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Abstra
tWe develop te
hniques and methods to s
ale the appli
ation of formal meth-ods up to large and heterogenous systems. Our solution fo
uses on real-time systems, and develops along the two aspe
ts of 
ompositionality andintegration.In the �rst part, we provide a 
ompositional framework for spe
ifyingand verifying properties of modular systems, written using metri
 temporallogi
s with a des
riptive approa
h. The framework 
onsists in te
hni
alas well as methodologi
al features. On the te
hni
al side, we provide anarray of 
ompositional inferen
e rules to dedu
e fa
ts about the 
ompositionof modules from fa
ts about ea
h 
omponent in isolation. Ea
h rule hasdi�erent features that make it more suitable for 
ertain 
lasses of systems.We also provide a general methodology to guide the formal spe
i�
ation ofmodular systems, and the appli
ation of the inferen
e rules to verify them.In the se
ond part, we 
onsider the problem of integration for systemswith both dis
rete-time and 
ontinuous-time 
omponents. We provide suit-able 
onditions under whi
h metri
 temporal logi
 formulas have a 
onsis-tent truth value whether they are interpreted in dis
rete or in 
ontinuoustime, and we identify a language subset that meets these 
onditions. Wealso 
hara
terize the 
onditions and the language subset with detail. Ourapproa
h to integration permits the veri�
ation of global properties of het-erogenous systems.
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SommarioQuesta tesi sviluppa te
ni
he e metodi per la s
alabilità dell'appli
azionedi metodi formali a sistemi grandi ed eterogenei. Le soluzioni proposte siriferis
ono a sistemi real-time, e sviluppano i due aspetti della 
omposizion-alità e dell'integrazione.Nella prima parte, si des
rive un framework 
omposizionale per la spe
i-�
a e veri�
a di proprietà di sistemi modulari, formalizzati 
on logi
hetemporali metri
he attraverso un appro

io des
rittivo. Il framework è 
os-tituito da aspetti sia te
ni
i 
he metodologi
i. Per quanto riguarda quellite
ni
i, si propongono una serie di regole di inferenza 
omposizionali, perla deduzione di fatti sulla 
omposizione di moduli a partire da fatti su
ias
un 
omponente isolato. Ogni regola ha 
aratteristi
he proprie, 
he larendono più adeguata all'uso 
on 
erte 
lassi di sistemi. Si fornis
e an
heuna metodologia generale per guidare l'attività di spe
i�
a formale di sis-temi modulari, e l'appli
azione delle regole di inferenza nella loro veri�
a.Nella se
onda parte, si 
onsidera il problema dell'integrazione per sistemi
on sia 
omponenti a tempo dis
reto 
he 
omponenti a tempo 
ontinuo. Side�nis
ono 
ondizioni sotto le quali le formule in logi
a temporale metri
a
onservano un valore di verità 
onsistente sia 
he siano interpretate a tempo
ontinuo sia 
he lo siano a tempo dis
reto, e si identi�
a un linguaggio 
hesoddisfa queste 
ondizioni. Inoltre, si 
aratterizzano dettagliatamente tali
ondizioni e tale linguaggio. L'appro

io all'integrazione proposto permettela veri�
a di proprietà globali di sistemi eterogenei.
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1. Introdu
tionThe idea of analyzing 
omputer programs and, more generally, 
omputingsystems with formal te
hniques dates ba
k to the origin of 
omputer s
ien
eitself. Indeed, pioneers su
h as Turing [Tur49℄ and von Neumann [GvN63℄have been the �rst to develop formal mathemati
al models of programs andto verify their properties with analyti
al te
hniques. This seemed a per-fe
tly natural task to pursue: sin
e its in
eption [Tur36, Soa96℄, 
omputers
ien
e is rooted in mathemati
al logi
 and formal reasoning.As the dis
ipline evolved, however, the emphasis on formal analysis less-ened, and the degree of its appli
ability grew mu
h more slowly than theother aspe
ts of the 
omputing te
hnology. This happened, on the onehand, be
ause the most pra
ti
al areas grew enough to stand indepen-dently on their own, losing the initial entanglement between theory andpra
ti
e. On the other hand, the a
tual appli
ation of formal te
hniquesrequires a 
onspi
uous amount of e�ort, and the e�ort involved is inher-ently hard to automate [Coo71℄. Therefore, although it has been longlyadvo
ated by �gures su
h as Dijkstra [Dij72℄ or Hoare [Hoa84℄, the pra
ti-
al appli
ation of formal te
hniques has often been negle
ted, outside theresear
h 
ommunity.During the last de
ade or so, things have 
hanged signi�
antly [CW96℄.First, the development of novel te
hniques for the formal analysis of pro-grams and systems � the most notable being model-
he
king [CGP00℄ �together with the availability of in
reasingly large amounts of 
omputingpower as predi
ted by Moore's law [Moo65℄, have made formal veri�
ationmore pra
ti
ally a�ordable, at least in some domains. Se
ond, we �nallybegin to witness areas in whi
h formal methods are slowly making theirways through industrial pra
ti
e [CGR95℄, su
h as in hardware veri�
ationand � less frequently � in software development [BCLR04,Das06℄.At the same time, formal methods are meeting new 
hallenges [CW96,JOW06,Hoa03,HS06℄. First of all, their s
ope of appli
ation is widening:formal analysis is no more limited to 
omputer programs, but it addressesmore generally 
omputing systems. The notion of system en
ompasses ahuge variety of diverse artifa
ts, where the 
omputer is only a 
omponent1



1. Introdu
tionintera
ting with several other entities, embedded in a physi
al environ-ment [HS06, SLMR05, Lee05℄. Systems are typi
ally large and 
omplex;their 
omponents are usually heterogeneous in their nature and in themathemati
al formalisms they require to be modeled and analyzed. Fi-nally, time is a dimension whi
h is often prominent in systems intera
tingwith a physi
al environment [FMMR07℄. In parti
ular, a quantitative no-tion of time is required to deal with real-time systems, that is systemswhose requirements involve timeliness properties [Liu00,HM96℄. As a re-sult, formal methods must deal with quantitative real-time properties, ademanding requisite in itself.This thesis takes some of these 
hallenges. From a broad perspe
tive, theoverall goal is to develop te
hniques and methods to improve the s
alabilityof formal methods to large systems. The size of a model is a hurdle thatis well-known to traditional software engineering [GJM02, Som06, Pre04℄.Its solutions stem from the prin
iples of modularization and abstra
tion[Par72℄: a 
omplex system is suitably divided into intera
ting parts (
alled�modules�), and the 
hara
teristi
s fundamental to ea
h module (with re-spe
t to its intera
tions with the others) are retained, while the details ofthe internal behavior of the module are abstra
ted away. This thesis aimsat extending these pra
ti
es to the realm of formal analysis te
hniques andmethods, in order to make it possible to apply them to large systems.In the 
ontext of formal languages and veri�
ation, the prin
iples ofmodularization and abstra
tion are often referred to with the term �
om-positionality�. A

ording to this terminology, the �rst part of this thesisdeals with 
ompositional te
hniques and 
ompositional methods. In otherwords, it ta
kles the problem of s
aling up the pro
esses of formalizationand veri�
ation of systems.Sin
e, as we hinted at above, large systems are often heterogeneous, dif-ferent parts require di�erent formal te
hniques and pra
ti
es. A

ordingly,the natural generalization of a 
ompositional approa
h is in the dire
tion ofintegrating modules of dissimilar attributes, and modeled with varied for-malisms. In this respe
t, the se
ond part of this thesis ta
kles the problemof integration: extending 
ompositional te
hniques and methods to dealwith heterogeneous systems.Finally, this thesis fo
uses on real-time systems in developing the themesof 
ompositionality and integration. This 
lass of systems is of major impor-tan
e, pervasive, and su
h that the s
alability and heterogeneity 
hallengesare most prominent. Heterogeneity manifests itself in real-time systems es-2



pe
ially in the form of di�erent time models required to des
ribe di�erentparts of a system. Therefore, 
ompositionality and integration are de�nedin this thesis a

ording to di�erent time models, and in parti
ular for bothdis
rete time models and dense (and 
ontinuous) time models.Our approa
h to real-time systems. Let us des
ribe how the abovegoals are approa
hed in this thesis. First of all, we exploit the des
rip-tive approa
h to the formalization of systems. Therefore, both the sys-tem model and its properties are expressed with the same formal lan-guage. Sin
e we fo
us on real-time aspe
ts, our referen
e language istemporal logi
 [GHR94, Eme90, Pnu77℄ endowed with metri
 
onstru
ts[AH93,FMMR07,BMN00,FPR06℄.The des
riptive approa
h is e�e
tively 
oupled with a dedu
tive approa
hto veri�
ation, where proving that a spe
i�
ation satis�es a set of require-ments amounts to the appli
ation of logi
-dedu
tive te
hniques. This isnot a restri
tion a priori, as the framework that will be developed permitsalso di�erent veri�
ation te
hniques. Finally, the emphasis of the workis not only on te
hni
al aspe
ts, but also on methodologi
al instan
es.In this respe
t, besides the viewpoint developed in this thesis, this workshould be 
ollo
ated within the broader horizon of software and systemdevelopment engineering, some of whose fundamental issues we ta
kledelsewhere [SFR+06,FRS+06℄.The referen
e formal language. Let us dis
uss our 
hoi
e of referen
emetri
 temporal logi
. First, we look for a very expressive language, thatis 
apable of expressing extensive 
lasses of properties. This is requiredto pursue in full the des
riptive approa
h, where 
omplex systems spe
i�-
ations must be expressible with the language. Se
ond, in order to meetthe methodologi
al aspe
ts required by s
alability, the logi
 must possesssuitable 
onstru
ts to manage modular des
riptions in a natural way, su
has modules, generi
ity, visibility management, et
. Noti
e that these as-pe
ts are orthogonal to expressiveness: su
h 
onstru
ts do not add to theexpressiveness of the language, but only to its amenability to pra
ti
al use.Third, the des
ription of heterogeneous systems requires the language to be�exible enough to permit di�erent semanti
s. In parti
ular, we dis
ussedour interest in developing 
ommon te
hniques for di�erent time models. Fi-nally, an adequate support of tools and a standard graphi
al notation aretwo very important requirements that are usually desirable of any formal3



1. Introdu
tionlanguage, regardless of its intended usages.The TRIO metri
 temporal logi
 [CCPC+99℄ ful�lls satisfa
torily theserequirements, and it is therefore the referen
e formal language of this thesis.We remark, however, that most of the te
hni
al results drawn in this workmay be extended to other formal languages of similar expressiveness, andthe methods 
an be appli
able in di�erent 
ontexts. In parti
ular, these
ond part of the thesis fo
uses on a TRIO subset that is shown to be asexpressive as MTL (a

ording to its de�nition in [AH93℄); therefore, theresults of the se
ond part apply also to MTL straightforwardly.Plan of the thesis. This introdu
tion is followed by Chapter 2, where theTRIO temporal logi
 language is presented in detail. The 
hapter serves asa referen
e for all subsequent uses of the language, and also demonstratesthe use of the language on an example.The 
ore of the thesis 
omes after Chapter 2. It is 
omposed of twoparts, 
orresponding to the two main investigated aspe
ts: Part I is about
ompositionality, and Part II is about integration.In the �rst part, the notion of 
ompositionality is de�ned and framedin Chapter 3. A

ording to the general guidelines laid there, Chapter 4presents several related works about 
ompositional frameworks, and 
om-pares their approa
hes with ours. Chapter 5 introdu
es our 
ompositionalframework for the language TRIO. The framework is based on several 
om-positional inferen
e rules and on a general methodologi
al approa
h. Bothare introdu
ed and dis
ussed in Chapter 5. Afterward, Chapter 6 illustratesthe 
ompositional framework through two examples: one is a real-timevariation of the 
lassi
al dining philosophers problem [Dij71℄, the other isa peer-to-peer 
ommuni
ation proto
ol.The se
ond part of the thesis is bridged to the �rst part by Chapter 7,where the integration problem is presented as a generalization of 
omposi-tionality. More spe
i�
ally, we deal with the integration between dis
retetime and 
ontinuous time, as it is also dis
ussed in Chapter 7. Then,Chapter 8 presents a framework in whi
h formulas written in a subset ofthe TRIO language and interpreted in dis
rete time or 
ontinuous time 
anbe integrated within the same system. The example of a simple 
ontrolledsystem is introdu
ed there to illustrate the ideas in pra
ti
e. Chapter 9dis
usses some aspe
ts of the integration framework, in order to frame pre-
isely its usability. In parti
ular, the expressiveness of the subset of TRIOused in the integration framework is dis
ussed, and a 
omparison with other4



notions of dis
retization is detailed.Finally, Chapter 10 
on
ludes the thesis, by summarizing the main resultsand by dis
ussing lines for future work.Publi
ations. Part of the 
ompositional framework presented in Part Iof the thesis has been published in preliminary form in [FRMM05a℄, andthen in [FRMM07℄. Other 
ompositional rules are instead presented inthe te
hni
al report [Fur06b℄. A detailed analysis of the related works in
ompositionality, a subset of whi
h is presented in Chapter 4, is the obje
tof the te
hni
al report [Fur05℄.The integration framework dis
ussed in Part II has been published in[FR06℄. Details omitted in [FR06℄ have been published in the te
hni
alreport [FR05℄, while the other report [Fur06
℄ dis
usses the features of theintegration framework.

5





2. The TRIO Metri
 TemporalLogi
TRIO (Tempo Reale Impli
itO1) [CCPC+99,GMM90,MSP94℄ is a general-purpose spe
i�
ation language suitable to des
ribe real-time systems. Atits 
ore, it is a �rst-order linear temporal logi
 that supports a metri
 ontime. This basi
 language is enri
hed with advan
ed modular features thatare useful in writing spe
i�
ations of 
omplex systems. Indeed, it has beenused in a number of industrial proje
ts for for modeling and analyzingtime-
riti
al systems [CCPC+99,BCC+98,GLMZ96,BCC+95,MM97℄.In presenting the language, we distinguish TRIO in-the-small � that isthe bare �rst-order metri
 temporal language � from TRIO in-the-large� its modular features.Let us add a terminologi
al remark here. In the des
riptive approa
hto modeling and analysis � the one we are pursuing in this thesis � asystem is formally des
ribed by formally stating its salient properties asformulas of the language. A

ording to a 
ommon software engineeringparadigm [GJM02℄, we name spe
i�
ation the model of the system, that isthe set of formulas des
ribing its behavior. On the other hand, the putativeproperties of the system 
onstitute its requirements.2.1. TRIO in-the-SmallTRIO is a model-parametri
 temporal logi
 [MMG92℄. This means thatthe semanti
s of its formulas 
an be de�ned for various temporal domains(also named �time models�). We denote the generi
 time domain as T. Inpra
ti
e, it is 
ustomary to 
hoose totally ordered metri
 sets as temporaldomains, and more spe
i�
ally numeri
 sets.In this thesis, we are parti
ularly interested in supporting both dis
reteand dense time models. Therefore, we will 
ommonly adopt the integers
Z as standard dis
rete time model, and the reals R as standard dense1Italian for �Impli
it Real-Time�. 7
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(and 
ontinuous) time model. However, other 
hoi
es are possible. Inparti
ular, the mono-in�nite time domain of the natural numbers N andthe nonnegative reals R≥0 are very 
ommon 
hoi
es in the literature ontemporal logi
. In the remainder, we will point out distin
tions due todi�erent 
hoi
es in the time domains, whenever relevant.2.1.1. ItemsA TRIO spe
i�
ation is built out of a set of basi
 items. Ea
h item isa primitive element, su
h as a predi
ate (or a fun
tion), representing theelementary model of some feature of the system. Items are de�ned by adomain they map their value to and, for fun
tions, the domain of theirarguments. For instan
e, a predi
ate is identi�ed by a Boolean domain,whereas a fun
tion of the reals is de�ned through the domain R of itsargument and that of its values (also R).Items 
an be time-dependent (TD) or time-independent (TI); the lattertake values that are 
onstant with respe
t to the time of evaluation, whereasthe former have in general di�erent values at di�erent time instants. Wede�ne these notions more pre
isely when dealing with TRIO semanti
sbelow.2.1.2. SyntaxTRIO is �rst of all a full-�edged �rst-order language, so it possesses allusual propositional and predi
ative 
onne
tives and quanti�ers. It alsofully in
ludes arithmeti
 (and thus, in parti
ular, equality). We do notgive here a formal a

ount of this part of the language, whi
h is standard.Con
erning temporal aspe
ts, TRIO de�nes a single modal metri
 opera-tor named Dist. Thus Dist(F, t) is a well-formed TRIO formula, where F isa time-dependent formula (namely, a predi
ate whose truth value is de�nedfor every time instant), and t is an element of the time domain denoting atime distan
e. t 
an be positive, negative, or zero, denoting respe
tively adistan
e in the future, past, or the present instant. Intuitively, Dist(F, t)denotes the fa
t that the formula F holds at t time units from the 
urrenttime instant. Noti
e that in TRIO the 
urrent time instant is impli
it, soit is not denoted by any synta
ti
 element.
Dist(F, t) is in turn a time-dependent formula, so it is possible to re
ur-sively 
ombine the basi
 operator with propositional and predi
ative 
on-stru
ts, as well as arithmeti
, to express 
ompli
ated time relationships. In8



2.1. TRIO in-the-Smallparti
ular, it is 
ustomary to de�ne a number of derived temporal oper-ators to denote 
ommonly en
ountered temporal relationships. Table 2.1lists a number of them.Operator Definition
Futr(F, t) t ≥ 0 ∧Dist(F, t)
Past(F, t) t ≥ 0 ∧Dist(F,−t)
Alw(F ) ∀d : Dist(F, d)
Som(F ) ∃d : Dist(F, d)
AlwF(F ) ∀d > 0 : Futr(F, d)
AlwP(F ) ∀d > 0 : Past(F, d)
SomF(F ) ∃d > 0 : Futr(F, d)
SomP(F ) ∃d > 0 : Past(F, d)
Lasts(F, t) ∀d ∈ (0, t) : Futr(F, d)
Lasted(F, t) ∀d ∈ (0, t) : Past(F, d)

WithinF(F, t) ∃d ∈ (0, t) : Futr(F, d)
WithinP(F, t) ∃d ∈ (0, t) : Past(F, d)
Within(F, t) ∃d ∈ (0, t) : Past(F, d) ∨ Futr(F, d) ∨ F
Until(F,G) ∃d > 0 : Lasts(F, d) ∧ Futr(G, d)
Since(F,G) ∃d > 0 : Lasted(F, d) ∧ Past(G, d)

