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Abstract

We develop techniques and methods to scale the application of formal meth-
ods up to large and heterogenous systems. Our solution focuses on real-
time systems, and develops along the two aspects of compositionality and
integration.

In the first part, we provide a compositional framework for specifying
and verifying properties of modular systems, written using metric temporal
logics with a descriptive approach. The framework consists in technical
as well as methodological features. On the technical side, we provide an
array of compositional inference rules to deduce facts about the composition
of modules from facts about each component in isolation. Each rule has
different features that make it more suitable for certain classes of systems.
We also provide a general methodology to guide the formal specification of
modular systems, and the application of the inference rules to verify them.

In the second part, we consider the problem of integration for systems
with both discrete-time and continuous-time components. We provide suit-
able conditions under which metric temporal logic formulas have a consis-
tent truth value whether they are interpreted in discrete or in continuous
time, and we identify a language subset that meets these conditions. We
also characterize the conditions and the language subset with detail. Our
approach to integration permits the verification of global properties of het-
erogenous systems.



Sommario

Questa tesi sviluppa tecniche e metodi per la scalabilitd dell’applicazione
di metodi formali a sistemi grandi ed eterogenei. Le soluzioni proposte si
riferiscono a sistemi real-time, e sviluppano i due aspetti della composizion-
alita e dell’integrazione.

Nella prima parte, si descrive un framework composizionale per la speci-
fica e verifica di proprieta di sistemi modulari, formalizzati con logiche
temporali metriche attraverso un approccio descrittivo. Il framework é cos-
tituito da aspetti sia tecnici che metodologici. Per quanto riguarda quelli
tecnici, si propongono una serie di regole di inferenza composizionali, per
la deduzione di fatti sulla composizione di moduli a partire da fatti su
ciascun componente isolato. Ogni regola ha caratteristiche proprie, che la
rendono pitt adeguata all’uso con certe classi di sistemi. Si fornisce anche
una metodologia generale per guidare I'attivita di specifica formale di sis-
temi modulari, e 'applicazione delle regole di inferenza nella loro verifica.

Nella seconda parte, si considera il problema dell’integrazione per sistemi
con sia componenti a tempo discreto che componenti a tempo continuo. Si
definiscono condizioni sotto le quali le formule in logica temporale metrica
conservano un valore di verita consistente sia che siano interpretate a tempo
continuo sia che lo siano a tempo discreto, e si identifica un linguaggio che
soddisfa queste condizioni. Inoltre, si caratterizzano dettagliatamente tali
condizioni e tale linguaggio. L’approccio all’integrazione proposto permette
la verifica di proprieta globali di sistemi eterogenei.
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1. Introduction

The idea of analyzing computer programs and, more generally, computing
systems with formal techniques dates back to the origin of computer science
itself. Indeed, pioneers such as Turing [Tur49] and von Neumann [GvN63]
have been the first to develop formal mathematical models of programs and
to verify their properties with analytical techniques. This seemed a per-
fectly natural task to pursue: since its inception [Tur36,Soa96], computer
science is rooted in mathematical logic and formal reasoning.

As the discipline evolved, however, the emphasis on formal analysis less-
ened, and the degree of its applicability grew much more slowly than the
other aspects of the computing technology. This happened, on the one
hand, because the most practical areas grew enough to stand indepen-
dently on their own, losing the initial entanglement between theory and
practice. On the other hand, the actual application of formal techniques
requires a conspicuous amount of effort, and the effort involved is inher-
ently hard to automate [Coo71|. Therefore, although it has been longly
advocated by figures such as Dijkstra [Dij72] or Hoare [Hoa84], the practi-
cal application of formal techniques has often been neglected, outside the
research community.

During the last decade or so, things have changed significantly [CW96].
First, the development of novel techniques for the formal analysis of pro-
grams and systems — the most notable being model-checking —
together with the availability of increasingly large amounts of computing
power as predicted by Moore’s law |[Moo65|, have made formal verification
more practically affordable, at least in some domains. Second, we finally
begin to witness areas in which formal methods are slowly making their
ways through industrial practice [CGR95|, such as in hardware verification
and — less frequently — in software development [BCLR04, Das06].

At the same time, formal methods are meeting new challenges [CW96,
JOWO06,Hoa03, HS06]. First of all, their scope of application is widening:
formal analysis is no more limited to computer programs, but it addresses
more generally computing systems. The notion of system encompasses a
huge variety of diverse artifacts, where the computer is only a component
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interacting with several other entities, embedded in a physical environ-
ment [HS06, SLMRO05, Lee05|. Systems are typically large and complex;
their components are usually heterogeneous in their nature and in the
mathematical formalisms they require to be modeled and analyzed. Fi-
nally, time is a dimension which is often prominent in systems interacting
with a physical environment [FMMRO7]. In particular, a quantitative no-
tion of time is required to deal with real-time systems, that is systems
whose requirements involve timeliness properties [Liu00, HM96|. As a re-
sult, formal methods must deal with quantitative real-time properties, a
demanding requisite in itself.

This thesis takes some of these challenges. From a broad perspective, the
overall goal is to develop techniques and methods to improve the scalability
of formal methods to large systems. The size of a model is a hurdle that
is well-known to traditional software engineering [GJM02, Som06, Pre04].
Its solutions stem from the principles of modularization and abstraction
[Par72|: a complex system is suitably divided into interacting parts (called
“modules”), and the characteristics fundamental to each module (with re-
spect to its interactions with the others) are retained, while the details of
the internal behavior of the module are abstracted away. This thesis aims
at extending these practices to the realm of formal analysis techniques and
methods, in order to make it possible to apply them to large systems.

In the context of formal languages and verification, the principles of
modularization and abstraction are often referred to with the term “com-
positionality”. According to this terminology, the first part of this thesis
deals with compositional techniques and compositional methods. In other
words, it tackles the problem of scaling up the processes of formalization
and verification of systems.

Since, as we hinted at above, large systems are often heterogeneous, dif-
ferent parts require different formal techniques and practices. Accordingly,
the natural generalization of a compositional approach is in the direction of
integrating modules of dissimilar attributes, and modeled with varied for-
malisms. In this respect, the second part of this thesis tackles the problem
of integration: extending compositional techniques and methods to deal
with heterogeneous systems.

Finally, this thesis focuses on real-time systems in developing the themes
of compositionality and integration. This class of systems is of major impor-
tance, pervasive, and such that the scalability and heterogeneity challenges
are most prominent. Heterogeneity manifests itself in real-time systems es-



pecially in the form of different ¢ime models required to describe different
parts of a system. Therefore, compositionality and integration are defined
in this thesis according to different time models, and in particular for both
discrete time models and dense (and continuous) time models.

Our approach to real-time systems. Let us describe how the above
goals are approached in this thesis. First of all, we exploit the descrip-
tive approach to the formalization of systems. Therefore, both the sys-
tem model and its properties are expressed with the same formal lan-
guage. Since we focus on real-time aspects, our reference language is
temporal logic [GHR94, Eme90, Pnu77| endowed with metric constructs
[AH93, FMMRO07,BMN00, FPRO6].

The descriptive approach is effectively coupled with a deductive approach
to verification, where proving that a specification satisfies a set of require-
ments amounts to the application of logic-deductive techniques. This is
not a restriction a priori, as the framework that will be developed permits
also different verification techniques. Finally, the emphasis of the work
is not only on technical aspects, but also on methodological instances.
In this respect, besides the viewpoint developed in this thesis, this work
should be collocated within the broader horizon of software and system
development engineering, some of whose fundamental issues we tackled
elsewhere [SFR*06,FRST06|

5 4

The reference formal language. Let us discuss our choice of reference
metric temporal logic. First, we look for a very expressive language, that
is capable of expressing extensive classes of properties. This is required
to pursue in full the descriptive approach, where complex systems specifi-
cations must be expressible with the language. Second, in order to meet
the methodological aspects required by scalability, the logic must possess
suitable constructs to manage modular descriptions in a natural way, such
as modules, genericity, visibility management, etc. Notice that these as-
pects are orthogonal to expressiveness: such constructs do not add to the
expressiveness of the language, but only to its amenability to practical use.
Third, the description of heterogeneous systems requires the language to be
flexible enough to permit different semantics. In particular, we discussed
our interest in developing common techniques for different time models. Fi-
nally, an adequate support of tools and a standard graphical notation are
two very important requirements that are usually desirable of any formal
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language, regardless of its intended usages.

The TRIO metric temporal logic ICCPC*QQ] fulfills satisfactorily these
requirements, and it is therefore the reference formal language of this thesis.
We remark, however, that most of the technical results drawn in this work
may be extended to other formal languages of similar expressiveness, and
the methods can be applicable in different contexts. In particular, the
second part of the thesis focuses on a TRIO subset that is shown to be as
expressive as MTL (according to its definition in [AH93|); therefore, the
results of the second part apply also to MTL straightforwardly.

Plan of the thesis. This introduction is followed by Chapter 2] where the
TRIO temporal logic language is presented in detail. The chapter serves as
a reference for all subsequent uses of the language, and also demonstrates
the use of the language on an example.

The core of the thesis comes after Chapter 2 It is composed of two
parts, corresponding to the two main investigated aspects: Part [I/is about
compositionality, and Part [IT is about integration.

In the first part, the notion of compositionality is defined and framed
in Chapter According to the general guidelines laid there, Chapter
presents several related works about compositional frameworks, and com-
pares their approaches with ours. Chapter[5 introduces our compositional
framework for the language TRIO. The framework is based on several com-
positional inference rules and on a general methodological approach. Both
are introduced and discussed in Chapter[5. Afterward, Chapter 6 illustrates
the compositional framework through two examples: one is a real-time
variation of the classical dining philosophers problem [Dij71], the other is
a peer-to-peer communication protocol.

The second part of the thesis is bridged to the first part by Chapter [7,
where the integration problem is presented as a generalization of composi-
tionality. More specifically, we deal with the integration between discrete
time and continuous time, as it is also discussed in Chapter Then,
Chapter 8] presents a framework in which formulas written in a subset of
the TRIO language and interpreted in discrete time or continuous time can
be integrated within the same system. The example of a simple controlled
system is introduced there to illustrate the ideas in practice. Chapter [9]
discusses some aspects of the integration framework, in order to frame pre-
cisely its usability. In particular, the expressiveness of the subset of TRIO
used in the integration framework is discussed, and a comparison with other



notions of discretization is detailed.
Finally, Chapter[10 concludes the thesis, by summarizing the main results
and by discussing lines for future work.

Publications. Part of the compositional framework presented in Part [T
of the thesis has been published in preliminary form in [FRMMO05a], and
then in [FRMMO07|. Other compositional rules are instead presented in
the technical report [Fur06b]. A detailed analysis of the related works in
compositionality, a subset of which is presented in Chapter |4} is the object
of the technical report [Fur05].

The integration framework discussed in Part [II has been published in
FRO6]. Details omitted in [FR06] have been published in the technical
report [FRO5], while the other report [Fur06c¢| discusses the features of the
integration framework.






2. The TRIO Metric Temporal
Logic

TRIO (Tempo Reale Implicit(ﬂ) CCPCT99,GMM90,MSP94] is a general-
purpose specification language suitable to describe real-time systems. At
its core, it is a first-order linear temporal logic that supports a metric on
time. This basic language is enriched with advanced modular features that
are useful in writing specifications of complex systems. Indeed, it has been
used in a number of industrial projects for for modeling and analyzing
time-critical systems [CCPC*99,BCC*98, GLMZ96,BCC*95,MM97].

In presenting the language, we distinguish TRIO in-the-small — that is
the bare first-order metric temporal language from TRIO in-the-large
— its modular features.

Let us add a terminological remark here. In the descriptive approach
to modeling and analysis — the one we are pursuing in this thesis — a
system is formally described by formally stating its salient properties as
formulas of the language. According to a common software engineering
paradigm [GJMO02|, we name specification the model of the system, that is
the set of formulas describing its behavior. On the other hand, the putative
properties of the system constitute its requirements.

2.1. TRIO in-the-Small

TRIO is a model-parametric temporal logic [MMG92|. This means that
the semantics of its formulas can be defined for various temporal domains
(also named “time models”). We denote the generic time domain as T. In
practice, it is customary to choose totally ordered metric sets as temporal
domains, and more specifically numeric sets.

In this thesis, we are particularly interested in supporting both discrete
and dense time models. Therefore, we will commonly adopt the integers
7, as standard discrete time model, and the reals R as standard dense

Ttalian for “Implicit Real-Time”.
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(and continuous) time model. However, other choices are possible. In
particular, the mono-infinite time domain of the natural numbers IN and
the nonnegative reals R>o are very common choices in the literature on
temporal logic. In the remainder, we will point out distinctions due to
different choices in the time domains, whenever relevant.

2.1.1. ltems

A TRIO specification is built out of a set of basic items. Each item is
a primitive element, such as a predicate (or a function), representing the
elementary model of some feature of the system. Items are defined by a
domain they map their value to and, for functions, the domain of their
arguments. For instance, a predicate is identified by a Boolean domain,
whereas a function of the reals is defined through the domain R of its
argument and that of its values (also R).

Items can be time-dependent (TD) or time-independent (TT); the latter
take values that are constant with respect to the time of evaluation, whereas
the former have in general different values at different time instants. We
define these notions more precisely when dealing with TRIO semantics
below.

2.1.2. Syntax

TRIO is first of all a full-fledged first-order language, so it possesses all
usual propositional and predicative connectives and quantifiers. It also
fully includes arithmetic (and thus, in particular, equality). We do not
give here a formal account of this part of the language, which is standard.

Concerning temporal aspects, TRIO defines a single modal metric opera-
tor named Dist. Thus Dist(F,t) is a well-formed TRIO formula, where F'is
a time-dependent formula (namely, a predicate whose truth value is defined
for every time instant), and ¢ is an element of the time domain denoting a
time distance. ¢t can be positive, negative, or zero, denoting respectively a
distance in the future, past, or the present instant. Intuitively, Dist(F,t)
denotes the fact that the formula F' holds at ¢ time units from the current
time instant. Notice that in TRIO the current time instant is implicit, so
it is not denoted by any syntactic element.

Dist(F,t) is in turn a time-dependent formula, so it is possible to recur-
sively combine the basic operator with propositional and predicative con-
structs, as well as arithmetic, to express complicated time relationships. In
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particular, it is customary to define a number of derived temporal oper-
ators to denote commonly encountered temporal relationships. Table 2.1
lists a number of them.

OPERATOR DEFINITION
Futr(F,t) t > 0 A Dist(F,t)
Past(F,t) t > 0 A Dist(F, —t)

Alw(F) Vd : Dist(F,d)

Som(F) 3d : Dist(F, d)

AlwF(F) Vd > 0 : Futr(F,d)

AlwP(F) Vd > 0 : Past(F, d)

SomF(F) 3d > 0 : Futr(F,d)

SomP (F) Id > 0 : Past(F, d)
Lasts(F,t) Vd € (0,t) : Futr(F,d)
Lasted(F, t) Vd € (0,t) : Past(F,d)

WithinF (F, t) 3d € (0,t) : Futr(F,d)
WithinP(F, t) 3d € (0,t) : Past(F,d)

Within(F, t) 3d € (0,t) : Past(F,d) V Futr(F,d) V F

Until(F, G) 3d > 0 : Lasts(F, d) A Futr(G, d)

Since(F, Q) 3d > 0 : Lasted(F, d) A Past(G, d)

NowOn(F) {ad > 0 : Lasts(F, d) ?f T is dense

Futr(F, 1) if T is discrete
UpToNow(F) {Eld > 0 : Lasted(F, d) ?f T %s d-ense
Past(F, 1) if T is discrete
Becomes(F) UpToNow(—=F) A NowOn(F) %f T ?s dfense
UpToNow(—F) A F if T is discrete

Table 2.1.: Some TRIO derived temporal operators

Inclusion/exclusion of endpoints. Table [2.1] also shows that the stan-
dard definition for TRIO temporal operators involving intervals takes open
intervals, that is excludes both endpoints of the intervals. However, it is
common to use variations of the temporal operators that specifically in-
clude one (or both) of the endpoints of the intervals of the definitions.
These variations are denoted by adding subscripts ¢ (for included) or e (for
excluded). Table [2.2 lists some of these common variations, together with
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their explicit definition.

2.1.3. Semantics

In order to define the semantics of TRIO formulas we have to introduce the
notion of history (or behavior), which are the logic interpretations of the
temporal logic formulas. Let Iy, ..., I, be the basic items of a TRIO speci-
fication. To each item I; we associate a domain D;, that is basically a type.
The domains D can be arbitrarily complex, so as to represent functions and
predicates. For simplicity, we refrain from detailing the representation of
common items such as predicates and functions, and we refer the reader
to standard definitions of mathematical logic [Men97]. We assume that a
satisfaction relation |= is suitably defined, so that for a basic item I and a
value d € D in its corresponding definition domain, d |= I denotes the fact
that [ is satisfied in the interpretation given by d.

Let us now define the notion of behavior (or history): it is a mapping
(that is, a function) b: T — (Dq X --- x D,,) from the time domain T to
the composite set (D x -+ x Dy).

For any behavior b, time independent items have a constant value over
the whole time axis. That is, for any time independent item I;, and for any
two time values t1,t2 € T, it is b(t1)|p, = b(t2)|p,, where b(t)|p, denotes
the projection of the value b(t) to its ith component.

For a behavior b, a time value t € T, and a TRIO formula F', we write
b(t) =1 F to denote the fact that F holds (i.e., it is true) when ¢ is taken
as current time instant. The definition of the =1 when F is a basic item is
defined from the other satisfaction relation |= introduced above. Namely,
for a basic (time-dependent or time-independent) item I, associated to the
domain D, the k= relation is subsumed by the =1 relation.

b(t) r I b(t)]p = T

Again, we avoid defining explicitly the relation = for the basic proposi-
tional and predicative constructs, since this is routine [Men97]. Instead, let
us define the semantics of the modal operators as follows. For any TRIO
time-dependent formula F', behavior b, time instant ¢ € T, and time value
t' € T, we have:

b(t) =p Dist(F, ') iff b(t+¢) Er F

We adopt the convention of assuming an implicit universal closure of all
free variables, as well as of the (implicit) time variables, when interpreting

10
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TRIO formulas. That is, for any TRIO formula F(vy,...,v,) with free
variables vy, ..., vy, we define:

blEr Fiff forallt € T:b(t) =1 Yui,...,0m : F(v1,...,0m)

Finally, a set of TRIO formulas Fi,...,F, constitutes a specification
defining a set of behaviors B = {b;} satisfying all formulas of the specifi-
cation: b€ Biff b |=p F; for alli=1,...,n.

Conventions and simplifications. In the remainder, we will introduce im-
plicit simplifications in presenting proofs involving TRIO formulas, when-
ever this does not sacrifice the clarity and precision of the exposition. More
precisely, when proving some formula G from a specification given by the
formulas Fi,..., F,, we implicitly assume to have taken: (1) a generic
behavior b for the item and time domain under consideration, such that
bEr F; foralli =1,...,n; and (2) a generic implicit current time instant
t, without mentioning them explicitly. When possible, we even assume the
current time instant to be 0; notice that this is without loss of generality
with a bi-infinite time domain such as Z and R. For instance, we will
use these simplifying conventions in the proof of the dining philosophers
example, in Section [6.2!

We also assume the usual conventions on the precedence of logic oper-
ators; namely, in decreasing order of precedence, we have: —, A and V, V
and 4, =, ©.

2.1.4. States and Events

When describing the dynamics of complex systems, it is often useful to
introduce items with a constrained behavior, that are suitable to model
naturally classes of phenomena. These constrained items are also called
ontological constructs. In particular, when dealing with dense time models,
it is usually convenient to introduce two such constructs: states and event
[GMol).

An event is a time-dependent predicate which is true only at isolated
time instants; it is useful in modeling phenomena whose actual duration is
negligible with respect to the overall dynamics of the system, so that they
can be modeled as having a zero-time duration [GMM99]. For instance, the
clicking of a switch is a phenomenon which can usually modeled as having
zero-time duration. Formally, a time-dependent predicate E is an event

11
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whenever it obeys the following formula [GMO01] (recall that we assume a
dense time domain):

UpToNow(—E) A NowOn(—FE)

A state is instead a time-dependent predicate which holds over non-
empty time intervals. It is suitable to model phenomena which are never
“instantaneous”, but always have a non-null duration; for instance, a lamp
being on or off is a phenomenon suitable modeled with a state, since it is
reasonable to assume that it cannot switch from on to off and back to on
again in zero time (under the assumption that the time unit is sufficiently
fine-grained). Formally, a time-dependent predicate S is a state whenever
it obeys the following formula [GMO1] (recall that we assume a dense time
domain):

(UpToNow(S) A S A NowOn(S)) V
(UpToNow(—=S) A =S A NowOn(—S)) V
(UpToNow(—=S) A NowOn(S)) V
(UpToNow(S) A NowOn(—5))

Notice that the value of a state on the edge of a transition is unspecified:
it can be either the one on the left or the one on the right of the transition
instant. We can further specialize a state to be right-continuous (resp. left-
continuous) by requiring that the value at transition points is always equal
to the one on the right (resp. on the left). Formally, S is a right-continuous
state if it is a state and it obeys:

S < NowOn(S5)
and it is a left-continuous state if it is a state and it obeys:

S < UpToNow(S)

2.1.5. Zenoness

When defining the semantics of TRIO formulas above, we made no as-
sumptions about regularity of the behaviors a formula (or a whole spec-
ification) is interpreted on. In particular, we did not rule out behaviors
where time distances between consecutive events become arbitrarily small

12
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(i.e., infinitesimal). Note that this is possible only for dense time models,
therefore the following discussion applies to such time models only.

Such behaviors are called Zeno behaviors |[AL94|: they do not usually
correspond to physically meaningful behavior, and they are a source of in-
completeness when reasoning about derived properties of a system [GMO1].
For instance, intuitive notions such as “the next changing point” of an item
may be undefined for Zeno behaviors. As a result, most metric temporal
logic languages adopt a priori restrictions on the behaviors on which for-
mulas of the language are interpreted, ruling out Zenoness at the semantic
level (see e.g. [AH92D)).

In TRIO, instead, one usually follows a different approach, detailed in
[GMO1]. First, we do not introduce any restriction a priori on the regularity
of the behaviors. This allows one to state general results on formulas of the
language in the most general way. Then, if Zenoness is really an issue in the
specification of a system, one introduces suitable restrictions on the basic
item of the specification so that they do not encompass Zeno behaviors.
In general, it is sufficient to assume the following formula for a generic
time-dependent item I to rule out its Zeno behaviors:

(UpToNow(I) V UpToNow(—=I)) A (NowOn(I)V NowOn(—I))

Notice that the definition of states and events subsumes this axioms, so, in
particular, states and events cannot exhibit Zeno behaviors by construction.
Similarly, we can introduce suitable restrictions to rule out Zeno behaviors
for items mapping to denumerable and uncountable domains. For brevity,
we do not present them here [GMO01].

2.2. TRIO in-the-Large

To specify large and complex systems, and to support encapsulation, reuse
and information hiding at the specification level, TRIO has the usual
object-oriented constructs such as classes, inheritance and genericity (see
e.g. [Mey97]).

In this thesis, we do not develop aspects depending on inheritance mecha-
nisms, so we do not introduce details about how this feature is implemented
in TRIO; we refer the interested reader to [MSP94, FMM™04]. Let us just
note that TRIO’s notion of inheritance is a very liberal one, so it gives the
user a lot of freedom in reusing specification artifacts.

13
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2.2.1. Classes and Modules

In TRIO, the basic encapsulation unit is the class. Classes can be simple
or structured. Simple classes are collections of parameters, basic items,
and formulas. Parameters introduces gemericity in the class definition.
Formulas, instead, constitute the formal description of the class, that is
formalize the behavior of the class’ items. Structured classes, in addition,
contain instances of other classes, called modules.

An instance of a simple class is, in logical terms, a model of the class’
formulas (i.e., the set of all behaviors satisfying the conjunction of all for-
mulas), according to the semantics we have defined above. An instance of
a structured class recursively contains instances of its composing modules.

Connections. Items of different modules can be connected: whenever two
items are connected, they are implicitly defined as logically equivalent. If a
more complicated semantics to represent connections in a system is needed,
one may represent all the relevant information in an ad hoc class.

2.2.2. Types of Formulas

Each formula in a TRIO class can be “tagged” with one of these three
attributes: aziom, assumption and theorem. When necessary, we will re-
fer to these formulas as (TRIO) “axiom, assumption, theorem formulas”,
respectively. From a methodological point of view, axioms postulate the
basic behavior of the system (its specification), assumptions express con-
straints we must validate? by means of other parts of the system (external
to the current class) and theorems describe properties that are derived
from other formulas (including requirements). Therefore, the verification
of a specification would basically consist in proving theorems from axioms
and assumptions, after validating the latter. In Section [5.4 we illustrate a
compositional methodology that exploits these language features.
Occasionally, in the remainder we will also use the term “lemma” to
denote an intermediate result for a theorem. Although this is not strictly a
TRIO keyword, its role is basically the same as that of a “lesser” theorem.

2From a purely formal point of view, however, the validation of a formalized assumption
consists exactly in a formal proof, from other formulas. Thus, here we use the verb
“validate” only for methodological clarity.

14



2.2. TRIO in-the-Large

2.2.3. Visibility and Interfaces

Each primitive item can be declared to be visible to other classes, or non-
visible. Each formulas also has a notion of visibility, which is derived from
the visibility of the items the formula predicates on. Namely, all formulas
predicating on visible items only are considered as visible, while all other
formulas are considered as non-visible outside the class.

Classes and their interfaces are synthetically represented with a graphical
notation, where classes are pictured as boxes, visible items are denoted
by lines crossing the class box, whereas non externally visible items stay
entirely within the box boundaries. States are graphically denoted by thick
lines, whereas events are denoted with a bullet placed where the line of the
corresponding item touches (or crosses, if visible) the class’ box.

For example, Figure 2.1 represents a simple class, while Figure [2.2 rep-
resents a structured class and the connections among items of its modules.
Both will be described in the following Section [2.3.

2.2.4. Higher-Order TRIO and ArchiTRIO

In this thesis we comply with TRIO “standard” notation and semantics.
More recently, however, a higher-order extension of the TRIO language —
called HOT has been introduced [FMM™04]|. Higher-order constructs
make it possible — among other things — to define more simply the seman-
tics of modular and object-oriented features. In particular, higher-order
types allows one to identify classes with types. This not only simplifies the
formalization of modularity and inheritance rules, but also makes TRIO
classes first class entities |GJ97]. Thus, the use of higher-order features
is the most natural way to express complicated relationships between in-
stances of classes.

Besides providing a more general formal framework, and exhancing the
expressiveness of the language to a higher level, HOT has proved useful
in defining formally the semantics of other extensions of the TRIO lan-
guage. In particular, HOT provides a way to define the semantics of the
ArchiTRIO language [PRM95|. ArchiTRIO exploits the UML graphical
notation [UMLO05,UML04, EPLF03], to which it gives a defined formal se-
mantics. Therefore, it combines a popular and intuitive notation — familiar
to most software engineers, and not only with the rigor and
unambiguity of a logic notation. ArchiTRIO has been designed to deal es-
pecially with the formal specification of software and system architectures,
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although its actual scope of applicability is much wider. We remark that
most of the results of this thesis can be readily adapted to ArchiTRIO
notation and concepts.

2.3. The Dining Philosophers Example

In order to illustrate TRIO’s features, and to familiarize with its syntax and
semantics, we introduce an illustrative example based on the specification
of the dining philosophers problem |Dij71]. This classic problem considers a
set of philosophers sitting around a table, competing for the acquisition of
some shared resources, namely one fork for each pair of philosophers. When
one succeeds in acquiring the forks on both sides, he/she can eat for some
time, after which the forks are released for others to use. The non-eating
activity is usually referred to as “thinking”. In the traditional formulation of
the problem, the goal is to prove the absence of deadlocks, which may arise
in acquiring the shared forks. In our specification, instead, the goal is to
prove a real-time, global, non-starvation property for all the philosophers,
i.e., the fact that, under suitable assumptions, every philosopher eats within
a given time.

This will be pursued later, through the compositional methodology to be
introduced in Section[5.4. In this section, we just give the basic specification
of the dining philosophers problem. In order to familiarize the reader with
TRIO syntax, we also provide the full TRIO code of the dining philosopher
in Appendix

2.3.1. Basic Items and Classes

The basic class in our formalization is a philosopher class. Throughout
the example, we assume time to be continuous.

The basic items of the class are the event item start for system initial-
ization, and the events take(s) and release(s), with s € {l,r}, indicating,
for each philosopher, the action of taking or releasing the left or right fork.
Other items are the state eating, which is true exactly when the philoso-
pher is eating, and the states holding(s) and available(s), meaning that the
philosopher is holding a given fork or that the fork is available (i.e., not
held by the adjacent philosopher). For notational convenience, we also in-
troduce the states thinking and hungry, representing the philosopher not
eating, and being ready to eat again (after a sufficiently long thinking pe-
riod), respectively.
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The philosopher class is parametric with respect to three constants
te, Te, Tt. They denote, respectively, the minimum eating time, the max-
imum eating time and the thinking time after an eating session, before
becoming hungry again. Obviously, we assume T¢ > te > 0.

2.3.2. Philosopher Specification

In order to demonstrate the use of TRIO as a specification formalism, we
now provide a set of formulas that formally describe the basic behavior of
a philosopher. In particular, we provide a set of informally stated basic
properties of the behavior of each philosopher, and we encode them as
TRIO axioms of the philosopher class. Through the example, the reader
can familiarize with the syntax and semantics of TRIO operators.

We postulate that each philosopher always takes and releases both forks
simultaneously (axiom holding synch); consequently, if only one fork is
available, the philosopher waits till the other fork becomes available as well.

Axiom 1 (philosopher.holding synch). holding(l) < holding(r)

A philosopher is “hungry” when he/she has not eaten for a period of at
least Ty: this duration is formalized through the Lasted operators, as in
the following axiom.

Axiom 2 (philosopher.hungry). Lasted(—eating, T¢) < hungry

If the philosopher is hungry and if the forks are available, two situations
are possible: either he/she takes both forks, or nondeterministically one of
his/her neighbors takes a fork at that very time, so that the fork is not
available anymore and the philosopher “loses his/her turn”. This is formal-
ized by axiom acquire. In particular, in order to express the availability
of the forks in the immediate past (from the current instant) we use the
UpToNow operator. Similarly, the NowOn operator formalizes the non
availability in the immediate future.

Axiom 3 (philosopher.acquire).
hungry A UpToNow (available(1) A available(r))
= (take(l) A take(r)) V NowOn(—available(l) V —available(r))

Axioms eat_till release and eating duration state that, when a
philosopher succeeds in acquiring both forks (i.e., holding(l) A holding(r)
becomes true), he/she eats for a time duration of more than t. and less
than T, time units, after which he/she releases both forks.
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Axiom 4 (philosopher.eat till release).

Becomes(holding(1) A holding(r))
= (3t > te : Lasts(eating, t) A Futr(release(l) A release(r) ,t))

Axiom 5 (philosopher.eating duration). E
Lasted(eating,t) = t < T,

Whenever a philosopher holds both forks we consider him /her eating.
This corresponds to predicate eating being true, and is formalized by axiom
eating def.

Axiom 6 (philosopher.eating def). holding(l) A holding(r) < eating
The state eating is false whenever the philosopher is “thinking”.
Axiom 7 (philosopher.thinking def). thinking < —eating

A thinking session (i.e., one in which the philosopher does not hold both
forks) which has just begun lasts at least T¢ time units (axiom think-
ing duration).

Axiom 8 (philosopher.thinking duration).
Becomes(thinking) = Lasts(thinking, T¢)

Axioms taking and putting describe the consequences of a take and
release action, respectively. More precisely, a fork s can be taken when (up
to now) it is available and not already held; in this case, the state holding(s)
stays true until a release for the same fork is issued. On the other hand, a
fork s can be released when (up to now) it is held; in this case, the state
holding(s) stays false until a take for the same fork is issued.

Axiom 9 (philosopher.taking).
take(s) A UpToNow(—holding(s)) A UpToNow (available(s))
= Until(holding(s) , release(s))

Axiom 10 (philosopher.putting).
release(s) A UpToNow (holding(s)) = Until(—holding(s) ,take(s))

3Recall that free variables (i.e., t) are implicitly universally quantified at the outermost
level.
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philosopher

start

take(s)

release(s)

available(s

Figure 2.1.: Interface of the philosopher class

2.3.3. Interface and Graphical Representation

Figure [2.1] illustrates the items and interface of the philosopher class.
Thus, for instance, holding(s) and eating are both visible items; therefore
axiom eating def is also visible. eating has to be declared as visible
because, even if it is not used directly in the connections between philoso-
phers, the global non-starvation property that we are going to state, in
Section [6.2.4, predicates on it. The same holds for the start event, whereas
the thinking state is visible since a theorem predicating on it will be used
in proving the assumptions of other classes. Notice that TRIO’s graphical
notation does not represent any timing information about the class, which
is instead represented entirely by formulas.

We compose N > 2 instances of the philosopher class into the new
composite class dining N. The N modules of the philosopher class are
instantiated in an array Philosophers indexed by the range [0..N — 1].
The modules are connected so that the available item of each philosopher
corresponds to the negation of the holding item of the philosopher on
his/her left /right, as pictured in Figure

In Section 6.2} a global property of this set of philosophers will be proved,
namely that each philosopher eats regularly for a certain amount of time.
Note that all the instances in the array have the same values for the pa-
rameters to, To, Tt. This ensures that the timed behavior of the various
philosophers is the same, thus permitting to prove the global property. We
leave the analysis of the impact of relaxing such constraint to future work.
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dininig N
Philosophers Philosophers Philosophers
[(i — 1) mod N] (4] [( 4+ 1) mod N]

—holding(r) available(1) available(r) —holding(1)

J

available(r) —holding(l) —holding(r) |available(l)

Figure 2.2.: Interface of the dining_N class

2.4. TRIO Tools and Implementations

Although tool support and implementation is not the focus of this thesis, it
is undeniable that an adequate tool support is a key feature that a formal
language must possess in order to be usable and used in practice,
on large and complex systems. Therefore, in this section we give a brief
overview of the available tool support for the TRIO language.

We used TRIO tools to actually carry out various examples (of differ-
ent sizes and complexities) of specification and verification; however, we
present them only in human-readable form in this thesis. This shows that
the methods and techniques we develop in this thesis are suitable to be
used with TRIO tools. Then, tool development is an orthogonal, but rec-
oncilable, concern with respect to those that are the content of this thesis.

The purposes of tools with respect to formal methods usage are various.
Here, we distinguish three classes of usages, although this classification is
not meant to be exhaustive or rigid. On the other hand, in [SFRT06] we
provide a framework where the precise roles of verification and validation
can be more clearly defined.

Verification tools. The purpose of verification is to prove that a specifica-
tion entails some set of requirements. In other words, given a speci-
fication model S and a statement of the requirements R, the goal of
verification is to prove the theorem S R. There is a large variety of
verification techniques, and correspondly a large variety of verifica-
tion tools. In particular, we have both automatic and semi-automatic
tools; the latter require human guidance, whereas the former are fully
algorithmic.

Validation and testing tools. Their purpose is to provide some confidence
in the correctness of the specification by exploring some of its be-
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haviors (rather than exhaustively deriving properties common to all
behaviors entailed by the specification, as in verification tools). This
can be achieved, for instance, by extracting test cases from a formal
specification, by executing the specification itself, etc.

Integrated Development Environment (IDE) tools. These are integrated
editors and graphical environments that support the user in activi-
ties such as: writing formulas respecting the syntax of the formal
language, extracting a textual formal description from a graphical
one, making elementary consistency checks among parts of a specifi-
cation, etc.

With respect to the goals of this thesis we are particularly interested
in formal verification tools; so, the next section presents some of those
available for the TRIO language. Next, we also briefly discuss other TRIO
tools.

2.4.1. Verification Tools

In the design of a specification language there is a typical trade-off between
expressiveness and complexity of verification. On the one hand, one desires
the most expressive language, in order to be able to express extensive classes
of complex properties. On the other hand, the complexity of verification
typically increases with expressiveness: the more expressive the language,
the more complex the verification procedures for that language.

In particular, TRIO is a very expressive language, so much that it is also
undecidable. This means that the general verification problem is not fully
automatable for TRIO formulas: it is impossible to design an algorithm
capable of correctly determining the truth of a TRIO formula from a set
of TRIO axioms, which is both fully automatic and works for any TRIO
formula [GM93,HMUO00, Sip05]. As a consequences, there are two ways out
of this conundrum: either we restrict ourselves to a proper subset of the
TRIO language, one which is fully decidable, or we give up full automation.

The TVS Tool

The latter choice has been pursued with the TRIO Verification System
(TVS, also called TRIO/PVS). It consists of an encoding of all the TRIO
language in the PVS higher-order theorem prover |[ORS92|, coupled with a
set of proof strategies (i.e., scripts in PVS jargon) that work with the PVS
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prover and aid to simplify and — to some extent — automate proofs of
TRIO formulas encoded in the PVS language.

TVS is particular suited to deal with the peculiar difficulties of dense
time, for which it exploits PVS capabilities of manipulating properties of
simple arithmetic over the reals. As we already discussed the tool cannot
be fully automatic, and indeed it requires substantial human intervention.
On the other hand, it provides a relatively complete set of inference rules
which is used in practice to guarantee and verify every single step in
a system verification, still automating the most elementary and repetitive
steps.

The TVS system is described in [GMO01, Fif98| for what concerns in-the-
small TRIO, while the encoding of the modular extensions is documented
in [Fur03b, FR04]. We extensively used it in machine-checking proofs of

the various examples we provide in this thesis.

TRIO2ProMelLa and Other Fully Automatic Tools

Restricting to a proper subset of the TRIO language allows to achieve
decidability, and thus to provide fully automated tools.

TRIO2ProMeLa is based on a TRIO subset where all items vary over
finite domain, the only infinite domain being time, which is taken to be the
naturals IN; moreover, there is a limited support for TRIO modular features.
Under these restrictions, it is possible to encode a TRIO specification as a
set of ProMeLa processes |Hol03]. ProMeLa is the input language of the
SPIN linear-time model checker [Hol03|. Therefore, one can rely on the
SPIN tool to verify TRIO properties automatically.

The TRIO2ProMeLa tool is documented in [MPSS03, PSSM03]. We
notice that the language subset used by TRIO2ProMeLa is close in expres-
siveness to STRIO, a subset of the TRIO language that we will define and
use in Chapter[8 of this thesis, when defining a framework for discrete- and
continuous-time integration. Indeed, the example of Section has been

formally verified with TRIO2ProMeLa.

Zat. The Zat tool is based on translating a purely propositional subset
of the TRIO language to a satisfiability (SAT) solver. The translation

exploits bounded model-checking techniques ﬂBCC+99,BCCZ99 to verify
a TRIO specification over finite discrete time, or over periodic behaviors
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over infinite discrete time (i.e., the naturals)@

2.4.2. Other Tools

TRIDENT (TRIO Development EnviroNmenT) is a IDE for the TRIO
language that supports writing modular TRIO specification. It is developed
as an Eclipse plug-in, and in its future developments it will serve as an
integrated interface to all other TRIO tools, as well as the UML features
of ArchiTRIO [CPRS06].

Other TRIO tools exist for tasks such as test-case generation |[MMMO95,
SMMO00] and and history checking [FM94]. We refer to [TRI] for more

information about these tools.

4There is no official Zat documentation yet, but the interested reader can refer to

TRIO6].
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Table 2.2.: Some included /excluded variations of TRIO temporal operators
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OPERATOR DEFINITION
AlwF(F) Vd > 0 : Futr(F,d)
AlwF;(F) vd > 0 : Futr(F, d)
AlwP(F) Vd > 0 : Past(F,d)
AlwP;(F) Vd > 0 : Past(F, d)
SomF(F) 3d > 0 : Futr(F,d)
SomF;(F) 3d > 0 : Futr(F,d)
SomP,(F') 3d > 0 : Past(F, d)
SomP;(F) 3d > 0 : Past(F,d)
Lastsee (F, 1) Vd € (0,t) : Futr(F,d)
Lastsei (F, t) vd € (0,t] : Futr(F,d)
Lastsie (F, t) Vd € [0,t) : Futr(F, d)
Lasts;i (F, t) Vd € [0,t] : Futr(F,d)
Lastedee(F, t) Vd € (0,t) : Past(F, d)
Lastede;(F, t) Vd € (0,t] : Past(F,d)
Lasted;c(F, ) Vd € [0,t) : Past(F,d)
Lasted;i(F, t) Vd € [0,t] : Past(F,d)
WithinFe.(F,t) 3d € (0,t) : Futr(F,d)
WithinFe; (F, t) 3d € (0,t] : Futr(F,d)
WithinFie(F, ) 3d € [0,t) : Futr(F,d)
WithinF;; (F, ) 3d € [0,t] : Futr(F,d)
WithinPee(F, t) 3d € (0,t) : Past(F, d)
WithinPe (F, t) 3d € (0,t] : Past(F,d)
WithinPie (F, t) 3d € [0,t) : Past(F,d)
Withinpii(F, t) dd € [0, t] : Past(F, d)
Withine.(F,t) | 3d € (0,t) : Past(F,d) V Futr(F,d) V F

S

3d € [0,¢] : Past(F,d) vV Futr(F,d) V F




Part |.

Compositionality
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3. Compositionality and
Compositional Inference Rules

As we mentioned in the Introduction, one drawback often attributed to for-
mal methods is that they do not “scale up”, i.e., when the system grows in
complexity, formal methods are too cumbersome and unwieldy to be used
effectively. A natural solution to this problem is to apply well-known soft-
ware engineering principles such as modularity and separation of concerns
not only to design, but also to the verification of formal models.

Compositional techniques can help in this regard: at their core, they con-
sist in the application of a compositional inference rule which allows one
to infer facts about a system built out of the composition of some mod-
ules from other — usually more elementary — facts about the individual
modules in isolation. There is a certain amount of work available in the lit-
erature about compositional inference rules; we review the most significant
works in Section [4. The goal of this Part is to develop a practical approach
to compositionality, according to the guidelines that we are laying down
henceforth.

3.1. Defining Compositionality

Let us start by giving a definition to the object of our study: composition-
ality.

The term compositionality and the idea of composition encompass a large
variety of methods and techniques that aim at describing how to compose
smaller systems to form larger systems, and how to manage the resulting
complexity of the overall system. Clearly, this broad objective can be
considered from several, disparate, very different perspectives.

Let us first attempt a very general (and hence necessarily, to some extent,
vague) definition of compositionality. In lay terms, the Merriam-Webster
Dictionary of English [MW98| defines the verb compose as “to form by
putting together”. This basic definition encloses the idea at the root of
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3. Compositionality and Compositional Inference Rules

compositionality: forming a system by putting together smaller subsys-
tems.

A more technical definition reflecting this idea is that usually adopted in
the philosophy of language, as reported by Janssen [Jan98]:

“The meaning of a compound expression is a function of the
meanings of its parts and of the rule by which the parts are
combined”

This compositionality principle is also called Frege’s principle, from the
name of the author who first formulated the principle [Fre23].

This very same idea can be adapted to program verification: de Roever
et al. [dARABH"01, pg. 48] define compositionality as:

“That a program meets its specification should be verified on
the basis of specifications of its constituent components only,
without additional need for information about the interior con-
struction of those components”

Therefore, in compositional verification we aim at verifying the global spec-
ification of a system by composing the specifications which are local to the
various components of the system.

Adopting a rather liberal — but still technical — definition, composi-
tionality consists in bringing the well-known engineering (and software en-
gineering in particular) practices of modularization and abstraction from
the specification to the verification domain. Hence, in this thesis we adopt
the following general definition of compositionality:

“The techniques and methods that permit the modularization
of the verification process of a large system”

Notice that the above definition prescribes two main areas of investiga-
tion: techniques and methods.

e The technical aspects of compositionality consist in the study of the
rules of composition for the chosen formal language; in particular, we
are interested in temporal logics, and real-time extensions of them.

Even more concretely, studying the technical aspects of composition-
ality means formulating a number of compositional inference rules.
These are logic inference rule whose hypotheses state some facts about
modules of the system in isolation, and whose conclusions state some
facts about the composite system working as a whole.
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We remark that the technical aspect is the aspect that has been
more deeply studied in the literature, in particular in the form of
compositional inference rules, as we will discuss in Chapter [4!

e The methodological aspects of compositionality consist in the study of
how compositional techniques can be successfully applied in practice
to (models of) modular systems.

Therefore, a compositional method should suggest how to organize
the local specifications of each module so that they can be composed
through a compositional inference rule. Moreover, it should also de-
scribe a general “attitude” in formalizing and reasoning about com-
posite systems, one which helps in managing the complexity of for-
malizing systems composed of several modules, and of the resulting
correctness proofs.

We will develop methodological aspects of compositionality in the
following Chapter [5] and especially in Section 5.4,

Finally, let us remark that in this thesis we focus on the widespread
rely/quarantee paradigm of compositionality. This is a natural way of spec-
ifying the module of a system whose behavior depends, in general, on the
behavior of its environment. In a nutshell, a rely/guarantee specification
expresses the guaranteed behavior of a module, relying on an assumption
about the behavior of the module’s environment. In particular, the mod-
ule does not guarantee any behavior if its environment does not respect
the assumption about it. In Chapter [4, when reviewing related works on
compositionality, we will briefly mention compositional works that do not
use the rely/guarantee paradigm. However, the rely/guarantee paradigm
is a general and proper one for specifying the behavior of modules to be
composed; therefore, it is without practical loss of generality that we focus
on this paradigm in this thesis.

3.2. Dimensions of the Compositional Problem

In order to describe the approach to compositionality developed in this
thesis, we outline what are the major dimensions according to which a
compositional framework can be developed.

First of all there are some technical dimensions that are related to is-
sues such as the choice of the language in which to develop the framework,
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3. Compositionality and Compositional Inference Rules

the nature of time (discrete or dense, linear or branching), the semantics
given to composition, etc. Let us postpone the analysis of these aspects to
Chapter [4] where they will be presented with reference to related works in
the literature. In fact, although considering these aspects cannot obviously
be avoided, we claim that they are mostly determined by the choice of the
reference formal language to be used in the analysis. Under this respect,
the framework we present in this thesis aims at generality; thus it intro-
duces as few semantic assumptions as possible and uses an expressive and
straightforward formalism.

On the contrary, let us now focus on the most important features that
transcend the technical choices and characterize a compositional frame-
work. For each feature, let us briefly point out what are the most common
choices in the current literature, and how our framework differs. Doing so,
we lay out the general guidelines for our approach to compositionality.

e The first aspect is the “compose vs. decompose”. In the literature, we
find both decompositional and compositional approaches. Decompo-
sitional approaches are basically refinement techniques where a single
module is refined into the composition of several smaller modules;
compositional techniques ensure that the composition of the refined
modules retains all (or some) properties of the original single mod-
ule. Compositional approaches, instead, start from a set of individual
modules and provide ways of inferring properties about the composi-
tion of these individual modules into a larger system.

In this thesis, we are mostly interested in the compositional approach.
First, a decompositional approach would by definition involve refine-
ment techniques, and thus aspects that are simply out of the scope
of this work, as they would require a different framing and a differ-
ent focus. Second, compositionality allows one to reuse the speci-
fications of single modules in different systems that instantiate the
modules. Therefore, we argue that compositionality is mostly use-
ful in such contexts, where the possible additional burden introduced
by the construction of a compositional specification |Lam98| is then
amortized by reusing the same specification in multiple proofs for
multiple different systems.

e Most of the literature deals with the technical aspects of composi-
tionality, whereas methodological aspects are often neglected.
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In this thesis we try to develop not just some compositional infer-
ence rules, but also a general methodological approach to the issue
of compositional verification. We already discussed in the Introduc-
tion how the traditional practices of modularization, abstraction, and
information hiding can be successfully applied also to the formal spec-
ification and verification of modular systems. This is integrated with
a suitable notation such as TRIO, which gives to the user suitable
constructs to implement these practices.

Most works in the literature provide one unique compositional infer-
ence rule, with the tacit assumption that all facts about the com-
position of modules should be inferred using the rule. This is often
not very practical: the verification process is often a complex task
that requires much flexibility on how it should be carried out. There-
fore, constraining the process to some prescribed “recipe” may lead
to needless complications.

On the contrary, we provide several different rules, we give a possible
taxonomy according to which different rules can be categorized, and
we discuss how the dimensions of the taxonomy mirror aspects of
real systems. Our goal is not only to provide a variety of rules among
which the user can choose, but also — and most importantly —
to illustrate the attitude to reverse the usual approach to applying
compositionality. Rather than having a rule (or a set of rules) and
describing the system in a way which is amenable to the use of the
rule, we suggest to first formalize the system according to the general
modularization methods we discussed in the previous point. Then,
after the system is formalized, one tries to find a suitable rule that
fits the system in question; possibly, the user should also develop a
new rule, based on the “lessons” learned from the existing rules and
the formalization of the system, to suitably fit the system itself and
its verification goals. Therefore, our catalog of compositional rules is
also meant to provide an illustration on how compositional rules can
be built and modified according to one’s needs. In Section 6.3/ we will
provide an example of how this can be done in practice.

Since, as we discussed in the previous point, one single rule is often
assumed to be used to handle all possible cases, its completeness is
usually regarded as an important feature |[NT00, Fur05]. However,
as we see in Chapter [5, compositional rules are complete in a trivial
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way, with respect to compositionality. This means that there exist
global properties which  although provable with the rule in question
thanks to completeness — cannot be usefully “split” among properties
local to different modules, but require a trivial partitioning of the
system where one module behaves as the whole system.

Therefore, we claim that completeness is not an indispensable feature
of a compositional rule. More specifically, completeness must not be
traded off with simplicity of a compositional rule or with its practical
applicability. Compositional reasoning cannot ease all problems of
modular verification: it is important that it solves effectively some of
them, those likely to happen in practice. Therefore, in this paper we
develop both complete and incomplete rules with equal interest, and
we try to understand what features may render a rule (in)complete.

e Most, if not all, of the compositional rules in the literature are circu-
lar, i.e., informally, the property of some module references circularly
(in general, indirectly) to itself. Circular reasoning is clearly unsound,
in general, so developing circular rules is a much more challenging
task than developing non-circular ones.

Nonetheless, we claim that circularity is not always needed in prac-
tice, and indeed some compositional reasoning can be carried out
with non-compositional rules. Formulating non-circular inference
rules is technically not very challenging, as they are simple con-
sequences of the basic logic rules of conjunction and implication
Lam98|. Nonetheless, we develop some of them, in Section [5.1,
together with circular ones. In fact, we believe that the technical
challenges involved in developing the latter rules should not make
us favor them over non-circular rules. Realizing what is the role of
non-circular rules in practice should help framing the compositional-
ity problem from the right perspective, and with the right objectives,
that is practical usefulness rather than purely technical appeal.

We conclude this introduction to compositionality by stressing that we
advocate a “lightweight” approach to compositionality. The approach is
driven by the specifics of the system we are considering. Method comes
first, as it gives general guidelines on how the system should be specified
and organized. Then, according to the peculiar verification needs that
arise, one should be able to pick a suitable technical solution to it, possibly
developing new ones according to the problem at hand.
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3.3. Defining Compositional Inference Rules

This section defines the notion of inference rule in general, and of compo-
sitional inference rule in particular. Then, it introduces some dimensions
along which a variety of compositional inference rules can be characterized;
in doing so, it tries to link the dimensions of the taxonomy to features of
“real” systems they mirror.

3.3.1. Definition of (Compositional) Inference Rule
Inference Rules

Inference rules. Let us start by defining what is an inference rule, gener-
ally speaking. An inference rule [Men97] is defined by a relation between
pairs of sets of formulas: II = {m,...,m,} and 2 = {&,..., &} and
usually denoted by:

M={m,....,7m}

E={&,.. &}

Elements of II are called the premises (or antecedents, or hypotheses) of
the inference rule, while elements of = are called the conclusions (or con-
sequents, or theses). Il and Z are usually thought of as ordered sets, as our
notation suggests.

Intuitively, whenever a set of premises IT and a set of conclusions = belong
to the relation defined by the inference rule, it means that the truth of I
entails the truth of =.

Soundness and completeness. An inference rule is sound (or correct) if:
for any pair ﬁ,é that belongs to the relation defined by the rule, if the
premise I is true, then the conclusion = is also true.

We usually only care about sound inference rules, since the intuitive
purpose behind defining and using an inference rule is exactly that of de-
ducing true facts from other known true facts. Therefore, if we establish a
proposition of the following form:

Proposition 3.3.1 (Soundness of an inference rule). If:
1. m

2. my
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m. Tm

then:

1. &

2. &

n. &n

we have in practice proved the soundness of the corresponding inference
rule.

!

On the other hand, an inference rule is complete if: for any conclusion =
which is true, there is some premise II such that the pair ﬁ, = belongs to
the relation defined by the rule, and Il is true. In other words, a complete
rule allows the proof of any true fact.

If our reference logic language is an intrinsically incomplete one — as it
is the case with TRIO, which includes arithmetic ~ then we cannot have a
fully complete inference rule, that is one which is complete for any formula
in the language. In such cases, when we speak about completeness we actu-
ally mean relative completeness [Coo78], that is, in a nutshell, completeness
with respect to an oracle for the truth of arithmetic formulas.

While soundness is an indispensable property for an inference rule, com-
pleteness (even relative one) is a feature which is not strictly required, but
may be desirable in some contexts.

Compositional Inference Rules

Let us now focus on compositional inference rules. The full practical signif-
icance of these rules will become apparent after presenting a methodology
that exploits them; this will be the object of Section However, while
introducing the technicalities necessary to discuss compositional inference
rules, in this section we also try to illustrate the meaning of the inference
rules, and their overall rationale.

Generally speaking, the goal of a compositional inference rule is to pro-
vide a way to prove some facts about the composition of some modules,
from other known facts about each of the modules. Let us assume that we
are dealing with systems made of some N > 2 modules.
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Local rely/guarantee specifications. The starting point for the applica-
tion of a compositional inference rule is given by a set of local specifications,
one for each of the modules in the system. This means that we have some
formalization of the elementary significant behavior of each module, in
terms of a formula.

In general, the local specifications could be any kind of formula. In prac-
tice, a very natural way to specify a module is according to the rely/guaran-
tee pamdigm With the rely /guarantee paradigm one makes some assump-
tions on the behavior of the environment of the module under specification,
and he/she links these assumptions to the guaranteed behavior of the mod-
ule itself: the module behaves as expected only if its environment does the
same.

In order to formalize this in the inference rules, we associate to each mod-
ule 1 < ¢ < N two formulas: E; and M;. E; is called the local assumption
of module ¢, while M; is called the local guarantee of module i. Therefore,
the local specification of module ¢ consists of some formula linking E; to
M;.

In the simplest case, this link consists in logical implication: FE; = M;
is a local specification describing a module that respects formula M; as
long as its environment respects formula E;. For instance, let us consider a
simple adder module which takes an integer a and returns it increased by
2 units: b =a+ 2. A rely/guarantee local specification for such a module
could be the following: if ¢ is an even number, then so is b.

More generally  and in particular when dealing with the description of
timing behavior — the link between assumption and guarantee is defined
through a binary operator which we generically denote as . We call it com-
positional operator. So, implication is a simple example of compositional
operator, but in general different inference rules use different compositional
operators. We will provide several examples of compositional operators in
Chapter

Global specifications. As we said, the goal of a compositional inference
rule is to infer some facts about the composition of modules. In the most
general case, the N modules are composed into an open system, which can
therefore also be characterized by a global rely/guarantee specification.
The global rely/guarantee specification can be of the same form of the
local specifications, or of a different form.

'Other paradigms for the description of modules will be presented in Section [4.3.
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Anyway, we characterize it through two formulas called global assump-
tion and global guarantee, denoted as F¥ and M, respectively. As it is simple
to understand, they play similar roles as the local formulas, but with ref-
erence to the whole system: E formalizes assumptions about the expected
behavior of the system’s environment, and M formalizes the guaranteed
behavior of the composite system.

Parts of a compositional inference rule. Let us now illustrate the typical
components of a compositional inference rules, through a simple example.
Recall the module “adding 2” described above; let us introduce a pred-
icate eve(k) to denote the fact that k is even. Thus, the rely/guarantee
specification of this module can take the form eve(a) = eve(b). Let us now
connect two instances 1,2 of this module such that the input of module 1
is the output of module 2, and wice versa. The rely/guarantee specifica-
tion of module 2 would then be eve(b) = eve(a). We now illustrate the
components of compositional inference rules through this simple system.

Global specification. Let us start from the conclusion of the inference
rule. In a nutshell, it consists of the global specification: E > M. In other
words, the overall goal of the inference rule is to deduce the truth of the
global specification.

For our simple example, let us assume that the global guarantee is
eve(a) A eve(b), that is both values exchanged by the two modules are
even numbers. Since the system is a closed one, we need not care about a
global assumption; equivalently, we assume E to be identically true.

Local specifications. Let us now consider the formulas that appear among
the antecedents of the rule. Obviously, we have the local specifications, as
the ultimate goal of the rule is to infer the truth of the global specification
from the truth of all the local specifications. Therefore all the local specifi-
cations F; = M, for all 1 < i < N appear as antecedents of a compositional
inference rule.

In our example, we have both eve(a) = eve(b) and eve(b) = eve(a)
among the antecedents.

Assumption discharging formulas. Since we are considering local speci-
fications in rely/guarantee form, we cannot say anything about the truth
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of the local guarantees unless we are able to prove the truth of the local as-
sumptions. In other words, in order to use local guarantees as descriptions
of the modules’ behavior, we must first show that the modules’ environ-
ments behave as required by the guarantees. But the system is made by
the composition of the various modules; therefore, for each module 4, the
other modules constitute ¢’s environment.

This suggests to introduce an hypothesis in the inference rule that allows
one to show that the truth of the environment assumptions of the various
modules follows logically from that of the modules’ guarantees. Since the
verb “discharge” is typically used to mean “prove an assumption”, we call
these hypotheses (one for each module) assumption discharging formulas.
They are in the form My A My A --- My = E; for each module 1 <17 < N;
notice that, in the most general case, we allow one to use any module j,
including itself, to discharge the assumption. Later, we discuss how this
gives rise to different kinds of rules.

The global environment E may take part in determining the properties
of the environment of each module i. Therefore, in the most general case
it may be required to use the global assumption E to discharge some local
assumption E;: the discharging formula becomes EAMiAMsN--- My = FE;
in this case. In other words, the local environment of module ¢ “inherits”
some properties of the global environment.

In our running example, notice that the assumption of module 1 is the
guarantee of module 2, and vice versa. Therefore, the assumption discharg-
ing formula for module 1 (resp. 2) coincides with the local specification of
module 2 (resp. 1).

Circularity breaking and initialization. As it should be clear even from
our trivial example, rely/guarantee compositional inference rules may in-
volve a circularity between assumptions and guarantees of some modules.
In our running example, this is apparent by the fact that each module
relies on the other module’s guarantee in order to behave correctly (i.e.,
according to its own guarantee). Circular reasoning is in general unsound,
therefore we need to introduce an additional hypothesis in the inference
rule to make the deduction sound. We call this additional hypothesis ini-
tialization condition.

Even if the rule does not involve a circularity, some form of initialization
condition is required as “starting point” to apply the chain of inferences im-
plied by the local specifications. In other words, if we have no circularities
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between specifications and dischargings, we nonetheless have to start from
the truth of some local assumption or guarantee to exploit the rely/guaran-
tee specifications. Therefore, the existence of some initialization condition
does not depend on the circularity of the rule.

The actual form of the initialization condition can vary a lot from infer-
ence rule to inference rule, and it might even be implicit (i.e., subsumed
by some assumptions on the semantics of the language). In our simple
example, it might simply consists of an assertion about a being even a
priori: eve(a). This clearly breaks the circularity as it holds regardless
of any assumption. In fact, in this case the application of the inference
rule amounts to the application of the well-known modus ponens logic in-
ference rule [Men97|: from the truth of eve(a) and eve(a) = eve(b) we
deduce eve(b), so overall we have eve(a) A eve(b). Although compositional
inference rules will be much more complicated than this, being able to deal
with temporal properties, our trivial example shows that the very basics of
compositional reasoning are grounded in basic logic inference.

Global implementation. Combining the local specifications with the dis-
chargings, and through the initialization condition, one should be able to
infer the truth of some (or all) of the local guarantee formulas M;’s. One fi-
nal ingredient is usually required: an hypothesis should link the truth of the
local guarantees to that of the global guarantee; the latter is in fact the ulti-
mate goal. Therefore, in general we have a formula My AMoA--- My = M
among the antecedents of a compositional inference rule. We call this hy-
pothesis global implementation.

In our simple running example, the global implementation is trivially
true, as M = M A My = eve(b) A eve(a).

As with the local dischargings, it may be necessary to exploit the as-
sumptions about the global environment to infer the truth of the global
guarantee. Therefore, a more general form of the global implementation
formula is: EAM{ AMo N --- My = M

Time and initialization. Although the notions of compositionality and
compositional inference rules is grounded in basic logic languages, our in-
terest is about compositionality for temporal logic formalisms. Therefore,
our compositional inference rules must deal with temporal descriptions of
the behavior of systems.

In such cases, it happens often that the rely/guarantee behavior of
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a module involves a temporal relationship between the assumption and
the guarantee of the module. For instance, consider a functional mod-
ule that takes some input and returns an output after some time 7. Our
running example may be refined to have such a temporal behavior: the
local specification would now be expressible through the TRIO formula
eve(a) = Futr(eve(b), T).

In accordance, we may need to restrict the “temporal scope” of the an-
tecedents, or of the consequent, or both. Formally, this can be achieved
by making each formula of the inference rule the consequent of an implica-
tion, whose antecedent is a (temporal) formula that holds if and only if we
are within the desired “temporal scope”. We denote such antecedents with
the letter I. In general, we may have a different I for each hypothesis or
conclusion of the inference rule. We denote them by adding subscripts and
superscripts according to the formula to which that I is to be applied.

Returning one more time to our simple example, let us assume that
both modules have a predicate s which is true exactly when the system
is started. Then, for instance, the local rely/guarantee specification for
module 1 would now be in the form s = (eve(a) = Futr(eve(b),T)), and
similarly for the other formulas. The initialization condition would be
naturally expressed by specifying that at when the system is started, a is
even: s = eve(a).

More generally, we observe that the need for a notion of “initialization”
(or “system start”) arises especially when one uses bi-infinite time domains
(such as R and Z, which are the default choices for TRIO); otherwise,
with mono-infinite domains, the infimum element of the time domain con-
ventionally denotes an absolute time instant at which the system starts.
Indeed, we will see in Chapter 4 that most compositional inference rules in
the literature adopt a mono-infinite time domain, and therefore do not use
initialization predicates (at least in the form we have just presented).

General form of a rely/guarantee compositional inference rule. Ac-
cording to our explanations, the form of a rely/guarantee compositional
inference rule is summarized in Table[3.1.

The observant reader may argue that the general form is not really a spe-
cialization of a generic inference rule, as the initialization condition allows
any formula among the antecedents, and the global specification allows any
formula as consequent through an adequate choice of compositional opera-
tor and of E/, M. This is technically true, but the goal of the above schema
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Nicicn (I = (Bi = M;)) local specifications

7

Nicicn (IdSC = (E AN\ Mj = EZ)> (assumption) discharging formulas

2

e = (E AN\ Mj = M) global implementation
It = init initialization (condition)
¥ = F - M global specification

Table 3.1.: The components of a generic compositional inference rule.

is not to strictly characterize all compositional rules, but simply to give
an (partly intuitive) idea of what a form a compositional rule should have,
and to serve as a yardstick for the following developments, taxonomy, and
explanations.

Syntactically-restricted completeness. For compositional inference rules
one is usually interested in a notion of completeness that is slightly narrower
than the one introduced previously for general inference rules. Namely, it is
common to consider only formulas expressible as a global specification, that
is through a compositional operator. Then, a compositional inference rule
is complete — according to this syntactically-restricted notion of complete-
ness — if: for any conclusion f that is expressible as § I8l = E > M and
is true, there is some set of premises | IT such that the pair II f belongs to
the relation defined by the rule, and IT is true. The difference between this
definition and the more general one given above is in the fact that we now
consider only formulas expressible according to the syntactic restrictions
given by the statement of the compositional inference rule.

