δ(ψ2). However, �[0,δ)(¬p) is always false, as any interval of length
δ also includes instants where p is true. Therefore, φ ≡ ⊥ in this case.

• φ = U>δ(ψ1, ψ2). By inductive hypothesis, we consider several cases. We
omit the proofs whenever they are all similar to the previous cases U<δ

and U=δ.

– If the truth value of ψ1 coincides with ⊥ or p, then so does the truth
value of φ.

– If the truth value of ψ1 coincides with ⊤, φ is equivalent to ♦>δ(ψ2).
Moreover, by inductive hypothesis ψ2 coincides with one of p, ¬p, ⊤,
or ⊥. Since p holds periodically at least every δ/2 instants over bZδ ,
and ¬p holds “infinitely often”, it is simple to realize that the truth
value of ♦>δ(ψ2) coincides either with ⊤ or with ⊥.

– If the truth value of ψ1 coincides with ¬p, φ implies in particular that
�[0,δ+ǫ)(¬p) for some ǫ > 0. However, �[0,δ+ǫ)(¬p) is false for any
ǫ > 0, as any interval of length greater than δ also includes instants
where p is true. Therefore, φ ≡ ⊥ in this case.

By comparing the proofs of Lemmas 19 and 20, any MTL formula has a
truth value over bδ that coincides with the same primitive proposition (i.e.,
p,¬p,⊤,⊥) as it coincides over bZδ .

Lemma 21. For any MTL formula φ of granularity δ, the truth value of φ over

bδ coincides with the same atomic proposition as it coincides over bZδ . In other
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words, with reference to the previously defined formulas:

(12) iff (16) (20)

(13) iff (17) (21)

(14) iff (18) (22)

(15) iff (19) (23)

Proof. The proof is again by induction on the structure of φ. In the proof, we
write x to denote any of p, ¬p, ⊤, ⊥. As the proof is clearly symmetric with
respect to bδ and bZδ , we just show the ⇒ implication.

The base case (φ = p,⊤,⊥) is trivial, so let us just consider the inductive
case.

• φ = ¬ψ. Obviously, φ
δ
≡ x implies that ψ

δ
≡ ¬x; by inductive hypothesis,

also ψ
Z
≡ ¬x; therefore φ

Z
≡ x.

• φ = ψ1 ∧ ψ2. Let ψ1
δ
≡ x1 and ψ2

δ
≡ x2; by inductive hypothesis ψ1

Z
≡ x1

and ψ2
Z
≡ x2. Therefore φ

Z
≡ x1 ∧ x2.

• φ = U<δ(ψ1, ψ2). Let ψ1
δ
≡ x1 and ψ2

δ
≡ x2; by inductive hypothesis

ψ1
Z
≡ x1 and ψ2

Z
≡ x2. Next, consider the case x1 = ⊤ and x2 6= ⊥. Then,

it is easy to check that φ ≡ ⊤ on both bδ and bZδ . Otherwise, let x2 = ⊥
or x1 6= ⊤. Then, obviously φ ≡ ⊥ on both bδ and bZδ .

• φ = U=δ(ψ1, ψ2). Let ψ1
δ
≡ x1 and ψ2

δ
≡ x2; by inductive hypothesis

ψ1
Z
≡ x1 and ψ2

Z
≡ x2. Next, consider the case x1 6= ⊤ or x2 = ⊥.

Then, it is easy to check that φ ≡ ⊥ on both bδ and bZδ . Otherwise, let
x1 = ⊤ = x2; then clearly φ

δ
≡ ⊤

Z
≡ φ. Another case is x1 = ⊤ and x2 = p;

then φ reduces to ♦=d(p), a translation of length δ. Now, recall that both
bδ and bZδ are periodic of period δ; as a consequence, ♦=d(p) is equivalent
to just p on both bδ and bZδ . Finally, we have the case x1 = ⊤ and x2 = ¬p;
similarly, thanks to the periodicity of bδ and bZδ , φ is equivalent to ¬p on
both behaviors.