NowOn(F )

{
∃d > 0 : Lasts(F, d) if T is dense
Futr(F, 1) if T is dis
rete

UpToNow(F )

{
∃d > 0 : Lasted(F, d) if T is dense
Past(F, 1) if T is dis
rete

Becomes(F )

{
UpToNow(¬F ) ∧NowOn(F ) if T is dense
UpToNow(¬F ) ∧ F if T is dis
reteTable 2.1.: Some TRIO derived temporal operatorsIn
lusion/ex
lusion of endpoints. Table 2.1 also shows that the stan-dard de�nition for TRIO temporal operators involving intervals takes openintervals, that is ex
ludes both endpoints of the intervals. However, it is
ommon to use variations of the temporal operators that spe
i�
ally in-
lude one (or both) of the endpoints of the intervals of the de�nitions.These variations are denoted by adding subs
ripts i (for in
luded) or e (forex
luded). Table 2.2 lists some of these 
ommon variations, together with9
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their expli
it de�nition.2.1.3. Semanti
sIn order to de�ne the semanti
s of TRIO formulas we have to introdu
e thenotion of history (or behavior), whi
h are the logi
 interpretations of thetemporal logi
 formulas. Let I1, . . . , In be the basi
 items of a TRIO spe
i-�
ation. To ea
h item Ii we asso
iate a domain Di, that is basi
ally a type.The domains D 
an be arbitrarily 
omplex, so as to represent fun
tions andpredi
ates. For simpli
ity, we refrain from detailing the representation of
ommon items su
h as predi
ates and fun
tions, and we refer the readerto standard de�nitions of mathemati
al logi
 [Men97℄. We assume that asatisfa
tion relation |= is suitably de�ned, so that for a basi
 item I and avalue d ∈ D in its 
orresponding de�nition domain, d |= I denotes the fa
tthat I is satis�ed in the interpretation given by d.Let us now de�ne the notion of behavior (or history): it is a mapping(that is, a fun
tion) b : T → 〈D1 × · · · ×Dn〉 from the time domain T tothe 
omposite set 〈D1 × · · · ×Dn〉.For any behavior b, time independent items have a 
onstant value overthe whole time axis. That is, for any time independent item Ii, and for anytwo time values t1, t2 ∈ T, it is b(t1)|Di
= b(t2)|Di

, where b(t)|Di
denotesthe proje
tion of the value b(t) to its ith 
omponent.For a behavior b, a time value t ∈ T, and a TRIO formula F , we write

b(t) |=T F to denote the fa
t that F holds (i.e., it is true) when t is takenas 
urrent time instant. The de�nition of the |=T when F is a basi
 item isde�ned from the other satisfa
tion relation |= introdu
ed above. Namely,for a basi
 (time-dependent or time-independent) item I, asso
iated to thedomain D, the |= relation is subsumed by the |=T relation.
b(t) |=T I i� b(t)|D |= IAgain, we avoid de�ning expli
itly the relation |=T for the basi
 proposi-tional and predi
ative 
onstru
ts, sin
e this is routine [Men97℄. Instead, letus de�ne the semanti
s of the modal operators as follows. For any TRIOtime-dependent formula F , behavior b, time instant t ∈ T, and time value

t′ ∈ T, we have:
b(t) |=T Dist

(
F, t′

) i� b(t+ t′) |=T FWe adopt the 
onvention of assuming an impli
it universal 
losure of allfree variables, as well as of the (impli
it) time variables, when interpreting10



2.1. TRIO in-the-SmallTRIO formulas. That is, for any TRIO formula F (v1, . . . , vm) with freevariables v1, . . . , vm, we de�ne:
b |=T F i� for all t ∈ T : b(t) |=T ∀v1, . . . , vm : F (v1, . . . , vm)Finally, a set of TRIO formulas F1, . . . , Fn 
onstitutes a spe
i�
ationde�ning a set of behaviors B = {bj} satisfying all formulas of the spe
i�-
ation: b ∈ B i� b |=T Fi for all i = 1, . . . , n.Conventions and simpli�
ations. In the remainder, we will introdu
e im-pli
it simpli�
ations in presenting proofs involving TRIO formulas, when-ever this does not sa
ri�
e the 
larity and pre
ision of the exposition. Morepre
isely, when proving some formula G from a spe
i�
ation given by theformulas F1, . . . , Fn, we impli
itly assume to have taken: (1) a generi
behavior b for the item and time domain under 
onsideration, su
h that

b |=T Fi for all i = 1, . . . , n; and (2) a generi
 impli
it 
urrent time instant
t, without mentioning them expli
itly. When possible, we even assume the
urrent time instant to be 0; noti
e that this is without loss of generalitywith a bi-in�nite time domain su
h as Z and R. For instan
e, we willuse these simplifying 
onventions in the proof of the dining philosophersexample, in Se
tion 6.2.We also assume the usual 
onventions on the pre
eden
e of logi
 oper-ators; namely, in de
reasing order of pre
eden
e, we have: ¬, ∧ and ∨, ∀and ∃, ⇒, ⇔.2.1.4. States and EventsWhen des
ribing the dynami
s of 
omplex systems, it is often useful tointrodu
e items with a 
onstrained behavior, that are suitable to modelnaturally 
lasses of phenomena. These 
onstrained items are also 
alledontologi
al 
onstru
ts. In parti
ular, when dealing with dense time models,it is usually 
onvenient to introdu
e two su
h 
onstru
ts: states and event[GM01℄.An event is a time-dependent predi
ate whi
h is true only at isolatedtime instants; it is useful in modeling phenomena whose a
tual duration isnegligible with respe
t to the overall dynami
s of the system, so that they
an be modeled as having a zero-time duration [GMM99℄. For instan
e, the
li
king of a swit
h is a phenomenon whi
h 
an usually modeled as havingzero-time duration. Formally, a time-dependent predi
ate E is an event11
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whenever it obeys the following formula [GM01℄ (re
all that we assume adense time domain):
UpToNow(¬E) ∧NowOn(¬E)A state is instead a time-dependent predi
ate whi
h holds over non-empty time intervals. It is suitable to model phenomena whi
h are never�instantaneous�, but always have a non-null duration; for instan
e, a lampbeing on or o� is a phenomenon suitable modeled with a state, sin
e it isreasonable to assume that it 
annot swit
h from on to o� and ba
k to onagain in zero time (under the assumption that the time unit is su�
iently�ne-grained). Formally, a time-dependent predi
ate S is a state wheneverit obeys the following formula [GM01℄ (re
all that we assume a dense timedomain):

(UpToNow(S) ∧ S ∧NowOn(S)) ∨
(UpToNow(¬S) ∧ ¬S ∧NowOn(¬S)) ∨

(UpToNow(¬S) ∧NowOn(S)) ∨
(UpToNow(S) ∧NowOn(¬S))Noti
e that the value of a state on the edge of a transition is unspe
i�ed:it 
an be either the one on the left or the one on the right of the transitioninstant. We 
an further spe
ialize a state to be right-
ontinuous (resp. left-
ontinuous) by requiring that the value at transition points is always equalto the one on the right (resp. on the left). Formally, S is a right-
ontinuousstate if it is a state and it obeys:

S ⇔ NowOn(S)and it is a left-
ontinuous state if it is a state and it obeys:
S ⇔ UpToNow(S)2.1.5. ZenonessWhen de�ning the semanti
s of TRIO formulas above, we made no as-sumptions about regularity of the behaviors a formula (or a whole spe
-i�
ation) is interpreted on. In parti
ular, we did not rule out behaviorswhere time distan
es between 
onse
utive events be
ome arbitrarily small12



2.2. TRIO in-the-Large(i.e., in�nitesimal). Note that this is possible only for dense time models,therefore the following dis
ussion applies to su
h time models only.Su
h behaviors are 
alled Zeno behaviors [AL94℄: they do not usually
orrespond to physi
ally meaningful behavior, and they are a sour
e of in-
ompleteness when reasoning about derived properties of a system [GM01℄.For instan
e, intuitive notions su
h as �the next 
hanging point� of an itemmay be unde�ned for Zeno behaviors. As a result, most metri
 temporallogi
 languages adopt a priori restri
tions on the behaviors on whi
h for-mulas of the language are interpreted, ruling out Zenoness at the semanti
level (see e.g. [AH92b℄).In TRIO, instead, one usually follows a di�erent approa
h, detailed in[GM01℄. First, we do not introdu
e any restri
tion a priori on the regularityof the behaviors. This allows one to state general results on formulas of thelanguage in the most general way. Then, if Zenoness is really an issue in thespe
i�
ation of a system, one introdu
es suitable restri
tions on the basi
item of the spe
i�
ation so that they do not en
ompass Zeno behaviors.In general, it is su�
ient to assume the following formula for a generi
time-dependent item I to rule out its Zeno behaviors:
(UpToNow(I) ∨UpToNow(¬I)) ∧ (NowOn(I) ∨NowOn(¬I))Noti
e that the de�nition of states and events subsumes this axioms, so, inparti
ular, states and events 
annot exhibit Zeno behaviors by 
onstru
tion.Similarly, we 
an introdu
e suitable restri
tions to rule out Zeno behaviorsfor items mapping to denumerable and un
ountable domains. For brevity,we do not present them here [GM01℄.2.2. TRIO in-the-LargeTo spe
ify large and 
omplex systems, and to support en
apsulation, reuseand information hiding at the spe
i�
ation level, TRIO has the usualobje
t-oriented 
onstru
ts su
h as 
lasses, inheritan
e and generi
ity (seee.g. [Mey97℄).In this thesis, we do not develop aspe
ts depending on inheritan
e me
ha-nisms, so we do not introdu
e details about how this feature is implementedin TRIO; we refer the interested reader to [MSP94,FMM+04℄. Let us justnote that TRIO's notion of inheritan
e is a very liberal one, so it gives theuser a lot of freedom in reusing spe
i�
ation artifa
ts. 13
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2.2.1. Classes and ModulesIn TRIO, the basi
 en
apsulation unit is the 
lass. Classes 
an be simpleor stru
tured. Simple 
lasses are 
olle
tions of parameters, basi
 items,and formulas. Parameters introdu
es generi
ity in the 
lass de�nition.Formulas, instead, 
onstitute the formal des
ription of the 
lass, that isformalize the behavior of the 
lass' items. Stru
tured 
lasses, in addition,
ontain instan
es of other 
lasses, 
alled modules.An instan
e of a simple 
lass is, in logi
al terms, a model of the 
lass'formulas (i.e., the set of all behaviors satisfying the 
onjun
tion of all for-mulas), a

ording to the semanti
s we have de�ned above. An instan
e ofa stru
tured 
lass re
ursively 
ontains instan
es of its 
omposing modules.Conne
tions. Items of di�erent modules 
an be 
onne
ted : whenever twoitems are 
onne
ted, they are impli
itly de�ned as logi
ally equivalent. If amore 
ompli
ated semanti
s to represent 
onne
tions in a system is needed,one may represent all the relevant information in an ad ho
 
lass.2.2.2. Types of FormulasEa
h formula in a TRIO 
lass 
an be �tagged� with one of these threeattributes: axiom, assumption and theorem. When ne
essary, we will re-fer to these formulas as (TRIO) �axiom, assumption, theorem formulas�,respe
tively. From a methodologi
al point of view, axioms postulate thebasi
 behavior of the system (its spe
i�
ation), assumptions express 
on-straints we must validate2 by means of other parts of the system (externalto the 
urrent 
lass) and theorems des
ribe properties that are derivedfrom other formulas (in
luding requirements). Therefore, the veri�
ationof a spe
i�
ation would basi
ally 
onsist in proving theorems from axiomsand assumptions, after validating the latter. In Se
tion 5.4 we illustrate a
ompositional methodology that exploits these language features.O

asionally, in the remainder we will also use the term �lemma� todenote an intermediate result for a theorem. Although this is not stri
tly aTRIO keyword, its role is basi
ally the same as that of a �lesser� theorem.2From a purely formal point of view, however, the validation of a formalized assumption
onsists exa
tly in a formal proof, from other formulas. Thus, here we use the verb�validate� only for methodologi
al 
larity.14



2.2. TRIO in-the-Large2.2.3. Visibility and Interfa
esEa
h primitive item 
an be de
lared to be visible to other 
lasses, or non-visible. Ea
h formulas also has a notion of visibility, whi
h is derived fromthe visibility of the items the formula predi
ates on. Namely, all formulaspredi
ating on visible items only are 
onsidered as visible, while all otherformulas are 
onsidered as non-visible outside the 
lass.Classes and their interfa
es are syntheti
ally represented with a graphi
alnotation, where 
lasses are pi
tured as boxes, visible items are denotedby lines 
rossing the 
lass box, whereas non externally visible items stayentirely within the box boundaries. States are graphi
ally denoted by thi
klines, whereas events are denoted with a bullet pla
ed where the line of the
orresponding item tou
hes (or 
rosses, if visible) the 
lass' box.For example, Figure 2.1 represents a simple 
lass, while Figure 2.2 rep-resents a stru
tured 
lass and the 
onne
tions among items of its modules.Both will be des
ribed in the following Se
tion 2.3.2.2.4. Higher-Order TRIO and Ar
hiTRIOIn this thesis we 
omply with TRIO �standard� notation and semanti
s.More re
ently, however, a higher-order extension of the TRIO language �
alled HOT � has been introdu
ed [FMM+04℄. Higher-order 
onstru
tsmake it possible � among other things � to de�ne more simply the seman-ti
s of modular and obje
t-oriented features. In parti
ular, higher-ordertypes allows one to identify 
lasses with types. This not only simpli�es theformalization of modularity and inheritan
e rules, but also makes TRIO
lasses �rst 
lass entities [GJ97℄. Thus, the use of higher-order featuresis the most natural way to express 
ompli
ated relationships between in-stan
es of 
lasses.Besides providing a more general formal framework, and exhan
ing theexpressiveness of the language to a higher level, HOT has proved usefulin de�ning formally the semanti
s of other extensions of the TRIO lan-guage. In parti
ular, HOT provides a way to de�ne the semanti
s of theAr
hiTRIO language [PRM95℄. Ar
hiTRIO exploits the UML graphi
alnotation [UML05,UML04,EPLF03℄, to whi
h it gives a de�ned formal se-manti
s. Therefore, it 
ombines a popular and intuitive notation � familiarto most software engineers, and not only [MFR04℄ � with the rigor andunambiguity of a logi
 notation. Ar
hiTRIO has been designed to deal es-pe
ially with the formal spe
i�
ation of software and system ar
hite
tures,15
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although its a
tual s
ope of appli
ability is mu
h wider. We remark thatmost of the results of this thesis 
an be readily adapted to Ar
hiTRIOnotation and 
on
epts.2.3. The Dining Philosophers ExampleIn order to illustrate TRIO's features, and to familiarize with its syntax andsemanti
s, we introdu
e an illustrative example based on the spe
i�
ationof the dining philosophers problem [Dij71℄. This 
lassi
 problem 
onsiders aset of philosophers sitting around a table, 
ompeting for the a
quisition ofsome shared resour
es, namely one fork for ea
h pair of philosophers. Whenone su

eeds in a
quiring the forks on both sides, he/she 
an eat for sometime, after whi
h the forks are released for others to use. The non-eatinga
tivity is usually referred to as �thinking�. In the traditional formulation ofthe problem, the goal is to prove the absen
e of deadlo
ks, whi
h may arisein a
quiring the shared forks. In our spe
i�
ation, instead, the goal is toprove a real-time, global, non-starvation property for all the philosophers,i.e., the fa
t that, under suitable assumptions, every philosopher eats withina given time.This will be pursued later, through the 
ompositional methodology to beintrodu
ed in Se
tion 5.4. In this se
tion, we just give the basi
 spe
i�
ationof the dining philosophers problem. In order to familiarize the reader withTRIO syntax, we also provide the full TRIO 
ode of the dining philosopherin Appendix A.2.3.1. Basi
 Items and ClassesThe basi
 
lass in our formalization is a philosopher 
lass. Throughoutthe example, we assume time to be 
ontinuous.The basi
 items of the 
lass are the event item start for system initial-ization, and the events take(s) and release(s), with s ∈ {l, r}, indi
ating,for ea
h philosopher, the a
tion of taking or releasing the left or right fork.Other items are the state eating, whi
h is true exa
tly when the philoso-pher is eating, and the states holding(s) and available(s), meaning that thephilosopher is holding a given fork or that the fork is available (i.e., notheld by the adja
ent philosopher). For notational 
onvenien
e, we also in-trodu
e the states thinking and hungry, representing the philosopher noteating, and being ready to eat again (after a su�
iently long thinking pe-riod), respe
tively.16