Notice that the syntactic restrictions may not impact semantic expres-
siveness at all: in such cases, when any formula can be written as a global
specification, the two definitions coincide. This happens often in practice,
as we will see with the compositional operators that we will introduce in
the following sections. In the most general case, however, such a narrower
notion of completeness is adopted since it is totally irrelevant to discuss
the completeness of a compositional inference rule for formulas that are
not expressible as specifications of a modular systems: in such cases com-
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positionality is useless, and one should resort to traditional “flat” inference
rules and standard deduction.

3.3.2. Dimensions for a Compositional Taxonomy

This section considers some common choices according to which the general
compositional inference rule of Table is instantiated into actual rules,
and classifies the dimensions along which these instantiations are made. We
stress again the fact that we do not aim at exhaustiveness — which would
probably be of little practical interest anyway but simply at giving a
useful taxonomy which may guide the development of some actual rules.
Let us first list the dimensions we consider; afterward, we comment them.

e First, we distinguish between circular and non-circular (or circle-
free) rules. A rule is circular if there are circularities between the dis-
charging formulas and the local specifications: in other words, when
the assumption of some module is discharged (directly or indirectly)
through the guarantee of the same module.

o A self-discharging rule is one where the guarantee M; of some module
1 appears on the left-hand side of the implication that discharges the
assumption FE; of the same module. Notice that this is a different
notion than circularity, as we discuss below.

o A rule is fully compositional when the global assumption E does not
appear in any of the discharging formulas.

e A rule is globally initialized iff all of the formulas I;°, Iidsc, Iimp
are identically true; in other words, the truth of the corresponding
formulas is not dependent of the occurrence of the start predicate.
Otherwise, we call the rule locally initialized.

e Finally, another dimension along which to classify a compositional
rule is the choice of the compositional operator: every choice of the
compositional operator gives rise to a different “flavor” of inference
rule.

Let us now give an idea of how the various features of inference rules may
be related those of the systems whose correctness they are used to prove.
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Circular vs. non-circular rules. This is a major feature according to which
compositional inference rules can be classified. Circular rules are needed in
practice when modeling systems whose components circularly rely on one
another to function correctly when put together. For instance, the simple
example of the two “adding 2” modules (shown in the previous Section[3.3.1)
exhibits an obvious circularity, manifest by the fact that the guarantee
eve(b) of module 1 coincides exactly with the assumption of module 2, and
vice versa.

Indeed, our experience has shown that this is often not the case: design-
ing a system whose components circularly rely on one another is most of
the times an overly complicated choice, so it is not likely to be taken often.
Of course, exceptions exist: for instance the dining philosophers example
of Section[6.2, and the BitTorrent example of Section [6.3, are examples of
systems that exhibit circularities. However, they have been chosen espe-
cially with this criterion in mind: to show circular inference rule in action.
Therefore, in the remainder we also discuss non-circular inference rules,
and argue that these are very commonly used in practice.

In general, the soundness of non-circular rules relies on very minimal
(and simple) assumptions about the various elements of the rule. Indeed,
their correctness is often a simple consequence of the elementary properties
of the implication and of the conjunction, as we will show in Section[5.1.

On the other hand, showing the soundness of circular rules is in general
more involved, in particular when dealing with the specification of tem-
poral properties. In fact, circular reasoning is in general not sound, so
that one has to show that there is some circularity breaking mechanism
that resolves the issue (this is usually a result of the interplay between the
initialization conditions and the properties of the compositional operator).
This probably explains why most, if not all, the compositional rules that
have been studied in the literature are circular (see Chapter [4): demon-
strating their soundness has been deemed a sufficiently challenging problem
to be of interest

Self-discharging rules. Whereas circularity is mostly a semantic property,
self-discharging rules have a clear syntactic characterization.

In order to motivate the use of self-discharging rules, let us sketch a very
simple example of a timed system where self-discharging is the natural way
to go. For the sake of simplicity let us assume a discrete time domain, and

?Indeed, Abadi and Lamport [AL95] call “strong” inference rules which are circular.
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let us just consider one single thermostat module[? Now, let us assume that
the thermostat is capable of influencing the temperature of a room. In par-
ticular, whenever the temperature is within a given “safe” range, the device
is capable of guaranteeing that the temperature is also within the range
in the next time instant. Thus, if we introduce a time-dependent predi-
cate ok to indicate that the temperature is within the desired range, the
rely /guarantee behavior of the module may be described with the formula
ok = NowOn(ok). Notice that in this case £ = M = ok for the module.
Therefore, the tautology ok = ok would naturally be a self-discharging
formula for the assumptions in the system.

As this little example suggests, self-discharging rules may be needed in
describing the behavior of modules with some form of feedback. In such
modules, the functionality itself of the module (represented by the guar-
antee) may contribute directly, together with the other modules in the
system, to make the environment of the module behave as in the assump-
tion. On the other hand, when there is no feedback, then the module
relies directly solely on the other modules to have a “correct” environ-
ment, while its actions contribute to guaranteeing that the other modules’
environments are “correct”. Another, more realistic, example of a system
where self-discharging is useful is the controlled reservoir example presented
in Chap. 7].

Let us remark that self-discharging and circular are two distinct proper-
ties of a rule. More precisely, a self-discharging rule is always also a circular
rule: this is apparent from our definition of circular rules. On the other
hand, a rule may be circular without being self-discharging: in this case
the circularity between assumption and guarantee of some module is not
direct (i.e., within the same implication), but it requires some levels of in-
direction. The canonical example is that of two modules 1,2 whose local
specifications are Fy = M; and Ey = My, and whose discharging formulas
are My = F; and M; = F5. Then, the discharging formulas show that
the rule is not self-discharging. However, the discharging of assumption F;
(resp. F3) relies on the guarantee My (resp. M), which in turn depends
on the assumption Ey (resp. E1) to hold, which relies on the guarantee M;
(resp. My); thus all in all Fy (resp. Es) circularly depends on M (resp. Ms)
to be discharged.

3Clearly, this would make us lose the point of compositional reasoning, but we do this
for illustration purposes only.
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Fully compositional rules. According to the stricter definition of compo-
sitionality, which we presented in Section [3.1, in a compositional rule the
truth of some global fact should be inferred “on the basis of its constituent
components only”. This suggests that the discharging of the assumptions
should not depend on anything which is “outside” the system, such as the
global assumption E. This is why we call a rule “fully compositional” if
this is the case.

Closed systems such as our “adding 2” example of the previous sec-
tion — are a particularly relevant class of systems for which fully composi-
tional rules clearly suffice. In fact, closed systems do not communicate with
any external environment, so that the global assumption F is identically
equal to true. In general, controlled systems are usually modeled as closed
systems, as the physical system under control and the controller consti-
tute each other’s environment. From this viewpoint, modeling a complete
system in a rely/guarantee style often results in a closed system, as one
endeavors to include a model of the environment itself, according to the
control standard paradigm.

On the contrary, when the modules are not “autonomous” in determining
one other’s environment, but they rely on some additional property of the
global environment, one needs non-fully compositional rules. Notice also
that an open system does not necessarily require a non-fully compositional
inference rule, as the global assumption may be required only in the global
implementation or in the global specification.

In the literature, several compositional inference rules are non-fully com-
positional (see Chapter [4). This is often driven more by an effort toward
generality (and completeness), rather than by specific requirements of the
systems of interests. In our analysis, we will consider both fully and non-
fully compositional rules.

Globally vs. locally initialized rules. As we discussed in the previous
Section 3.1} initialization predicates I are needed only when dealing with
specifications describing the temporal behavior of a system. This is the
focus of the present work, thus the notion of globally and locally initialized
rules is needed.

If a system has a notion of “start” or initialization, then it may be that it
behaves differently before than after it has started. Let us illustrate this on
the thermostat example: let us postulate that the module can be started,
and let us model this fact through a predicate s becoming true. Then, it
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may be that the rely /guarantee behavior ok == NowOn(ok) holds only after
the system has started, that is after s has been true at least once (for sim-
plicity, let us assume that further starts are ignored). Then, the initializa-
tion predicate I°P for the local specification should be I*P = SomP(s), which
is true precisely whenever s has been true (at least once) in the past. Thus,
the full local specification would become: SomP(s) = (ok = NowOn(ok)).
Notice that this would also probably require to introduce the same initial-
ization predicate for the other hypotheses and for the conclusion of the
inference rule we would like to use. This corresponds to completely disre-
garding the behavior of the system before it has started.

Locally initialized rules subsume globally initialized ones, as in globally
initialized rules one does not have to deal with initialization conditions
except that in the initialization formula. Nonetheless, globally initialized
rules usually present the local specifications in a simpler form, for modules
whose rely/guarantee behavior does not depend on any initialization. Fi-
nally, notice that, in globally initialized rules, the initialization formula is
only required for circularity breaking, in order to guarantee the soundness
of the rule, but it does not influence the behavior of the single modules or
the way they interact.
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4. Related Work on
Compositionality

This chapter presents a comparative review of several works about compo-
sitionality.

Besides the dimensions we have outlined in Chapter(3] there are a number
of technical aspects by which compositional frameworks differ. Mostly, they
derive from the various choices of reference formal language to be used, and
on the semantics assumptions that are introduced in the abstract model.
Let us recall that, in this sense, the framework we present in this thesis
aims at generality, and thus it introduces as few semantic assumptions as
possible.

Let us list these technical choices and briefly describe them.

Time Model This aspect considers continuous or discrete time, real-time
(i.e. metric) or untimed (i.e. without metric) time models, the linear
or branching nature of time, etc.

Computational Model This aspect considers issues such as whether we
adopt a semantics based on states, on transition systems, an agent-
based view, etc.

Model of Concurrency Choosing the model of concurrency involves con-
sidering issues such as synchronous vs. asynchronous, interleaving
semantics, lower-level models of concurrency such as shared-variables
concurrency and message passing systems.

Specification Model This aspect refers to the abstraction mechanisms in-
troduced in the model that constitutes the specification. For exam-
ple we may use an assertional approach, or an operational one, or a
dual-language one (which combines an operational formalism with an
assertional one), etc.

Implementation Language This aspect is only relevant if we are verifying
implemented programs. In such case, the formal framework should
give a formal semantics to the programming language.
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Syntax vs. Semantics This refers to the general approach of the compo-
sitional method we are considering. We say it is syntactic if it is
defined in terms of the language used in the formal description of
the model, using rules that refer to the syntactic structure of the for-
mulas, without reference to semantic concepts such as safety /liveness
characterization, closures, etc. On the contrary, we label a method
semantic if its applicability and justification are based on these latter
concepts, usually expressed in terms of set-theoretic concepts.

How to Make a Module Compositional This aspect chooses among the
rely /guarantee paradigm (dating back to Jones [Jon83] and Misra
and Chandi [MC81]), or the lazy methodology proposed by Shankar
[Sha98|, or other original approaches such as the ones by Hooman

Ho098|, Manna et al. [BMSUO1], etc.

Semantics of Composition The choice made by most authors is to take
composition as conjunction of specifications for denotational formal-
ism, and parallel composition for operational ones. Other, less com-
mon, variants are possible.

Table [4.1 schematically summarizes the above aspects. In italic are
shown the choices we focused on in this thesis, that is a framework which
works equally well for continuous and discrete time, relies on no assump-
tions about the computational and concurrency model, it is primarily syn-
tactic, considers linear time and abstract specifications.

In the remainder of this chapter, we survey the most relevant works about
compositional methods, with particular interest for rely /guarantee abstract
inference rules. We refer the reader to [Fur05] for additional references and
details about compositional framework in the literature.

4.1. Early Works on Compositional Methods

The first attempts at the formal verification of programs date back to the
origins of computer science itself, with the pioneering works of Goldstine
and von Neumann |GvN63], and Turing [Tur49], in the second half of the
'40s. According to de Roever et al. [{RABHT 01|, a constant trend in devel-
oping methods for proving program correctness has been from a posteriori
nonstructured methods to structured compositional techniques. For a de-
tailed historical account of compositional and noncompositional methods
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Issue Possible choices

Time Model continuous, discrete, real-time, un-
timed, linear, branching, etc.
Computational Model | state-based, agent-based, transition

System, etc.

Concurrency Model synchronous, asynchronous, inter-
leaving, message passing, shared vari-
ables, etc.

Specification denotational,  operational,  dual-
language, etc.
Implementation language used for implementation

Syntax vs. Semantics language vs. (semantic) model

Compositionality Model | rely/quarantee, lazy, hybrid, etc.
Composition Semantics | conjunction, parallel, etc.

Table 4.1.: Dimensions of the Compositional World

and techniques for program verification, we refer the reader to the afore-
mentioned book by de Roever et al. [IRABHT01], and to the surveys by de
Roever and Hooman [dR85, HAR&6,dRI8|

This development is rather easy to sketch for sequential program verifi-
cation, where the first method is due to Floyd in 1967 |[Flo67| and is non-
compositional, whereas Hoare reformulated the method in an axiomatic
compositional style in 1969 [Hoa69].

On the other hand, the first practical noncompositional methods for the
verification of concurrent programs are due to Ashcroft [Ash75], Owicki
and Gries [OG76|, and Lamport |Lam77|, during the mid '70s. Concur-
rency raises several technical difficulties which render the development of
methods, as well as their compositional extensions, harder than in the se-
quential case. Indeed, the first compositional methods for concurrent pro-
gram verification appeared at the end of the '70s, in the contributions by
Francez and Pnueli [FP78], Jones [Jon83] and Misra and Chandy [MC81].

In particular, the works by Jones |[Jon83| and by Misra and Chandy
IMC81] introduced the rely/guarantee paradigm to specify open reactive
systems. It was Jones who introduced the terminology rely/guarantee in
[Jon81,Jon83], where he proposed a method for the shared-variable model
of concurrency. His work was based on the previous work by Francez and

Pnueli [FP78].

49



4. Related Work on Compositionality

On the other hand, Misra and Chandy proposed in |[MC81| a similar
paradigm for concurrency models based on synchronous communication,
and called it assumption/commitment.

Later, Abadi and Lamport proposed to call both compositional paradigms
assume/quarantee |[AL93|, since they embody the same idea. Several of
the works reviewed in Section [4.2 show in detail how the two paradigms
of rely/guarantee and assumption/commitment can be unified. Because of
this reason, in all of this paper we will not distinguish in the terminology
between rely/guarantee, assumption/commitment and assume/guarantee:
we choose to use only the term “rely/guarantee”, in accordance with the
name given to the first formulation of the principle [Jon81].

Finally, in this short recount of first works on compositionality for con-
current systems, it is worth mentioning the work by Stark, who formulated
the first theory of refinement for concurrent processes in 1988 [Sta88].

4.2. Abstract Frameworks for Rely/Guarantee
Compositionality

This section surveys several works about abstract compositional frame-
works based on rely/guarantee inference rules that handle circularity. We
try to show how all of these frameworks are fundamentally based on an in-
ference rule which is a particular instance of the general rule of Table (3.1,
to which each framework adds specific additional hypotheses for soundness.

The works are grouped into three sets, according to the basic formalisms
used to express the compositional framework. Within each group, the works
are presented roughly in chronological order, but listing sequentially works
by the same authors which can be considered successive developments over
the same ideas.

4.2.1. Purely Semantic Frameworks

Let us start by considering purely semantic works. By “semantic frame-
works” we mean compositional frameworks based on inference rules ex-
pressed without reference to a particular language, but rather in terms of
sets of behaviors and interpretation structures. This deviates from the pre-
sentation of inference rules that we did in Section 3.3.1] in that semantic
rules have hypotheses and conclusions expressed as set-theoretic properties
of behaviors, using directly set-theoretic notions to describe behavior sets.
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Then, the concrete application of a semantic rule to a specific language re-
quires one to check that the semantics of the language satisfies the semantic
hypotheses made by the inference rule. This can be more or less simple,
according to the peculiarities of the inference rule and of the language, but
in any case it is left to the user of the rule.

Semantic frameworks often distinguish between system specifications
that are, or are not, safety properties. In short, a safety property is one
which is finitely refutable, that is every behavior failing to satisfy it does
so at a finite point in time. For a more precise definition see [AS85, MP90)].
Compositional reasoning with semantic frameworks is usually simpler for
safety properties; this is the main reason for the widespread use of the
notion of safety.

Abadi and Lamport [AL93] are the first to present a purely semantic
analysis of compositionality, independent of any particular specification
language or logic. This permits a general analysis of compositionality. How-
ever, the approach also has some drawbacks, which arise mainly from two
aspects. On the one hand, the analysis is probably too abstract, that is it is
far from immediate applicability with a given formalism. This is also briefly
acknowledged by the authors themselves in [AL95]. By “too abstract” we
also imply that its theoretical results have mostly intellectual (rather than
practical) interest. On the other hand, the analysis done by Abadi and
Lamport still requires a number of focused semantic assumptions, which
mimic the features of the semantics of some specification formal language.
As a result, mapping this general framework onto a given specification lan-
guage may introduce additional complications and intricacies, due to the
fact that a given language usually comes with its own semantics, which
may be difficult to adapt or circumvent to match the general hypotheses
of the paper.

Let us briefly outline the main semantic hypotheses of the model.

e Behaviors of described systems are infinite discrete sequences of states
from a certain (unspecified) finite set.

e Any state change is triggered by agents. Agents can be divided into
sets, which reflect their “nature”. Notice that agents are an abstrac-
tion which typically translates to separated input and output vari-
ables, in a lower level formalism.

e An interleaving semantics for composition of behaviors is assumed.
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e Stuttering-equivalence is also required, that is two behaviors are con-
sidered equivalent if they are equal after replacing every maximal se-
quence composed entirely of the same state with one single instance
of that state.

e Fairness conditions (also known as progress properties) are usually
introduced in a specification.

e Initialization predicates are also considered, so that the system has a
notion of “start”.

Let us now see how the general inference rule of Table (3.1 is modified by

introduction of additional hypotheses.
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e Each module is characterized by a set of agents that perform the state
transition the module is responsible of. The agent sets for the various
modules are assumed to be disjoint.

e FEach environment assumption must be a safety property, constrain-
ing only agents which do not belong to any module (i.e. they belong
to the environment). The authors note that, since it is well known
that any property in temporal logic can be expressed as the inter-
section of a safety and a liveness property, it is possible to move the
liveness part of the environment assumption to the guarantee part
of the rely/guarantee specification. However, this consideration is of
intellectual interest only, as the authors themselves admit in [AL95].
In fact, again, we must bear in mind that compositionality only has
its strengths in being a practically usable technique, which is not the
case if it forces one to write specifications in an unnatural manner.

e Implication and conjunction in the general rule of Table [3.1 are
mapped to the set-theoretic operators C and N. This is the most
natural choice, since we are dealing with a semantic model where
properties are sets.

e A rely/guarantee specification is written using the operator =, where
P = @ is a shorthand for the set-theoretic expression (B — P) U @,
where 5 denotes the set of all behaviors.

e Local specifications are expressed in terms of the realizable part of
the rely/guarantee expression F; = M;, denoted as R(E; = M;).
Without introducing too many technical details, let us just say that
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this requires the behavior defined by E; = M; to be implementable,
that is to be the outcome of a deterministic strategy.

e Assumption dischargings consider the safety closure C(Mi of the
M;. Moreover, it is assumed that the safety closure of each M; does
not constrain any agent outside the agent set for the module 1.

e A global implementation hypothesis is absent, since the rule actually
proves E C [, M; instead of E C M.

To sum up, the soundness is based on a discrete state structure, on which
to perform induction, on the safety of the environment assumptions and on
the distinction between input and output variables. Here it is the inference
rule given in [AL93], after removing explicit mentions to the agents.

Proposition 4.2.1 (Abadi and Lamport, 1993 [AL93]). If:
1. foralli=1,...,n: R(E; = M;)
2 B, CO0) S, E,
3. E and E;, for alli=1,...,n, are safety properties.
then: R(E = (i, M;).

The rule was given some (partial) tool support in [HZB196], using the
theorem prover HOL.

Xu, Cau, and Collette [XCC94]| introduce a compositional rule that sub-
sumes two families of compositional rules, that is those for models of con-
currency based on shared variables, and those for message passing models.
The earliest works on composition for these models are the well-known con-
tributions by Misra and Chandy for message passing concurrency
and by Jones [Jon83,Jon81] for shared variables. For our purposes, we will
not account for the two specific models of concurrency, but we will just
discuss and present the unifying rule of [XCC94].

The general framework is in the same spirit as Abadi and Lamport’s
AL93|. More precisely, the following choices are made.

'The safety closure of a property P is the strongest (i.e., smallest) safety property P’
such that P implies P’.
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e Rely/guarantee specifications are written using the spiral operator
< which has basically the same semantics as the “> of Abadi and
Lamport [AL95|, which we are going to present in Section [4.2.2]

e The assumptions are taken to be safety properties.

e The guarantees are expressed by the conjunction of a safety part M*
and a non-safety part M.

e We do not detail the treatment of agents, which is however very
similar to that of [AL93].

Therefore, the inference rule goes as follows!?
Proposition 4.2.2 (Xu, Cau, and Collette, 1994 [XCC94]). If:
1. foralli=1,...,n: (B — M) A (E; = M)
2. EANL, M = N\, E;
8. a) Ny MP = M°
b) EANL, ME = ME
4. E= N, E; at the initial time (i.e. 0)
then: (E — M)A (E = MT).

The main contribution of this work is the unification of the two differ-
ent models of concurrency. In particular, it is shown that the general se-
mantic framework, and the usual requirements on safety and “progression”
operators can account for independently developed models of parallelism.
Finally, it is speculated that a unifying rule may be useful in integrating
the two models of concurrency in a single specification.

Cau and Collette extended this same semantic framework along the same
lines in [CCY96]. They choose to represent composition with the abstract
semantic ® operator, that merges two (discrete-time) behaviors into one
(representing the composition of the behaviors). The ® operator is assumed
to respect simple properties, namely that if ¢ = 01 ® o9:

e |01| = |o2|, that is only behaviors of equal length can be composed

? Actually, [XCC94] presents the rule for the case of two modules only (i.e. n = 2).
Instead, we present here its verbatim generalization to arbitrary n.
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e the result of the composition is a behavior with the same length of
those composed, that is |o| = |o1| = |o2];

e any prefix of length k of o is the composition of the prefixes of length
k of o1 and o9, for all k.

The operator ® is generalized to sets of behaviors (i.e. properties) as ob-
vious: given properties Py, P>, we define their composition Py ® P» as the
set of behaviors {o|loc = 01 ® 09 A o1 € Py AN oa € P»}. This abstract
merge operator encompasses various models of composition, and in partic-
ular conjunction as well as disjunction.

Rely/guarantee specifications are assumed to be characterized by a triple
of properties, which we indicate as E, M®S and M. As in the other
work [XCC94|, E is assumed to be a safety property, M* is the safety part
of the guarantee, and M % is its non-safety part. We denote by M the set of
behaviors which are both in M*® and in M, that is M = M5 N M. The
link between the assumption and guarantee of a given module is formalized
using an ad hoc operator, denoted as @—. Its semantics is again basically
the same as that of Abadi and Lamport’s 7> [AL95], which we will discuss
in Section [4.2.2.

In presenting this inference rule, we do not represent, as usual, some
details in order to fit the rule to the setting of our general rule of Table
[3.1, and to convey only the very general intuition behind the rule.

Proposition 4.2.3 (Cau, and Collette, 1996 [CC96]). If:
1. (l) E1 Q— M1
b) By @— Mo
2. EQ MY @ My C By ® Ey
8. a) MY @ My C M®
b) E® Mo MEtC ME
then: E@Q— M.

Maier [Mai01] introduces another simple semantic compositional frame-
work, and shows how it can be instantiated to some concrete computational
models. The framework is based on set theory, and in this sense it is simi-

lar to |AL93|. However, with respect to |[AL93| it is simpler and based on
fewer semantic assumptions, and therefore more abstract.
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In a nutshell, the framework is based on downward-closed sets. More
precisely, a system is defined by a set of behaviors from a universe set B,
which is partially ordered (with order relation denoted as <), well-founded
(i.e. it has a bottom element €), and downward-closed, that is for all b, b’
if b€ Band &/ < b then VY € B. Every property (or module) is identified
with some downward-closed subset B C B, with certain properties.

Structures called chains are introduced to describe the evolution of be-
haviors. A sequence of behaviors b; € B for i € Nis called a chain whenever:

e it ascends from the bottom, i.e. bg = € and for all ¢ € B: b; < b;y1;

e it converges to some limit in B, that is the upper bound b of the set
{b;|i € N} exists and is in B.

With a little abuse of notation, we will denote a chain (b;);cn simply as b;.

We need two more notions to introduce the compositional inference rule
of the framework in detail. One is the idea of extension: given two sets
Bi, By C B and a chain b;, we say that By, By extend along b; iff, for all
i € N, if b € By N By then b;11 € By U By. The other notion, more
familiar, is that of closure: a set B C B is closed with respect to a chain b;
if, whenever b; € B for all ¢ € N, the limit of b; is also in B.

Finally, as it is natural in a set-theoretic framework, composition is rep-
resented by intersection N and implication by the subset relation C.

We are now ready to introduce the abstract compositional rule of the
framework. We note that it is proposed in a narrower form than that of
the general rule of Table[3.1: it considers the simple case of two modules
only, and it considers composition into a closed, rather than open, overall
system. Here it is the inference rule.

Proposition 4.2.4 (Maier, 2001 [Mai0O1]). If:

1. a) E1 N My C My
b) EsN My C M,

2. for every b € B, there exists a chain b; (for i € N) such that:

a) b; converges to b
b) My, My extend along b;
c) My, My are closed with respect to b;

then: E1 N Ey C My N M.
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Notice that the requirement [2¢ on the closure of My, My, together with
downward-closure, is a strict analogue of requiring the guarantees to be
safety properties, as done in other compositional frameworks. Moreover,
the extension condition[2b mirrors the idea of a compositional operator such
as Abadi and Lamport’s while-plus [AL95], which we present in the next
section. This, combined with the well-foundedness of the set of behaviors
B, permits the application of the usual induction in proving the soundness
of the rule.

The proposed framework is simple enough to be interesting as a general
framework. Its major contribution is, in our opinion, to explicitly pin down
some basic facts about compositional reasoning at the semantic level. These
facts constitute the basis of most works on compositionality and therefore
they can be understood better. In this sense, we believe that this work is

similar in spirit to [AENTO03].

4.2.2. Compositionality for TLA

With reference to the specification language TLA [Lam94|, Abadi and Lam-
port propose in [AL95| a sound composition theorem. The following as-
sumptions are introduced to render the deduction rule sound.

First, general restrictions are implicit in the use of TLA as a specification
language, and namely:

e Although time variables can take values over a continuous domain
(i.e. the reals R), the semantic of the language is defined in terms
of discrete sequences of states, where a state is an assignment of
values to the set of variables. Therefore, there is a considerable, and
intrinsic, “amount of discreteness” in the description of a system with
TLA. This is also shown by the important role given to invariance
under stuttering.

e In TLA, there is the notion of initialization of variables, and therefore
of “beginning” of the life of a system.

e Usually, it is assumed that the set of all variables can be partitioned
into two subsets e and m of input and output variables. The spec-
ification is such that the assumption formulas only modify variables
in e, while the guarantee formulas only modify variables in m. Ac-
tually, how to treat the more general case (i.e., where some variables
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are modified both by assumptions and by guarantees) is discussed
briefly in [AL95], although the solution still has some limitations.

e Although TLA can handle both interleaving and non-interleaving
composition, the two cases must usually be treated separately in the
correctness proofs.

Second, the following additional assumptions are introduced specifically
in the rule.

e The local specifications are written using the > “while-plus” compo-
sitional operator. Quoting [AL95], a specification

“is expressed by the formula £ > M, which means that,
for any n, if the environment satisfies E through “time” n,
then the system must satisfy M through “time” n + 17.

Notice that such an operator requires the notion of discrete “time”
and permits some form of induction on such a discrete structure with
a beginning,.

e Assumption dischargings are expressed through the safety closures
of the involved formulas. The authors introduce some lemmas that
permit to get rid of the closures in the formulas, under additional
technical conditions.

e The global implementation formula is coupled with a similar one,
where the safety closures of the formulas are considered. In particular,
E is replaced by C(E)4,, a formula which asserts that, if C(E) ever
becomes false, then the values of all the specification variables v stay
unchanged always in the future. As for the previous condition, rules
for handling the closures and the + operator are proposed.

To sum up, the soundness in the compositional rule is gained by con-
sidering specifications written in a canonical form, exploiting an induction
(using the *> operator) over a discrete structure of states with a begin-
ning, and considering safety characterizations of some of the assumptions
and guarantees formulas of the specification, handling these safety charac-
terizations with ad hoc rules and techniques. Here it is the composition
rule.

Proposition 4.2.5 (Abadi and Lamport, 1995 [AL95]). If:
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1. foralli=1,...,n: E; > M;
2. C(B) NN C(M;) = N2y B

3. a) EAN-, M= M
b) C(E) v NNz C(M;) = C(M)

then: E > M.

We notice how the rule proposed by Abadi and Lamport introduces sev-
eral assumptions on the computational model, and on how a specification,
and the corresponding proof, “should be written”. These restrictions may
reduce generality and immediacy of use.

4.2.3. Compositionality for Intuitionistic Logic

Abadi and Plotkin [AP93| perform an abstract study of compositional-
ity, in two frameworks based on intuitionistic and linear logics. The work
treats compositionality at the semantic level, and considers safety proper-
ties only. As we briefly discussed at the beginning of Section [4.2.1] safety
properties usually require simpler (or fewer) semantic assumptions for an
inference rule to be sound, and are therefore the first and main focus in
many compositional frameworks.

For brevity, let us just consider the simpler approach based on intuition-
istic logic. The framework and the results closely match those of [AL93],
with restriction to safety properties for both the assumptions and the guar-
antees. With respect to |[AL93|, an additional theoretical result is the re-
duction of the compositional inference rule to the the case for just one
module. Let us state this result more explicitly. The semantic model is the
same as that of [AL93]. It can be shown that such a model is an intuition-
istic one. With these definitions and semantic assumptions, the following
very simple circular inference rule is proved sound (— is a suitably defined
implication).

Proposition 4.2.6 (Abadi and Plotkin, 1993 |[AP93]). If:
1. E—-M
2. M —FE

3. E and M are safety properties
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then M holds.

Although speaking of compositionality with just one module is point-
less, one can derive the general compositional rule of [AL93], restricted to
the intuitionistic framework, from the rule of Proposition [4.2.6] using only
propositional reasoning and induction. This result is interesting as it basi-
cally shows that the only catch in this kind of compositional reasoning with
safety properties lies in disentangling the circularity in the discharging of
assumptions. Abadi and Plotkin demonstrate that the general case of this
problem can be reduced to one module systems. However, it has no obvious
practical impact, since it is a specialization of previously seen results by
other means.

All in all, the paper by Abadi and Plotkin highlights quite clearly these
basic facts about compositional reasoning:

e technical problems arise in proving the soundness because of the pres-
ence of circularity;

e these problems can be solved by restricting our attention to safety
properties, since proving soundness reduces to proving a sort of “initial
validity”, which can be regarded as an implicit way of breaking the
circularity;

e finally, induction is used to “propagate” the initial validity to any
instant in the future.

Abadi and Merz [AM95] introduce an abstract syntactic framework in
which to express compositional rules. Actually, even if it is based on an
intuitionistic logic, it underlines some of the assumptions about the compu-
tational model which were also shared by other works such as [AL93,AL95],
so it is not totally independent of particular computational models.

The framework consists of a propositional intuitionistic logic, with the
usual logic connectives, plus a new connective *» which clearly represents
TLA’s %> and similar ones. Even if the framework should be primarily
syntactic, it actually introduces some assumptions on the structures on
which the logic is to be interpreted. More precisely, these assumptions are:

e a pre-order relation C is given on the sets of behaviors;

e the relation is such that atomic propositions are true on downward-
closed sets of behaviors; that is, for any atomic proposition © and
behaviors o, ¢’ such that o C ¢/, if ¢/ = 7 then also ¢ | 7.
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e therelation C obtained from C by removing reflexivity is well-founded
on the set of all behaviors; notice that this permits induction along
computations, similarly to the aforementioned models.

Moreover, notice that these assumptions are satisfied whenever the inter-
pretation structures are Kripke models (which are standard models for
intuitionistic logic).

Under these assumptions, Abadi and Merz prove a number of basic prop-
erties of the operators of the logic. However, a sound compositional rule
on the model of Table [3.1] cannot be proved without further semantic as-
sumptions and specializations. More specifically, the authors choose to
instantiate the abstract framework with two temporal logics, namely TLA
and a fragment of CTL*. Sound compositional rules can be proved only
after such instantiations are done. Hence, the idea of an abstract frame-
work is appealing in its syntactic approach, but is not detailed enough to
implement a sound circular rule. However, one advantage of this approach
is that it is not limited to temporal logics. The authors briefly discuss this
aspect in the conclusion. Under this aspect, the approach is indeed more
general than most others.

4.2.4. Compositionality for LTL

Jonsson and Tsay [JT96] analyze compositionality with linear temporal
logic, from a syntactic perspective. The outcome is a compositional in-
ference rule which, although similar in principle to that of Abadi and
Lamport [AL95|, is presented using a syntactic formulation, which has
the advantage of being simpler to use, in practice, than purely semantic
approaches.

The basic idea is still to rely on safety properties to render sound the
compositional circular reasoning, but to enforce the safety characterization
by requiring that the formulas of the specification are written according to
some syntactic restrictions. In fact, in LTL it is possible to syntactically
characterize safety [MP90]. In principle, the same syntactic approach could
be pursued with TLA as well, but maybe with more practical complications.
On the contrary, the syntactic characterization in L'TL is often more viable.

The syntactic characterization requires the specifier to write the formulas
for assumptions and guarantees in a canonical form, to enforce the under-
lying semantic hypotheses. The requirements for the canonical form are
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the following onesﬂ

e Assumptions F are expressed with a LTL formula of the form O(3z :
EHE), where:
— Hp is a past formula, that is a formula without future operators;

— x is a tuple of flexible variables, considered as internal variables
(i.e. non-visible, existential quantification representing hiding);

— OHpE must be stuttering extensible, another technical require-

ment we do not discuss in detail.

Under these conditions, the formula F is a safety formula. Actu-
ally, the requirement of Hp being a past formula could be relaxed to
the requirement to be a historical formula, but with some additional
complications.

e Guarantees M are expressed with a LTL formula of the form dy :
CHp A Ly, where:

— Hjs is a past formula;

— y is a tuple of flexible, internal variables;

— [OH); must be stuttering extensible;

— Ly is a liveness property;

— (Hpg, Lay) is machine-closed, that is C(OHy A L) < OH )y
e Rely/guarantee specifications are expressed using the operator >,

where E > M is defined as O(&(3z : BHg) = (Jy : BHy)) A (E =

Under these conditions, we can calculate syntactically the safety closures
of the specification formulas. In fact it turns out that:

e C(Jx:BHE) =03z :BHg)
o C(Jy:UOHy A Ly) =03y : BHyy)

Finally, the resulting compositional rule follows.

3The temporal operators are LTL’s usual ones [MP90], and namely 0J, B, & for, respec-
tively, always in the future, always in the past, in the previous instant (if it exists).
Moreover, C(F) represents the safety closure of a formula F.
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Proposition 4.2.7 (Jonsson and Tsay, 1996 [JT96]). If:
1. foralli=1,...,n: E;> M;

2. D((EL%’ : ElHE) VAN (Hyl, R El/\?:l HM:)
= (Elxlw <y p - IEI/\?:1 HEz))

3. a) OBQCx:BHg) A Gy1,- - yn : DAL, Har)
= (3x1,..., 2y : EHyy))

b) E/\/\?ZIMZ- = M
then: E > M.

Discussions on how to actually discharge the hypotheses of the inference
rule are introduced, with reference to the usual proof methodologies for
temporal logics. Moreover, the same example of a queue of [AL95] is carried
out, resulting in a simpler compositional proof.

To sum up, Jonsson and Tsay try to identify general conditions under
which the semantic assumptions of the earlier works on compositionality
can be expressed syntactically in LTL, resulting in inference rules which
are simpler to apply and require less ad hoc methodology. Actually, not
all semantic assumptions are rendered syntactically (for example machine
closure and stuttering extensibility conditions are still required explicitly).
Moreover, the syntactic restrictions may render the specifications harder to
write. However, it is true that some aspects are indeed simplified and the
application of the rule in some cases promises to be practically simpler.

Jonsson and Tsay’s work presented in this paper was extended in a later
work by Tsay [Tsa00]. The main additional contributions are in the use of a
weaker compositional operator, and in some treatment of liveness formulas.
In particular, an asymmetric circular rule is given. Asymmetric means that
only one module is allowed to have a liveness property. For brevity, we refer
to [Fur05] for additional details about Tsay’s work.

4.2.5. Completeness of Compositional Rules

Namjoshi and Trefler [NT00| present an interesting analysis concerning the
completeness of the compositional inference rules found in the literature,
with specific reference to that of Abadi and Lamport [AL95], and McMillan
McM99|. Since those rules are the basis for most other existing rules in
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the literature, the analysis draws rather general results. Furthermore, they
tackle the problem of circularity from yet another perspective, showing a
reason why circular rules are not needed, at least in principle.

McMillan’s framework of [McM99] is the basis of the methodological
work by the same author [McMO00], where it is shown how to apply com-
positional techniques to the practical verification of system-level hardware,
through model-checking techniques. We present McMillan’s approach to
compositional rules below, while the methodology introduced in [McMO00]
is not discussed here as it is beyond the scope of the present review section,
being focused on model-checking techniques.

First of all, we have to state formally what are the compositional rules
considered in Namjoshi and Trefler’s paper. To render the comparison
simpler, let us stick to the case of just two modules. The first rule is the
circular one by Abadi and Lamport |[AL95], described in Section [4.2.2. The
second one is a very simple non-circular rule, which we can state as followsJZ

Proposition 4.2.8 (Non-Circular Rule, [NT00]). If:

1. a) Ey = M
b) Ey = My

2. a)E:>E1
b) M, = Ey

3. My NMy= M
then: = M.

The formulas M; and FE» are called auziliary assertions in this frame-
work, since they serve to break the proof into two suitable parts, in a way
that permits a sound deduction.

The third rule we consider is the one by McMillan [McM99|. Even if
in [NT00| a generalization of the rule to handle n modules is presented,
the generalization has a rather convoluted formulation. Therefore, for the
sake of simplicity, we present here the original version of [McM99] for two
modules only, in a minimal setting (that is, without reference to the com-
putational model). Note that the rely/guarantee specifications are now

*Actually, the exact formulation of the rules of [NT00| would require a notion of com-
putational model and several semantic notions. For simplicity, we present here only
a simplified abstraction of a slight modification of that rule.
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written using the > operator, called constrains in that paper. As usual,
E > M is true iff, if E is true up to step ¢ of a computation, then M is
true at step ¢+ 1. It can be defined in linear temporal logic, using the until
operator as —(F U —M), using the dual release operator as -E R M, and
can be thought as meaning “—F precedes M”, that is F is falsified before
M is. The circular rule is then as follows.

Proposition 4.2.9 (McMillan, 1999 [McM99|). If:

1. a) E= (Myr> M)
b) E:>(M1>M2)

2. M4y ANMy= M
then: B = M.

Namjoshi and Trefler first show that, while the non-circular rule of Propo-
sition is complete, the other rules of Abadi and Lamport and
McMillan (Proposition [4.2.9 and [McM99]) are incomplete, even for simple
properties. The incompleteness in McMillan’s rule is due to the absence of
auxiliary assertions, that is local assumptions F;’s, different than the other
module’s guarantee M;. In fact, in a rather different setting, Maier [Mai03]
has shown that the use auxiliary assertions is a necessary condition for com-
pleteness (see below). Still, it is not sufficient, since Abadi and Lamport’s
rule [AL95] does use auxiliary assertions but is nonetheless incomplete, as
Namjoshi and Trefler also show in their paper.

Next, the authors show how to strengthen McMillan’s circular rule in
order to get a complete rule, obviously still keeping soundness and circu-
larity. In order to do that, we have to write the assumptions and guar-
antees in a (simple) canonical form, where the parts representing the aux-
iliary assertions are conjoined to the remainder of the specification. So,
each assumption Fj is written as F; = H; A G; and each guarantee M; as
M; = (H; = G;) N H;, for some formulas H;, G; (i represent the index
“other than” 4, that is 7 € {1,2} \ {i}). The rule is finally as follows.

Proposition 4.2.10 (Namjoshi and Trefler, 2000 [NT00]). If:

1. a) E= ((HyAGo)> ((Hy = G1) A Hy))
b) FE = ((Hl A Gl) > ((Hl = Gg) A HQ))

2. GyNGy = M
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then: B = OOM.

Notice that Proposition [4.2.10 reduces to Proposition [4.2.9 if we take
H{ = Hy = true.

The last aspect of compositionality considered by Namjoshi and Trefler
is the translation between circular and non-circular proofs. Since both the
non-circular rule of Proposition 4.2.8] and the circular rule of Proposition
are complete, every compositional proof can be carried out with any
of the two, at least in principle. Hence, it is shown how one can translate the
application of a rule into the application of the other rule; in other words,
it is shown how one should pick the local assumptions and guarantees
(possibly including the auxiliary assertions) so that the applicability of one
rule follows from the application of the other one to the same system. It
is also briefly discussed how this translation is efficient in both directions,
that is the translation process builds formulas that are of the same size
order as the formulas from which it translates (i.e., the ones of the original
application of the rule).

This formalizes an important conclusion: circularity is not needed, at
least in principle. Actually, this is is yet another evidence to the fact that
compositional techniques must be useful n practice, but cannot reduce the
worst-case complexity of verification. Therefore, a more complicated rule
(and namely a circular one) can bring some benefits in some concrete cases,
but is not more efficient than another equally complete rule in the general
case.

Maier [Mai03] considers compositional rely /guarantee inference rules in a
very abstract setting, in order to draw general conclusions about soundness
and completeness of such rules. Contrarily to the other papers considered
above, it does not introduce any new inference rule, but it considers the
inherent limitations of circular compositional rely/guarantee reasoning in
a given abstract framework. Let us first describe such framework and then
show the results drawn by Maier.

In this framework, systems (or modules) and modules’ properties are
modeled uniformly as elements of a generic meet-semilattice with one. A
meet-semilattice with one S = (S, A, 1,<) is a partial order (S, <) with
greatest element 1 € S and such that for any two elements z,y € S there
exists their greatest lower bound, denoted as x Ay € S. Intuitively x A
y indicates the composition of two modules, or the conjunction of two
properties; in other words, it corresponds to the compose operator I of our
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abstract setting. The entailment relation C is instead represented by the
refinement relation z < y (z refines y); equivalently it represents the fact
that module z satisfies property y. In other words, the model assumes only
a refinement order relation <, an associative commutative and idempotent
operation A which respects the order, and a discrete structure S over which
to interpret (in particular, no computational model is required).

In this setting, we define an inference rule as any rule R in the form:

RO P e

(G

where ® = {¢1, -+ ,¢,} and ¢ are called premises and conclusion, re-
spectively, as in our definitions of Section [3.3.1, while T" is a relation called
side condition. The meaning of R is as expected: if the premises and the
side condition are true, then the truth of the conclusion follows logically.
Notice that the language in which one can express the formulas is rather
restricted in the given setting, so that the side condition is needed to ex-
press more powerful constraints (relations are strictly more expressive than
formulas in the given setting).

Given an inference rule R, Maier defines R as:

sound iff for all evaluations «, a = ® and « =T implies « |= 9, i.e., the
rule draws true facts from true premises;

complete iff for all evaluations «, a = ¥ and a = ® implies o | T,
i.e., the rule is applicable whenever premises and conclusions hold (in
other words, the side condition is not “too restrictive”);

assume-guarantee iff for all premises ¢ € ®, the left-hand side of ¢ and the
right-hand side of ¢ do not share any variables, i.e., we can identify
“assumptions” and “guarantees” without ambiguities;

circular iff it is assume-guarantee and in general ® ¥ 1, i.e., the side
condition is strictly needed to guarantee soundness;

compositional iff it is assume-guarantee and (informally) it never considers
the system composition (i.e., the conjunction of all modules) in the
premises and in the side-condition (in other words, we can consider
each module independently of the others).

Notice that some of Maier’s definitions are non-standard; in particular, this
is the case for his definition of completeness.
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Assuming the aforementioned definitions and structures, the author shows
that if the semilattice S contains forks (which are certain special structures)
of sufficient width (and, in particular, of infinite width), then any composi-
tional circular assume-guarantee rule is either unsound or incomplete. Since
soundness is obviously indispensable, we must either give up completeness
or compositionality. In the case of automatic verification, compositionality
is probably more important, since it permits to really divide the burden
of verification among modules, whenever possible, thus lowering the re-
quired computational effort. The author argues that in the case of manual
verification, completeness may be more important, since the human user
can always, at least in principle, invent a suitable system decomposition to
correctly carry out the verification task.

Since the proposed framework is a very abstract one, it is important to
understand if and how the results drawn for it can be extended to more
concrete frameworks. The author claims that most rely /guarantee inference
rule presented in the literature can be transformed into rules over meet-
semilattices with forks of infinite width, while preserving properties such
as soundness and compositionality. Hence, the limitation of completeness
must hold also for the original rule.

Brief examples are shown of rules for Moore or Mealy machines, such
as those in [HQRT02, Mai01], or for temporal logics, such as those in
[AL95, AM95,JT96]. In particular, the presence of forks of infinite width
follows quite naturally from the fact that the aforementioned frameworks
are interpreted over sets of strings of infinite length: such structures pro-
vide such forks in all non-trivial cases. However, although the problem is
not fully developed, it is likely that more expressive formalisms cannot be
interpreted over meet-semilattices in all circumstances. For instance, it is
not clear if metric temporal logics over a continuous time domain can be
fully translated using the simple formalism of [Mai03], since such transla-
tion seems possible only for interpretations over algebraic (and discrete)
structures. A more accurate investigations of these facts belongs to future
work.

We mentioned that Maier’s definition of completeness is a non-standard
one. Indeed, Maier introduces the standard notion of completeness and
calls it backward completeness, since — among other things — it is useful
to characterize rules which enable backward reasoning. Backward com-
pleteness is used, among others, in [NT00]. In Maier’s framework, a rule
R : ®/y if T is backward complete iff for all evaluations «, if a = v then
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o/ = ® and o/ =T, for some evaluation o which agrees with « on all the
variables of ¢. In other words, backward complete rules admit the use of
auzxiliary variables, i.e., variables appearing in the premises but not in the
conclusion, and of assertions on them; such auxiliary variables increase the
expressive power of the inference rules. For rules without auxiliary vari-
ables, backward completeness implies completeness; therefore, every sound
and backward complete compositional circular assume-guarantee rule nec-
essarily employs some auxiliary variables. Notice that the presence of aux-
iliary variables also increases the complexity of the proofs, since one also
needs to “guess” the value of auxiliary assertions about the system.

All in all, this paper brings forward an interesting analysis of some basic
issues concerning rely/guarantee inference rules. In order to be able to
apply the conclusions of the paper to concrete formalisms, it is important
to always carefully consider, case by case, if and how the definitions char-
acterizing the framework can be express suitably in less abstract settings.
More precisely, things should probably be reconsidered with more expres-
sive frameworks (in particular with continuous time formalisms) or with
different definitions for inference rules and for completeness.

Amla et al. JAENTO03| build a generic (i.e., sufficiently abstract) sound
and complete compositional inference rule, following an approach which is
different from those of most previous works. In fact, nearly all methods
render the circular reasoning of Table [3.1 sound by introducing some sort
of progression operator, which justifies an induction on the set of behaviors
prefixes. On the other hand, this paper does not rely on any ad hoc op-
erator, but rather it introduces some precise semantic assumptions among
the conditions on the rules. These additional constraints also permit a
well-founded induction on the set of behaviors prefixes, thus rendering the
inference rule sound.

Actually, the focus of the paper is on refinement, so the setting is dif-
ferent than that of the other works we considered. However, since the
approach is novel, we review it anyway, briefly detouring from our basic
setting. Actually, refinement (and decomposition) can be regarded as a spe-
cial case of composition, under reasonable conditions; for example, Abadi
and Lamport in [AL95| derive their decomposition theorem as a corollary
of the composition theorem. However, the differences in the two settings
are such that the terminology and notational conventions of the composi-
tion setting, which we have considered thus far, sound strange and do not
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provide intuition in the decomposition setting. Therefore, we are going to
introduce some new notations, in order to provide the intuition needed to
understand the core results of this paper.

The first difference of the decomposition setting is that we do not have
rely /guarantee specifications of modules, but rely /guarantee only refers to
the style of reasoning employed by the inference rule. For simplicity, let
us consider the simple case of two modules, as it is done in [AENTO03].
The goal of decomposition reasoning is to show that the composition of
the two low-level specifications M{ and M of the modules (e.g. their
implementations), implements a certain property M, possibly under a cer-
tain global environment specification E. In general, the composition of the
two low-level specifications is very complicated, therefore the direct proof
of the above is unfeasible or too costly (usually, we consider automated
verification, but the same holds for manual verification). On the contrary,
rely /guarantee reasoning gives conditions under which we can consider only
the composition of the high-level specifications M7 and My of the modules,
which is in general simpler than its low-level counterpart, together with one
low-level specification at a time, that is avoiding to consider directly the
composition of the two low-level specifications. The reasoning is rely/guar-
antee since we usually require that MIL refines My, assuming My holds,
and wvice versa for the other module. Notice that it is not sufficient to
just require that MiL refines M;, since this is in general not the case: usu-
ally, the refinement relation holds only when the other module is a proper
environment to the former one.

The reduction to the composition framework can be understood by tak-
ing the M;’s of the composition setting as the M]’s of the decomposition
setting, and the E;’s as the M;’s of the decomposition setting. However,
notice that the F;’s now represent the assumption of one module about the
behavior of the other, which is needed for the refinement relation to hold,
and not a condition under which the module behaves properly.

We are now ready to introduce the abstract framework of [AENT03]; as
usual we introduce only the relevant aspects, while avoiding some details
for simplicity. We consider the set of all behaviors (i.e. computations) B.
The following assumptions characterize the set of behaviors:

e J3is partitioned into the two non-empty subsets of finite and infinite
behaviors;

e J3is partially ordered by an order “prefix” relation =<;
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e the set of finite behaviors is downward closed under < (i.e. every
prefix of a finite behavior is also a finite behavior);

e < is well-founded on the set of finite behaviors; notice that this im-
plies the existence of an initial condition, that serves as base for
inductions.

As usual, a specification is a subset of B, that is a set of behaviors, with the
additional condition that every finite prefix of a behavior in the specification
is also a (finite) behavior in the specification. This requirement basically
extends downward closure to specifications. For the sake of simplicity, we
overlook other technical requirements that are introduced in [AENTO03].
Notice that all these conditions are semantic, and consider algebraic (and
discrete) structures; in fact, the classical framework of state sequences is a
straightforward realization of these assumptions.

Finally, notice that implication = between formulas represents refine-
ment; in other words A = B denotes the fact that A is a lower-level
specification that implements the higher-level specification B.

We are now ready to state the decomposition rule of [AENTO03|. In a
nutshell, the rule aims at showing that £ A MlL A MZL refines M, without
considering explicitly the conjunction MlL A M2L in the hypotheses of the
rule. In order to do that, we require:

1. that the low-level specification of each module, when composed with
the high-level specification of the other, refines the high-level specifi-
cation of the former module;

2. that the composition of the high-level specifications refines M, under
the assumption F;

3. that the composition of one (anyone will do) of the low-level speci-
fications with the (safety) closure of M refines one of the high-level
specifications, or M itself. Notice that this last condition is the se-
mantic requirement that allows to break the circularity, giving a base
case for the induction, since it requires that one low-level specification
refines a high-level one, without assuming anything about the other
module.

The formal statement of the rule, using our notation, follows. The authors
prove in [AENTO03| that the rule is both sound and complete for the given
setting.
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Proposition 4.2.11 (Amla, et al., 2003 [AENTO03|). If:

1. a) MEAMy = M,
b) MQL/\M1:>M2

2. ENMyAMy= M
3. for some i € {1,2}: EAMFAC(M) = M\ MV M,
then: ENMEANME = M.

All in all, the proposal of Amla et al. is, to the best of our knowledge,
the first example of compositional rely/guarantee reasoning which presents
an abstract framework not relying on an ad hoc operator for expressing
rely /guarantee specifications, but only exploiting semantic assumptions.
Moreover, the proposed rule is a complete one.

4.3. Abstract Non-Rely/Guarantee Methods

This section considers some examples of compositional method that adopt
paradigms other than the rely/guarantee one, and therefore cannot be re-
duced to the general scheme of Table[3.1. In particular, we are considering
abstract methods, rather than those tailored for a very specific formal lan-
guage. As usual, we refer to [Fur05] for more examples and details.

A compositional proof method based on an abstract semantic setting
is investigated by de Boer and de Roever in [dBdR98|, with reference to
assertion networks. Assertion networks are transition diagrams that repre-
sent programs and they were first proposed by Floyd [Flo67| for sequential
programs. The work presented in [dBdR98| considers the extension of such
diagrams to the treatment of concurrent programs.

More precisely, [IBAR98] considers state-based reasoning about concur-
rent programs that have synchronous communication. The method relies
on two ingredients:

e compositional inductive assertion networks, that are used to describe
the sequential parts of the system;

e compositional proof rules, to deduce global properties of the system,
resulting from the concurrent interaction of the local networks.
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The basic idea is to introduce auxiliary variables in the assertional descrip-
tion of a network that represent logical histories. A logical history simulates
the local communication history of some component.

Each component is specified by a Hoare-like triple such as {¢}P{v},
where ¢, 1) are predicates over the logical histories variables, representing
properties of such histories respectively before and after the program P
(represented by a synchronous transition diagram) is executed. Finally,
the compositional method is based on an inference rule for the parallel
composition P; || Py of two programs Pj, P». Under certain conditions on
the predicates ¢;,1; and on the variables involved in the communication
channels, the following inference rule is sound and complete for synchronous
transition diagrams.

(o1} Pr{n}, { o} Po{tba}
{d1 N2} Pr || Pa{thr Napa}

Various other modifications and extensions of the method, to handle dif-
ferent models of concurrency, as well as other methodologies, are thoroughly

discussed in the book [dRABHT01].

The lazy paradigm is an approach to compositionality alternative to the
rely /guarantee one, proposed by Shankar in [Sha98].

The motivation for the study of an alternative paradigm stems from the
fact that, according to Shankar, the rely /guarantee approach is often diffi-
cult to apply in practice, since it requires to anticipate several details of the
guarantees of a component so that they are strong enough to permit the
discharging of the assumptions of the other modules. On the contrary, one
would often prefer to produce a weak compositional specification, adding
the necessary details only in later phases of development. Lazy composi-
tionality proposes to solve this problem by simply lazily postponing the
discharging of the assumptions to later phases of development, when all
the necessary details naturally come into the picture.

Under this respect, the lazy approach is more liberal than the rely/guar-
antee approach, since it does not enforce a pre-defined way of performing
verification, but simply allows for the use of conventional techniques and
methods. Moreover, lazy composition is mainly a methodological approach
to compositionality, whereas rely /guarantee has a strong technical conno-
tation. In a nutshell, lazy compositionality combines a refinement method-
ology with a compositional methodology. The result is an approach which
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is quite general and can be applied to a large variety of formal specifica-
tion languages and models. At the same time, its generality can also be
a weakness, since the verification burden is implicitly subsumed to other
aspects of system analysis, rather than exposed and dealt with directly.

In a hypothetical classification of methods for the verification of large sys-
tems, the lazy approach has an “intermediate” degree of compositionality,
in between truly compositional approaches (and namely the rely/guaran-
tee approach), and non-compositional (a.k.a. “global”) approaches (namely
the Owicki-Gries method |[OG76| and derived methods). Indeed, we claim
that several “non-strictly-compositional” methods fall in this intermediate
region, and in particular those described in this section (i.e. Section 4.3).

Shankar elicits the differences between lazy compositionality and rely/guar-
antee compositionality in five points, namely:

1. components are not treated as black-boxes;
2. composition is not necessarily conjunction;

3. environment assumptions are specified as abstract components (rather
than properties);

4. no rely/guarantee proof obligations are generated;
5. composition can yield inconsistent specifications.

Actually, we note that these differences apply only in a typical setting where
we specify both a computational model and a formal language to express
properties of computations in the model. For example, the “black-box” view
referred to in point 1 implies a distinction between the implementation of
a module (that is its description in the computational model) and some
of its properties (which are described in some logic language, in all the
frameworks we have considered). Similarly, “composition as conjunction”
of point 2 is, in this case, a characteristic of the computational model, and
an “abstract component” (in point[3) is, again, the implementation (in the
computational model) of an abstract specification.

However, we are mainly interested in abstract frameworks; for such
frameworks only the points are relevant. Therefore, let us describe
these points in some more detail.

No rely/guarantee proof obligations are generated. In fact, in lazy com-
positionality the discharging of assumptions is simply lazily post-
poned to when the necessary specification details are present. More

74



4.3. Abstract Non-Rely/Guarantee Methods

precisely, the environment assumption is embedded in the specifica-
tion by means of a component that represents explicitly the abstract
environment. The goal of the following refinement steps is to show
that the overall system subsumes the abstract environment of that
component, thus showing that the explicit environment is superflu-
ous and can be eliminated without affecting the functionality of the
component (in fact, the rest of the system does play the role of the
assumed environment).

Composition can yield inconsistent specifications. This feature is a con-
sequence of the previous characteristic: since we lazily postpone the
discharging of the assumptions, tentatively assuming that they are
indeed dischargeable, it may happen that our suppositions show to
be false according to any possible refinement of the system. In such
cases, the specification is globally inconsistent and we must amend
some previous specification choice.

We now finally describe how lazy compositionality is actually carried out,
with reference to two modules (the generalization to an arbitrary number
of modules is rather straightforward). Let us consider two modules with
specifications P} and P». Note that we do not say anything about how
these local specifications should be written; in particular they could also
be rely/guarantee specifications, even if we will not use the rely/guaran-
tee methodology to treat them. When composing these two modules, we
explicitly add to the specification of each module the assumptions that the
other module makes on its environment. So, if the two modules assume an
environment with properties E; and FEy, respectively, then we strengthen
Py to PLAFEy and P, to P, A E7. Then, we compose these two strengthened
modules; in doing so, it is clear that the environment assumptions of each
module are satisfied by its actual environment, by construction. More
explicitly, in a setting where composition is conjunction, we end up with
the system (FoAPy)A(E1APy), which simply assumes explicitly the validity
of the environment assumptions.

Then, the goal of lazy compositional verification, is to show that (E2 A
Py) A (Eq A Ps) can be refined to simply P; A Ps: this would show explicitly
that the environment assumptions are satisfied in the system which thus
guarantees its functionalities. A drawback of this approach is that a module
cannot be refined independently of the others, since each module is enlarged
to comprehend the environment assumptions of the other modules, which
must also be preserved in the refinement.
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All in all, we believe that the liberal lazy approach can be a useful alter-
native to rely/guarantee compositionality in some cases, even if it basically
amounts to shifting the burden of compositional verification to other, stan-
dard, methodologies and techniques for verification.

Hooman presents in [Hoo98] a framework to support the top-down design
of distributed real-time systems. The framework is based on assertions (i.e.
it is denotational) and also mized, that is a specification in the framework
can contain both assertions and programming constructs (namely compu-
tations).

The framework is semantic, in that it is based on descriptions given
by simple semantic primitives. Moreover, it is parametric with respect to
the time model, which can be, in particular, discrete or continuous. More
precisely, the only assumption on the time model is that it is a strictly
ordered set. The basic semantic primitive used to describe the behavior
of a system (or of a module) is the observation function, which is simply
a function from the time domain to a set of events: thus, it associates
each time instant to the primitive facts that occur at that instant. A
computation represents a history of a module, and it is constituted by a
pair (o, OBS). « is a set of observable events, which are the events that
may be observed during the behavior of the component. OBS is a set of
observation functions of the events in «, that is a set of mappings from
time to subsets of «a (note that we have more than a single observation
function, since we allow for nondeterminism).

Two different definitions of parallel composition of two computations are
given. Consider two computations (a1, OBS1) and (ag, OBS3). According
to the first definition, the composition of the two computations is obtained
by taking the union a; U of the observable events, and the pointwise (i.e.
at all time points) union of the observation functions, requiring that these
functions agree on the events shared by both components (i.e. which are
in a; Nvg). The second definition of parallel composition allows for “open”
computations where the observed events can also be not in a: this means
that they include arbitrary environment behaviors or, in other words, that
OBS is now a mapping from time to subsets of all the possible events
(including those not in «/). In this case, the parallel composition is defined
simply by the union a1 U ag of the observable events, and the (pointwise)
intersection of the observation functions. The two definitions of parallel
composition, although different, are strictly related, and simple conditions,
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basically involving the removal of the environment observables, permit to
pass from a representation to the other. We indicate parallel composition
with the operator //.

In Hooman’s framework, a specification is a particular form of compu-
tation, defined by a pair («,.A). A is an assertion, that is a predicate over
observation functions. Thus, the specification is a computation which has
« as set of observable events, and all observation functions which satisfy the
assertion A. Note that no particular structure is given to a specification,
and in particular the rely/guarantee paradigm is not adopted. Therefore,
parallel composition basically reduces to set intersection, without allowing
for mutual dependencies between components. On the other hand, refine-
ment between specifications is indicated by the operator =.

Now, the core of the framework consists in formulating a composition rule
that permits to deduce soundly the specification of a parallel composition of
two specifications. Let us consider two specifications (aq,.41) and (ag, Asz).
Then, their parallel composition is a refinement of the specification given
by the union of the a’s and the logical conjunction of the assertions, under
a simple condition. Exactly, the soundness condition is that the assertion
A; only depends on the events in «;, for i = 1, 2; this amounts to requiring
that the two specifications are decoupled, and one does not predicate about
the behavior of the events that belong to the other. Under this simple
condition, the following refinement relation holds:

(a1, A1)/ /(a2, A2) = (a1 Uagz, A1 A Ag)

The paper also briefly discusses the hiding operation to selectively remove
observable events from a specification or computation.

As it is clear even from this short presentation, Hooman’s framework is
very simple and quite general. Nonetheless, even if the semantic primitives
are very basic notions, they naturally refer to semantic models such as
those based on sequences of events and interleaving semantics (e.g. such
as Abadi and Lamport’s [AL95]). One advantage of the simplicity of the
framework is that it can be easily implemented in a theorem prover. In
fact, the paper completely formalizes the framework in PVS |ORS92|, and
uses the formalization in proving properties of a hybrid system. A less
formal version of a very similar framework was proposed by the same author

in [Hoo094].
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4.4. Other Approaches to Compositionality

This section briefly summarizes approaches to compositionality other than
those for descriptive formalisms, which have been the focus of the previous
sections. In particular, we give minimal overviews of how the problem
of composition arises for model-checking frameworks, for automata-based
formalisms, and for Petri nets.

The problem with the scalability of formal methods does not affect only
deductive methods, such as those that we focused on elsewhere in this the-
sis, but it appears also in algorithmic methods, and namely model checking
techniques. The limitations of scalability of model checking manifest them-
selves in the state explosion problem: under conditions that happen often
in practice, the size of the representation of the parallel composition of
modules is exponential in the size of the individual components. Hence,
composing modules of manageable sizes yields a global system whose size
in unmanageable and cannot be verified automatically.

Compositional techniques try to soothe this problem by permitting the
verification of components in isolation, while allowing to infer global prop-
erties of the overall system. We avoid a technical analysis of compositional
model checking as it would be beyond the scope of this work. Let us refer
to the work by Kupferman and Vardi [KV00], which is especially focused
on rely/guarantee techniques and algorithmic and complex-theoretical as-
pects. [KV00] also contains several pointers to related literature on com-
positionality for model checking.

Just like logic-based formalisms, also automata-based models define a
notion of composition among modules. However, whereas the composition
semantics is very natural for logic languages, as it is usually reducible to
logic conjunction, defining a notion of composition for automata is in gen-
eral more problematic. One of the problems in achieving such a definition
comes from the fact that automata can often be regarded as a synchronous
formalism, that is where all the units of the system evolve “at the same
time” [FMMRO7|. This often implies that the synchronous composition of
automata is “less natural” than for logic languages, and it requires one to
deal with more technical difficulties.