• φ = U>δ(ψ1, ψ2). Let ψ1
δ
≡ x1 and ψ2

δ
≡ x2; by inductive hypothesis

ψ1
Z
≡ x1 and ψ2

Z
≡ x2. Next, consider the case x1 = ⊤ and x2 6= ⊥. Then,

it is easy to check that φ ≡ ⊤ on both bδ and bZδ . Otherwise, let x2 = ⊥
or x1 6= ⊤. Then, obviously φ ≡ ⊥ on both bδ and bZδ .

An immediate consequence of the previous lemma is that, at any instant
where the values bδ(t) and bZδ (t) coincide, the truth values of any formula φ also
coincide.

Corollary 22. For any MTL formula φ of granularity δ, and all k ∈ Z:

bδ(kδ) |=T φ iff bZδ (kδ) |=T φ

Proof. First of all notice that, for all k ∈ Z, bδ(kδ) = bZδ (kδ). Then, the
corollary follows from Lemma 21.
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5.1.2 Non-Strict Is Less Expressive Than Strict

Building upon the lemmas of the previous section, we can prove the desired
separation result.

Theorem 23. If Zeno behaviors are allowed, MTL ⊂ M̃TL.

Proof. Let us consider the two families of behaviors: N = {bδ | δ ∈ Q>0} and
Z = {bZδ | δ ∈ Q>0}.

Initial satisfiability. First, let |=T denote “initial satisfiability”. The

M̃TL formula Σ = ©̃(¬p) separates initially the two families N and Z, as
b(0) |=T Σ for all b ∈ N and b′(0) 6|=T Σ for all b′ ∈ Z.

On the contrary, let φ be any MTL formula with rational endpoints, and let
δ be its granularity. Then, N ∋ bδ(0) |=T φ iff Z ∋ bZδ (0) |=T φ by Corollary
22, so no MTL formula separates initially the two families. This implies that

the M̃TL formula Σ has no initially equivalent formula in MTL.

Global satisfiability. Now, let |=T denote “global satisfiability”. The M̃TL

formula Σ′ = p ⇒ ©̃(¬p) separates globally the two families N and Z, as
b(t) |=T Σ′ for all t ∈ T and for all b ∈ N , and b′(t) 6|=T Σ′ for some t = kδ, and
for all b′ ∈ Z.

On the contrary, let φ be any MTL formula with rational endpoints, and let
δ be its granularity. For the sake of contradiction, assume that b(t) |=T φ for
all t ∈ T and for all b ∈ N , and that b′(t) 6|=T φ for some t, and for all b′ ∈ Z.
Now, in particular, bδ |=T φ; a fortiori, bδ(0) |=T φ′ where φ′ = �[0,+∞)(φ).

Similarly, it must be bZδ 6|=T φ. A little reasoning should convince us that this
implies bZδ (0) 6|=T φ′. In fact, bZδ 6|=T φ means that there exists a t ∈ T such
that bZδ (t) 6|=T φ. t may be greater than, equal to, or less than 0. However,
bZδ is periodic with period δ; this implies that bZδ (t) |=T α iff bZδ (t + kδ) |=T α,
for all formulas α, t ∈ T, k ∈ Z. Therefore, if there exists a t ∈ T such that
bZδ (t) 6|=T φ, then also there exists a t′ ≥ 0 such that bZδ (t′) 6|=T φ. The last
formula implies that bZδ (0) 6|=T φ

′.
Now, notice that the formula φ′ is of the same granularity as φ, that is

δ. Moreover, bδ(0) |=T φ′ and bZδ (0) 6|=T φ′. This contradicts Corollary 22;
therefore φ does not globally separate the two families of behaviors. Since φ is

generic, the M̃TL formula Σ′ has no globally equivalent formula in MTL.

5.2 Non-Strict Matching Less Expressive Than Strict Match-

ing

If we reconsider all the theorems of Section 5.1, and the corresponding proofs,
we notice that they still stand if we consider the matching variants of the non-
strict and strict until . In other words, the same proofs provide a separation

between MTL↓ and M̃TL
↓
.

Theorem 24. If Zeno behaviors are allowed, MTL↓ ⊂ M̃TL
↓
.
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5.3 Matching as Expressive as Non-Matching

Finally, we turn to the comparison of the matching and non-matching variants
when Zeno behaviors are allowed. We can show that the equivalences holding for
non-Zeno behaviors are still valid with Zeno behaviors, only with slightly longer
proofs.5 Also, this holds regardless of whether we are considering the strict or

non-strict variants of until . Therefore, we are able to show that M̃TL
↓

= M̃TL
and MTL↓ = MTL over generic behaviors.