2.3. The Dining Philosophers ExampleThe philosopher 
lass is parametri
 with respe
t to three 
onstants
te,Te,Tt. They denote, respe
tively, the minimum eating time, the max-imum eating time and the thinking time after an eating session, beforebe
oming hungry again. Obviously, we assume Te > te > 0.2.3.2. Philosopher Spe
i�
ationIn order to demonstrate the use of TRIO as a spe
i�
ation formalism, wenow provide a set of formulas that formally des
ribe the basi
 behavior ofa philosopher. In parti
ular, we provide a set of informally stated basi
properties of the behavior of ea
h philosopher, and we en
ode them asTRIO axioms of the philosopher 
lass. Through the example, the reader
an familiarize with the syntax and semanti
s of TRIO operators.We postulate that ea
h philosopher always takes and releases both forkssimultaneously (axiom holding_syn
h); 
onsequently, if only one fork isavailable, the philosopher waits till the other fork be
omes available as well.Axiom 1 (philosopher.holding_syn
h). holding(l)⇔ holding(r)A philosopher is �hungry� when he/she has not eaten for a period of atleast Tt: this duration is formalized through the Lasted operators, as inthe following axiom.Axiom 2 (philosopher.hungry). Lasted(¬eating,Tt)⇔ hungryIf the philosopher is hungry and if the forks are available, two situationsare possible: either he/she takes both forks, or nondeterministi
ally one ofhis/her neighbors takes a fork at that very time, so that the fork is notavailable anymore and the philosopher �loses his/her turn�. This is formal-ized by axiom a
quire. In parti
ular, in order to express the availabilityof the forks in the immediate past (from the 
urrent instant) we use the
UpToNow operator. Similarly, the NowOn operator formalizes the nonavailability in the immediate future.Axiom 3 (philosopher.a
quire).
hungry ∧UpToNow(available(l) ∧ available(r))
⇒ (take(l) ∧ take(r)) ∨NowOn(¬available(l) ∨ ¬available(r))Axioms eat_till_release and eating_duration state that, when aphilosopher su

eeds in a
quiring both forks (i.e., holding(l) ∧ holding(r)be
omes true), he/she eats for a time duration of more than te and lessthan Te time units, after whi
h he/she releases both forks. 17
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Axiom 4 (philosopher.eat_till_release).
Becomes(holding(l) ∧ holding(r))
⇒ (∃t > te : Lasts(eating, t) ∧ Futr(release(l) ∧ release(r) , t))Axiom 5 (philosopher.eating_duration). 3
Lasted(eating, t)⇒ t < TeWhenever a philosopher holds both forks we 
onsider him/her eating.This 
orresponds to predi
ate eating being true, and is formalized by axiomeating_def.Axiom 6 (philosopher.eating_def). holding(l) ∧ holding(r)⇔ eatingThe state eating is false whenever the philosopher is �thinking�.Axiom 7 (philosopher.thinking_def). thinking⇔ ¬eatingA thinking session (i.e., one in whi
h the philosopher does not hold bothforks) whi
h has just begun lasts at least Tt time units (axiom think-ing_duration).Axiom 8 (philosopher.thinking_duration).
Becomes(thinking)⇒ Lasts(thinking,Tt)Axioms taking and putting des
ribe the 
onsequen
es of a take and
release a
tion, respe
tively. More pre
isely, a fork s 
an be taken when (upto now) it is available and not already held; in this 
ase, the state holding(s)stays true until a release for the same fork is issued. On the other hand, afork s 
an be released when (up to now) it is held; in this 
ase, the state
holding(s) stays false until a take for the same fork is issued.Axiom 9 (philosopher.taking).
take(s) ∧UpToNow(¬holding(s)) ∧UpToNow(available(s))
⇒ Until(holding(s) , release(s))Axiom 10 (philosopher.putting).
release(s) ∧UpToNow(holding(s)) ⇒ Until(¬holding(s) , take(s))3Re
all that free variables (i.e., t) are impli
itly universally quanti�ed at the outermostlevel.18
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start

philosopher

take(s)

release(s)
available(s)

holding(s)

eating

thinking

hungry

Figure 2.1.: Interfa
e of the philosopher 
lass2.3.3. Interfa
e and Graphi
al RepresentationFigure 2.1 illustrates the items and interfa
e of the philosopher 
lass.Thus, for instan
e, holding(s) and eating are both visible items; thereforeaxiom eating_def is also visible. eating has to be de
lared as visiblebe
ause, even if it is not used dire
tly in the 
onne
tions between philoso-phers, the global non-starvation property that we are going to state, inSe
tion 6.2.4, predi
ates on it. The same holds for the start event, whereasthe thinking state is visible sin
e a theorem predi
ating on it will be usedin proving the assumptions of other 
lasses. Noti
e that TRIO's graphi
alnotation does not represent any timing information about the 
lass, whi
his instead represented entirely by formulas.We 
ompose N ≥ 2 instan
es of the philosopher 
lass into the new
omposite 
lass dining_N. The N modules of the philosopher 
lass areinstantiated in an array Philosophers indexed by the range [0..N − 1].The modules are 
onne
ted so that the available item of ea
h philosopher
orresponds to the negation of the holding item of the philosopher onhis/her left/right, as pi
tured in Figure 2.2.In Se
tion 6.2, a global property of this set of philosophers will be proved,namely that ea
h philosopher eats regularly for a 
ertain amount of time.Note that all the instan
es in the array have the same values for the pa-rameters te,Te,Tt. This ensures that the timed behavior of the variousphilosophers is the same, thus permitting to prove the global property. Weleave the analysis of the impa
t of relaxing su
h 
onstraint to future work.
19
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dininig N

. . .

. . .

Philosophers
[(i − 1) mod N ]

¬holding(r)

available(r)

Philosophers Philosophers
[i] [(i + 1) mod N ]

¬holding(l)

available(l)

¬holding(r)

¬holding(l)available(r)

available(l)Figure 2.2.: Interfa
e of the dining_N 
lass2.4. TRIO Tools and ImplementationsAlthough tool support and implementation is not the fo
us of this thesis, itis undeniable that an adequate tool support is a key feature that a formallanguage must possess in order to be usable � and used � in pra
ti
e,on large and 
omplex systems. Therefore, in this se
tion we give a briefoverview of the available tool support for the TRIO language.We used TRIO tools to a
tually 
arry out various examples (of di�er-ent sizes and 
omplexities) of spe
i�
ation and veri�
ation; however, wepresent them only in human-readable form in this thesis. This shows thatthe methods and te
hniques we develop in this thesis are suitable to beused with TRIO tools. Then, tool development is an orthogonal, but re
-on
ilable, 
on
ern with respe
t to those that are the 
ontent of this thesis.The purposes of tools with respe
t to formal methods usage are various.Here, we distinguish three 
lasses of usages, although this 
lassi�
ation isnot meant to be exhaustive or rigid. On the other hand, in [SFR+06℄ weprovide a framework where the pre
ise roles of veri�
ation and validation
an be more 
learly de�ned.Veri�
ation tools. The purpose of veri�
ation is to prove that a spe
i�
a-tion entails some set of requirements. In other words, given a spe
i-�
ation model S and a statement of the requirements R, the goal ofveri�
ation is to prove the theorem S ⊢ R. There is a large variety ofveri�
ation te
hniques, and 
orrespondly a large variety of veri�
a-tion tools. In parti
ular, we have both automati
 and semi-automati
tools; the latter require human guidan
e, whereas the former are fullyalgorithmi
.Validation and testing tools. Their purpose is to provide some 
on�den
ein the 
orre
tness of the spe
i�
ation by exploring some of its be-20



2.4. TRIO Tools and Implementationshaviors (rather than exhaustively deriving properties 
ommon to allbehaviors entailed by the spe
i�
ation, as in veri�
ation tools). This
an be a
hieved, for instan
e, by extra
ting test 
ases from a formalspe
i�
ation, by exe
uting the spe
i�
ation itself, et
.Integrated Development Environment (IDE) tools. These are integratededitors and graphi
al environments that support the user in a
tivi-ties su
h as: writing formulas respe
ting the syntax of the formallanguage, extra
ting a textual formal des
ription from a graphi
alone, making elementary 
onsisten
y 
he
ks among parts of a spe
i�-
ation, et
.With respe
t to the goals of this thesis we are parti
ularly interestedin formal veri�
ation tools; so, the next se
tion presents some of thoseavailable for the TRIO language. Next, we also brie�y dis
uss other TRIOtools.2.4.1. Veri�
ation ToolsIn the design of a spe
i�
ation language there is a typi
al trade-o� betweenexpressiveness and 
omplexity of veri�
ation. On the one hand, one desiresthe most expressive language, in order to be able to express extensive 
lassesof 
omplex properties. On the other hand, the 
omplexity of veri�
ationtypi
ally in
reases with expressiveness: the more expressive the language,the more 
omplex the veri�
ation pro
edures for that language.In parti
ular, TRIO is a very expressive language, so mu
h that it is alsounde
idable. This means that the general veri�
ation problem is not fullyautomatable for TRIO formulas: it is impossible to design an algorithm
apable of 
orre
tly determining the truth of a TRIO formula from a setof TRIO axioms, whi
h is both fully automati
 and works for any TRIOformula [GM93,HMU00,Sip05℄. As a 
onsequen
es, there are two ways outof this 
onundrum: either we restri
t ourselves to a proper subset of theTRIO language, one whi
h is fully de
idable, or we give up full automation.The TVS ToolThe latter 
hoi
e has been pursued with the TRIO Veri�
ation System(TVS, also 
alled TRIO/PVS). It 
onsists of an en
oding of all the TRIOlanguage in the PVS higher-order theorem prover [ORS92℄, 
oupled with aset of proof strategies (i.e., s
ripts in PVS jargon) that work with the PVS21
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prover and aid to simplify and � to some extent � automate proofs ofTRIO formulas en
oded in the PVS language.TVS is parti
ular suited to deal with the pe
uliar di�
ulties of densetime, for whi
h it exploits PVS 
apabilities of manipulating properties ofsimple arithmeti
 over the reals. As we already dis
ussed the tool 
annotbe fully automati
, and indeed it requires substantial human intervention.On the other hand, it provides a relatively 
omplete set of inferen
e rules[San92℄ whi
h is used in pra
ti
e to guarantee and verify every single step ina system veri�
ation, still automating the most elementary and repetitivesteps.The TVS system is des
ribed in [GM01,Fif98℄ for what 
on
erns in-the-small TRIO, while the en
oding of the modular extensions is do
umentedin [Fur03b, FR04℄. We extensively used it in ma
hine-
he
king proofs ofthe various examples we provide in this thesis.TRIO2ProMeLa and Other Fully Automati
 ToolsRestri
ting to a proper subset of the TRIO language allows to a
hievede
idability, and thus to provide fully automated tools.TRIO2ProMeLa is based on a TRIO subset where all items vary over�nite domain, the only in�nite domain being time, whi
h is taken to be thenaturalsN; moreover, there is a limited support for TRIO modular features.Under these restri
tions, it is possible to en
ode a TRIO spe
i�
ation as aset of ProMeLa pro
esses [Hol03℄. ProMeLa is the input language of theSPIN linear-time model 
he
ker [Hol03℄. Therefore, one 
an rely on theSPIN tool to verify TRIO properties automati
ally.The TRIO2ProMeLa tool is do
umented in [MPSS03, PSSM03℄. Wenoti
e that the language subset used by TRIO2ProMeLa is 
lose in expres-siveness to R

Z
TRIO, a subset of the TRIO language that we will de�ne anduse in Chapter 8 of this thesis, when de�ning a framework for dis
rete- and
ontinuous-time integration. Indeed, the example of Se
tion 8.4 has beenformally veri�ed with TRIO2ProMeLa.Zat. The Zat tool is based on translating a purely propositional subsetof the TRIO language to a satis�ability (SAT) solver. The translationexploits bounded model-
he
king te
hniques [BCC+99,BCCZ99℄ to verifya TRIO spe
i�
ation over �nite dis
rete time, or over periodi
 behaviors22



2.4. TRIO Tools and Implementationsover in�nite dis
rete time (i.e., the naturals).42.4.2. Other ToolsTRIDENT (TRIO Development EnviroNmenT) is a IDE for the TRIOlanguage that supports writing modular TRIO spe
i�
ation. It is developedas an E
lipse [E
l℄ plug-in, and in its future developments it will serve as anintegrated interfa
e to all other TRIO tools, as well as the UML featuresof Ar
hiTRIO [CPRS06℄.Other TRIO tools exist for tasks su
h as test-
ase generation [MMM95,SMM00℄ and and history 
he
king [FM94℄. We refer to [TRI℄ for moreinformation about these tools.

4There is no o�
ial Zat do
umentation yet, but the interested reader 
an refer to[TRI06℄. 23
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Operator Definition
AlwFe(F ) ∀d > 0 : Futr(F, d)
AlwFi(F ) ∀d ≥ 0 : Futr(F, d)
AlwPe(F ) ∀d > 0 : Past(F, d)
AlwPi(F ) ∀d ≥ 0 : Past(F, d)
SomFe(F ) ∃d > 0 : Futr(F, d)
SomFi(F ) ∃d ≥ 0 : Futr(F, d)
SomPe(F ) ∃d > 0 : Past(F, d)
SomPi(F ) ∃d ≥ 0 : Past(F, d)

Lastsee(F, t) ∀d ∈ (0, t) : Futr(F, d)
Lastsei(F, t) ∀d ∈ (0, t] : Futr(F, d)
Lastsie(F, t) ∀d ∈ [0, t) : Futr(F, d)
Lastsii(F, t) ∀d ∈ [0, t] : Futr(F, d)

Lastedee(F, t) ∀d ∈ (0, t) : Past(F, d)
Lastedei(F, t) ∀d ∈ (0, t] : Past(F, d)
Lastedie(F, t) ∀d ∈ [0, t) : Past(F, d)
Lastedii(F, t) ∀d ∈ [0, t] : Past(F, d)

WithinFee(F, t) ∃d ∈ (0, t) : Futr(F, d)
WithinFei(F, t) ∃d ∈ (0, t] : Futr(F, d)
WithinFie(F, t) ∃d ∈ [0, t) : Futr(F, d)
WithinFii(F, t) ∃d ∈ [0, t] : Futr(F, d)
WithinPee(F, t) ∃d ∈ (0, t) : Past(F, d)
WithinPei(F, t) ∃d ∈ (0, t] : Past(F, d)
WithinPie(F, t) ∃d ∈ [0, t) : Past(F, d)
WithinPii(F, t) ∃d ∈ [0, t] : Past(F, d)
Withinee(F, t) ∃d ∈ (0, t) : Past(F, d) ∨ Futr(F, d) ∨ F
Withinii(F, t) ∃d ∈ [0, t] : Past(F, d) ∨ Futr(F, d) ∨ FTable 2.2.: Some in
luded/ex
luded variations of TRIO temporal operators
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3. Compositionality andCompositional Inferen
e RulesAs we mentioned in the Introdu
tion, one drawba
k often attributed to for-mal methods is that they do not �s
ale up�, i.e., when the system grows in
omplexity, formal methods are too 
umbersome and unwieldy to be usede�e
tively. A natural solution to this problem is to apply well-known soft-ware engineering prin
iples su
h as modularity and separation of 
on
ernsnot only to design, but also to the veri�
ation of formal models.Compositional te
hniques 
an help in this regard: at their 
ore, they 
on-sist in the appli
ation of a 
ompositional inferen
e rule whi
h allows oneto infer fa
ts about a system built out of the 
omposition of some mod-ules from other � usually more elementary � fa
ts about the individualmodules in isolation. There is a 
ertain amount of work available in the lit-erature about 
ompositional inferen
e rules; we review the most signi�
antworks in Se
tion 4. The goal of this Part is to develop a pra
ti
al approa
hto 
ompositionality, a

ording to the guidelines that we are laying downhen
eforth.3.1. De�ning CompositionalityLet us start by giving a de�nition to the obje
t of our study: 
omposition-ality.The term 
ompositionality and the idea of 
omposition en
ompass a largevariety of methods and te
hniques that aim at des
ribing how to 
omposesmaller systems to form larger systems, and how to manage the resulting
omplexity of the overall system. Clearly, this broad obje
tive 
an be
onsidered from several, disparate, very di�erent perspe
tives.Let us �rst attempt a very general (and hen
e ne
essarily, to some extent,vague) de�nition of 
ompositionality. In lay terms, the Merriam-WebsterDi
tionary of English [MW98℄ de�nes the verb 
ompose as �to form byputting together�. This basi
 de�nition en
loses the idea at the root of27
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e Rules
ompositionality: forming a system by putting together smaller subsys-tems.A more te
hni
al de�nition re�e
ting this idea is that usually adopted inthe philosophy of language, as reported by Janssen [Jan98℄:�The meaning of a 
ompound expression is a fun
tion of themeanings of its parts and of the rule by whi
h the parts are
ombined�This 
ompositionality prin
iple is also 
alled Frege's prin
iple, from thename of the author who �rst formulated the prin
iple [Fre23℄.This very same idea 
an be adapted to program veri�
ation: de Roeveret al. [dRdBH+01, pg. 48℄ de�ne 
ompositionality as:�That a program meets its spe
i�
ation should be veri�ed onthe basis of spe
i�
ations of its 
onstituent 
omponents only,without additional need for information about the interior 
on-stru
tion of those 
omponents�Therefore, in 
ompositional veri�
ation we aim at verifying the global spe
-i�
ation of a system by 
omposing the spe
i�
ations whi
h are lo
al to thevarious 
omponents of the system.Adopting a rather liberal � but still te
hni
al � de�nition, 
omposi-tionality 
onsists in bringing the well-known engineering (and software en-gineering in parti
ular) pra
ti
es of modularization and abstra
tion fromthe spe
i�
ation to the veri�
ation domain. Hen
e, in this thesis we adoptthe following general de�nition of 
ompositionality:�The te
hniques and methods that permit the modularizationof the veri�
ation pro
ess of a large system�Noti
e that the above de�nition pres
ribes two main areas of investiga-tion: te
hniques and methods.
• The te
hni
al aspe
ts of 
ompositionality 
onsist in the study of therules of 
omposition for the 
hosen formal language; in parti
ular, weare interested in temporal logi
s, and real-time extensions of them.Even more 
on
retely, studying the te
hni
al aspe
ts of 
omposition-ality means formulating a number of 
ompositional inferen
e rules.These are logi
 inferen
e rule whose hypotheses state some fa
ts aboutmodules of the system in isolation, and whose 
on
lusions state somefa
ts about the 
omposite system working as a whole.28



3.2. Dimensions of the Compositional ProblemWe remark that the te
hni
al aspe
t is the aspe
t that has beenmore deeply studied in the literature, in parti
ular in the form of
ompositional inferen
e rules, as we will dis
uss in Chapter 4.
• The methodologi
al aspe
ts of 
ompositionality 
onsist in the study ofhow 
ompositional te
hniques 
an be su

essfully applied in pra
ti
eto (models of) modular systems.Therefore, a 
ompositional method should suggest how to organizethe lo
al spe
i�
ations of ea
h module so that they 
an be 
omposedthrough a 
ompositional inferen
e rule. Moreover, it should also de-s
ribe a general �attitude� in formalizing and reasoning about 
om-posite systems, one whi
h helps in managing the 
omplexity of for-malizing systems 
omposed of several modules, and of the resulting
orre
tness proofs.We will develop methodologi
al aspe
ts of 
ompositionality in thefollowing Chapter 5, and espe
ially in Se
tion 5.4.Finally, let us remark that in this thesis we fo
us on the widespreadrely/guarantee paradigm of 
ompositionality. This is a natural way of spe
-ifying the module of a system whose behavior depends, in general, on thebehavior of its environment. In a nutshell, a rely/guarantee spe
i�
ationexpresses the guaranteed behavior of a module, relying on an assumptionabout the behavior of the module's environment. In parti
ular, the mod-ule does not guarantee any behavior if its environment does not respe
tthe assumption about it. In Chapter 4, when reviewing related works on
ompositionality, we will brie�y mention 
ompositional works that do notuse the rely/guarantee paradigm. However, the rely/guarantee paradigmis a general and proper one for spe
ifying the behavior of modules to be
omposed; therefore, it is without pra
ti
al loss of generality that we fo
uson this paradigm in this thesis.3.2. Dimensions of the Compositional ProblemIn order to des
ribe the approa
h to 
ompositionality developed in thisthesis, we outline what are the major dimensions a

ording to whi
h a
ompositional framework 
an be developed.First of all there are some te
hni
al dimensions that are related to is-sues su
h as the 
hoi
e of the language in whi
h to develop the framework,29