Nonetheless, composition has been extensively studied for automata-
based formalisms for real-time systems, such as timed automata (TA)
[AD94] and Timed Input/Output Automata (TIOA) |[KLSV06]. Of the
two, TIOA are more general than TA: in fact, TA can be regarded as a
restricted form of TIOA where automated verification is possible. On the
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other hand, TIOA focus on providing a more general framework with a well-
defined notion of input/output behavior, composition, and abstraction, to
facilitate compositional reasoning. Whereas TA rely mainly on automated
model-checking techniques for verification purposes, TIOA are supported
by a wider array of tools, including theorem-proving tools IALL*OG , as
well as code generators and testing tools |Gar06]. They are being used
successfully in dealing with the composition of modules in the description
of large systems [HALMO6].

Some of the technical difficulties of composition may be soothed if asyn-
chronous composition, where each component evolves independently of the
others, is adopted. This is usually the case with timed Petri Nets. Juan
and Tsai [JT02|, besides briefly surveying a large spectrum of compositional
techniques for automata-based formalisms, especially focus on the models of
Multiset Labeled Transition Systems and timed Petri Nets. The book also
considers experimental aspects, practically comparing some model checking
tools on a set of common verification problems.
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5. Compositional Inference Rules
and Methodology for TRIO

This chapter presents a compositional framework for descriptive logic lan-
guages based on axiomatic/deductive techniques, and for the TRIO lan-
guage in particular. The framework is based on a set of compositional
inference rules, which are applicable within a methodology to specify and
verify modular systems. On the one hand, the methodology exploits some
TRIO language features to allow for an effective and natural way of struc-
turing a large specification into classes. On the other hand, some specific
compositional requirements are satisfied by exploiting the inference rules to
handle compositional specifications written according to the rely /guarantee
paradigm and presenting circular references.

We discussed in Section 3.2] why compositional inference rules need not
be circular to be of practical interest. Some works reviewed in Chapter [4
give other evidence to this fact. Therefore, we present both non-circular
inference rules (in Section|5.1) and circular inference rules (in Section[5.2).
In each case, the user should choose the style of rule which is most appro-
priate for the system under development. We complement the presentation
of each rule with an analysis of its completeness, as well as general consid-
erations about features that permit or prevent completeness.

For simplicity of presentation, the inference rules of Sections 5.1 and [5.2
are referred to systems composed of two modules. Afterward, the same
rules are generalized to systems of N > 2 modules in Section (5.3

Finally, Section 5.4/ shows how the previously introduced compositional
rules can be exploited in practice. Namely, a methodology that prescribes
how to tackle the compositional specification and verification of a modular
system is formally presented. The following Chapter [6] will demonstrate
the compositional framework in practice on two significant examples.
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5.1. Non-Circular Compositional Inference Rules

This section presents two non-circular compositional inference rules, and
proves their soundness and completeness. For the sake of clarity, let us
briefly recall the notation we introduced in Section 3.3.1:

e we consider a system made of N > 2 modules;

e to each module? =1,..., N, we associate a local assumption F;, and
a local guarantee M;;

e the N modules are composed (and connected) to form a global sys-
tem;

e the global system has its own global assumption E, and its global
guarantee M.

5.1.1. Non-Circular Inference Rules

For the sake of simplicity, let us first consider simple systems consisting of
two modules only. The extension to the general case of N > 2 modules
will be discussed separately, in Section [5.3.

First of all, the non-circular rules that we present here use regular im-
plication as a compositional operator, as they are simple consequences of
the logical rules of implication and conjunction. Even more generally, we
are able to present their proofs in terms of two generic logical connectives
denoted as C and M. C represents any operator which is an order relation
(i.e., it is reflexive, anti-symmetric and transitive), while the M connector
represents an associative, commutative and idempotent operation which
respects the order relation (i.e., such that if A T C' and B C D, then also
AN BLC CND forany A, B,C, D). 1t is immediate to realize that logical
implication = and conjunction A respectively satisfy such properties.

Therefore, we have the two following proposition, that establish the
soundness of the corresponding two compositional inference rules.

Proposition 5.1.1 (Non-Circular Rely/Guarantee Inference Rule 1). If:
1. E3 T M,
2. EMM; C Ey

. ENM My, EM
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Proof. The following formal derivation proves the proposition.

4. EC M,
then, E C M

*) EnM C M
k) ECE

ENECMMNE
ECMNE

EC ENM

EC M,

ENEC MMM
ECT M1 M,
ENEC ENM MM
EC ENM; MM

ECM

by 211 and transitivity of C

by reflexivity of =

by [4] the previous one and the
order-preservation of 1

by the previous one and the
idempotence of 1

by the previous one and the
commutativity of M

by the previous one, x) and the
transitivity of C

by [4] the previous one, and the
order-preservation of 1

by the previous one and the
idempotence of M

by #x), the previous one and the
order-preservation of 1

by the previous one and the
idempotence of 1

by the previous one, 3] and
transitivity of C O

Notice that the rule of Proposition[5.1.1/is non-fully compositional, ac-
cording to the definitions introduced in Section[3.3.2; instead, the following

1S.

Proposition 5.1.2 (Non-Circular Rely/Guarantee Inference Rule 2). If:

1. a) E1C M
b) Ey C My

2. My C Ey

3. ENMNMMsEM

4. EC Ey
then, E C M
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Proof. The proof is very similar to that of Proposition [5.1.1] In brief, just
assume E holds; then, 1 by[4, My by[la, E5 by[2, Ms by[1bl M by 3l O

We remark again that, however simple the two above non-circular rules
may seem, they are those used in practice in a lot of formal reasoning
about composite systems. Indeed, their simplicity and wide applicability
show that what we call “compositional reasoning” is naturally embedded in
mathematical logic reasoning |Lam98§|.

5.1.2. Completeness of the Non-Circular Rules

Let us show that the inference rules of Propositions [5.1.1] and [5.1.2 are
relatively complete. We need an extra assumption on the set of formulas
over which the order relation C is defined: we require that there exists a
mazimum element in the ordered set, indicated as T, that is a formula such
that for any formula P, P C T is truem Moreover, T must be an identity
element for the M operation, that is for any formula P, PM1T = TP = P.

Notice that these assumptions are obviously satisfied by the logical value
true, with respect to the logical implication = and conjunction A respec-
tively.

Theorem 5.1.3 (Completeness of Non-Circular Inference Rules). The
non-circular inference rules in Proposition|5.1.1 and in Proposition 5.1.2
are relatively complete.

Proof. Let us first consider Proposition[5.1.1. Assume E' C M holds. Hence
choose My = M and Ey = My = T. Hypotheses 1] and [2] are trivially true
because of the definition of T as maximum element of the order. Hypothesis
4]is E T My, which follows from E C M, M T M (since M = M)
and transitivity of C. Finally, hypothesis 3 is £ M M7 M My C M, which
corresponds to EMM M T E M because of the equivalences, and to EMNM C
M because of definition of identity. Now, since ¥ E M and M T M, the
last hypothesis [3 also holds.

Let us now consider Proposition [5.1.2]and assume E C M. If we choose
E,=FE, My = M and My = E5 = T, conditions [1-/4 correspond to:

1. a) EC M, assumed true.
b) T C T, trivially true.

'Recall that P=Q iff PC Q and QC P
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2. ENM C T, trivially true.

3. ENMNTELE M, equivalent to £ C M, assumed true.

4. F C F, true by reflexivity of C. O

5.1.3. Summary of Non-Circular Rules

Table [5.1 summarizes the two non-circular compositional inference rules
we have presented above; for uniformity with the results of the following
sections, we use implication and conjunction in place of the generic C and

[ operators.

Rule 1 (Prop. [5.1.1) | Rule 2 (Prop. [5.1.2)

Ey = Mo E1:>M1,E2:>M2
ENM, = Es M, = E»

ENM NMy= M ENM NMy= M
E = M; E=F
E=M E=M

Table 5.1.: Non-circular compositional inference rules for two modules.

5.2. Circular Compositional Inference Rules

This section presents several circular compositional inference rules, proves
their soundness, and discusses their completeness. More precisely, we are
going to start in Section [5.2.1/ by introducing a compositional operator —
and present fully and non-fully compositional rules that use this operator.
Then, Section[5.2.2 explores variations of the — that may be more suited
to model certain classes of systems; inference rules for these variations are
derived from the analogous ones in Section [5.2.1. Finally, Section [5.2.3
studies the completeness of the previously introduced compositional rules.

5.2.1. The Time Progression Compositional Operator
The Time Progression Operator

Let us introduce a simple compositional operator that allows us to define
sound circular inference rules. It is called time progression operator, and
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it is denoted by the symbol —. Informally, P — @ is true for two time-
dependent formulas P, if, whenever P has been true in the immediate
past, then @) has also been true in the immediate past, is true now, and will
continue to hold for some time in the immediate future. This is formalized
by the following definition.

PoQ= UpToNow(P) = UpToNow(Q) A @ A NowOn(Q) if T dense

e UpToNow(P) = UpToNow(Q) A Q if T discrete
Thus, the rely/guarantee specifications in our inference rules are in the
form ' — M. Notice that this is a reasonable way to express a rely/guar-
antee specification: in fact, we say that the behavior of the module in the
immediate future is influenced only by the behavior of the environment in
the immediate past, so that if the environment stops behaving correctly,
then the module can also stop behaving correctly only after “a while”.

From a technical viewpoint, notice that the semantics of the time pro-
gression operator allows us to build a sort of “temporal induction” over the
timeline, where the inductive step is allowed by the @ A NowOn(Q) part
that “makes time progress” past the current instant (hence, the name).
This will become apparent in the soundness proofs of the inference rules
that use this operator.

Finally, let us also remark that a different operator was also named time
progression and denoted with the same symbol in [FRMMO07|. In Section
[5.2.2] below we will show how the inference rule for that operator, also
presented in [FRMMO7], can be derived from those for the time progression
operator introduced here.

In the remainder, recall that all TRIO formulas are implicitly universally
quantified over time, that is closed with an Alw operator. In particular,
this is the case for the hypotheses and conclusions of the rules that we are
presenting.

Circular Inference Rules for the Time Progression Operator

Let us now present and prove the soundness of two circular inference rules
for the time progression operator. The first rule is given in the following
proposition; according to our taxonomy, it is a fully-compositional, non
self-discharging, globally initialized, circular inference rule.

Let us also remark that, in practice, the initialization predicate S would
be modeled in TRIO as a unique event, i.e., an event which happens exactly
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once in time. This is rendered by the two formulas Som(S) and S =
AlwP(=5) A AlwF(=S). However, the soundness of this inference rule, as
well as that of the others that we present in the remainder of this chapter,
do not depend on S being a unique event.

Proposition 5.2.1 (Rely/Guarantee Circular Inference Rule 1). If:

1. (l) E1 —> M1
b) E2 - M2

2. a) My = FE»
b) My = F,

3. My ANMy= M
4. S = UpToNow(E;) vV UpToNow(M;), for some i € {1,2}
then SomP;(S) = (E — M).

Proof for dense time domains. Let t be the current instant, and let us as-
sume that SomP;(S) holds at ¢; thus, let ¢ < ¢ be (any) instant at which
S held. We have to show that ¥ — M holds at t.

First of all, let us prove that UpToNow(M; A M), M; A Msy, and
NowOn(M; A Mz) hold at t. To this end, we know that at ¢ we have
UpToNow(E;) or UpToNow (M;) for some i, because of (4). Let us assume
that UpToNow(FE;); this is without loss of generality, as if UpToNow(M;),
then (2) lets us conclude immediately that also UpToNow (El) at t', where
we adopt the convention of denoting by i the “other” index {1,2}\ {i} .
Then, let us consider the consequences of at t': since UpToNow(E;),
then UpToNow (M;), M;, and NowOn(M;) also at ¢’. Thus, let us consider
and (2) again and see that also UpToNow(E%), UpTONOW(M%), E;NM;,
NowOn(E;), and NowOn (Ml)

Therefore, we have that M; A My holds until some instant ¢ > ¢ in
the future w.r.t. ¢’; in other words, we can say that UpToNow(M; A Ms)
holds at ¢”. But then, UpToNow(E; A M) holds at ¢”, because of (2).
It is not difficult to see that we can repeat everything that we did at ¢’
again at t”. Thus, we will have a strictly monotonic sequence of points
t' <t" <t" < ... such that My A My holds throughout.

Next, we have to show that the sequence gets (at least) until a point
u > t. We show this by contradiction: assume to the contrary that M A Ms
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holds until point ¢ < ¢ only; that is NowOn(M; A My) is false at ¢. There-
fore, UpToNow(M; A Ms) holds at ¢. Then, lets us deduce that also
UpToNow(E; A E2) holds at ¢. But then we consider (1) twice, once for
module 1 and once for module 2, to conclude that both M; A My and
NowOn(M; A Ms) hold. This is in contradiction with the hypothesis that
Mi A Ms held up until ¢, as expected.

All in all, we have shown that M A My hold from before ¢ until some u >
t. Therefore, in particular UpToNow(M; A Ma), M; A Ms, and
NowOn(M; A My) all hold at ¢.

Finally, from (3) we easily infer that UpToNow (M) A M A NowOn(M)
at t. 0

Proof for discrete time domains. We present a proof along the lines of the
one for dense time domains. Alternatively, one could use induction to prove
the same result for discrete time.

Let ¢ be the current instant, and let us assume that SomP;(.S) holds at
t; thus, let ¢ <t be (any) instant at which S held. We have to show that
E — M holds at t.

First of all, let us prove that UpToNow(M; A My) and My A Ms hold at t.
To this end, we know that at ¢’ we have UpToNow(E;) or UpToNow(M;)
for some i, because of (4). Let us assume that UpToNow(E;); this is
without loss of generality, as if UpToNow(M;), then (2) lets us conclude
immediately that also UpToNow (El) at t', where we adopt the convention
of denoting by 7 the “other” index {1,2}\ {i} 3 ¢. Then, let us consider the
consequences of (1) at ¢': since UpToNow(E;), then UpToNow(M;) and
M; also at t'. Thus, let us consider and again and see that also
UpToNow (E;), UpToNow (M;), E;, and M;.

Therefore, we have that M; A Ms holds until ¢/ = ¢/ + 1 included; in
other words, we can say that UpToNow(Mj A Ms) holds at ¢’ + 1. But
then, UpToNow (E1 A Maz) holds at t” + 1, because of (2). It is not difficult
to see that we can repeat everything that we did at ¢’ again at ¢ +1. Thus,
we will have a strictly monotonic sequence of points ¢/ < #/4+1 <t/ +2 < ---
such that M; A Ms holds throughout.

Next, we have to show that the sequence gets (at least) until a point
u > t. We show this by contradiction: assume to the contrary that M; A M,
holds until point ¢ < ¢ included only; that is NowOn(M; A My) is false at ¢.
Therefore, UpToNow(Mj A Ma) holds at ¢+1. Then, (2)) lets us deduce that
also
UpToNow(E; A E3) holds at £+ 1. But then we consider (1) twice, once for
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module 1 and once for module 2, to conclude in particular that M; A Mo.
This is in contradiction with the hypothesis that M; A Ms held up until ¢,
as expected.
All in all, we have shown that M A M hold from ¢ — 1 until some u > t.
Therefore, in particular UpToNow(M; A Ma) and My A My all hold at t.
Finally, from (3) we easily infer that UpToNow (M) A M at t. O]

Notice that in the above proofs we never actually introduced any fact
about the value of F; in other words it is as if we had proved the conclusion
true — M. Indeed, in this rule — and in some of the following ones — the
global assumption FE is introduced in the conclusion only in conformance
with the other rules; in other words we make no assumptions on the global
environment. On the contrary, other rules actually require E to hold in
order to be sound; this is the case, for instance, of the rules of Proposition
[5.2.4 and Proposition which we will present in the following sections.

The second rule we present is non-fully compositional, self-discharging,
globally initialized, and circular. Notice that our choice of compositional
operator, combined with the fact that the rule is non-fully compositional,
requires to add a term in the conclusion that requires the global assumption
E to hold “always in the past”. Otherwise (i.e., if E was false somewhere in
the past), it would be impossible, in general, to carry out the discharging
of local assumptions, since the rule is non-fully compositional. We prove
the soundness of the rule only for dense time models; the proof for discrete
time models can be developed along the same lines.

Proposition 5.2.2 (Rely/Guarantee Circular Inference Rule 2). If:

1. a) El—»Ml
b) EQ - M2

2. EANMy NMy = E; N Ey

3. My ANMy= M

4. S = UpToNow(E; A E3) V UpToNow (M; A Ms)
then SomP;(S) A AlwPe(E) = (E — M).

Proof for dense time domains. Let t be the current instant, and let us as-

sume that SomP;(S) and AlwP(F) hold at t. We show that £ — M holds
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at t; to this end, let us first show that UpToNow (M; A Ma), M; A Ma, and
NowOn(M; A Ms) hold at t.

Let ¢ <t be an instant at which S holds. From (4), let us assume that
UpToNow(E; A Es) holds at ¢'. This is without loss of generality, since if
UpToNow(M; A Ma), then also UpToNow (E; A Es) at the same time, from
(2) and the fact that AlwP.(E) at ¢t > ¢'.

Then, let us consider (1) at ¢. We can infer that UpToNow(M; A Ma),
M A My, and NowOn(M; A Ms) all hold at ¢'. Therefore, My A My holds
until some t” > /. If t > t, we are done proving the current goal; other-
wise, we can iterate the reasoning and get to a new point ¢ > t".

The sequence of points t' < ¢ <" < --- must eventually reach a point
u > t. The proof by contradiction goes just as in the case of the proof of
Proposition [5.2.1.

So, finally we have that UpToNow(M; A My), M; A M, and
NowOn(M; A Ms) hold at t. The final step infers that also UpToNow (M),
M, and NowOn(M) from (3). Thus, we have shown that E — M holds at
t. O]

Locally Initialized Circular Inference Rules

Let us now provide locally initialized variations of the two circular inference
rules introduced above. They will be useful in discussing the completeness
of the inference rules (see Section [5.2.3). Recall that, in locally initialized
rules, the use of the predicate S “simulates” an origin on the time axis.

Notice that, in order to retain soundness, we have to introduce two small
changes, other than local initializations. First, the initialization predicate
in the conclusion excludes the current instant for S to occur; second, the
initialization condition now requires an interval in the future where a lo-
cal assumption or guarantee holds. This is required to ensure that all
predicates are evaluated after the system has started, so that the locally
initialized specification, dischargings, and global implementation formulas
hold there.

Proposition 5.2.3 (Rely/Guarantee Circular Inference Rule 1(bis)). If:

1. a) SomP.(S) = (Ey - M)
b) SomP¢(S) = (Ey — M)
2. a) SomP¢(S) = (M; = E»)
b) SomP(S) = (My = Ey)
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3. SomPe(S) = (Ml A My = M)
4. S = NowOn(E;) V NowOn(M;), for some i € {1,2}
then SomP¢(S) = (E — M).

Proof for dense time domains. Let t be the current instant, and let us as-
sume that SomP¢(S) holds at ¢. To show that £ — M holds at ¢, let us
first show that UpToNow (M A Ms), M1 A Ms, and NowOn(M; A My) hold
at t.

Let ¢ < t be an instant at which S holds. From (4)), let us assume
that NowOn(E;) holds at ¢'. This is without loss of generality, since if
NowOn(MM;), then also NowOn(E;) at the same time, from (2) and the fact
that in the right-neighborhood of ¢ SomP,(.S) holds. Since NowOn(E;) at
t’, then equivalently UpToNow(FE;) holds at some ¢’ + ¢, for some € > 0.

Then, let us consider at t' + €. We can infer that UpToNow(M;),
M;, and NowOn(M;) all hold at ¢ + e. Then, also UpToNow (El) holds
at t' + € from (2); but then, by again, also UpToNow (M;), M;, and
NowOn (M;) all hold at ' + .

At this point, the proof goes on exactly as for Proposition[5.2.1l In partic-
ular, we infer that UpToNow(M; A My), My A My, and NowOn(M; A Ms)
are true at ¢, and we conclude that £ — M by applying (3). O

Similar modifications are done to get a locally initialized circular infer-
ence rule analogous to that of Proposition We omit the proof, which
is however all similar to the one we have just provided.

Proposition 5.2.4 (Rely/Guarantee Circular Inference Rule 2(bis)). If:

1. a) SomP¢(S) AN AlwP(E) = (E1 — M)
b) SomP(S) A AlwPe(E) = (B2 — M)

2. SomPe(S) A AlwPo(E) = (E A My A My = Ey A Es)
3. SomPe(S) A AlwPo(E) = (My A My = M)
4. S = NowOn(E; A E3) V NowOn(M; A Ms)

then SomP¢(S) A AlwP.(E) = (E — M).

Finally, we present one more variation of the rule of Proposition [5.2.1.
In this case, we write the global implementation formula in terms of the
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—» operator, rather than using simple implication. We may argue that the
original Proposition is probably in a form which is more likely to be
applicable in practice, whereas the following rule overloads one hypothesis
with a large share of the complexity involved in compositional reasoning.
Nonetheless, we will show that the following strengthening allows us to
have a complete inference rule, and in any case it may be useful in practice
with systems where the link between local and global guarantees is more
involved than simple implication.

Proposition 5.2.5 (Rely/Guarantee Circular Inference Rule 1(ter)). If:
1. a) E1 —» M1
b) Ey — My
2. (1,) M, = Ey
b) My = Eq
3. EAMyAM; » M
4. S = UpToNow(E;) V UpToNow(M;), for some i € {1,2}
then SomP;(S) = (E — M).

Proof. The proof is exactly the same as the one of Proposition [5.2.1 until
we have established that UpToNow(M; A Ms) and M A My all hold at the
current instant ¢. Then, if also UpToNow(E) then clearly we infer that
UpToNow(M) A M at t, from (3). This concludes the proof. O

5.2.2. Other Compositional Operators and Compositional
Rules

This section provides other circular compositional inference rules, exploring
different compositional operators and other different features.

A Stronger Time Progression Operator

Let us provide a compositional inference rule very similar to that discussed
and introduced in [FRMMO07]|. The rule exploits another compositional
operator — also called “time progression” in — that we denote
with the symbol > here. Its semantics is the following.

AlwPq(P) = AlwP;(Q) A NowOn(Q) if T dense

P>Q=
@ {AIWPB(P) = AlwPi(Q) if T discrete
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Notice that > is stronger than — in the following sense: if P — @ holds
over the whole time axis, then P > @ also holds, while the converse is not
true, in general. In fact, if for instance P holds exactly over (0,10) and
@ is always false, then it is true that P > @ everywhere, as AlwP¢(P) is
trivially false, but P — @ is false, as @ should hold over some set (0, 10+¢),
for some € > 0.

Despite > being stronger than — in the above sense, we cannot develop
a valid inference rule for the new operator by simply replacing the time
progression operator in Proposition [5.2.1 or [5.2.2 with the new composi-
tional operator. In fact, in general we also have to change the initialization
condition with one which “triggers” the application of the new operator. In
particular, the > operator requires its left-hand argument to hold over al-
ways in the past from the current instant; therefore, we require that at the
system initialization either some local assumption or some local guarantee
are true always in the past. Thus, we obtain an inference rule which is a
slight variation of the one presented in [FRMMO07| for the > operator.

Proposition 5.2.6 (Rely/Guarantee Circular Inference Rule 3). If:

1. (l) Ey > M
b) Ey > My

2. a) M, = E»
b) My = E;

3. My ANMy= M
4. S = AlwP.(E;) V AlwP.(M;), for some i € {1,2}
then SomP;(S) = (E > M).

Proof sketch for dense time domains. Let us just sketch the beginning of
the proof: the remainder is all similar to the previous proofs, as well as to
that presented in [FRMMO07].

Let t be the current instant and # < ¢ be an instant at which S held.
Then, without loss of generality we can assume that AlwP.(E;) at t'; oth-
erwise, it would be AlwP.(M;), but then AlwP, (El) would follow from
(2). Then, from (1) we infer that AlwP;(M;) and NowOn(M;) at t'. More-
over, from (2) and (1) it is simple to deduce that also AlwP;(E; A M;) and
NowOn(E; A M;). All in all we have “advanced” until some time ¢ > ¢'.
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Then, the proof proceeds by the usual non accumulation argument.
When we have finally shown that AlwP;(M; A M) A NowOn(M; A Ms)
at t, then E > M follows straight from (3). O

Implication as a Compositional Operator

As we also discussed elsewhere [FRMMOT7], there are basically two ways to
make a circular inference rule sound. One relies on writing specifications
using an ad hoc operator that allows one to “propagate” the validity of some
predicate over time, thus allowing a sort of temporal induction; this is the
way we have followed with the time progression operator or, more generally,
with other compositional operators. The other way to achieve soundness
in presence of circularity is to rely on semantic properties of the underlying
model or, equivalently, of the formulas that describe that model.

We follow this second way with the following inference rule. Rather
than using an ad hoc compositional operator, we simply write rely/guar-
antee guarantee specifications using implication = to link assumption and
guarantee of a module. On the other hand, we introduce assumptions on
the behavior of the local assumptions and guarantee.

Recall the definitions of right-continuous and left-continuous states, given
in Section(2.1.4. For a time-dependent predicate P, we denote by P € ST _
the fact that it is a state, by P € ST _, the fact that it is a left-continuous
state, and by P € STe_ the fact that it is a right-continuous state. Also
notice that a state which is both left-continuous and right-continuous is
constant over time.

The inference rule of the following proposition requires that a module
has a local assumption or local guarantee that behaves as a left-continuous
state, whereas the other module has a local assumption or local guarantee
that behaves as a right-continuous state. These two facts combined allows
us to substitute an “alternation” of left- and right-continuous predicates to
the use of a time progression operator, in order to set up an induction over
time. In a sense, the interplay between left- and right-continuous states
and the way they are logically implied in the local specifications results in
the constancy over time of the local specifications. Compare this rule to
the one in Proposition where no semantic assumptions are made on
the local formulas, but a compositional operator other than = is used.

Proposition 5.2.7 (Rely/Guarantee Circular Inference Rule 4). If:

1. a) Ey = M
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b) E2:>M2

o

a) M, = Es
b) My = F,

. EANMANMy; = M

3
4. S = UpToNow(E;) vV UpToNow(M;), for some i € {1,2}
5. By € STe_ or My € ST.?

6

. Ey € ST_g or My € ST_,
then SomP;(S) = (E = M).

Proof for dense time domains. Let t be the current instant, and let us as-
sume that SomP;(S) holds at ¢; thus, let ¢ <t be (any) instant at which
S held. We have to show that = M holds at ¢.

As usual, we focus on showing one “temporal inductive step”, the non ac-
cumulation argument being all similar to that of the previous proofs. More
precisely, let us show that FyAMiAEsAMsy and NowOn(Ey A My A Ey A M)
hold at ¢'.

We assume that UpToNow(FE7) holds at ¢'. Indeed, this is without
loss of generality: in fact, if UpToNow(Mz) then UpToNow(E;) from
(2b); if UpToNow(E2) then UpToNow(Ms) from (1b); if UpToNow(M;)
then UpToNow(FE>) from (2a). But then, notice that UpToNow(E;) at
t" implies UpToNow(M;) at t' from (1h), and thus all in all we have
UpTONOW(E1 AN My A Ey A Mg) at t'.

Let us now consider (6), and let us distinguish two cases.

o If £ € ST_,, then F5 holds at t’. Therefore, also My holds at t'
for (Ib); but then, (2b) implies that E; also holds, and finally (1a)
implies that M also holds at .

o If My € ST_,, then M, holds at ¢'. Therefore, also E; holds at ¢
for (2b); but then, (la) implies that M; also holds, and finally (2a)
implies that E5 also holds at ¢'.

All in all, E4 A My A E5 A Ms holds at t'.
The next step is to consider (5) and still distinguish two cases.

2Obviously, fixing which module is described by a right-continuous state is without loss
of generality.
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e If F; € ST, then NowOn(FE}) holds at ¢'. Therefore, also NowOn (M)
holds at ¢’ for (1h); but then, (2a) implies that NowOn(E3) also holds,
and finally (1b) implies that NowOn(M3) also holds at ¢'.

e If My € ST,_, then NowOn(M;) holds at ¢’. Therefore, also NowOn(FE>2)
holds at ¢’ for (2a); but then, (Ib) implies that NowOn(Ms) also
holds, and finally (2b) implies that NowOn(E;) also holds at ¢’

All in all, we have shown that FEy A My A Es A My and
NowOn(E; A My A Ey A My) at t'. The remainder of the proof is as for
the other propositions. O

Since in the above proof we never evaluated hypothesis at instants in
which SomP;(S) is false, we can actually strengthen that hypothesis and
get the following variation. By doing this, the rule becomes complete, as
we will show in Section [5.2.3!

Proposition 5.2.8 (Rely/Guarantee Circular Inference Rule 4(bis)). If:

1. (1,) FEy = M
b) Ey = Mo

o

a) M, = E»
b) My = Eq

3. SomP;(S) = (EAMy A My = M)
4. S = UpToNow(E;) V UpToNow(M;), for some i € {1,2}
5. E1 €STe_ or M1 € STe_
6. Eo € ST o or My € ST,
then SomP;(S) = (E = M).

We conclude this section by pointing out that the notion of states (and
right-continuous or left-continuous ones) is a meaningful one only when
dealing with dense time models [GMO01]. Therefore, the above rules are ap-
plicable to such time models only, and have no discrete-time counterparts.
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A Circular Inference Rule Without Compositional Operator

Let us present one more circular inference rule. This rule differentiates
itself from the other ones, in that it does not use a compositional operator
and it does not make any assumptions on the behavior of the assumption
and guarantee items. Moreover, it is substantially different than all the pre-
vious rules because it does not assert the validity of some global guarantee
over a time interval that goes from the system initialization to the cur-
rent time. Instead, it asserts that the system always responds in a timely
manner by making true the global guarantee, provided the global assump-
tion holds continuously for some time, and some of the local assumptions
or guarantees are periodically initialized. Thus, in a sense, it describes a
system with a fixed bounded response time to periodic initializations. In
such systems the circularities are resolved periodically, rather than once
for all at the beginning. Therefore, the rule is suitable to prove properties
about systems composed of modules periodically responding to stimuli. In
Section [6.3 we will demonstrate how to use the rule with an example of
communication protocol.

According to our taxonomy, the rule is circular, non self-discharging, fully
compositional, globally initialized (actually, not initialized at all), without
compositional operator. Its soundness proof is rather simple, and requires
no temporal induction, contrarily to the other rules we have presentedE

Proposition 5.2.9 (Rely/Guarantee Circular Inference Rule 5). If, for
some fized duration Tp > 0:

1. a) Ei = M,
b) Ey :>M2

2. a) M, = E»
b) M2 = Fj

3. EANMyNMy= M

4. i € {1,2} : WithinF(E;, Tg) V WithinF (M;, Tg)

*Notice that the conclusion formula Lasts(E, Tp) = WithinF (M, Tg) is a weaker ver-
sion of the bounded release operator Releases<r(P, Q). The operator is usually
defined as V0 < ¢t < T : Futr(Q, t) V WithinF (P, t). Therefore Releases<ty (M, -E)
implies Lasts(E, Tg) = WithinF (M, Tg), but not vice versa, as the latter is true
whenever E holds only over intervals of length less than Tg.
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then Lasts(E, Tg) = WithinF (M, Tp).

Proof. Let t be a generic time instant at which Lasts(F, Tg) holds, and
prove that WithinF (M, Tg). Notice that the same proof works for both
dense and discrete time domains.

From (4), let us assume that WithinF (F,, Tg) at t. This is without loss of
generality: in fact, if WithinF(Ms, Tg), then WithinF(E}, Tg) from (2b); if
WithinF(E», Tg), then WithinF(Ms, Tg) from (Ib); if WithinF(M;, Tg),
then WithinF (Es, Tg) from (2h).

Thus, there exists a ¢’ such that t < ¢ < Ty and E; holds at ¢'. There-
fore, F1 A M1 A E3 A M3 holds at at ¢ by (1) and (2)). Moreover, since
t <t' < Tp and Lasts(E, Tp) at ¢, then E also holds at ¢. But then, M
holds at ¢’ by (3). Since t < t’ < Tpg, this implies that WithinF (M, Tg) at
t. O

5.2.3. Completeness of Circular Inference Rules

This section analyzes the completeness of the circular inference rules pre-
sented above.

Theorem 5.2.10. The rely/quarantee circular inference rule 1 of Propo-
sition|5.2.1 1s incomplete.

Proof. Let o, €, u be three Boolean basic time-dependent items; let us take
S =0, FE=¢ and M = p. Then, in order to show incompleteness, we
provide a history for o, €,y such that the conclusion of the inference rule
holds, but no choice of E;, M; makes true all the premises of the rule.

The history is as follows. p and e are false everywhere, whereas o is true
only at some point s internal to the time domain (and it is false everywhere
else). Notice that this history is definable in TRIO by the two formulas
Alw(—p A =€) and Som(o A AlwP(=0) A AlwF(—0))4

Let us now realize that £ — M is always true, since F is always false;
therefore the conclusion of the inference rule holds a fortiori.

Let us now consider what happens at s. In order to make (4)) true,
let us assume that it is UpToNow(E;) at s. As usual, this is without
loss of generality, since if UpToNow(Mz) then UpToNow(E}) in order to

*For simplicity, assume a bi-infinite time domain such as R or Z, so that there are no
(finite) boundaries. Extensions to mono-infinite or even infinite time domains are
routine.
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satisfy (2b); if UpToNow (E2) then UpToNow(Ms) in order to satisfy (Ib);
if UpToNow (M) then UpToNow(E?2) in order to satisfy (2a).

Then, UpToNow (FE1) at s implies UpToNow (M) at s to satisfy (1h), and
therefore also UpToNow(M2) at s to satisfy (1b,[2). Since UpToNow (M A
Ms) at s, then (3) requires that UpToNow(M) at s as well. But M = pu
is false everywhere by assumption, so there is no choice of Ey, Ey, M1, My
that is compatible with all the premises of the rule. O

Theorem 5.2.11. The rely/guarantee circular inference rule 2 of Propo-
sition is incomplete.

Proof. Let o, €, i be three Boolean basic time-dependent items; let us take
S =0, FE =¢ and M = p. Then, in order to show incompleteness, we
provide a history for o, €, ;4 such that the conclusion of the inference rule
holds, but no choice of E;, M; makes true all the premises of the rule.

The history is as follows. p is false everywhere, whereas o is true only
at some point s internal to the time domain (and it is false everywhere
else). At s, € is true on a non-empty interval on the left which is strictly
contained within the time domain; that is, let us say that e holds exactly
on the interval (s — 7, s) for some suitable v > 0. Notice that the history
is definable in TRIO.

Let us now realize that AlwP.(FE) is always false, since (s—7, s) is strictly
contained in the time domain by hypothesis. Therefore, the conclusion of
the inference rule coincides with an implication with false antecedent, and
it is therefore trivially true.

Let us now consider what happens at s. In order to make (4) true, it must
be either UpToNow(E; A E3) or UpToNow(M; A M) at s. However, if
UpToNow(E7 A E2) then also UpToNow(M; A M) by (1), so let us assume
the latter without loss of generality.

Finally, notice that it is also UpToNow(E) at s, therefore it must be
UpToNow(M) at s. But M = p is false everywhere, thus we have a false
premise. O

If we look carefully at the above incompleteness proofs, we notice that
the main obstacle to achieving completeness is the impossibility of choos-
ing suitable values for E;, M; before the system is initialized, that is when
SomP;(5) is false. As a consequence, by switching to locally initialized
inference rules, it may be possible to achieve completeness. Nonetheless,
having a locally initialized inference rule is neither a sufficient nor a neces-
sary condition for completeness. Indeed, in the remainder we show that the
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locally initialized inference rule 1(bis) of Proposition [5.2.3 is incomplete,
whereas the locally initialized inference rule 2(bis) of Proposition is
complete. Moreover, we show that the globally initialized rule 1(ter) of
Proposition [5.2.5 is also complete. Therefore, in general the relationship
between the features of a compositional rule and its completeness is subtle
and non straightforward.

Theorem 5.2.12. The rely/quarantee circular inference rule 1(bis) of Propo-
sition|5.2.3 1s incomplete.

Proof. As we did above, let o, €, 1 be three Boolean basic time-dependent
items; let us take S = o, F = ¢, and M = p. In order to show incom-
pleteness, we provide a history for o, €, u such that the conclusion of the
inference rule holds, but no choice of E;, M; makes true all the premises of
the rule.

The history is as follows. p and e are false everywhere, whereas o is true
only at some point s internal to the time domain (and it is false everywhere
else). Notice that the history is definable in TRIO.

Let us now realize that £ — M is always true, since F is always false;
therefore the conclusion of the inference rule holds a fortiori.

Let us now consider what happens at s. In order to make (4) true, let
us assume that it is NowOn(E;) at s. As usual, this is without loss of
generality, since if NowOn(M3) then NowOn(E;) in order to satisfy (2b);
if NowOn(E3) then NowOn(Ma) in order to satisfy (1b); if NowOn(M;)
then NowOn(E») in order to satisfy (2a).

Then, NowOn(E;) at s implies NowOn(M;) at s to satisfy (Ih), and
therefore also NowOn(Ma) at s to satisfy (1b,[2). Since NowOn(M; A Ms)
at s, then (3) requires that NowOn(M) at s as well. But M = p is false
everywhere by assumption, so there is no choice of Fy, Fo, My, My that is
compatible with all the premises of the rule. ]

Notice that in the proofs of the following Theorem (5.2.13) we assume to
deal only with non-Zeno items. We conjecture that the theorem holds also
for Zeno items, but the proof would be even more involved — and not prac-
tically very interesting, as Zenoness is anyway a source of incompleteness
on its own |[GM01| — so we omit it for simplicity.

Theorem 5.2.13. The rely/quarantee circular inference rule 1(ter) of
Proposition 5.2.5is complete.
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Proof. Let us assume that the conclusion SomP;(S) = (E — M) holds.
Then, let us define M; as follows.

E — M if SomP;(S)
My = « true if Until(M, S) v Until(—=M A =E,S) and AlwP;(=S5)

false otherwise

Equivalently, we can express the definition above with the TRIO formula:

(SomPl(S) == (M1 <~ (E — M))) VAN
(AlwP;(=S) A (Until(M, S) V Until(=M A ~E, S)) = My) A
(AlwP;(—S) A =Until(M, S) A =Until(=M A —E, S) = —M))

or, more concisely, with the equivalent formula:

M, & (SomP;(S) A (E — M))
V (AlwP;(=S) A (Until(M, S) v Until(—=M A =E, S)))

Similarly, let us choose My = Fq = Fs as follows.

true if Until(M, S) or Until(—=M A —E, S) or SomP;(S)

My =F| =Fy =
2 ! 2 {false otherwise

Then:

e Let us consider hypothesis (1a) at some instant ¢t. We distinguish the
following cases:

— If SomP¢(S) holds at ¢, then notice that the three formulas:
UpToNow(E — M), NowOn(E — M), and UpToNow(E;) also
hold at ¢. This is because SomP,(.S) implies UpToNow (SomP.(.5))
and NowOn(SomP¢(S)).  Therefore, (1h) is equivalent to
UpToNow(E;) = UpToNow(E — M) A (E — M) A NowOn(FE
— M), and it does hold at t.

— If S at ¢t (and =SomP,(S)), then without loss of generality let
us assume that UpToNow(E7) holds as well; if not, (1a) is triv-
ially true since UpToNow(—E;) would follow for properties of
Zeno items. But from the definition of M; notice that whenever
UpToNow(E7) and S, then also UpToNow(M7). Moreover, af-
ter ¢ it is SomP¢(S), and thus M; = (E — M) holds there by
assumption. Thus, at ¢ it is also M; and NowOn(M;). This
establishes (1a) in this case.
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— Otherwise AlwP;(—S) at ¢t. Again, without loss of general-
ity we can assume that UpToNow(FE;). But then, whenever
AlwP;(=S), My holds iff E; holds. So, if also NowOn(—.S), (1a)
holds at ¢. Otherwise, it must be NowOn(S) and =S at ¢. In
this case, NowOn(SomP;(.S)) holds at ¢, and thus NowOn(M;)
also holds at ¢ (from the assumed conclusion of the inference
rule and the definition of M;). Thus finally, (1) holds at ¢ in
this case as well.

The reasoning for hypothesis (1b) is similar to that for hypothesis
(1b), only a bit simpler since Es and My are everywhere equal. We
omit the details which are the same as in the previous step.

Let us consider hypothesis (2a): if it is evaluated when SomP;(.S),
then is reduces to (F — M) = true, which is true by hypothesis.
If instead AlwP;(—S), then either Until(M,S) V Until(-M A =E, S)
or not. In the former case, (2a) reduces to an implication with true
consequent; in the latter case it reduces to an implication with false

antecedent. Both are tautologies.

A similar reasoning goes for hypothesis (2b), which reduces to either
true = true or to false = false.

Let us consider hypothesis when SomP;(S). Then, it can be
rewritten as F A (E — M) — M. Now, notice that if £ —» M
then a fortiori E N (E — M) — M, since the latter can be written
as an implication with the same consequent but a more demanding
antecedent. Since we are assuming that £ — M, we are done in this
case.

Otherwise, AlwP;(—S), and let ¢ be the instant at which we are eval-
uating (3). Now the analysis gets more involved. First of all, let
us consider the case in which AlwF.(—S). Thus S is always false;
therefore, Until(M, S)V Until(—=M A —FE, S) is also false (since we are
dealing with strong until), and thus My = F; = FE, = false every-
where. Therefore UpToNow (M) is always false, which implies that
E N My AN My — M is always true.

Otherwise S is true somewhere in the future. Without loss of general-
ity, since we are assuming non-Zeno items, let s > ¢ be the nezt time
instant at which .S or NowOn(S) holds. Now we further consider two
cases:
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— If Until(M, S) at ¢, then in particular M holds over the interval
(t,s). Let us now consider the next point in the past from t at
which M becomes false; let © < t be this instant. Thus, M holds
continuously over the interval (u,s) and is false before u (the
value of M exactly at u is not relevant now). Notice that for all
instants in (u, s), the formula UpToNow (M) A M A NowOn(M )
holds, since we are within an open interval. This implies that
(3) can be rewritten as an implication with true consequent (by
considering the definition of the — operator), which is therefore
true throughout (u, s).

We still have to evaluate (3) in the interval (—oo,u]. Notice
that in all these instants, the formula UpToNow(M; A M) is
false; in fact, My and My are true at most at v and after it,
but false before it since Until(M, S) no longer holds (recall that
AlwP;(=S) holds at t > u). Therefore, a fortiori UpToNow(E A
M N\ My) is false at these instants. But then E'AM; A My — M
is equivalent to an implication with false antecedent, which is
trivially true.

— If instead Until(—M A —=E,S) at t, then let us repeat the above
reasoning for =M A —FE in place of M. So, assume that M and
E are false throughout (u, s) for some u < ¢. As a consequence,
UpToNow (M) A M ANowOn(M) is now false throughout (u, s),
and so is UpToNow(E). Therefore, a fortiori UpToNow(E A
Mj A\ Ms) is false at these instants. But then E'A My A My — M
is equivalent to an implication with false antecedent, which is
trivially true.

Similarly as the previous case, in the interval (—oo,u] the for-
mula UpToNow(M; A My) is false. Thus, E A My A My — M
is equivalent to an implication with false antecedent, which is
trivially true.

— Notice that we have no other cases to consider. In particular
if both Until(M, S) and Until(—M A —E, S) are false at ¢, then
UpToNow(E A —~M) holds at s. But this contradicts the as-
sumption that the conclusion of the inference rule is true there.

e Finally, hypothesis (4). Let us consider any instant s at which §
holds. At s, either UpToNow(M) or UpToNow(—M), since we are
dealing with non-Zeno items. If UpToNow (M ), then UpToNow (Ma A
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Ey A My), since Until(M, S) holds in a left-neighborhood of s. If
UpToNow(—=M) then it must also be UpToNow(—FE), otherwise the
conclusion

SomP;(S) = (E — M) would be false at s. Therefore, UpToNow (M2
A Ey A M), since Until(—=M A —FE, S) holds in a left-neighborhood of
s. O

Theorem 5.2.14. The rely/quarantee circular inference rule 2(bis) of Propo-
sition |5.2.4 is complete.

Proof. The proof is all the same as the previous one: let us assume that the
conclusion SomP¢(S) A AlwP.(E) = (E — M) holds. Then, let us define
My as My = E — M, and let My = E; = Es = true be all identically
equal to true.

Therefore:

e Hypothesis (1a) is equivalent to SomP¢(S5) A AlwP.(E) = (E — M)
which is exactly the conclusion.

e Hypotheses (Ibj2) are all equivalent to SomP¢(S)AAlwP.(E) = true,
which is trivially true.

e Let us consider hypothesis (3). Without loss of generality, let us take
any instant at which SomP¢(S) and AlwP.(E) hold. Then, we have
to establish that (E — M) A true = M. Clearly, this is the same
as just M, since E — M holds from the conclusion. Now notice
that AlwP(F) implies a fortiori that UpToNow(E) 2 Therefore, the
conclusion allows us to assert that UpToNow (M) A M ANowOn(M),
so that M is, in particular, true.

e Hypothesis (4) is trivially satisfied for F; = Ey = true. O
The following result has been already proved in [FRMMO7|.

Theorem 5.2.15. The rely/quarantee circular inference rule 3 of Propo-
sition|5.2.6 1s incomplete.

®We are skipping a little technicality here: we are tacitly assuming that we are at a
point internal to the time domain, otherwise it could be that AlwP¢(F) is trivially
true, but UpToNow(E) is false since there is no non-empty interval to the left of the
boundary. However, this is not a problem, as we just have to notice that SomP,(\S)
being true implies that we are indeed in an internal point.
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Proof. Let o, ¢, u be three Boolean basic time-dependent items; let us take
S =0, E=¢ and M = p. Then, in order to show incompleteness, we
provide a history for o, €, ;4 such that the conclusion of the inference rule
holds, but no choice of E;, M; makes true all the premises of the rule.

The history is as follows. p and € are false everywhere, whereas o is true
only at some point s internal to the time domain (and it is false everywhere
else). Notice that the history is definable in TRIO.

Let us now realize that E > M is always true, since AlwP.(E) is always
false; therefore the conclusion of the inference rule holds a fortior.

Let us now consider what happens at s. Without adding details (as they
are all similar as in the other proofs), one realizes that in order for (4) to
be true, we must have AlwP¢(Fy A Es A M1 A Ms) at s.

Then, requires that AlwP¢(M) at s. But M = p is false everywhere
by assumption, so there is no choice of Eq, Fo, M7, Ms that is compatible
with all the premises of the rule. O

Theorem 5.2.16. The rely/quarantee circular inference rule 4 of Propo-
sition [5.2.7 is incomplete, whereas the rule 4(bis) of Proposition[5.2.8 is
complete.

Proof. The incompleteness proof is along the usual lines. Let S be true
exactly at some time s, M false everywhere, and E be true on some open
interval (s — €, s), and false everywhere else (in particular, this implies
that UpToNow(E) A =E holds at s). Notice that this implies that when-
ever SomP;(S), then FE is false, so E = M holds; thus the conclusion
of the inference rule holds everywhere. Then, by (4) and (1-12) it must
be UpToNow(E; A Ea A My A Msy) at s. Moreover, by (3) UpToNow (M)
must also hold at s, a contradiction.

The completeness proof instead is as follows. Let us assume that the
conclusion SomP;(S) = (E = M) holds. Then, let us define M; as M; =
SomP;(S) = (E = M), and let My = E; = E5 = true be all identically
equal to true.

1h) is the same as SomP;(S) = (E = M), which holds by assump-
tion. (1b) is trivially true, being an implication with true consequent. (2)
are both trivially true, also being implications with true consequents. (3)
can be rewritten as SomP;(S) = (E = M), again true by assumption.
is satisfied everywhere by E; = FEs = true. Finally, notice that a
constant Boolean time-dependent item is both a right-continuous and a
left-continuous state, so (5H6) is satisfied by Ej, Es. O
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Theorem 5.2.17. The rely/quarantee circular inference rule 5 of Propo-
sition 5.2.9 is complete.

Proof. Let us assume that the conclusion Lasts(E, Tg) = WithinF (M, Tp)
holds. Then, let us define 4y = Ey = My = My implicitly as follows.

(Lasts(E, Tp) = Lasts(Ey = Eo = My = My = M, Tg)) A
(WithinF(~E, Tg) =
Until(Ey = Ey = My = My = —F,
Lasts(E, Tg) A By = By = My = My = ~E)
V AlwF, (WithinF (—E, Tg) A By = Ey = My = My = —E))

Thus clearly (1]12) all reduce to propositional tautologies of the form A =
A, since By = E5 = My = M, everywhere.

Then, let us consider (4) first, and let ¢t be any instant. At ¢, either
Lasts(E, Tg) or WithinF(—=E, Tg). In the former case, the conclusion lets
us deduce that WithinF (M, Tg). But since also Lasts(F; = Ey = M =
My = M, Tg) at t, then WithinF(E; A Ea A My A Ms, Tg), which satisfies
(4). Otherwise, we have a t < ¢’ < t+ Tp such that —=F holds at ¢’. Then,
it is either AlwFq(E), = Ey = My = My = —=E A WithinF(=E, Tg)) at ¢,
or not. In the former case, we have By = Fy = M; = M> at t/, and thus
(4) is satisfied. In the latter case, there exists an instant ¢ > ¢ such that
Ey = Ey = My = My = =E holds until t” included. 1f t” > t', then (4) is
implied; otherwise t” < t/, Lasts(E, Tg) holds at ¢, which contradicts the
fact that F is false at t'.

Next, let us discuss hypothesis (3), at a generic time instant ¢t. If E is
false at ¢, then the implication holds trivially.

Otherwise E is true at ¢. Let us distinguish two cases: (a) if there exists
an interval (p,p + Tp) such that ¢ € (p,p+ Tg) and E is true throughout
(p,p+Tg); (b) if this is not the case. Notice that if (b), then in particular
there must exist an instant t — Tp < ¢ < t such that WithinF(—E, Tg)
holds at gq.

Thus, if (a) is the case, then let us consider the instant p. At p Lasts(E, Tp)
holds, therefore Lasts(E; = Ey = M; = My = M, Tg) also holds at p. Thus
at t € (p,p+Tp): if M, then also My A Mo, thus (3)) holds; if =M, then also
- M1 A= My, thus (3) also holds, being an implication with false antecedent.

Otherwise, (b) is the case, and WithinF(—F,Tg) holds at ¢. Let us
distinguish whether Lasts(WithinF(—F, Tg),t — ¢) holds at ¢ or not. If
it does, then surely Fy = Ey = My = My = —FE at t, and therefore (4)
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reduces to £ A —FE = M, which is trivially true having a contradiction in
the antecedent. If it does not, then there exists some ¢ < ¢’ < t such that
Lasts(F, Tg) holds at ¢’. But this corresponds to case (a), a contradiction
which concludes this branch as well. O

5.2.4. Summary of Circular Rules

Table[5.2 summarizes the various circular compositional inference rules we
have presented above; an I/C letter after before the proposition number
denotes if the rule is incomplete/complete.

5.3. Generalization to More Than Two Modules

This section discusses how the compositional inference rules presented in
Section 5.1 and 5.2/can be generalized to handle a system with any number
N > 2 of modules.

Let us point out that these generalizations are not strictly necessary to
apply our compositional rules to systems with more than two modules. In
fact, the rules can be applied by recursively partitioning the set of modules
into two suitable sets, and apply the compositional rules by considering the
two subsets as two (macro) modules. Nonetheless, the structure of a multi-
modular system is often best exploited by considering the composition of
all the modules at the same level. In fact, a well-designed system often
has a modular partitioning where it is “natural” to associate some local
properties to each of its modules. Therefore, we extend our compositional
rules to handle such commonly encountered cases.

Throughout this section N is an integer greater than one, that represents
the number of modules.

5.3.1. Non-Circular Inference Rules

The non-circular inference rules of Propositions[5.1.1 and [5.1.2] can be ex-
tended to handle any number of modules by introducing a way to describe
a set of discharging formulas where the local assumption of each module is
discharged by the local guarantee of another module, and no circularities
are introduced. To this end, it is sufficient to describe a permutation of the
set of modules where the local assumption of each module is discharged by
the local guarantee of the module which follows in the permutation.
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Rule 1 (Prop. [5.2.1]T)

Rule 1(bis) (Prop. [5.2.3 1)

Rule 1(ter) (Prop.[5.2.5 C)

Ey — My, Ea — M
M, = EQ, Ms = E1
My N Mgy = M
S = UpToNow(E;) V UpToNow(M;)

SomPe(S) = (E1 —» Ml) N (E2 —» MQ)
SomPe(S) = (M1 = EQ) A (MQ = E1)
SomPe(S) = (My A Mz = M)

S = NowOn(E;) V NowOn(M;)

Ey — My, Ea — M
M = EQ, My = FE1
E AN My AN My — M
S = UpToNow(E;) V UpToNow(M;)

SomP;(S) = (E — M)

SomP¢(S) = (E — M)

SomP;(S) = (E — M)

Rule 2 (Prop. [5.2.2[1)

Rule 2(bis) (Prop. [5.2.4 C)

Rule 3 (Prop. [5.2.6 I)

Ey — My, Ea — M
ENANMy NMo = E1 N Es
My AN Mgy = M
S = UpToNow(E1 A E2) V UpToNow (M A Ma)

SomP¢(S) A AlwPe(E) = (E1 — M) A (B2 — Ma)
SomPe(S) A AlwPo(E) = (E A My A Ma = Ey A E)
SomPc(S) A AlwPe(E) = (M1 A My = M)

S = NowOn(E; A E2) V NowOn(M; A M)

E1 > My, E2 > M
My, = EQ, Mo = E,
My N My = M
S = AlwP.(E;) V AlwPo(M;)

SomP;(8) A AlwPo(E) = (E — M)

SomP. () A AlwPo(E) = (E — M)

SomP;(S) = (E> M)

Rule 4 (Prop. [5.2.7/1)

Rule 4(bis) (Prop. [5.2.8 C)

Rule 5 (Prop. [5.2.9/C)

F = Ml, FEo = Ma>
My = E2, My = E
EANMy NMy = M
S = UpToNow (E;) V UpToNow(M;)
FE1 or My € STe_, Eo or My € ST,

FE = Ml, FE2 = Mo
M; = EQ, Mo = Eq
SOmPi(S) = (E AN My N My = M)
S = UpToNow (E;) V UpToNow(M;)
E1 or My € STe_, Eo or Mo € ST _,

F = Ml, FEo = M>
My = Ea, My = Eq
EANMy NMsy = M

WithinF (E; v M;, Tg)

SomP;(S) = (E = M)

SomP;(S) = (E = M)

Lasts(E, Tg) = WithinF (M, Tp)

OIY.I 10] £Sojopotjoj pue se[ny oousdofu] feuorjsoduio)) ¢
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Thus, let us denote by 7 permutations of the set {1,..., N}. By 7n(i)
we mean the ith element of the permutation, for ¢ € {1,...,N}. For
example if N = 3 and 73 = [3,1,2], then m3(1) = 3, m3(2) = 1 and
7T3(3) = 2.

Let us first consider the extension of rule 1 of Proposition

Proposition 5.3.1 (Non-Circular Rely/Guarantee Inference Rule 1N). If
there exists a permutation my such that:

1. forallie{1,...,N}: E; C M,
2. forallie{l,...,N—1}: EN My ) E Eryiv
S ENMyn---MMyCEM
4. BT My )
then EC M

Proof sketch. Let us just provide a sketch, since the proof is easily derivable
from that of Proposition Assume that E holds, then M) by (4).
Then, by successively applying (1) and (2) fori = wn (1), 7n(2), ..., 78 (N),
we get that all B 9), My ), -+, My hold. Therefore, M holds by
3). O

The extension of Proposition [5.1.2 is very similar, the only difference
being that we now have a fully compositional rule. For brevity, we omit
the (obvious) proof.

Proposition 5.3.2 (Non-Circular Rely/Guarantee Inference Rule 2N). If
there exists a permutation wy such that:

1. forallie{1,...,N}: E; C M,

2. forallie{l,...,N —1}: My ) E Er (it
3. ENMM---MMyC M

4. ECE, .

then E T M
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Completeness. Let us remark that the completeness results about the two
rules of Propositions and clearly carry on to Propositions
and 5.3.2] which therefore define complete inference rules. In fact, if we
assume E C M, then both Propositions [5.3.1] and [5.3.2] define a complete
rule if we choose My, 1y = M, E; 1) = E, and all other E;’ s and M;’s
equal to T.

Summary. Table [5.3 summarizes the two above non-circular inference
rules.

Rule 1N (Prop. [5.3.1 C) Rule 2N (Prop. [5.3.2/]C)
VZG{L,N}(EZ:>MZ) Vle{l,,N}(EzéMz)
vie{l,...,N—1}: (E/\M,TN(i) = ETrN(i+1)) vie{l,...,N—1}: (MWN<i) = EWN(i+1))
EANMyN---NMyn=M EANMiAN---ANMy =M
EZ}MWN(I) E:>E7rN(1)

E=M E=M

Table 5.3.: Non-circular compositional inference rules for N > 2 modules.

5.3.2. Circular Inference Rules

Let us now generalize the circular compositional inference rules of Section
to the case of more than two modules. There are basically two modifi-
cations to introduce in each rule to generalize it; the underlying rationale
for these two changes is common.

The first change is to the discharging formulas. Whereas in the two
module case each module’s assumption was usually discharged by means
of the other module’s guarantee, with N > 2 modules it is simpler and
more natural to specify that the conjunction of all the modules’ guarantees
discharges the conjunction of all the modules’ assumptions: this makes
the rules self-discharging, but simpler to state as we do not have to specify
complicated discharging relations. Clearly, variations are possible, but they
may render the statement of the rule more involved. According to our
general approach to compositionality, we recommend the formulation of
such variations to be driven by the particular systems being modeled, rather
than a priori for the sake of exploring different rules.

The second change is related to the first one. In fact, if the discharging
of the assumptions depends on all the guarantees being true, we have to
modify the initialization condition so that one can infer from S being true
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that all the guarantees are also true at the same time. In practice, this can
be usually implemented by requiring that the guarantee or the assumption
of each module holds when S holds.

In the remainder of this section we present generalizations of the inference
rules of Section[5.2]along these lines. We provide proofs for just a few of the
propositions, the other proofs being routine. In the remainder, we denote
the finite set {1,..., N} as Zy.

Circular inference rules for the time progression operator.
Proposition 5.3.3 (Rely/Guarantee Circular Inference Rule 1N). If:
1. foralli € In: E; — M;
2. Niezy Mi = Niezy, Ei
8. Niery Mi = M
4. S = UpToNow(FE;) V UpToNow(M;), for all i € Iy
then SomP;(S) = (E — M).

Proof. Let t be the current instant, and let us assume that SomP;(.S) holds
at t; thus, let ¢ <t be (any) instant at which S held. We have to show
that £ — M holds at ¢.

For any i € Zy, either UpToNow(E;) or UpToNow(M;). In particular, let
I C Iy the set of modules’ indexes for which UpToNow(E;) holds. Then,
from we can infer that also UpToNow(M;) for all ¢ € I. Therefore, all

in all we have that UpToNow (/\iGIN M,) at t’. From (2) this implies that

UpToNow (AieZN EZ> also holds at /. Therefore, we exploit (1) to deduce

that Az, Mi and NowOn (Ayez,, M; ) both hold at ¢ as well.

This provides the usual “temporal inductive step” as in all the other
proofs for two modules. Therefore, we omit the remainder of the proof
which amounts to the usual “non accumulation” argument, which is unaf-
fected by the fact that we are now dealing with N > 2 modules. O

Since we now introduced self-discharging in the rule of Proposition[5.3.3,
the only difference between Proposition and the following is that
we now have a non-fully compositional rule. Also notice that hypothesis
below could actually be relaxed to the same as in Proposition [5.3.3;
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however, we leave as it is to conform with the original rule 2 of Proposition
0.2.2
Proposition 5.3.4 (Rely/Guarantee Circular Inference Rule 2N). If:
1. foralli e Iyn: E; — M;
2. EN Niery Mi = Niez, B

3. /\iGIN Mi =M

4. 8 = UpToNow (Aez, i) v UpToNow( Aieg, M)
then SomP;(S) = (E — M).

The following rules 1N(bis), 1N(ter), and 2N(bis) are all straightforward
extensions, so we introduce them without any comment or proof.

Proposition 5.3.5 (Rely/Guarantee Circular Inference Rule 1N(bis)). If:
1. for alli € In: SomP(S) = (E; - M;)
2. SomPe(S) = (Njezy Mi = Niezy, Bi)
8. SomPe(S) = (Niez, Mi = M)
4. S = NowOn(E;) V NowOn(M;), for alli € Iy
then SomP¢(S) = (E — M).
Proposition 5.3.6 (Rely/Guarantee Circular Inference Rule 2N(bis)). If:
1. for alli € In: SomPc(S5) A AlwPe(E) = (E; — M;)
2. SomPe(S) N AIWP(E) = (E'A Njer, Mi = Nier,, Ei)
3. SomPe(S) A AIWP(E) = (Aier, Mi = M)
4. 8 = NowOn(Asez,, Ei) v NowOn (Asez,, M;)
then SomP¢(S) A AlwP.(E) = (E — M).

Proposition 5.3.7 (Rely/Guarantee Circular Inference Rule 1N(ter)). If:

1. foralli € In: E; — M;
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2. Niezy Mi = Niez,, Ei

. EANery Mi — M

4. S = UpToNow(E;) V UpToNow(MN;), for all i € Iy
then SomP;(S) = (E — M).

A stronger time progression operator. The extension of rule 3 of Propo-
sition is also straightforward, and gives a rule which is very similar to
that introduced in [FRMMO7|.

Proposition 5.3.8 (Rely/Guarantee Circular Inference Rule 3N). If:
1. foralli € In: E; > M;

2. /\ieIN M; = /\iGIN E;

8. Niery Mi= M

4. S = AlwP.(E;) V AlwPe(M;), for all i € Iy
then SomP;(S) = (E > M).

Implication as a compositional operator. The circular rule 4 of Propo-
sition requires some more work to be generalized. In this case, in
fact, the soundness of the rule relies on a mutual interplay between the two
modules, where one is required to have an assumption (or guarantee) be-
having as a left-continuous state, and the other module to have it behaving
as a right-continuous state.

The idea to generalize this is thus to implement the same interplay be-
tween two sets of all modules in the system. More precisely, we can assume
that the set of all modules Zx can be partitioned into two non empty sub-
sets L, R C Zy such that any module i € L (resp. i € R) has its assumption
E; or its guarantee M; which is a left-continuous (resp. right-continuous)
state. Then, we require that the guarantees of the modules in L can dis-
charge all the assumptions of the modules in R, and wvice versa. All in all,
we have the following inference rule.

Proposition 5.3.9 (Rely/Guarantee Circular Inference Rule 4N). If, for
two non empty subsets L, R C Iy that partition Iy :

1. forallieIyn: E; = M;
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2. a) Nier, Mi = Nicr Ei
b) Nicr Mi = Nicp Ei
3. EANezy Mi = M
4. S = UpToNow(E;) V UpToNow(M;), for all i € Ty
5 E; € STe_ or M; € STo_, for alli € R
6. E; € ST o or M; € ST , for alli € L
then SomP;(S) = (E = M).

Proof for dense time domains. Let t be the current instant, and let us as-
sume that SomP;(S) holds at ¢; thus, let ¢ < ¢ be (any) instant at which
S held. We have to show that £ — M holds at t.

As usual, we focus on showing one “temporal inductive step”, the non ac-
cumulation argument being all similar to that of the previous proofs. More

precisely, let us show that A7, (E; A M;) and NowOn(/\ieIN (E;i A MZ)>

hold at ¢'.

First of all, let us show that A, .; UpToNow(M;). In fact, let i be any
index ¢ € L; from (4) it is either UpToNow(E;) or UpToNow(M;) at t'.
But, if UpToNow(E;) for some 7, then also UpToNow(M;) from (1).

Next, from ;. UpToNow(M;) and (2a) it follows that A;.p UpToNow(
E;). Then, we consider (1)) to deduce that A;.p UpToNow (M;). Thus, from
(2b), also A,c; UpToNow(£;). So, all in all we have that
Niez,, UpToNow(E; A M;) holds at t'.

For all i € L, (6) lets us infer that also E; V M; at t'. Moreover, from (1)
we can actually state that A;.; M; at ', and from (2a) it also follows that
/\iER Ez at t'.

But then, for all i € R, (5) — combined with (1) — lets us infer that
also NowOn(M;) at . Thus, also \,c; NowOn(E;) from (2b). then
implies that also A;.; NowOn(4/;), and (2a) that A;.p NowOn(Ej).

Allin all, we have shown that F; A M; and NowOn(E; A M;) both hold at
', for all i € Zy. The remainder of the proof is as for the other propositions.