In order to present the new proofs, it is convenient to introduce the following
notation: b(t) |=R acc (φ) denotes the fact that the truth value of formula φ
accumulates to the right of instant t; in other words, φ has a Zeno behavior
to the right of t over b. Formally, this means that for all ǫ > 0 there exists
0 < ν1, ν2 < ǫ such that b(t + ν1) |=R φ and b(t + ν2) |=R ¬φ; that is φ takes
both truth values infinitely often to the right of t. Recall that, if b(t) |=R acc (φ)

then b(t) |=R ¬©̃(φ) ∧ ¬©̃(¬φ).

5.3.1 Strict Variant

Let us start with the proof of equivalence of the matching and non-matching
variants of strict until . To this end, let us prove that the equivalences (8–11)
still hold when Zeno behaviors are allowed. In fact, we just have to consider
explicitly the case of Zeno behaviors in the proofs.

Let us first consider Formula 8, which we repeat here for clarity.6

Ũ(0,b〉(φ1, φ2) ≡ Ũ
↓
(0,b〉(φ1, φ2)

∨ (♦(0,b〉(φ2) ∧ ©̃(φ1) ∧ R̃
↓
(0,b〉(φ2,©(φ1))

Proof of Formula 8 with generic behaviors. Let us start with the ⇒ direction,
and let t be the current instant. Assume that there exists a d ∈ (0, b〉 such that
b(t+ d) |=R φ2 and for all u ∈ (t, t+ d) it is b(u) |=R φ1. If also b(t+ d) |=R φ1

or b(t) |=R ©̃(φ2) then b(t) |=R Ũ
↓
(0,b〉(φ1, φ2), so assume that b(t+ d) |=R ¬φ1

and b(t) |=R ¬©̃(φ2). If also b(t) |=R acc (φ2), then there exists a 0 < ν < d
such that b(t+ ν) |=R φ2; therefore φ2 ∧ φ1 holds at t+ ν ∈ (t, t+ d) ⊆ (t, t+ b〉

which entails b(t) |=R Ũ
↓
(0,b〉(φ1, φ2).

Otherwise, φ2 does not accumulate to the right of t, and thus b(t) |=R

©̃(¬φ2) in this case. Therefore, it is well-defined d′, the smallest instant in

(t, t + b〉 such that b(d′) |=R φ2 ∨ ©̃(φ2) ∨ acc (φ2); note that d′ ≤ t + d. Note

that clearly b(t) |=R ©̃(φ1) and b(t) |=R ♦(0,b〉(φ2).

Let us first consider the case b(d′) |=R φ2, and let v ∈ (t, t+ b〉. If v ≥ t+ d,
there exists a w = t + d such that w ∈ (t, v] and b(w) |=R φ2. If v < t + d
instead, then v ∈ (t, t + d) so b(v) |=R ©(φ1). All this shows that b(t) |=R

R̃
↓
(0,b〉(φ2,©(φ1)), which completes the proof in this case.

Let us now consider the case b(d′) |=R ¬φ2∧©̃(φ2); hence d′ < t+d. So, let
us assume that φ2 holds over the interval (d′, d′ + ǫ) for some ǫ > 0. Now, let

5We are grateful to anonymous referee # 4, who reviewed the conference version of this
paper [FR07b], whose detailed comments prompted us to realize this fact.

6Compare the following proof with that for non-Zeno behaviors, in Section 3.2.
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v ∈ (t, t+b〉. If v > d′, there exists a w = d′+min(v−d′, ǫ)/2 such that w ∈ (t, v]
and b(w) |=R φ2. If v ≤ d′ instead, then v ∈ (t, d′] ⊂ (t, t+d) so b(v) |=R ©(φ1),

as φ1 holds throughout (t, t+ d). All this shows that b(t) |=R R̃
↓
(0,b〉(φ2,©(φ1)),

which completes the proof in this case as well.