3. Compositionality and Compositional Inferen
e Rulesthe nature of time (dis
rete or dense, linear or bran
hing), the semanti
sgiven to 
omposition, et
. Let us postpone the analysis of these aspe
ts toChapter 4, where they will be presented with referen
e to related works inthe literature. In fa
t, although 
onsidering these aspe
ts 
annot obviouslybe avoided, we 
laim that they are mostly determined by the 
hoi
e of thereferen
e formal language to be used in the analysis. Under this respe
t,the framework we present in this thesis aims at generality; thus it intro-du
es as few semanti
 assumptions as possible and uses an expressive andstraightforward formalism.On the 
ontrary, let us now fo
us on the most important features thattrans
end the te
hni
al 
hoi
es and 
hara
terize a 
ompositional frame-work. For ea
h feature, let us brie�y point out what are the most 
ommon
hoi
es in the 
urrent literature, and how our framework di�ers. Doing so,we lay out the general guidelines for our approa
h to 
ompositionality.
• The �rst aspe
t is the �
ompose vs. de
ompose�. In the literature, we�nd both de
ompositional and 
ompositional approa
hes. De
ompo-sitional approa
hes are basi
ally re�nement te
hniques where a singlemodule is re�ned into the 
omposition of several smaller modules;
ompositional te
hniques ensure that the 
omposition of the re�nedmodules retains all (or some) properties of the original single mod-ule. Compositional approa
hes, instead, start from a set of individualmodules and provide ways of inferring properties about the 
omposi-tion of these individual modules into a larger system.In this thesis, we are mostly interested in the 
ompositional approa
h.First, a de
ompositional approa
h would by de�nition involve re�ne-ment te
hniques, and thus aspe
ts that are simply out of the s
opeof this work, as they would require a di�erent framing and a di�er-ent fo
us. Se
ond, 
ompositionality allows one to reuse the spe
i-�
ations of single modules in di�erent systems that instantiate themodules. Therefore, we argue that 
ompositionality is mostly use-ful in su
h 
ontexts, where the possible additional burden introdu
edby the 
onstru
tion of a 
ompositional spe
i�
ation [Lam98℄ is thenamortized by reusing the same spe
i�
ation in multiple proofs formultiple di�erent systems.
• Most of the literature deals with the te
hni
al aspe
ts of 
omposi-tionality, whereas methodologi
al aspe
ts are often negle
ted.30



3.2. Dimensions of the Compositional ProblemIn this thesis we try to develop not just some 
ompositional infer-en
e rules, but also a general methodologi
al approa
h to the issueof 
ompositional veri�
ation. We already dis
ussed in the Introdu
-tion how the traditional pra
ti
es of modularization, abstra
tion, andinformation hiding 
an be su

essfully applied also to the formal spe
-i�
ation and veri�
ation of modular systems. This is integrated witha suitable notation su
h as TRIO, whi
h gives to the user suitable
onstru
ts to implement these pra
ti
es.
• Most works in the literature provide one unique 
ompositional infer-en
e rule, with the ta
it assumption that all fa
ts about the 
om-position of modules should be inferred using the rule. This is oftennot very pra
ti
al: the veri�
ation pro
ess is often a 
omplex taskthat requires mu
h �exibility on how it should be 
arried out. There-fore, 
onstraining the pro
ess to some pres
ribed �re
ipe� may leadto needless 
ompli
ations.On the 
ontrary, we provide several di�erent rules, we give a possibletaxonomy a

ording to whi
h di�erent rules 
an be 
ategorized, andwe dis
uss how the dimensions of the taxonomy mirror aspe
ts ofreal systems. Our goal is not only to provide a variety of rules amongwhi
h the user 
an 
hoose, but also � and most importantly �to illustrate the attitude to reverse the usual approa
h to applying
ompositionality. Rather than having a rule (or a set of rules) anddes
ribing the system in a way whi
h is amenable to the use of therule, we suggest to �rst formalize the system a

ording to the generalmodularization methods we dis
ussed in the previous point. Then,after the system is formalized, one tries to �nd a suitable rule that�ts the system in question; possibly, the user should also develop anew rule, based on the �lessons� learned from the existing rules andthe formalization of the system, to suitably �t the system itself andits veri�
ation goals. Therefore, our 
atalog of 
ompositional rules isalso meant to provide an illustration on how 
ompositional rules 
anbe built and modi�ed a

ording to one's needs. In Se
tion 6.3 we willprovide an example of how this 
an be done in pra
ti
e.
• Sin
e, as we dis
ussed in the previous point, one single rule is oftenassumed to be used to handle all possible 
ases, its 
ompleteness isusually regarded as an important feature [NT00, Fur05℄. However,as we see in Chapter 5, 
ompositional rules are 
omplete in a trivial31



3. Compositionality and Compositional Inferen
e Rulesway, with respe
t to 
ompositionality. This means that there existglobal properties whi
h � although provable with the rule in questionthanks to 
ompleteness � 
annot be usefully �split� among propertieslo
al to di�erent modules, but require a trivial partitioning of thesystem where one module behaves as the whole system.Therefore, we 
laim that 
ompleteness is not an indispensable featureof a 
ompositional rule. More spe
i�
ally, 
ompleteness must not betraded o� with simpli
ity of a 
ompositional rule or with its pra
ti
alappli
ability. Compositional reasoning 
annot ease all problems ofmodular veri�
ation: it is important that it solves e�e
tively some ofthem, those likely to happen in pra
ti
e. Therefore, in this paper wedevelop both 
omplete and in
omplete rules with equal interest, andwe try to understand what features may render a rule (in)
omplete.
• Most, if not all, of the 
ompositional rules in the literature are 
ir
u-lar, i.e., informally, the property of some module referen
es 
ir
ularly(in general, indire
tly) to itself. Cir
ular reasoning is 
learly unsound,in general, so developing 
ir
ular rules is a mu
h more 
hallengingtask than developing non-
ir
ular ones.Nonetheless, we 
laim that 
ir
ularity is not always needed in pra
-ti
e, and indeed some 
ompositional reasoning 
an be 
arried outwith non-
ompositional rules. Formulating non-
ir
ular inferen
erules is te
hni
ally not very 
hallenging, as they are simple 
on-sequen
es of the basi
 logi
 rules of 
onjun
tion and impli
ation[Lam98℄. Nonetheless, we develop some of them, in Se
tion 5.1,together with 
ir
ular ones. In fa
t, we believe that the te
hni
al
hallenges involved in developing the latter rules should not makeus favor them over non-
ir
ular rules. Realizing what is the role ofnon-
ir
ular rules in pra
ti
e should help framing the 
ompositional-ity problem from the right perspe
tive, and with the right obje
tives,that is pra
ti
al usefulness rather than purely te
hni
al appeal.We 
on
lude this introdu
tion to 
ompositionality by stressing that weadvo
ate a �lightweight� approa
h to 
ompositionality. The approa
h isdriven by the spe
i�
s of the system we are 
onsidering. Method 
omes�rst, as it gives general guidelines on how the system should be spe
i�edand organized. Then, a

ording to the pe
uliar veri�
ation needs thatarise, one should be able to pi
k a suitable te
hni
al solution to it, possiblydeveloping new ones a

ording to the problem at hand.32



3.3. De�ning Compositional Inferen
e Rules3.3. De�ning Compositional Inferen
e RulesThis se
tion de�nes the notion of inferen
e rule in general, and of 
ompo-sitional inferen
e rule in parti
ular. Then, it introdu
es some dimensionsalong whi
h a variety of 
ompositional inferen
e rules 
an be 
hara
terized;in doing so, it tries to link the dimensions of the taxonomy to features of�real� systems they mirror.3.3.1. De�nition of (Compositional) Inferen
e RuleInferen
e RulesInferen
e rules. Let us start by de�ning what is an inferen
e rule, gener-ally speaking. An inferen
e rule [Men97℄ is de�ned by a relation betweenpairs of sets of formulas: Π = {π1, . . . , πm} and Ξ = {ξ1, . . . , ξn} andusually denoted by:
Π = {π1, . . . , πm}
Ξ = {ξ1, . . . , ξn}Elements of Π are 
alled the premises (or ante
edents, or hypotheses) ofthe inferen
e rule, while elements of Ξ are 
alled the 
on
lusions (or 
on-sequents, or theses). Π and Ξ are usually thought of as ordered sets, as ournotation suggests.Intuitively, whenever a set of premises Π̃ and a set of 
on
lusions Ξ̃ belongto the relation de�ned by the inferen
e rule, it means that the truth of Π̃entails the truth of Ξ̃.Soundness and 
ompleteness. An inferen
e rule is sound (or 
orre
t) if:for any pair Π̃, Ξ̃ that belongs to the relation de�ned by the rule, if thepremise Π̃ is true, then the 
on
lusion Ξ̃ is also true.We usually only 
are about sound inferen
e rules, sin
e the intuitivepurpose behind de�ning and using an inferen
e rule is exa
tly that of de-du
ing true fa
ts from other known true fa
ts. Therefore, if we establish aproposition of the following form:Proposition 3.3.1 (Soundness of an inferen
e rule). If:1. π12. π2... 33



3. Compositionality and Compositional Inferen
e Rulesm. πmthen:1. ξ12. ξ2...n. ξnwe have in pra
ti
e proved the soundness of the 
orresponding inferen
erule.On the other hand, an inferen
e rule is 
omplete if: for any 
on
lusion Ξ̃whi
h is true, there is some premise Π̃ su
h that the pair Π̃, Ξ̃ belongs tothe relation de�ned by the rule, and Π̃ is true. In other words, a 
ompleterule allows the proof of any true fa
t.If our referen
e logi
 language is an intrinsi
ally in
omplete one � as itis the 
ase with TRIO, whi
h in
ludes arithmeti
 � then we 
annot have afully 
omplete inferen
e rule, that is one whi
h is 
omplete for any formulain the language. In su
h 
ases, when we speak about 
ompleteness we a
tu-ally mean relative 
ompleteness [Coo78℄, that is, in a nutshell, 
ompletenesswith respe
t to an ora
le for the truth of arithmeti
 formulas.While soundness is an indispensable property for an inferen
e rule, 
om-pleteness (even relative one) is a feature whi
h is not stri
tly required, butmay be desirable in some 
ontexts.Compositional Inferen
e RulesLet us now fo
us on 
ompositional inferen
e rules. The full pra
ti
al signif-i
an
e of these rules will be
ome apparent after presenting a methodologythat exploits them; this will be the obje
t of Se
tion 5.4. However, whileintrodu
ing the te
hni
alities ne
essary to dis
uss 
ompositional inferen
erules, in this se
tion we also try to illustrate the meaning of the inferen
erules, and their overall rationale.Generally speaking, the goal of a 
ompositional inferen
e rule is to pro-vide a way to prove some fa
ts about the 
omposition of some modules,from other known fa
ts about ea
h of the modules. Let us assume that weare dealing with systems made of some N ≥ 2 modules.34



3.3. De�ning Compositional Inferen
e RulesLo
al rely/guarantee spe
i�
ations. The starting point for the appli
a-tion of a 
ompositional inferen
e rule is given by a set of lo
al spe
i�
ations,one for ea
h of the modules in the system. This means that we have someformalization of the elementary signi�
ant behavior of ea
h module, interms of a formula.In general, the lo
al spe
i�
ations 
ould be any kind of formula. In pra
-ti
e, a very natural way to spe
ify a module is a

ording to the rely/guaran-tee paradigm.1 With the rely/guarantee paradigm one makes some assump-tions on the behavior of the environment of the module under spe
i�
ation,and he/she links these assumptions to the guaranteed behavior of the mod-ule itself: the module behaves as expe
ted only if its environment does thesame.In order to formalize this in the inferen
e rules, we asso
iate to ea
h mod-ule 1 ≤ i ≤ N two formulas: Ei and Mi. Ei is 
alled the lo
al assumptionof module i, while Mi is 
alled the lo
al guarantee of module i. Therefore,the lo
al spe
i�
ation of module i 
onsists of some formula linking Ei to
Mi.In the simplest 
ase, this link 
onsists in logi
al impli
ation: Ei ⇒ Miis a lo
al spe
i�
ation des
ribing a module that respe
ts formula Mi aslong as its environment respe
ts formula Ei. For instan
e, let us 
onsider asimple adder module whi
h takes an integer a and returns it in
reased by2 units: b = a+ 2. A rely/guarantee lo
al spe
i�
ation for su
h a module
ould be the following: if a is an even number, then so is b.More generally � and in parti
ular when dealing with the des
ription oftiming behavior � the link between assumption and guarantee is de�nedthrough a binary operator whi
h we generi
ally denote as≻. We 
all it 
om-positional operator. So, impli
ation is a simple example of 
ompositionaloperator, but in general di�erent inferen
e rules use di�erent 
ompositionaloperators. We will provide several examples of 
ompositional operators inChapter 5.Global spe
i�
ations. As we said, the goal of a 
ompositional inferen
erule is to infer some fa
ts about the 
omposition of modules. In the mostgeneral 
ase, the N modules are 
omposed into an open system, whi
h 
antherefore also be 
hara
terized by a global rely/guarantee spe
i�
ation.The global rely/guarantee spe
i�
ation 
an be of the same form of thelo
al spe
i�
ations, or of a di�erent form.1Other paradigms for the des
ription of modules will be presented in Se
tion 4.3. 35



3. Compositionality and Compositional Inferen
e RulesAnyway, we 
hara
terize it through two formulas 
alled global assump-tion and global guarantee, denoted as E andM , respe
tively. As it is simpleto understand, they play similar roles as the lo
al formulas, but with ref-eren
e to the whole system: E formalizes assumptions about the expe
tedbehavior of the system's environment, and M formalizes the guaranteedbehavior of the 
omposite system.Parts of a 
ompositional inferen
e rule. Let us now illustrate the typi
al
omponents of a 
ompositional inferen
e rules, through a simple example.Re
all the module �adding 2� des
ribed above; let us introdu
e a pred-i
ate eve(k) to denote the fa
t that k is even. Thus, the rely/guaranteespe
i�
ation of this module 
an take the form eve(a)⇒ eve(b). Let us now
onne
t two instan
es 1, 2 of this module su
h that the input of module 1is the output of module 2, and vi
e versa. The rely/guarantee spe
i�
a-tion of module 2 would then be eve(b) ⇒ eve(a). We now illustrate the
omponents of 
ompositional inferen
e rules through this simple system.Global spe
i�
ation. Let us start from the 
on
lusion of the inferen
erule. In a nutshell, it 
onsists of the global spe
i�
ation: E ≻M . In otherwords, the overall goal of the inferen
e rule is to dedu
e the truth of theglobal spe
i�
ation.For our simple example, let us assume that the global guarantee is
eve(a) ∧ eve(b), that is both values ex
hanged by the two modules areeven numbers. Sin
e the system is a 
losed one, we need not 
are about aglobal assumption; equivalently, we assume E to be identi
ally true.Lo
al spe
i�
ations. Let us now 
onsider the formulas that appear amongthe ante
edents of the rule. Obviously, we have the lo
al spe
i�
ations, asthe ultimate goal of the rule is to infer the truth of the global spe
i�
ationfrom the truth of all the lo
al spe
i�
ations. Therefore all the lo
al spe
i�-
ations Ei ≻Mi for all 1 ≤ i ≤ N appear as ante
edents of a 
ompositionalinferen
e rule.In our example, we have both eve(a) ⇒ eve(b) and eve(b) ⇒ eve(a)among the ante
edents.Assumption dis
harging formulas. Sin
e we are 
onsidering lo
al spe
i-�
ations in rely/guarantee form, we 
annot say anything about the truth36



3.3. De�ning Compositional Inferen
e Rulesof the lo
al guarantees unless we are able to prove the truth of the lo
al as-sumptions. In other words, in order to use lo
al guarantees as des
riptionsof the modules' behavior, we must �rst show that the modules' environ-ments behave as required by the guarantees. But the system is made bythe 
omposition of the various modules; therefore, for ea
h module i, theother modules 
onstitute i's environment.This suggests to introdu
e an hypothesis in the inferen
e rule that allowsone to show that the truth of the environment assumptions of the variousmodules follows logi
ally from that of the modules' guarantees. Sin
e theverb �dis
harge� is typi
ally used to mean �prove an assumption�, we 
allthese hypotheses (one for ea
h module) assumption dis
harging formulas.They are in the form M1 ∧M2 ∧ · · ·MN ⇒ Ei for ea
h module 1 ≤ i ≤ N ;noti
e that, in the most general 
ase, we allow one to use any module j,in
luding itself, to dis
harge the assumption. Later, we dis
uss how thisgives rise to di�erent kinds of rules.The global environment E may take part in determining the propertiesof the environment of ea
h module i. Therefore, in the most general 
aseit may be required to use the global assumption E to dis
harge some lo
alassumption Ei: the dis
harging formula be
omes E∧M1∧M2∧· · ·MN ⇒ Eiin this 
ase. In other words, the lo
al environment of module i �inherits�some properties of the global environment.In our running example, noti
e that the assumption of module 1 is theguarantee of module 2, and vi
e versa. Therefore, the assumption dis
harg-ing formula for module 1 (resp. 2) 
oin
ides with the lo
al spe
i�
ation ofmodule 2 (resp. 1).Cir
ularity breaking and initialization. As it should be 
lear even fromour trivial example, rely/guarantee 
ompositional inferen
e rules may in-volve a 
ir
ularity between assumptions and guarantees of some modules.In our running example, this is apparent by the fa
t that ea
h modulerelies on the other module's guarantee in order to behave 
orre
tly (i.e.,a

ording to its own guarantee). Cir
ular reasoning is in general unsound,therefore we need to introdu
e an additional hypothesis in the inferen
erule to make the dedu
tion sound. We 
all this additional hypothesis ini-tialization 
ondition.Even if the rule does not involve a 
ir
ularity, some form of initialization
ondition is required as �starting point� to apply the 
hain of inferen
es im-plied by the lo
al spe
i�
ations. In other words, if we have no 
ir
ularities37