0

Proposition 5.3.10 (Rely/Guarantee Circular Inference Rule 4N(bis)).
If, for two non empty subsets L, R C In that partition Iy :

1. foralli€eIn: E; = M;
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o

a) Nier Mi = Nicg Ei
b) /\z‘eR M; = /\ieL E;
8. SomP;(S) = (EA Njez,
4. S = UpToNow(E;) V UpToNow (M), for all i € Iy
5 FE; € STe. or M; € ST, for alli € R

6. E; € ST o or M; € ST, for alli € L
then SomP;(S) = (E = M).

A circular inference rules without compositional operator. The exten-
sion of rule 5 of Proposition [5.2.9 is along the same lines of those we have
just discussed. Moreover, as it was the case for other rules, the initializa-
tion formula could be made less restrictive at the price of complicating the
discharging formulas. Indeed, in the version we present, the discharging
formulas are not needed at all in the soundness proof.

Proposition 5.3.11 (Rely/Guarantee Circular Inference Rule 5N). If, for
some fized duration Tg > 0:

1. forallieIy: E; = M;
2. E/\/\ieIN M;, = M

3. WithinF (/\HN (B v M), TB>
then Lasts(E, Tg) = WithinF(M, Tp).

Proof. Let t be a generic time instant at which Lasts(E, Tg) holds, and
prove that WithinF(M, Tg).

From (3), let us assume that WithinF(/\iEzN M,-,TB) at ¢t. This is

without loss of generality: in fact, if WithinF(E;, Tg) for some i € Zy, then
WithinF (M;, Tg) from (1). Thus, there exists a ¢’ such that t <t <t+Tp
and /\ieZN M; holds at t'. Moreover, since t < t' < t+Tp and Lasts(F, Tp)
at ¢, then E also holds at t’. But then, M holds at ¢ by (3). Since
t < t' < Tp, this implies that WithinF (M, Tg) at ¢. O

Notice the following: the above rule works for any variation of the Lasts
and WithinF operators, provided the two variations coincide. In other
words, the above rule works for any choice of Lasts), and WithinF}, opera-
tor, where I, r € {e,i}, provided [ and r are the same in the two operators.
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Rule 1N (Prop. [5.3.3/1)

Rule 1N(bis) (Prop. [5.3.5/I)

Rule 1N(ter) (Prop. [5.3.7]C)

Vi€ Iy (B = M)
Niezy Mi = Niezy Bi

S = Vie Iy : (UpToNow(E;)V UpToNow(M;))

SomPe(S) = Vi € Iy : (E; - M;)
SomPe(S) = (Niezy Mi = Niezy Bi)
SomPe¢(S) = (/\iEIN M; = M)

S = Vie Iy : (NowOn(E;)V NowOn(M;))

Vi€ In (B = M)
Niezy Mi = Niezy i

S = Vi€ Iy : (UpToNow(E;)V UpToNow(M;))

SomP;(S) = (E - M)

SomP¢(S) = (E —» M)

SomP;(S) = (E - M)

Rule 2N (Prop. [5.3.4/1)

Rule 2N(bis) (Prop. [5.3.6/C)

Rule 3N (Prop. [5.3.8 1)

Vi € In : (E; — M;)
EANNiezy Mi = Niezy Bi
Niezy Mi = M
S = UPTONOW(/\ieIN E;) Vv UPTONOW(/\iGIN M1)

SomPe(S) AN AlwPe(E) = Vi € Iy : (E; — M;)
SomPe(S) A AlwPe(E) = (E A /\iEIN M; = /\iGIN E;)
SomP¢(S) A AlwPe(E) = (/\iEIN M; = M)

S = NowOn(Aiez, Bi) VNowOn(Ajez, Mi)

VicIn (B > M)
Niezy Mi = Niezy Bi
Niczy Mi = M
S = Vi Iy : (AlwPo(E;) V AlwPe (M)

SomP;(5) = (E — M)

SomP¢(5) A AlwPo(E) = (E — M)

SomP;(S) = (E > M)

Rule 4N (Prop. [5.3.9]1)

Rule 4N (bis) (Prop.[5.3.10 C)

Rule 5N (Prop. [5.3.11 C)

Vi€ In (B = M)
Nier Mi = Nier Bis Nier Mi = Nier Bi
EANjezy Mi = M
S = Vie Iy : (UpToNow(E;)V UpToNow(M;))
Vi€ R:E; or My € STe_, Vi € L: E; or M; € ST_4

Vie In: (B = M;)
NieL Mi = Nicr Fi» Nier Mi = Nicr Fi
SomP;(S) = (E A Asezy Mi = M)
S = Vie Iy : (UpToNow(E;)V UpToNow(M;))
Vi€ R:E; or My € STe_, Vi€ L: E; or M; € ST_4

Vie Iy : (B; = M;)
Niezy Mi = Niezy Bi
EANjezy Mi =M

WithinF (/\ieIN (E; v M;), TB)

SomP;(S) = (E = M)

SomP;(S) = (E = M)

Lasts(E, Tp) = WithinF(M, Ty)

OIY.I 10] £Sojopotjoj pue se[ny oousdofu] feuorjsoduio)) ¢



5.4. Compositional Methodology

Completeness. For the sake of brevity, we do not repeat the (in)complete-
ness analysis performed in Section |5.2.3]on the generalized rules for N > 2
modules. Nonetheless, it is not difficult to realize that the very same results
can be lifted from the two module to the N module case. In fact, firstly an
incompleteness proof for a two module system implies the incompleteness
of the generalization of the same rule (i.e., of the rule which reduces to the
two module one if we choose N = 2). Secondly, the completeness proofs
can be extended to the N module case by suitably instantiating all the E;’s
and M;’s for ¢ > 2 with the same values of Es, M in the two module case.

Summary. Table[5.4 summarizes the circular inference rules for N mod-
ules.

5.4. Compositional Methodology

This section presents a compositional methodology that exploits the previ-
ously introduced compositional inference rules in the verification of a large
modular system.

Let us start by sketching the overall rationale behind the methodology.
The specification of a large system is structured into classes. The funda-
mental behavior of the items of each class is captured by axiom formulas.
The derived behavior of each class, which is to be verified, can be expressed
by theorem formulas. In general, according to the rely /guarantee paradigm,
we may need to relate the derived behavior of a class with certain proper-
ties of the (external) environment of that class. This can be achieved in
essentially two ways. If the assumptions on the environment are tempo-
rally closed formulas (i.e., they express time-invariant properties), one may
use TRIO assumption formulas to represent them. If, on the other hand,
one has to express assumptions on the environment that are not invariant
but temporally depend on the derived behavior they guarantee, we exploit
one of the compositional operators presented for the rules of Section mﬁ
Then, the specification is completed by composing some classes together,
as modules of the overall (global) system.

The verification burden for the global system consists essentially of two
tasks. First, the assumptions that have been introduced according to the
rely /guarantee paradigm have to be proved. For the sake of methodolog-
ical distinction, we will generally use — whenever the object is an as-

SNotice that this operator can be ordinary implication.
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5. Compositional Inference Rules and Methodology for TRIO

sumption (rather than a theorem) — the verb “discharge” to mean “prove”
(e.g., [Sha98]). Assumptions expressed as closed TRIO formulas are dis-
charged by means of formulas of other classes. When doing this, it is
important to avoid circularities, in order to guarantee the soundness of
the whole deductive process. Conversely, assumptions expressed by means
of the compositional operator are discharged using the corresponding ad
hoc inference rule for that operator. If the rule is circular, it allows the
appropriate handling of circularities. Thus, discharging these assumptions
amounts to proving the truth of the premises of the inference rule, which
can still be done by means of ordinary (temporal) deductive techniques.
After discharging all the assumptions, the second stage of the global verifi-
cation process consists in proving the theorems from axioms, assumptions,
and already proved theorems. This is done first for theorems that are local
(i.e., they can be proved within a single class), and then for global the-
orems (i.e., involving properties emerging from the combined behavior of
some modules). This meets the overall verification goal.

5.4.1. Rely/Guarantee Specifications

Let us consider how to write the specification of a TRIO class C'. The basic
behavior of C'is defined in terms of axioms over both visible and non-visible
items, which rely on no assumptions, since they just state the very basic
behavior of the class. Then, we state a number of derived properties of the
class as theorems, that are going to be proved in the verification process.

Since in general a class describes an open component, it often happens
that the truth of some theorem depends on assumptions about how the
actual class environment behaves. In other words, some properties hold
only if the modules that will constitute the external environment of the
class satisfy some requirements. Therefore, according to the rely /guarantee
paradigm, we make these assumptions explicit in writing the specification
of a TRIO class, which becomes therefore a rely/quarantee specification.

Now, we distinguish between two different kinds of assumptions that one
may need to express. The first (and simplest) case is that of assumptions
which can be expressed as temporally closed formulas, that is formulas
whose truth is invariant over the whole temporal axis. In such cases, the
assumptions can be stated using the TRIO language construct of the as-
sumption formula.

The other case, namely when the assumption is not expressed as a tem-
porally closed formula, will be handled by using a compositional operator,
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discussed in Sections[5.1H5.2.

Let us now introduce some notation that will help us describe these
ideas more precisely. Let AX ¢, AS¢c and 7 He denote the disjoint sets of
axioms, assumptions and theorems of class C, respectively, and let Fo =
AXc U ASc U THe be the set of all formulas of C. Furthermore, for
each set of formulas F, we define .7% C F¢ as the set of visible formulas
in Fg, i.e., the formulas predicating over visible items only (see Section
2.2.3). Therefore, the complete specification of C' is represented by the
formula AX-UASc - T He, which expresses the fact that the truth of the
theorems of class C' follows deductively from its axioms and assumptions.

To formalize rely /guarantee specifications where the assumption is not a
temporally closed formula, one chooses a particular compositional operator
among those introduced above, together with the corresponding inference
rule. The compositional operator can simply be implication between two-
dependent formulas, such as for the circular compositional inference rule
4N of Proposition or for the non-circular inference rules of Section
[5.1, or can have a more complicated semantics.

In the following section we show how to exploit modular rely/guarantee
specifications written along the lines we have laid in this section  in
order to verify a composite systems built out of instances of these modules.

5.4.2. Modules Composition

This section completes the description of the compositional framework by
formalizing the composition of TRIO classes which include both assumption
formulas and rely/guarantee formulas written using the time progression
operator. In a nutshell, we describe a method to prove that the assumptions
of each class are met by the classes that constitute its actual environment.
This is done by usual deductive techniques for temporally closed assump-
tion formulas, while resorting to the inference rules of Tables (5.3 or[5.4]to
handle rely/guarantee formulas. After discharging all the assumptions, it
is possible to proceed on proving the theorems that are global, that is are
about the combined behavior of the composed classes.

Overall Verification Process

Let us consider n > 2 TRIO classes C,...,C,. For all t =1,... n, class
C; has a rely /guarantee specification expressed synthetically by the formula
AX; UAS; F TH;. Let Cyiop, be a class that encapsulates one instance for
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each of the n classes C; as modules of Cgop. The composition of the n
modules is described by the logical conjunction of all the local specification
formulas. Therefore TRIO modules are compositional, in that the seman-
tics of the composition of classes is given by the logical conjunction of the
semantics of the classes which are put together. In general, class Cglo, adds
its own axioms, assumptions and theorems, to those of its enclosed modules
(this also allows for the recursive application of the method). Hence, Cyol,
is described by the formula AX gion U ASgion U Uj:l,...,n Fi = THglob-

Our overall verification goal can be detailed as follows.
e Verify each local (i.e., within each class C;) specification.

e Discharge the local assumptions, that is prove that the assumptions
of each class are satisfied by its actual environment (i.e., the other
classes in the system).

e Verify the global specification, that is prove the global theorems from
the local visible formulas, global axioms and assumptions.

It is simple to realize that the basic problem involved in the discharging
of assumptions is that such reasoning may involve a circularity between
assumptions and other formulas of the modules. As circularity prevents
the verification process from being sound, these invalid deductions must be
ruled out.

To this end, we introduce two “circularity-breaking” mechanisms, de-
pending on what kind of assumptions we are considering. For assump-
tions written as temporally closed TRIO formulas, we require an explicit
breaking of circularity: the verifier has to organize the discharging of these
assumptions in such a way that circularity is simply avoided. Conversely,
for assumptions appearing in rely /guarantee specifications using a compo-
sitional operator, we can exploit the corresponding inference rule for that
operator. If that is a circular inference rule, it performs an implicit circu-
larity breaking, thus ensuring that circularities arising in the hypotheses of
the inference rule do not compromise the soundness of the final deduction.
Otherwise, if it is a non-circular rule, the absence of circularity is explicitly
required in the premises of the rules, so applying it also guarantees a sound
deduction. All this must be done while respecting the requirements on the
visibility of formulas.
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Verification of the Composite Specification

In general, one can choose to any of the compositional operators we have
introduced above to write local rely /guarantee specifications. Let us denote
by > the chosen operator. Then, each of the n component classes may
have one or more rely/guarantee formulas of the form E > M among its
theorems. For each class Cj, j = 1,...,n, let TH;-g C T'H; be the set of
theorems we consider in the form E = M of class C}, i.e., for each theorem
formula F'€ TH;, I ¢ TH;-g if F' can be written as F' = E = M for some
formulas £ and M. For simplicity, we do not address explicitly the case of
specifications where different compositional operators are used for different
formulas. However, these cases can be reduced to successive applications
of our framework, one for each compositional operator, so our omission is
without loss of generality.

Notice that, in principle, it may be that any formula can be written
using the > operator. For instance, if > is the time progression operator
—» introduced in Section any temporally closed formula G is equivalent
to Alw(true — G), so the choice of which formulas to consider in 7' H;g is
partially up to the speciﬁerm

Let us define m to be the number of rely/guarantee formulas over all
classes: m = 3., |TH®|. Moreover, TH;™® is defined as the com-
plement set 77H; \ ’TH;-g for all j = 1,...,n. The composite class Cgiop,
also has its own rely /guarantee formula Ego1, = Mglo, among its theorems
THglon- It may be that the compositional operator used for the global
rely /guarantee formula is different than that used for the local rely/guar-
antee formulas. Again, this is only a matter of notation in expressing the
following verification method, but it can be done along the very same lines.

Next, let us define what is a dependency between two formulas. Let
us consider a formal proof 7: it consists of a finite sequence of formulas,
together with their justifications (see, for example, [Men97]). We say that
a formula x directly depends upon another formula ¢ in the proof 7, and
write ¢ ~, x, if and only if ¢ appears before y in the proof and x is the
result of the application of an inference rule which uses ¢. The transitive
closure ~~ (“depends upon”) of the ~~ relation is defined as usual.

The notion of dependency can be extended to a set of proofs II: for any
two formulas ¢, y we say that ¢ ~>p y if and only if there exists a proof

"Moreover, for the sake of simplicity, we do not address explicitly more convoluted
cases where rely/guarantee specifications in the form F > M appear as subformulas
of larger formulas.
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7w € II such that ¢ ~5, x. Note that the we will require the ~~1 relation
to be irreflexive for the set II of formal proofs constituting the verification
process; this requirement will be expressed a posteriori.

Finally, let us illustrate the steps along which the verification of the
composite specification can proceed.

1. Verify each local specification, that is prove that for all k =1,... n:

AX, UASy, = TH;

From our perspective, this step is considered to be atomic, but obvi-
ously the compositional approach can be applied recursively to each
module.

Show that the local assumptions can be discharged by means of global
formulas, visible formulas of other classes, and local axioms and theo-
JremsJ§ Formally, this corresponds to proving that forall k =1,... ,n:

AXkUTHkaglobU U ]:]\-_/l—.ASk

j=1,...n
irk

Prove that the global non-rely /guarantee theorems (i.e., not involving
the = operator) follow from the local visible formulas and from the
global axioms, assumptions and other (i.e., rely /guarantee) theorems.
In formulas, this means proving:

AX glob U AS glob U TH;%ob U U F J\_/ F THgfogb

Jj=1,...,n

Show that the initialization condition (see the generic rule of Table
can be proved. In order to prove the initialization condition,
we allow one to use global formulas and local visible formulas. If
we denote by init the initialization condition, this corresponds to
proving that:

FaobU | J FFinit

i=1,...,n

80f course, if an assumption can be proved just from local axioms and theorems it
should be a theorem, but it might happen that local formulas contribute, together
with external ones, to the proof of an assumption.
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5. Show that each local rely/guarantee formula has assumptions that
can be discharged by means of global and local formulas, or by the
global assumption, or by means of guarantees of other classes. This
corresponds to proving the assumption discharging formula of Table
[3.1. Formally, prove that for all k =1,...,m: forall j =1,... n: if
(B = My) € TH;-g then:

fglob UF; U U "Ti\_/ H I]SSC = | Eglob N /\ M; = E}

1=1,....,n 1=1,....m

6. Show that the global guarantee follows from the local guarantees of
all modules, from the global assumption, and from global formulas
and local visible formulas of any class. This corresponds to the global
implementation formula of Table 3.1, i.e., prove that:

fglobU U fj¥|_[imp:> E N /\ Mj :>Mglob

7j=1,...,n Jj=1,....m

7. Be sure that in all the above proofs (i.e., steps[l]/to[6) there are no
circular dependencies among any two closed formulas. This is the
explicit circularity-breaking requirement: formally, it corresponds to
checking that in the set II of all the above proofs, for all formulas

¢ € U1, n(ASK UTHy) UT Hgob:

~(¢ *n @)
i.e., the relation ~&yy is irreflezive.

From the application of the above steps, thanks to the inference rule
for the chosen compositional operator and the absence of circularities, the
global verification of the composite specification is soundly completed.

In fact, steps [1[3 achieve the verification of the theorems in THglrogb:
since ~57 is irreflexive, it induces a partial ordering on closed formulas.
Thus, any global ordering of formulas compatible with the partial ordering
defines a chain of proofs which all are sound, since they rely on ordinary
(sound) inference rules and have no circular dependencies.

Then, steps 4-16] apply the inference rule for the chosen compositional
operator (presented above in the general form of Table by discharging
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its hypotheses by means of other formulas; since we introduced sound in-
ference rule for the various compositional operators, the theorem in ’T'Hﬁob
is soundly proved as well, completing the verification of the global class.
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6. lllustrative Examples of
Compositional Proofs

This chapter demonstrates the application of the general “lightweight” ap-
proach to compositionality presented in the previous sections. The compo-
sitional framework is applied to three examples.

The first is a very simple two-module system, whose purpose is to intro-
duce the reader to the compositional techniques as smoothly as possible,
through a terse example. It is discussed in Section [6.11

The second is a real-time version of the dining philosophers problem;
the basics of the problem have already been introduced in Section [2.3:
the following Section 6.2 completes the example introducing compositional
techniques and methods.

The third illustrative example consists in a real-time formalization of (a
part of) a peer-to-peer communication protocol. It is presented in Section
6.3.

The purpose of these examples is mainly that of being illustrations of
how the techniques and methods, introduced in the previous chapters, can
be applied. Obviously, they are not enough to assess the feasibility of those
methods on practical industrial-strength systems. In fact, in order to allow
practitioners to use them proficiently, other, formidable, practical problems
should be tackled, such as how to decompose a system into modules, how to
specify formally a large real-time system, and to what extent the approach
can be automated. While leaving these important problems to future work,
let us focus on providing some illustrative insights through the following
examples.

6.1. A Simple Example

Let us consider a very simple module that inputs a Boolean signal and
outputs another Boolean signal which “echoes” the input. The example is
similar to that given in [AL95|, and it is also presented, in a different form,
in [Fur03b].
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6. Ilustrative Examples of Compositional Proofs

The class echoer. Formally, we introduce a class echoer to model the
module. The class encapsulates two time-dependent predicates in and out
that hold, respectively, whenever the input and output signals are “high”.
Then, we describe the behavior of the class through axioms; in other words
we formalize the behavior of the Boolean signals as described above. Let us
assume, for instance, that the timed behavior of the module is the following:
out reacts to the input in becoming true by holding for some positive time
span of length A, where X is a positive fixed constant. Note that we are
considering this behavior as given (for instance by those who built, or will
build, a realization of the module); therefore it is a primitive description
that we capture through axioms. Using another kind of formula would be
inappropriate in this case, according to this scenario. Then, the axiom that
formalizes the given behavior is the following:

Axiom 11 (echoer.echo). in = Lasts;.(out, \)

Notice that, in our case, we have simply AX cchoer = {€Cho}.

A system of two echoers. Now, let us build a composite system made of
two modules of class echoer. The input and output signals are connected
so that the out item of the first module is connected (directly, that is
without delays) to the in item of the second module, and conversely the
out item of the second module is connected to the in item of the first
module. The resulting system is pictured in Figure

in out

out in
echoer; echoer,

_‘SI_

Figure 6.1.: A system of two echoers.

As it can be seen in the picture, besides the items of the two modules,
the global system also has a start event s. It holds whenever the system is
started by “forcing” a high output signal of length A\ in module 1. Formally,
it is characterized by the following global axiom.
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Axiom 12 (start). s = Lasted;.(echoer;.out, \)

This completes the set of global axioms, so that AX g, = {start}.

We complete the description by introducing a requirement of the global
system, that we would like to prove from its components. It states that,
if the system is “started” (by setting s to true), then from that moment
on both output signals out stay true indefinitely in the future. Since this
is a putative property, and it is the result of the global functioning of the
system, we introduce it as a global theorem.

Theorem 13 (req). s = AlwF(echoer;.out A echoers.out)

In the remainder of this section, we are going to sketch the proof of this
requirement through our compositional method.

Rely/guarantee specifications. We choose the inference rule of Proposi-
tion [5.2.1 to carry out the verification. More precisely, we set the global
assumption and guarantee to E = true, and M = echoer;.out A echoers,
and the predicate S to be the event s. The first choice is reasonable as
the global system is closed, and thus we need no global assumption; the
second choice is instead suitable for our needs, as it is simple to real-
ize that, from the conclusion of the inference rule SomPji(s) = (true —
echoer;.out A echoers.out), it is straightforward to infer the truth of the-
orem req.

Then, we have to set-up local rely /guarantee specifications according to
Proposition [5.2.11 In other words, we have to write local specifications in
terms of the — operator. Looking at the local axioms, we notice that the
basic behavior of the modules entails that out reacts to in becoming true by
staying true “for some time”. Therefore, a derived behavior may be indeed
captured by the — operator, as follows. Let us pick F; = echoer;.in and
M, = echoer;.out, for © = 1,2. Then, we can convince ourselves that the
following theorem is indeed provable within the echoer class.

Theorem 14 (echoer.rg). in — out

This completes our local specifications; notice that this means that
T Hechoer = {I‘g} and AScchoer = 0.

Finally, we set 7 Hgloh = THglrfb U THS;ob = {req}U{rg glob}, where
theorem rg glob coincides with the conclusion of the chosen inference

rule, and it is therefore as follows.

Theorem 15 (rg_glob). SomP;j(s) = (true — echoer;.outA\echoers.out)
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Verification. Finally, we verify the system through the steps of Section

1.

Step 1] corresponds to proving that rg is indeed a theorem of class
echoer, that is it follows from axiom echo. We do not discuss this
simple proof, focusing on the overall picture.

Step 2 is empty, since we have no local assumption formulas to prove.

Step [3| consists in proving that req follows from theorem rg glob
and axiom start. This is also ordinary theorem proving, and we do
not discuss it.

. Step [4 requires to prove the initialization condition for the chosen

inference rule, that is:

s = UpToNow(echoer;.in) V UpToNow(echoer;.out)

for some ¢ = 1,2. Now, global axiom start postulates that s =
Lasted;c(echoer.out, \), which clearly subsumes the required step
(for i = 1).

Stepl5 consists in discharging the assumptions of each module. In our
case, notice that Fy = My and Ey = Mj, due to the connections in
Figure [6.1. Therefore, proving that echoer;.out = echoers.in and
echoers.out = echoer;.in is immediate.

Step [6]is trivial, since in our case My A My = Mo}, by definition.

Finally, the check that no circularities have been introduced in the
above proofs is also simple, as there are no circular dependencies
between axioms or theorems in the system.

This completes our compositional verification process, and proves that
the requirement req is indeed satisfied by the global composite system.
The following sections introduce more significant examples that are more
complex.

6.2. Real-Time Dining Philosophers

Section 2.3 introduced the dining philosophers example by providing the
axioms of the philosopher class, formalizing its basic postulated behavior.
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Here, we complete the example by introducing local theorems and assump-
tions (Section , by stating local rely/guarantee behaviors expressed
using a compositional operator (Section [6.2.2), by proving the theorems
that are local to the the philosopher class (Section , by providing
a global verification goal (Section [6.2.4), and (Section [6.2.5) by provid-
ing the complete verification of the stated goals, according to the guide-
lines introduced in Section [5.4. Finally, Section[6.2.6 sketches an informal
comparison between the compositional proof of the example and another,
non-compositional, proof of the same example.

In this specific example, we are going to use the > compositional oper-
ator introduced in Section [5.2.2] and its corresponding circular inference
rule 3N of Proposition [5.3.8 (we consider the N-module generalization).

All details of the proofs have been checked with the encoding of the
TRIO language in the PVS proof checker [ORS92| (see [GMO01,Fur03b] for
some details of this encoding), even if we present them succinctly and in
human-readable form. The interested reader can find the full PVS encoding
of formulas and proofs in [FRMMO05b].

6.2.1. Local Assumptions and Theorems

A derived property of the philosopher class is that there is always a
time interval in which both forks are available to the philosopher. This is
the first step in ensuring that the philosopher will eventually be able to
acquire both forks and eat. In particular, the axioms allow us to prove this
availability property for a time interval which occurs no later than Ty 42T,
time units from the current instant. This bound is sufficient to prove all of
the following derived properties. The above property is expressed by the
following TRIO theorem formula.

Theorem 16 (philosopher.fork availability).
WithinF¢; (UpToNow (available(l) A available(r)) , Ty + 2T,)

Clearly, the validity of this theorem cannot be guaranteed regardless of
the behavior of the environment of this class. Therefore, we introduce three
assumption formulas that suffice to deduce theorem fork availability.
Note that the choice of what formulas should be axioms and what as-
sumptions is a methodological one, and it is up to the user. In this case,
we realize that theorem fork availability can be proved if we consider
the behavior of the other classes (in the composite system); therefore, we
choose to abstract the essential behavior of the other philosophers, needed
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to guarantee this theorem, in the following assumptions (rather than ax-
ioms). This is methodologically advisable, as it permits us to decouple the
facts needed to prove the theorem from the other information about the
behaviors of the neighbor classes. Thus, first of all, we assume that, at
any given time, each fork becomes available within Ty + T, time units or is
already available and remains so for a sufficiently long (i.e., > T) amount
of time.

Assumption 17 (philosopher.availability).
(3t > Ty : Lasts(available(s) ,t)) V
WithinF; (Becomes(available(s)) , T + Tb)

Second, we assume that each fork is available, for a non-empty time
interval, within T, time units. This is basically like assuming that the
adjacent philosophers eat for no longer than T, time units.

Assumption 18 (philosopher.availability 2).
WithinF (UpToNow (available(s)) , Te)

Finally, when a fork becomes available, we assume it to stay so for (at
least) Ty time units; this corresponds to assuming that the thinking time
of the neighbor philosophers is not shorter than T.

Assumption 19 (philosopher.lasting availability).
Becomes(available(s)) = Lasts(available(s), T4)

Notice that each of these formulas expresses a temporally-closed property
(for instance, considering assumption availability 2, at any given time
each fork is available within T, time units).

Finally, let us introduce another theorem of the philosopher class which
will be used in its verification. The truth of this theorem is a direct con-
sequence of the axioms of the class, requiring no assumptions. It states
that any philosopher is always in one of two situations: either he/she is
hungry (i.e., Ty time units without eating have passed), or no more than
T¢ 4+ Te time units have elapsed since the last time he/she ate or he/she
began eating.

Theorem 20 (philosopher.always eating or not). hungry Vv
WithinP;; (3¢ > t. : Lasted(eating, t)) V Becomes(eating) , Tt + Tb)
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6.2.2. Rely/Guarantee Specification

Formulas availability, availability 2 and lasting availability of the
previous section express the assumptions that each philosopher makes about
the behavior of his/her neighbors. In turn, the philosopher must guarantee
to them that he/she will not be unfair and will periodically release the
forks. This requirement is expressed by the two theorems taking turns
and taking turns 2, that are analogues to the assumptions availability
and availability 2 while assumption lasting availability corresponds
to axiom thinking duration (see Section [2.3.2).

Theorem 21 (philosopher.taking turns).
(3t > Ty : Lasts(—holding(s) ,t)) V
WithinF .;(Becomes(—holding(s)), Ty + T¢)

Theorem 22 (philosopher.taking turns 2).
WithinF (UpToNow(—holding(s)) , Te)

Up to this point, only assumptions expressed as temporally closed formu-
las (e.g., assumption availability) have been considered. Now, we have to
express a new fundamental local rely /guarantee property of each philoso-
pher: it is a non-starvation property requiring that, under the assumption
of a regular availability of the forks, we can guarantee that, after the system
starts, the philosopher eats regularly.

In such a case, it is convenient to express the assumption as a time-
dependent formula, and link it to the guarantee using the > operator: we
relate the availability of the forks in the past to the occurrence of the eating
sessions in the immediate future. Hence, let us take:

Ej), = WithinF; (UpToNow (available(l) A available(r)) , T + 2T,)
and:
M}, = SomP;(start) = (3t > te : Within;;(Lasts(eating, t) , Ty 4 2Te))

Thus, the following theorem expresses the local non-starvation property in
rely /guarantee form: as long as both forks are available within a bounded
time interval (i.e., Ty +2T,), the philosopher is able to eat for a sufficiently
long (i.e., > to) time, within the same bound, provided the system has
started.
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Theorem 23 (philosopher.regular eating rg).
WithinF;(UpToNow (available(l) A available(r)), Ty + 2T,)
> (SomP;(start) = (3t > t : Within;;(Lasts(eating, t), Ty + 2T,)))

This theorem completes the specification of the philosopher class.

6.2.3. Local Verification

We can finally verify the whole specification, according to the method de-
scribed in Section Let us start from step [1, which prescribes to prove
each local specification, i.e., each local theorem.

Besides the lastly introduced theorem regular eating rg, we have a
total of four theorems in class philosopher. Theorems taking turns|_ 2]
and always eating or not are proved directly from the axioms of the
class, while theorem fork availability relies on some of the assumptions
of the class.

Moreover, in all proofs we assume that the thinking time of each philoso-
pher is larger than twice the eating time: Ty > 2Teﬁ This condition allows
one to avoid the race conditions, and is referred to as assumption TCCs
(for “Type Correctness Constraints”, a la PVS).

Similarly to what was discussed when presenting Theorem
fork availability, one might try to determine which are the “weakest”
inequalities that have to be assumed for the following proof to hold. A
detailed discussion of these issues is out of the scope of the present paper,
and we leave it to future work.

In summary, the whole proof dependencies for the philosopher class
are displayed in Figure[6.2: whenever we use a formula « in deducing the
validity of another formula (3, there is a proof dependency between the two
formulas, graphically represented by an arrow going from « to . For sim-
plicity, we did not represent the dependencies from axioms thinking def
and hungry in Figure[6.2] as they just define elementary equivalences.

For the sake of brevity, we do not show the proof of any of these theorems,
except for regular eating rg which is proved below, and whose overall
case structure is given in Figure [6.3. However, Appendix [A reports the
proofs of the other theorems in human-readable form, while PVS proofs
are available in [FRMMO05c¢].

! After all, they are philosophers, not gourmands! (Unless they are Epicureans, one
may argue. .. ).
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AXIOMS philosopher

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, PRI
thinking_dur: :

ASSUMPTIONS

—TCCs  availability 2 vailability - availability

THEOREMS

lasting

fork _availability

always_eating_or_not:

reAgular,eatings,rg

AXIOMS

taking_turns taking_turns_2
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Figure 6.2.: Proof dependencies in class philosopher

Proof of philosopher.regular eating rg. By exploiting the definition of
the > operator, we assume AlwP¢(WithinF;(UpToNow (available(l) A
available(r)), Ty +2Te)) as hypothesis and set our goal to proving AlwP;(F)
and NowOn(F') separately, where F is:

F = (3t > t, : Within;;(Lasts(eating, t), Ty + 2T.)) V AlwP;(—start)

an equivalent statement of the implication. First of all, we notice that, be-
cause of theorem fork availability (16), we can actually strengthen our
current hypothesis to be AlwP;(WithinF¢ (UpToNow (available(l) A
available(r)), Ty + 2T,)), that is including the current instant. Now, let
us first prove AlwP;(F') from the hypothesis, the axioms and the other
(already proved) theorems of the class. Let t be the generic time instant
at which the hypothesis holds. We have to prove that F holds for all time
instants less than or equal to ¢, so let u < ¢ a generic time instant before .
Let us consider theorem always eating or not at time w and per-
form a case analysis. The proof is split into two branches whether hungry =
Lasted(—eating, T¢) or WithinP;; (Becomes(eating) V..., Ty + T¢) holds at
u.

The first branch considers the hypothesis instantiated at time w, that
is WithinF;(UpToNow (available(1) A available(r)), Ty + 2T,) at u. There-
fore, let us make explicit the existentially quantified time variable of the
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WithinF operator and name it f. Notice that 0 < f < Ty + 2T, and we
can write that UpToNow (available(l) A available(r)) at time w + f. Now,
the proof is further split into two branches whether or not the state eating
never becomes true for all time instants since u to u + f. In the first case
Lasts;c(—Becomes(eating) , f) at u. Therefore, we can deduce from basic
properties of state items that eating is always false from u to u + f. eating
was also false for Ty time units in the past at « in this branch of the proof.
Therefore, a short time before u + f the philosopher is hungry, and the
forks are available in the immediate past and in the immediate future. Let
u—+ f —e be this time instant (where € > 0 is sufficiently small) and consider
axiom acquire (3) at this time. We immediately conclude that both forks
are taken at u+ f —e and therefore Becomes(holding(1) A holding(r)) is true
at u+ f —e. Furthermore, we can consider axiom eat till release at
time u+ f —e and deduce that there exists r > t, such that Lasts(eating, r)
holds at w + f — e. Since |f — €| < Ty + 2T, this branch of the proof is
concluded.

The other branch of the proof considers the case in which there is a
time instant g between u and u + f where Becomes(eating) is true. Since
eating becomes true at g, we can apply axiom eat till release (4) and
deduce that there exists r > te such that Lasts(eating, r) holds at g. Since
u<g<u+f<u+(Ty+2T,), this branch of the proof is also concluded.

Let us now consider the case in which WithinP;;(Becomes(eating) V (3t >
te : Lasted(eating,t)), Tt + Te) holds at w. This means that there is a
generic time instant v : u — (T + Te) < v < u where Becomes(eating) or
3t > te : Lasted(eating, t) holds. In the first case, axiom eat till release
(4) lets us conclude that eating lasts for a time at least as long as te starting
from time instant v. Since v > u — (Ty +Te) > u— (Tt +2Te), this branch
of the proof is concluded. In the second case, eating was true for r > t,
time units, starting from v in the past; hence the whole branch of the proof
is concluded.

The case NowOn(F') is proved similarly to the first branch, but with
different base time instantiations and some technicalities that we do not
discuss here. OJ

This concludes the proof of AXpnit U ASphit = 7 Hpnil. i-e., step [1] of
Section [5.4.
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assume: AlwP(WithinFe; (UpToNow (available(1) A available(r)), Ty + 2T%))
prove: AlwP;(F) prove: NowOn(F)

case: hungry = Lasted(—eating, T})
case: WithinP;; (Becomes(eating) V..., Ty + Tt)

case: Lastsic(mBecomes(eating), f) case: Becomes(eating)

case: 3t > t. : Lasted(eating, t)
case: WithinFj.(Becomes(eating), f)

Figure 6.3.: Proof structure for Theorem regular eating rg

6.2.4. Global Rely/Guarantee Specification

Let us now complete the composite specification of the dining philosophers.

More precisely, we formulate the global property to be verified, which
is expressed by theorem liveness rg of the composite class dining N.
It simply states that each philosopher in the array eats regularly, un-
less he/she has not started yet. Notice that in our example Fgop =
Edining N = true since the composite system is closed, and Mgy =
M gining N coincides with the following formula.

Theorem 24 (dining N.liveness rg).
Vk € [0..N —1]: ( SomP;(Philosophers|[k]|.start)
= (3t > te : Within;i(Lasts(Philosophers|k|.eating,t) , Ty + 2T,)) )

6.2.5. Global Verification

Having completed the global composite specification, so that we are now
able to consider step [2of the verification process. Each local assumption
is discharged by a visible theorem or axiom of the modules adjacent to the
current philosopher, as shown in Figure6.4. Therefore, step[2/is completed
without circularities involved, since thinking duration is an axiom and
taking turns|[ 2] are both proved directly from axioms local to each class
(i.e., they do not rely circularly on other assumptions).

Step [3]is empty in our example, since the only global theorem we have
to prove is theorem liveness rg in THfigining_N'

Let us consider stepl4, where in particular we prove that local rely/guar-
antee assumption FEj, is initialized, that is we show that hypothesis [4 of
Proposition [5.3.8 holds for Ej. Since the local theorems have already
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dining N
TCCs=====mmmmmmmmmm e oo oo '
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thinking_duration- - - - - - #asting_availabilityff - = 4 - - - -thinking_duration

Figure 6.4.: Discharging of assumptions in global class dining_ N

been proved without circularities, we can use fork availability to com-
plete this step. The theorem simply states that the desired property
Ei, = WithinF;(UpToNow (available(l) A available(r)), Ty + 2T.) always
holds, which subsumes the initialization condition, and requires no explicit
mention to initialization predicate .S.

Stepl5 requires to discharge the Ej’s by means of other formulas, in order
to fulfill hypothesis 2 of Proposition [5.3.8] In this case as well, theorem
fork availability for module k works correctly since it predicates the
validity of the E}’s over the whole temporal axis.

Step [6 is also very simple, since Mg, = Vk € {1,...,n} : M} in our
case, so that the implication of this step holds trivially. As a consequence,
hypothesis [3 of Proposition [5.3.8 is shown to hold.

Finally, let us recall that hypothesis 1 of Proposition [5.3.8 is subsumed
by step [1 of our method, since the formulas E), > Mg are local theorems
regular eating rg

As discussed above and shown in the proof dependencies pictures, no
circularities arise in proving the local formulas, so we conclude that theo-
rem liveness rg soundly holds as a consequence of the inference rule of
Proposition [5.3.8 and according to the steps in Section [5.4!

6.2.6. Discussion

As hinted above, the actual verification was carried out with PVS support:
this section aims at sketching an analysis of the complexity of the process.
First, however, let us notice that the bare number of proof commands is
hardly a complexity measure of some interest for comparing compositional
rules and methods, as it is often strongly influenced by factors which do not
pertain to the methodology, such as the encoding of the logic in the proof
checker, the number of additional auxiliary lemmas generated in building
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the proofs, etc. Conversely, it would be meaningful to compare our proof
with a non-compositional one, carried out with the same basic TRIO/PVS
prover, in order to understand the benefits of a compositional methodol-
ogy in building our verification, and in order to assess the significance of
the philosophers example as a benchmark for compositional verification.
Indeed, there are cases where non-compositional methods may perform
better in practice then compositional ones; in such cases the additional
verification burden required by a compositional framework is not traded
off by any benefit in proof simplification or reuse [IRABH101, Lam98|.

Under this respect, let us compare the complexity of our verification
with the cost of a non-compositional one. The basic problem with a non-
compositional proof is that we cannot exploit encapsulation and reuse.
Therefore, there is no distinction between local and global items and ev-
erything is “flattened” at the same level of visibility. In the case of the
dining philosopher problem, we can overcome this problem by “simulating”
modularization at the global level. In other words, we have to carefully
parameterize each item with respect to an index which separates different
“instances” of the philosopher.

Moreover, and most importantly, we must devise a way to replace the
use of the > operator by temporally closed formulas only. As we pointed
out above, writing rely /guarantee formulas using the > operator permits
to use an ad hoc inference rule which can handle circularities between as-
sumptions and guarantees of the various local formulas without need for
an explicit circularity breaking to be provided by the verifier. Therefore,
replacing specifications written using the time progression operator is more
difficult the tighter the circularity between the local E}’s and M}’s is. This
is usually the case when we compose modules which are instances of the
same class: having the same formulas by definition, the circularity is likely
to arise between connected classes for symmetry reasons. This was the case
in the philosopher example, albeit with a significant simplification, namely
the fact that the local assumptions E.’s can be shown to hold over the
whole temporal axis, as discussed above. This simplification made it pos-
sible to build a non-compositional solution, though still with considerable
effort. More generally, we point out that a system made of a (possibly
large) set of instances of the same class, connected with some circularities,
is representative of a vast category of real systems. In particular, those rep-
resenting communication protocols between a large number of hosts, such
as peer-to-peer protocols. Thus, we believe that the philosophers problem
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can be regarded as a good abstraction of some of the core problems arising
in verifying such systems.

We carried out the unstructured, non-compositional proof of the philoso-
phers problemE the result has been a proof of length roughly comparable
to  or even a bit shorter than  the compositional one, but fragmented
into more intermediate lemmas, with more assumptions and more intricate
proof dependencies. Another feature that distinguishes the compositional
proof from the non-compositional one is the fact that the former is repet-
itive while the latter is intricate. In other words, the compositional proof
has a transparent, intelligible structure made of several similar parts, in-
dicating that it is indeed simpler to manage for the human user who can
easily understand when previous proof patterns can be applied again with
minor modifications. All in all, even if the number of proof commands
was not dramatically different in the two proofs, the complexity of the
non-compositional one, considering also the mental effort and difficulty in
managing the proof, was much greater. Furthermore, our experience with
the compositional proof of the same property has guided and helped the
building of the non-compositional one: we believe that doing the non-
compositional proof first would have been really hard and time-consuming.

6.3. A Peer-to-Peer Communication Protocol

This section illustrates our practical approach to compositionality through
another example: the compositional verification of the peer to peer com-
munication protocol BitTorrent (BT) [Coh01,Coh03]. Actually, we model
and verify only a very small part of the behaviors allowed by the complex
protocol, in a specific situation — which is nonetheless likely to happen in
practice —, and we provide a high-level description which abstracts away
from most implementation details, focusing on timing aspects.ﬂ

The overall goal of this example is not only to show the application of the
inference rules in practice, but also to demonstrate our general approach
to compositionality, as laid out in the previous chapters. To this end,
we provide two different, alternate verifications of the protocol. The first
approach is the most straightforward and standard: we select a suitable

It is available in PVS form [FRMMO05c].

3For another, completely different example of verification of the BitTorrent protocol,
based on the approximation of process algebras through differential equations, we
refer the reader to [Dug06].
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inference rule, among those provided in the previous chapter, and we apply
it to verify the system. Although compositionality succeeds in shifting the
most part of the verification burden from global to local, the application
of the inference rules is nonetheless highly nontrivial, and requires some
considerable ingenuity.

The second approach is instead more unconventional, in that it does
not use any previously defined inference rule. On the contrary, it builds
a new inference rule by varying the existing rules in a way which fits the
particular specification we are trying to verify. In this case the verification
effort required in applying the new rule is minimal, although this is of
course traded-off against ingenuity required in designing the new inference
rule, and in verifying its correctness.

Then, we conclude this section with a brief comparison between the two
approaches that highlights the advantages and disadvantages of both. We
believe that our example, however small, constitutes an evidence of the
importance of having a flexible approach to compositionality, and of the
necessity of focusing on real examples of applications on a case-by-case
basis, rather than looking for a “one-size-fit-all” compositional rule.

In practice, the example is carried out as follows. After providing suitable
axiomatic specification of the classes involved in describing the protocol,
we state a global theorem that we want to prove about the composition of
the various classes. Then, we provide two different proofs of the theorem,
both according to the general methodology of Section [5.4 The first proof
is an application of the inference rule 5N of Proposition [5.3.11, that we
have discussed above. The second proof, instead, pursues in full the prac-
tical approach to compositionality that we have advocated in Section [3.2.
Therefore, instead of figuring out how to fit our system specification within
a predefined inference rule, we develop a new rule, combining the known
results about the previously introduced rules with the specific structure of
the formulas that model our system.

6.3.1. Protocol Basics

Let us describe the basic features of the BT protocol, namely those that
we are going to specify and use for verification.

BT is a peer-to-peer communication protocol for distributing files over
networks among a number of hosts. Hosts are partitioned among seeds and
peers. Let Ny be the number of seeds, and N,, be the number of peers in
the system. Usually, it is N, > Ny, although this is not necessary for the
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correct functioning of the protocol.

When the protocol is started, each seed possesses an entire copy of the file
to be distributed; let us represent the file as split into P packets, numbered
from 0 to P — 1. The peers, instead, do not initially have any part of the
file; their goal is to get it. In order to do that, each peer sends periodically
a (random) packet to any peer it is connected to. After a peer has received
(and thus stored) at least a packet, it also periodically sends a packet
to any other peer it is connected to. The connections among peers and
between seeds and peers change dynamically and are coordinated by a
dedicated host called tracker. For simplicity, we do not represent explicitly
the tracker in our model, but simply specify minimal assumptions about
the dynamics of connections between hosts.

Let us describe how the connections between hosts are managed in our
model; recall that this is a special case of the real BT protocol. At any
time, the set of all peers is partitioned into a number of clusters. In each
cluster, the peers are connected in a circle, and there is at least one peer
which is connected to a seed and can receive data from it. Moreover, the
connections change only periodically. More precisely, we will ensure that,
before the clusters are changed, every peer in the cluster has received at
least a packet (that is there has been at least a “passing around” of packets
over the circle of peers in the cluster).

Notice that the connections do not represent physical connections, which
would hardly be dynamic; instead, they represent coordination between
peers. Moreover, we neglect the transmission time over the connections,
which are considered instantaneous (this is acceptable, since the transmis-
sion times can be modeled directly in the specification of each host as
re-transmission delays).

6.3.2. System Specification

Let us now introduce the classes of our BT specification. Notice that in the
remainder we describe a real-time strengthening of the real BT protocol;
the latter does not have any hard real time constraint built in, as it relies
on the TCP/IP protocol which is “best-effort”.

The seed class. The seeds in the system are represented by instances of
the seed class, which is pictured in Figure [6.5. This class is parametric
with respect to the number P of packets of the file, and the send time
Ts. Moreover, it has a single event item send(7), which is true whenever
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the seed sends the packet number i € {0,..., P — 1} over its connections.
The axiomatization of the class is very simple: every Ty time units (at
most), a packet is nondeterministically sent over the connections. This is
represented by the following axiome

Axiom 25 (seed.sending). Ji : WithinF(send (i), T%)

seed _
sand(i)

_._

Figure 6.5.: Interface of the seed class

The peer class. The peers are represented by instances of the peer class,
pictured in Figure[6.6. The peer class is also parametric with respect to
the number P of packets of the file, and the send time Ts. It has a send
event, representing its sending a packet over its connection, and a recv
event, representing the receiving of a packet (from another peer or from a
seed). Moreover, the class has a non-visible stored state: stored(i) being
true represents the fact that the packet ¢ has been received and is therefore
stored locally; this is formalized by the following axioms (7 is a variable of

type {0,..., P —1}).
Axiom 26 (peer.sending). stored(i) < SomP;(recv(7))

Figure 6.6.: Interface of the peer class

The send and recv actions happen according to axioms peer.recv_to send

and peer.send to_ recv: the former states that a recv triggers a send of

*In the remainder of the specification, we do not mention explicitly the types of the
predicates arguments whenever this is unambiguous. For example, we simply write
send(7) assuming implicitly that ¢ € {0,..., P — 1}.
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a (nondeterministically chosen) packet within 7T time units; the latter con-
versely states that a send only happens if a packet has been received in the
past, and the packet is stored locally.

Axiom 27 (peer.recv_to send). Ji : recv(i) = 35 : WithinF (send(j) , T%)

Axiom 28 (peer.send to recv).
send(i) = stored(i) A Jj : WithinP(recv(j),T5)

The system class. Now, let us describe how the modules are composed
into a global system, representing the network. The seeds are N instances
of the seed class that populate an array named Se, and the peers are N,
instances of the peer class that populate an array named Pe.

To represent the connections among hosts in the system, we cannot ex-
ploit TRIO connections which are static. On the contrary, we introduce
two state predicates connected,(p1, p2) and connecteds(s, p) to indicate con-
nections between two peers, and between a seed and a peer, respectively.
The meaning of the two predicates is obvious: whenever ¢ is connected to
J, it means that what ¢ sends, it is received by j. This is stated by the
global axioms sp connections and pp connections.

Axiom 29 (sp_connections).
connecteds(s, p) = (Se[s].send(i) = Pe[p].recv(i))

Axiom 30 (pp connections).
connected, (p1, p2) = (Pe[p1].send(i) = Pe[ps].recv(7))

Finally, we have to define how the connections change over time. This is
an important part of the specification, and requires some nontrivial details.

Let K ={0,..., N, — 1} be the set of all peers. We postulate that, at
any time, there exist k (time-dependent) sets K7, ..., K, named clusters,
such that:

1. The clusters form a partition of K;
2. Each cluster is such that all its peers are connected to form a ring;

3. For each cluster, there is at least a peer in the cluster which is con-
nected to some seed.
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Conditions C(1H3) are formalized by axiom clustering below. In order to
present it, we first introduce the following notation

e The successor of index p modulo m (i.e., over a set of m elements
numbered from 0 to m — 1) is denoted by next,,(p) = (p+ 1) mod m.

e We denote a permutation of the m-element set {0,...,m — 1} as a
function 7, : {0,...,m — 1} — {0,...,m — 1}.

e We associate to every cluster K its size k; = |K;].
Axiom 31 (clustering).

<k <N,:3Kyq,..., Ky
Vie{l,...k}: K, CK A |J Ki=K

(41) i=1,..k A
/\Vz’,je{l,...,k}:i;«éj:>KiﬂKj:(Z)
Vie{l,...,k} 3my, V5 €{0,... ki —1}:

(2) { A A BN

connected, (g, (j), Tk, (nexty, (4)))
Vied{l,...;k}:35€{0,...,k; —1}:
ds € {0,..., Ny — 1} : connecteds(s, j)

Notice that, from now on, with a little abuse of notation, we will treat
the K;’s as globally available items, that is we will be able to reference
them in any module of the system; notice that this is only a shortcut to
represent easily the sets, whose precise formalization in TRIO would not
be difficult but would introduce some additional notational overhead.

6.3.3. Rely/Guarantee Specifications

Let us now describe a global specification property of the system. Then, we
also provide suitable specifications local to each peer module, from which
the correctness of the global specification can be inferred compositionally.

The form of the local specifications depends on the inference rule that
we intend to use. Therefore, in this section we first of all introduce the

°In the following axiom, we slightly abuse TRIO notation by using higher-order quan-
tifications, namely on the functions/sets K; and 7, - Notice, however, that the same
meaning can be retained with suitable first-order predicates and quantifications, but
with a much more cumbersome notation, which we prefer to avoid for clarity.
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global specification, and then we provide two different sets of local speci-
fications: Section[6.3.3 describes those suitable to apply the inference rule
of Proposition [5.3.11} whereas the following Section [6.3.3 introduces a new
ad hoc inference rule, and shows how the basic specification of the system
can be seen as a local rely/guarantee specification suitable to be used with
this new inference rule.

Global Specification

Our overall verification goal is to show a liveness property about the peers,
that is that every peer eventually sends a packet, within an upper bound
equal to the value N,Ts. We choose this particular property as it allows
us to focus on temporal properties, and thus to demonstrate best the use
of our inference rules for temporal logic. An orthogonal concern, which we
omit for brevity, would be the proof of the the correctness of the protocol.
However, let us notice that similar, compositional techniques could be used
for this purpose as well.

Intuitively, our verification goal cannot be guaranteed without introduc-
ing constraints on how the connections among peers vary. Basically, we
need that the connections do not change “too often”, if we want the system
to actually converge towards some goal. More precisely, let us introduce
a predicate const(p,t) which holds whenever its first argument keeps its
current value over an interval of given length given by its second argument.
Therefore, for any time-dependent predicate F with domain D, we have
the following definition (as usual, bb can be any of ee, ei, etc.).

constp, (F,T) = 3d € D : Lastspp(F(d),T)

Through this notation, we formulate the following global specification
in a rely/guarantee form: if the connections stay unchanged over a time
interval of length IV, T§, then every peer eventually sends a packet.

Theorem 32 (global send liveness).

constie(connected, (p1, p2) A connecteds(s, p), NpyTs) =
WithinFie (i : Pe[p].send(i) , N, T5)

Local Specifications for a Predefined Inference Rule

In order to apply the inference rule 5N of Proposition [5.3.11, we now set
up suitable rely /guarantee specifications, local to each peer class.
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The following theorem peer.bounded send recv provides such a spec-
ification. As usual, i,57 € {0,..., P — 1} and k indicates the size of the
cluster the current module is in.

Theorem 33 (peer.bounded send recv).
35 : WithinF(recv(j) , kTs) = 37 : WithinF (send(j) , kT)

This formula is probably a bit counterintuitive, since it establishes a rela-
tionship between two events that are both in the future. However remember
that we are dealing with an abstract specification.

Now that we have introduced the local rely /guarantee specification through
theorem peer.bounded send recv, we have to prove it by means of the
other formulas of the peer class, to show that it is indeed a valid local
specification. This correspond to step [1 of the method of Section

In order to do that, we introduce an assumption formula which we will
discharge by means of axioms of other peer classes. The formula, named
peer.late recv, states that if a late (i.e., later than (k — 1)T§ time units)
recv is received, a send is also present within the overall kT time period.

Assumption 34 (peer.late recv).
35 : Futr(WithinF (recv(j) , Ts) , (k — 1)T5) = 3j : WithinF (send(j) , kT5)

The need for this assumption will be clear in the following proof.

Proof of Theorem peer.bounded_send recv. For simplicity, let 0 be the
current time instant. Assume the antecedent of the implication holds, that
is that recv(7) holds at a time instant 0 < ¢ < kT from the current time
instant, for any i. We distinguish two cases: whether ¢ > (k — 1)T§ or not.

In the former case, recv(i) holds at a time instant (k — 1)7Ts < t < T.
This means that at (k—1)Ty the formula WithinF(recv(7) , Ts) holds, which
corresponds to the antecedent of formula peer.late recv. Therefore the
consequent holds, which is what we have to prove.

The latter case is the one in which the time instant in which recv(7) holds
ist < (k—1)T;. Let us consider axiom peer.recv_to send at time t. We
can infer that WithinF(send(j),Ts) at ¢, for some j. In other words, there
is a time instant ¢ < u < t+ 7T such that send(j) at u. It is simple to realize
that u < (k— 1)Ts + Ts = kT, in this branch of the proof. Therefore, it is
true that WithinF(send(j) , kT) at the current time. O
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Making Up a New Inference Rule

In accordance with the guidelines we have proposed in the previous sections,
let us find suitable rely/guarantee inference rule and local specifications
according to try to the goal of our verification, stated in Section |6.3.3.

Local specifications. Tet us seek a suitable formula to serve as local spec-
ification of the modules. More precisely, we need a specification for each
peer, as we have many of them in each cluster. We notice that axiom
peer.recv_to send is a local specification about the behavior of the send
item in response to a behavior of the recv. Therefore, it is a suitable
rely /guarantee local specification.

A suitable compositional inference rule. Let us now build a suitable in-
ference rule to prove the truth of the global specification theorem
global send liveness from the truth of the local specifications axioms
peer.recv_to send. Let us summarize the characteristics that it should
possess.

e it should be a rely/guarantee rule, as we have both a global specifi-
cation and the local specifications that are in rely /guarantee form;

e the link between the assumptions and the guarantees of the formulas
should be given by a temporal relationship expressed through the
WithinF operator;

e the rule must be circular, as this mirrors the circular nature of the
connections among the peers in each cluster, each of whose assump-
tion can be satisfied by the preceding peer;

e the rule need not be self-discharging, as the assumption of each mod-
ule is discharged solely by the guarantee of the module that precedes
it;

e it must be non-fully compositional, as the global assumption about
the constancy of the connections over time defines what is the state of
the connections, and thus it is required in discharging local assump-
tions;

e there is no notion of initialization required, since we are proving a
“liveness” property, similarly as in the inference rule of Proposition

5.3.11
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All in all, let us introduce the following circular inference rule, whose
structure of assumptions and guarantee mirrors closely the one of the local
and global specification formulas in our example. We provide a proof of
the soundness of this inference rule in Appendix

Proposition 6.3.1. If, for some fized duration Tg > 0:
1. for alli € Iy: E; = WithinF(M;, Tg)
2. foralli € In: ENM; = FEif j<N then i+1 else 1
3. Niery WithinF(M;, NTg) = M
4. WithinF (E;, Tg), for some i € Iy
then Lasts(E, NTg) = M.

6.3.4. Application of the Compositional Rule

In this section, we provide the verification of the BitTorrent example through
the applications of compositional inference rules with the local rely/guar-
antee specifications we have presented in the previous subsection.

As we already mentioned, we provide two correctness proofs. The first
one uses inference rule 5N of Proposition the second one exploits
the inference rule of Proposition [6.3.1]introduced beforehand.

Using a Predefined Inference Rule

Our goal is to compose the various theorems peer.bounded send recv
(one for each instance of the peer class) using the compositional inference
rule of Proposition[5.3.11 to deduce the validity of the global specification.

In our system, we can identify two levels at which to prove the liveness
property for the peers: intra-cluster and inter-cluster. To wit: since at any
time the set of all peers is divided into clusters, we can perform the global
proof in two steps:

e first, prove the liveness property within each cluster, independently
of the others;

e then, show that the composition of the intra-cluster liveness proper-
ties yields the overall desired liveness property of the system.

Therefore, we are going to first apply the compositional verification
method to each cluster separately.
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Intra-cluster proofs. Consider the (generic) cluster of size k and the the
following choices for assumption and guarantee formulas. Notice that mod-
ules in the inference rule are numbered from 1, while peers (and seeds) are
numbered from 0. However, for simplicity, we now assume to have a 0-based
numbering in the modules: filling the gap is stlraightforwalrdJg

e EF =3j: WithinF(Pe[i].recv(j) , kT5);

MF = 35 : WithinF (Pe[i].send(j) , kT%);

Lastsic (Ek,Ts) = constje(connected, (p1, p2) A connecteds(s, p), kT%),
for all py, po2, p in the cluster and some seed s;

MF = /\¢=1 ...kM'k;

e N =k and Tk = kT,.

Let us now apply the inference rule of Proposition [5.3.11]for the Lastse
and WithinFj, operators. Therefore, the we split the proof into lemmas,
each corresponding to a condition of the inference rule, and thus also to
steps [1land [4] through [6] of the compositional method of Section [5.4. More
precisely, notice that step [5lis empty in our case, since there is no require-
ment on assumption discharging for the inference rule 5N of Proposition

5.3.11}

Lemma 6.3.2 (Proof step [1)).
35 : WithinF(Pe[i].recv(j) , kTs) = 3j : WithinF(Pe[i].send(j) , kT)

Lemma 6.3.3 (Proof step[6). E* A A, 3j : WithinF (Pe[i].send(j) , kT%)
= N\, 37 : WithinF(Pe[i].send(k) , kT%)

Lemma 6.3.4 (Proof step 4.
WithinFic (A, ((37 : WithinF(Pe[d].recv(j) , kT5))
V (37 : WithinF (Pe[i].send(j) , kT5))), kT5)

For brevity, we present the proofs of the three lemmas in Appendix [B.

5We add the superscript k for notational clarity.
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Conclusion of intra-cluster proofs. So far, we have proved that, for each
cluster K; of size k;:

constie(connected, (p1, p2) A connecteds(s, p), kiTs)

= WithinFs. [ /\ 37 : WithinF(Pe[j].send (1) , k;T%) , kT
JEK;

Actually, an analysis of the performed proofs shows that all the con-
sidered events occurred within a time bound of k;Ts time units, that is,
equivalently, the outermost WithinF is always instantiated at the current
time. In other words, we can actually claim a strengthening of the above
formula, and namely

constic(connectedp (p1, p2) A connecteds(s, p), kiT%)

= /\ 31 : WithinFi.(Pe[j].send(1) , k;T)
JEK;

Proof of step 2l We also notice that we can discharge the Assumption
peer.late recv intra-cluster. This corresponds to completing step [2 of
the method of Section [5.4] The proof of it is similar to that of Lemma
6.3.4, and is therefore not discussed. Moreover, notice that the discharging
does not involve any circularity, as it ought to be.

Proof of step Finally, let us note that step[3 is empty in our case, as we
have no non-rely /guarantee global theorem. This concludes the verification
at the intra-cluster level.

Inter-cluster proofs. We are now ready to put together the various intra-
cluster proofs to deduce the validity of theorem global send liveness.

Before doing that, let us state simple proper of the operators const(-,-)
and WithinF. The proofs are very simple and are therefore omitted.

Lemma 6.3.5. For any n predicates Py, ..., P,, time distances 11, ...,T,
and T 2 maxi=i,..n Tz

constyy, /\ BT = /\ constyy (P, T;)

i=1,...,n 1=1,....n
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Lemma 6.3.6. For any nm predicates Pij fori=1,....,nandj=1,...,m,
time distances Tv,...,T, and T' > max;—1 ., T;:

AN WithinFy, (P T;) =\ WithinFy, (F/,T)

i=1,...,nj=1,...m i=1,....,n
Jj=1,....m

Finally, we prove the global liveness theorem.

Proof of theorem global send liveness. Assume the antecedent
constie (connected, (p1, p2) A connecteds(s, p), NpTs)

By axiom clustering, it is obvious that k; < N,, for every i and at any
time. Therefore, max; k;Ts < N,Ts, and we can apply Lemma [6.3.5, so
Ni—q 1 constic(connectedy (p1, p2) A connecteds(s, p), k;iTs) holds.

This means that the antecedents of every intra-cluster result is satisfied.
Therefore, we have that:

A /\ 3 WithinFi.(Pe[j].send(l) , k;T%)
i=1,..k jeK;

Now, we apply Lemma |6.3.6] and finally conclude:

/\ 30 : WithinFi.(Pe[p].send(l) , N, T%)
p:1:-~~>Np

where the last rearrangement of indices is justified by the fact that the K;’s
are a partition of the set of all V), peers (axiom clustering). O]

Using a Made Up New Inference Rule

We already have all the ingredients to apply the compositional inference
rule of Proposition|6.3.1/in order to prove theorem global send liveness.

As we did in the previous proof, let us split the proof between intra-
cluster and inter-cluster proofs. Actually, the inter-cluster proof is simple,
and it is just like as it was done in Section [6.3.4, the only difference be-
ing that we now deal with ee variations of the constee(-,:) and WithinFe,
operators. This is however immediately reducible to the previously seen
case, as it is simple to check that constie(-, - --) implies constee(-, ) for the
same arguments, and WithinFe, implies WithinFje, for the same argument.
Thus, let us just carry out the intra-cluster proof.
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Intra-cluster proof. TLet us consider a generic cluster of size k; let us
instantiate the inference rule of Proposition 6.3.1 as follows. Notice that
modules in the rule are numbered from 1, while peers (and seeds) are
numbered from 0. Thus, we associate the number ¢ + 1 in the rule to peer
number .

o E; =3j: Pe[i — 1].recv(j);

M; = 3j : Pe[i — 1].send(j);

E = constec(connectedy (p1, p2) A connecteds(s, p), kT), for all p1, p2, p
in the cluster, and some seed s;

o M = \;er, WithinF(M;, kT});

e N=Fand Tg = T.

Applying the inference rule of Proposition [6.3.1 amounts to the following
steps, respectively corresponding to steps/[1][5, /6, and [4 of Section [5.4}

1. Prove that: 3j : Pe[i — 1].recv(j)
= WithinF(3j : Pe[i — 1].send(j),Ts), for all ¢ € {1,...,k}.

2. Prove that: E' A Jj : Pe[i — 1].send(y)
= Jj : Pe[if i — 1 < k — 1 then i else 0].recv(j),
for all i € {1,...,k}.

3. Prove that: A,z WithinF(3j : Peli — 1].send(j) , kT5)
= Nier, WithinF(3j : Pe[i — 1].send(j) , kT5).

4. Prove that: WithinF (35 : Pe[i — 1].recv(j), T),
for some i € {1,...,k}.

We now orderly provide the proof justifications.

1. Forany i € {1,...,k}, this is exactly axiom peer.recv_to_send for
module 7 — 1.

2. For any i € {1,...,k}, this is immediately implied by the connec-
tion axiom clustering, together with the definition of the connec-
tion predicate in axiom pp_connections, for module 7 — 1 and its
successor in the clustering.
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3. This is trivial as the left-hand side of the implication is identical to
the right-hand side.