Finally, assume b(d′) |=R ¬φ2 ∧¬©̃(φ2)∧ acc (φ2); in this case d′ < t+ d as
well. Since φ2 accumulates to the right of d′, there exists a 0 < ν < (t+ d)− d′

such that b(t+ d+ ν) |=R φ2; therefore φ2 ∧ φ1 holds at t+ d+ ν ∈ (t, t+ d) ⊆

(t, t+ b〉 which entails b(t) |=R Ũ
↓
(0,b〉(φ1, φ2).

Let us now consider the ⇐ direction, and let t be the current instant. If
b(t) |=R Ũ

↓
(0,b〉(φ1, φ2) clearly also b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori. So let us

assume that Ũ
↓
(0,b〉(φ1, φ2) is false at t; note that this subsumes that b(t) |=R

¬©̃(φ2 ∧ φ1) and that b(t) |=R ©̃(φ1), i.e., φ1 holds over an interval (t, t + ǫ)
for some ǫ > 0.

If b(t) |=R acc (φ2), then there exists a 0 < ν < min(ǫ, b) such that b(t+ν) |=R

φ2; so b(t) |=R Ũ(0,b〉(φ1, φ2) a fortiori. Otherwise, if φ2 does not accumulate,

©̃(¬φ2) must hold at t. Therefore, it is well-defined u, the smallest instant in

(t, t + b〉 such that b(u) |=R φ2 ∨ ©̃(φ2) ∨ acc (φ2). Note that this implies that
φ2 is false throughout (t, u〉, with the interval being right-open iff φ2 holds at u.

Let us first consider the case b(u) |=R φ2. Let v be a generic instant in (t, u);
recall that φ2 is false throughout (t, u) ⊃ (t, v]. Therefore it must be b(v) |=R

©(φ1) for b(t) |=R R̃
↓
(0,b〉(φ2,©(φ1)) to be true. So, φ1 holds throughout (t, u)

and φ2 holds at u, which means that b(t) |=R Ũ(0,b〉(φ1, φ2).

Let us now consider the other case b(u) |=R ¬φ2∧©̃(φ2). Let v be a generic
instant in (t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v]. From b(t) |=R

R̃
↓
(0,b〉(φ2,©(φ1)) it must be b(v) |=R ©(φ1). Overall, φ1 holds throughout

(t, u + ǫ] for some ǫ > 0, as in particular b(t + u) |=R ©(φ1). Clearly, this

subsumes b(t) |=R Ũ(0,b〉(φ1, φ2).

Finally, let b(u) |=R ¬φ2 ∧ ¬©̃(φ2) ∧ acc (φ2). Let v be a generic in-
stant in (t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v]. From b(t) |=R

R̃
↓
(0,b〉(φ2,©(φ1)) it must be b(v) |=R ©(φ1). Overall, φ1 holds throughout

(t, u + ǫ] for some ǫ > 0, as in particular b(t + u) |=R ©(φ1). Also, given that
φ2 accumulates at u, there exists a 0 < ν < ǫ such that b(u+ ν) |=R φ2. All in

all, we have established that b(t) |=R Ũ(0,b〉(φ1, φ2).

Next, it is routine to check that the equivalences (9–11) holds also when
Zeno behaviors are allowed. All in all, (8–11) provide a means to replace every
occurrence of strict non-matching until with a formula that contains only strict

matching untils, even when Zeno behaviors are allowed. This shows that M̃TL =

M̃TL
↓

also for Zeno behaviors.

5.3.2 Non-Strict Variant

Let us now prove the equivalence of the matching and non-matching variants of
non-strict until . To this end, we first modify the equivalences (8–11) to deal with
only non-strict operators. Correspondingly, we have the following equivalences.
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U(0,b〉(φ1, φ2) ≡ U
↓
(0,b〉(φ1, φ2)

∨ (♦(0,b〉(φ2) ∧©(φ1) ∧ R
↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1))

(24)

Proof of Formula 24. Let us start with the ⇒ direction, and let t be the current
instant. Assume that there exists a d ∈ (0, b〉 such that b(t+ d) |=R φ2 and for

all u ∈ [t, t+ d) it is b(u) |=R φ1. If also b(t+ d) |=R φ1 or b(t) |=R ©̃(φ2) then

b(t) |=R U
↓
(0,b〉(φ1, φ2), so assume that b(t+ d) |=R ¬φ1 and b(t) |=R ¬©̃(φ2). If

also b(t) |=R acc (φ2), then there exists a 0 < ν < d such that b(t + ν) |=R φ2;
therefore φ2 ∧ φ1 holds at t + ν ∈ (t, t + d) ⊆ (t, t + b〉 which entails b(t) |=R

U
↓
(0,b〉(φ1, φ2).