3. Compositionality and Compositional Inferen
e Rulesbetween spe
i�
ations and dis
hargings, we nonetheless have to start fromthe truth of some lo
al assumption or guarantee to exploit the rely/guaran-tee spe
i�
ations. Therefore, the existen
e of some initialization 
onditiondoes not depend on the 
ir
ularity of the rule.The a
tual form of the initialization 
ondition 
an vary a lot from infer-en
e rule to inferen
e rule, and it might even be impli
it (i.e., subsumedby some assumptions on the semanti
s of the language). In our simpleexample, it might simply 
onsists of an assertion about a being even apriori : eve(a). This 
learly breaks the 
ir
ularity as it holds regardlessof any assumption. In fa
t, in this 
ase the appli
ation of the inferen
erule amounts to the appli
ation of the well-known modus ponens logi
 in-feren
e rule [Men97℄: from the truth of eve(a) and eve(a) ⇒ eve(b) wededu
e eve(b), so overall we have eve(a) ∧ eve(b). Although 
ompositionalinferen
e rules will be mu
h more 
ompli
ated than this, being able to dealwith temporal properties, our trivial example shows that the very basi
s of
ompositional reasoning are grounded in basi
 logi
 inferen
e.Global implementation. Combining the lo
al spe
i�
ations with the dis-
hargings, and through the initialization 
ondition, one should be able toinfer the truth of some (or all) of the lo
al guarantee formulasMi's. One �-nal ingredient is usually required: an hypothesis should link the truth of thelo
al guarantees to that of the global guarantee; the latter is in fa
t the ulti-mate goal. Therefore, in general we have a formulaM1∧M2∧· · ·MN ⇒Mamong the ante
edents of a 
ompositional inferen
e rule. We 
all this hy-pothesis global implementation.In our simple running example, the global implementation is triviallytrue, as M = M1 ∧M2 = eve(b) ∧ eve(a).As with the lo
al dis
hargings, it may be ne
essary to exploit the as-sumptions about the global environment to infer the truth of the globalguarantee. Therefore, a more general form of the global implementationformula is: E ∧M1 ∧M2 ∧ · · ·MN ⇒MTime and initialization. Although the notions of 
ompositionality and
ompositional inferen
e rules is grounded in basi
 logi
 languages, our in-terest is about 
ompositionality for temporal logi
 formalisms. Therefore,our 
ompositional inferen
e rules must deal with temporal des
riptions ofthe behavior of systems.In su
h 
ases, it happens often that the rely/guarantee behavior of38



3.3. De�ning Compositional Inferen
e Rulesa module involves a temporal relationship between the assumption andthe guarantee of the module. For instan
e, 
onsider a fun
tional mod-ule that takes some input and returns an output after some time T . Ourrunning example may be re�ned to have su
h a temporal behavior: thelo
al spe
i�
ation would now be expressible through the TRIO formula
eve(a)⇒ Futr(eve(b), T ).In a

ordan
e, we may need to restri
t the �temporal s
ope� of the an-te
edents, or of the 
onsequent, or both. Formally, this 
an be a
hievedby making ea
h formula of the inferen
e rule the 
onsequent of an impli
a-tion, whose ante
edent is a (temporal) formula that holds if and only if weare within the desired �temporal s
ope�. We denote su
h ante
edents withthe letter I. In general, we may have a di�erent I for ea
h hypothesis or
on
lusion of the inferen
e rule. We denote them by adding subs
ripts andsupers
ripts a

ording to the formula to whi
h that I is to be applied.Returning one more time to our simple example, let us assume thatboth modules have a predi
ate s whi
h is true exa
tly when the systemis started. Then, for instan
e, the lo
al rely/guarantee spe
i�
ation formodule 1 would now be in the form s ⇒ (eve(a) ⇒ Futr(eve(b), T )), andsimilarly for the other formulas. The initialization 
ondition would benaturally expressed by spe
ifying that at when the system is started, a iseven: s⇒ eve(a).More generally, we observe that the need for a notion of �initialization�(or �system start�) arises espe
ially when one uses bi-in�nite time domains(su
h as R and Z, whi
h are the default 
hoi
es for TRIO); otherwise,with mono-in�nite domains, the in�mum element of the time domain 
on-ventionally denotes an absolute time instant at whi
h the system starts.Indeed, we will see in Chapter 4 that most 
ompositional inferen
e rules inthe literature adopt a mono-in�nite time domain, and therefore do not useinitialization predi
ates (at least in the form we have just presented).General form of a rely/guarantee 
ompositional inferen
e rule. A
-
ording to our explanations, the form of a rely/guarantee 
ompositionalinferen
e rule is summarized in Table 3.1.The observant reader may argue that the general form is not really a spe-
ialization of a generi
 inferen
e rule, as the initialization 
ondition allowsany formula among the ante
edents, and the global spe
i�
ation allows anyformula as 
onsequent through an adequate 
hoi
e of 
ompositional opera-tor and of E,M . This is te
hni
ally true, but the goal of the above s
hema39
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e Rules
∧

1≤i≤N (Isp
i ⇒ (Ei ≻Mi)) lo
al spe
i�
ations

∧
1≤i≤N

(
Idsc
i ⇒

(
E ∧∧j Mj ⇒ Ei

)) (assumption) dis
harging formulas
I imp ⇒

(
E ∧∧j Mj ⇒M

) global implementation
I init ⇒ init initialization (
ondition)

Iglb ⇒ E ≻M global spe
i�
ationTable 3.1.: The 
omponents of a generi
 
ompositional inferen
e rule.is not to stri
tly 
hara
terize all 
ompositional rules, but simply to givean (partly intuitive) idea of what a form a 
ompositional rule should have,and to serve as a yardsti
k for the following developments, taxonomy, andexplanations.Synta
ti
ally-restri
ted 
ompleteness. For 
ompositional inferen
e rulesone is usually interested in a notion of 
ompleteness that is slightly narrowerthan the one introdu
ed previously for general inferen
e rules. Namely, it is
ommon to 
onsider only formulas expressible as a global spe
i�
ation, thatis through a 
ompositional operator. Then, a 
ompositional inferen
e ruleis 
omplete � a

ording to this synta
ti
ally-restri
ted notion of 
omplete-ness � if: for any 
on
lusion ξ̃ that is expressible as ξ̃ ≡ Iglb ⇒ E ≻M andis true, there is some set of premises Π̃ su
h that the pair Π̃, ξ̃ belongs tothe relation de�ned by the rule, and Π̃ is true. The di�eren
e between thisde�nition and the more general one given above is in the fa
t that we now
onsider only formulas expressible a

ording to the synta
ti
 restri
tionsgiven by the statement of the 
ompositional inferen
e rule.Noti
e that the synta
ti
 restri
tions may not impa
t semanti
 expres-siveness at all: in su
h 
ases, when any formula 
an be written as a globalspe
i�
ation, the two de�nitions 
oin
ide. This happens often in pra
ti
e,as we will see with the 
ompositional operators that we will introdu
e inthe following se
tions. In the most general 
ase, however, su
h a narrowernotion of 
ompleteness is adopted sin
e it is totally irrelevant to dis
ussthe 
ompleteness of a 
ompositional inferen
e rule for formulas that arenot expressible as spe
i�
ations of a modular systems: in su
h 
ases 
om-40



3.3. De�ning Compositional Inferen
e Rulespositionality is useless, and one should resort to traditional ��at� inferen
erules and standard dedu
tion.3.3.2. Dimensions for a Compositional TaxonomyThis se
tion 
onsiders some 
ommon 
hoi
es a

ording to whi
h the general
ompositional inferen
e rule of Table 3.1 is instantiated into a
tual rules,and 
lassi�es the dimensions along whi
h these instantiations are made. Westress again the fa
t that we do not aim at exhaustiveness � whi
h wouldprobably be of little pra
ti
al interest anyway � but simply at giving auseful taxonomy whi
h may guide the development of some a
tual rules.Let us �rst list the dimensions we 
onsider; afterward, we 
omment them.
• First, we distinguish between 
ir
ular and non-
ir
ular (or 
ir
le-free) rules. A rule is 
ir
ular if there are 
ir
ularities between the dis-
harging formulas and the lo
al spe
i�
ations: in other words, whenthe assumption of some module is dis
harged (dire
tly or indire
tly)through the guarantee of the same module.
• A self-dis
harging rule is one where the guaranteeMi of some module
i appears on the left-hand side of the impli
ation that dis
harges theassumption Ei of the same module. Noti
e that this is a di�erentnotion than 
ir
ularity, as we dis
uss below.
• A rule is fully 
ompositional when the global assumption E does notappear in any of the dis
harging formulas.
• A rule is globally initialized i� all of the formulas Isp

i , Idsc
i , I impare identi
ally true; in other words, the truth of the 
orrespondingformulas is not dependent of the o

urren
e of the start predi
ate.Otherwise, we 
all the rule lo
ally initialized.

• Finally, another dimension along whi
h to 
lassify a 
ompositionalrule is the 
hoi
e of the 
ompositional operator : every 
hoi
e of the
ompositional operator gives rise to a di�erent ��avor� of inferen
erule.Let us now give an idea of how the various features of inferen
e rules maybe related those of the systems whose 
orre
tness they are used to prove.41



3. Compositionality and Compositional Inferen
e RulesCir
ular vs. non-
ir
ular rules. This is a major feature a

ording to whi
h
ompositional inferen
e rules 
an be 
lassi�ed. Cir
ular rules are needed inpra
ti
e when modeling systems whose 
omponents 
ir
ularly rely on oneanother to fun
tion 
orre
tly when put together. For instan
e, the simpleexample of the two �adding 2� modules (shown in the previous Se
tion 3.3.1)exhibits an obvious 
ir
ularity, manifest by the fa
t that the guarantee
eve(b) of module 1 
oin
ides exa
tly with the assumption of module 2, andvi
e versa.Indeed, our experien
e has shown that this is often not the 
ase: design-ing a system whose 
omponents 
ir
ularly rely on one another is most ofthe times an overly 
ompli
ated 
hoi
e, so it is not likely to be taken often.Of 
ourse, ex
eptions exist: for instan
e the dining philosophers exampleof Se
tion 6.2, and the BitTorrent example of Se
tion 6.3, are examples ofsystems that exhibit 
ir
ularities. However, they have been 
hosen espe-
ially with this 
riterion in mind: to show 
ir
ular inferen
e rule in a
tion.Therefore, in the remainder we also dis
uss non-
ir
ular inferen
e rules,and argue that these are very 
ommonly used in pra
ti
e.In general, the soundness of non-
ir
ular rules relies on very minimal(and simple) assumptions about the various elements of the rule. Indeed,their 
orre
tness is often a simple 
onsequen
e of the elementary propertiesof the impli
ation and of the 
onjun
tion, as we will show in Se
tion 5.1.On the other hand, showing the soundness of 
ir
ular rules is in generalmore involved, in parti
ular when dealing with the spe
i�
ation of tem-poral properties. In fa
t, 
ir
ular reasoning is in general not sound, sothat one has to show that there is some 
ir
ularity breaking me
hanismthat resolves the issue (this is usually a result of the interplay between theinitialization 
onditions and the properties of the 
ompositional operator).This probably explains why most, if not all, the 
ompositional rules thathave been studied in the literature are 
ir
ular (see Chapter 4): demon-strating their soundness has been deemed a su�
iently 
hallenging problemto be of interest.2Self-dis
harging rules. Whereas 
ir
ularity is mostly a semanti
 property,self-dis
harging rules have a 
lear synta
ti
 
hara
terization.In order to motivate the use of self-dis
harging rules, let us sket
h a verysimple example of a timed system where self-dis
harging is the natural wayto go. For the sake of simpli
ity let us assume a dis
rete time domain, and2Indeed, Abadi and Lamport [AL95℄ 
all �strong� inferen
e rules whi
h are 
ir
ular.42



3.3. De�ning Compositional Inferen
e Ruleslet us just 
onsider one single thermostat module.3 Now, let us assume thatthe thermostat is 
apable of in�uen
ing the temperature of a room. In par-ti
ular, whenever the temperature is within a given �safe� range, the devi
eis 
apable of guaranteeing that the temperature is also within the rangein the next time instant. Thus, if we introdu
e a time-dependent predi-
ate ok to indi
ate that the temperature is within the desired range, therely/guarantee behavior of the module may be des
ribed with the formula
ok ⇒ NowOn(ok). Noti
e that in this 
ase E = M = ok for the module.Therefore, the tautology ok ⇒ ok would naturally be a self-dis
hargingformula for the assumptions in the system.As this little example suggests, self-dis
harging rules may be needed indes
ribing the behavior of modules with some form of feedba
k. In su
hmodules, the fun
tionality itself of the module (represented by the guar-antee) may 
ontribute dire
tly, together with the other modules in thesystem, to make the environment of the module behave as in the assump-tion. On the other hand, when there is no feedba
k, then the modulerelies dire
tly solely on the other modules to have a �
orre
t� environ-ment, while its a
tions 
ontribute to guaranteeing that the other modules'environments are �
orre
t�. Another, more realisti
, example of a systemwhere self-dis
harging is useful is the 
ontrolled reservoir example presentedin [Fur03b, Chap. 7℄.Let us remark that self-dis
harging and 
ir
ular are two distin
t proper-ties of a rule. More pre
isely, a self-dis
harging rule is always also a 
ir
ularrule: this is apparent from our de�nition of 
ir
ular rules. On the otherhand, a rule may be 
ir
ular without being self-dis
harging: in this 
asethe 
ir
ularity between assumption and guarantee of some module is notdire
t (i.e., within the same impli
ation), but it requires some levels of in-dire
tion. The 
anoni
al example is that of two modules 1, 2 whose lo
alspe
i�
ations are E1 ⇒M1 and E2 ⇒M2, and whose dis
harging formulasare M2 ⇒ E1 and M1 ⇒ E2. Then, the dis
harging formulas show thatthe rule is not self-dis
harging. However, the dis
harging of assumption E1(resp. E2) relies on the guarantee M2 (resp. M1), whi
h in turn dependson the assumption E2 (resp. E1) to hold, whi
h relies on the guarantee M1(resp.M2); thus all in all E1 (resp. E2) 
ir
ularly depends onM1 (resp.M2)to be dis
harged.3Clearly, this would make us lose the point of 
ompositional reasoning, but we do thisfor illustration purposes only. 43



3. Compositionality and Compositional Inferen
e RulesFully 
ompositional rules. A

ording to the stri
ter de�nition of 
ompo-sitionality, whi
h we presented in Se
tion 3.1, in a 
ompositional rule thetruth of some global fa
t should be inferred �on the basis of its 
onstituent
omponents only�. This suggests that the dis
harging of the assumptionsshould not depend on anything whi
h is �outside� the system, su
h as theglobal assumption E. This is why we 
all a rule �fully 
ompositional� ifthis is the 
ase.Closed systems � su
h as our �adding 2� example of the previous se
-tion � are a parti
ularly relevant 
lass of systems for whi
h fully 
omposi-tional rules 
learly su�
e. In fa
t, 
losed systems do not 
ommuni
ate withany external environment, so that the global assumption E is identi
allyequal to true. In general, 
ontrolled systems are usually modeled as 
losedsystems, as the physi
al system under 
ontrol and the 
ontroller 
onsti-tute ea
h other's environment. From this viewpoint, modeling a 
ompletesystem in a rely/guarantee style often results in a 
losed system, as oneendeavors to in
lude a model of the environment itself, a

ording to the
ontrol standard paradigm.On the 
ontrary, when the modules are not �autonomous� in determiningone other's environment, but they rely on some additional property of theglobal environment, one needs non-fully 
ompositional rules. Noti
e alsothat an open system does not ne
essarily require a non-fully 
ompositionalinferen
e rule, as the global assumption may be required only in the globalimplementation or in the global spe
i�
ation.In the literature, several 
ompositional inferen
e rules are non-fully 
om-positional (see Chapter 4). This is often driven more by an e�ort towardgenerality (and 
ompleteness), rather than by spe
i�
 requirements of thesystems of interests. In our analysis, we will 
onsider both fully and non-fully 
ompositional rules.Globally vs. lo
ally initialized rules. As we dis
ussed in the previousSe
tion 3.1, initialization predi
ates I are needed only when dealing withspe
i�
ations des
ribing the temporal behavior of a system. This is thefo
us of the present work, thus the notion of globally and lo
ally initializedrules is needed.If a system has a notion of �start� or initialization, then it may be that itbehaves di�erently before than after it has started. Let us illustrate this onthe thermostat example: let us postulate that the module 
an be started,and let us model this fa
t through a predi
ate s be
oming true. Then, it44



3.3. De�ning Compositional Inferen
e Rulesmay be that the rely/guarantee behavior ok⇒ NowOn(ok) holds only afterthe system has started, that is after s has been true at least on
e (for sim-pli
ity, let us assume that further starts are ignored). Then, the initializa-tion predi
ate Isp for the lo
al spe
i�
ation should be Isp = SomP(s), whi
his true pre
isely whenever s has been true (at least on
e) in the past. Thus,the full lo
al spe
i�
ation would be
ome: SomP(s)⇒ (ok⇒ NowOn(ok)).Noti
e that this would also probably require to introdu
e the same initial-ization predi
ate for the other hypotheses and for the 
on
lusion of theinferen
e rule we would like to use. This 
orresponds to 
ompletely disre-garding the behavior of the system before it has started.Lo
ally initialized rules subsume globally initialized ones, as in globallyinitialized rules one does not have to deal with initialization 
onditionsex
ept that in the initialization formula. Nonetheless, globally initializedrules usually present the lo
al spe
i�
ations in a simpler form, for moduleswhose rely/guarantee behavior does not depend on any initialization. Fi-nally, noti
e that, in globally initialized rules, the initialization formula isonly required for 
ir
ularity breaking, in order to guarantee the soundnessof the rule, but it does not in�uen
e the behavior of the single modules orthe way they intera
t.
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4. Related Work onCompositionalityThis 
hapter presents a 
omparative review of several works about 
ompo-sitionality.Besides the dimensions we have outlined in Chapter 3, there are a numberof te
hni
al aspe
ts by whi
h 
ompositional frameworks di�er. Mostly, theyderive from the various 
hoi
es of referen
e formal language to be used, andon the semanti
s assumptions that are introdu
ed in the abstra
t model.Let us re
all that, in this sense, the framework we present in this thesisaims at generality, and thus it introdu
es as few semanti
 assumptions aspossible.Let us list these te
hni
al 
hoi
es and brie�y des
ribe them.Time Model This aspe
t 
onsiders 
ontinuous or dis
rete time, real-time(i.e. metri
) or untimed (i.e. without metri
) time models, the linearor bran
hing nature of time, et
.Computational Model This aspe
t 
onsiders issues su
h as whether weadopt a semanti
s based on states, on transition systems, an agent-based view, et
.Model of Con
urren
y Choosing the model of 
on
urren
y involves 
on-sidering issues su
h as syn
hronous vs. asyn
hronous, interleavingsemanti
s, lower-level models of 
on
urren
y su
h as shared-variables
on
urren
y and message passing systems.Spe
i�
ation Model This aspe
t refers to the abstra
tion me
hanisms in-trodu
ed in the model that 
onstitutes the spe
i�
ation. For exam-ple we may use an assertional approa
h, or an operational one, or adual-language one (whi
h 
ombines an operational formalism with anassertional one), et
.Implementation Language This aspe
t is only relevant if we are verifyingimplemented programs. In su
h 
ase, the formal framework shouldgive a formal semanti
s to the programming language. 47