4. This is a direct consequence of axiom clustering again, together with
axiom seed.sending.

Finally, note that steps[2] and [3 are empty, since we have neither local
assumption formulas to prove, nor global non-rely /guarantee theorems. [

Discussion. Let us compare the two different verification processes we
have detailed in this section.

The first approach used a previously defined inference rule, namely that
of Proposition 5.3.11. As we have seen, the application of the rule has been
nontrivial, and has required some considerable ingenuity, as well as the
proof of several details. On the other hand, the application of the inference
rule in the second verification has been straightforward and with little tech-
nical complications. This does not mean that in this case the complexity
of verification has “disappeared”; in fact, we had to invest considerable in-
genuity in devising a new compositional inference rule, one that was simple
to apply for the system being verified. So, the two different solutions have
resolved the trade-off between difficulty in building a rule and difficulty in
applying it in two different ways.

In general, it is difficult — and perhaps highly subjective as well —
to assess which of the two approaches is preferable. Ideally, one should
consider both approaches, and choose according to the particular features
of the system under consideration, as well as his/her specific skills and
attitudes. Allin all, the most important “lesson” that we can draw from this
example is about the importance of flexibility in pursuing compositional
verification, in accordance with what we have extensively advocated in the
previous chapters.
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7. Integration as a Generalization
of Compositionality

The first part of this thesis developed a framework for the compositional
specification and verification of real-time modular systems, based on the
language TRIO, a very expressive formal language, which allows one to
deal with different aspects and different systems.

Nonetheless, the ultimate goal of applying formal methods to the descrip-
tion and analysis of large and heterogeneous systems inevitably requires
being able to model different parts of the system using disparate notations
and languages. In fact, it is usually the case that different modules are
naturally described using diverse formal techniques, each one tailored to
the specific nature of that component.

Indeed, the past decades have seen the birth and proliferation of a
plethora of different formal languages and techniques [FM05, FMMRO7],
each one usually focused on the description of a certain kind of systems
and hinged on a specific approach. On the one hand, this proliferation is
advantageous, as it allows the user to choose the notation and methodology
that is best suited for her needs and that matches her intuition. However,
this is also inevitably a hurdle to the true scalability in the application of
formal techniques, since we end up having heterogeneous descriptions of
large systems, where different modules, described using distinct notations,
have no definite global semantics when put together. Therefore, we need
to find ways to integrate dissimilar models into a global description which
can then be analyzed.

Integration can be framed as a natural generalization of the idea of com-
positionality: whereas the latter deals with specifying and verifying systems
whose modules are formalized with the same language, integration aims at
providing ways to specify and verify systems composed of modules for-
malized in different languages. Different languages means, in general, not
only differences of syntax, but also  and more crucially  of semantics.
Thus, two modules specified with languages referring to different semantics
models have no a prior: defined meaning when put together.
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As an example, let us consider a module describing a queue as an abstract
data type, specified in a formal language such as Larch [GHGJ93]. Then,
let us consider another component consisting of a real-time scheduler that
uses a queue to store incoming data, whose temporal behavior is described
with, say, a temporal logic such as TRIO. It is not clear at all how the
verification results about functional properties of the queue data type can
be applied to proving properties of the scheduler manipulating the queue.

However sketchily, this shows that integration techniques must relate
formally the interpretations of the various languages, in a way which is
consistent. Specifying exactly and formally what is the relation between
the formal interpretation is very important, as this passage is often done
in practice only informally, or through some rule of thumb [BGH104]. In
particular, the relation should allow the verifier to infer facts in a certain
semantics, deriving them from properties that hold in another semantics.
This should be done without introducing new formalisms to represent the
heterogeneous system: integration stresses separation of concerns in the
development of a specification, as the modules describing different parts of
the systems, that obey different models, may be developed independently
and then joined together to have a global description of the system, in the
same vein as compositionality.

Integration for hybrid systems. The description of real-time systems,
which requires a quantitative modeling of time, introduces a particularly
relevant instance of the problem of integration. Commonly, real-time sys-
tems are composed of some parts representing physical environmental pro-
cesses and some others being digital computing modules. The former ones
have to model physical quantities that vary continuously over time, whereas
the latter ones are digital components that are updated periodically at ev-
ery (discrete) clock tick. Hence, a natural way to model the physical pro-
cesses is by assuming a continuous-time model, and using a formalism with
a compliant semantics, whereas digital components would be best described
using a discrete-time model, and by adopting a formalism in accordance.
Thus, the need to integrate continuous-time formalisms with discrete-time
formalisms, which is the goal of this second Part.

Systems where continuous- and discrete-time components coexist are
sometimes called hybrid systems [Ant00]. Let us notice that our notion
of hybrid system is different than that of hybrid automata |[AHLP0O|. In
fact, in hybrid automata the same system undergoes an evolution which
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consists of alternations between continuous-time evolution (called “flow”),
and discrete switching (called “jumps”); on the contrary we are interested in
describing systems where the continuous-time and the discrete-time compo-
nents evolve in parallel, within the same “global” time. However, we share
with the work on hybrid automata the overall goal of describing systems
where both discrete- and continuous-time dynamics occur.

Integration through the notion of sampling invariance. As we discussed
in Section[2.1, TRIO can be interpreted over both continuous-time models
and discrete-time ones: each formula of the language can be interpreted
in one of the two classes of models. Therefore, our integration framework
considers modules written using TRIO under different choices for the time
domain.

It is not difficult to realize that the discrete-time semantics and the
continuous-time one are unrelated in general, in that the same formula
unpredictably changes its models when passing from one semantics to an-
other. On the contrary, integration requires different formulas to describe
parts of the same system, thus referring to unique underlying models.

To this end, we base our integration framework on the notion of sampling
invariance of a specification formula, introduced in Section[8.2] Informally,
we say that a temporal logic formula is sampling invariant when its discrete-
time models coincide with the samplings of all its continuous-time models.
The sampling of a continuous-time model is a discrete-time model obtained
by observing the continuous-time model at periodic instants of time.

The justification for the notion of sampling invariance stems from how
real systems are made. In fact, in a typical system the discrete-time part
(e.g., a controller) is connected to the (probed) environment by a sam-
pler, which communicates measurements of some physical quantities to the
controller at some periodic time rate (see Figure |7.1). The discrete-time
behaviors that the controller sees are samplings of the continuous-time be-
haviors that occur in the system under control. Our notion of sampling
invariance captures abstractly this fact in relating a continuous-time for-
mula to a discrete-time one, thus mirroring what happens in a real system.

Uses of the integration framework. Once we have a sampling invari-
ant specification, we can integrate discrete-time and continuous-time parts,
thus being able, among other things, to resort to verification in a discrete-
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Figure 7.1.: A system with a sampler.
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time model, which often benefits from more automated approaches, while
still being able to describe naturally physical processes in a continuous-time
model.

Another approach that can be achieved with a sampling-invariant lan-
guage which is the subset of a more expressive one (TRIO, in our case)
is one based on refinement. In the process of formal modeling of a digital
component — and of a computer program in particular — one would start
with a very high-level description that would refer actions and events to
the “real, ideal, physical” time. The final implementation, however, will
have to refer to a more concrete, measured view of time, such as the one
achievable through periodic readings of an imperfect clock. The refinement
of the specification from the ideal to the concrete could then move from full
TRIO to the sampling-invariant subset of it; this latter description would
be closer to the “implemented” view of time, and would therefore facilitate
its realization.

A full development of these ideas is outside the scope of this thesis. Some
of them have been pursued elsewhere [FRST06], and others belong to future
work. In the remainder, we develop the integration framework in Chap-
ter [8. The framework is based on a subset of the TRIO language whose
formulas comply with the notion of sampling invariance. The following
Chapter [9 analyzes some features of the integration framework introduced
beforehand. In particular, it discusses the expressiveness of the subset of
the TRIO language introduced for integration, clarifies the characteriza-
tion of behaviors that has been introduced in order to achieve integration,
and compares the notion of sampling invariance with other notions of dis-
cretization that have been introduced in the literature. Finally, Chapter
reviews literature related to our work about integration. In particular,
it focuses on works about the expressiveness of formalisms (both logic and
automata) close to the subset of TRIO we define in the Chapter
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8. A Framework for Discrete- and
Continuous-Time Integration

This chapter presents our framework for integrating discrete-time and con-
tinuous-time modules. As we discussed informally in the previous Chapter
[7, the framework relies on a the notion of sampling invariance to link
discrete-time behaviors to continuous-time ones.

Full-fledged TRIO is a very expressive language, and therefore it allows
one to express complex properties that do not conform to the notion of
sampling invariance. Therefore, in Section[8.1 we introduce a proper subset
of the TRIO language, that we call %TRIOE We fully define the semantics
of BTRIO, parametrically with respect to the chosen time domain.

Then, Section[8.2 defines formally the concept of sampling invariance of a
TRIO formula (Definition[8.2.1). Section /8.3 completes the presentation of
the integration framework by presenting sufficient conditions under which
BTRIO formulas achieve the sampling invariance property. Finally, Section
[8.4 presents an example of integration for a simple controlled reservoir
system made of two modules.

8.1. 2TRIO: A Simple Metric Temporal Logic

For the purposes of integration, we consider a proper subset of the TRIO
language, which is strictly less expressive and which we call ZTRIO.

8.1.1. Syntax

As we illustrated in Section[2.1] TRIO is based on a single modal operator
named Dist. XTRIO is instead based on the two primitive temporal oper-
ators Until and Since, as well as the usual propositional connectives. For
simplicity, we also introduce BTRIO as a purely propositional language.
Let us define formally the syntax of ZTRIO. Let = be a set of time-
dependent conditions. These are basically Boolean expressions obtained

You can read it as “ar-zee-TRIO”.
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by functional combination of basic time-dependent items with constants.
We are going to define them precisely later on (in Section [8.3)), for now let
us just assume that they are time-dependent formulas whose truth value
is defined at any given time. Let us consider a set $ of constants symbols.
We denote intervals by expressions of the form (l,u), with [, u constants
from $, ( a left parenthesis from {(, [}, and ) a right parenthesis from {),]};
let Z be the set of all such intervals. Then, if £,&,& € 2, T € Z, (€ {(,[},
and ) € {),]}, well-formed formulas ¢ are defined recursively as follows.

¢ u= | Untily (o1, d2) | Sincer((d1,d2) [ ¢ | 1 A o

From these basic operators, let us define a number of derived operators:
in Table 8.1 we define the most common ones.? As it will be clear after
providing a semantic definition of XTRIO formulas, derived 2TRIO opera-
tors share the same semantics as the TRIO ones, the only difference being
the primitive operators from which they are defined.

8.1.2. Semantics

In defining BTRIO semantics we assume that constants symbols in $ are in-
terpreted naturally as numbers from the time domain T plus the symbols
400, which are treated as usual. Correspondingly, intervals 7 are inter-
preted as intervals of T which are closed/open to the left/right (as usual
square brackets denote an included endpoint, and round brackets denote
an excluded one).

Then, we define the semantics of a BTRIO formula using as interpreta-
tions mappings from the time domain T to the domain D the basic items
map their values to. Let By be the set of all such mappings, which we call
behaviors, and let b € By be any element from that set. If we denote by
f\b(t) the truth value of the condition & at time ¢ € T according to behavior
b, we can define the semantics of ZTRIO formulas as follows. We write
b Er1 ¢ to indicate that the behavior b is a model for formula ¢ under the
time model T. Thus, let us define the semantics for the generic time model

2Implication =, disjunction V and double implication <> are defined as usual. Moreover
§ is a positive real constant that will be defined shortly. Finally, for simplicity we
assume that I = (I, ) is such that I,u > 0 or [,u < 0 in the definition of the 3t € I
and Vt € I operators.
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T.

b(t) Fr € it &y

b(t) =1 Untilpy (1, ¢2) iff  there exists d € I such that
b(t + d) Er1 ¢2 and, for all u € [0,d)
it is b(t +u) 1 ¢1

b(t) =1 Sincer((é1, p2) iff  there exists d € I such that
b(t — d) 1 ¢2 and, for all u € (—d, 0]
it is b(t +u) 1 ¢1

b(t) =1 ¢ iff  b(t) Er o
b(t) Er ¢1 A 2 iff  b(t) =r @1 and b(t) F1 é2
bET ¢ iff  forallteT: b(t) =r ¢

Thus, a BTRIO formula ¢ constitutes the specification of a system, rep-
resenting exactly all behaviors that are models of the formula. We de-
note by [¢]r the set of all models of formula ¢ with time domain T, i.e.,

[¢]r ={b€ Br|bET ¢}

8.2. Sampled Behaviors and Sampling Invariance

We want to relate the models of a formula with a continuous-time domain
to those of the same formula with a discrete-time domain. To do that, we
introduce the notion of sampling of a continuous-time behavior. Basically,
given a continuous-time behavior b € Br, we define its sampling as the
discrete-time behavior o5, [b] € Byz that agrees with b at all integer time
instants corresponding to multiples of a constant § € R>£ from a basic
offset z € R. We call § the sampling period and z the origin of the sampling.
More precisely, we have the following definition:

VEEZ: os.[b](k) = b(z+ ko)

8.2.1. Sampling Invariance

Now, given a RTRIO formula ¢ we want to relate the set [¢]z of its discrete-
time models to the set of behaviors obtained by sampling its continuous-
time models [¢]r. Ideally, we would like that, for some sampling period §
and origin z, the following holds.

3We use the symbol R, for some ¢ € R, to denote the set {x € R|z > c}, and similar
ones for integer numbers.
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8. A Framework for Discrete- and Continuous-Time Integration

e For any continuous-time behavior b € Br which is a model for ¢, the
sampling of b is a model for ¢ in discrete time, that is:

be gl = 05[] € [¢]z
When this holds, we say that ¢ is closed under sampling.

e For any discrete-time behavior b € By which is a model for ¢, any
continuous-time behavior, whose sampling coincides with b, is a model
for ¢ in continuous time, that is:

belglz = W:(os. [t]=b = Ve[g]r)
When this holds, we say that ¢ is closed under inverse sampling.

When all the formulas of a language are closed both under sampling and
under inverse sampling we say that the language is sampling invariant. We
briefly note that it is possible to explore variations of the above defini-
tions, for example by allowing to pick a sampling period and/or an origin
which depend on the particular behavior being considered. We leave the
discussion of the impact of these variations to future work.

8.2.2. On Continuous versus Discrete Semantics

Actually, the above requirement is a too demanding one, as there are a
number of facts indicating that it is not possible, in general, to achieve it,
unless we adopt a logic language with such a limited expressiveness that it
is of no practical use. In this subsection we briefly hint at some of these
facts: notice that the exposition is deliberately a bit loose, as we only want
to motivate the developments that will follow.

Cardinality. The first fact is a simple cardinality argument, that reminds
us that the mappings from R are “many more” than the mappings from Z.
In fact, for any domain D of size d = |D|, the cardinality of the set of all
mappings Z — D is d"°, whereas the set of all mappings R — D has the
much larger cardinality d¢ = a2,

Time Units and Sampling Period. Another issue that needs to be dealt
with is the problem of time units. Let us illustrate it with the STRIO
formula Lasts(A, 1/2), where A is a primitive condition. In a discrete-time
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8.2. Sampled Behaviors and Sampling Invariance

setting, we would like the formula to mean: for all (integer) time distances
that fall in an interval between the two time instants corresponding to the
sampling instants closest to 0 and 1/2, etc. Hence, we should actually
adopt the formula Lasts(A,1/20) as discrete-time counterpart, dividing
every time constant by the sampling period.

Conversely, there is another change in the time constants probably
less manifest — that must be introduced when interpreting a discrete-time
formula in continuous time. To give the intuition, consider the formula
Lastsii(A, 1) in discrete time: A holds for two consecutive time steps (in-
cluding the current one). In continuous time, when evaluating the corre-
sponding Lastsii(A, d) between two consecutive sampling instants (cf. in-
stant ¢ in Figure [8.1(b)), we can only state a weaker property about A
holding, namely that A holds in a subset of the §-wide interval in the fu-
ture. On basic formulas, this requirement is rendered as a shrinking (or
stretching, for existential formulas) of the intervals bounds by one discrete

time unit.

A A 5
Z : b |

0 - - 0 : |
. . > d *—— | . >
z4+ké z+(k+1)0 E—1tk kE+1

(2) (b)

Figure 8.1.: (a) Change detection failure; (b) Moving interval.

In order to do this, in Section[8.2.3 we are going to define how to modify
the time constants in any STRIO formula when passing from continuous to
discrete time and vice versa. Let us name adaptation function this simple
translation rule, as it just adapts the time bounds in our formulas, without
changing its structure. We denote the adaptation function from continu-
ous to discrete time as ni{-}, and the converse function from discrete to
continuous time as nZ{-}.

Items Velocity and Change Detection. A basic intuition that should be
developed about the above idea of sampling is that, whenever the values of
the basic items of our specification — whose evolution over time is described
by behaviors — change “too fast” with respect to the chosen sampling
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period 9, it is impossible to guarantee that those changes are “detected” at
sampling instants, so that the properties of the behavior are preserved in
the discrete-time setting.

Consider, for instance, the example of Figure [8.1[a). There, a Boolean-
valued item changes its values twice (from true to false and then back
to true) within the interval, of length J, between two adjacent sampling
instants. Therefore, any continuous-time formula predicating about the
value of the item within those instants may be true in continuous time and
false for the sampling of the behavior, which only “sees” two consecutive
true values. Instead, we would like that the “rate of change” of the items
values is slow-paced enough that every change in the value of an item is
detected at some sampling instant, before it changes again.

To this end, let us introduce a constraint on the continuous-time be-
haviors of a formula: only behaviors conforming to the constraint can be
invariant under sampling. The precise form of the constraint to be intro-
duced depends on the kind of items we are dealing with in our specification
(namely, whether they take values to discrete or continuous domains); we
will define it precisely in the next Section [8.2.3. In practice, however, the
constraint is expressed by an additional ZTRIO formula x, which depends,
in general, on the particular specification we have written; we call x the
behavior constraint.

8.2.3. Constrained Behaviors and Adaptation

In order to define a subset of STRIO which is sampling invariant, it is
convenient to assume that every formula is written in a suitable normal
form. We are going to show that every STRIO formula can be put in
normal form, provided we can introduce auxiliary basic items. How this
impacts the expressiveness of the language will be discussed in Section
9.2.3

Normal Form. RTRIO formulas in normal form are written according to
the following grammar, where £, &1, & € Z are primitive conditions (defined
formally in Section 8.3).

¢ u= L1V 2| o1 A b2 | Untily(§1,82) | Sincer((€1,&2)
Releasesy (€1, &2) | Released (1, &2)
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Notice that the normal form prohibits nesting of temporal operators and
negations of formulas. Moreover, we have an additional syntactic restric-
tion which applies to discrete-time formulas only (that is, to formulas
that are meant to be interpreted in discrete time): we require that the
Until and Since operators always use an included boundary, while the
Releases and Released operators always use an excluded boundary. In
other words, we consider only discrete-time formulas using the temporal
operators Untily(+), Sincey((-), Releasesy(-), and Released((-).

Despite the above restrictions, any TRIO formula can be expressed with
this RTRIO language fragment, with the additional requirement that we
are allowed to introduce new auxiliary basic items in the specification, as
we are going to show shortly. First, for the ease of exposition of the fol-
lowing proofs, let us introduce explicitly the semantics for the operators of
the normal form which are not basic XTRIO operators, namely Releases,
Released, and V.

b(t) =1 Releases (£1,82) ifft  forall d € I it is either b(t + d) =1 &2
or there exists u € [0, d) such that
b(t +u) 1 &

b(t) Fr Released (&1, &2) iff  forall d € I it is either b(t — d) =1 &2
or there exists u € (—d, 0] such that
bt +u) b &

b(t) Fr é1V d2 it b(t) Fr ¢1 or b(t) Fr 2

In Appendix [D.1] we show how any BTRIO formula can be expressed
using just the above operators, possibly introducing auxiliary items.

Semantic Constraint. The precise form of the semantic constraint to be
introduced depends on the kind of items we are dealing with in our specifi-
cation, and namely whether they take values to discrete or dense domains.
We are going to discuss separately the two cases in Section In a nut-
shell, we constrain the dynamics of the basic items and /or conditions of the
specification by requiring that at least ¢ time units (where ¢ is the chosen
sampling period) elapse between each pair of instants of time at which the
items change their values. This restriction — which mandates a “maxi-
mum rate of change” of the items’ values assures that every change in
the truth value of a formula is propagated until either the previous or the
next sampling instant, before being possibly reversed by another change.
Therefore, there is no information loss by observing the system just at the
sampling instants, where by information we (informally) mean the truth
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value of a specification formula (which is the only description of the system
that we consider).

In practice, the semantic constraint is expressed by an additional ETRIO
formula y, which in general depends on the particular specification we have
written. Thus, whenever we write a specification ¢, we are actually consid-
ering the (more restrictive) specification ¢ A x, which only has models with
the desired qualities. We can see the semantic constraint y as a price that
we have to pay in order to have a sampling invariant specification. Clearly,
whenever the specification already entails the semantic constraint, sam-
pling invariance comes simply at no price. In future work, we will discuss
how the semantic constraint impacts on the description of real systems, as
well as on the limitations it imposes on the properties that a system can
have.

Adaptation Function. We define an adaptation function ni{-} which
translates formulas by scaling the time constants, appearing as endpoints
of the intervals, to their values divided by the sampling period §. We also
define its “inverse” nZ{-}, which translates valid discrete-time formulas to
valid continuous-time ones, by scaling back the endpoints. Notice that, in
discrete time, it suffices to define the adaptation rule for closed intervals.
Thus, for any formula respecting the all of the above syntactic restrictions,
adaptation is defined formally inductively on the structure of the formulas
of BTRIO as follows.
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Notice that in the discrete-to-continuous adaptation of the Until and
Since operators, the adapted interval ((I — 1)d, (u — 1)d) can indifferently
be taken to include or exclude its endpoints.
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Finally, according to the above ideas, we can formulate a definition of
sampling invariance which is the one we are actually going to use in the

remainder.

Definition 8.2.1 (Sampling Invariance). Given a formula ¢, a behavior
constraint formula Y, two adaptation functions n5{-} and nZ{-}, a sampling
period 4, and an origin z, we say that:
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e ¢ is closed under sampling iff for any continuous-time behavior b €
BRr:
belprxlr = 05[] € [0f{6}]z

e ¢ is closed under inverse sampling iff for any discrete-time behavior

be By:
belelz = W elxlr: (05: V] =b = Ve nf{o} AxIr)

e A language is sampling invariant iff all the formulas of the language
are closed under sampling (when interpreted in the continuous-time
domain) and are closed under inverse sampling (when interpreted in
the discrete-time domain).

8.3. Sampling Invariant Specifications

In this section we formulate a sufficient condition for the sampling invari-
ance of a R’TRIO specification formula ¢. This condition involves the defi-
nition of a suitable constraint formula x on the continuous-time behaviors,
as well as a definition of the forms of the conditions £ that can appear in
BTRIO formulas. More precisely, we distinguish two cases, whether we are
dealing with time-dependent items which take values onto a discrete set,
or with time-dependent items which take values onto a dense set.

Let us introduce this idea with more precision. We assume that every
specification is built out of primitive time-dependent items from a (finite)
set W. For example one such item may represent — by a Boolean value —
the state of a light bulb (on or off), another one may instead represent
by a real value — the measure of the temperature in a room, etc. So, every
time-dependent item 1); in W is a mapping from time T to a suitable domain
D;, for i = 1,...,n, where n is the number of primitive time-dependent
items. Therefore, every behavior b € By represents the evolution over time
of the values of all primitive items; in other words, every behavior b € By
is a mapping from time T to the domain D = D; x --- x D,,. Note that we
do not consider the definition of more complicated time-dependent items,
such as time-dependent functions, which are part of standard TRIO. These
would not be difficult to introduce, but we leave them out of the present
work, in favor of a simpler exposition. The next two subsections will draw
sufficient conditions for sampling invariance in the two cases of when every
D; is a discrete set (Section[8.3.1) and when some D; is a dense set (Section
8.3.2).
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8.3.1. Discrete-valued ltems

Let us consider the case in which all time-dependent items in ¥ have dis-
crete co-domains, i.e., 7; is a time-dependent item taking values to the
discrete set D;, for all ¢ = 1,...,n. Thus, behaviors are mappings T — D
where D = Dy x --- x D,,. We also assume that a total order is defined
on each D;. Although this assumption could be avoided, we introduce
it for uniformity of presentation; still, one can easily extend the present
exposition to unordered sets as well.

Conditions. Let A be a set of constants from the sets D;’s, and I be a set
of functions? having domains in subsets of D and co-domains in some D;’s.
Then, if A€ A, f, f1, fo €T, and x € {=, <, <,>, >}, conditions £ can be
defined recursively as follows, assuming type compatibility is respected:

§ n= f(wla--.ﬂﬂn)N)"fl(iﬁlv-.-ﬂ/’n)Nf2(¢17~-71/’n)|_‘§|§1/\§2

Abbreviations and notational conventions are introduced in the obvious
ways.

Constraint on Behaviors. The constraint on behaviors is expressed by
Formula y, and basically requires that the values of the items in W vary
over time in such a way that changes happen at most every § time units,
i.e., the value of each item is held for §, at least. This can be expressed
formally with the following HZ{TRI formula.9

Xo2VYveED: ((¥1,...,90,) =0
= WithinP;;(Lasts((¢1, - .., ¥n) = v,0),9))

A Sufficient Condition for Sampling Invariance. We finally prove a suffi-
cient condition for sampling invariance of STRIO formulas in the following.

4These are of course time-independent functions, in TRIO terms.

5 Actually, %TRIO as we defined it above is purely propositional, while x, uses a uni-
versal quantification on non-temporal variables. However, later it will be shown why
this modification is a natural and acceptable generalization which is orthogonal to
sampling invariance.

SWithinPy (¢, 7) £ 3u € [—7,0] : Dist(¢, u), and Lastsii(¢,7) = Yu € [0, 7] : Dist(¢, u).
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Theorem 8.3.1 (Sampling Invariance for Discrete-valued Items). Normal-
form BTRIO is sampling invariant, for items mapping to a discrete set D,
with respect to the behavior constraint x., the adaptation functions ngR{-}
and nZ{-}, for any sampling period § and origin z.

Proof sketch. Let us sketch the outline of the proof and refer to Appendix
D.2/for all the details.

Let ¢ be any ZTRIO formula: the proof is split into two main parts:
first we show that any ETRIO formula ¢, interpreted in the continuous-
time domain, is closed under sampling; then we show that any formula ¢,
interpreted in the discrete-time domain, is closed under inverse sampling.

To prove closure under sampling, let b be a continuous-time behavior in
[Xolr: #' = nE{¢}, and b’ be the sampling oy, [b] of behavior b with the
given origin and sampling period. For a generic sampling instant t = z+kJ,
one can show that b(t) Er ¢ implies ¥'(k) =z ¢, by induction on the
structure of ¢. Even if all the details are quite convoluted, the overall idea
is fairly terse: assuming ¢ holds we infer that some condition ¢ holds at
some instant u that depends on the bounds of the time intervals involved in
¢; then, condition x, (or X‘.b) ensures that the truth of € is held at least until
the previous or the next sampling instant (w.r.t. u); therefore, the discrete-
time formula ¢’, whose time bounds have been relaxed by the adaptation
function ni{-}, matches this sampling instant and is thus shown to hold
at k.

To prove closure under inverse sampling let b be a discrete-time behavior,
¢' = n%{¢}, and V/ be a continuous-time behavior such that ¥’ € [x.]r and
b = o5, [b/] for the given origin and sampling period. The proof is now
split into two parts. The former shows that, for a generic sampling instant
t =z+ ko, if b(k) =z ¢ then V' (t) Er ¢/, that is ¢/ holds in continuous-
time at all sampling instants. Again, this involves reasoning on the intervals
involved in the operators and the condition y, (or X?) Afterward, we show
that ¢’ holds in between sampling instants: if it holds at some sampling
instant ¢, then it is either always true in the future and past, or there exist
definite “changing points” in the future and past where ¢’ changes its truth
value to false. These changing points, however, can be shown to correspond
to changes in the truth value of some condition £ (because in normal form
we have no nesting), and thus there can be at most one of them between
any two consecutive sampling instants. A final analysis shows that indeed
if any ¢ holds at all sampling instants, then it also holds in between them,
since it should otherwise change its value twice between two of them. [
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8.3.2. Dense-valued ltems

Let us now consider the case in which some time-dependent items in ¥ have
dense co-domains, i.e., ¥; has a dense co-domain D;, for some i =1,...,n.
Without loss of generality, we can even assume that all D;’s are dense sets,
since we can handle separately the discrete sets as seen in the previous
subsection (we do not discuss the details of that as it is straightforward).
Similarly as for discrete-valued items, we assume that each D; is a totally
ordered set, with no practical loss of generality.

Conditions. Let A be a set of n-tuples of the form ((*I1,u1)?, ..., (", un)™),
with l;, u; € Dy, I; < ug, ("€ {(,[}, and ) € {),]}, for alli = 1,...,n. More-
over, for any A € A, we denote by A|; its projection to the ith component,
ie., Ai = (‘l;,u;)". Then, if A € A, conditions ¢ are defined simply as
follows:

5 L= <w17"',¢n>6)‘|_'£|€1/\£2

For a behavior b : T — D, we define (1,...,%n)[pp) = Vi =1,...,n:
»i(t) € (*lj,u;)", ie., all items are in their respective ranges at time ¢.
Also in this case, it is simple to introduce abbreviations and notational
conventions.

Constraint on Behaviors. The constraint on behaviors is now dependent
on the actual conditions £ that we have introduced in our specification
formula ¢. This is different than the constraint y, for discrete-valued items,
which was independent of ¢. Now, if we let = be the set of conditions that
appear in ¢, we have to require that the value of every item in W is such
that changes with respect to the conditions in = happen at most every
time units. In other words, if any condition E € = is true (resp. false) at
some time, then it stays true (resp. false) in an interval of length § (at
least). This is expressed by the following “pseudo”™SXTRIO formula, where
the higher-order quantification Vg € Z is to be meant as a shorthand for
the explicit enumeration of all the conditions in (the finite set) =

¢ 2 VEeE . WithinPy (Lastsii (5, 5) ,5) vV WithinP;; (Lastsii ({, 5) ,5)

Theorem 8.3.2 (Sampling Invariance for Dense-valued Items). Normal-
form BTRIO is sampling invariant, for items mapping to a dense set D,
with respect to the behavior constraint X(.b, the adaptation functions n(];R{}
and nZ{-}, for any sampling period § and origin z.
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Proof. Similarly as in Theorem[8.3.1] for dense-valued items the truth value
of any condition & cannot change between any two consecutive sampling
instants, exactly because of the behavior constraint X?- In fact, Xf requires
that if the value of any item ; is in (resp. out of) an interval A|;, it stays
in (resp. out of) A|; until the next sampling instant. Therefore, thanks to
this observation, the proof is exactly as in Theorem [8.3.1 (see Appendix
D.2[for details). O

8.4. An Example of Integration: The Controlled
Reservoir

Let us now discuss an example that demonstrates our approach to inte-
gration. Let us consider a simple control system made of two modules:
a reservoir and a controller. We model the former using continuous-time
TRIO, and the latter using discrete-time TRIO. This mirrors the assump-
tions that the reservoir models a physical systems, where quantities vary
continuously, while the controller is a digital device, that updates its state
at periodic instants.

8.4.1. System Specification

The reservoir can nondeterministically leak; this is modeled by the Boolean
item L which is true iff the reservoir leaks. Leaking can happen at any time.
The reservoir can also be filled with new liquid: this happens whenever the
Boolean item F is true. It is the controller which is responsible for setting
F to true, thus replacing the fluid that has been split, whenever needed.
Finally, the reservoir has a (nonnegative) real-valued time-dependent item
| that represents the measure of the level of fluid in the reservoir at any
instant. In our example, we model the Boolean items F and L as TRIO
states (see Section 2.1.4).

When the reservoir is leaking, the level of fluid decreases at a constant
rate of r; units of fluid per unit of time. Conversely, when it is being filled,
the level of fluid increases at a constant rate of r¢, and we assume that
re > 11, i.e., the filling can contrast the leaking. The four possible resulting
behaviors are described by the following TRIO axioms.

Axiom 35 (reservoir®.level behavior 1).

Lastsee(FAL ) Al=1 = Futr(l =1+ (r — r))t, 1)
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Axiom 36 (reservoirR.level_behavior_2).
Lastsee(F AL, t) Al =1 = Futr(l =1+ 1¢t,¢)
Axiom 37 (reservoirf.level behavior 3).
Lastsee(“F AL, t) Al =1 = Futr(l = max(l —t,0),1)
Axiom 38 (reservoir®.level behavior 4).
Lastedeo(-F A =L, t) Al =1 = Futr(l =1,t)

For specifying the control action of the controller we define two constant
values 1,t € R>o that represent, respectively, the minimum desired level
of fluid in the reservoir and a threshold below which the control action is
triggered. More precisely, t is such that t > 1+ r1d, i.e., a leaking cannot
empty the difference t — 1 in less than ¢ time units, for some § € Rar.
Thus, we formalize very simply control action as follows (recall that this is
interpreted over discrete time):

Axiom 39 (controllerZ.filling behavior).
<t = F

We also assume that the reservoir is initially filled properly.

Axiom 40 (reservoir®.initialization).

Som(AlwP(l > t))

8.4.2. Sampling Invariant Derived Specification

Axioms above use free variables, so they are not STRIO formulas.
However, it is straightforward to derive some simpler formulas, using only
constant values, that are full STRIO formulas and can therefore be shown
to be sampling invariant. They are listed below as four theorems, whose
elementary proofs are shown in Appendix|C for reference.

Theorem 41 (reservoirR.abstract_behavior_1).

Lastsee(F,0) A1 >1 = Futr(l > 1,9)
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Theorem 42 (reservoir®.abstract behavior 2).
| >t = Futr(l >1,9)
Theorem 43 (reservoir®.abstract behavior 3).
Lastsee(mF A 2L, 0) A1 >1 = Futr(l > 1,9)
Notice, instead, that the other axioms already qualify as *TRIO formu-
las.
8.4.3. System Requirement

The goal of the verification problem for this example is to prove the fol-
lowing BTRIO formula, which formalizes the requirement that the level of
the reservoir never goes below the value 1. Note that this formula can be
equivalently interpreted over the reals or the integers.

Theorem 44 (level invariance).

Alw(l > 1)

8.4.4. Adapted Specification

Let us now put all the relevant formulas in normal form; note that we omit
the parenthesis index in operators (such as the ) in Untilp(---)), whenever
it can be anything. For brevity, let us not describe the full transcription
process.

Theorem 45 (reservoirR.abstract_behavior_1—n0rma1).
| <1 Vv Untilgg) (true, =F) Vv Releases; 5 (false, | > 1)
Theorem 46 (reservoir®.abstract behavior 2-normal).
I <t V Releasess 5 (false,| > 1)
Theorem 47 (reservoirR.abstract_behavior_3—n0rma1).
I <1 Vv Untilggs)(true, F VL) V Releases|s 5 (false,| > 1)

In the following axiom, note that S is the auxiliary item introduced to
eliminate nesting.
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R

Axiom 48 (reservoir".initialization-normal).

((S A Released g o) (false, | > t)) V (=S A Since(g ) (true, | < t)))
A (Since(gm) (true,S) Vv SV Until g o) (true, S))

Next, we adapt the continuous-time Theorems and Axiom [48]into
discrete-time formulas according to a sampling period §. The resulting for-
mulas, after putting them back into more readable form, are the following,
where recall that Lasts;(¢,t) = Vd € [0, t] : Dist(¢, d).

Theorem 49 (reservoirZ.abstract behavior 1).
Lasts;i(F,1) Al >1 = NowOn(l >1)
Theorem 50 (reservoirZ.abstract behavior 2).
>t = NowOn(l >1)
Theorem 51 (reservoirZ.abstract behavior 3).

Lastsii(=F A =L, 1) Al >1 = NowOn(l > 1)

Z

Axiom 52 (reservoir”.initialization).

Som(AlwP;(l > t))

8.4.5. System Verification

Let us assume that the behavior constraint y&(49 —52) for Formulas 49—
holds. In the following section we will discuss the actual impact of the
constraint and how it can be removed.

1)). Thanks to Axiom [52, we have a time

Proof of Theorem 44 (Alw(l >
| > t) holds. This instant serves as the base of

instant u at which AlwP;(
the induction.

So, for all instants up to u the property | > 1 holds trivially.

Let us now consider a generic time instant v > u and assume that | >1
holds up to v, included. We show that | > 1 holds at v + 1 as well, by case
discussion at v for the predicates F and L. More precisely, we have the
following cases.

175



8. A Framework for Discrete- and Continuous-Time Integration
1. NowOn(—F), that is F is false at v + 1.
Then, by Axiom filling behavior, | >t >1at v + 1.

2. NowOn(F), that is F is true at v+ 1. Then, we distinguish two more
cases.

a) Fat v. Therefore, we have immediately | > 1 at v+ 1 by Theorem

[49]
b) —F at v. Therefore, by Axiom filling behavior, | > t at v.
Then, by Theorem [ >1at v+ 1. Ol

It can be noticed that the proof is remarkably simple. In particular,
thanks to the sampling invariance conditions it has been possible to ab-
stract away from all the details on the continuous variability of the | item,
while being guaranteed that nothing “unpleasant” happens between any
two discrete-time instants. Thanks to the simplicity, the proof can also be
completely automated. In particular, we proved it using model-checking
techniques for TRIO and the SPIN model checker (see Section 2.4.1).

For a comparison, the reader may consider [FR04], where a similar exam-
ple of a controlled reservoir was verified in continuous-time TRIO exploiting
a compositional framework. The system description in was less ab-
stract than the present one, and the proof was consequently substantially
more complicated even after the simplifications permitted by the composi-
tional approach. In particular, it was not possible to completely automate
the proof process, which could only be checked with the aid of PVS.

Finally, we note that the property, proved in the discrete-time setting, im-
mediately translates through sampling invariance to the theorem
level invariance.
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OPERATOR

DEFINITION

Releases (¢1, ¢2)
Released;((¢1, ¢2)

dt € I = (l,u) : Dist(¢, t)

Vt € I = (l,u) : Dist(¢,t)

Dist (¢, d)
Futr(¢, d)
Past(¢, d)
SomF(¢)
SomP(¢)
Som(0)
AlwF (o)
AlwP(¢)
Alw(6)
WithinF (¢, 7)
WithinP (¢, 7)
Within(¢, 7)
Lasts(¢, T)
Lasted (¢, 7)
Until(¢1 , ¢2)
Since (1, ¢2)

_\UntﬂI)(ﬂ(f)l, —¢2)
—Sincer((—¢1, 7¢2)
{ Until ) (true, ¢) ifu>1>0
Since(_; ) (true,¢) if u <1 <0
{ Releases ; ) (false, ¢) ifu>1>0
Released(_; _y)(false, ¢) if u <1 <0
vt € [d,d] : Dist(¢,t)
d > 0 A Dist(6, d)
d > 0 A Dist(¢, —d)
3t € (0,4+00) : Dist(o, t)
3t € (—o0,0) : Dist(¢, t)
SomF(¢) V ¢ V SomP(¢)
Vt € (0, +00) : Dist(¢, t)
Vt € (—00,0) : Dist(¢, t)
AWF(6) A ¢ A AlwP(6)
3t € (0,7) : Dist(o, t)
3t € (—,0) : Dist(¢,t)
WithinF (¢, 7) V ¢ V WithinP (¢, 7)
vt € (0,7) : Dist(¢,t)
Vt € (—,0) : Dist(¢, t)
Until(g 100)) (61, $2)
Since(O,Jroo)( (61, P2)

Lasts(¢,0) if the time domain is R

NowOn(¢) { Futr(¢,1)  if the time domain is Z

Lasted(¢,d) if the time domain is R

UpToNow(¢) { Past(¢,1)  if the time domain is Z
Becomes(¢) UpToNow(—¢) A NowOn(¢)

Table 8.1.: TRIO derived temporal operators
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9. Features of the Integration
Framework

This chapter analyzes some important features of the integration framework
presented in the previous Chapter [8]
More precisely, the following aspects are investigated.

e The adaptation function, that is part of the integration framework,
prescribes to shrink intervals appearing in temporal operators; it may
happen that a shrinking causes an interval to become empty. Section
[9.1 shows conditions on the size of the intervals under which this does
not happen.

e The expressiveness of XTRIO is investigated in Section 9.2| In par-
ticular, we compare its expressiveness to that of the MTL temporal
logic, showing that the two languages are in fact equally expressive.

e Section[9.3 studies properties of the behaviors obeying the constraint
x. Namely, we show conditions under which the “slow variability”
enforced by y can be lifted up from formulas, thus permitting to nest
formulas while retaining the results about sampling invariance stated
in the previous chapter for nesting-free formulas. Moreover, it is
shown how to (partially) characterize the requirement of the behav-
ior constraint X? for dense-valued items through the mathematical
notion of uniform continuity.

e In the literature, the most used notion of discretization is that based
on the notion of digitization, introduced by Henzinger, Manna and
Pnueli [HMP92|. This notion has similarities and differences with
our notion of sampling invariance. Therefore, Section [9.4 formally
compares the two notions.

e Although temporal logics are less expressive than automata (since
the former cannot express “counting” properties), it may be useful

to be able to characterize the behavior of an automaton through
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a set of logic formulas. This allows one, among other things, to de-
rive properties of the automata through logic inference, and therefore
consists another approach to modeling and verification (called “dual-
language” [FMMRO7]). In Section [9.5/ we provide an axiomatization
of timed automata in BTRIO.

9.1. How to Avoid Degenerate Intervals

In presenting the results about sampling invariance for ZTRIO, we made
no assumptions on the size of the intervals involved in the formulas. In
particular, it may happen that the adaptation function changes an interval
so that it becomes degenerate, that is empty. Although the above proofs
still hold, it may be objected that a degenerate formula makes little sense,
since it is either trivially true or trivially false. In this section we present
sufficient conditions on the size of the un-adapted intervals that guarantee
that adaptation gives non-degenerate adapted intervals.

Table (9.1 lists the requirements on unadapted intervals that guarantee
that the adapted intervals are non-empty (i.e., of size greater than 0, but
allowing the endpoints to coincide for intervals of R).

The sufficiency of these requirements is proved in Appendix D.3|

OPERATOR (IN R) INTERVAL REQUIREMENT
Untily (-, -) I={(lu) u—101>0
Sincey((-, -) = (l,u) u—1>0
Releasespy (-, ) I=(l,u)#(l,u) u—1>9¢
ReleasedI (,9) I=(lu)#(l,u) u—101>9
Releases ( ,) I=(lu) u—12>20
Released1<( ,) I=(lu) u—12>20
OPERATOR (IN Z) INTERVAL REQUIREMENT
Untilp (-, ) I=1l,u] u—101>0
SlnceI( ) I=1l,u] u—101>0
Releases[(, ) I=1l,u] u—1>2
Released((-, ) I=1l,u] u—1>2

Table 9.1.: Requirements for non-degenerate adapted intervals
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9.2. On the Expressiveness of 2 TRIO

This section compares the expressiveness of STRIO with those of other
related formalisms, and discusses how the nesting-freeness requirement on
formulas also influences the expressiveness of the resulting language.

9.2.1. Strict vs. Non-Strict Operators

BTRIO definition of the until and since operators is non-strict in the first
argument, in that the first argument is required (in particular) to hold
at the current instant as well (see Section [8.1). This choice is not very
common, and it has been made necessary to achieve sampling invariance.
On the contrary, the usual choice for dense-time domains is a strict one.
This section discusses how the choice of strict and non-strict operators
impacts the expressiveness of a language, by showing that non-strict metric
operators are as expressive as strict ones. For brevity and ease of exposition,
we moved most of the proofs to Appendix[D.4, focusing here on presenting
the results.

It is usually held that the expressive equivalence between strict and non-
strict operators does not hold, in general, over dense time, where strict
variants are believed to be strictly more expressive. This is a “folk theorem”
which has never been explicitly proved  to the best of our knowledge
but whose validity is generally accepted. For instance, claims
that the formula —a A ITr;’c/il(07+OO))(a,b) where Until denotes a strict
variation of the until operator that we are going to define shortly — cannot
be expressed using only non-strict until! claims in Footnote 5 that
“in real time, strict until cannot be defined from weak until and next’ﬁ citing
a personal communication with Raskin as a reference. [AFH96| claims that
MITL’s bounded until “cannot be defined in terms of an until operator that
is not strict in its first argument”.

However, these claim are not true for our continuous-time semantics,
if we restrict ourselves to non-Zeno behaviors (as it is customary, and as
it is implicit with models such as the interval-based sequence), as we are
now going to show. Let us remark that we are focusing on the dense-time
semantics, unless explicitly stated otherwise.

! Actually, it is not clear if [BCMO3] refers the claim to qualitative and/or discrete-time
temporal logic.

?Notice, however, that the reference is to a point-based semantics, while we consider
interval-based models.
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Strict semantics of operators. Let us define formally the semantics of
strict until and since, denoted as Until and S/ir\l/ce, respectively.
b(t) Er I/J?laln(cbl, ®2) iff  there exists d € I such that
b(t 4+ d) =1 ¢2 and, for all u € (0, d)
it is b(t + u) ’:"JI‘ o1
b(t) Er S/ir\lgeI((gbl, ®2) iff  there exists d € I such that
b(t — d) =1 ¢2 and, for all u € (—d,0)
it is b(t + u) ’:"JI‘ o1
We refer to the definitions in Section [8.1/for the semantics of the non-strict
until and since, as well as the derived operators that we are going to use.
In particular, let us remark that we always assume that the intervals I are
non empty, i.e., the right end-point is at least as large as the left end-point.
It is not difficult to see that this is without loss of generality.

Strict is at least as expressive as non-strict. It is quite clear that strict
metric operators are at least as expressive as non-strict one. In fact, in
general the following equivalences hold both over dense and over discrete
time.

62V (61 A Untilg o)) (61, 62) i T =[0,u) and ) is )

Untﬂ[>(¢17¢2) = {¢1 A UIltﬂ[ (61, B2) otherwise (0 € I or ) =|)

The case for the since is immediately derivable.

Over discrete time, strict is exactly as expressive as non-strict. Over
discrete time, it is also straightforward to notice that the converse holds,
i.e., non-strict operators are at least as expressive as strict ones. In fact
we have the following (recall that, in discrete time, all intervals can be
expressed as closed ones).

NowOn (Untily_q ,—17) (41, ¢2)) if 1 >1
Untily . (61, ¢2) =% { NowOn (Untily, (¢1,¢2)) Ve ifl=0<u
¢2 ifl=u=0

The case for the since is immediately derivable.

Notice that, in the above equivalences, we used the NowOn operator,
which in discrete time can be expressed as NowOn(¢) = Futr(¢, 1), which is
the same as the usual Linear Temporal Logic (LTL) next operator |GHR94|.
Therefore, the equivalence in expressive power over discrete time does not
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contradict the well-known result that nezt in LTL cannot be defined from
non-strict until only [GHR94]|, as the result for LTL does not deal with the
metric modality of bounded until — which is instead the basis of *TRIO
— but with qualitative (unbounded) until only.

Strict and non-strict NowOn operators. In order to better compre-
hend the problem in the dense-time setting, let us strip it down to its
core. Let us define two variations of the mowon and uptonow opera-
tors which are useful over dense time. eNowOn(¢) denotes that ¢ holds
in a non-empty right-open left-closed interval on the right of the cur-
rent instant; therefore eNowOn(¢) = Until (g ;o)) (9, true). Its past coun-
terpart is eUpToNow(¢); it denotes that ¢ holds in a non-empty left-
open right-closed interval on the left of the current instant, and it is de-
fined as eUpToNow(¢$) = Since(g yoo)((¢, true). Their strict counterparts
predicate over intervals that are open on both ends; their definitions are

the following: el\T(;\\sz)n(gﬁ) = I/J;lgl(o#oo))(qﬁ,true) and eUmow(gb) =

Since(0,+oo)( (o, true)E

As we are going to show more explicitly shortly, the problem of expres-
siveness for the strict vs. non-strict until and since requires in particular to
express the strict nowon and uptonow using their non-strict counterparts.
In order to achieve this, we have to first recall a basic property of non-
Zeno time-dependent predicates. As it is shown in [GMO1], any non-Zeno
primitive p item obeys the following formulas:

Alw (emn(p) Vv EW)H(—'P))

Alw (eUmow(p) v eUp/T\o_NOW(—'p))

That is, there is always a non-empty interval in the future (and one in
the past) where p has a definite constant value. It is not difficult to “lift”
such property from basic items to arbitrary formulas, by showing that for
any STRIO formula ¢, if all of the basic items on which it predicates are
non-Zeno, then the truth value of ¢ as a function of time is also non-Zeno.
In other words, (temporal) operators preserve non-Zenoness. The proof
would go by structural induction. So we have, for any ETRIO formula ¢,

3Recall that in standard TRIO the operators el\%\v;(/)n and eUg”-f\(;ﬁow are denoted
simply as NowOn and UpToNow [GMO01]. Here, however, we adopt the notation and
definitions of %TRIO (see Section|[8.1).
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that:
Alw (el\mn(gﬁ) v eNowOn(ﬂqﬁ)) (9.1)
Alw <€UI?_I‘\ONOW(¢)) Y eUpToNow(—'gb)) (9.2)

Therefore, we exploit this basic non-Zenoness property to express strict
operators using non-strict ones. We have the following equivalences.

eNowOn(¢) & eNowOn(¢) V (= A ~ eNowOn(—¢))
eUp/T?)ﬁow(gb) & eUpToNow(¢) V (¢ A = eUpToNow(—¢))

The proof is simple, and relies on properties[9.1 and[9.2. Let us demonstrate
the proof for the nowon case, the other being obviously all similar.

Proof. Let us start by proving the = direction: assume that el\mn(qb)
holds at some instant ¢t. Let us first consider the case: ¢ true at t; then also
eNowOn(¢), and we satisfy the first term of the disjunction. Otherwise,
let us consider ¢ false at ¢t. Then, eNowOn(—¢) must also be false at ¢,

otherwise emn(d)) cannot be true. This concludes this branch, since we
satisfy the second term of the disjunction.

For the < direction, let us start by considering the case eNowOn(¢)
at t; then, a fortiori, el\mn(gb), at t and we are done. Otherwise, let
us assume that —¢ A = eNowOn(—¢) holds at the current instant ¢. By
evaluating Formula[9.1at time ¢, we immediately conclude that el\mn(qb)
at t, which concludes the whole proof. O

Strict until expressed with non-strict operators. Let us assume a > 0;
then, the following equivalence hold (it is proved in Appendix D.4.1).

Untﬂ(a,b))(d)la gbg) = Until(mb)) (true, ¢2) A Lastse; (Until(07+oo)) (gbl, ¢2) , a)
(9.3)
Now, using Formula[9.3, it is not difficult to prove the following (still for

a > 0, see Appendix D.4.2).

Untily ) (61, 62) < Until (61, 2) V (Lastsee (1, a) A Futr(¢s, a))
(9.4)

184



9.2. On the Expressiveness of X TRIO

Variants with |. It is simple to express the | variants of the until using
the ) variants used above; in fact, we have the following.

Untllab (¢1,¢2> = Untllab (¢1,¢2/\¢1) (9.5)

Untllab (p1,02) & Untllab (p1, P2 N b1) (9.6)

No need for punctual intervals. Notice that Formula[9.4 uses a punctual
interval, i.e., it specifies an exact time distance through the Futr operator.
Nonetheless, this is not necessary, as far as the expression of the strict
until is concerned. In fact, we provide alternative equivalent formulas that
do not use punctual intervals (of course, provided the strict until itself is
constrained by a non-punctual interval). They will be useful in defining
the relation between RTRIO and MITL in Section The proofs are
provided in Appendix|D.4.3.

This time, we start with the | variant of the until operator, and we first
establish the following (for a > 0).

ﬁl[a,b)] (¢1,02) &
Lastse; (Until[0,+oo)](¢17 ®2) ,a) A Until[a,b” (true, 2 A ¢1) (9.7)

Finally, in the following we express the ) variant through the | variant
(as always, assume a > 0).

Untili ) (61, 62) < Untilig gy (61, 62) V

(Lastsee (Untilg 4oy (¢1, 701 A ¢2) , a) A Untily, py) (true, =¢1 A ¢2))
(9.8)

When the left bound is zero. Finally, we have to handle the a = 0
case for the intervals. Let us start with left-open intervals; the case for
left-closed will be an immediate consequence.

Now, we finally need the above results about the expressibility of the

eNowOn operator. In fact, we prove the following (see proof in Appendix

D.4.3).

Untllob (¢1,02) & Until(gy) (true, ¢2)/\Gmn(Until(o,+oo))(¢1,¢2))
(9.9)
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Then, it is simple to express the case in which the left endpoint is in-
cluded.

Unfiljg))(61,62) < Untilio ) (¢1,62) V 2 (9.10)

Finally, notice that Formulas and [9.6 are valid also when a = 0 < b.
For a = b = 0 it is routine to verify the following, which concludes our set
of equivalences.

ﬁl[o,op(%?@) < P2 (9.11)

Switching to other semantic models. Let us conclude this section with
a remark. Notice that the above equivalence proofs still hold if we make
some variations on the semantic model according to which we interpret
BTRIO formulas. In particular, the equivalence between strict and non-
strict operators holds even for mono-infinite time domains (namely, the
nonnegative reals R>¢), and for the future-only fragment of BTRIO (that
is, the fragment which does not use the Since operator). This remark will
be useful in comparing the expressiveness of XTRIO to that of other metric
temporal logics.

9.2.2. BTRIO, MTL and MITL

This section compares STRIO with the metric temporal logic MTL [Koy90,
AH93|, and its syntactic fragment MITL [AFH96].

Syntax and Semantics of MTL and MITL

Let us start by introducing formally the syntax and semantics of MTL (and
MITL).

Koymans's and Alur and Henzinger's MTL. First of all, let us remark a
fact that is usually left implicit (or only briefly hinted at) in the literature.
There are actually two metric temporal logics that are referred to as “MTL”.

The original one is that first defined by Koymans in [Koy90]. Notice
that Koymans’s MTL permits full quantification on variables, including
time variables, as well as the expression of arithmetic relations between
time bounds (or other variables). Therefore, as it was originally defined,
MTL is a very expressive (and fundamentally undecidable) language which
may be compared to full TRIO for several of its features.

Afterward, Alur and Henzinger published several in-depth analyses of
the expressiveness of metric temporal logics, including MTL. In particular
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[AH93| shows that a suitable subset of Koymans’s MTL, interpreted over
the naturals, can be regarded as an expressively complete (elementarily
decidable) fragment of a monadic first-order language over the time sort.
Even if [AH93| simply calls “MTL” the proposed logic, it is indeed a proper
subset of Koymans’s “full” MTL, in that it is purely propositional, and only
intervals with constant endpoints are allowed. Much subsequent literature
has also used simply the term “MTL” to refer to Alur and Henzinger’s MTL

fragment.

In the same vein, we warn the reader that in this paper the name “MTL”
will refer to MTL 6 la Alur and Henzinger, not Koymans’s. Moreover, we

consider the MTL variant with past operators, as also done in [AH93].

MTL syntax. MTL syntax is defined by the following grammar:

¢

n= | $1Urga | ¢1S1d2 | 9 | 1 A 2

where [ is an interval of IRZOZ, whose endpoints are constants.
It is customary to define some derived operators in MTL (as it is done
with ZTRIO). In Table[9.2]we list the most common ones. Also notice that

OPERATOR | DEFINITION NAME
Q1o trueUro time-constrained eventually
Uro Qg time-constrained always
N Wrpo = (mp2Ur—¢1) time-constrained wunless
‘&qa trueSro time-constrained eventually (past)
ﬁlgﬁ J&ﬂgb time-constrained always (past)
D1 T = (—¢p2Sr—1) time-constrained unless (past)

Table 9.2.: MTL derived temporal operators

we freely introduce abbreviations to denote intervals. Namely, we denote
as <wu, <wu, >1, >1, and = [ the intervals [0,u], [0,u), [I,+00), (I, +00),
and [1,1], respectively.

* Another difference with respect to most papers dealing with MTL is that they usually
consider intervals of the rationals or integers only. These restrictions are however
adopted solely to achieve decidability properties, which we do not deal with here;
hence, we do not adopt such restrictions — that are however orthogonal to the notion

of sampling invariance and to the related issues — in our presentation of MTL.
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MTL semantics. In defining MTL semantics, we consider operators that
are strict in their first arguments (as it is more common in MTL-related
literature), and we adopt bi-infinite temporal domains, in conformance with
BTRIO. Moreover, we consider interpretations over behaviors, adapting the
standard interval-based sequence interpretation of MTL (and MITL, see
e.g. JAFH96]). Finally, we remark that standard MTL semantics does not
use the | variation of the until (and since) operators, where the first and
the second argument are required “to meet”, which is instead introduced in

]%TRIO.
b(t) Fr € ity
b(t) ':’JI‘ d1Urdo iff there exists d € I such that b(t + d) ):']1“ P2
and, for all u € (0,d) it is b(t + u) =1 ¢1
b(t) 'Z’JI‘ P1S102 iff there exists d € I such that b(t — d) ):']1“ P2
and, for all u € (0,d) it is b(t — u) =1 ¢1

b(t) =1 ¢ iff b(t) 1 &
b(t) Er ¢1 Aga  iff b(t) Er ¢1 and b(t) Er ¢o
bEr ¢ ifft  forallteT: b(t) Er ¢

MITL. MITL [AFH96]| is simply defined as a syntactic subset of MTL,
where all intervals I in formulas are required to be non-singular, i.e., not
in the form [l,{] for any [ € R>o.

Equivalence between MTL and ZTRIO

In order to show that MTL and BTRIO are equally expressive languages,
we provide two translations  one from MTL formulas to STRIO and the
other from ETRIO formulas to MTL — that preserve truth of formulas.
Notice that these translations will make use of the equivalence between
strict and non-strict operators shown in Section [9.2.T; therefore, we will
use strict versions of XTRIO operators whenever needed. For brevity, we
omit the proofs that the translations preserve truth of formulas, as they
are straightforward by case discussion.
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Translating MTL to ZTRIO. The function f{-} provides a translation
from MTL formulas to 3TRIO ones that preserves truth values.

&} = ¢

t{—¢} = -~ t#{¢}

o Ade} = Hor} At{o2}
t{¢1Urge} = Untilpy ({1}, H{e2})
#{¢1S1¢2} = Sincer)(#{¢1},8{¢2})

Translating BTRIO to MTL. The function b{-} provides a translation
from BTRIO formulas to MTL ones that preserves truth values. In this
case, we have to take care of ’TRIO’s non-strict operators (which are sim-
ply expressible using MTL’s strict ones), and to deal with the variation of
BTRIO’s operators with a | subscript (which is also rather simply reducible
to the standard variation).

b{¢} = ¢
b{—op} = -b{¢}
{1 A da2} = {1} Ab{ga}

({61} A ({61} Upb{e2})
if0¢ I and ) is)

{2} Vv (b{e1} A (b{¢1} U(o,uyp{02}))
if0eI=1[0,u)and)is)

p{p1} A (0{¢1} Urb{pa A ¢1})
if 0 I and ) is |

b{d1 A b}V (b{d1} A (0{d1} Uo,uy {2 A ¢1}))
if 0 € I=10,u)and ) is ]

b{d1} A (b{@1} Srp{¢2})
if0¢ I and)is)

b{p2} v ({1} A (P{d1} Sio,uyP{02}))
if0el=1[0,u)and) is )

b{p1} A (0{¢1} Sro{d2 A ¢1})
if0¢ I and ) is]

{1 A g2}V ({1} A (0{¢1} S(0.uy b{d02 A P1}))
if0eI=10,u)and ) is ]

b{UHtﬂ[) (qbl, ¢2)}

b{Sincep (¢1,02)} =
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2TRIO and MITL

As we recalled above, MITL is the syntactic subset of MTL where intervals
are all non-singular. We have shown that MTL is as expressive as RTRIO.
Moreover, as we noticed in Section[9.2.1] the expression of strict operators
using non-strict ones does not require to change the non-singularity of the
intervals that are involved. In other words, any MTL formula involving
non-singular intervals can be expressed as an X TRIO formula also involving
non-singular intervals only. The translation b{-} shows that the converse
also holds: any 2TRIO formula involving non-singular intervals only can
be rendered as a MTL formula without singular intervals.

All in all, the syntactic restriction on ETRIO formulas that requires that
all intervals are non-singular yields a language whose expressiveness coin-
cide with that of MITL’s. Therefore, all general results about MITL decid-
ability and expressiveness are retained when dealing with 2TRIO formulas
without singular intervals  of course, provided the same semantic assump-
tions (e.g., point-based vs. interval-based, mono-infinite vs. bi-infinite, etc.)
are made).

9.2.3. Expressiveness and Decidability Issues

Now, thanks to the equivalence between *TRIO and MTL (or MITL) we
are able to collocate ZTRIO’s relative expressiveness, by drawing from the
several works about the expressiveness of MTL and variants thereof that
are available in the literature. To this end, Appendix |[E reviews several
relevant works about such an important topic.

Notice, however, that most — if not all — works in the literature consider
a semantics for MTL which is different than the one we introduced above.
Nonetheless, according to the remark outlined at the end of Section [9.2.1,
our equivalence results still hold for two common semantics, and namely:

e the use of a mono-infinite time domain, namely the nonnegative reals

R>o;

e the use of future-only operators (i.e., only Until and not Since as
temporal operator).

Therefore, we are able to collocate adequately 2TRIO among other logics
interpreted in the interval-based semantics.

An issue that we do not deal with here, for brevity, is how our results
can be adapted when dealing with another popular semantic model, namely
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the point-based semantics (a.k.a. the timed trace). This is an interesting
direction which belongs to future work. We notice, however, that the point-
based semantics carries several peculiar features that sometimes may make
it somewhat unwieldy to model naturally some features of real-time systems
(see [HR04] and its summary in Appendix[E). We believe that this defends
our choice of focusing on the interval-based semantics first.

Let us conclude this section by adding a couple of notes about the expres-
siveness of RTRIO with respect to that of full TRIO, and that of nesting-
free ZTRIO formulas. Notice that we deliberately stay on an informal
level: rather than proving the stated expressiveness results, we just give
some evidence, and refer to other works for further details. In this case, we
prefer this approach for the sake of brevity and clarity, as a detailed and
completely formal analysis of these issues would likely distract us from our
main focus.

BTRIO and TRIO. It is rather obvious that STRIO is strictly less ex-
pressive than full TRIO. The latter is a very expressive language, which
even includes all arithmetic and full first-order quantification. ETRIO is
instead purely propositional, and considers only constant bounds for time
intervals. This is enough to separate the two expressive powers.

Nesting operators and expressiveness. An issue which has not been in-
vestigated often for metric temporal logics over dense time is how the nest-
ing depth of temporal operators impacts the expressiveness of the resulting
language. It is however to be expected that the nesting depth of temporal
operators defines an expressively strict hierarchy of formulas, that is each
level of nesting introduces a larger class of expressible properties. In par-
ticular, it should be possible to prove that nesting-free RTRIO formulas
define a class of properties which is strictly contained in that defined by
BTRIO formulas that nest temporal operators at any depth.

Moreover, notice that the results about the expressively strict nesting
hierarchy also hold in the discrete time setting. Therefore, it is likely
that the same holds for continuous-time behaviors which are restricted by
the constraint y, i.e., of bounded variability, since they can be basically
described as discrete histories.

We refer the reader to Appendix [E where we summarize some related
works about the problem of the expressiveness of nesting with metric tem-
poral logics over dense (and discrete) time. In particular, we mention here
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the works [AH92a,KS05] for their results, and [BCMO05,PD06] for the proof
techniques they use, which rely on characterizing the expressiveness of a
temporal logic formula given the values of its interval bounds and the nest-
ing depth of its operators.

9.3. Berkeley and Non-Berkeley Behaviors

This section considers behaviors subject to the regularity constraint y —
introduced in Section[8.2.2  shows some operators that preserve the regu-
larity (Section[9.3.1), and studies how such a regularity can be characterized
when dealing with items varying over dense domains (Section [9.3.2).