Otherwise, φ2 does not accumulate to the right of t, and thus b(t) |=R

©̃(¬φ2) in this case. Therefore, it is well-defined d′, the smallest instant in

(t, t + b〉 such that b(d′) |=R φ2 ∨ ©̃(φ2) ∨ acc (φ2); note that d′ ≤ t + d. Note
that clearly b(t) |=R ©(φ1) and b(t) |=R ♦(0,b〉(φ2).

Let us first consider the case b(d′) |=R φ2 If also b(d′) |=R φ1 then surely

b(t) |=R U
↓
(0,b〉(φ1, φ2), so let us assume b(d′) |=R φ2 ∧ ¬φ1 without loss of

generality. Let v ∈ (t, t + b〉; if v ≥ t + d, there exists a w = t + d such
that w ∈ [t, v] and b(w) |=R φ2. If v < t + d instead, then v ∈ (t, t + d) so

b(v) |=R ©(φ1). All this shows that b(t) |=R R
↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1)), which

completes the proof in this case.

Let us now consider the case b(d′) |=R ¬φ2 ∧ ©̃(φ2); hence d′ < t + d. So,
let us assume that φ2 holds over the interval (d′, d′ + ǫ) for some ǫ > 0. Now,
let v ∈ (t, t + b〉. If v > d′, there exists a w = d′ + min(v − d′, ǫ)/2 such that
w ∈ [t, v] and b(w) |=R φ2. Again, we can assume without loss of generality

that b(w) |=R ¬φ1, otherwise we would have immediately b(t) |=R U
↓
(0,b〉(φ1, φ2)

given that w is actually in (t, v] ⊂ (t, t + b〉; so b(w) |=R φ2 ∧ ¬φ1. If v ≤ d′

instead, then v ∈ (t, d′] ⊂ (t, t + d) so b(v) |=R ©(φ1), as φ1 holds throughout

[t, t+ d). All this shows that b(t) |=R R
↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1)), which completes

the proof in this case as well.

Finally, assume b(d′) |=R ¬φ2 ∧¬©̃(φ2)∧ acc (φ2); in this case d′ < t+ d as
well. Since φ2 accumulates to the right of d′, there exists a 0 < ν < (t+ d)− d′

such that b(t+ d+ ν) |=R φ2; therefore φ2 ∧ φ1 holds at t+ d+ ν ∈ (t, t+ d) ⊆

(t, t+ b〉 which entails b(t) |=R U
↓
(0,b〉(φ1, φ2).

Let us now consider the ⇐ direction, and let t be the current instant. If
b(t) |=R U

↓
(0,b〉(φ1, φ2) clearly also b(t) |=R U(0,b〉(φ1, φ2) a fortiori. So let us

assume that U
↓
(0,b〉(φ1, φ2) is false at t; note that this subsumes that b(t) |=R

¬©̃(φ2 ∧ φ1) and that b(t) |=R ©(φ1), i.e., φ1 holds over an interval [t, t + ǫ)
for some ǫ > 0.

If b(t) |=R acc (φ2), then there exists a 0 < ν < min(ǫ, b) such that b(t+ν) |=R

φ2; so b(t) |=R U(0,b〉(φ1, φ2) a fortiori. Otherwise, if φ2 does not accumulate,

©̃(¬φ2) must hold at t. Therefore, it is well-defined u, the smallest instant in

(t, t + b〉 such that b(u) |=R φ2 ∨ ©̃(φ2) ∨ acc (φ2). Note that this implies that
φ2 is false throughout (t, u〉, with the interval being right-open iff φ2 holds at u.