4. Related Work on CompositionalitySyntax vs. Semanti
s This refers to the general approa
h of the 
ompo-sitional method we are 
onsidering. We say it is synta
ti
 if it isde�ned in terms of the language used in the formal des
ription ofthe model, using rules that refer to the synta
ti
 stru
ture of the for-mulas, without referen
e to semanti
 
on
epts su
h as safety/liveness
hara
terization, 
losures, et
. On the 
ontrary, we label a methodsemanti
 if its appli
ability and justi�
ation are based on these latter
on
epts, usually expressed in terms of set-theoreti
 
on
epts.How to Make a Module Compositional This aspe
t 
hooses among therely/guarantee paradigm (dating ba
k to Jones [Jon83℄ and Misraand Chandi [MC81℄), or the lazy methodology proposed by Shankar[Sha98℄, or other original approa
hes su
h as the ones by Hooman[Hoo98℄, Manna et al. [BMSU01℄, et
.Semanti
s of Composition The 
hoi
e made by most authors is to take
omposition as 
onjun
tion of spe
i�
ations for denotational formal-ism, and parallel 
omposition for operational ones. Other, less 
om-mon, variants are possible.Table 4.1 s
hemati
ally summarizes the above aspe
ts. In itali
 areshown the 
hoi
es we fo
used on in this thesis, that is a framework whi
hworks equally well for 
ontinuous and dis
rete time, relies on no assump-tions about the 
omputational and 
on
urren
y model, it is primarily syn-ta
ti
, 
onsiders linear time and abstra
t spe
i�
ations.In the remainder of this 
hapter, we survey the most relevant works about
ompositional methods, with parti
ular interest for rely/guarantee abstra
tinferen
e rules. We refer the reader to [Fur05℄ for additional referen
es anddetails about 
ompositional framework in the literature.4.1. Early Works on Compositional MethodsThe �rst attempts at the formal veri�
ation of programs date ba
k to theorigins of 
omputer s
ien
e itself, with the pioneering works of Goldstineand von Neumann [GvN63℄, and Turing [Tur49℄, in the se
ond half of the'40s. A

ording to de Roever et al. [dRdBH+01℄, a 
onstant trend in devel-oping methods for proving program 
orre
tness has been from a posteriorinonstru
tured methods to stru
tured 
ompositional te
hniques. For a de-tailed histori
al a

ount of 
ompositional and non
ompositional methods48



4.1. Early Works on Compositional MethodsIssue Possible 
hoi
esTime Model 
ontinuous, dis
rete, real-time, un-timed, linear, bran
hing, et
.Computational Model state-based, agent-based, transitionsystem, et
.Con
urren
y Model syn
hronous, asyn
hronous, inter-leaving, message passing, shared vari-ables, et
.Spe
i�
ation denotational, operational, dual-language, et
.Implementation language used for implementationSyntax vs. Semanti
s language vs. (semanti
) modelCompositionality Model rely/guarantee, lazy, hybrid, et
.Composition Semanti
s 
onjun
tion, parallel, et
.Table 4.1.: Dimensions of the Compositional Worldand te
hniques for program veri�
ation, we refer the reader to the afore-mentioned book by de Roever et al. [dRdBH+01℄, and to the surveys by deRoever and Hooman [dR85,HdR86,dR98℄.This development is rather easy to sket
h for sequential program veri�-
ation, where the �rst method is due to Floyd in 1967 [Flo67℄ and is non-
ompositional, whereas Hoare reformulated the method in an axiomati

ompositional style in 1969 [Hoa69℄.On the other hand, the �rst pra
ti
al non
ompositional methods for theveri�
ation of 
on
urrent programs are due to Ash
roft [Ash75℄, Owi
kiand Gries [OG76℄, and Lamport [Lam77℄, during the mid '70s. Con
ur-ren
y raises several te
hni
al di�
ulties whi
h render the development ofmethods, as well as their 
ompositional extensions, harder than in the se-quential 
ase. Indeed, the �rst 
ompositional methods for 
on
urrent pro-gram veri�
ation appeared at the end of the '70s, in the 
ontributions byFran
ez and Pnueli [FP78℄, Jones [Jon83℄ and Misra and Chandy [MC81℄.In parti
ular, the works by Jones [Jon83℄ and by Misra and Chandy[MC81℄ introdu
ed the rely/guarantee paradigm to spe
ify open rea
tivesystems. It was Jones who introdu
ed the terminology rely/guarantee in[Jon81,Jon83℄, where he proposed a method for the shared-variable modelof 
on
urren
y. His work was based on the previous work by Fran
ez andPnueli [FP78℄. 49



4. Related Work on CompositionalityOn the other hand, Misra and Chandy proposed in [MC81℄ a similarparadigm for 
on
urren
y models based on syn
hronous 
ommuni
ation,and 
alled it assumption/
ommitment.Later, Abadi and Lamport proposed to 
all both 
ompositional paradigmsassume/guarantee [AL93℄, sin
e they embody the same idea. Several ofthe works reviewed in Se
tion 4.2 show in detail how the two paradigmsof rely/guarantee and assumption/
ommitment 
an be uni�ed. Be
ause ofthis reason, in all of this paper we will not distinguish in the terminologybetween rely/guarantee, assumption/
ommitment and assume/guarantee:we 
hoose to use only the term �rely/guarantee�, in a

ordan
e with thename given to the �rst formulation of the prin
iple [Jon81℄.Finally, in this short re
ount of �rst works on 
ompositionality for 
on-
urrent systems, it is worth mentioning the work by Stark, who formulatedthe �rst theory of re�nement for 
on
urrent pro
esses in 1988 [Sta88℄.4.2. Abstra
t Frameworks for Rely/GuaranteeCompositionalityThis se
tion surveys several works about abstra
t 
ompositional frame-works based on rely/guarantee inferen
e rules that handle 
ir
ularity. Wetry to show how all of these frameworks are fundamentally based on an in-feren
e rule whi
h is a parti
ular instan
e of the general rule of Table 3.1,to whi
h ea
h framework adds spe
i�
 additional hypotheses for soundness.The works are grouped into three sets, a

ording to the basi
 formalismsused to express the 
ompositional framework. Within ea
h group, the worksare presented roughly in 
hronologi
al order, but listing sequentially worksby the same authors whi
h 
an be 
onsidered su

essive developments overthe same ideas.4.2.1. Purely Semanti
 FrameworksLet us start by 
onsidering purely semanti
 works. By �semanti
 frame-works� we mean 
ompositional frameworks based on inferen
e rules ex-pressed without referen
e to a parti
ular language, but rather in terms ofsets of behaviors and interpretation stru
tures. This deviates from the pre-sentation of inferen
e rules that we did in Se
tion 3.3.1, in that semanti
rules have hypotheses and 
on
lusions expressed as set-theoreti
 propertiesof behaviors, using dire
tly set-theoreti
 notions to des
ribe behavior sets.50



4.2. Abstra
t Frameworks for Rely/Guarantee CompositionalityThen, the 
on
rete appli
ation of a semanti
 rule to a spe
i�
 language re-quires one to 
he
k that the semanti
s of the language satis�es the semanti
hypotheses made by the inferen
e rule. This 
an be more or less simple,a

ording to the pe
uliarities of the inferen
e rule and of the language, butin any 
ase it is left to the user of the rule.Semanti
 frameworks often distinguish between system spe
i�
ationsthat are, or are not, safety properties. In short, a safety property is onewhi
h is �nitely refutable, that is every behavior failing to satisfy it doesso at a �nite point in time. For a more pre
ise de�nition see [AS85,MP90℄.Compositional reasoning with semanti
 frameworks is usually simpler forsafety properties; this is the main reason for the widespread use of thenotion of safety.Abadi and Lamport [AL93℄ are the �rst to present a purely semanti
analysis of 
ompositionality, independent of any parti
ular spe
i�
ationlanguage or logi
. This permits a general analysis of 
ompositionality. How-ever, the approa
h also has some drawba
ks, whi
h arise mainly from twoaspe
ts. On the one hand, the analysis is probably too abstra
t, that is it isfar from immediate appli
ability with a given formalism. This is also brie�ya
knowledged by the authors themselves in [AL95℄. By �too abstra
t� wealso imply that its theoreti
al results have mostly intelle
tual (rather thanpra
ti
al) interest. On the other hand, the analysis done by Abadi andLamport still requires a number of fo
used semanti
 assumptions, whi
hmimi
 the features of the semanti
s of some spe
i�
ation formal language.As a result, mapping this general framework onto a given spe
i�
ation lan-guage may introdu
e additional 
ompli
ations and intri
a
ies, due to thefa
t that a given language usually 
omes with its own semanti
s, whi
hmay be di�
ult to adapt or 
ir
umvent to mat
h the general hypothesesof the paper.Let us brie�y outline the main semanti
 hypotheses of the model.
• Behaviors of des
ribed systems are in�nite dis
rete sequen
es of statesfrom a 
ertain (unspe
i�ed) �nite set.
• Any state 
hange is triggered by agents. Agents 
an be divided intosets, whi
h re�e
t their �nature�. Noti
e that agents are an abstra
-tion whi
h typi
ally translates to separated input and output vari-ables, in a lower level formalism.
• An interleaving semanti
s for 
omposition of behaviors is assumed.51



4. Related Work on Compositionality
• Stuttering-equivalen
e is also required, that is two behaviors are 
on-sidered equivalent if they are equal after repla
ing every maximal se-quen
e 
omposed entirely of the same state with one single instan
eof that state.
• Fairness 
onditions (also known as progress properties) are usuallyintrodu
ed in a spe
i�
ation.
• Initialization predi
ates are also 
onsidered, so that the system has anotion of �start�.Let us now see how the general inferen
e rule of Table 3.1 is modi�ed byintrodu
tion of additional hypotheses.
• Ea
h module is 
hara
terized by a set of agents that perform the statetransition the module is responsible of. The agent sets for the variousmodules are assumed to be disjoint.
• Ea
h environment assumption must be a safety property, 
onstrain-ing only agents whi
h do not belong to any module (i.e. they belongto the environment). The authors note that, sin
e it is well knownthat any property in temporal logi
 
an be expressed as the inter-se
tion of a safety and a liveness property, it is possible to move theliveness part of the environment assumption to the guarantee partof the rely/guarantee spe
i�
ation. However, this 
onsideration is ofintelle
tual interest only, as the authors themselves admit in [AL95℄.In fa
t, again, we must bear in mind that 
ompositionality only hasits strengths in being a pra
ti
ally usable te
hnique, whi
h is not the
ase if it for
es one to write spe
i�
ations in an unnatural manner.
• Impli
ation and 
onjun
tion in the general rule of Table 3.1 aremapped to the set-theoreti
 operators ⊆ and ∩. This is the mostnatural 
hoi
e, sin
e we are dealing with a semanti
 model whereproperties are sets.
• A rely/guarantee spe
i�
ation is written using the operator⇒, where
P ⇒ Q is a shorthand for the set-theoreti
 expression (B − P ) ∪ Q,where B denotes the set of all behaviors.
• Lo
al spe
i�
ations are expressed in terms of the realizable part ofthe rely/guarantee expression Ei ⇒ Mi, denoted as R(Ei ⇒Mi).Without introdu
ing too many te
hni
al details, let us just say that52



4.2. Abstra
t Frameworks for Rely/Guarantee Compositionalitythis requires the behavior de�ned by Ei ⇒Mi to be implementable,that is to be the out
ome of a deterministi
 strategy.
• Assumption dis
hargings 
onsider the safety 
losure C(Mi)

1 of the
Mi. Moreover, it is assumed that the safety 
losure of ea
h Mi doesnot 
onstrain any agent outside the agent set for the module i.
• A global implementation hypothesis is absent, sin
e the rule a
tuallyproves E ⊑ dn

i=1Mi instead of E ⊑M .To sum up, the soundness is based on a dis
rete state stru
ture, on whi
hto perform indu
tion, on the safety of the environment assumptions and onthe distin
tion between input and output variables. Here it is the inferen
erule given in [AL93℄, after removing expli
it mentions to the agents.Proposition 4.2.1 (Abadi and Lamport, 1993 [AL93℄). If:1. for all i = 1, . . . , n: R(Ei ⇒Mi)2. E ∩⋂n
i=1 C(Mi) ⊆

⋂n
i=1Ei3. E and Ei, for all i = 1, . . . , n, are safety properties.then: R(E ⇒ ⋂n

i=1Mi).The rule was given some (partial) tool support in [HZB+96℄, using thetheorem prover HOL.Xu, Cau, and Collette [XCC94℄ introdu
e a 
ompositional rule that sub-sumes two families of 
ompositional rules, that is those for models of 
on-
urren
y based on shared variables, and those for message passing models.The earliest works on 
omposition for these models are the well-known 
on-tributions by Misra and Chandy [MC81℄ for message passing 
on
urren
yand by Jones [Jon83,Jon81℄ for shared variables. For our purposes, we willnot a

ount for the two spe
i�
 models of 
on
urren
y, but we will justdis
uss and present the unifying rule of [XCC94℄.The general framework is in the same spirit as Abadi and Lamport's[AL93℄. More pre
isely, the following 
hoi
es are made.1The safety 
losure of a property P is the strongest (i.e., smallest) safety property P ′su
h that P implies P ′. 53



4. Related Work on Compositionality
• Rely/guarantee spe
i�
ations are written using the spiral operator
→֒, whi
h has basi
ally the same semanti
s as the +−⊲ of Abadi andLamport [AL95℄, whi
h we are going to present in Se
tion 4.2.2.

• The assumptions are taken to be safety properties.
• The guarantees are expressed by the 
onjun
tion of a safety part MSand a non-safety part MR.
• We do not detail the treatment of agents, whi
h is however verysimilar to that of [AL93℄.Therefore, the inferen
e rule goes as follows.2Proposition 4.2.2 (Xu, Cau, and Collette, 1994 [XCC94℄). If:1. for all i = 1, . . . , n: (Ei →֒MS

i ) ∧ (Ei ⇒MR
i )2. E ∧∧n

i=1M
S
i ⇒

∧n
i=1Ei3. a) ∧n

i=1M
S
i ⇒MSb) E ∧∧n

i=1M
R
i ⇒MR4. E ⇒ ∧n

i=1Ei at the initial time (i.e. 0)then: (E →֒MS) ∧ (E ⇒MR).The main 
ontribution of this work is the uni�
ation of the two di�er-ent models of 
on
urren
y. In parti
ular, it is shown that the general se-manti
 framework, and the usual requirements on safety and �progression�operators 
an a

ount for independently developed models of parallelism.Finally, it is spe
ulated that a unifying rule may be useful in integratingthe two models of 
on
urren
y in a single spe
i�
ation.Cau and Collette extended this same semanti
 framework along the samelines in [CC96℄. They 
hoose to represent 
omposition with the abstra
tsemanti
 ⊗ operator, that merges two (dis
rete-time) behaviors into one(representing the 
omposition of the behaviors). The ⊗ operator is assumedto respe
t simple properties, namely that if σ = σ1 ⊗ σ2:
• |σ1| = |σ2|, that is only behaviors of equal length 
an be 
omposed2A
tually, [XCC94℄ presents the rule for the 
ase of two modules only (i.e. n = 2).Instead, we present here its verbatim generalization to arbitrary n.54
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• the result of the 
omposition is a behavior with the same length ofthose 
omposed, that is |σ| = |σ1| = |σ2|;
• any pre�x of length k of σ is the 
omposition of the pre�xes of length
k of σ1 and σ2, for all k.The operator ⊗ is generalized to sets of behaviors (i.e. properties) as ob-vious: given properties P1, P2, we de�ne their 
omposition P1 ⊗ P2 as theset of behaviors {σ|σ = σ1 ⊗ σ2 ∧ σ1 ∈ P1 ∧ σ2 ∈ P2}. This abstra
tmerge operator en
ompasses various models of 
omposition, and in parti
-ular 
onjun
tion as well as disjun
tion.Rely/guarantee spe
i�
ations are assumed to be 
hara
terized by a tripleof properties, whi
h we indi
ate as E, MS and MR. As in the otherwork [XCC94℄, E is assumed to be a safety property, MS is the safety partof the guarantee, andMR is its non-safety part. We denote byM the set ofbehaviors whi
h are both in MS and in MR, that is M = MS ∩MR. Thelink between the assumption and guarantee of a given module is formalizedusing an ad ho
 operator, denoted as @→. Its semanti
s is again basi
allythe same as that of Abadi and Lamport's +−⊲ [AL95℄, whi
h we will dis
ussin Se
tion 4.2.2.In presenting this inferen
e rule, we do not represent, as usual, somedetails in order to �t the rule to the setting of our general rule of Table3.1, and to 
onvey only the very general intuition behind the rule.Proposition 4.2.3 (Cau, and Collette, 1996 [CC96℄). If:1. a) E1 @→M1b) E2 @→M22. E ⊗MS

1 ⊗MS
2 ⊆ E1 ⊗ E23. a) MS

1 ⊗MS
2 ⊆MSb) E ⊗MR

1 ⊗MR
2 ⊆MRthen: E @→M .Maier [Mai01℄ introdu
es another simple semanti
 
ompositional frame-work, and shows how it 
an be instantiated to some 
on
rete 
omputationalmodels. The framework is based on set theory, and in this sense it is simi-lar to [AL93℄. However, with respe
t to [AL93℄ it is simpler and based onfewer semanti
 assumptions, and therefore more abstra
t. 55



4. Related Work on CompositionalityIn a nutshell, the framework is based on downward-
losed sets. Morepre
isely, a system is de�ned by a set of behaviors from a universe set B,whi
h is partially ordered (with order relation denoted as �), well-founded(i.e. it has a bottom element ǫ), and downward-
losed, that is for all b, b′if b ∈ B and b′ � b then b′ ∈ B. Every property (or module) is identi�edwith some downward-
losed subset B ⊆ B, with 
ertain properties.Stru
tures 
alled 
hains are introdu
ed to des
ribe the evolution of be-haviors. A sequen
e of behaviors bi ∈ B for i ∈ N is 
alled a 
hain whenever:
• it as
ends from the bottom, i.e. b0 = ǫ and for all i ∈ B: bi � bi+1;
• it 
onverges to some limit in B, that is the upper bound b of the set
{bi|i ∈ N} exists and is in B.With a little abuse of notation, we will denote a 
hain (bi)i∈N simply as bi.We need two more notions to introdu
e the 
ompositional inferen
e ruleof the framework in detail. One is the idea of extension: given two sets