Let us recall that Abadi and Lamport introduced the term Zeno [AL94
to identify those behaviors where time converges to a finite value, and thus,
in a sense, “stops”. The name is after the ancient Greek philosopher Zeno
of Elea® and his paradoxes on time advancement. In the same vein, we
propose to call “Berkeley behaviors” those behaviors failing to satisfy a
regularity constraint such as y, from the name of the famous Irish philoso-
pher George Berkeley@ who criticized the use of the notion of infinitesimal
among the founding principles of calculus. In fact, in Berkeley behaviors
the distance between any two transitions is infinitesimal, that is indefinitely
small (or with infimum equal to zero), even if the infinitesimal times may
not accumulate (otherwise, the behavior is also Zeno). Therefore, in the
remainder of this report we will refer to behaviors satisfying the constraint
X as non-Berkeley behaviors.

9.3.1. Shiftable Operators

The results about the sampling invariance of B*TRIO we presented in Chap-
ter [8 consider only nesting-free formulas. In general, as we have argued in
Section [9.2.3] this restricts the expressiveness of our formal language. In
the previous chapter we have also shown how to put any XTRIO formula
into a nesting-free one by introducing auziliary items. This does not contra-
dict the results on the expressiveness: in fact the auxiliary items are then
subject to the constraint x, and therefore we end up with a nesting-free
formula which is, in general, stronger than the original one, as any subfor-
mula of the original formula is required to hold over intervals at least as

5Circa 490-430 B.C.
61685-1753 A.D.

192



9.3. Berkeley and Non-Berkeley Behaviors

long as 0.

In this respect, we now investigate what kind of ETRIO formulas preserve
the x constraint, or, in other words, what formulas can be nested without
need for introducing additional constraints. The basic idea is the following:
if, for any behavior b, a formula holding at some instant ¢ is shown to be
true over a full d-length interval that contains ¢, then the non-Berkeley
variability of the basic items can be “lifted” up to the truth value of the
formula itself over time, thus allowing one to nest the formula without
introducing additional constraints.

Under this respect, we introduce the following definitions, parametric
with respect to a parameter e > 0.

Definition 9.3.1 (e-Shiftable Operator). An n-argument operator Op in-
terpreted over the basic items &1, ...,&, is:

e positively e-shiftable iff, for all behaviors b € [xo]r, whenever b(t) Er
Op(&1,...,&,) for some ¢, there exists an interval I = [u, u + €] such
that ¢t € I and, for all v € I it is b(v) =R Op(&1, ..., &n);

e negatiely e-shiftable iff, for all behaviors b € [xo]r, whenever b(t) Er
=Op(&1,...,&,) for some ¢, there exists an interval I = [u, u+ €] such
that ¢ € I and, for all v € I it is b(v) Er —Op(&1, ..., &n);

o c-shiftable iff it is both positively and negatively e-shiftable, and its
“change points” for some behavior b, that is the instants at which it
switches its truth value with respect to b, coincide with some change
points of b In other words, the change points of the operator are a
subset (possibly equal to) of the changing points of b.

Therefore, if an operator is Jd-shiftable, then its truth value over time
respects the constraint y if its arguments do. Therefore, it can be nested
without impacting sampling invariance.

Non-Shiftable Operators

Let us start by showing that — unsurprisingly — not all operators are
d-shiftable. In particular, let us show that the Until operator is not, at

"Notice that this additional requirement on the “change points” is not redundant. For
instance the “rigid shift” of a basic item ¢ (i.e., Futr(¢, 7)) does change its value at
instants other than those of the item itself, even if it is both positively and nega-
tively d-shiftable. We also note that this requirement is similar to that of stability
introduced elsewhere [Rab03].
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least in its most general application. Let &1, &5 be two basic Boolean time-
dependent items. Let us consider the behavior b in Figure[9.1, such that &
and & both hold over [t, ¢+ d], and are both false everywhere else. Clearly

ISEAYS”

RSTARS) & A€ b(t)

»
>

t t+4
Figure 9.1.: Until is non-shiftable.

b € [Xo]r: and b(t) FEr Untiljs 1 o0y (€1, §2), but Untiljs 1 o0y (€1, &2) is false
throughout I’ = (—o0,t) because & is false in any right-neighborhood of a

point in I’; and it is false through I = (¢, +00), because &; is always false
in the interval (¢ 4 0, +00). Therefore, the Until operator is in general non
shiftable.

In the remainder of this section, we consider some much more restricted
applications of the Until (and Since) operator, in particular by avoiding
metric constraints and thus expressing only qualitative properties; we are
able to show that such restrictions are J-shiftable.

Qualitative Formulas

Although it is simple to see that “existential” operators — such as WithinF
— are positively d-shiftable under simple restrictions of the bound (e.g., for
WithinF (¢, u) such that it is w > 0), and dually “universal” operators —
such as Lasts — are negatively d-shiftable under the same restrictions, the
two facts are in contrast, so that existential operators that are positively
d-shiftable are not negatively d-shiftable, and vice versa for the universal
operators. More explicitly, it is relatively easy to check that WithinF (¢, 2¢)
is positively e-shiftable but not negatively so, and its negation Lasts(—¢, 2¢)
is negatively e-shiftable (and not positively so). Therefore, positive and
negative shiftability are orthogonal notions, as one does not imply the
other.

These considerations suggest that it is the use of metric itself that hin-
ders the shiftability of temporal operators. Therefore, we try to consider
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operators that define qualitative properties, and we show that these are
indeed fully shiftable.

Definition 9.3.2 (Qualitative Formulas). A formula ¢ is qualitative iff
one of the following applies:

e ¢ = ¢ for some basic item &;

e ¢ = Untily (41, ¢2) with I = [0, +00) and ¢1, ¢2 qualitative formulas;
e ¢ = Sincey(¢1, #2) with I = [0, +00) and ¢1, 2 qualitative formulas;
e ¢ is a Boolean combination of qualitative formulas

Establishing that qualitative formulas are d-shiftable amounts to te-
diously considering several cases: we sketch the proof for the most im-
portant ones.

Qualitative Until is J-shiftable. Tet &;,& be two basic Boolean time-
dependent items, and let us show that the formula ¢ = Untiljg ;) (&1,§2)
is o-shiftable.

Positively shiftable. Let b € [xo]r be any non-Berkeley behavior, and let
t be an instant such that b(t) =R ¢. Thus, there exists a d € [t, +00) such
that b(d) ERr &2, and for all u € [t,d) it is b(u) FEr &1. Let us consider
several cases:

e if d > t+ 9, ¢ can be shifted forward over the interval [¢,t + J];

e if d <t+ 9§, then there exist t/,d’ such that ¢/ <t,d >d, d —t =6
and for all o' € [t/,d'] it is b(v') ERr &. Therefore ¢ can be surely
shifted over the interval [t/,d). Let us further distinguish two cases:

— if t =t > § we are done, as ¢ is positively shiftable over [t', ¢];

— otherwise, it must be d > d and t — ¢ < §; therefore notice
that & cannot switch its value to false before or at d’, otherwise
there would be two switches within 0 time units (against the
hypothesis b € [xo]r). Hence, ¢ can be shifted over the interval
[t',d'], and we are done.

This proves that qualitative Until is positively d-shiftable. For brevity, we
omitted some finer-grain details in the above proof sketch, but they can be
easily reconstructed by the observant reader.
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Negatively shiftable. Let us now show that Until is negatively d-shiftable.
This is the same as proving that ¢ = Releases[07+oo)>(§1, &9) is positively o-
shiftable. Note that we drop the negations over &1, &> as they are inessential
in the proof (i.e., the proof has a symmetry with respect to complementing
the truth value of primitive conditions). Thus, let b € [xo]r be any non-
Berkeley behavior, and let ¢ be an instant such that b(t) g ¢: for all d €
[t,+00) either b(d) =R &2 or there exists a u € [t,d) such that b(u) FR &1.

Proceeding by contradiction simplifies a bit the proof. Thus let us assume
that ¢ is not positively §-shiftable. In particular, this is the case if there
exists r € [t,t + d] such that Untilj ;) (=1, ~€2) holds at r. Therefore,
there exists a d, € [r,+00) such that b(d,) =r —&2 and for all u, € [r,d,) it
is b(u,) Er —&1. Then, from the definition of the Releases operator, there
must be a u € [t,d,) such that b(u) Fr &. To avoid contradictions, it
must be u € [t,7). Moreover, let u' be the largest instant in [¢, r] such that

eUpToNow (1) holds at «' (it may be that v’ = w). Then, in compliance
with the regularity constraint y, for all v’ € [u/ — §,u’) it must be b(v') ER
&1. Notice that t € [u' — d,u’). But then, ¢ is shiftable over [u' — d,u),
and a little reasoning (still based on the properties implied by x) lets us
conclude that we can even extend the interval to a right-closed one (either
by including v’ or by shifting its left endpoint to the left a bit before v’ —4),
so that ¢ is indeed d-shiftable, against the assumption.

Shiftable. We need a key observation to conclude that Until is §-shiftable;
it is not unlike some considerations we did when proving closure under
inverse sampling (see proofs in Appendix D).. A d-shiftable quantitative
Until or Since has indeed the additional property of changing its truth value
in correspondence with some basic item changing its value. For instance, it
is easy to see that ¢ = Until[0,+oo)>(§1, &2) changes its value to false exactly
when either & becomes false, or £&; does. To this end, consider an instant
at which b(t) R ¢; then there exists a u € [t, +00) such that b(u) =R &2
and for all v € [t,u) it is b(v) =r &. If we can shift ¢ to the left, then
& must be true also on some interval of the form (¢',¢) for some t' < t; ¢
can only become false when &; also does, and with the same “edge” (i.e.,
right-continuously or not). On the other hand, if u > t we can surely shift
¢ to the right, at least until instant u; afterward, ¢ switches to false only if
& does so, or & does, or both. All in all, qualitative Until (and Since) is
d-shiftable. Therefore, the application of a qualitative temporal operator
yields a formula whose truth value over time respects the constraint yx
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together with the other basic items.

Boolean combinations are shiftable. That d-shiftable formulas are closed
under complement is apparent from Definition Thus, let us just
prove that conjunction of formulas preserves J-shiftability. For a formula
¢ = ¢1 N\ ¢ such that ¢ and ¢o are both d-shiftable, not only do ¢ and
¢2 each hold over a §-length interval, but they also hold over a common §-
length interval. This is due to the fact that they both shift values together
with some basic items, and these have “change points” that are at least ¢
time units apart, due to x. In particular, notice that situations such as
the one in Figure cannot happen as the value of b changes from (T,F)
to (F,F) and then to (F,T) in less than § time units. This means that
any conjunction ¢ also holds over a é-length interval. Moreover, note that
the same argument about the instants where the truth value change can
be lifted the the conjunction formula ¢ itself, as any of ¢; or ¢2 becoming
false implies that ¢ becomes false there as well. All in all, conjunction is
d-shiftable.

»
>

t

Figure 9.2.: A bi-dimensional behavior not complying with .

Left-open intervals are not o-shiftable. Let us also remark that the adop-
tion of a left-closed interval in the Until is necessary to have J-shiftable
formulas. In fact, Figure[9.1/serves as a counterexample: Until(y o) (€1, &2)
only holds in the right-open interval [¢,¢ 4 ¢§), while it is false precisely at
t + 0, since & is false everywhere in the interval (¢ + ¢, +00).

Sufficiency and (Non) Necessity of Shiftability

Let us now provide the straightforward proofs that having a formula that
nests shiftable operators only is a sufficient but not necessary condition for
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the formula to be closed under sampling.

Shiftability is sufficient for closure under sampling. This comes straight-
forwardly from the definition of J-shiftability. In fact, let us consider a
formula ¢ that nests some operators. Let ¢’ be the formula obtained by
putting ¢ in normal form (according to the definition given in Section
8.2.3), and in particular by “unnesting” all operators by introducing addi-
tional items &, &5, .. ..

Then, let us consider any of these additional items &/. In the normal form,
we have a constraint of the form & < Op(---), where Op is a o-shiftable
operator by hypothesis. Therefore, the constraint y simply evaluates to
true for the item &]. In other words, the item & satisfies all requirements for
closure under sampling; in particular, the formulas in which it is mentioned
are closed under sampling. Since the same applies to any additional item ¢/,
all in all the original formula ¢ is closed under sampling, with the constraint
x applying to basic items only.

Shiftability is not necessary for closure under sampling. Let us consider
the formula ¢ = Lastsec (&, 7), for any 7 > §. Clearly, ¢ is not d-shiftable
according to the definition, as the item & is not constrained to stay true out
of the 7-length interval introduced by the Lastse operator. Nonetheless, it
is easy to see that b |Er Alw(() is the same as b ERr Alw(€). The formula
Alw(&) is obviously sampling invariant. Therefore, so is the formula Alw((),
even if it nests a non-é-shiftable operator.®

Shiftability and closure under inverse sampling. Notice that d-shiftability
is a requirement on formulas interpreted over continuous time, whereas the
notion of closure under inverse sampling applies to formulas interpreted
over discrete time. Nonetheless, the above results about shiftability have
consequences also to closure under inverse sampling. In fact, it is easy to see
that whenever a formula ¢ nests only subformulas @1, @2, ... all of whose
adaptations nZ{¢1},n%{p2},... are &-shiftable, then ¢ is closed under in-
verse sampling. Thus, shiftability of the discrete-to-continuous adaptation

8As an aside, let us point out that the definition of sampling invariance implies that
whenever two formulas ¢1, ¢2 are equivalent both in dense and in discrete time, and so
are their adaptations (i.c., N5 {¢1} = n5{d2} in discrete time, and n%{¢1} = n% {2}
in dense time), then ¢; is sampling invariant if and only if ¢ is also sampling
invariant.
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of operators is a sufficient condition for a formula to be closed under in-
verse sampling. It is also straightforward to realize that the condition is
not necessary (we could provide examples along the same lines as the one
above about closure under sampling).

Finally, let us point out that this requirement cannot be moved to the
non-adapted formula itself, for qualitative formulas. In other words, there
are qualitative formulas whose discrete-to-continuous adaptations are not
0-shiftable (thus, in particular, are not qualitative formulas). Therefore,
in general nesting qualitative formulas in discrete-time formulas cannot
be done “for free” — that is without introducing additional constraints
on the variability of the adapted formula for the sake of closure un-
der inverse sampling. As a proof of this fact, let us consider the for-
mula ¢ = Until[07+oo)}(£1,£2) and its discrete-to-continuous adaptation
¢ = n(;Z{Until[o,Jroo)] (&1,&)}. It is easy to see that ¢ is equivalent to
WithinPje (€2, 0) V Untilg 400y (€1,€2); let us show that ¢ is not d-shiftable.
To this end, let us consider the behavior b represented by the interval-
based sequence ((—00,0.7],& A —&1), ((0.7,400), =& A &1). Clearly, ¢’ is
positively and negatively d-shiftable over b, since it is true in the interval
(—00,d+0.7] and false in the complement interval (6+ 0.7, +00). However,
its truth value changes at § + 0.7, which is not a change point for either &
or & (as § > 0). Therefore, ¢’ is not (fully) d-shiftable.

A Formula Not Closed Under Sampling

Let us now exhibit a formula ¢™ which nests non-shiftable operators and,
in fact, is not closed under sampling.

¢ns = Som(LaStSii(gv 5))

Let us consider the behavior b € [xo]r of Figure [9.3]— where we assume
that £ is false everywhere except that in some interval, larger than § and
internal to (¢, 4+ 20) — as a proof (by counterexample). Remember that
the definition of sampling invariance requires invariance for any choice of
the origin z; hence, let us choose adversarially the sampling as in the figure.

Clearly b =R ¢"; nonetheless, the adaptation n?{qﬁns} of o™ is:

n5{¢™} = Som(Lasts;(¢, 1))

It is easy to realize that Lasts;i(§,1) = & ANowOn(&;) holds at no discrete
sampling point of o5, [b], so0 05, [b] ez ni{¢"}. That is, ¢™ is not closed
under sampling, and a fortiori nor sampling invariant.
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. [
It o § >t4+ 9
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24 ks 2+ (k+1)0 z+ (k+2)0

Figure 9.3.: Proof of non sampling invariance.

With a very similar proof, it can be seen that the regularity constraint
X itself is not a sampling-invariant formula (in particular, it is not closed
under sampling).

9.3.2. Towards Characterizing Berkeley Behaviors of
Dense-Valued Items

This section aims at characterizing non-Berkeley behaviors for basic items
that map to a dense (or, more specifically, continuous) domain. More
precisely, we aim at giving a mathematical characterization of the behaviors
that satisfy the constraint X? for dense-valued items.

As we have already discussed in Section [8.3.2, the behavior constraint
X? for dense-valued items depends, in general, on the particular formula
¢ that constitutes our specification; the notation X? stresses this fact. In
general, the specification formula ¢ can be very complex, and so can be the
conditions in Z. Therefore, the actual “physical” impact of the constraint
X? may be very difficult to predict and characterize in a clear-cut manner.

To focus our discussion, let us choose a particular yet significant
and rather general — form for the conditions in Z. Namely, we consider
conditions of the form x € (l,u), where x is a basic item (for simplicity,
taking values to the set R), Lu € R : 1 < u are two constant bound
values, and (€ {(,[} (resp. ) € {),]}) denotes whether the left (resp. right)
endpoint in excluded or included. We point out that the generalization
to n > 1 items is straightforward. In this basic case, the condition X‘f

becomes:
x¢ = WithinP;;(Lastsii(x € (1,u), ) ,)VWithinP;;(Lastsii (x ¢ (1, u),9), )

Let us now consider a generic behavior b € By for x, that is a generic
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function b : R — IR. We now give an “approximate” mathematical charac-
terization of the subset [[X?]]R C Bg for any ¢ where Z is in the form we
have outlined.

Notice that we will not give a completely equivalent characterization
since, as we will show, there are some aspects implied by X? which are
hard to characterize in a simple way. Nonetheless, we are going to pro-
vide a mathematical notion that can be reasonably regarded as a formal

description of the behaviors satisfying X?, within some tolerance.

Uniformly Continuous Functions

Let us start by defining formally the notion of uniform continuity. As we
will show, it will constitute our characterization of non-Berkeley behaviors.

Continuity. First, let us recall the well-known definition of continuous
function. A function b : R — R is continuous at some point t iff: for any
€ > 0 there exists a d.; > 0 such that for all « such that |z —t| < dc; it is:
|f(z) — f(t)] < e. Notice that in the definition . is in general a function
not only of ¢, but also of ¢, and the notation stresses this fact.

Then, a function b is continuous over an interval I C R iff it is continuous
at all points in 1.

Uniform continuity. A function b : R — R is uniformly continuous over
an interval I C R iff: for any € > 0 there exists a d. > 0 such that, for all
x,t € I such that |x —t| < d¢ it is: |f(x) — f(t)| < e. Notice that the key
difference with respect to the definition of continuity is that now J. does
not depend on the chosen ¢, but it must be unique for all points in I.

Notice that uniform continuity is a notion close to, but more general,
than having bounded derivative. In fact, one can show that any function
with bounded derivative (i.e., such that sup,¢; |b'(x)] < K for some K) is
uniformly continuous. But the converse is in general not true: for instance,
the function /z has derivative 1/(2y/x) which is unbounded over the open
interval (0, 1) as it goes to oo as = goes to 0. Nonetheless, it is not difficult
to see that y/z is uniformly continuous over (0,1).

Sampling a Uniformly Continuous Behavior

Let us now show what is the link between uniformly continuous functions

and the slow-variability requirement expressed by X?-
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Uniformly continuous behaviors. Let us consider a condition Z of the
form x € (I,u) = I; if b is uniformly continuous over R, then it is always
possible to find a ¢ such that |b(¢') — b(t)| < |I| = u—1 for all instants ¢, ¢’
such that |[t' — t| < 0. Therefore, let such § be our sampling period. Then,
let us consider any instant at ¢ which b “enters” the interval I such that b is
monotonic non-decreasing over I; then b will remain in [ for at least ¢ time
units before crossing it and exiting above. Thus, for monotonic behaviors,
the condition Xf’ is always satisfied.

More generally, however, b is non monotonic. In this case, let us pick
a 2¢ < u —1 and require that every behavior we consider does not do the
following: enter I, reach at least 1 + €, exit I again, all this in less than a
sampling period. Then, if b is uniformly continuous, we always have a .
which depends on 2¢, such that, if we pick . as sampling period, b satisfies
the requirement.

In general, € can be as small as desired: uniform continuity ensures that
a suitable 0. can always be found. Obviously, this can be generalized to
several intervals partitioning the domain of x, by considering the smallest
of such intervals in place of the unique I. We assume that the various
intervals are derived from a specification formula ¢ which is finite in size;
therefore the number of such intervals will always be finite as well (and
thus the notion of “smallest” is well-defined).

Undesired behaviors about extrema. Although what discussed above
allows one to find behaviors that comply with the regularity constraint X?
to within some tolerance (given by the choice of €), it is also clear that,
however small € is, one can always find behaviors that do not comply with
X‘.b but nonetheless are uniformly continuous. Figure [9.4]gives a graphical
representation of this fact: if b enters the interval I “just a little bit”, reaches
a maximum at t < e, and exits it afterward, it can do so within less than
any fixed § while still having bounded derivative. So, uniform continuity
is not precisely a characterization of the requirement expressed by X‘f, but

only within some arbitrarily small tolerance, given by the choice of e.

Sets of behaviors. One more thing should be said about the use of the
notion of uniform continuity to characterize behaviors satisfying X?- So
far, we have only considered the uniform continuity of a single behavior b.
However, one would like to derive similar properties about a whole set of
behaviors B = {b;}. In general, even if each b; € B is uniformly continuous,
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- 1o R

Figure 9.4.: A behavior violating X? about an extremum.

the é. for b; may also depend on ¢, so it is actually a ;. If, for a given e,
inf; d;  is zero, then it is not possible to find a unique sampling period ¢
such that all samplings of any behavior in B with period ¢ satisfy X? (up
to the chosen tolerance €). Therefore, we are going to include explicitly
that such an infimum is greater than zero, to rule out undesirable cases.

Quasi-Non-Berkeley behaviors. All in all, according to what we have
discussed above and generalizing, we introduce the following terminology.
Let m be a basic time-dependent item mapping to the set D = Dy x---XD,,,
such that every D; is a continuous set. Let b be a behavior mapping R
to the set D. If b is uniformly continuous in R, then we say that b is
quasi-non-Berkeley.

A set B = {b;} of behaviors is quasi-non-Berkeley if each b; € B is
uniformly continuous, and, for all € > 0, the infimum inf; 6;(¢) of the d;’s
(given by the uniform continuity requirement for each b;), is strictly greater
than zero.

Clearly, a non-Berkeley behavior is a fortiori a quasi-non-Berkeley one.
However, we have outlined above behaviors that are compatible with being
quasi-non-Berkeley but are not fully non-Berkeley (i.e., they fail to satisfy
X9)-

Also notice that we are unable to express the quasi-non-Berkeley require-
ment in TRIO as we did for the non-Berkeley requirement. In the former
case we were interested in the orthogonal concern of giving a mathemati-
cal characterization of the behaviors, rather than one easily expressible in
temporal logic.
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Continuity, Uniform Continuity, and Analyticity

Gargantini and Morzenti discussed in [GMO01] how the non-Zeno require-
ment for dense-valued items can be mathematically characterized by the
notion of analyticity. We know that, for discrete-valued items, the quasi-
non-Berkeley requirement is strictly stronger than the non-Zeno require-
ment: while the former requires that the lower bound on the constancy
intervals of the items is strictly positive, the latter just requires that inter-
vals of infinitesimal length do not accumulate.

In this vein, Appendix makes a brief mathematical detour to show
that uniform continuity and analyticity are orthogonal notions.

Uniform continuity over finite time. TLet us also recall a classic result
of mathematical analysis which goes under the name of Heine-Cantor the-
orem. The theorem states that every continuous function defined over a
compact (metric) domain is also uniformly continuous over the same do-
main. In particular, over the real line every closed interval is a compact set,
thus every continuous function is also uniformly continuous over a closed
interval. This means that if we restrict ourselves to behavior over finite
time, and we ensure that the chosen finite interval is also closed, then it
is sufficient to require that our behaviors are continuous functions to meet
the quasi-non-Berkeley requirement.

9.4. A Comparison With Digitization

Henzinger, Manna and Pnueli [HMP92] were the first ones — to the best
of our knowledge to study explicitly the continuous- and discrete-time
semantics of timed systems in general, and temporal logic in particular.
Their results are based on the notion of digitization. This section briefly
reports the main results of [HMP92] and relate them to our results about
sampling invariance.

Informal comparison. Let us start with an informal comparison between
the notions of digitization and of sampling invariance. Digitizability is
similar to our sampling invariance in that they both define a notion of
invariance between discrete- and dense-time interpretations of the same
formula.
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However, they differ in other aspects. First, [HMP92| compares analog-
and digital-clock models, that is behaviors consisting of a discrete sequences
of events, each carrying a timestamp: in analog-clock behaviors the times-
tamp is a real value, whereas in digital-clock ones it is an integer value.
On the contrary, our work considers truly continuous-time behaviors and
encompasses the description of dense-valued items; these features are both
needed to faithfully model continuous physical quantities. Clearly, the in-
troduction of the behavior constraint x does limit in practice the dynamics
of the items, in order to render them ultimately discretizable and thus
equivalent to a discrete sequence; nonetheless, the possibility of modeling
dense-valued items is unaffected, and we believe that the explicit (syntactic)
introduction of the constraint xy — required to achieve invariance — per-
mits a clearer understanding of what we “lose” exactly by discretization, and
makes it possible, whenever needed, a comparison with the unconstrained
continuous-time model.

The other major difference between our approach and the one presented
in [HMP92| concerns the physical motivation for the notion of invariance.
In fact, sampling invariance models albeit in an abstract and idealized
way — the sampling process which really occurs in systems composed by a
digital controller interacting with a physical environment. On the contrary,
digitization is based on the idea of “shifting” the timestamps of the analog
model to make them coincide with integer values; informally, we may say
that behaviors are “stretched”, without changing the relative order of the
events. This notion allows for a neater statement of the results about digi-
tization; however it is more oriented towards mathematical and verification
results, and less to physical reasons.

Technical differences. There are two main technical differences between
our approach and the one in [HMP92]|.

e First, while the framework in [HMP92] adopts a point-based seman-
tics based on (timed) trace (called timed state sequence in [HMP92]),
ours refers to total functions from time to the state domain (i.e., be-
haviors). In practice, since it is customary to restrict to non-Zeno
behaviors, we can equivalently say that our framework has interval-

based sequences as its semantic structure |GMO01, HR04].

e Second, while sampling invariance is defined for a formula, digitiza-
tion is defined for a property, that is a set of timed traces. In other
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words, digitization is defined independently of any language, whereas
sampling invariance is defined with respect to the metric temporal
logic ETRIO.

Under this respect, the next Section 9.4.1] introduces the framework in
[HMP92|, while Section [9.4.2 suggests how it can be compared to ours.
Afterward, Section[9.4.3] carries out the comparison under those lines, and
shows that the two notions of sampling invariance and digitization are
orthogonal. Finally, Section [9.4.4] sketches other aspects that have not
been touched upon in the comparison, and may belong to future work.

9.4.1. Timed Traces and Digitization

Let us consider a generic timed trace; while timed traces are usually de-
fined as mono-infinite sequences, our framework refers to bi-infinite time
domains. Therefore, we change the definitions of [HMP92] to refer them
to bi-infinite sequences. It is routine to check that all the relevant results
are retained in the new setting. Moreover, we could have equivalently
rephrased all our framework in terms of mono-infinite sequences, obtaining
basically the same results in the comparison.

Timed traces. So, let us consider the generic timed trace:

p: o (0-2,7-2)(0-1,7-1)(00,70) (01, T1) (02, T2) - - -
where 7; € R for all ¢ € Z. Following [HMP92|, we assume weak mono-

tonicity of the timestamps (i.e., 7; < 7,41 for all i € Z), and progress (i.e.,
for all t € R there exists a ¢ € Z such that 7; > t).

e-digitizations. Forany 0 < e < 1, and any timed trace p, the e-digitization
[p]c is the integer-timed trace that results from rounding, with respect to
€, every timestamp in p to an integer value. Namely:

[p]e : te (0—27 [7—2]6)(0——17 [T—l]e)(00> [7—0]6)(0—17 [7'1]5)(0'2, [7_2]6) e

Bl = {ij ife <|z|+e

B [x] otherwise

206



9.4. A Comparison With Digitization

Digitization of a property. Given a property m, that is a set of timed
traces, its digitization [r] is a property containing all and only integer-
timed traces resulting from digitizing all traces in m with respect to all
fractional values 0 < e < 1:

r] = {[ple|lpemand0<e<1}

Digitizable properties. Given a property m, we say that:

e 7 is closed under digitization iff [r] C 7 (or, equivalently, for all timed
traces p: p € w implies [p] C 7);

e 7 is closed under inverse digitization iff, for all timed traces p, [p] C 7
implies p € 7;

e 7 is digitizable iff it is closed under both digitization and inverse
digitization (or, equivalently, for all timed traces p: p € 7 iff [p] C ).

9.4.2. Digitizable Formulas

Let us now suggest a way to compare the two frameworks of sampling
invariance and digitizability. First of all, let us define an RTRIO semantics
over timed traces, that mirrors as closely as possible that over behaviors.
Second, let us give a definition of what it means for an XTRIO formula to
be digitizable.

Timed trace semantics of STRIO. Let us define the satisfiability relation
for BTRIO formulas and a generic timed trace p. Let i € Z be a generic
position in the trace. Then@
pil= € iff ceo
pi = Untilyy (61, ¢2) iff  there exists j > ¢ such that: 7; € 7, + 1,
pj = ¢2, and for all integers k € [i, j):
Pk ): o1
pi = Sincer((¢1, ¢2) iff  there exists j < i such that: 7; € 7; — I,
p; = ¢2, and for all integers k € (7, ]:

pr = 1
pi |E —¢ it pi P
pi = ¢1 A ¢ ifft  pi = ¢1 and p; = ¢
pE® iff  forallieZ: p;f=¢

9Sums between a real value and an interval are meant to be Minkovsky sums, with the
familiar meaning.
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Digitizable formulas. Given an ¥TRIO formula ¢, we say that:

e ¢ is closed under digitization iff the property {p | p = ¢} is closed
under digitization;

e ¢ is closed under inverse digitization iff the property {p|p = ¢} is
closed under inverse digitization;

e ¢ is digitizable iff the property {p | p = ¢} is digitizable.

9.4.3. Digitization and Sampling Invariance Are Orthogonal
Notions

This section shows that the two notions of digitization and sampling in-
variance define incomparable classes of formulas, when the comparison is
carried out along the lines introduced in the previous sections. To this end,
first of all we exhibit a formula which is sampling invariant but not digi-
tizable; then, we provide a formula which is digitizable but not sampling
invariant.

We remark that, throughout this section, we always refer to the notion of
sampling invariance according to the adaptation functions nf{},n%{} as
we defined them in Section [8.2.3] Exploring the consequences of adopting
different definitions of adaptation functions in the comparison with digiti-
zation is out of the scope of the present work.

Sampling Invariant Non-Digitizable Formulas

It is simple to find sampling invariant non-digitizable formulas, as they can
be build directly out of some examples of non-digitizable formulas given
in [HMP92|. In particular, let us consider the formula:

O = Som(WithinFi(&, 1))

It is simple to check that © is sampling invariant, since the outer existen-
tial quantification on time (i.e., the Som operator) does not affect sampling
invariance.

On the other hand, © is not closed under digitization. The timed trace:

p, = "'(_'gvk:)(§7k+ﬂ)(_'£v7—)"'

with k € Z, 0 < p < 1, 7 > k + 1, and such that & is false at any other
position in the trace, provides a proof of this (in the form of a counterex-
ample). In fact, p satisfies ©, but any of its e-digitizations with respect to
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any € < u does not, as they all correspond to - - - (=&, k) (&, k+1)(=&,7) - -
with 7/ > k + 1.

Digitizable Non-Sampling Invariant Formulas

Let us consider the following STRIO formula (also put in normal form).

T

Som (& A =Until(g 400y (€, true))
= Som(§ A Releases (g 4o0)) (7€, false))

Let us also build the the formula:
Q = TA™

where ¢™ was defined in Section 9.3.1. We now show that € is not sampling
invariant, but it is digitizable.

Q) is digitizable. Let us write out explicitly the semantics of T, when
interpreted over timed traces according to the weak-time semantics defined
beforehand. For a timed trace p = (0,7): p = T iff there exists a i € Z
such that:

1. 0; =&, and, for all j > i
2. either o; [~ true and 7; > 7, which however never holds,
3. or oy [~ &, for some i < k < j.

Now, since condition |3 must hold for any j > 4, in particular (for j =i41)
it requires that o; = €. This is in contradiction with condition (1] therefore
T = false in the timed trace semantics.

Thus also 2 = T A ¢™ = false A 9" = false. The formula false is
trivially closed under digitization, since so is the empty set of timed traces
(). Moreover, it is also trivially closed under inverse digitization, therefore
Q) is digitizable.

Q2 is not sampling invariant. Let us now consider the adaptation of Y:

Y} = Som(ﬁ/\Releases(07+oo)](—|§,false))
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It is not difficult to realize that, thanks to the adaptation of the Releases
subformula to the ] bracket, nR{Y} is satisfiable in discrete time/[!Y)

Then, let us consider the behavior b in Figure[9.5, which is derived from
the one in Figure [9.3] by additionally assuming that £ holds at ¢t and at
t + p as well. (In the figure, crosses now denote sampling instants). Now,

| . [
t SRS t4p>t+6

o

. | . i
ko 2+ (k+ 10 z+ (k+2)0

Figure 9.5.: Proof of non sampling invariance.

clearly b(t + p) Fr & AReleases g o)) (7€, false), and b(t) =R Lastsii(€,9),
therefore b =R Q A xo. However, while o4, [b] 7z n5{Y}, we have shown
in Section 0.3.1 that o5, [b] Kz n5{¢™}. Therefore o5, [b] 7z Q, and
thus Q is not closed under sampling, and thus a fortior: it is not sampling
invariant.

9.4.4. Other Aspects for Comparisons

Let us now briefly hint at other aspects that may pertain to a comparison
between the notions of sampling invariance and digitizability, but which
have not been addressed here. We present them in a rather informal way.

e A feature that distinguishes [HMP92]’s semantic model is that it is
weakly monotonic. This introduces some peculiarities, such as a pred-
icate which can be both true and false for some timestamp value T,
but still at different positions in the timed trace. In other words,
weak monotonicity really exposes the existence of “two times”, one
being the position in the timed word, the other being the value of the
timestamp.

"% Therefore, the particular definition of n§{} plays an important role here. As usual,
we do not discuss (for the sake of brevity) the impact of choosing different definitions

for n(]f”{}.
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An analysis of digitization may therefore consider what are the fea-
tures which are peculiar to weak monotonicity, and what would change
by switching to a strongly monotonic time.

More generally, we already discussed how digitization is an intrinsi-
cally semantic notion, while sampling invariance is defined for for-
mulas. Indeed, [HMP92|’s analysis of digitizable formulas is lim-
ited to two simple classes of formulas, namely bounded response and
bounded invariance properties, which basically represent the notion
of upper and lower bound on a response, respectively.

Therefore, we may extend the analysis of digitizability to seek a wider
characterization of digitizable formulas. Conversely, we may also pro-
vide a semantic counterpart to sampling invariance, and carry out the
comparison in a semantic setting.

A feature of our framework is that it changes interval bounds in for-
mulas, in particular by weakening formulas when passing from dis-
crete to continuous in order to preserve entailment. |[HMP92| also
introduces a notion of weakening (and strengthening) of formulas, al-
though it uses it for different purposes (namely to outline verification
techniques).

We may see if [HMP92]’s notion of weakening can be used in a similar
manner as our adaptation, and compare the resulting framework.

Notice that digitization always rounds timestamp values to the near-
est integer value; in other words, it approximates to within a precision
of one. It would be straightforward, though, to generalize the defi-
nition to other fixed values, with a finer grain than one unit. This
has been done in other works (see Appendix [E). It seems that such
changes would not affect our comparison in any “qualitative” way, as
changing this just amount to a rescaling of timing informations.

More generally, we notice that the timed trace semantics has several
peculiar (and, somewhat, unintuitive [HR04|) features that make a
comparison with other semantic models more difficult and problem-
atic. Among other things (and see Appendix [E for references):

— metric temporal logics over timed trace models are strictly less
erpressive than over interval-based sequences; therefore, one
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may suggest to restrict comparisons to properties expressible
in both models;

— a straightforward way to describe a timed trace as an interval-
based sequence is to introduce isolated events at any timestamp,
separated by “no-action” intervals where all predicates are false;
notice that such sequences would all fail to satisfy the regularity
constraint y and thus would be trivially sampling invariant;

— otherwise, one could represent interval-based sequences as timed
traces with “samplings” taken to within some precision (and,
possibly, according to the property at hand). Notice in partic-
ular that the granularity of such “samplings” would depend in
general on the constants used in the formulas, if one seeks to pre-
serve entailment. Possibly, the granularity should also be related
to the regularity of the interval-based sequence (as mandated by

X)-

9.5. Formalizing Timed Automata in :TRIO

It is well-known from the literature that automata languages cannot be
defined using “standard” propositional temporal logics [Wol83|, as the latter
lack the ability to “count”, which is instead a feature of finite-state automata
[MP72]. In particular, more recent work has shown that there are languages
accepted by timed automata [AD94| that cannot be defined by any metric
temporal logic formula. See Appendix [E| for more extensive references
about these facts.

This expressiveness gap notwithstanding, it is still possible to pursue a
dual language approach [FMMRO07, FMM94| for automata and temporal
logic. This consists basically in describing a system through a combination
of an operational formalism and a descriptive formalism: in our case, timed
automata are the operational formalism and metric temporal logics (and
BTRIO in particular) are its descriptive counterpart. The dual language
approach then requires to formalize the behavior of the automata through
logic formulas, so that one can prove properties about the automaton by
logic deduction (rather than, e.g., algorithmic methods). Moreover, if we
have a formalization of timed automata in STRIO, it is possible to exploit
a notion of discretization on the description of the automata, by applying
the results about sampling invariance to the formalization. This section
shows how to formalize the behavior of timed automata in STRIO.
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We stress the fact that the aforementioned expressiveness results about
“counting” do not prevent one from performing such a formalization: even
if, in general, one cannot define the language accepted by a timed automa-
ton through ETRIO formulas, it is still possible to characterize the runs
of the automaton through logic formulas. That is, one includes in the for-
malization the state of the automaton, and how it evolves in response to
inputsm

9.5.1. Timed Automata Definition

Let us recall the definition of timed automata; all of them are from the
original paper by Alur and Dill [AD94].

Syntax of Timed Automata

First, we consider the definition of clock constraints, then we define timed
automata themselves.

Clock constraints. For a set X of clock variables, the set ®(X) of clock
constraints & is defined inductively by

o=z <cle<z|~§[&AE

where z is a clock in X and c is a constant in Q.

Timed automaton. A timed automaton A is a tuple (3,S5,S5p,C, FE)
where:

Y

e Y is a finite alphabet,
e S ={s0,51,...,8N,-1} is a finite set of Ny states,
e Sy C S is a finite set of start states,

e (' is a finite set of clocks, and

""We remark the fact that one could then switch to the formalization of the accepted
language itself if the logic had a projection (a.k.a. hiding or existential quantification)
operator (see Appendix[E), which is equivalent to saying that “a logic with projection
can count”. %TRIO is not endowed with projection, and therefore we will limit
ourselves to the formalization of automata runs.
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e ECSx8x¥x2%xd(C) gives the set of transitions.
An edge (s, 5, a, A, ) represents a transition from state s to state s’
on input symbol a. The set A C C' gives the clocks to be reset with
this transition, and ¢ is a clock constraint over C'.

Simplifications. For simplicity, let us restrict all the automata we consider
to avoid self-loops among the transitions; i.e., (s, s,a, A, &) ¢ Eforalls € S.
For our purposes, this restriction is without loss of generality, as it can be
shown that any timed automaton with self-loops can be transformed into
one that recognizes the same language but does not use any self-loops.
Moreover, let us avoid the use of e-moves, which can however be rendered
by augmenting the input alphabet by a special symbol.

Semantics of Timed Automata

In order to define the semantics of timed automata, we recall the definition
of timed words and timed languages. Notice that we have some differences
with respect to the definition in Section [9.4.1; in the remainder we will
reference to the following definitions only.

Timed words. A #imed word over an alphabet X is a pair of sequences
(0,7). o is an infinite word o = 10203 -+ over ¥. T is a time sequence,
that is an infinite sequence 7 = 77273+ of time values 7; € R>q; the
sequence must be strictly monotonic (that is 7; < 7,41 for all ¢ > 1) and
divergent (that is, for all € R>¢ there exists a ¢ > 1 such that 7; > r).

Timed languages. A timed language is defined as a set of timed words.

Run of a timed automaton. To define the semantics of timed automata
as acceptors of timed languages, we introduce the notion of run of a timed
automaton. A run of a timed automaton (3, S, Sy, C, E) over a timed word
(0,7) is an infinite sequence of the form:

(80, 10) = (s1,01) = (52, 02) =

where s; € S and v; € [C — R], for all i > 0, satisfying the following
requirements:

e [nitiation: so € Sy and vy(x) =0 for all z € C.
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e Consecution: for all ¢ > 1, there is an edge in E of the form
(Si—1,8i,01,A;, &) such that v;_1 +7; — 7,1 satisfies §; and v; equals
[Ai = O](vie1 + 7 — Tiz1).

Language accepted by a timed automaton. Consequently, given a timed
automaton A, and a set F' C S of accepting states, we say that A accepts
the timed word (o, 7) iff the timed word has a run that visits some state in F
infinitely often (Biichi acceptance condition). Finally, a timed automaton
A accepts the language identified by all and only timed words accepted by
A.

Berkeley Behaviors for Timed Automata

Since the ultimate goal of this section is to provide a formalization that
allows us to harness the discretization results about sampling invariance
over languages defined by timed automata, we would like not only to for-
malize timed automata in RTRIO, but also to formalize them in a way
which complies with the requirements of sampling invariance. Namely, we
seek a formalization over slowly-variable behaviors (according to x), and
with nesting-free formulas.

Under this respect, the present subsection extends the notion of non-
Berkeley behaviors to timed automata. This allows us to identify exactly
those timed words that are representable by non-Berkeley behaviors.

Zeno behaviors and divergence. First of all, let us recall that Zeno be-
haviors are those where the time values in 7, although ever increasing,
converge to a finite value 7: time “stops” at the value 7. The require-
ment that timestamps sequences in timed words be divergent is assumed
precisely to rule out Zeno timed words.

Berkeley behaviors and finite difference time. As shown in Ex-
ample 3.16], and first explicitly discussed in [CHRO02], in timed automata
“infinitely fast” Berkeley behaviors can manifest themselves even if we rule
out Zeno phenomena. Let us discuss an example of this fact with some
detail.

An example of Berkeley timed automaton. Let us consider the timed
automaton of Figure (9.6, where k € R~( is some positive constant. Let
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Figure 9.6.: A timed automaton with Berkeley behavior.

xo = 0 and yp = 0 be the initial values of the clocks x and y. Then, for
all ¢ > 1, let x; be the values of the same clocks when entering the state A
after the ith iteration of the loop. Let «;, 3;,v; be the times spent sitting in
the states A, B, C, respectively, during the ith iteration of the loop. This
notation corresponds to the timed word:

(CL,Oq) (b,Oél + /61) (C,Oq + 61+ 'Yl) e

n—1 n—1
(a,an + Z(Oli + Bi +7)) (byan + Bn + Z(ai + B+ )
=1 i—
n—1
(Cyan+ﬁn+”yn+2(ai+ﬂi+%))
=1

Let us notice immediately that it must be z; + a;+1 = k, because of the
guard on transition a, that is k — a1 = x;. Now, because of the guard on
transition b, it must also be «;+1 + ;41 = k (notice that y is reset when
entering A). Finally, we have ;11 = Bi4+1 + 7it+1, since the clock z is last
reset when entering B.

Thus, from the last equation, we get ;11 = Bit1 + Vi1 = (K — aiy1) +
Yit1 = X +Yi+1. This holds for all ¢, thus we can iteratively substitute and
, _ _ . il il
get: Tip1 =i+ Vi1 = (Tim1+%) Ty = =zo+ 2501 = D251

Finally, let us notice that it must be x; < k for all ¢, otherwise the a
transition cannot be taken. So we must have Z;; vj < k, that is the
residence times 7; must get arbitrarily close to zero, while not being zero,
in order to satisfy the constraint on the z clock.

Berkeley timed words and languages. Such kind of behaviors correspond
to timed words where the difference between adjacent timestamps get ar-
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bitrarily small, even if time does not accumulate and stop. More precisely,
we call Berkeley a timed word (o, 7) = (01,71)(02,72) - - - where the lower
bound of the differences between adjacent timestamps A = inf;>; (741 —7;)
is zero, and non-Berkeley if it equals instead some 6 € R~g. Similarly, a
set of timed words (o, 7);cr (where I C IN) is Berkeley iff the lower bound
inf;c; A; of the lower bounds of the timed words is zero. Consequently, a
timed automaton is Berkeley iff the timed language it accepts is Berkeley.

In the rest of this section, when discussing the correspondence between
timed words and timed behaviors in ZTRIO, we assume that all timed
languages are non-Berkeley, unless otherwise explicitly stated. We leave to
future work the analysis of how ruling out Berkeley behaviors impacts the
expressiveness of timed automata.

9.5.2. Axiomatization of Timed Automata with 5 TRIO

Let us now consider how to describe in 2TRIO all the runs of a given timed
automaton. For simplicity, let us not consider acceptance conditions, that is
let us assume that all states are accepting. Note, however, that introducing
acceptance conditions (e.g., Biichi, Muller, etc) in the formalization would
be routine.

First of all, since timed automata are interpreted over timed words,
whereas ZTRIO formulas are interpreted over behaviors b : T — D, we
have to relate the two semantic models. Remember that we want to be
able to consider constrained behaviors, i.e., regular according to the con-
straint y, for some fixed sampling period 6. Therefore, let us pick § < 0/2,
where 6 is the lower bound of the transition times for the automaton. The
reason for taking 6 halved will be clear in the remainder.

Timed Words and Timed Behaviors

Let us consider a timed automaton A = (X, S, Sy, C, E); it is interpreted
over timed words of the form (o, 7), where o C »¢.

To map runs (over timed words) to behaviors, we have first to choose a set
of basic time-dependent items for the XTRIO description. More precisely,
we consider the following items.

e a time-dependent item st taking values to the set of states S

e a time-dependent item in taking values to the alphabet set ¥ U {e}

2Notice that e does not represent e-moves but simply absence of input.
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e a time-dependent predicate rs() having the set of clocks C' as domain;
e a time-dependent (Boolean) time-dependent predicate start.

Here it is the intuitive meaning of these items.
e st = 5; means that the automaton is in state s; € S;

e in = 0 means that the symbol o € X is currently being inputted (or
no current input, in the case of €);

e rs(z) means that the clock x € C is currently being reset;
e start represents the initialization event.

Note that this choice of items prevents multiple input symbols from arriving
at the same time, whereas multiple resets (for different clocks) can happen
at the same instant.

Mapping a timed word onto a timed behavior. Let us consider a run of
the automaton A:

(50, 10) ETLEN (s1,v1) REIEN (s9,12) 3T

Given a sampling period J, we associate to the run the behavior b for the
above items as follows.

Tit1,Tit 1 , the item st takes the value

s; exactly from time 7; to time 741, left-continuously;

cLt 04,Tq
e for every transition —= (s;, 1)

e for every input pair (o;,7;), the item in takes the value o; exactly
from time 7; (included) to time 7; + ¢ (included); otherwise (i.e., at
any other time) in takes the value ¢;

e for every clock x € C' that is reset when taking the transition corre-
sponding to the input pair (o4, 7;), the predicate rs(z) is true exactly
from time 7; (included) to time 7; + 0 (included); moreover, rs(z)
holds from time 0 until 0 (included) for every clock z € C;

e start is true from time —oo to time J (included), and false everywhere
else.
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Mapping a timed behavior onto a timed word. The inverse mapping
can be defined, for the present purposes, as follows. Simply, given a timed
behavior b, if there exists a timed word (o, 7) such that the latter maps to
the former according to the previously defined mapping, then we say that b
maps to (o, 7), otherwise the mapping of b is undefined. Notice that, when
it is defined, this inverse mapping is also uniquely defined.

Axiomatization of a Timed Automaton

Let us finally consider a timed automaton A = (X, 5, Sy, C, E). We now
give a set of ’TRIO axioms that formally describe its runs as behaviors,
according to the mapping we outlined above. First, we present the axioms;
afterward we justify their correctness.

In the remainder, we assume that there are no edges going from a state
to itself (self-loops); this does not impacts on the expressiveness of timed
automata, as it can be shown.

Translating clock constraints into formulas. We associate a ZTRIO for-
mula = to every clock constraint £. In order to simplify this step of the
formalization, we assume that all constants in the clock constraints are
strictly greater than §. It can be shown that this can always be achieved
by properly scaling all constants by some suitable factor [AD94]; this cor-
responds to a change in the time scale. This restriction is inessential in
the formalization, but we introduce it for the sake of simplicity, leaving to
future work the full discussion of all the possible cases.
Let us define inductively = on the structure of £ as follows:

<c¢ — WithinPe(rs(z),c — 6)
c<x — Lastedee(—rs(x),c—0)
—f - =

§1NE — E1AE

Basically, = translates the guard £ by comparing the current time to the
last time a reset for the clock & happened. The offset ¢ is introduced to
take into account the fact that each reset item holds continuously for ¢ time
units from the moment when the reset is actually triggered (to comply with
the slow variability requirement XO)Jﬁ

31t can be shown that derived properties of composite clock constraints hold for the
corresponding temporal logic formulas. For instance z < z A ¢ < x corresponds to
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Necessary conditions for state change. TLet us state the necessary con-
ditions that characterize a state change. For any pair of states s;,s; € S
such that (s;,s;,0,A,&) € E for some 0, A = cy,..., ¢, & we introduce
the axiomM

UpToNow (st = s;) A NowOn(st = s;)
= NowOn(in = o) A NowOn(rs(ci) A---Ars(c)) A=
(9.12)

Sufficient conditions for state change. We have multiple sufficient con-
dition for state changes; basically, they account for reactions to read-
ing input symbols and resetting clocks. Let us consider input first: for
each input symbol o € X, let us consider all the relations of the form

(sk, sf,a, AF ¢F) € E. Then, we introduce the axiom:

NowOn(in =0) =

\/ <UpTONOW (st = sf) A NowOn (st = sf) A
k

NowOn /\ rs(A) /\Ek> (9.13)
AEAF

This postulates the fact that, whenever a symbol ¢ is inputted, it arrives
under conditions that are compatible with one of the transitions specified
by the relation E.

Similarly, for each reset of a clock ¢ € C, let us consider all the relations
of the form (s¥ s% ok A¥ ¢¥) € E, such that ¢ € A* for all k. Then, we

1 j7

¢ = WithinPe(rs(x), ¢ — ) A Lastedee (—rs(x), ¢ — §); it can be shown that if ¢ holds,
then rs(x) last held exactly ¢ — ¢ time units in the past. Therefore, the last reset
has occurred exactly ¢ — § + 0 = ¢ time units in the past, which corresponds to the
condition z = ¢ being true, as expected.

"Throughout the formalization, we assume NowOn(p) = Lastse.(p,d), and
UpToNow(p) = Lastedee(p, 9).
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introduce the axiom:

NowOn(rs(c)) =

\k/ (UpToNow <st = sf) A NowOn (st = sf) A NowOn(in = ak)

A NowOn /\ rs(A) /\Ek> V NowOn(start) (9.14)
AEAF

Initialization and liveness condition. We complete our axiomatization
by first describing the system initialization: at the beginning the predicate
start is true for § time units, the system is in an initial state and all the
clock are reset.

UpToNow (start) A NowOn(—start)
= AlwP(in=¢€) A (3s € Sp : AlwP(st = s))
A (VA€ C: AlwP(rs())))  (9.15)

Then, we have to say that start actually becomes true, sometimes, and it
has been true always in the past and will be false in the future.

Som(AlwP(start)) A Som(—start)
A (AlwP(start) A NowOn(—start) = AlwF(—start)) (9.16)

Recall that the nesting of the temporal operator Som and AlwP does not
affect sampling invariance of the resulting formula.

Finally, a “liveness” condition states that we eventually have to move
out of every state (this corresponds to the fact that timed traces are made
of infinite words). Thus, for every state s; € S, let S; C S be the set of
states that are directly reachable from s; through a single transition; then
we consider the axiom:

UpToNow (st = s;) = SomF \/ st=s (9.17)
s€ES;

Correctness and Completeness of the Axiomatization

We refer the reader to Appendix [D.6| for a proof of the correctness and
completeness of the above axiomatization of timed automata.
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Axiomatization of Berkeley Timed Automata

Let us also discuss how it is possible to modify the above axiomatization in
order to describe the behavior of any non-Zeno timed automaton, includ-
ing those with Berkeley behaviors. Notice that now we forget about the
requirements of the integration framework (such as the non-Berkeleyness
constraint x.), and we only focus to formalizing the behavior of a generic
timed automaton with ZTRIO. In this case, we give an extension of the
dual language approach to deal with any timed automaton, giving up the
possibility of applying our notion of discretization through sampling invari-
ance.

To this end, it is convenient to declare the item st as a state, whereas
all the other items are events, according to the definitions given in Section
[2.1.4l Note that the input item would now simply be false for all o € X
when no character is inputted. Then, these items would be true exactly at
those times when an input is received, a reset is triggered, or the system is
started.

The translation of clock constraints into formulas would take into account
these changes, so that the bounds of the WithinP and of the Lasted would
simply be the constant ¢ against which a clock is compared, without the §
offset.

Finally, the overall structure of the axioms would be unchanged, except
that all the references to event items would now get rid of the UpToNow or
NowOn operators. On the contrary, UpToNow and NowOn remains when

—_—

their arguments are states; however we now have to use the eUpToNow

—

and eNowOn versions (defined in Section [9.2.1), as states are no more
guaranteed to hold over §. For clarity, we replicate here the new versions
of the axioms.

UpToNow (st = s;) A NowOn(st = s;)
= in=oA(rs(c1) AN---Ars(e,)) NE
(9.18)
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in=o0=

— sk =k =k
\k/ UpToNow (st = sl) A NowOn(st s ) A /\ rs(A) | A

rs(c) = \/ (UpToNow (st = sf) A NowOn <st =
k

A /\ rs(A) /\Ek> Vstart  (9.20)

AEAK

start == AlwP(Vo € X :in# o)A (s € Sp : AlwP(st = s))
AN (YA e C:rs(N) (9.21)

Som(start) A (start = AlwP(—start) A AlwF (—start))

UpToNow (st = s;) = SomF \/ st=s (9.22)
s€ES;
Now, note that the same correctness and completeness proofs for the
non-Berkeley case hold, with some technical modifications, for the uncon-
strained case as well. For brevity, we omit the details.

9.5.3. An Example

Let us apply the above axiomatization on a simple example: the automaton
of Figure [9.7, modeling a train. In the model, the input symbols a,i,0,e
represent, respectively, the train approaching a crossing area, entering the
area, exiting it, and notifying its exit. The example automaton is taken

from [AD94].

It is straightforward to realize that the automaton accepts the language:

{((aioe)*,7) |Vi(i=1mod 4 — 7541 > 7, +2 A Tip3 < 7: +5)}
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Figure 9.7.: A timed automaton modeling a train.

Let us now write out all the axioms. First of all, axiom [9.12]is imple-
mented as the four following axioms.

UpToNow (st = Sp) A NowOn(st = S1) = NowOn(in = a) A NowOn(rs(x))
UpToNow(st = S7) A NowOn(st = S)
= NowOn(in = i) A Lastedee(—rs(x),2 — d)
UpToNow (st = S2) A NowOn(st = S3) = NowOn(in = o)
UpToNow (st = S3) A NowOn(st = Sp)
= NowOn(in = e) A WithinPj(rs(z),5 — ¢)

Let us now consider axiom 9.13, which gets to:

NowOn(in = a) = UpToNow (st = Sp) A NowOn(st = S1) A NowOn(rs(x))
NowOn(in = i)
= UpToNow(st = S1) A NowOn(st = S2) A Lastedec(—rs(x),2 — )
NowOn(in = 0) = UpToNow(st = S3) A NowOn(st = S3)
NowOn(in = e)
= UpToNow(st = S3) A NowOn(st = Sp) A WithinPj;(rs(z),5 — )

Axiom [9.14 gets simply into:

NowOn(rs(z)) = (UpToNow(st = Spy) A NowOn(st = S;)
A NowOn(in = a)) V NowOn(start)

We do not write out explicitly the initialization conditions of axioms
9.15-9.16, as they do not depend on the actual automaton (except for the
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simple condition on start states). Thus, let us just consider the liveness
condition of axiom[9.17; this is rendered by the following four axioms.

UpToNow(st = Sy) = SomF(S7)
UpToNow(st = S7) = SomF(.S3)
UpToNow (st = S2) = SomF(Ss3)

(st = S5) (o)

This concludes the axiomatization for the present example.
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10. Conclusions

This thesis focused on the problem of improving the scalability in the use
of formal methods towards large and heterogeneous systems. In particular,
emphasis has been put on real-time systems, where time is a fundamental
dimension of analysis, and a further source of complexity. Our reference
language was the metric temporal logic TRIO, which we presented in Chap-
ter 2. We pursued the descriptive approach, where both the specification
and the requirements of a system are formalized as a set of temporal logic
formulas.

Compositionality. Our solution was grounded in the well-known software
engineering principles of modularization and abstraction. When these tech-
niques are applied to formal methods, they usually come under the name
compositionality. Therefore, compositionality was the topic of Part[I of this
thesis. In Chapter [3, we defined precisely the notion of compositionality.
In particular, we discussed how it consists of both techniques and methods
to specify and verify modular systems.

Compositional techniques usually boil down to the availability of compo-
sitional inference rules. A compositional inference rule allows one to infer
facts that are global to a composite systems from the composition of facts
that are local to the various modules out of which the system is built. In
Chapter [3 we also provided the generic components of a “typical” compo-
sitional inference rule, and we discussed various features that a rule may
have or not have. In particular, we linked the features of a rule to the
features of a system, whose correctness one verifies through application of
the rule.

On the other hand, compositional methods provide frameworks within
which a compositional inference rule can be applied. Moreover, they give
general guidelines according to which one can manage modularization both
when writing the specification and when building the verification of a sys-
tem.

Chapter[4 reviewed the most significant literature about compositional-
ity in formal methods. The review showed that most frameworks provided
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in the literature are focused mostly on the technical aspects of composi-
tionality, and in particular on the study of compositional inference rules.
We claimed that this is impractical, and therefore we advocated a more
broad and versatile approach to compositionality.

This approach was developed in Chapter 51 There we introduced an
array of techniques, each suited for verifying certain classes of systems
better than others. Our array of inference rules developed along the di-
mensions presented in Chapter [3. In particular, we provided both circular
and non-circular rules: although the literature deals mostly with the tech-
nical complications introduced by the former, we maintained that most
actual systems do not exhibit circular dependencies among modules, and
therefore non-circular rules are often sufficient. Another technical issue
which is often given great importance in the literature is the completeness
of inference rule. We provided a completeness analysis for each rule we
have introduced, but we also rediscussed the significance of completeness
for the practical use of compositionality, claiming that it is not always an
indispensable feature.

Together with the compositional inference rules, Chapter 5/ also intro-
duced a general methodology to formalize and verify modular systems. The
methodology exploits TRIO’s modular features at the specification level,
and it combines them with compositional and general deductive verifica-
tion techniques to provide support at the system verification level. Our
methodology can be regarded as a lightweight approach to compositional-
ity, where it is the system under development that guides and suggests the
techniques and methods to be used, rather than the opposite.

Chapter [6 demonstrated our approach on two illustrative examples: a
real-time version of the dining philosophers problem, and a peer-to-peer
communication protocol. Although not industrial-strength case studies,
we believe that the two examples are sufficiently large and complicated to
assess, to some extent, the feasibility of our approach, and the advantages
of using such an approach to compositionality in reducing the burden of
verification.

Integration. The natural generalization of the compositional problem oc-
curs when we consider composite systems whose modules are specified by
means of different formalisms, and according to different semantic mod-
els. For such systems, the key problem is to integrate the various modules
within a global semantics, so that it is possible to verify the overall system.
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Under this respect, Part [IT of the thesis dealt with the problem of inte-
gration, that is composing modules written using different languages and
semantics.

The focus of this thesis being on real-time systems, we directed our
analysis on a particular, but very common, case of integration, namely the
integration of continuous-time modules with discrete-time modules. As we
discussed in Chapter [7, systems where continuous-time and discrete-time
dynamics coexist are called hybrid; they are of great interest as most control
systems are naturally described as hybrid systems.

We developed our solution to the integration problem in Chapter(8. The
basic ingredient of our framework was a formal relation between discrete-
time and continuous-time semantics that abstracts what happens in a sys-
tem where the discrete-time component has access to an ideal sampling
of the visible variables of the continuous-time components. Our relation
was called sampling, and temporal logic formulas consistent with respect to
sampling were said to be sampling invariant. The basic result of Chapter[8
was then the identification of a subset of the TRIO language whose formu-
las are sampling invariance. This subset was named STRIO and formally
defined in the same chapter. Moreover, sampling invariance also required
to restrict the interpretations of ETRIO formulas to suitably regular be-
haviors; more precisely, in order not to lose any “information” through
sampling, we required that the variability of a behavior is sufficiently slow.

The following Chapter 9 provided a precise analysis of several aspects of
our integration framework. In particular, we dealt with three fundamental
problems. First, we investigated the expressiveness of ETRIO, relating it
to the MTL temporal logic. Second, we gave alternative characterizations
of the variability restriction on behaviors introduced in the framework; in
particular, we showed how it could be related to the mathematical notion
of uniform continuity. Third, we compared our approach to integration
with another widespread notion of discretization, introduced by Henzinger,
Manna, and Pnueli [HMP92|, called digitization. Finally, Chapter [9] also
showed how RTRIO could be used in practice to formalize the behavior of
another popular formalism for timed systems, namely timed automata.

The expressiveness analysis and the comparison with digitization per-
formed in Chapter 9lshowed several subtleties that influence the expressive-
ness of formalisms close to TRIO in expressive power. Correspondingly,
Appendix [E reviewed related work about the expressiveness of metric tem-
poral logic languages and automata. This collocated more precisely X TRIO
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within several other formalisms with similar features, and it allowed us to
see to what extent our results about integration can be moved to other
formal languages.

We believe that the results on compositionality and integration provided
in this thesis improve the feasibility in — some aspects of — the use of
formal methods on large and heterogeneous systems, in a way which is
coherent with the well-known and effective practices of modularization and
separation of concerns of “classical” software-engineering.

Future work. Since the overall goal of this thesis was to apply formal
methods to large and heterogeneous systems, an important topic for future
work is to concretely use the solutions we provided on some industrial-
strength applications. Indeed, the “technology transfer” from research re-
sults to industrial practice is something that is always advocated but very
rarely — if ever — done in practice. From this point of view, this thesis was
no exception, thus we stress the importance of this further development for
the future.

Another important aspect to ameliorate the practical use of formal meth-
ods is the availability of tools. Tool development was not the focus of this
thesis; nonetheless, all our techniques should be integrated in the TRIO
IDE environment, currently under full development (see Section 2.4). In
particular, not only our compositional techniques, but also our composi-
tional methods should be given adequate tool support from IDE tools.

As we discussed in the incipit of Part[II, integration encompasses a very
broad number of problems. Although we focused on timing aspects in this
thesis, other aspects of integration deserve investigation. Among many, let
us mention the problem of integrating static complex data within timed
systems.