Let us first consider the case b(u) |=R φ2. Let v be a generic instant in [t, u);
recall that φ2 is false throughout (t, u) ⊃ (t, v], and that φ1 is true at t. So
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φ2 ∧ ¬φ1 is false throughout [t, u) ⊃ [t, v], and it must be b(v) |=R ©(φ1) for

b(t) |=R R
↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1)) to be true. So, φ1 holds throughout [t, u) and

φ2 holds at u, which means that b(t) |=R U(0,b〉(φ1, φ2).

Let us now consider the other case b(u) |=R ¬φ2∧©̃(φ2). Let v be a generic
instant in [t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v], and φ1 is true

at t. From b(t) |=R R
↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1)) it must be b(v) |=R ©(φ1). Overall,

φ1 holds throughout [t, u+ǫ] for some ǫ > 0, as in particular b(t+u) |=R ©(φ1).
Clearly, this subsumes b(t) |=R U(0,b〉(φ1, φ2).

Finally, let b(u) |=R ¬φ2 ∧ ¬©̃(φ2) ∧ acc (φ2). Let v be a generic instant in
[t, u]; recall that φ2 is false throughout (t, u] ⊇ (t, v] and φ1 is true at t. From

b(t) |=R R
↓
(0,b〉(φ2 ∧ ¬φ1,©(φ1)) it must be b(v) |=R ©(φ1). Overall, φ1 holds

throughout [t, u + ǫ] for some ǫ > 0, as in particular b(t+ u) |=R ©(φ1). Also,
given that φ2 accumulates at u, there exists a 0 < ν < ǫ such that b(u+ν) |=R φ2.
All in all, we have established that b(t) |=R U(0,b〉(φ1, φ2).

U(a,b〉(φ1, φ2) ≡ U
↓
(a,b〉(φ1, φ2)

∨
(
�[0,a](φ1) ∧ ♦=a

(
U(0,b−a〉(φ1, φ2)

)) (25)

U[0,b〉(φ1, φ2) ≡ φ2 ∨ U(0,b〉(φ1, φ2) (26)

U[a,b〉(φ1, φ2) ≡
(
♦=a(φ2) ∧ �[0,a)(φ1)

)
∨ U(a,b〉(φ1, φ2) (27)

All in all, (24–27) provide a means to replace every occurrence of non-strict
non-matching until with a formula that contains only non-strict matching untils,
even when Zeno behaviors are allowed. This shows that MTL = MTL↓ also for
Zeno behaviors.

6 Summary and Discussion

Let us provide a summary of the relative expressiveness results of this paper.
Figure 5 displays the relative expressiveness relations for non-Zeno behav-

iors. Note that the problem of the relationship between ♭M̃TL
↓

and ♭MTL is

still open. In particular, it may be ♭M̃TL
↓
⊂ ♭MTL, or ♭M̃TL

↓
⊃ ♭MTL, or

♭M̃TL
↓

= ♭MTL, or even that ♭M̃TL
↓

and ♭MTL have orthogonal expressive
power.

Figure 6 displays the relative expressiveness relations if Zeno behaviors are
allowed. All the separation proofs for flat formulas exploit non-Zeno behaviors;
therefore they subsume the separation of the same language classes over generic
(i.e., including Zeno) behaviors.

Future work. Future work will first of all try to assess the relative expres-
siveness relations that are still unknown. It will also consider other variations
that may change the currently known relative expressiveness relations, such as
the use of past operators.
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MTL = M̃TL

MTL
↓

= M̃TL
↓

‖ ‖

♭M̃TL♭MTL

♭MTL
↓

♭M̃TL
↓

⋂

⋂⋂ ⊂

⊂

Figure 5: Expressiveness over non-Zeno behaviors.

MTL ⊂ M̃TL

MTL
↓ ⊂ M̃TL

↓

‖ ‖

♭M̃TL♭MTL

♭MTL
↓

♭M̃TL
↓

⋂

⋂⋂ ⊂

⊂

Figure 6: Expressiveness over Zeno behaviors.

Finally, it may be interesting to give a precise characterization of the expres-
siveness of MTL based on the nesting depth of its formulas. Previous work of
this kind has been done for MITL in [AH92a], and for classical temporal logic
in several works such as [EW96, TW04, KS05].

Acknowledgements. We thank the anonymous referees, especially # 4, who
reviewed the conference version of this paper [FR07b] for their scrupulous and
very relevant observations that definitely contributed to improve our work.
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