B1, B2 ⊆ B and a 
hain bi, we say that B1, B2 extend along bi i�, for all
i ∈ N, if bi ∈ B1 ∩ B2 then bi+1 ∈ B1 ∪ B2. The other notion, morefamiliar, is that of 
losure: a set B ⊆ B is 
losed with respe
t to a 
hain biif, whenever bi ∈ B for all i ∈ N, the limit of bi is also in B.Finally, as it is natural in a set-theoreti
 framework, 
omposition is rep-resented by interse
tion ∩ and impli
ation by the subset relation ⊆.We are now ready to introdu
e the abstra
t 
ompositional rule of theframework. We note that it is proposed in a narrower form than that ofthe general rule of Table 3.1: it 
onsiders the simple 
ase of two modulesonly, and it 
onsiders 
omposition into a 
losed, rather than open, overallsystem. Here it is the inferen
e rule.Proposition 4.2.4 (Maier, 2001 [Mai01℄). If:1. a) E1 ∩M2 ⊆M1b) E2 ∩M1 ⊆M22. for every b ∈ B, there exists a 
hain bi (for i ∈ N) su
h that:a) bi 
onverges to bb) M1,M2 extend along bi
) M1,M2 are 
losed with respe
t to bithen: E1 ∩ E2 ⊆M1 ∩M2.56



4.2. Abstra
t Frameworks for Rely/Guarantee CompositionalityNoti
e that the requirement 2
 on the 
losure of M1,M2, together withdownward-
losure, is a stri
t analogue of requiring the guarantees to besafety properties, as done in other 
ompositional frameworks. Moreover,the extension 
ondition 2b mirrors the idea of a 
ompositional operator su
has Abadi and Lamport's while-plus [AL95℄, whi
h we present in the nextse
tion. This, 
ombined with the well-foundedness of the set of behaviors
B, permits the appli
ation of the usual indu
tion in proving the soundnessof the rule.The proposed framework is simple enough to be interesting as a generalframework. Its major 
ontribution is, in our opinion, to expli
itly pin downsome basi
 fa
ts about 
ompositional reasoning at the semanti
 level. Thesefa
ts 
onstitute the basis of most works on 
ompositionality and thereforethey 
an be understood better. In this sense, we believe that this work issimilar in spirit to [AENT03℄.4.2.2. Compositionality for TLAWith referen
e to the spe
i�
ation language TLA [Lam94℄, Abadi and Lam-port propose in [AL95℄ a sound 
omposition theorem. The following as-sumptions are introdu
ed to render the dedu
tion rule sound.First, general restri
tions are impli
it in the use of TLA as a spe
i�
ationlanguage, and namely:
• Although time variables 
an take values over a 
ontinuous domain(i.e. the reals R), the semanti
 of the language is de�ned in termsof dis
rete sequen
es of states, where a state is an assignment ofvalues to the set of variables. Therefore, there is a 
onsiderable, andintrinsi
, �amount of dis
reteness� in the des
ription of a system withTLA. This is also shown by the important role given to invarian
eunder stuttering.
• In TLA, there is the notion of initialization of variables, and thereforeof �beginning� of the life of a system.
• Usually, it is assumed that the set of all variables 
an be partitionedinto two subsets e and m of input and output variables. The spe
-i�
ation is su
h that the assumption formulas only modify variablesin e, while the guarantee formulas only modify variables in m. A
-tually, how to treat the more general 
ase (i.e., where some variables57



4. Related Work on Compositionalityare modi�ed both by assumptions and by guarantees) is dis
ussedbrie�y in [AL95℄, although the solution still has some limitations.
• Although TLA 
an handle both interleaving and non-interleaving
omposition, the two 
ases must usually be treated separately in the
orre
tness proofs.Se
ond, the following additional assumptions are introdu
ed spe
i�
allyin the rule.
• The lo
al spe
i�
ations are written using the +−⊲ �while-plus� 
ompo-sitional operator. Quoting [AL95℄, a spe
i�
ation�is expressed by the formula E +−⊲ M , whi
h means that,for any n, if the environment satis�es E through �time� n,then the system must satisfy M through �time� n+ 1�.Noti
e that su
h an operator requires the notion of dis
rete �time�and permits some form of indu
tion on su
h a dis
rete stru
ture witha beginning.
• Assumption dis
hargings are expressed through the safety 
losuresof the involved formulas. The authors introdu
e some lemmas thatpermit to get rid of the 
losures in the formulas, under additionalte
hni
al 
onditions.
• The global implementation formula is 
oupled with a similar one,where the safety 
losures of the formulas are 
onsidered. In parti
ular,
E is repla
ed by C(E)+v, a formula whi
h asserts that, if C(E) everbe
omes false, then the values of all the spe
i�
ation variables v stayun
hanged always in the future. As for the previous 
ondition, rulesfor handling the 
losures and the + operator are proposed.To sum up, the soundness in the 
ompositional rule is gained by 
on-sidering spe
i�
ations written in a 
anoni
al form, exploiting an indu
tion(using the +−⊲ operator) over a dis
rete stru
ture of states with a begin-ning, and 
onsidering safety 
hara
terizations of some of the assumptionsand guarantees formulas of the spe
i�
ation, handling these safety 
hara
-terizations with ad ho
 rules and te
hniques. Here it is the 
ompositionrule.Proposition 4.2.5 (Abadi and Lamport, 1995 [AL95℄). If:58



4.2. Abstra
t Frameworks for Rely/Guarantee Compositionality1. for all i = 1, . . . , n: Ei
+−⊲ Mi2. C(E) ∧∧n

i=1 C(Mi)⇒
∧n

i=1Ei3. a) E ∧∧n
i=1Mi ⇒Mb) C(E)+v ∧

∧n
i=1 C(Mi)⇒ C(M)then: E +−⊲ M .We noti
e how the rule proposed by Abadi and Lamport introdu
es sev-eral assumptions on the 
omputational model, and on how a spe
i�
ation,and the 
orresponding proof, �should be written�. These restri
tions mayredu
e generality and immedia
y of use.4.2.3. Compositionality for Intuitionisti
 Logi
Abadi and Plotkin [AP93℄ perform an abstra
t study of 
ompositional-ity, in two frameworks based on intuitionisti
 and linear logi
s. The worktreats 
ompositionality at the semanti
 level, and 
onsiders safety proper-ties only. As we brie�y dis
ussed at the beginning of Se
tion 4.2.1, safetyproperties usually require simpler (or fewer) semanti
 assumptions for aninferen
e rule to be sound, and are therefore the �rst and main fo
us inmany 
ompositional frameworks.For brevity, let us just 
onsider the simpler approa
h based on intuition-isti
 logi
. The framework and the results 
losely mat
h those of [AL93℄,with restri
tion to safety properties for both the assumptions and the guar-antees. With respe
t to [AL93℄, an additional theoreti
al result is the re-du
tion of the 
ompositional inferen
e rule to the the 
ase for just onemodule. Let us state this result more expli
itly. The semanti
 model is thesame as that of [AL93℄. It 
an be shown that su
h a model is an intuition-isti
 one. With these de�nitions and semanti
 assumptions, the followingvery simple 
ir
ular inferen
e rule is proved sound (→ is a suitably de�nedimpli
ation).Proposition 4.2.6 (Abadi and Plotkin, 1993 [AP93℄). If:1. E →M2. M → E3. E and M are safety properties 59



4. Related Work on Compositionalitythen M holds.Although speaking of 
ompositionality with just one module is point-less, one 
an derive the general 
ompositional rule of [AL93℄, restri
ted tothe intuitionisti
 framework, from the rule of Proposition 4.2.6, using onlypropositional reasoning and indu
tion. This result is interesting as it basi-
ally shows that the only 
at
h in this kind of 
ompositional reasoning withsafety properties lies in disentangling the 
ir
ularity in the dis
harging ofassumptions. Abadi and Plotkin demonstrate that the general 
ase of thisproblem 
an be redu
ed to one module systems. However, it has no obviouspra
ti
al impa
t, sin
e it is a spe
ialization of previously seen results byother means.All in all, the paper by Abadi and Plotkin highlights quite 
learly thesebasi
 fa
ts about 
ompositional reasoning:
• te
hni
al problems arise in proving the soundness be
ause of the pres-en
e of 
ir
ularity;
• these problems 
an be solved by restri
ting our attention to safetyproperties, sin
e proving soundness redu
es to proving a sort of �initialvalidity�, whi
h 
an be regarded as an impli
it way of breaking the
ir
ularity;
• �nally, indu
tion is used to �propagate� the initial validity to anyinstant in the future.Abadi and Merz [AM95℄ introdu
e an abstra
t synta
ti
 framework inwhi
h to express 
ompositional rules. A
tually, even if it is based on anintuitionisti
 logi
, it underlines some of the assumptions about the 
ompu-tational model whi
h were also shared by other works su
h as [AL93,AL95℄,so it is not totally independent of parti
ular 
omputational models.The framework 
onsists of a propositional intuitionisti
 logi
, with theusual logi
 
onne
tives, plus a new 
onne
tive +→ whi
h 
learly representsTLA's +−⊲ and similar ones. Even if the framework should be primarilysynta
ti
, it a
tually introdu
es some assumptions on the stru
tures onwhi
h the logi
 is to be interpreted. More pre
isely, these assumptions are:
• a pre-order relation ⊆ is given on the sets of behaviors;
• the relation is su
h that atomi
 propositions are true on downward-
losed sets of behaviors; that is, for any atomi
 proposition π andbehaviors σ, σ′ su
h that σ ⊆ σ′, if σ′ |= π then also σ |= π.60



4.2. Abstra
t Frameworks for Rely/Guarantee Compositionality
• the relation ⊂ obtained from⊆ by removing re�exivity is well-foundedon the set of all behaviors; noti
e that this permits indu
tion along
omputations, similarly to the aforementioned models.Moreover, noti
e that these assumptions are satis�ed whenever the inter-pretation stru
tures are Kripke models (whi
h are standard models forintuitionisti
 logi
).Under these assumptions, Abadi and Merz prove a number of basi
 prop-erties of the operators of the logi
. However, a sound 
ompositional ruleon the model of Table 3.1 
annot be proved without further semanti
 as-sumptions and spe
ializations. More spe
i�
ally, the authors 
hoose toinstantiate the abstra
t framework with two temporal logi
s, namely TLAand a fragment of CTL*. Sound 
ompositional rules 
an be proved onlyafter su
h instantiations are done. Hen
e, the idea of an abstra
t frame-work is appealing in its synta
ti
 approa
h, but is not detailed enough toimplement a sound 
ir
ular rule. However, one advantage of this approa
his that it is not limited to temporal logi
s. The authors brie�y dis
uss thisaspe
t in the 
on
lusion. Under this aspe
t, the approa
h is indeed moregeneral than most others.4.2.4. Compositionality for LTLJonsson and Tsay [JT96℄ analyze 
ompositionality with linear temporallogi
, from a synta
ti
 perspe
tive. The out
ome is a 
ompositional in-feren
e rule whi
h, although similar in prin
iple to that of Abadi andLamport [AL95℄, is presented using a synta
ti
 formulation, whi
h hasthe advantage of being simpler to use, in pra
ti
e, than purely semanti
approa
hes.The basi
 idea is still to rely on safety properties to render sound the
ompositional 
ir
ular reasoning, but to enfor
e the safety 
hara
terizationby requiring that the formulas of the spe
i�
ation are written a

ording tosome synta
ti
 restri
tions. In fa
t, in LTL it is possible to synta
ti
ally
hara
terize safety [MP90℄. In prin
iple, the same synta
ti
 approa
h 
ouldbe pursued with TLA as well, but maybe with more pra
ti
al 
ompli
ations.On the 
ontrary, the synta
ti
 
hara
terization in LTL is often more viable.The synta
ti
 
hara
terization requires the spe
i�er to write the formulasfor assumptions and guarantees in a 
anoni
al form, to enfor
e the under-lying semanti
 hypotheses. The requirements for the 
anoni
al form are61



4. Related Work on Compositionalitythe following ones.3
• Assumptions E are expressed with a LTL formula of the form �(∃x :
�−HE), where:� HE is a past formula, that is a formula without future operators;� x is a tuple of �exible variables, 
onsidered as internal variables(i.e. non-visible, existential quanti�
ation representing hiding);� �HE must be stuttering extensible, another te
hni
al require-ment we do not dis
uss in detail.Under these 
onditions, the formula E is a safety formula. A
tu-ally, the requirement of HE being a past formula 
ould be relaxed tothe requirement to be a histori
al formula, but with some additional
ompli
ations.
• Guarantees M are expressed with a LTL formula of the form ∃y :
�HM ∧ LM , where:� HM is a past formula;� y is a tuple of �exible, internal variables;� �HM must be stuttering extensible;� LM is a liveness property;� (HM , LM ) is ma
hine-
losed, that is C(�HM ∧ LM )⇔ �HM .
• Rely/guarantee spe
i�
ations are expressed using the operator ⊲,where E ⊲M is de�ned as �(©−

∼
(∃x : �−HE) ⇒ (∃y : �−HM )) ∧ (E ⇒

M).Under these 
onditions, we 
an 
al
ulate synta
ti
ally the safety 
losuresof the spe
i�
ation formulas. In fa
t it turns out that:
• C(∃x : �−HE) = �(∃x : �−HE)

• C(∃y : �HM ∧ LM ) = �(∃y : �−HM )Finally, the resulting 
ompositional rule follows.3The temporal operators are LTL's usual ones [MP90℄, and namely �, �−, ©−
∼ for, respe
-tively, always in the future, always in the past, in the previous instant (if it exists).Moreover, C(F ) represents the safety 
losure of a formula F .62



4.2. Abstra
t Frameworks for Rely/Guarantee CompositionalityProposition 4.2.7 (Jonsson and Tsay, 1996 [JT96℄). If:1. for all i = 1, . . . , n: Ei ⊲Mi2. �((∃x : �−HE) ∧ (∃y1, . . . , yn : �−
∧n

i=1HMi
)

⇒ (∃x1, . . . , xn : �−
∧n

i=1HEi
))3. a) �(©−

∼
(∃x : �−HE) ∧ (∃y1, . . . , yn : �−

∧n
i=1HMi

)
⇒ (∃x1, . . . , xn : �−HM ))b) E ∧∧n

i=1Mi ⇒Mthen: E ⊲M .Dis
ussions on how to a
tually dis
harge the hypotheses of the inferen
erule are introdu
ed, with referen
e to the usual proof methodologies fortemporal logi
s. Moreover, the same example of a queue of [AL95℄ is 
arriedout, resulting in a simpler 
ompositional proof.To sum up, Jonsson and Tsay try to identify general 
onditions underwhi
h the semanti
 assumptions of the earlier works on 
ompositionality
an be expressed synta
ti
ally in LTL, resulting in inferen
e rules whi
hare simpler to apply and require less ad ho
 methodology. A
tually, notall semanti
 assumptions are rendered synta
ti
ally (for example ma
hine
losure and stuttering extensibility 
onditions are still required expli
itly).Moreover, the synta
ti
 restri
tions may render the spe
i�
ations harder towrite. However, it is true that some aspe
ts are indeed simpli�ed and theappli
ation of the rule in some 
ases promises to be pra
ti
ally simpler.Jonsson and Tsay's work presented in this paper was extended in a laterwork by Tsay [Tsa00℄. The main additional 
ontributions are in the use of aweaker 
ompositional operator, and in some treatment of liveness formulas.In parti
ular, an asymmetri
 
ir
ular rule is given. Asymmetri
 means thatonly one module is allowed to have a liveness property. For brevity, we referto [Fur05℄ for additional details about Tsay's work.4.2.5. Completeness of Compositional RulesNamjoshi and Tre�er [NT00℄ present an interesting analysis 
on
erning the
ompleteness of the 
ompositional inferen
e rules found in the literature,with spe
i�
 referen
e to that of Abadi and Lamport [AL95℄, and M
Millan[M
M99℄. Sin
e those rules are the basis for most other existing rules in63



4. Related Work on Compositionalitythe literature, the analysis draws rather general results. Furthermore, theyta
kle the problem of 
ir
ularity from yet another perspe
tive, showing areason why 
ir
ular rules are not needed, at least in prin
iple.M
Millan's framework of [M
M99℄ is the basis of the methodologi
alwork by the same author [M
M00℄, where it is shown how to apply 
om-positional te
hniques to the pra
ti
al veri�
ation of system-level hardware,through model-
he
king te
hniques. We present M
Millan's approa
h to
ompositional rules below, while the methodology introdu
ed in [M
M00℄is not dis
ussed here as it is beyond the s
ope of the present review se
tion,being fo
used on model-
he
king te
hniques.First of all, we have to state formally what are the 
ompositional rules
onsidered in Namjoshi and Tre�er's paper. To render the 
omparisonsimpler, let us sti
k to the 
ase of just two modules. The �rst rule is the
ir
ular one by Abadi and Lamport [AL95℄, des
ribed in Se
tion 4.2.2. These
ond one is a very simple non-
ir
ular rule, whi
h we 
an state as follows.4Proposition 4.2.8 (Non-Cir
ular Rule, [NT00℄). If:1. a) E1 ⇒M1b) E2 ⇒M22. a) E ⇒ E1b) M1 ⇒ E23. M1 ∧M2 ⇒Mthen: E ⇒M .The formulas M1 and E2 are 
alled auxiliary assertions in this frame-work, sin
e they serve to break the proof into two suitable parts, in a waythat permits a sound dedu
tion.The third rule we 
onsider is the one by M
Millan [M
M99℄. Even ifin [NT00℄ a generalization of the rule to handle n modules is presented,the generalization has a rather 
onvoluted formulation. Therefore, for thesake of simpli
ity, we present here the original version of [M
M99℄ for twomodules only, in a minimal setting (that is, without referen
e to the 
om-putational model). Note that the rely/guarantee spe
i�
ations are now4A
tually, the exa
t formulation of the rules of [NT00℄ would require a notion of 
om-putational model and several semanti
 notions. For simpli
ity, we present here onlya simpli�ed abstra
tion of a slight modi�
ation of that rule.64