More specifically with reference to the integration framework we pro-
vided, there are at least two major directions for future work. First, our no-
tion of discretization allows for the discrete-time verification of continuous-
time properties. This was not the primary goal of our integration effort,
but it is an interesting by-product. On the other hand, discrete-time ver-
ification was the focus of the digitization approach, which we reviewed in
this thesis and compared to ours. Therefore, it would be interesting to see
what practical advantages our notion of integration brings to automated
verification through the use of discretization techniques.
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Refinement is a second application area for our notion of integration, and
in particular the refinement of abstract specifications into implementations.
In this sense, one would start from a high-level specification that deals
with continuous time, and then he/she would refine it to refer to a more
concrete view of implementable time, namely a discrete one; our integration
framework may help in this respect. We already developed some of the
aspects of this problem elsewhere ﬂSFR*OG,\FRS*OGﬂ; future work should
bring the results about integration we provided in this thesis to within a
more general approach to the development and refinement of specifications.
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A.1. TRIO Specification of the philosopher Class

class philosopher (const t., const T, const T})
signature:
visible: start, eating, holding, available, thinking;
temporal domain: R;
domains: S: {l,r};
items:

event start, take(S), release(S);
state eating, holding(S), available(S), thinking, hungry;

formulae:
vars: s:S,t: R;
axioms:
holding_synch: holding(l) < holding(r);
hungry: Lasted(—eating, T;) < hungry;
acquire: hungry A UpToNow (available(l) A available(r))
= (take(l) A take(r))VNowOn(—available(l) V —available(r));

eat till release: Becomes(holding(l) A holding(r))

= (3t > t. : Lasts(eating, t) A Futr(release(l) A release(r) , t));
eating duration: Lasted(eating,t) = ¢t < T¢;
eating def: holding(1) A holding(r) < eating;
thinking def: thinking < —eating;
thinking duration: Becomes(thinking) = Lasts(thinking, T});

taking: take(s) AUpToNow(—holding(s))AUpToNow (available(s))
= Until(holding(s) , release(s));

putting: release(s) A UpToNow (holding(s))
= Until(=holding(s) , take(s));
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assumptions:

TCCs: T, >te >0 N Ty > 2Ty;

availability: (3¢ > T; : Lasts(available(s) , t))
V WithinF; (Becomes(available(s)) , T} + T¢);

availability 2: WithinF(UpToNow(available(s)) ,Te):

lasting_availability: Becomes(available(s))
= Lasts(available(s) , T});

theorems:

end

taking turns: (3t > T; : Lasts(—holding(s) ,t))
V WithinF¢; (Becomes(—holding(s)) , 7 + T¢);

taking turns 2: WithinF(UpToNow(—holding(s)), T¢);

fork availability:
WithinF.;(UpToNow (available(l) A available(r)), T; + 2T¢);

always eating or not: hungry
Vv WithinP5 ((3¢ > t. : Lasted(eating, t))
V Becomes(eating) , 7} + T¢);

regular eating rg:
WithinF¢;(UpToNow (available(l) A available(r)), T} + 27¢)
>
(SomP;(start) = (3t > t. : Withiny;(Lasts(eating, t) , Ty + 27¢)));

A.2. TRIO Specification of the dining N Class

class dining N (const ¢, const T¢, const T}, const N)

import: philosopher;

signature:

visible: start;

temporal domain: R;

items: event start;
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modules:
Philosophers: array [0..N — 1] of philosopher
[te is const t., T, is const T,, T; is const T}];

connections:
vars: 7 : [0..N — 1];
(direct Philosophers][i].available(1),

—Philosophers[(i — 1) mod N].holding(r)),
(direct Philosophers][i|.available(r) ,

—Philosophers|[(i + 1) mod N].holding(1)),
(broadcast start, Philosophers.start);

formulae:
vars: k: [0.N —1],t: R;
assumptions:
TCCs: T, >t >0 AN Ty >2T, N N > 2;
theorems:

liveness rg: Vk € [0..N — 1] : ( SomP;(Philosophers|k].start)
= (3t > t. : Within; (Lasts(Philosophers|k].eating, t) , T} + 27¢)));
end

A.3. Proofs of the philosopher Class

In this section we provide proofs for all the theorems of the philosopher
class not proved in the main body of this thesis.

Theorem 53 (philosopher.taking turns).
(3t > T4 : Lasts(—holding(s) , 1))
vV WithinF.;(Becomes(—holding(s)), Tt + Te)

Proof. Let us take t = Ty and show that:
Lasts(—holding(s) , T¢) V WithinF;(Becomes(—holding(s)) , Ty 4+ Te)

for a generic s. The proof proceeds by contradiction: assume the negation
of the goal, that is, after some simple rewriting, WithinF (holding(s),T¢)
and Lastse (—Becomes(—holding(s)), Tt + Te).

Let us consider the first term WithinF (holding(s), T¢); by the definition
of the WithinF operator, this is the same as saying that there is a time
instant 0 < u < Ty in the future in which holding(s) is true. It is simple to
infer, by axioms holding synch and eating def, that eating is true at
the same instant u.

235



A. The Dining Philosophers

We have briefly highlighted the fact that eating holds on right-continuous
intervals. It can be shown that, for any right-continuous state S and for any
time distance d, if S A Lasts(—Becomes(—S),d) is true at a certain time,
then it follows that Lasts(S,d) at the same time (intuitively, this is simple
to understand). Therefore, consider the state eating and the distance Tk.
We have just shown that at time w eating is true. Furthermore, our initial
assumption of the proof by contradiction Lastsei(—Becomes(—holding(s)),
Ty + Te) implies that Lasts(—Becomes(—holding(s)), Te) at time u, being
Te +u < Te + Ty, Again, by combining axioms holding synch and
eating def, this last statement implies Lasts(—Becomes(—eating),T.).
Hence, we deduce that Lasts(eating, Te) holds at time w.

Equivalently, this last fact can be stated at time u+ T, as Lasted(eating,
Te). It is immediate to derive a contradiction with the statement of axiom
eating duration. O

Theorem 54 (philosopher.taking turns 2).
WithinF (UpToNow(—holding(s)), T¢)

Proof. By axiom eating duration, we can assume that it is false that
Lasted(eating, T.) at T time instants in the future or, equivalently, that
Lasts(eating, Te) is false at the current time. By the definition of the Lasts
operator, this is equivalent to assuming that WithinF(—eating, T,) is true
at the current time.

Let 0 < u < Tg be the time instant in the future at which eating is false.
Since eating is a right-continuous state, it follows that NowOn(—eating) is
true at u. More explicitly, these facts can be stated as Lasts;c(—eating, v)
at u, for some v > 0.

Now, consider any time instant after u, before u + v and before Te. For
example, take the time instant w = u+min(Te —u,v)/2 (clearly, w < u+wv
and w < T, by construction). We realize that UpToNow(—eating) holds at
w, since it is true that Lasted(—eating, min(Te — u,v)/2) holds at w.

Finally, by considering axioms holding synch and eating def, we de-
duce the statement UpToNow(—holding(s)) at w < Te, which concludes
the proof. O

Theorem 55 (philosopher.fork availability).
WithinF i (UpToNow (available(l) A available(r)), Ty + 2T,)

Proof. Let us consider two instances of assumption availability, one for
the left fork and one for the right fork, and fix ¢ = T¢. According to the
disjunction, the proof can be split into four cases, whether:
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1. Lasts(available(l),T¢) and Lasts(available(r), Tt)
2. Lasts(available(l) , Tt) and WithinF; (Becomes(available(r)), Ty + Te)
3. Lasts(available(r), Tt) and WithinF;(Becomes(available(l)) , Ty + Te)

4. WithinF ¢ (Becomes(available(l)) , Ty + T.) and
WithinF i (Becomes(available(r)) , Ty + Te),

all formulas holding at the current time.

Let us first consider the simpler case[l. Let us consider the time instant
u = T/2 in the future. We claim that UpToNow (available(l) A available(r))
holds at wu; since u < Ty + 2T, this would conclude this part of the proof.
In fact, obviously Lasts(available(l) A available(r),T;/2) holds, being an
immediate consequence of the hypotheses. Equivalently, this can be stated
as Lasted(available(l) A available(r),T/2) at time u. By considering the
definition of the UpToNow operator, this implies UpToNow (available(l) A
available(r)) holds at u, what we just claimed.

Let us now pass to casel2/and just assume WithinF; (Becomes(available(r))
, Tt+Te) at the current time. Now, let 0 < u < T{+ T, be the time instant
at which Becomes(available(r)) holds. By assumption lasting availability,
it follows that Lasts(available(r), T¢) also holds at u. Now, let us consider
the other assumption availability 2, taking u as the base time and [ as
fork: therefore we assume that WithinF(UpToNow (available()), Te) holds
at u. Let u4+v < u+T, be the time instant at which UpToNow (available(l))
holds. Since T, < Ty/2, it follows that v + v < u + Ty and therefore a
fortiori Lasts(available(r),v) holds at w. This last formula implies that
UpToNow (available(r)) holds at u + v. All in all, UpToNow/(available(l) A
available(r)) holds at u+v. Now, since u+v < (Ty + Te) + Te = Tt + 2T,
this branch of the proof is successfully concluded.

Casel3/has a proof which is all similar to case[2] because of the symmetry
between the left and right forks.

Finally, case 4] can be reduced to case[2/or[3} in fact in both of them we
did not use the hypothesis Lasts(available(s), T) in the proof. O

Theorem 56 (philosopher.always eating or not). hungry v
WithinP;i (3¢ > t. : Lasted(eating, t)) V Becomes(eating) , Ty + T)

Proof. In order to prove the disjunction, we assume the negation of the
first term as hypothesis. Therefore, we assume —Lasted(—eating, T) at the
current time or, equivalently, WithinP (eating, T). Writing the WithinP
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out explicitly, this means that there exists a time distance 0 < u < Ty such
that eating holds at —u.

Being eating a right-continuous state, we also have that NowOn(eating)
at —u, that is Lasts(eating,v) at —u, for some positive time v. Now,
consider the time instant —w = —u + min(u,v)/2. Clearly —u < —w < 0
and —w < —u + v, by construction. Therefore, we can characterize the
behavior of eating at —w by noticing that the state is true before and after
—w, that is UpToNow/(eating) and NowOn(eating) at —w.

Now, for any right-continuous state predicate S such that NowOn(S), it
can be proved!| that either S stays true always in the future (i.e., AlwF(S)),
or there is a future time instant p at which S becomes false, and before
that time it stays true (i.e., Ip > 0 : Lasts(S, p) A Futr(NowOn(—=S5),p)).
A similar result holds for any right-continuous state predicate S such that
UpToNow(S): either S stays true always in the past (i.e., AlwP(S)), or
there is a past time instant —p at which S becomes false, and before
that time it stays true (i.e., I3p > 0 : Lasted(S,p) A Past(NowOn(=5) V
UpToNow(—S5) ,p))E Therefore, for eating, we can combine the two prop-
erties in the past and in the future to split the proof into four cases.

1. AlwF(eating) and AlwP(eating);

2. Lasts(eating, p)AFutr(NowOn(—eating) , p) and AlwP (eating), for some
p>0;

3. AlwF(eating) and Lasted(eating, p) A
Past(NowOn(—eating) V UpToNow(—eating) , p), for some p > 0;

4. Lasts(eating, ps) A Futr(NowOn(—eating) ,py) and
Lasted(eating, p,) APast(NowOn(—eating) V UpToNow(—eating) , py),
for some py,pp > 0;

all of them evaluated at time —w.

Branch 1 is simple, since we have that eating always holds (note that
eating is true exactly at —w as well, since Lasts(eating, v) holds at —u, and
—w < —u+v).

Let us consider branch 2. From AlwP(eating) at —w, a fortiori Lasted(
eating, To) at —w. Since To > te and w < u < Ty < Ty 4+ Te, clearly

'A weaker but similar result holds for generic time-dependent predicates, but we do
not need it here. We do not discuss neither proof.
2The asymmetry with the future case is due to the fact that S is right-continuous.
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WithinP;i (3t > t. : Lasted(eating, t), Tt + Te) is satisfied, thus concluding
this branch.

Now for branch[3l Let us first try the case in which UpToNow (—eating) at
—w—p and Lasted(eating, p) at —w. If p > T, it is true that Lasted(eating,
Te) at —w > — (T + Te), so the goal WithinP;;(3t > t. : Lasted(eating, t) ,
Ty + Te) is satisfied. On the contrary, if p < Te, we can show that
Becomes(eating) holds at —w—p. In fact, we know that UpToNow (—eating)
at —w — p. Moreover, it is not hard to realize that Lasted(eating, T¢)
at —w implies that NowOn(eating) at —w — p, since p < T,. Therefore
UpToNow(—eating) ANowOn(eating) at —w—p > —(u+Te) > — (Tt +Te),
which is the definition of Becomes(eating).

We are now considering the case in which NowOn(—eating) at —w — p
and Lasted(eating, p) at —w. This case derives a contradiction, since it is
both NowOn(—eating) and NowOn(eating) at —w — p. In fact, the latter
follows from Lasted(eating, p) at —w, which is equivalent to Lasts(eating, p)
at —w — p. So, branch[3 is concluded.

Finally, branch [4] can be reduced to step [3, where we did not use the
additional hypothesis AlwF (eating). O
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B. The BitTorrent Example
Verification

B.1. Proof of Proposition

Proposition B.1.1. If, for some fized duration Tg > 0:
1. for alli € Iy: E; = WithinF(M;, Tp)
2. forallieIn: ENM; = Eit <N then i+1 else 1
8. Niery WithinF(M;, NTg) = M
4. WithinF (E;, Tg), for some i € Iy
then Lasts(E, NTg) = M.

Proof. Let us assume that Lasts(E, NTg) holds at the current time ¢, that
is F holds throughout the interval (t,¢ + NTg). By (4), there exists a
t < t; < t+ Ty such that E; holds at ¢ for some i. Without loss of
generality, let 4 = N: this amounts just to a re-numbering of the modules.

Next, let us show that there exists N instants tq,ts,...,tx such that M;
holds at t;, and t < t; < t +iTg, for all i € Zy. The proof goes by (finite)
induction. The base case i = 1 is obvious: since En at t1, then also M; at
t1 by (2), and t < t; < t + Tp by assumption.

For the inductive step, assume that M; 1 holds at t < t;_1 < t+(i—1)Tp;
notice that F holds at t;_; as well. Therefore, E; holds at ¢;_; from (2). Let
us evaluate at t;_1; it follows that there exists a t;_1 <t; <t,_1 +Tg
such that M; holds at ¢;. Given the bounds on ¢;_1, it is clear that ¢ <
tic1 <ti<tig+Tp<t+ (i—1)Tp+ T =t+iTp. This concludes the
induction.

All in all we have shown that A; 7 WithinF(M;, NTg) holds at t. (3)
lets us conclude that M holds at t. O
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B.2. Proof of Lemmas 6.3.2-6.3.4

Notice that, in proving each lemma, we can safely assume that we are in a
time interval where Lasts;e (Ek, k‘TS) holds, that is where the connections
are constant. In fact, the conclusion of the whole compositional proof holds
under the condition Lastsje (Ek) kTs. Now, for the proofs.

Proof of Lemma|6.5.2. For every i in a cluster of size k, this lemma is
equivalent to theorem peer.bounded send recv. O

Proof of Lemma 6.5.5. Trivial, since the consequent is immediately sub-
sumed by the antecedent. ]

Modular distance and properties. The proof of Lemma is more
complicated than the others, and requires an additional definition for a
distance between two peers in the cluster, together with a property of this
new item. The property is not hard to prove, but it requires a somewhat
involved case discussion.

Let us first define the distance between two peers p1,ps in a cluster as:
disty (p1,p2) = (p2 — p1) mod N. Then, we have the following property.

Lemma B.2.1.

0 if nexty (p2) = p1

dist , next =
~(p1 ~n(p2)) {distN(p1,p2) +1  otherwise

Proof. Let us first consider the simple case nexty(p2) = p1. We then con-
clude, by the definition of distance, distx(p1, nexty(p2)) = disty(p1,p1) =
0.

Let us now take the other case nexty(p2) # p1. Considering the defini-
tions of distance and next element, we have to prove

(((p2 +1) mod N) — p1) mod N = ((pz — p1) mod N) + 1. (B.1)
The proof is split into two branches, whether ps +1 < N or not.

1. p2+1 < N. In this case, (B.1) rewrites to
((p2+1) = p1) mod N = ((p2 — p1) mod N) + 1 (B.2)

Let us distinguish whether po — p; + 1 > 0 or not.
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a) p2 —p1 > —1. Notice that py — p; = —1 iff nexty(p2) = p1, so
we have po — p1 > 0 in this branch of the proof. Hence, is
established

p2 —p1 = (p2 —p1) mod N = ps — py

b) pa—p1 < —1. Notice that, for any natural number k € [1..N —1],

we have —k mod N = N — k. So, we can rewrite (B.2) as
N—=(-p2+p1—1)=(N—=(=p2+p1)) +1
which concludes this branch of the proof.

2. po+1 > N. It is simple to realize that it must be ps + 1 = N, since
p2 < N. Hence, (B.1) becomes

(0—=p1)mod N =N —p; = ((N—1-p1)mod N) +1
It is also obvious that N — 1 — p; > 0, so we finally conclude

N—-p=(N—-1-p)+1 O

To simplify the notation, we also introduce a notion of distance among
peers in a cluster that refers to the permutation of the indexes induced by
the connections. Namely, the distance between two peers with respect to a
permutation is given by the distance between their indexes in the permu-
tation and denoted as: distyy (p1,p2) = disty (75 (p1), 75 (p2)). Conse-
quently, a similar notion for the next peer is introduced. That is, the next of
a peer with respect to a permutation is given by the element next to the peer
in the permutation, and it is denoted as: next, (p) = 7y (nexty (75" (p))).
Notice that Lemma [B.2.1/ can be shown to hold also for the functions
distr, (p1, p2) and nextr, (p) we have just defined; we omit the straightfor-
ward proof of this fact.

Proof of Lemma [6.3.4. We still need to prove an intermediate lemma,
before actually performing the proof of Lemma [6.3.4] Notice that, for the
sake of brevity, we now write simply dist(pi,p2) and next(p) instead of
distz, (p1,p2) and nextz, (p) respectively, whenever the permutation 7, is
understood to be the one defined by axiom clustering at a given time
instant.
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Lemma B.2.2 (futr recv). Pe[p;].recv(i) = V0 < d < k; : Vps :
(dist(p1,p2) = d = 35 : WithinF(Pe[p2].recv(j) , dTy))

Proof. The proof goes by induction on the distance d > 0.

The base case d = 1 requires us to show that, for all po such that
dist(p1, p2) = 1, Pe[p1].recv(i) = Ji : WithinF (Pe[ps].recv(i), Ts). Now, as
a consequence of axiom peer.recv_to_send, it follows from Pe[p].recv(i)
that
WithinF (Pe[p1].send(j),Ts) for some packet j. It is not hard to realize
that, if dist(p1,p2) = 1, then ps = next(p1). Moreover, we are considering
a time interval in the future where the connections are stable, so in partic-
ular we have that connected,(p1,p2), that is Pe[p;].send(j) is equivalent to
Pe[pa].recv(j). In other words, we have shown that WithinF(Pe[ps].recv(j),
Ts), concluding the base step.

Now, let us consider a d > 1. The inductive step requires us to assume
that the property holds for d and to show that it holds for d + 1 as a
consequence. So, let us consider two generic peers such that dist(p1,p2) =
d+1, and assume that Pe[p;].recv(i) for some packet i. Let us also consider
the peer p3 such that next(ps) = pe, that is the peer immediately preceding
po in the ring of connections. We can apply Lemma [B.2.1 to show that
either dist(p1, next(ps)) = dist(p1, p2) = 0 or dist(p1, p2) = dist(p1,p3) + 1.
However, it is not the case that ps = p;, otherwise it would be dist(p1, p2) =
0 < 1. Hence dist(p1,p3) = d.

The inductive step lets us imply that 35 : WithinF (Pe[ps].recv(j) , dT5s),
assuming Pe[p;].recv(i). Considering the definition of the WithinF oper-
ator, and assuming 0 as the current time, this means that there exists
a time instant 0 < t < dT; time units in the future,when Pe[ps].recv(j)
holds. With a proof similar to that of the base case, considering the fact
that connected,(p3, p2) we can show that there exists a time instant ¢, oc-
curring no later than Ty time units after ¢, when Pe[ps].recv(l) for some
packet [. Since ¢ —t < T, then 0 < ¢ < (d 4+ 1)Ts and therefore we can
write WithinF (Pe[ps].recv(l), (d + 1)T%), thus establishing the property for
d + 1 and concluding the inductive proof. O

We are now ready for the final proof.
Proof of Lemma|6.53.4, We are actually going to prove 3i : WithinF(

Pe[j].recv(i) , kTs) for all j in the cluster, which subsumes the statement of
the lemma.
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Let us start by noting that axiom clustering implies that there exist a
peer p and a seed s such that connecteds(s,p), and the connections stays
stable over the next kT time units, because of the usual assumption. In the
remainder, let us assume 0 as the current instant. As a consequence of ax-
iom seed.sending for the seed s, it is true that WithinF(Se[s].send(7) , T)
for some packet 7, that is there exists a time instant 0 < ¢ < T in the future
when Sel[s].send(7) holds. Therefore, because of the connection, Pe[p].recv(i)
at the same time t¢.

Let us consider any generic peer j in the cluster. We can assume that
dist(p, j) > 0 without loss of generality. In fact, if dist(p,j) = 0, then it is
simple to realize that p = j and therefore the proof is concluded. Otherwise,
we can apply lemma futr recv, substituting p, j and dist(p, j) for pi, pa
and d respectively and considering t as the base time instant. We infer that
Futr(WithinF (Pe[j].recv(l) , dist(p, j)Ts) , t) for some packet [. Considering
the definitions of the corresponding TRIO operators, this means that there
exists a time instant ¢ < ¢ < dist(p, j)Ts+t in the future when Pe[j].recv(l)
happens. It is simple to realize that dist(p, j) < k, since this is true of any
pair of peers in a cluster of size k. So ¢ = dist(p,j) +1 < k, t < ¢ < T}
and g < kTs. This is the same as saying that WithinF (Pe[j].recv(i) , kT%)
for the generic peer j in the cluster, what we had to prove. O
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C. The Reservoir Integration
Example

C.1. Proofs of Theorems

Theorem 57 (reservoir]R.abstract_behavior_1).
Lastsee(F,0) A1 >1 = Futr(l > 1,9)

Proof. Since L is a state item, it changes its value a finite number of times
in the interval of length § from the current instant. In each of the re-
sulting constancy intervals, we have that either F A L or F A =L holds;
in both cases the level of fluid must increase in the interval, by Axioms
level behavior 1 and level behavior 2, respectively. Thus, after a
finite number of increases, it must be | > 1> 1 after § time instants. O

Theorem 58 (reservoir®.abstract behavior 2).
| >t = Futr(l >1,6)

Proof. Let I be the value of | at § time instants in the future, and | the
current value. By Axioms [35] through 138} it is simple to understand that
the level cannot go below the value max(l —116,0) = | — 19 > 1, since we
are assuming that t —rjd > L. O

Theorem 59 (reservoirf.abstract behavior 3).
Lastsee(mF A =L, 0) A1 >1 = Futr(l > 1,0)

Proof. Let I be the value of | at § time instants in the future, and | the
current value. Then, I’ =12>1by Axiom level behavior 4. O
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D. Proofs for the Integration
Framework

D.1. Transforming 8 TRIO Formulas into Normal
Form

Elimination of negations. In order to eliminate negations in a formula,
we just push them inward to boolean conditions. Since conditions are
closed under complement (as it will be clear in their definition, see Section
8.3), and we have the dual of each basic operator, we can always eliminate
negations from formulas. More explicitly, we perform the substitutions:

= (29) — ¢

= (¢1 A ¢2) — T¢1V
—Untilyy(¢1,62) — Releasesy)(—¢1, 7d2)
—Sincer((¢1,¢2) — Released;(—¢1, ~¢2)

recursively, until all negations are eliminated or on conditions.

Elimination of nesting. Nesting can be eliminated from R2TRIO by in-
troducing auxiliary basic items (which are primitive conditions). More
explicitly, if £ is a primitive condition, £ is an auxiliary item (not used
anywhere else in the specification), ¢ is a generic formula, and Op is any
temporal operator (i.e., Until, Since, Releases, or Released), we perform
the substitutions:

Opp(¢,§) — (= ¢) A Opp(€€)

Opp(§,¢) — (=) A Opp(&.¢)
recursively, until nestings of temporal operators are eliminated. It is simple
to check, by direct application of the definition of the operators, that the
above substitutions preserve the semantics of the formula. Exactly, one
can check that if {’ < ¢ then Opjy(¢,&) = Opp(€',€) and Oppy (€, ) =
Opyy (€ &)
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Finally, one has obviously to eliminate the double implications by in-
troducing the corresponding definitions: & < ¢ = (&' A @) V (=& A —¢);
the negations which are introduced in the process are then eliminated as
explained in the above step.

Elimination of Untily and Releases) in discrete time. Let us first note the
following equivalences. If &1, & are any conditions, and & is an auxiliary
item (not used anywhere else in the specification), then:

(¢’ & NowOn(&)) =
(¢ & UpToNow(&)) =
(¢’ & UpToNow(&)) =
(¢ & NowOn(&)) =

Untily ) (&1, &2) = Untily_q ,—1y(61,€)
Slncelu (51752)—3111061 Lu-1)[(£1,€)
))
(

)
)
(&1, 5))
(£1,€)

Let us sketch the proof of the above equivalences, for a generic discrete-
time behavior b € By,

Releases; ,)) (€1, &2) = Releases ;11 411
Releasedu,u (&1,8) = Released (+1u+1

P

e Until and Since. Assume that b =7z ¢ < NowOn(&). Then, if
b(k) =z Untily ) (€1, §2) for some instant k, then there exists a d €
(I, u) such that 52 is true at £+ d and &; is true in the whole interval
[0,d) from k, which in discrete time is equivalent to [0,d — 1]. Thus,
for d = d — 1, we have that £ is true at k + d’, since & is true at
k+d=k+d + 1. Notice that d' € (I — 1,u —1). All in all we have
that b(k:) ):Z Untﬂa_l’u_l)](gl,f’).

For the converse, assume that b(k) |z Untilg_q,-1y(&1,¢"). So,
there exists a d € (I — 1,u — 1) such that & holds at k + d and
&1 holds in the whole interval [0,d] from k. Therefore, & holds at
k+d+1,and d+1 € (l,u). Hence, for d = d + 1 we have that

b(k) ):Z Untﬂ])(fl,fg) holds.

The proof for the Since is all similar, but for the past direction of
time.

e Releases and Released. The equivalences follow from the above equiv-
alence about the Until operator, exploiting the fact that the Releases
is its dual, as well as the easily verifiable equivalences of “NowOn(¢)
with NowOn(=¢), and of ¢ < NowOn(¢"”) with ¢’ < UpToNow(¢’).

All similarly for the Released, but derived from the property of the
Since.

250



D.2. Proof of Theorem |8.3.1

Therefore, we perform the following substitutions to put a formula into
normal form.

Untilg ) (§1,€2)  — (£ & NowOn(&2)) A Untily_y ,—1y)(61,€")
Since( ) ((§1,62)  — (§ < UpToNow(&2)) A Sinceq_q,—1)(&1,¢")
Releaseslu (€1,&2) — (¢ < UpToNow(&2)) A Releases ;1 41y)(€1,€)
Released ; ,y((£1,82) — (& < NowOn(&2)) A Releases;y 1 41) (51,5)

D.2. Proof of Theorem 8.3.1

D.2.1. Size of an Interval

In order to prove the theorem, let us first introduce the definition of size of
an interval, for both time models. To this end, we introduce here the |- |p
operator, which is defined as follows, according to the time model. If the
time domain is dense, then:

u—1 ifu>l
l, = -
I u)lw {O ifu<|

If the time domain in instead discrete, we have the following definitions:

Lu)lz = I+ 14z

‘(lau)|Z = ‘<l7u—1”Z

Lalle = {u—l—|—1 if u > 1
0 ifu<|

D.2.2. Items Change Points

Let us notice the following fact that we will use in the following.

Lemma D.2.1 (Items Change Points). For any behavior obeying the con-
straint xo, if for some time t € R it is b(t) Er (¢1,...,%n) = v for some
v, then there exists ¢, >t and c, <t such that:

cn) Er Becomes((¢1,...,¢n) #v) or
t) ):]R AIWF(<1/11, e 7wn> = ’U),‘

¢p) =R Becomes((¢1,...,¢yn) =v) or
t) Er AWP({(¢1,...,¢,) = v)

b(

b(

o b(
b
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o for allt' € (cp,cy) it is b(t') Er (Y1, ..., Yn) = v;
®c,—cp>0.
Moreover, the same property holds for any condition &.

Proof. Since x, holds for b, then there exists a p € [0, ] such that for all
u € [-p,—p+ 0] it is b(t + u) Er (¥1,...,%,) = v. In particular, it is
bt —p) Er (Y1,...,¥n) =vand b(t —p+90) Er (Y1,...,%n) = v. Since
Xo implies the non-Zenoness of the items values, then [GMO1] there exist
a dp,d, > 0 such that:

e cither for all ' € [0,d,) it is b(t —p+d+u') Er (Y1,...,%n) =
v, and there exists an e, > 0 such that for all v’ € (0,¢,) it is

bt —p+d+d,+u") Er (U1,...,%n) # v, or (Y1,...,%,) = v

always in the future;

e cither for all v’ € [0,d,) it is b(t —p — ) =R (Y1, ..., ¢n) = v, and
there exists an €, > 0 such that for all v’ € (0,¢y) it is b(t —p — dp, —
u"y Er (Y1, .., 0,) # v, or (Yq,...,1,) = v always in the past.

In other words, either there is a point where the items change (some of)
their values, or they keep their current value indefinitely.

If the latter is the case, then the lemma follows immediately. Otherwise,
notice that (—p+d+d,)—(—p) = 0+d,, > ¢, therefore we have b(t —p+9J+
dn) Er UpToNow ((¢1, . ..,%¢y,) = v). Similarly, notice that —((—p —d,) —
(—p+6)) = dp+6 > 6, therefore b(t—p—d,) Er NowOn((¢1,...,1¥,) = v).

Finally, by considering condition x, again for the instants t—p+d+d, +¢
and t —p — d, — € “to the limit” as € goes to 0, then we realize that it must
also be b(t —p+d+dy) FEr NowOn((¢1,...,¢n) # v) and b(t —p—d,) Er

UpToNow ((¢1,...,1%n) # v).
Therefore, for ¢, =t —p+0 +d,, and ¢, =t — p — d,, the lemma holds.

Finally, since the value of a condition changes only if some values change
their values, the lemma holds immediately for conditions as well. O

D.2.3. Theorem

Theorem D.2.2 (Sampling Invariance for Discrete-valued Ttems). Normal-
form BTRIO is sampling invariant, for items mapping to a discrete set D,
with respect to the behavior constraint x., the adaptation functions 77(]5R{}
and nZ{-}, for any sampling period § and origin z.
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D.2. Proof of Theorem |8.3.1

Proof. The proof is split into two main parts: first we show that any XTRIO
formula ¢, interpreted in the continuous-time domain, is closed under sam-
pling; then we show that any formula ¢, interpreted in the discrete-time
domain, is closed under inverse sampling. We assume formulas written in
the normal form presented above; this is without loss of generality as it
does not restrict the expressiveness of the language as it was shown.

For ease of exposition, let us also introduce the following abbreviations:
for a real number r, let us denote by €2(r) the sampling instant z + | (r —
z)/d]6, which is immediately before r, and by O(r) the sampling instant
z+ [(r—2z)/0]6 which is immediately after . Moreover, we also denote by
w(r) and o(r) the distances between r and its previous and next sampling
instant, respectively, that is w(r) = r—Q(r) and o(r) = O(r)—r. Obviously
w(r),o(r) > 0.

(Closure under sampling)ﬁ Let b be a continuous-time behavior in [x.]r
and let ¢' = nE{¢}. Then, let b’ be the sampling o, [b] of behavior b with
the given origin and sampling period.

Now, for a generic sampling instant ¢ = z 4+ kJ, we show that b(t) FRr ¢
implies b'(k) Ez ¢', by induction on the structure of ¢.

e p=¢.
By definition of sampling of a behavior, the truth value of £ at ¢t and

k is the same, i.e., €’b(t) = f‘b(z—f—kd) = f‘b’(k)

o ¢ = Untily . (&, &2)-

Notice that ¢ is Untily ) (&1,&2), with I' = [1/6] and v’ = [u/d].
Let d be a time instant in ([, u) such that b(t + d) =R &2 and, for all
time instants e € [0,d) it is b(t+¢) =R &. Condition x, at time t+d
implies that there exists a p € [0, 6] such that for all f € [—p, —p+ ]
it is b(t +d + f) Fr &. In other words, & holds on the closed real
interval I = [t+d—p,t+d—p+4]. Since I has size §, its intersection
with the sampling points (which are § time units apart) must be non-
empty. In particular, it is either p > w(t +d) or —p + § > o(t + d):
otherwise it would be 6 = p+ (—p+ ) < w(t +d) +o(t +d) =
Ot+d)—Qt+d) =d([(t+d—2)/0] — [(t+d—2)/d]) <9, a
contradiction (where we exploited the property: [r]—[r] < 1 for any
real 7).

!This proof exploits some properties of the floor and ceiling functions. We refer the
reader to |[GKP94] for a thorough treatment of these functions.
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So, let ¢ be the sampling instant:

v Qt+d) ifp>w(t+d)
| O(t+d) otherwise

It is not difficult to check that (¢’ —t)/d € [I’,/]. In fact:

—ifp>w(t+d), thent! —t =Q(t+d) —t =06(kéd+d)/d] —
k) = 6|d/o]. Recall that d € (I,u), and then a fortiori d €
[L,u] D (l,u). So d/é € [I/6,u/d], and (t' —t)/0 = |d/d] €
[11/6], [u/o]] < [V, ],

—ifp<wt+d),thent' =t =0(t+d)—t =06(kéd+d)/§] —
k) = 6[d/o]. Recall that d € (I,u), and then a fortiori d €
[l,u] O (l,u). So d/o € [lI/d,u/d], and (t' —t)/0 = [d/d] €
[[1/61, Tu/o1] < [V, ],

So far, we have shown that b(t') =R &. By inductive hypothesis, it
follows that for d' = (' —t)/0 it is ¥/ (k+d') Ez &. Since d' € [/, u/],
to conclude this branch of the proof we have to show that for all
¢ e [0,d —1] it is V/(k +¢€) [z &. To this end, we just have
to realize that §(d’ — 1) < d. In fact, we have shown above that
d < [d/5] < d/é + 1, since [r] < r+ 1 for any real number 7.
So obviously §(d" — 1) < 6(d/§) = d. Since for all e € [0,d) we
have b(t + e) ERr &1, and since [0,8(d’ — 1)] C [0,d), then a fortiori
for all e € [0,0(d" — 1)] it is b(t + €) =r & . Finally, by inductive
hypothesis, it follows that for all integers ¢’ € [0,d" — 1] = [0,d’) it is
b'(k + ¢€') =z &1, which lets us conclude that ¥'(k) =z ¢'.

¢ = Since ,y((&1,&2)-
Notice that ¢ is Sincepy ,((€1,&2), with I = [1/6] and v’ = [u/d].

Let d be a time instant in (I, u) such that b(t — d) =R &2 and, for all
time instants e € (—d, 0] it is b(t+e) =R &1 Condition x, at time t—d
implies that there exists a p € [0, 6] such that for all f € [-p, —p+ ]
it is b(t —d + f) FERr & In other words, & holds on the closed real
interval I = [t—d—p,t—d—p+4]. Since I has size J, its intersection
with the sampling points (which are ¢ time units apart) must be non-
empty. In particular, it is either p > w(t — d) or —p +§ > o(t — d):
otherwise it would be § = p+ (—=p+0) < w(t —d) + o(t — d) =
Ot—d)—Qt—d)=6[t—-d—2)/6] —|(t—d—2)/§]) <9, a
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contradiction (where we exploited the property: [r]—|r] <1 for any
real 7).

So, let ¢ be the sampling instant:

v Qt—d) ifp>w(t—d)
Ot —d) otherwise

It is not difficult to check that (¢t —¢')/d € [I',v/]. In fact:

—ifp>wt—d), thent—t =t—Q@t —d) = §k — [(ké —
d)/0]|) =0(—|—d/d]) = d6[d/d], since |—r| = —[r] for any real
r. Recall that d € (I, u), and then a fortiori d € [l,u] D (I,u). So
d/é € l/d,u/d], and (t —t")/6 = [d/d] € [[1/d], [u/d]] C [U',u/].
—ifp <wt+s), thent—t =t—0@—d) = §k— [(ké —
d)/0]) = 0(—[—d/d]) = d]d/d], since [—r] = —|r] for any real
r. Recall that d € (I, u), and then a fortiori d € [l,u] 2 (l,u). So

d/s € [1/6,u/d), and (t—t')/8 = |d/s] € [[1/5), [u/5]] C [, ).

So far, we have shown that b(t') =R &. By inductive hypothesis, it
follows that for d’' = (t —t')/d it is b/ (k — d') =z &2. Since d’' € [I',u/],
to conclude this branch of the proof we have to show that for all
e [—(d —1),0] it is b'(k + €') Ez &. To this end, we just have
to realize that 6(d’ — 1) < d. In fact, we have shown above that
d < [d/é] < dJo+ 1, since [r] < r+ 1 for any real number r. So
obviously d(d' — 1) < 6(d/d) = d. Since for all e € (—d,0] we have
b(t +e) Er &1, and since [—§(d’ — 1),0] C (—d,0], then a fortiori
for all e € [-d(d' — 1),0] it is b(t + e) Er & . Finally, by inductive
hypothesis, it follows that for all integers ¢’ € [—(d'—1),0] = (—d', 0]
it is b/'(k + €') =z &1, which lets us conclude that b (k) =z ¢'.

¢ = Releases ;) (&1, 2).
Notice that qb’ is Releases @y (&1, &2), where I', u’ depend on the kind
of interval I = (I, u) is.

Let d' be a generic integer in (I',u’). We have to show that either
V(k+d) Ez & or there exists a €’ € [0, d'] such that b'(k+¢') =z &.

Now, we claim that (I',u') C (I/d,u/d). To show this we discuss the
four possible cases for the interval I' = (I’ /).
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— I =[lu], so I' =[l',4], where I" = [1/§] and v’ = |u/d].
Thus, [I',u] C [1/0,u/d], since |r] < r and [r] > r for any real
number 7.

— I=[l,u),so I'=[l'u), where I’ = [1/] and v/ = [u/d].
Thus, ') C [1/6,u/8), since [I,ef) = [[1/5), [uf6] — 1] €
[1/0,u/d), noting that [r] > r, and that [r] —1 < r, for any real

r.

— I =(l,u], so I' = (I',u], where I’ = |1/6] and v/ = [u/d].
Thus, (I',u'] € (1/6,u/d], since (I',u'] = [|1/6] + 1, |u/d]|] C
(1/9,u/d], noting that |r| < r, and that [r]+1 > r, for any real

r.

— I =(l,u),so I'=(U',u), where I’ = |1/6] and v/ = [u/d].
Thus, (I',u) C (1/6,u/d), since (I',u') = [|1/6] 4+ 1, [u/d] —1] C
(1/6,u/d), noting that || +1 > r, and that [r] —1 < r, for any
real r.

All in all, by hypothesis it is either b(t + dd') =R &2 or there exists a
e € [0,4d’) such that b(t + e) FRr &1.

In the former case, by inductive hypothesis we have that ¥ (k+d') Ez
&9, which fulfills the goal. In the latter case, we can write that b(t) =g
Untiljg 54y (true, §1).  Thus, by inductive hypothesis, we infer that
V(k) Fz Untilg gy (true, &1). Therefore, from the definition of the
Until operator, we have that there exists a ¢’ € [0,d’) C [0,d'] such
that b'(k + €') =z &1, as required.

¢ = Released ; ,)((§1,§2)-
Notice that ¢ is Released s ,n(£1,&2), where I, u' depend on the kind
of interval I = (l,u) is.

Let d be a generic integer in (I’ u’). We have to show that either
b'(k—d') =z & or there exists a ¢’ € [—d’, 0] such that V/(k+¢€') =z
&

Now, we claim that (I',u') C (I/d,u/d). In fact, we showed this fact
in the above proof for the Releases operator (notice that the bounds
I';u" are the same for the Releases and Released operators).

All in all, by hypothesis it is either b(t — dd’) =R &2 or there exists a
e € (—=od',0] such that b(t +¢) =R &.
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In the former case, by inductive hypothesis we have that o/ (k—d') =2
&2, which fulfills the goal. In the latter case, we can write that b(t) =g
Sinceyg sary((true, &1). Thus, by inductive hypothesis, we infer that
(k) Fz Sincejg gy ((true, §1). Therefore, from the definition of the
Since operator, we have that there exists a ¢’ € [0,d') C [0,d'] such
that b'(k — €”) |z &1, or equivalently, by substituting e’ for —e”,
there exists a ¢’ € [—d’, 0] such that b(k + ¢') =z &1, as required.

* ¢ =1 AP
Since b(t) =R ¢; implies V' (k) =z ¢} for i = 1,2, then also b(t) Er

$1 A ¢o implies V' (k) Ez &) A ).

* 9=¢1V o
Since b(t) =R ¢; implies b/'(k) =z ¢} for i = 1 or i = 2, then also

b(t) =R ¢1 V ¢ implies b/(k}) Ez (Z)/l V ¢/2

Since the above holds for a generic sampling instant ¢, we have shown that
if b =R ¢ then o5, [b] 7 ni{¢} for any behavior b € [xo]r. Therefore, we
have shown that any ZTRIO formula ¢, interpreted in the continuous-time
domain, is closed under sampling

(Closure under inverse sampling.) Let b be a discrete-time behavior,
and let ¢/ = nZ{¢}. Then, let V' be a continuous-time behavior such that
V € [xo]r and b = o5 [V'] for the given sampling period ¢ and origin z.
In the remainder, for a generic sampling instant ¢t = z + kJ, we first show
that if b(k) =z ¢ then b/ (t) Er ¢'.

Let us also introduce the following terminology. For any formula ¢’ =
n%{¢} which holds at a sampling point t = z + k¢:

e if for all s € (—6,0) it is V/(t + s) =R ¢, we say that ¢’ “shifts to the
left”:

e if for all s € (0,9) it is '(t + s) Er ¢/, we say that ¢ “shifts to the
right”;

e if there exists a ¢ € (0,0) such that for all ¢’ € [t,t+c) it is V(') Fr ¢
and for all ¢ € (t+c,t +c+e) it is V(") Er —¢', we say that ¢’
“turns false at c”.

e if there exists a ¢ € (—6,0) such that for all ¢’ € (t+ec,t] it is V' (t') Er
¢ and for all t” € (t+c—e€,t+c) it is b/ (") Er —¢', we say that ¢’
“turned false at ¢”.
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In the following proof, we will also show that, for any ¢/ = nZ{¢}:

e either ¢/ shifts to the right, or there exists a ¢ € (0,0) and a condition
¢ such that ¢ and £ turn false at c;

e cither ¢ shifts to the left, or there exists a ¢ € (—4,0) such that ¢’
and ¢ turned false at c.

We call the point ¢ the “change point” of ¢/. Notice that, whenever the

above properties hold, ¢’ becomes false together with some condition &

becoming false, at any change point. Therefore, in such cases, ¢’ becoming

false is ultimately a consequence of some basic item changing its value.
Let us now proceed by induction on the structure of the formula ¢.

e p=¢.
By definition of sampling of a behavior, the truth value of € at k£ and
t is the same, i.e., é‘b(k) = g’b/(z+k5) = §|b’(t)'
By Lemma|D.2.1| there exist ¢, ¢, such that the condition £ changes
its value at these points, or £ is indefinitely true in the past and/or
future. If the latter is the case, then £ obviously shifts to the left /right
respectively. Thus, let us assume that the former is the case.

Let us consider ¢, first, and show that either & shifts to the left, or
there exists a ¢ € (—0,0) such that £ turned false at ¢. Indeed, if
¢p —t € (—6,0), then & is true for all ¢ € (¢p,t] = (t + ¢, t], and for
€ = 0, we have that for all t” € (¢, —¢, ¢,) it is V' (t") |=r —&, therefore
¢ turned false at ¢ — ¢,. Otherwise, & shifts to the left.

Similarly, by considering ¢,,, we show that either £ shifts to the right,
or there exists a ¢ € (0,0) such that & turns false at c¢. Indeed, if
cn —t € (0,0), then ¢ is true for all ¢ € [t,¢,) = [t,t + ¢), and for
e = 0, we have that for all t” € (¢p, cp+€) it is ' (") =R &, therefore
& turns false at ¢, —t. Otherwise, £ shifts to the right.

° )= Untﬂ[l,u]} (£1,&2).
Notice that ¢’ = Untily (&1, &2), with I’ = (I—1)6 and v’ = (u+1)d.
First, let us show that o'(f) F=r Untilys g (£1,€2). Notice that this
implies b/'(t) Er ¢/, as [16,ud] C [(I — 1), (u+ 1)d].
Let d € [l,u] be the integer time instant such that b(k + d) =z o,
which exists by hypothesis. Let d’ = dd, and notice that d’ € [16, ud].
Then, by inductive hypothesis, it is b'(t + d') ERr &o.
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By hypothesis we also know that for all integers e € [0,d] it is b(k +
e) Ez &. Thus, by inductive hypothesis, we have that for all -
multiples e’ € [0,d'] it is b'(t + €') Er & . Finally, because of the
condition Yo, it must also be that, for all real values ¢’ € [0,d],
it is V'(t + €”) Fr &. Therefore, we have shown that V'(t) g
Untilys ) (€1, 2)-

Now, let us show that Until shifts to the right, that is for all s € (0, d)
itisb'(t+s) Er ¢

Let s be a generic time instant in (0,d). Let us consider ¢ = d' — s,
and notice that ¢ > d' — 6 > 16— 0 =1', and ¢ < d' < ud < o/,
thus ¢ € [I',u/]. Since t + s+ ¢ =t + d’, we have shown above that
V((t+s)+c) =V (t+d) Er -

Moreover, [s,s + ¢] C [0,d'], thus a fortiori for all f € [0,¢] it is
b((t+s)+ f) Er &1, from what we have shown above. This shows
that b/'(t + s) Fr ¢ for any s € (0,9).

Finally, let us show that either ¢’ also shifts to the left, or there exist
a c € (—4,0) and a condition £ such that ¢’ and £ turned false at c.
To this end, take any f € (—6,0), and let £ = &;. For d’" =d' — f we
have that d” € (16, (u+1)d] C [(1—1)d, (u+1)d] and b'(t+ f+d") Er
&a.

Now, let us consider &;. By inductive hypothesis, either there exists
a ¢ € (—0,0) such that & turned false at ¢, or &; shifts to the left. In
the latter case, ¢ shifts to the left as well. In the former case, it is
easy to realize that for all ¢’ € (t + ¢,t] we have V/(¥') Er ¢’ A& and
¢’ turned false at c, since “right before” ¢ + ¢ the Until must be false,
since & is false there.

gf) = Since[lyu][(fl, 52)
Notice that ¢’ = Sincep (&1, &2), with I’ = (I-1)d and v/ = (u+1)d.

First, let us show that V'() Fr Sinceps u4)[(€1,&2). Notice that this
implies V'(t) Er ¢', as [0, ud] C [(I — 1)4, (u + 1)J].

Let d € [l,u] be the integer time instant such that b(k — d) =z &,
which exists by hypothesis. Let d’ = d§, and notice that d’ € [1, ud].
Then, by inductive hypothesis, it is b'(t — d') ER &.

By hypothesis we also know that for all integers e € [—d,0] it is
b(k + e) Ez &. Thus, by inductive hypothesis, we have that for all
d-multiples e’ € [—d’,0] it is V/(t + €') R &. Finally, because of the
condition o, it must also be that, for all real values ¢’ € [—d’, 0]

3
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it is V/'(t +€”) FEr &. Therefore, we have shown that ¥'(¢) Eg
Sinceys (€15 €2)-

Now, let us show that Since shifts to the left, that is for all s € (=6, 0)
itis ' (t+s) Er ¢

Let s be a generic time instant in (—4,0). Let us consider ¢ = d’ + s,
and notice that ¢ > d — 6 > 10 — 0 =1, and ¢ < d < ud < u/,
thus ¢ € [I';4/]. Since t — (¢ — s) =t — d’, we have shown above that
V((t+s)—c) =V (t—d) Fr &

Moreover, [s — ¢, s] C [—d',0], thus a fortiori for all f € [—¢,0] it is
V((t+s)+ f) Er &, from what we have shown above. This shows
that b/'(t + s) Er ¢ for any s € (—4,0).

Finally, let us show that either ¢’ also shifts to the right, or there
exist a ¢ € (0,9) and a condition & such that ¢’ and £ turn false at c.
To this end, take any f € (0,9), and let £ = &. For d’ =d' + f we
have that d” € [19, (u+1)d] C [(I—1)d, (u+1)0] and V' ((t+ f)—d") =
Vt—d) Fr &

Now, let us consider &;. By inductive hypothesis, either there exists
a c € (—0,0) such that & turns false at ¢, or & shifts to the right. In
the latter case, ¢ shifts to the right as well. In the former case, it is
easy to realize that for all ¢’ € [t,t+ ¢) we have V(') Er ¢/ A& and
¢’ turns false at ¢, since “right after” ¢t 4+ ¢ the Since must be false,
since &7 is false there.

¢ = Releasesy; ) (§1, §2)-
Notice that ¢/ = Releasesy ,)(£1,&2), with I’ = (1 +1)d and v’ =
(u—1)0.

First, let us show that b'(t) FRr Releasesy;s))(£1,82). Notice that
this implies b/(t) =g ¢, as [16,ud] D [I',u/].

Let d be a generic instant in [[0,ud]: we have to show that either
b (t+d') ERr & or there exists a €’ € [0,d') such that b (t+¢’) Er & .
We distinguish two cases, whether ¢ +d’ is a sampling instant or not.

— If t + d’ is a sampling instant, then d = d’'/§ is an integer, and
d € [l,u] by hypothesis.
Therefore, by hypothesis it is either b(k + d) |z & or there
exists an integer e € [0,d — 1] such that b(k +¢€) Ez & .
In the former case, by inductive hypothesis we have that b’ (¢ 4+
d") ER &2, which satisfies the definition of the Releases operator
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for d'.

Otherwise, by inductive hypothesis we have that V' (t+¢) =g &1,
for ¢/ = €. Since €’ € [0,d' -] C [0,d’), we have that the defini-
tion of the Releases operator is satisfied for d’ in this case as well.

If ¢t + d' is not a sampling instant, let us consider the distances
p=d —wt+d)and n' =d + o(t + d'); these are §-multiples
by definition of w(-) and o(-). Notice that p’ >d' —§ > 16— =
(I—1)),and n' <d' 4+ <ud+9d = (u+1)d. Therefore, the two
integers p = p'/d and n = n//d are > | and < wu respectively,
that is p,n € [l, ul.

Thus, by hypothesis we have that:

* b(k + p) Ez & or there exists a e, € [0,p — 1] such that
b(k + ep) 7 &1; and that:

x b(k +n) gz & or there exists a e, € [0,n — 1] such that
b(k +en) Fz &1

Therefore, we distinguish the following three cases (covering all
the possibilities):

* b(k +p) Fz & and b(k + n) =z &;
* there exists a e, € [0, p — 1] such that b(k + ep) =z &i;
* there exists a e, € [0,n — 1] such that b(k + e,) =z &

Let us first consider the case: b(k + p) =z & and b(k +n) =z
&>. Notice that n = p + 1, so & is true on two adjacent time
instants. By inductive hypothesis, we have that b'(t+p') Er &
and b'(t + n') ERr &. Moreover, thanks to the constraint y,
which holds for b by hypothesis, &5 must also be true for all time
instants in the interval [t +p/,t +n'] = [t +p/,t +p +6]. In
particular, since d’ € [p/,p’ + 4], then /' (t + d') Egr &. That is,
the definition of the Releases is satisfied for d’.

Now, for the other two cases, notice that (p —1)d < (n—1)d <
(d'+0) —d = d’; hence ey, e, € [0,n — 1] and de,, e, € [0, (n —
1)8] C [0,d’). Therefore, if there exists a e, € [0,p — 1] such
that b(k + ep) =z &, or if there exists a e, € [0,n — 1] such
that b(k + e,) Fz &1, then there exists an €’ = de,, or € = dey,
respectively, such that € € [0,d") and V/(t + ¢€') Er & . That
is, the definition of the Releases is satisfied for d’ in both these
cases.
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All in all, since d’ is generic, we have shown that
V'(t) Fr Releasess ua))(§1,82), and thus a fortiori V'(t) Fr ¢'.

Now, let us show that Releases shifts to the left, that is for all
s € (—6,0)itis b (t+s) Er ¢

Let s be any time instant in (—d,0), and consider a generic d €
[I/,u']. Since s+ d € [ld,ud], we have shown above that it is ei-
ther O'(t + (s + d)) |Er &2 or there exists a ¢’ € [0,s 4 d) such that
V(t+e) Fr

In the former case, we have shown that b'((t + s) + d) ERr &2. Oth-
erwise, let ¢’ = ¢’ — s; then ¢’ € [—s,d) C [0,d), as s < 0. There-
fore, we have that there exists a ¢’ € [0,d) such that ¥'(t + €') =
b ((t+s)+e") Er &. All in all, we have shown that b'(t + s) ERr ¢’
for a generic s € (—4,0).

Finally, let us show that either ¢’ also shifts to the right, or there
exist a ¢ € (0,d) and a condition £ such that ¢’ and £ turn false at c.
To this end, take generic f € (0,9) and d” € [(I 4+ 1)0, (u — 1)d], and
let £ = &;. Notice that d” + f € [1d, ud], therefore by hypothesis it is
either V/'(t + d” + f) ERr & or there exists a ¢ € [0,d” + f) such that
b(t+c) Fr &1

Now let us consider two cases:

— For all f and d” as above, it is either V/((t + f) + d") =R & or
there exists a ¢ € [f,d” + f) such that V/(t +¢) =V ((t + f) +
(- ) g &

Since ¢ — f € [0,d"), this shows that V/(t + f) ERr ¢, and thus
¢’ shifts to the right since f is generic.

— Otherwise, assume that the previous case is false, that is there is
some f and d” as above such that b'((t+ f)+d”) Er —&2 and for
all ¢ € [f,d"+ ) it is V(t+¢) = V((t+ ) + (¢ — ) Er &1,
Therefore, it must be that there exists a ¢ € [0, f) such that
Vit +c) br 6.

Now, if we consider Lemma [D.2.1] and because of the non-Zeno
behavior of the basic items values, a point ¢ + v at which &
becomes false must exist for some v, that is for some v it must be
V' (t4+v) Er Becomes(—&;). Then, & is true in the whole interval
[t,t +v), since v = ¢ < f < 0 in this branch of the proof, and
false afterward, and in particular in the interval (t4v,t+v+9).
Consequently, ¢’ is also true in the whole interval [¢, ¢ + v), and
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it becomes false “right after” t+wv, as a consequence of £; turning
false.

A little reasoning should convince us that the two cases do indeed
cover all the possibilities. Then, since f is generic, we have shown
that either ¢’ shifts to the right, or there exists a ¢ € (0,6) such that
¢’ and & turn false at c.

¢ = Released; ,;((£1,62).
Notice that ¢’ = Releasedpy ,((&1,&2), with I! = (I +1)0 and v’ =
(u—1)0.

First, let us show that b'(t) |=r Releaseds,4)((£1,62). Notice that
this implies V/(t) Er ¢, as [16,ud] D [/, ]

Let d' be a generic instant in [0, ud]: we have to show that either
V(t—d') ER & or there exists a €’ € (—d', 0] such that b/ (t+¢€') ERr & .
We distinguish two cases, whether ¢ — d’ is a sampling instant or not.

— If t — d' is a sampling instant, then d = d'/§ is an integer, and
d € [l,u] by hypothesis.
Therefore, by hypothesis it is either b(k — d) [z & or there
exists an integer e € [—(d — 1), 0] such that b(k +e) =z &1.
In the former case, by inductive hypothesis we have that v'(t —
d") ERr &2, which satisfies the definition of the Released operator
for d'.
Otherwise, by inductive hypothesis we have that b/ (t+€') ERr &1,
for ¢/ = ed. Since €' € [—(d' —0),0] C (—d’,0], we have that the
definition of the Released operator is satisfied for d’ in this case
as well.

— If t — d’ is not a sampling instant, let us consider the distances
p=d —o(t—d)and n' =d +w(t —d); these are §-multiples
by definition of w() and o(). Notice that p’ > d' —§,> 16— =
(I—1)),and n' < d' +6 <ud+3d = (u+1)d. Therefore, the two
integers p = p//d and n = n’/§ are > [ and < u respectively,
that is p,n € [l, u.

Thus, by hypothesis we have that:

* b(k —p) =7 & or there exists a e, € [—(p — 1), 0] such that
b(k +ep) =7 &1; and that:
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x b(k—n) =z & or there exists a e, € [—(n— 1), 0] such that
b(k + en) ’:Z 51-

Therefore, we distinguish the following three cases (covering all
the possibilities):

* b(k —p) 'ZZ 52 and b(k - TL) ):Z 52;
* there exists a e, € [—(p — 1), 0] such that b(k + ep) =7 &1;
* there exists a e, € [—(n — 1),0] such that b(k + e,,) =z &1.

Let us first consider the case: b(k—p) Ez & and b(k—n) =z &o.
Notice that —n = —p — 1, so & is true on two adjacent time
instants. By inductive hypothesis, we have that b'(t —p') ERr &
and O'(t — n') Er &. Moreover, thanks to the constraint y,
which holds for b by hypothesis, &, must also be true for all time
instants in the interval [t —n/,t —p'| = [t —n/;t — (n' = §)]. In
particular, since d’ € [n' — §,n/], then b'(t — d’) =R &- That is,
the definition of the Released is satisfied for d’.

Now, for the other two cases, notice that —(p — 1) > —(n —
1)d > —d' + 6 -0 = —d'; hence ep, e, € [—(n — 1),0] and
dep,de, € [—(n —1)0,0] C (—d’,0]. Therefore, if there exists a
ep € [—(p —1),0] such that b(k + e,) =7z &1, or if there exists a
en € [—(n —1),0] such that b(k + e,) =z &1, then there exists
an € = de, or ¢ = dey, respectively, such that ¢ € (—d',0]
and b'(t + €') Er &. That is, the definition of the Released is
satisfied for d’ in both these cases.

All in all, since d’ is generic, we have shown that
V(t) Fr Released s, ((€1,€2), and thus a fortiori b'(t) Fr ¢'.

Now, let us show that Released shifts to the right, that is for all
s€(0,0)itisb'(t+s) Er ¢

Let s be any time instant in (0,0), and consider a generic d €
[I/,u]. Since d — s € [l0,ud], we have shown above that it is ei-
ther V/(t — (d—s)) ERr & or there exists a €/ € (—(d—s), 0] such that
V(t+ ) .

In the former case, we have shown that o'((t + s) — d) ERr &2. Other-
wise, let ¢’ = €' — s; then €” € (—d, —s] C (—d,0], as s > 0. There-
fore, we have that there exists a ¢’ € (—d, 0] such that b/(t + ¢') =
b ((t+s)+e") Er & . Allin all, we have shown that b'(t + s) ERr ¢’
for a generic s € (0,4).
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Finally, let us show that either ¢’ also shifts to the left, or there exist
a c € (—4,0) and a condition £ such that ¢’ and £ turned false at c.
To this end, take generic f € (—4,0) and d” € [(I41)d, (u—1)d], and
let £ = & . Notice that d’ — f € [16, ud], therefore by hypothesis it is
either b/'(t — (d" — f)) ERr & or there exists a ¢ € (d” + f,0] such that

V(t+c) Fr &
Now let us consider two cases:

— For all f and d” as above, it is either V/((t + f) — d") Egr & or
there exists a ¢ € (—(d” — f), f] such that V/(t+¢) =V ((t+ f) +
(c— 1) Fr &

Since ¢ — f € (—d”, 0], this shows that V/(t + f) ERr ¢', and thus
¢’ shifts to the left since f is generic.

— Otherwise, assume that the previous case is false, that is there
is some f and d” as above such that b'((t+ f) —d") Er &2 and
for all ¢ € (—(d" — f), f] itis V' (t + ) Er —& . Therefore, it
must be that there exists a ¢ € (f,0] such that 0'(t + ¢) =R &
Now, if we consider Lemma [D.2.1, and because of the non-Zeno
behavior of the basic items values, a point ¢ + v at which &
becomes false must exist for some v < 0, that is for some v < 0 it
must be b/ (t+v) Er Becomes(&1). Then, & is true in the whole
interval (¢t + v,t], since —v = —¢ < —f < ¢ in this branch of
the proof, and false beforehand, and in particular in the interval
(t +v,t +v—240). Consequently, ¢' is also true in the whole
interval (¢ + v,t], and it became false “right before” t + v, as a

consequence of & turned false.

A little reasoning should convince us that the two cases do indeed
cover all the possibilities. Then, since f is generic, we have shown
that either ¢’ shifts to the left, or there exists a ¢ € (—§,0) such that
¢’ and & turned false at c.

¢ = ¢1 /A ¢a.

Since b(k) =z ¢; implies V' (t) Er ¢} for i = 1,2 by inductive hy-
pothesis, then also b(k) Ez ¢1 A ¢ implies b/ (t) Er ¢} A ¢h.

Now, by inductive hypothesis, for both ¢ = 1,2: either ¢, shifts to
the right, or there exists a ¢; € (0,0) and some condition §; such that
¢; and & turn to false at ¢;. Thus, if both ¢} and ¢} shift to the
right, then ¢/ = ¢} A ¢} also shifts to the right; otherwise there exists
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ace€ (0,0) = min;—; 2 ¢; such that ¢} A ¢4 turns to false at c.

Similarly, by inductive hypothesis for both ¢ = 1,2: either ¢, shifts
to the left, or there exists a ¢; € (—9,0) and some condition &; such
that ¢/ and & turned to false at ¢;. Thus, if both ¢} and ¢4 shift
to the left, then ¢/ = ¢} A ¢, also shifts to the left; otherwise there
exists a ¢ € (—0,0) = max;—; 2 ¢; such that ¢} A ¢, turned false at c.

* p=0¢1V o
Since b(k) =z ¢; implies V' (t) =g ¢} for ¢ = 1 or i = 2 by inductive
hypothesis, then also b(k) |z ¢1 V ¢2 implies b/ (t) Er @) V ¢h.

Now, we realize that if ¥'(t) =g ¢, for some i = 1 or ¢ = 2, then
by inductive hypothesis either ¢} shifts to the right or there exists a
c € (0,9) and a condition &; such that ¢, and &; turn false at c¢. Thus,
a fortiori either ¢ shifts to the right, or there exist a ¢ € (0,0) and
a condition £ = &; such that ¢’ and £ turn false at c.

Similarly, by inductive hypothesis either ¢/ shifts to the left or there
exists a ¢ € (—4,0) and a condition & such that ¢, and & turned
false at c. Thus, a fortiori either ¢ shifts to the left, or there exist a
¢ € (—0,0) and a condition £ such that ¢’ and £ = &; turned false at
c.

(Filling in the gaps between sampling points.) So far, we have proved
that, for any formula ¢, if b =z ¢ then for all t = z 4 k¢ for integer ks,
it is b'(t) Er ¢'. Moreover, we have proved some results about shifting of
temporal operators that we are going to use in the remainder.

Now, in order to finish the proof by showing that V/(t) Er ¢’ for all
t € R, that is b/ =R ¢, we have to demonstrate that any formula ¢’ which
is true at all sampling points cannot become false between any two of them.
More precisely, we prove that whenever ¢/ = n%{d)} is true at two adjacent
sampling points ¢, = 2z + k0 and ¢, = t, + 0 = 2z + (k+ 1)d, then for all
t' € [ty ta] it is V(') Er ¢

If ¢’ at t, shifts to the right, or ¢’ at t, shifts to the left, then the
conclusion follows trivially.

Thus, let us assume that ¢’ does not shift to the right at ¢, and does not
shift to the left at ¢,,. Therefore, we proved above that:

e there exist a ¢, € (0,6) and a condition &, such that ¢’ and &, turn
false at c,; and
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e there exist a ¢, € (—6,0) and a condition &, such that ¢’ and &,
turned false at c,.

Now notice that |(t,+cn)— (tp+¢p)| = |[0+cn—cp| < d. Therefore, because
of condition x,, the two changing points must actually coincide, otherwise
there would be two changing points (corresponding to two changing points
for the value of the conditions &, and ., and thus to the changing points
of some basic items) within § time units. But the two formulas above
contradict each other if the two changing points coincide. Thus, this means
that ¢’ actually never becomes false in the interval [t,,,], which is what
we had to prove.

Since tp, t, are actually generic, we have proved that b =g ¢', that is
any 2TRIO formula ¢ is closed under inverse sampling.

Since any formula of the ZTRIO language is both closed under sampling
and closed under inverse sampling, then 2TRIO is sampling invariant. []

D.3. Sufficient Conditions for Non-Degenerate
Intervals

Let us provide the proofs for the formulas in Table[9.1.

Adapting from continuous time to discrete time.

e Until and Since. Let ! = [I/6]| and «' = [u/d]. Thus, v’ — ' +
1 > u/6—1/0+1 > 1 by definition of floor and ceilings, that is
I[l',u']|z > 0.

e Releases and Released. Let I' = (I',u) be the adapted interval. We
distinguish the following four cases.

— I'=[l',4],withl" = [1/§] and v’ = |u/d]. Thus, |u/é|—[1/5]+
1> |u/d]—1/6|—141=|u/d|—[1l/6] > |u/d—1/5] > 1, since
|[u,l]|r > ¢ by hypothesis, and [r| < r+ 1 and [r1] — [r2] >
|r1 — r2] for any real numbers r, 7y > ro. That is, |[lI',u/]|z > 1.

— I' = [lI';«), with I’ = [1/6] and v/ = [u/d]. Thus, |[I',u)|z =
[',u' —1]|z = v — U, and then [u/d] — [1/§] > u/d — [1/] >
u/d—(1/6+1) > 0, since |[l,u)|r > ¢ by hypothesis, [r] <r+1
for any real r, and we are considering integer numbers (hence
> 0 implies > 1). That is, |[l',u)|z > 1.
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— I'=(U',«], with I’ = [1/6] and v/ = |u/d]. Thus, |(I',u]|z =
[l +1,u']|z =« — U, and then |u/d| — |1/§] > |u/d] —1/0 >
(u/6—1)—1/6 > 0, since |(I,u]|g > ¢ by hypothesis, [r| >r—1
for any real r, and we are considering integer numbers (hence
> 0 implies > 1). That is, |(I',u/]|z > 1.

- I'= ('), with " = |1/6]| and v' = [u/d]. Thus, |(I',u)|z =
[ + 1,/ —1]|z = v —I' — 1, and then [u/d] — |I/6] — 1 >
u/d—1/0—1>1,since |(l,u)|r > 26 by hypothesis, and [r] < r
and [r] > r for any real number r. That is, |(I,u/)|z > 1.

Adapting from discrete time to continuous time.

e Until and Since. Let I' = [I',u/], with I' = (I — 1) and v/ = (u+ 1)é.
Thus, v/ ="' = 6(u—1+2) =06((u—1+1)+1) > 26 > 0, since
[l,u]|lz =u—1+12>1 by hypothesis.

e Releases and Released. Let I' = [I',4/], with I’ = (I + 1) and v/ =
(u—1)d. Thus, v/ ="' =0(u—1—2)=06((u—1+1)—3) >0, since
[l,u]|lz =u—14 1> 3 by hypothesis.

D.4. Theorems about Strict vs. Non-Strict
Operators

D.4.1. Proof of Formula 9.3

Proof of Formula (9.3). Let us start with the = direction: assume that
b(t) Er Until (ab))(#1,¢2). That is, there exists a u € (¢ + a,t + b) such
that b(u) Fr qbg and, forall v € (t,u) it is b(v) FRr ¢1. From b(u) R ¢2 it
follows immediately that Until, ) (true, ¢2), so the first conjunct is proved.

Then, let us show that b(t) =g Lastsei (Until(g o)) (41, ¢2) ,a). Let a be
any instant in (0, a; we have to show that b(t+a) Fr Untilg 1o0)) (¢1, P2)-
Notice that (t + a,t +b) C (t + a,4+0), as t +a >t + a, therefore

€ (t + a,+00) a fortiori. Moreover, [t + a,u) C (t,u), as a > 0, so
for all v' € [t + o, u) it is b(v') R ¢1. Therefore, we have shown that
b(t + a) Fr Until(g 4o0)) (61, $2).

Let us now consider the < direction. First of all, let us notice that

b(t) Er Lastse (Untﬂ 0,4+00)) (@1, P2) , ) implies that b(t) =R Lastsee(¢1, a).
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Moreover, in particular b(t+a) =R Until(g yo0)) (61, ¢2). That is, there ex-
ists a u € (t + a,+00) such that b(u) =R ¢2 and, for all v € [t + a,u) it is
b(v) Fr 1.

Let us now consider the case u € (t + a,t + b). All in all, ¢; holds
over the interval (t,u), and ¢9 holds at u; therefore, we have b(t) =g
Until (a,b) (@1, P2).

Otherw1se let us consider the case u ¢ (t + a,t + b); therefore u €
('t + b, +00), where (' is the “complement” of H In particular, this implies
that for all v € (¢t,¢ + b) it is b(v) FRr ¢1- Moreover, we are also assuming
that b(t) =R Until, py)(true, ¢2) in this branch of the proof. That is, there
exists a v’ € (t + a,t + b) such that it b(u "Y ER ¢2. Since (t,u') C (t,t + b),
then we have shown that b(t) =g Untll (a,5)) (91, #2), as required. O

D.4.2. Proof of Formula

Proof of Formula . Beginning with the = direction, assume that there
exists a u € [t + a,t + b) such that b(u) Er ¢2 and for all v € (t,u) it is
b(v) ER é1. Then, if u € (t+a,t+b), obviously b(t) = Until ) (¢1, $2).
Otherwise, it is u = t + a; therefore b(t) g Futr(¢ps,a) and b( ) ERr
Lastsee (1, a).

For the <« direction, let us first consider b(t) g Untll (a,5)) (@1, 2); then
there exists a u € (t + a,t + b)) such that b(u) =R ¢2 and for all v € (t,u)
it is b(v) Er ¢1. Since (t +a,t +b) C [t + a,t + b), then a fortiori
b(t)Untilj, ) (¢1,2). Otherwise, b(t) o Lastsce(¢1,a) A Futr(¢2, a) im-

plies b(t) =R Untllab (¢1, ¢2) for u =1t + a. O

D.4.3. Proofs of Formulas[9.7-9.9

Proof of Formula|9.7. Let us start with the = direction, and let ¢ be the
current instant. We assume that there exists a u € [t 4+ a,t + b) such
that b(u) R ¢2 and, for all v € (t,u] it is b(v) R ¢1. Clearly, b(t) =R
Untily, py(true, g2 A ¢1) is immediately implied. We still have to show that,
for all d € (t,1 +a], it is b(d) R Untiljg 1 o0) (¢1, P2)-

So, let us consider a generic d; notice that u € [d, +00) as d < t+a < u,
and recall that b(u) ER ¢2. Moreover, let v’ be any point in [d, u]; since
d > t, a fortiori v' € (t,u]. Thus, by hypothesis b(v') ERr ¢1, so we are
done with proving b(d) =r Untiljg o)) (01, $2).

?That is )’ is [and ]’ is (.
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Let us now consider the < direction. First of all, let us realize that
b(t) =R Lastse (Until[07+oo)](¢1,¢2) ,a) implies b(t) =R Lastsee(¢1,a). In
fact, otherwise there would be a y € (t,t + a) such that b(y) =r —¢1; but
since it is also b(y) Fr Untiljg o) (¢1, $2) we clearly have a contradiction.

Next, let us consider the consequences of b(t+a) Fr Untiljg ooy (1, 2):
it means that there exists a v’ € [t + a, +00) such that b(u’) =R ¢2 and for
all v/ € [t +a,u] it is b(v') ER é1.

Let us first distinguish the case ' € [t + a,t + b). All in all, ¢; holds
over the interval (¢,v'], and ¢ holds at u; therefore, we have b(t) ER
Untiljg p)) (61, d2)-

Otherwise, let us consider the case ' & [t + a,t + b); therefore v/ €
("t + b, +00), where (' is the “complement” of ). In particular, this implies
that for all v’ € (¢,t+b) it is b(v') R ¢1. Moreover, we are also assuming
that b(t) Fr Until,p)(true, g2 A ¢1) in this branch of the proof. That
is, there exists a v’ € [t + a,t + b) such that b(u”) ERr ¢2 A ¢1. Since
(t,u”) C (t,t +b), then we have shown that b(t) Fr Gﬁl[ab»(qbl,qbg), as
required. O

Proof of Formula[9.8. Let us start with the = direction, and let ¢ be the
current instant. We assume that there exists a u € [t + a,t 4 b) such that
b(u) ERr ¢2 and, for all v € (t,u) it is b(v) ERr ¢1. If, furthermore, b(u) =R
¢1, then b(t) Er ﬁt/il[a,b”((bl,(bg) and we are done. Otherwise, let us
consider the case b(u) R —¢1: clearly, b(t) Fr Untilj, py(true, —¢1 A ¢2)
is immediately implied (as =¢1 A @2 holds at u). We still have to show that,
for all d € (t,t+ a), it is b(d) Fr Untilg 4 o0)) (@1, 701 A 2).

So, let us consider a generic d; notice that u€ (d,+o0)asd <t+a<u,
and recall that b(u) R ¢2 A —¢1. Moreover, let v’ be any point in [d, u);
since d > t, a fortiori v' € (t,u). Thus, by hypothesis b(v') Er ¢1, so we
are done with proving b(d) Fr Until(g ;o)) (#1, 21 A gbg)

Let us now consider the <= direction. The implication Untll[ayb)] (¢1,02) =
ﬁl[a,b»(qbl,qbg) is straightforward, so let us assume that b(t) Er

Lastsee (Unti1(0y+oo))(¢1, —p1 A ¢2), a) and b(t) Fr Until[a7b>](true, =1 N\ ¢2).

First of all, let us realize that b(t) =R Lastsee (Until(07+oo))(qb1, =1 N\ ¢2)
implies b(t) F=r Lastsee(¢1,a). In fact, otherwise there would be a y €
(t,t + a) such that b(y) Fr —¢1; but since it is also b(y) Fr Untilg 1 o0)) (
@1, 701 A ¢2) we clearly have a contradiction, as the latter requires in par-
ticular that b(y) ERr ¢1.

Next, let us realize that the facts b(t) Er Lastsee(¢1,a) and b(t) Er
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Lastsee (Until(07+oo))(¢1, —¢1 N\ ¢2) ,a) holding together require that b(t +
a) Fr Untiljg o)) (d1, 701 A ¢2). In fact, ¢1 cannot become false before
t + a, but it must become false somewhere after (or at) ¢ + a to satisfy
Until(g 4o0)) (@1, 7¢1 A ¢2,a). For the same reason, ¢; must hold until it
becomes false after or at ¢t + a. All this is exactly what is required by
b(t + a) Er Untilp 4 o0))(¢1, 701 A d2).

Next, let us consider the consequences of this fact: it means that there
exists a v/ € [t 4+ a,+00) such that b(u') Er —¢1 A ¢ and for all v/ €
[t + CL,U/) it is b(?}’) ):]R 1.

Let us first distinguish the case v’ € [t + a,t + b). All in all, ¢; holds
over the interval (¢,u'), and ¢2 holds at u'; therefore, we have b(t) ERr
Untﬂab (61, P2)-

therwwe let us consider the case v’ & [t + a,t + b); therefore v’ €
('t + b,+00), where (' is the “complement” of ). In particular, this implies
that for all v’ € (¢,t4b) it is b(v') =R ¢1. Moreover, we are also assuming
that b(t) Fr Until, ) (true, =¢1 A ¢2) in this branch of the proof. That
is, there exists a u” € [t + a,t + b) such that b(u”) FR 01 A ¢2. Since
(t,u”) C (t,t +b), then we have shown that b(t) R Untllab (p1,02), as
required. O

Proof of Formula (9.9). Let us start with the = direction: assume that
b(t) Er ﬁl(0’b>)(¢1,¢2). That is, there exists a w € (¢,t + b) such that
b(u) Er ¢2 and, for all v € (t,u) it is b(v) R ¢1. From b(u) =R @2 it
follows immediately that Until(o,b»(true, ®2), so the first conjunct is proved.

Then, let us show that b(t) Fr eNowOn(Unt11(07+oo))(¢1,¢2)). More
precisely, we can show that for all a € (£, u) it is b(a) =R Until(g 1o0)) (01, P2)-
In fact, notice that u > «a, so u € («a,+00); moreover [a,u) C (t,u), as
a >t. All in all, we have that b(a) FRr Until(g ;o)) (d1, P2).

Let us now consider the < direction, and let us assume that b(t) =g
Until (g p))(true, ¢). That is, there exists a u € (¢,¢+ b) such that b(u) F=r
¢o. If, furthermore, for all v € (t,u) it is b(v) Fr ¢1, then the left-hand
side holds obviously.

Otherwise, let v be the smallest instant in (¢, u) such that b(v') Er ¢4

or b(v') ERr elmn(—'gbl). Recall that we are assuming as hypothesis the
right-hand side of the double implication. So, from the definition of the

eNowOn operator, we are also assuming that there exists a 3 > 0 such that
for all v € (¢,t + B) it is b(y) Fr Until o)) (#1, ¢2). Notice that this
implies that for all v € (¢,t 4 () it is also b(¥) =R ¢1.
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Next, let m be the minimum of the two time distances 3/2 and (v —t)/2.
Since t +m € (t,t + ) we have that b(t +m) Fr Untilg 4o0)) (@1, P2).
That is there exists a v’ € (¢t + m,+o0) such that b(v') =R ¢2 and for
all v € [t +m,u) it is b(v") ER ¢1. But since m < (v/ —t)/2, then we
conclude that for all instants ¢ in (¢,u') it is b(t') ERr ¢1.

Now, if u/ > v/, we have a contradiction. Thus, it must be v/ < /. In
this case, notice that: «' € (¢t,u) C (t,t + b), which implies that b(t) g
[ml(o’b»(d)l, qbg) as required. O]

D.5. Analyticity and Uniform Continuity

Let us study the relations between the notions of continuity, uniform conti-
nuity, and analyticity to understand how non-Zenoness and non-Berkleyness
are related for dense-valued items. In particular, we show why uniform
continuity and analyticity are orthogonal notions. In the remainder, un-
less otherwise stated, we consider the whole real axis R as the domain of
functions.

Analytic and not uniformly continuous. The simple polynomial function
fi(z) = 22 is trivially analytic. However, its first-order derivative f](z) = x
is not bounded, and indeed f; is not uniformly continuous.

Uniformly continuous and not differentiable. It is apparent from the
definitions that a uniformly continuous function is also a fortiori contin-
uous. However, there exist functions which are uniformly continuous but
are not even differentiable (and thus a fortiori not even Cl-smooth and
thus clearly not analytic). The following function f; is an example of such
functions.

fa(x) = |z —[z]]

where [-] denotes the nearest integer function:

{m if 2 < x| +1/2

[x] otherwise

[z]

f2(x) indicates the distance from the integer which is nearest to z; as it
can be seen clearly from the plot of the function if Figure [D.1} fo is not
differentiable at all integer and half—intege points.

%Le., points k + 1/2 for some k € Z.
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distance from the nearest integer'
0.5
0.4
0.3
0.2 +
0.1
0 .
-3 2 1 0 1 2 3

Figure D.1.: A function fo which uniformly continuous but not differen-
tiable.

Uniformly continuous, C°°-smooth, and not analytic. Let us now show
an example of function which is uniformly continuous, has continuous
derivatives of all orders (i.e., it is C*°-smooth), but nonetheless fails to

be analytic.
0 ite=0
€T =
fs(@) {el/xQ ifx#0

Figure shows a plot of f3, for reference.
First of all, it can be shown by induction that the n-th order derivative
of f3 is of the form:

(n) _ 0 ifz=0
£7(@) {pn(x)e_l/mz o

where py,(x) is some rational function without singularities in R.zo; there-
fore, each derivative is continuous over R, and the function is infinitely
differentiable. Moreover, the form of the derivative implies that its limit as
x goes to zero is also zero, so all the derivatives are indeed continuous over
all RR.

However, f3 is not analytic at the origin. In fact, since fén)(()) = 0 for
all n, the Taylor series of f3 at 0 is simply the constant 0. Therefore, the
series about the origin does not converge to the function.
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0.9

exp(-1/x2)
08 |

0.7
0.6
05
0.4
0.3
0.2

0.1 r

Figure D.2.: A function f3 which is uniformly continuous and C*, but not
analytic.

Finally, let us demonstrate that fs is uniformly continuous. To this end,
let us just consider the first-order derivative fj of fs:

0 ifz=0
! —
fs(@) = {536_1/”2 if x #£0

Without a detailed analysis, let us just look at the plot of f4 in Figure|D.3
and see that it is indeed bounded; therefore fs3 is uniformly continuous,
having bounded derivative.

D.6. Axiomatization of Timed Automata

Completeness of the axiomatization. In order to show the complete-
ness of the above axiomatization, let us consider a generic run of a given
timed automaton, for which the axioms introduced in Section[9.5/have been
spelled out.

(80, 10) T (s1,11) 22, (s2,12) =
We have to show that all the above axioms are made true by the timed
behavior associated with the given timed word. First of all, let us notice
that axiom[9.16lis true by construction, if we consider the behavior of the
start predicate associated to any behavior. Considering the other axioms,
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d(exp(-1/x"2))/dx

Figure D.3.: The derivative f; of f3 is bounded everywhere.

since they all are implicitly universally quantified with respect to time (as
every TRIO formula), we prove their truth by induction of the length of
the timed word.

Base case: up to time 7. Without loss of generality, we assume that
71 > 0. Recall that:

e start is true from —oo to J;

e 55 € 5 is true from 0 to 7 > §;

e in = ¢ holds from 0 to 7q;

e rs(c) holds from 0 to ¢ for all clocks ¢ € C.

As a consequence, all axioms (but axiom [9.14) are trivially true from —oo
until § excluded, as all their antecedents are false (since they consider an
interval of length § with their UpToNow operators). For what concerns
axiom [9.14, it is also true, as at time 0 NowOn(start) holds.

Now, from time d up to time 71 excluded, we have that:

e start is false;
e 50 € 9 is true;

e in = ¢ holds;
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e rs(c) is false for all clocks ¢ € C.

Consequently, axioms [9.12 [9.14 are trivially true since their antecedents
are false. Axiom [9.15 is also true, since after ¢ its antecedent is false,
whereas exactly at § its consequent is satisfied by construction. Regarding
axiom [9.17] it is also true as the state will change to s1 at 1.

Inductive case: from time 7; to time 7,1 . We now show that, assuming
the axioms are satisfied until time 7; excluded, then they are also satisfied
until time 7;1 excluded. Let us first consider what happens exactly at time
7. Let (sj_1,s;,04,A;,&) € E be the transition that is taken; therefore:

e start is false;

e UpToNow(st = s;_1) is true;

e NowOn(st = s;) is true;

e in = ¢; holds from 7; to 7; + §;

e rs(c) holds from 7; to 7; + 6 for all clocks ¢ € A;.

Therefore, axiom [9.12/ holds, as the symbol o; is inputed, the right clocks
are reset and the condition = is met by construction, thus making true
both sides of the implication. Similarly for axioms [9.13] and [9.14] both
sides of their implications are true. Axiom holds trivially as start is
false, whereas axiom [9.17 is satisfied for s = s;.

From time 7; until time 7,41, we have that:

e start is false;
e s, is true;
e in = g; holds until 7; + §, and in = € holds afterward;

e rs(c) for all clocks ¢ € A; holds until 7; + 0, and rs(c) is false for all
clocks ¢ € C afterward.

Thus, all axioms are trivially true, their antecedents being false, except for
axiom which is however satisfied for s = s;41.
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Correctness of the axiomatization. Conversely, in order to assess the
correctness of the axiomatization, we have to show that any timed behavior
satisfying all the axioms corresponds to a run which is a valid run of the
automaton. This is also shown by induction on the timed behavior.

Base case: up to time 7y5. Let us first of all consider axiom Let t4
be the time instant at which AlwP(start) holds. Because of the condition
Xo, it must be ¢4 > 6. Moreover, axiom also implies that start cannot
be always true, but it must exist an instant 735 > t; where start changes
its value from true to false; more precisely, still because of the regularity
conditions, it must be UpToNow (start) and NowOn(—start) at 7.

Let us consider axiom[9.15]at 7p. Since AlwP (st = s), AlwP(in = ¢), and
AlwP(rs(X)) for all clocks A, the value of the state, input, and resets is
completely defined until 7p. Therefore, we realize that this corresponds to
the first element (s,0) of a valid timed word, which just specified the reset
conditions of the automaton.

Inductive case: from time 7; to time 7;,1. The state s; holds until time
7; by inductive hypothesis. It cannot be that st = s; holds forever, because
of axiom [9.17. More precisely, thanks to the regularity of the behaviors,
it is well defined a time instant 7,41 > 7 + & > 7; such that st changes
its value from s; to some s;11 at 741. Let us now trace the run of the
automaton from time 7; to 7;41.

Let us first notice that start is constantly false, as it has been so since
time 7g, due to axiom

Exactly at time 7;, it might be that NowOn(in = o) for some input char-
acter 0. This would correspondingly set the resets rs(A) for the appropriate
clocks \’s; this behavior would of course be compatible with both axioms
9.12/and [9.14] Otherwise, if NowOn(e) at 7;, notice that there would be no
resets from time 7; to time 7; + 4.

Now, notice that in must equal € for all remaining time instants, up to
Ti+1. In fact, if this would not be the case, then we should record a state
transition at that time, because of axiom [9.13. Similarly, by axiom [9.14,
rs(c) must be false for all clocks ¢, otherwise a state transition should also
occur (as we already noted, NowOn(start) is false).

Correspondingly, we can add the next step in the timed word (s;—1,;—1)
RN (si,vi), compatibly with the timed behavior of the axiomatized au-
tomaton.
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E. Integration and Metric
Temporal Logics: Related
Work

This chapter reviews several works broadly related with the notion of inte-
gration, and with the problem of expressiveness of metric temporal logics
close to STRIO.

In particular, Section [E.1 presents other notions of discretization and
integration, different from both our notion of sampling and Henzinger,
Manna, and Pnueli’s digitization. Section [E.2 collects several recent re-
sults about the expressiveness of (metric) temporal logics of expressive
power close to BTRIO. Section [E.3 presents several formalisms that are
variations of timed automata, and summarizes results about their relative
expressiveness. Finally, Section E.4lreports about expressiveness and decid-
ability issues concerning formalisms other than “standard” metric temporal
logics and timed automata.

E.1. Other Notions of Integration and
Discretization

A straightforward way to compose continuous-time and discrete-time mod-
els is to integrate discrete models into continuous ones, by introducing some
suitable conventions. This is the approach followed by Fidge in [Fid99|,
with reference to timed refinement calculus. The overall simplicity of the
approach is probably its main strength; nonetheless we notice that inte-
grating everything into a continuous-time setting has some disadvantages
in terms of verification complexity, as continuous time usually introduces
some peculiar difficulties that render verification less automatizable. On
the contrary, our approach wants to achieve a sort of equivalence between
discrete-time and continuous-time descriptions, so that one can resort to
the simpler discrete time when verifying properties, while still being able
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to describe naturally physical systems using a full continuous-time model.

Hung and Giang [HG96| define a sampling semantics for Duration Cal-
culus (DC), which is a formal way to relate the models of a formula to its
discrete observations, approximating DC’s integrals of state variables by
sums. The notion is based on the notion of digitization [HMP92].

As expected, for general DC formulas the standard semantics and the
sampling semantics differ. Hence, the authors derive some inference rules
that outline what is the relation between the two semantic models under
certain assumptions. In particular, the main aim is to formulate sufficient
conditions that guarantee the soundness of refinement rules, that permit
to move from a continuous-time description to a sampled one, thus moving
from specification to implementation.

Notice that our framework deals instead with integration of continuous
and discrete, which, in a sense, coexist within the same formal model. On
the contrary, [HG96] focuses on refinement from continuous to discrete
towards implementation.

The general problem of integrating different temporal (and modal) log-
ics is studied by Chen and Liu in in a very abstract setting. Their
solution is based on the introduction of a very general semantic structure,
called resource cumulator, that can accommodate several concrete seman-
tics and their respective modalities. The framework is then based on re-
finement rules that permit to translate from one logic language to another
one, while mapping appropriately the corresponding resource cumulators.
The approach seems indeed general and abstract, even if we believe that
one may desire more intuitiveness and simplicity of use from that. More-
over, it focuses on refinement among semantically different temporal logic
specifications, while our framework focuses on the different problem of in-
tegrating different semantics at the same level of abstraction, thus stressing
modularity and reuse of specifications.

Asarin, Maler and Pnueli in [AMP98] tackle the problem of discretiz-
ing the behavior of digital circuits in a way that preserves the qualitative
behavior of the circuit in a strict sense, that is such that the ordering of
events in continuous time must be unchanged in the discretized behav-
ior. In particular, this implies that events occurring at different times,
however close, must occur at distinct discrete time instant, in the same
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order. This is a stronger notion than — in particular — those by Hen-
zinger et al. [HMP92|, where a strictly monotonic sequence is allowed to
be discretized into a weakly monotonic one.

More precisely, the authors are basically considering Boolean signals,
that is interval-based behaviors over infinite time (i.e., the time domain is
R>0). The same authors have shown in [MP95| that the subclass signals
that are definable by their digital circuits can also be accepted by timed
automata.

The results about digitizability are demonstrated by geometric argu-
ments about polyhedra. While for the simpler acyclic circuits digitizabil-
ity is always possible for some suitable choice of discretization step ¢, for
general cyclic circuits the distance between state changes can become ar-
bitrarily small, so that discretization is impossible for any choice of step
6 > 0. On the contrary, the same cyclic circuits are discretizable according
to the weaker notion of discretization introduced in [HMP92] (see Section

9.4).

E.2. Temporal Logics

A detailed summary about expressiveness, decidability and complexity re-
sults for real-time temporal logics is given by Henzinger [Hen98|. In the
remainder, we report on some (more or less) recent result about expres-
siveness for temporal logic that is not dealt with extensively in [Hen98].

E.2.1. Nesting Operators in Discrete-Time Linear Temporal
Logic

The problem of the expressiveness induced by the nesting depth of oper-
ators in LTL (with the “traditional” interpretation over discrete time) has
been thoroughly studied by Wilke et al. in various works; see [Wil99] for a
survey of related results.

In particular, Etessami and Wilke [EW96| have shown that the hierarchy
of LTL formulas defined by the maximum depth of nested until operators
(independently of the number of next operators) is expressively strict, and
the same holds for LTL formulas where one evaluates the depth of nested
until and since operators. The proof is constructive and based on game-
theoretic techniques. More exactly, it is shown that, for all £k > 2 the
property denoted as STAIRy, indicating the strings over the ternary al-
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phabet ¥ = {a, b, ¢} such that there is a substring where a occurs k times
but no b occurs, is expressible with LTL formulas with k — 1 nested until
operators, but it is not expressible with fewer than k — 1 nestings. We note
that the given LTL formula for STAIRy uses k — 1 nested next operators
as well. A similar result holds if we allow the past since operator as well.

Thérien and Wilke further characterize the so-called “until-since hierar-
chy” of LTL in [TWO04| by algebraic means. Without describing the details
which are quite convoluted and technical, let us just mention that any LTL
property is expressible with a formula with nesting depth of k£ if and only
if the (syntactic) semigroup associated with the property (considered as a
formal language) belongs to a certain (decidable) class of finite semigroups.

Kucera and Strejéek [KS05] tackle similar problems as [EW96], but from
a more “practical” (and less algebraic) perspective. [KS05] can be seen
as a nice generalization of previously known results about the stuttering
wnwariance of LTL. Let us start by noting that we consider future-only LTL,
which basically consists of all formulas expressible with the two modalities
next (X) and until (U). Note that we consider a weak until, i.e., one which
does include the current instant; therefore next is not reducible to it. For
this definition of LTL, we define a strict syntactic hierarchy of formulas,
according to the maximum number of nested until and next operators in
a formula: LTL(U™,X") denotes the set of all LTL formulas where the
nesting depth of wuntil is at most m, and the nesting depth of next is at
most n. If one of the two superscript is omitted, we place no restrictions on
the nesting depth of that operator: for instance LTL(U™,X) denotes the
set of all formulas where there are at most m nested untils, and any number
of nested nexts. The natural question, answered affirmatively in [KS05],
is whether the above hierarchy is also semantically strict. The answer
constitutes an extension of the classical results by Lamport |Lam83], and
Peled and Wilke [PW97] about stutter-free languages.

In order to state the main result of the paper, we have to briefly introduce
the notion of (m,n)-stutter equivalence. Let ¥¥ 3 a = apajay--- an w-
word of alphabet . For m,n > 1, a finite subword 8 = ;i1 -+ -y (1)
of « is (m,n)-redundant whenever the subword o4t q1---
Qitjt (mj—(m-n—1))—1 18 a prefix of §¥. Informally, the subword § is re-
dundant if it is repeated “basically” m + 1 times, except for a suffix of
length m — 1 — n which can be ignored. We naturally introduce a partial
order relation between words according to whether one can be obtained
from another by removing some (even infinitely many) non-overlapping
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(m,n)-redundant subwords. The partial order induces a least equivalence
among words, which we call (m, n)-stutter equivalence.
Let us now state the main results of the paper.

e every LTL(U™, X") language is closed under (m,n)-stutter equiva-
lence;

e a language is definable in LTL(U, X) iff it is (m, n)-stutter closed for
some m,n > 1;

e the following results are corollaries of the above main facts, but we
report them explicitly for their significance:

n times

——
— for all n > 1, the LTL(U% X") formula XX---Xp cannot be
expressed in LTL(U, X"~ 1);
— for all m > 1, the LTL(U™,X%) formula F(p; A F(pa A --- A
F(pm—1 A Fpm)--+)) cannot be expressed in LTL(Um_l,X)E

— for all m,n > 1, the classes LTL(U™~!, X") and LTL(U™, X"~ 1)
have incomparable expressive power.

E.2.2. (Un)Decidability and Expressiveness of MTL

Ouaknine and Worrel investigate in [OW05] some questions on the decid-
ability of the temporal logic MTL with a point-based semantics. It is
known that MTL is undecidable for interval-based semantics, as it has
been discussed in [AH92b, AH93, Hen98|. In [AFH96| it has been demon-
strated that the key property of MTL that renders it undecidable is its
possibility of expressing punctuality, that is ezact time distances between
events. Due to the denseness of the time domain, undecidability carries
over to finite interval-based semantics (see also [DP06]).

Somewhat surprisingly, things change when considering a point-based
(timed word) semantics. First of all, notice that if we allow past operators
in the language (i.e. we consider MTLY), undecidability stays (supposedly,
with finite domains as well) [Hen91]. As pointed out in [OW05, Footnote
3], this is a consequence of the undecidability proof in [AH93,Hen91|, which
was carried out in a monadic second-order theory of event sequences, which
subsumes both future and past operators. However, the authors show that
MTL over finite timed words is instead decidable.

! Assuming the usual definition for the eventually operator: Fp = TUp
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The proof goes through the use of timed alternating automata (TAA,
also introduced in [LWO05]), that are an extension of the traditional idea
of alternating automata to the timed case. More precisely, let us consider
TAA with just one clock; this restriction is necessary in order to attain
decidability, since the emptiness problem is undecidable for general TAA
but decidable for single-clock ones. Notice that, since the class TAA is
closed under all Boolean operations (and complementation, in particular),
the universality problem is also decidable for one-clock TAA. Then, the
authors show how to construct a one-clock TAA that accepts the same
language as that of any given M'TL formula. By the way, notice that
the construction exploits strict semantics [Hen98| for the until operator of
MTL, but it is easy to pass to the weak semantics while keeping the same
results. Finally, notice that, again due to closure under complementation of
MTL formulas, the model-checking problem is equivalent to satisfiability.

[OWO05] also discusses additional results, among which we only mention
the complexity of deciding M'TL formulas over finite timed words. It is
shown to be nonprimitive recursive (this means that, while being recursive,
the complexity measure grows faster than any primitive recursive function;
it also implies that it is nonelementary — as elementary languages are a
strict subset of primitive recursive ones).

The decidability of full MTL over infinite timed words is settled in
OWO06|, again by Ouaknine and Worrel. The result is a negative one,
so the decidability results over finite timed words [OW05] do not carry
over to the infinite case. More precisely, it is shown that both satisfiability
and model-checking (against timed automata) are undecidable for MTL
over infinite-length timed words, even if we limit ourselves to the syntac-
tic fragment with constrained ne:z:, eventually, and always operators. As
a side result, combining these results with the open problems about one-
clock alternating timed automata discussed in [OWO05], one also gets that
the emptiness problem for one-clock timed alternating automata with weak
parity acceptance conditions is undecidable; a fortiori, this implies the un-
decidability of the same problem for the more expressive one-clock timed
alternating automata with Biichi acceptance conditions.

The main results of the paper are drawn by showing how to translate
satisfiability questions for MTL (for both infinite and finite point-based

2For timed words, this means referencing to the next timestamped symbol in the word.
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semantics) formulas into recurrent-state? and halting problems for a par-
ticular class of state machines known as insertions channel machines with
emptiness testing, or ICMETs for short. ICMETs are queue machines with
finite-state control and with insertions errors, that is where channels (where
data is accessed with a FIFO policy as in a queue) may nondeterministically
insert or remove symbols. Channel machines without insertion errors are
as expressive as Turing machines; faulty channel machines are instead less
powerful, to the extent that their halting and recurrent-state problems are
decidable with polynomial-time complexity. By endowing faulty channel
machines with emptiness testing (i.e., the ability to test whether a channel
is empty), we get a class of automata of intermediate power: their halt-
ing problem is decidable (albeit with non-primitive recursive complexity),
whereas their recurrent-state problem is still undecidable. Therefore, the
aforementioned correspondence between MTL and ICMETs immediately
translates to the stated (un)decidability results.

D’Souza and Prabhakar in [DP06| compare the expressiveness of MTL in
the point-based and interval-based (or, as they call it, “continuous”) seman-
tics over finite-length interpretations. It is known that MTL is undecidable
over interval-based semantics [AH93, AFH96|, whereas it is decidable over
finite-length point-based (i.e., finite timed words) semantics [OWO05]. The
authors exploit this difference to show that, over finite-length interpreta-
tions, interval-based MTL is more expressive than point-based MTL. Let
us add some detail about how they get to the result.

First of all, they introduce a point-based semantics (they call it pointwise
MTL, and denote it as MTLPY), and a continuous semantics (denoted as
MTL®) which is different from the traditional interval-based semantics.
In fact, both semantics interpret MTL formulas over finite-length timed
words, so that the two semantics can be put on a common ground and
compared. The difference is that, while in pointwise semantics each formula
can predicate only about instants of time that correspond to events in the
word, in the continuous semantics formulas assert at all instants of time,
including in between any two timestamped events.

It is fairly easy to show that MTL® is at least as expressive as MTLPY.
In order to show that the inclusion is strict, the authors consider the unde-
cidability proof for MTL®, which relies on encoding deterministic 2-counter
machines. Then, the separation proof proceeds by contradiction: if one as-

3That is, determining whether a state is visited infinitely often in a computation.

285



E. Integration and Metric Temporal Logics: Related Work

sumes that MTLPY is as expressive as MTLS, then it must be possible to
perform the same encoding of 2-counter machines in MTLPY. But then,
the satisfiability problem for MTLPY would undecidable, a contradiction
of a previously known result [OWO05].

Bouyer et al. [BCMO05] analyze the expressiveness of the two well-known
real-time temporal logics TPTL [AH94| and MTL [Koy90, AH93]. More
precisely, they carefully analyze a long-held conjecture [AH92b]AH93,Hen98|
about TPTL being more expressive than MTL over dense time.

The main contribution paper is an in-depth proof of the conjecture for
both the point-based and the interval-based semantics. However, it is
shown that the formula O(p = 2.0(qAQ(rAz < 5))) proposed in [AH93] as
a witness of the conjecture is actually not expressible in MTL only in the
point-based semantics. The authors, however, provide a different witness
(namely, the formula O(p = z.0(q Az < 1 ADO(x < 1 = -r)))) which
separate the expressiveness classes in the interval-based semantics as well.
The result is very technical and quite convoluted (as most expressiveness
results are), so we do not report here the low-level details, for simplicity.

Let us remark, however, that both families of models that separate TPTL
and MTL in the point-based or interval-based semantics are (simply) char-
acterizable using past operator of MTL’s. Therefore, a corollary of the
expressiveness results for TPTL and MTL is that MTLY (i.e., MTL with
past operators) is strictly more expressive than future-only MTL in both
the point-based and the interval-based semantics.

Finally, it is shown that the existential fragments of TPTL and MTL
defined as the fragments where the only allowed modality is ¢ — are fully
decidable, and the two language fragments are equally expressive.

Prabhakar and D’Souza present several results about the expressiveness
of MTL, and syntactic and semantic variants thereof, in [PD06]. Several of
the results use similar techniques as those in [BCMO05|, while generalizing
and extending them to handle other cases.

The authors consider four basic semantics for the temporal logic lan-
guages they analyze: point-based semantics (called pointwise in the pa-
per), a variant of interval-based semantics (called continuous semantics;
basically it consists of an interval-based semantics where all items are con-
strained to behave as instantaneous events. This is the same semantics as

in [DP06].), and both infinite- and finite-length variants of the two seman-
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tics. Concerning syntax, they consider three variants of the MTL language:
one is “regular” MTL (i.e., with the constrained until as only modality);
then we have MTLg, which is MTL enriched with the unconstrained since
operator for the past; and finally we have MTLg , which is MTL with
both constrained until and constrained since operators.

Before succinctly summarizing the results of the paper, let us briefly
present a preliminary result which is used in the paper to extend known
results about the expressiveness of MTL over infinite behaviors (and in
particular, those in [BCMO05]) to finite-length behaviors as well. The result,
which holds over both the pointwise and the continuous semantics, is a sort
of counter-freeness property of MTL, which can be regarded as an analogue
of the counter-freeness characterization of LTL over discrete time domains
IMP72] (see also for a brief history of the subject). Informally,
the result can be stated as follows. Given an (infinite) sequence of finite
timed words o, 01,09, ..., which are periodic (i.e., one can be obtained
from a previous one by “pumping” a fixed finite subword), we say that the
sequence ultimately satisfies an MTL formula ¢ if from some index k£ > 0
all words in the sequence satisfy ¢. If, from some index k > 0, all words in
the sequence do not satisfy ¢, we say that the sequence ultimately does not
satisfy ¢. The counter-freeness property says that, given an MTL formula
¢, all periodic sequences of finite timed words either ultimately satisfy or
ultimately do not satisfy ¢. This characterization is useful in extending
expressiveness results for MTL to finite words.

Finally, here it is a short summary of the expressiveness results of the
paper.

e MTL in the continuous semantics is strictly more expressive then
MTL in the pointwise semantics, for both finite and infinite behav-
iors; here, the proof for infinite behaviors of [BCMO05] is extended to
the finite case;

e in the continuous semantics, MTL is strictly contained in MTLg,
for both finite and infinite behaviors; again, the proof for infinite be-
haviors of [BCMO05] is extended here to the finite case (in accordance
with the results in );

e the language MTL in the continuous semantics is strictly less expres-
sive than the language MTLg, over both finite and infinite behaviors;

e the language MTLg is strictly less expressive than MTLg in the
pointwise semantics, over both finite and infinite behaviors; note that
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whether the same inclusion is strict in the continuous semantics is still
unknown.

E.2.3. Decision Techniques for MITL

Maler, Nickovic and Pnueli consider in [MNP05] the language MITLE#’]’
which is a bounded future-and-past version of the temporal logic MITL
[AFH96]. More precisely, it is MITL enhanced with past modalities (i.e.,
the bounded since operator), with the restriction to temporal intervals
of the form [a,b], with 0 < a < b such that a,b € IN. The language
MITLEJ?] is interpreted over finite-length Boolean signals (also called state
sequences), that is behaviors b that are (total) functions from [0,7) to B"
for some r € IN, with non-Zeno requirements. Notice that the restriction
to natural numbers is basically the same as the common restriction to ra-
tionals, after a proper scaling. Moreover, since we consider finite-length
signals, the restriction to finite intervals in MITL formulas is also irrele-
vant. Thus, we are basically dealing with the same logic as in [AFH96],
except that we enhance it with past modalities and restrict it to finite-
length state sequences.

About MITLEJ)] with the finite-length interval-based semantics, the au-
thors prove the following results:

° past—MITLE b] is deterministic, that is for every past—MITLﬁl b for-
mula 7 one can construct a deterministic timed automaton accepting
exactly the behaviors satisfying ;

) future—MITLﬁl b is nondeterministic, that is there exist future-

MITLEJ)] formulas ¢ that are accepted by some nondeterministic
timed automaton but by no deterministic timed automaton; notice
that this implies a fortior: the same result for MITL over infinite
interval sequences.

The reason for this asymmetry turns out to be related to the fact that past
formulas have a syntactic idiosyncrasy that guarantees that “fast” changes
(i.e., changes whose duration is less than the size of the smallest interval
appearing in formulas) can be forgotten as they do not influence the truth of
past formulas. This is also due to the fact that we avoid punctual intervals
(this is MITL’s fundamental feature), otherwise the asymmetry between
past and future would not arise.
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Finally, the authors point out that determinizability may be obtained
by “enforcing some minimal delay of sub-formulas that imply something
toward the future”; this requirement is captured by our notion of behavior
constraint for formulas in normal form [FRO05|, or, equivalently, by the
inertial bi-bounded delay operator of Maler and Pnueli [MP95].

Maler, Nickovic and Pnueli in [MNPO6| consider once more the language
MITL, and propose a translation of MITL formulas to timed automata
alternative to the first one proposed by Alur et al. in [AFH96]. Their
alternative translation is simpler and is therefore much more amenable to
implementation than the original one.

In accordance with [AFH96], the authors choose an infinite-length interval-
based semantics of signals. With respect to the semantics assumptions,
there are only two departures from what chosen in [AFH96]. First, they
disallow punctual behaviors in signals; more precisely, they consider be-
haviors over R that are constant over left-closed right-open intervals.
Second, they consider a variation of the (bounded) until operator such
that whenever p U ¢ is true, then p must hold as well when ¢ holds in the
future, not just before. The authors claim that both assumptions simplify
the exposition without appreciable sacrifice of generality.

Correspondingly, the authors show how to build a timed signal trans-
ducer for any MITL formula. It is a nondeterministic — as future MITL
operators are in general nondeterministic [MNP(05]  timed automaton
that takes as input a signal, representing a behavior of primitive items,
and outputs a Boolean signal corresponding to the truth value of the for-
mula over time for the given input. The construction is based on two basic
ideas. The first is modularity: the structure of the automaton mirrors
closely the structure of the formula it models. Moreover, the construction
builds on similar work for untimed automata [KP05]. The second in an
observation, also made in [AFH96|, that Boolean signals representing the
truth over time of any MITL formula have the property of holding their
truth values for at least d time units, where § is the size of the smallest
interval appearing in the formula. This property is crucial in ensuring that
the testing the truth of signals that range over a continuous domain can
be done with finitely many clock, even if, a priori, a signal could change
its value an infinite number of times in any finite interval.
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E.2.4. Expressive Completeness of Future Linear Temporal
Logic

Hirshfeld and Rabinovich consider in [HR03] the problem of finding a (un-
timed) temporal logic which is expressively complete for the future frag-
ment of the monadic logic of order (MLO).

MLO is traditionally considered the standard setting in which ordering
properties about linear sequences of events can be expressed. Similarly,
Linear Temporal Logic is traditionally considered a language suitable to
express the same properties as with ML O, but in a much more natural and
intuitive way. In other words, the use of modalities in place of first-order
logic with ordering predicates can be considered as a way of “syntactic-
sugaring” the underlying MLO. The sugaring is desirable as long as the
modal logic language is expressively complete with respect to MLO. For
LTL the expressive completeness has been first proved by Kamp [Kam68|.
Kamp’s result holds for LTL with the until and since modalities, for MLO
interpreted over Dedekind-complete structuregg in particular the standard
models of natural and nonnegative real numbers  with respect to standard
ordering — are comprised in Kamp’s result.

considers the derived problem of finding a temporal logic, using
only future operators, which is expressively complete for the future frag-
ment of MLO, which is characterized in a precise way. This apparently
simple restriction yields nonetheless surprising results. First of all, the use
of the sole until operator does not bring expressive completeness over the
reals (whereas it is well-known that it does so over the naturals [GPSS80]).
Even more surprisingly, [HR03| shows that no temporal logic with a finite
number of future modal operators can be expressively complete for future
properties. Note, however, that this limitation holds only for general be-
haviors over the reals (and rationals as well). If we restrict our analysis to
finitely-variable (i.e., non-Zeno) behaviors only — as it is routinely done
— then the expected result (that until is expressively complete) holds.

E.2.5. Decidable Metric Temporal Logics over the Real Line

Hirshfeld and Rabinovich in [HR04] (and, previously, in [HR99b, HR99a|)
present some results about decidability and expressiveness of modal logics
for real-time, comparing them with other well-known contributions in the
same area. The followed approach is rather different than those of most —

“That is such that every non empty bounded subset has a lowest upper bound.
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if not all — other similar works, and it is insightful in considering common
problems and questions from a different perspective.

The semantic base is the canonical time model of the nonnegative real
numbers. Notice that one of the main features of the work is that we
do not restrict ourselves to non-Zeno behaviors over such a time model,
but consider any possible behavior of Boolean-valued monadic predicates
(i.e., time-dependent propositions, with another wording). From a purely
mathematical point of view, it is quite natural to introduce a monadic
language to express metric properties in these models. Since qualitative
properties are naturally expressed with the monadic logic of order (MLO),
its straightforward generalization that introduces a unary function +1 over
the time sort is considered as the “standard” language in which to express
quantitative temporal properties. We call this language MLO™.

Since MLO™ is undecidable, we seek a “sufficiently expressive” subset of
it which is decidable. To do this, [HR04| starts by defining a metric modal
—

logic with two metric modalities {1, ¢ 1, in addition to the standard until
and since. It is called Quantitative Temporal Logic (QTL). The formula
O1p (respectively, <61p) denotes that p will hold (has held) within the next
(previous) time unit. The corresponding syntactic fragment of MLO™, for
which QTL is expressively complete, is denoted as QMLO.

Although QTL may seem not very expressive, demonstrates that
this is not the case. In particular, it is at least as expressive as all known
decidable real-time logics (such as MITL). Indeed, QTL is also decid-
able. [HR04] shows this with purely logical methods, without resorting to
automata theory. In a nutshell, the basic idea is to reduce the satisfiabil-
ity problem of any QTL formula to the satisfiability of another formula
in temer normal form, using auxiliary variables. The timer normal form is
made of a conjunction of a MLO (and thus non-metric) formula, and a par-
ticular QMLO formula Timer expressing quantitative constraints. Then,
it is shown that Tumer can be further reduced to a pure MLO formula by
observing that, roughly speaking, its satisfiability is preserved by “stretch-
ings” of the real line. Therefore, since MLO is fully decidable, QTT. (and
QMLO, being as expressive) is decidable as well.

Still resorting solely to logic-based methods, it is shown that the satis-
fiability problem for QTL is in PSPACE. Just like the other results, this
holds both for unrestricted behaviors, and for non-Zeno (a.k.a. finitely-
variable) ones.

Next, [HR04] considers possible extensions of QMLO and QTL that
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are more expressive, but still decidable. In particular, let us mention the
introduction of a hierarchy of modal logics, of increasing expressive power,
that are all decidable: for each n > 0, the logic QTL(n) has a modality
capable of expressing the fact that n predicates eventually become true (in
the given order) within one time unit. Other enrichments using automata
connectives and variants thereof are briefly discussed.

In this vein, the other paper [HR06] proves a conjecture by Pnueli, and
a generalization of it, about the expressiveness of “counting modalities”
similar to those of the logic QTL(n) mentioned in the previous paragraph.
Even more generally, it is shown that for any temporal logic — even with
infinitely many modalities all of whose modalities are expressible in
the second-order monadic logic of order (enriched with the unary addition
predicate to account for metric properties) with a bounded quantifier depth,
there exists some n such that the property that a predicate is true at least
n times within the next unit of time is not expressible in the logic. This
result is strong, even if we have to consider that several variants may open
different perspectives. In particular, one may ask what happens if we allow
more arithmetic than just addition by one, or, more generally, what other
modalities should be considered as “basic”. Finally, notice that the general
result is proved for the whole real line, even if it is conjectured that it holds
for the nonnegative reals as well.

Finally, concludes with a critical discussion and comparison with
existing similar works. In particular, it remarks how the two widely used
w-models of timed words and timed interval sequences lack some basic fea-
tures and their customary use has refrained some basic results about more
general (and natural) models from being discovered (especially unrestricted
behaviors over the reals). On the other hand, the proliferation of different
models and temporal logic languages for quantitative properties is mostly
due to the shortcoming of such models, in the opinion of [HR04]. As an
example, it is remarked how point-based models fail to satisfy intuitively
perfectly reasonable properties such as Dgltrue, which is not satisfied by
timed words where some pair of timestamps differ by more than one time
unit. For what concerns interval-based sequences, although they represent
precisely the finite-variability requirement, they are not unique representa-
tions, in that the same behavior is representable with more than one choice
of interval coverage. Moreover, as it is also well-known [AFH96], the cor-
responding logics do not distinguish between a real and a rational model;
according to [HRO04| this is an indication that the accepted models need
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reconsideration.

E.3. Timed Automata

This section reviews some variants of timed automata, and discusses the
expressiveness of the resulting formalisms.

Alur and Henzinger consider in [AH92a| two-way timed automata, that
is timed automata that can go back and forth on a timed word. They
adopt an point-based (i.e., timed word) finite-length semantics. The basic
nondeterministic version of these automata is denoted as 2NTA. Their
deterministic subset is denoted by 2DTA; notice that determinism ensures
that there is a unique run for any timed word, but a 2-way determinis-
tic timed automaton may become nondeterministic when rendered as a
(I-way) traditional timed automaton. Let us also introduce the notion
of bounded timed automata: the class 2N'TA is the subclass of two-way
(nondeterministic) timed automata such that in every run over any timed
word the automaton visits any symbol in the word at most 2k+1 times; the
class 2DTA is its deterministic counterpart. Notice that standard non-
deterministic and deterministic timed automata (usually denoted by NTA
and DTA, respectively) correspond to the classes 2NTA, and 2DTA,,
respectively.

The authors draw the following results:

e the automata in each class 2DTA, give a strictly less expressive for-
malism than those in the class 2DTA,  ;

e conversely, increasing the number of nondeterministic reversals does
not add expressiveness to that achieved by 2NTA, (i.e., NTA);

e since deterministic (two-way) timed automata are closed under all
Boolean operations, while NTA are not, and it is easily seen that
one.way nondeterminism can simulate any finite number of deter-
ministic reversals, the class of languages defined by 2DTA, for any
k € IN is strictly contained in the class of languages defined by NTA ;

e for every MITL formula ¢, there exists an automaton in 2DTA;
that accepts precisely the behaviors that satisfy ¢; the converse is
not true, as there exist MITL formulas that require nondeterminism

(see also [MNPO05]);
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e let us consider MITLF | that is MITL enriched with past operators.
As the number of alternations in the nesting of subformulas between
past and future modalities in a MITLY formula increases, the num-
ber of reversals required by an automaton in 2DTA,; — accepting
the same language as the formula — increases correspondingly. A
byproduct of this result is that MITL remains decidable even if en-
riched with past operators;

e let us finally consider the language MITL_, the extension of MITL
that allows singular (i.e., pointwise) intervals in temporal operators;
remember that in [AFH96| it was shown that this introduces unde-
cidability over infinite-time interval-based interpretations, but also
see |[OWO05]| for related results with different interpretations. The
authors show that the models of any MITL_ formula can be recog-
nized by some automaton in 2DTA , but not by any finite number of
reversals (i.e., an unbounded number is required in the worst case);

e the authors also conjecture that unbounded deterministic two-wayness
is not powerful enough to model nondeterminism, even if the latter
is without reversals; they also propose a language that they believe
cannot be accepted by any 2DTA | but is recognized by a NTA.

Alur, Fix and Henzinger introduce in [AFH99] three classes of related
variations of timed automata: event-recording automata, event-predicting
automata, and event-clock automata. The semantics they consider is over
point-based sequences of finite length, that is finite timed words.

Event-recording automata are automata endowed with clock that record
the time of the last occurrence of any event in the alphabet. FEwvent-
predicting automata have instead clock that “predict” the time of the oc-
currence of an event. Finally, event-clock automata have both recording
and predicting clocks. We let ERA, EPA, and ECA denote the classes of
even-recording, event-predicting, and event-clock automata, respectively.

Event-clock automata have the nice properties of being determinizable,
and so are the subclasses of event-recording and event-predicting automata.
Moreover, their emptiness problem is decidable, through a region construc-
tion that draws from the corresponding one for timed automata [AD94],
and the languages they accept are closed under all Boolean operations. Also
notice that event-clock automata are instead not closed under renaming or
hiding of input symbols (contrarily to (nondeterministic) timed automata).

294



E.3. Timed Automata

The authors draw the following results about the expressiveness of the
various classes of automata they have introduced:

e the classes of languages recognized by automata in ERA and EPA
are incomparable;

e the possibility of having both predicting and recording clocks in the
same automaton (as in ECA) gives stronger expressive power than
that given by union of ERA and EPA;

e ECA are strictly less expressive than nondeterministic timed au-
tomata NTA (obviously, as the former are determinizable, while the
latter are not):

e ERA can be fully translated to deterministic timed automata DTA,
while the converse is in general not true;

e EPA and DTA yield language classes that are incomparable;

e ECA and DTA also yield language classes that are incomparable.

Lasota and Walukiewicz introduce in the notion of alternating
timed automata (denoted as ATA). An ATA is a classic alternating au-
tomaton |[CKS81,Var97]| enriched with clocks, just like timed automata are
an enrichment of classic automata. Note that ATA were also indepen-
dently introduced by Ouaknine and Worrel [OW05]. The authors give a
game-theoretic semantics for ATA | based on finite-length timed words (i.e.,
a point-based semantics).

Languages accepted by ATA are easily shown to be closed under all
Boolean operations. Moreover, it is also simple to show that the emptiness
problem is undecidable for ATA with more than one clock: the universality
problem for timed automata with the same number of clocks — well-known
to be undecidable JAD94]  can be easily encoded as an emptiness problem
for ATA. Therefore, the paper focuses on one-clock ATA. For this class
of automata, the following results are drawn.

e emptiness (and thus, as a simple corollary deriving from closure un-
der Boolean operations, universality and language containment as
well) is decidable for one-clock ATA. The proof relies on a region
construction that builds a finite bisimilar transition system;

e the complexity of the emptiness problem is non-primitive recursive;
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e ATA enriched with e-moves become undecidable even with one clock:
this is shown by reduction from the reachability problem for perfect
channel systems (whereas without e-moves one can only encode lossy
channel systems);

e the authors also briefly hint at the fact that universality for one-clock
nondeterministic timed automata over infinite words (and thus for
ATA over infinite words as well) is undecidable; this is given without
proof, but it is discussed in [ADOWO05].

Abdulla et al. [ADOWO05]| study the language inclusion problem for timed
automata with one clock. More precisely, they consider a point-based (i.e.,
timed word) semantics and study the problem of deciding, given a 1-clock
TA A and another TA B (with no restrictions on B), whether every word
accepted by B is also accepted by A. Previously, Alur and Dill [AD94]
showed the problem undecidable for A with two or more clocks, and decid-
able for A without clocks.

The results drawn in the paper can be summarized as follows; they all
exploit reductions from reachability problems in channel machines [AJ96,

CFPY96,Sch02].

e over finite-length words, the one-clock language inclusion problem is
decidable with non-primitive recursive complexity. This was already
shown by the same authors in [OW04];

e if we allow e-transitions, the problem is undecidable even for one-clock
automata over finite words;

e the problem is also undecidable for one-clock timed automata over
infinite words with Biichi acceptance conditions.

E.4. Other Formalisms

A decidable monadic second-order logic. Wilke considers in [Wil94| a
decidable monadic second-order logic, which is suitable to express proper-
ties of timed state sequences. The starting point is the monadic logic of
distance, denoted by Lg; this is a monadic second-order language which
allows one to predicate about distances between instants in timed words.
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Therefore, notice that the work assumes a point-based infinite-length se-
mantics (i.e., timed w-words). This language is undecidable, as the same
results of [AH93| carry over for L.

Thus, the author introduces a fragment of £, where the use of expres-
sions about distance is restricted to relative distances only. The resulting
fragment, called the monadic logic of relative distance, is denoted by [,?.
L~ is shown to define exactly the same class of timed languages as timed
automata. Therefore, it is a logical characterization of timed automata,
and its satisfiability problem is decidable (by building the corresponding
timed automaton and checking for emptiness).

Being as expressive as timed automata, E? is in general not closed under
complement. However, if we restrict the interpretation of formulas in the
language to timed words with bounded variability (i.e., such that there is
an upper bound on the number of events that can occur in any finite-length
interval), then the resulting class of languages is closed under complement.
Clearly, the resulting theory is also fully decidable.

Finally, the author embeds some known temporal logics in the lan-
guage E?, thus showing their effective decidability. The chosen logics

are TLy |MP93]|, MITLY (i.e., MITL with past operators) and an ex-
tension thereof called EMITLY (which extends MITLY with automata

operators [WVS83]).

The regular real-time languages. Henzinger et al. [HRS98] provide a
classification of (mostly decidable) real-time formalisms, interpreted over
timed state sequences (i.e., for interval-based semantics). The paper sum-
marizes previous results, and adds new contributions to the picture.
Basically, the paper identifies three levels of expressiveness. Each level
is represented by one (or more) temporal logic languages, a monadic logic
theory, and variants of timed automata. Let us briefly consider them.

e The lowest expressiveness level is labeled R-timed counter-free w-
reqular, and represents a fully decidable class of languages.

The corresponding monadic theory is called MINMAXML,; in a nut-
shell, it is a first-order sequential calculus over timed sequences, en-
dowed with two basic quantifiers min, max (with the intuitive mean-
ings) for quantification over the time sort (as a side remark, notice
that the interpretation is nonstandard, encompassing both undefined
values and infinitesimal values to handle open and closed intervals in
a uniform manner).
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The corresponding temporal logic languages are MITL [AFH96] and
SCL [RS97| (named EVENTCLOCKTL in [HRS98]).

There is no corresponding automata class, as this class of languages
cannot perform “modulo-counting” (hence the label counter-free),
whereas automata can (by exploiting states).

Concerning the complexity of the decidability problem, it is nonele-
mentary for MINMAXML,, PSPACE-complete for SCL, EXPSPACE-
complete for MITL. More practically, one may say that the two ex-
pressively equivalent languages MITL and SCL are orthogonal for
what concerns the ease and naturalness of expressing properties of
interest.

e Next, we have a class labeled R-timed w-regular, which is still fully
decidable.

The corresponding monadic theory is called MINMAXML,; it is a
second-order extension of MINMAXML,, where second-order quan-
tification over monadic predicates is allowed. Note that quantification
is still restricted to predicates not occurring within the scope of a min
or max quantifier.

At the same level of expressiveness we have two equivalent extensions
of both MITL and SCL that achieve counting for the logics. The
former consists in using automata connectives (like those introduced
in [WVS83]); the corresponding logics are labeled E-MITL and E-
EVENTCLOCKTL. The latter consists in introducing second-order
quantification over predicates; a restriction (analogous to that of the
monadic logic) requires that the quantified predicates do not occur
in any of SCL’s history or prophecy operators (denoted as < and
>, respectively). The resulting logics are labeled Q-MITL and Q-
EVENTCLOCKTL.

The corresponding automata class if that of event-clock timed au-
tomata ECA [AFH99]; more precisely, an equally-expressive vari-
ation of them, which allows for recursive definition, is considered
in [HRS98].

Concerning the computational complexity of decidability, it is the
same as that of the counter-free level of expressiveness.

o If we still increase the expressiveness of formalisms we get the class
labeled projection-closed R-timed w-regular; as the name suggests,
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it is achieved by introducing projection in our languages. The re-
sulting theories are only positively decidable, that is satisfiability is
decidable, but validity is not. This obviously implies that the cor-
responding formalisms are closed under positive Boolean operations,
but not closed under complement,

More precisely, we introduce a monadic theory called P-MINMAXML,;
which is obtained by allowing outermost existential second-order quan-
tification (i.e., projection) over monadic predicates occurring within
the scope of a min or max quantifier. This monadic theory is as
expressive as Wilke’s L theory [Wil94].

One can introduce the corresponding projection operators for the
logic SCL, getting the language P-EVENTCLOCKTL, and for event-
clock automata, getting the automata class P-ECA. Notice that
P-ECA correspond to “vanilla” timed automata [AD94], for which it
is well known that emptiness is decidable, and universality is unde-
cidable.

e Finally, one may permit full quantification over monadic predicates;
the corresponding formalisms would be equivalent in expressive power
to Boolean combinations of timed automata, and it would be fully
undecidable.

Automata over continuous time. Rabinovich in considers the
problem of “lifting” the classical concepts of automata theory from discrete
to continuous time. Differently than most other works with similar objec-
tives, it tries to do so in a very general and abstract way, starting from
general concepts and refining them into more concrete notions. Such an
approach allows one to reconsider most ad hoc solutions that have been
provided elsewhere, and to evaluate their respective merits and shortcom-
ings.

The fundamental entity is the signal, which is a mapping from the time
domain (namely, the nonnegative reals) to some finite set ¥.. Most of the
times only non-Zeno signals will be considered, even if some general and
useful results about general signals are also drawn. A machine is then
described as a device that implements some signal-to-signal function. The
author focuses on functions with the following characteristics (that we recall
here informally):

e strongly retrospective, that is causal functions;
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e finite memory, that is such that they distinguish their future behavior
among only a finite number of classes of signal histories.

Afterward, it is shown how a non-Zeno signal can be represented by
means of w-strings (pairs of them, more precisely) and time sequences,
thus introducing a description of signals which is closer to the traditional
view of discrete-time automata. Notice, however, that the resulting model
is different than the usual timed trace or timed interval sequences.

Then, it is shown that a function with finite memory is necessarily speed
independent, that is it is invariant under “stretchings” (technically, order-
preserving bijections) of the time axis. Therefore, every machine with finite
memory is incapable of dealing with metric constraints. On the positive
side, it is shown how for finite-memory strongly retrospective functions one
can associate a description of a state which allows for a natural represen-
tation of such functions by means of finite transducers. Therefore, one can
see how some familiar notions that are typically introduced as the basis
for the formalization of finite-state machines can instead be derived from
basic principles. Notice that this helps the understanding of some intrinsic
limitations of such models.

Several other notions about signals and functions on signals are intro-
duced and studied in [Rab03], but we do not discuss them here for brevity.

Finite automata extensions for hybrid systems. Rabinovich and Trakht-
enbrot tackle the problem of extending the basic finite automaton model to
deal with the description of hybrid systems in [RT97], and they do so with
their typical “top-down” approach, with the profound goal of lifting some
classical results about automata (or labeled transition systems), nets (i.e.,
systems of logic equations), and monadic logic (and its “syntactic sugar”
temporal logic), which they dub the “trinity” [Tra95|. Namely, they sepa-
rately consider two extensions: relativization and continuous time. Notice
that we recall here the notions and results of [RT97] in a very informal, and
thus also somewhat imprecise, way: our only goal is to convey an informal
meaning, while we refer to [RT97| for technical, unambiguous explanations.

Relativization is a fundamental concept in theoretical computer science.
To define it, a notion of product between automata and projection of an
automaton with respect to an alphabet are introduced. Then, the rela-
tivization of an automaton A with respect to another automaton B (called
the “oracle), denoted as AP is the projection over the alphabet of A which
is not in the alphabet of B of the product automaton of A and B. In other

300



E.4. Other Formalisms

words, AP is an automaton which “delegates” to B the computation needed
for the acceptance of some “aspects” of the input.

Then it is considered which of five issues relativize, that is still hold for
finite automata with access to some oracle (in general, infinite-state). The
issues are:

e whether monadic logic is as expressive as the relativized automata;

e whether there exists a finite set of basic operators such that nets
built out of this set of operators are as expressive as the relativized
automata;

e whether relativized automata can always be made deterministic;

e whether relativized acceptor automata are as expressive as relativized
transducer automata (that is if uniformization is possible);

e whether emptiness is decidable for relativized automata.

It is shown that, while the former two are retained for any oracle, the others
may hold or fail depending on the particular choice of oracle.

On the other hand, it is shown that for another extension of finite au-
tomata, one that deals with continuous time without any relativization, all
of the five issues are answered affirmatively for non-Zeno signals.

Finally, notice that most automata extensions that have been proposed
in the literature to deal with hybrid systems, can indeed be seen as a
relativization and/or continuous-time extension of classical automata, even
if they have not been presented as such in the literature. In particular,
timed automata are basically a finite automata with access to a
“clock” oracle.
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