4.2. Abstra
t Frameworks for Rely/Guarantee Compositionalitywritten using the ⊲ operator, 
alled 
onstrains in that paper. As usual,
E ⊲M is true i�, if E is true up to step i of a 
omputation, then M istrue at step i+1. It 
an be de�ned in linear temporal logi
, using the untiloperator as ¬(E U ¬M), using the dual release operator as ¬E RM , and
an be thought as meaning �¬E pre
edes M �, that is E is falsi�ed before
M is. The 
ir
ular rule is then as follows.Proposition 4.2.9 (M
Millan, 1999 [M
M99℄). If:1. a) E ⇒ (M2 ⊲M1)b) E ⇒ (M1 ⊲M2)2. M1 ∧M2 ⇒Mthen: E ⇒ �M .Namjoshi and Tre�er �rst show that, while the non-
ir
ular rule of Propo-sition 4.2.8 is 
omplete, the other rules of Abadi and Lamport [AL95℄ andM
Millan (Proposition 4.2.9 and [M
M99℄) are in
omplete, even for simpleproperties. The in
ompleteness in M
Millan's rule is due to the absen
e ofauxiliary assertions, that is lo
al assumptions Ei's, di�erent than the othermodule's guarantee Mi. In fa
t, in a rather di�erent setting, Maier [Mai03℄has shown that the use auxiliary assertions is a ne
essary 
ondition for 
om-pleteness (see below). Still, it is not su�
ient, sin
e Abadi and Lamport'srule [AL95℄ does use auxiliary assertions but is nonetheless in
omplete, asNamjoshi and Tre�er also show in their paper.Next, the authors show how to strengthen M
Millan's 
ir
ular rule inorder to get a 
omplete rule, obviously still keeping soundness and 
ir
u-larity. In order to do that, we have to write the assumptions and guar-antees in a (simple) 
anoni
al form, where the parts representing the aux-iliary assertions are 
onjoined to the remainder of the spe
i�
ation. So,ea
h assumption Ei is written as Ei = Hî ∧ Gî and ea
h guarantee Mi as
Mi = (Hî ⇒ Gi) ∧ Hi, for some formulas Hi, Gi (̂i represent the index�other than� i, that is î ∈ {1, 2} \ {i}). The rule is �nally as follows.Proposition 4.2.10 (Namjoshi and Tre�er, 2000 [NT00℄). If:1. a) E ⇒ ((H2 ∧G2)⊲ ((H2 ⇒ G1) ∧H1))b) E ⇒ ((H1 ∧G1)⊲ ((H1 ⇒ G2) ∧H2))2. G1 ∧G2 ⇒M 65



4. Related Work on Compositionalitythen: E ⇒ �M .Noti
e that Proposition 4.2.10 redu
es to Proposition 4.2.9 if we take
H1 = H2 = true.The last aspe
t of 
ompositionality 
onsidered by Namjoshi and Tre�eris the translation between 
ir
ular and non-
ir
ular proofs. Sin
e both thenon-
ir
ular rule of Proposition 4.2.8 and the 
ir
ular rule of Proposition4.2.10 are 
omplete, every 
ompositional proof 
an be 
arried out with anyof the two, at least in prin
iple. Hen
e, it is shown how one 
an translate theappli
ation of a rule into the appli
ation of the other rule; in other words,it is shown how one should pi
k the lo
al assumptions and guarantees(possibly in
luding the auxiliary assertions) so that the appli
ability of onerule follows from the appli
ation of the other one to the same system. Itis also brie�y dis
ussed how this translation is e�
ient in both dire
tions,that is the translation pro
ess builds formulas that are of the same sizeorder as the formulas from whi
h it translates (i.e., the ones of the originalappli
ation of the rule).This formalizes an important 
on
lusion: 
ir
ularity is not needed, atleast in prin
iple. A
tually, this is is yet another eviden
e to the fa
t that
ompositional te
hniques must be useful in pra
ti
e, but 
annot redu
e theworst-
ase 
omplexity of veri�
ation. Therefore, a more 
ompli
ated rule(and namely a 
ir
ular one) 
an bring some bene�ts in some 
on
rete 
ases,but is not more e�
ient than another equally 
omplete rule in the general
ase.Maier [Mai03℄ 
onsiders 
ompositional rely/guarantee inferen
e rules in avery abstra
t setting, in order to draw general 
on
lusions about soundnessand 
ompleteness of su
h rules. Contrarily to the other papers 
onsideredabove, it does not introdu
e any new inferen
e rule, but it 
onsiders theinherent limitations of 
ir
ular 
ompositional rely/guarantee reasoning ina given abstra
t framework. Let us �rst des
ribe su
h framework and thenshow the results drawn by Maier.In this framework, systems (or modules) and modules' properties aremodeled uniformly as elements of a generi
 meet-semilatti
e with one. Ameet-semilatti
e with one S = 〈S,∧, 1,≤〉 is a partial order 〈S,≤〉 withgreatest element 1 ∈ S and su
h that for any two elements x, y ∈ S thereexists their greatest lower bound, denoted as x ∧ y ∈ S. Intuitively x ∧
y indi
ates the 
omposition of two modules, or the 
onjun
tion of twoproperties; in other words, it 
orresponds to the 
ompose operator ⊓ of our66



4.2. Abstra
t Frameworks for Rely/Guarantee Compositionalityabstra
t setting. The entailment relation ⊑ is instead represented by there�nement relation x ≤ y (x re�nes y); equivalently it represents the fa
tthat module x satis�es property y. In other words, the model assumes onlya re�nement order relation ≤, an asso
iative 
ommutative and idempotentoperation ∧ whi
h respe
ts the order, and a dis
rete stru
ture S over whi
hto interpret (in parti
ular, no 
omputational model is required).In this setting, we de�ne an inferen
e rule as any rule R in the form:
R :

φ1 · · ·φn

ψ
if Γwhere Φ = {φ1, · · · , φn} and ψ are 
alled premises and 
on
lusion, re-spe
tively, as in our de�nitions of Se
tion 3.3.1, while Γ is a relation 
alledside 
ondition. The meaning of R is as expe
ted: if the premises and theside 
ondition are true, then the truth of the 
on
lusion follows logi
ally.Noti
e that the language in whi
h one 
an express the formulas is ratherrestri
ted in the given setting, so that the side 
ondition is needed to ex-press more powerful 
onstraints (relations are stri
tly more expressive thanformulas in the given setting).Given an inferen
e rule R, Maier de�nes R as:sound i� for all evaluations α, α |= Φ and α |= Γ implies α |= ψ, i.e., therule draws true fa
ts from true premises;
omplete i� for all evaluations α, α |= ψ and α |= Φ implies α |= Γ,i.e., the rule is appli
able whenever premises and 
on
lusions hold (inother words, the side 
ondition is not �too restri
tive�);assume-guarantee i� for all premises φ ∈ Φ, the left-hand side of ψ and theright-hand side of φ do not share any variables, i.e., we 
an identify�assumptions� and �guarantees� without ambiguities;
ir
ular i� it is assume-guarantee and in general Φ 2 ψ, i.e., the side
ondition is stri
tly needed to guarantee soundness;
ompositional i� it is assume-guarantee and (informally) it never 
onsidersthe system 
omposition (i.e., the 
onjun
tion of all modules) in thepremises and in the side-
ondition (in other words, we 
an 
onsiderea
h module independently of the others).Noti
e that some of Maier's de�nitions are non-standard; in parti
ular, thisis the 
ase for his de�nition of 
ompleteness. 67



4. Related Work on CompositionalityAssuming the aforementioned de�nitions and stru
tures, the author showsthat if the semilatti
e S 
ontains forks (whi
h are 
ertain spe
ial stru
tures)of su�
ient width (and, in parti
ular, of in�nite width), then any 
omposi-tional 
ir
ular assume-guarantee rule is either unsound or in
omplete. Sin
esoundness is obviously indispensable, we must either give up 
ompletenessor 
ompositionality. In the 
ase of automati
 veri�
ation, 
ompositionalityis probably more important, sin
e it permits to really divide the burdenof veri�
ation among modules, whenever possible, thus lowering the re-quired 
omputational e�ort. The author argues that in the 
ase of manualveri�
ation, 
ompleteness may be more important, sin
e the human user
an always, at least in prin
iple, invent a suitable system de
omposition to
orre
tly 
arry out the veri�
ation task.Sin
e the proposed framework is a very abstra
t one, it is important tounderstand if and how the results drawn for it 
an be extended to more
on
rete frameworks. The author 
laims that most rely/guarantee inferen
erule presented in the literature 
an be transformed into rules over meet-semilatti
es with forks of in�nite width, while preserving properties su
has soundness and 
ompositionality. Hen
e, the limitation of 
ompletenessmust hold also for the original rule.Brief examples are shown of rules for Moore or Mealy ma
hines, su
has those in [HQRT02, Mai01℄, or for temporal logi
s, su
h as those in[AL95,AM95, JT96℄. In parti
ular, the presen
e of forks of in�nite widthfollows quite naturally from the fa
t that the aforementioned frameworksare interpreted over sets of strings of in�nite length: su
h stru
tures pro-vide su
h forks in all non-trivial 
ases. However, although the problem isnot fully developed, it is likely that more expressive formalisms 
annot beinterpreted over meet-semilatti
es in all 
ir
umstan
es. For instan
e, it isnot 
lear if metri
 temporal logi
s over a 
ontinuous time domain 
an befully translated using the simple formalism of [Mai03℄, sin
e su
h transla-tion seems possible only for interpretations over algebrai
 (and dis
rete)stru
tures. A more a

urate investigations of these fa
ts belongs to futurework.We mentioned that Maier's de�nition of 
ompleteness is a non-standardone. Indeed, Maier introdu
es the standard notion of 
ompleteness and
alls it ba
kward 
ompleteness, sin
e � among other things � it is usefulto 
hara
terize rules whi
h enable ba
kward reasoning. Ba
kward 
om-pleteness is used, among others, in [NT00℄. In Maier's framework, a rule
R : Φ/ψ if Γ is ba
kward 
omplete i� for all evaluations α, if α |= ψ then68
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α′ |= Φ and α′ |= Γ, for some evaluation α′ whi
h agrees with α on all thevariables of ψ. In other words, ba
kward 
omplete rules admit the use ofauxiliary variables, i.e., variables appearing in the premises but not in the
on
lusion, and of assertions on them; su
h auxiliary variables in
rease theexpressive power of the inferen
e rules. For rules without auxiliary vari-ables, ba
kward 
ompleteness implies 
ompleteness; therefore, every soundand ba
kward 
omplete 
ompositional 
ir
ular assume-guarantee rule ne
-essarily employs some auxiliary variables. Noti
e that the presen
e of aux-iliary variables also in
reases the 
omplexity of the proofs, sin
e one alsoneeds to �guess� the value of auxiliary assertions about the system.All in all, this paper brings forward an interesting analysis of some basi
issues 
on
erning rely/guarantee inferen
e rules. In order to be able toapply the 
on
lusions of the paper to 
on
rete formalisms, it is importantto always 
arefully 
onsider, 
ase by 
ase, if and how the de�nitions 
har-a
terizing the framework 
an be express suitably in less abstra
t settings.More pre
isely, things should probably be re
onsidered with more expres-sive frameworks (in parti
ular with 
ontinuous time formalisms) or withdi�erent de�nitions for inferen
e rules and for 
ompleteness.Amla et al. [AENT03℄ build a generi
 (i.e., su�
iently abstra
t) soundand 
omplete 
ompositional inferen
e rule, following an approa
h whi
h isdi�erent from those of most previous works. In fa
t, nearly all methodsrender the 
ir
ular reasoning of Table 3.1 sound by introdu
ing some sortof progression operator, whi
h justi�es an indu
tion on the set of behaviorspre�xes. On the other hand, this paper does not rely on any ad ho
 op-erator, but rather it introdu
es some pre
ise semanti
 assumptions amongthe 
onditions on the rules. These additional 
onstraints also permit awell-founded indu
tion on the set of behaviors pre�xes, thus rendering theinferen
e rule sound.A
tually, the fo
us of the paper is on re�nement, so the setting is dif-ferent than that of the other works we 
onsidered. However, sin
e theapproa
h is novel, we review it anyway, brie�y detouring from our basi
setting. A
tually, re�nement (and de
omposition) 
an be regarded as a spe-
ial 
ase of 
omposition, under reasonable 
onditions; for example, Abadiand Lamport in [AL95℄ derive their de
omposition theorem as a 
orollaryof the 
omposition theorem. However, the di�eren
es in the two settingsare su
h that the terminology and notational 
onventions of the 
omposi-tion setting, whi
h we have 
onsidered thus far, sound strange and do not69



4. Related Work on Compositionalityprovide intuition in the de
omposition setting. Therefore, we are going tointrodu
e some new notations, in order to provide the intuition needed tounderstand the 
ore results of this paper.The �rst di�eren
e of the de
omposition setting is that we do not haverely/guarantee spe
i�
ations of modules, but rely/guarantee only refers tothe style of reasoning employed by the inferen
e rule. For simpli
ity, letus 
onsider the simple 
ase of two modules, as it is done in [AENT03℄.The goal of de
omposition reasoning is to show that the 
omposition ofthe two low-level spe
i�
ations ML
1 and ML

2 of the modules (e.g. theirimplementations), implements a 
ertain property M , possibly under a 
er-tain global environment spe
i�
ation E. In general, the 
omposition of thetwo low-level spe
i�
ations is very 
ompli
ated, therefore the dire
t proofof the above is unfeasible or too 
ostly (usually, we 
onsider automatedveri�
ation, but the same holds for manual veri�
ation). On the 
ontrary,rely/guarantee reasoning gives 
onditions under whi
h we 
an 
onsider onlythe 
omposition of the high-level spe
i�
ations M1 andM2 of the modules,whi
h is in general simpler than its low-level 
ounterpart, together with onelow-level spe
i�
ation at a time, that is avoiding to 
onsider dire
tly the
omposition of the two low-level spe
i�
ations. The reasoning is rely/guar-antee sin
e we usually require that ML
1 re�nes M1, assuming M2 holds,and vi
e versa for the other module. Noti
e that it is not su�
ient tojust require that ML

i re�nes Mi, sin
e this is in general not the 
ase: usu-ally, the re�nement relation holds only when the other module is a properenvironment to the former one.The redu
tion to the 
omposition framework 
an be understood by tak-ing the Mi's of the 
omposition setting as the ML
i 's of the de
ompositionsetting, and the Ei's as the Mi's of the de
omposition setting. However,noti
e that the Ei's now represent the assumption of one module about thebehavior of the other, whi
h is needed for the re�nement relation to hold,and not a 
ondition under whi
h the module behaves properly.We are now ready to introdu
e the abstra
t framework of [AENT03℄; asusual we introdu
e only the relevant aspe
ts, while avoiding some detailsfor simpli
ity. We 
onsider the set of all behaviors (i.e. 
omputations) B.The following assumptions 
hara
terize the set of behaviors:

• B is partitioned into the two non-empty subsets of �nite and in�nitebehaviors;
• B is partially ordered by an order �pre�x� relation �;70
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• the set of �nite behaviors is downward 
losed under � (i.e. everypre�x of a �nite behavior is also a �nite behavior);
• ≺ is well-founded on the set of �nite behaviors; noti
e that this im-plies the existen
e of an initial 
ondition, that serves as base forindu
tions.As usual, a spe
i�
ation is a subset of B, that is a set of behaviors, with theadditional 
ondition that every �nite pre�x of a behavior in the spe
i�
ationis also a (�nite) behavior in the spe
i�
ation. This requirement basi
allyextends downward 
losure to spe
i�
ations. For the sake of simpli
ity, weoverlook other te
hni
al requirements that are introdu
ed in [AENT03℄.Noti
e that all these 
onditions are semanti
, and 
onsider algebrai
 (anddis
rete) stru
tures; in fa
t, the 
lassi
al framework of state sequen
es is astraightforward realization of these assumptions.Finally, noti
e that impli
ation ⇒ between formulas represents re�ne-ment ; in other words A ⇒ B denotes the fa
t that A is a lower-levelspe
i�
ation that implements the higher-level spe
i�
ation B.We are now ready to state the de
omposition rule of [AENT03℄. In anutshell, the rule aims at showing that E ∧ML

1 ∧ML
2 re�nes M , without
onsidering expli
itly the 
onjun
tion ML

1 ∧ML
2 in the hypotheses of therule. In order to do that, we require:1. that the low-level spe
i�
ation of ea
h module, when 
omposed withthe high-level spe
i�
ation of the other, re�nes the high-level spe
i�-
ation of the former module;2. that the 
omposition of the high-level spe
i�
ations re�nes M , underthe assumption E;3. that the 
omposition of one (anyone will do) of the low-level spe
i-�
ations with the (safety) 
losure of M re�nes one of the high-levelspe
i�
ations, or M itself. Noti
e that this last 
ondition is the se-manti
 requirement that allows to break the 
ir
ularity, giving a base
ase for the indu
tion, sin
e it requires that one low-level spe
i�
ationre�nes a high-level one, without assuming anything about the othermodule.The formal statement of the rule, using our notation, follows. The authorsprove in [AENT03℄ that the rule is both sound and 
omplete for the givensetting. 71



4. Related Work on CompositionalityProposition 4.2.11 (Amla, et al., 2003 [AENT03℄). If:1. a) ML
1 ∧M2 ⇒M1b) ML
2 ∧M1 ⇒M22. E ∧M1 ∧M2 ⇒M3. for some i ∈ {1, 2}: E ∧ML

i ∧ C(M)⇒M ∨M1 ∨M2then: E ∧ML
1 ∧ML

2 ⇒M .All in all, the proposal of Amla et al. is, to the best of our knowledge,the �rst example of 
ompositional rely/guarantee reasoning whi
h presentsan abstra
t framework not relying on an ad ho
 operator for expressingrely/guarantee spe
i�
ations, but only exploiting semanti
 assumptions.Moreover, the proposed rule is a 
omplete one.4.3. Abstra
t Non-Rely/Guarantee MethodsThis se
tion 
onsiders some examples of 
ompositional method that adoptparadigms other than the rely/guarantee one, and therefore 
annot be re-du
ed to the general s
heme of Table 3.1. In parti
ular, we are 
onsideringabstra
t methods, rather than those tailored for a very spe
i�
 formal lan-guage. As usual, we refer to [Fur05℄ for more examples and details.A 
ompositional proof method based on an abstra
t semanti
 settingis investigated by de Boer and de Roever in [dBdR98℄, with referen
e toassertion networks. Assertion networks are transition diagrams that repre-sent programs and they were �rst proposed by Floyd [Flo67℄ for sequentialprograms. The work presented in [dBdR98℄ 
onsiders the extension of su
hdiagrams to the treatment of 
on
urrent programs.More pre
isely, [dBdR98℄ 
onsiders state-based reasoning about 
on
ur-rent programs that have syn
hronous 
ommuni
ation. The method relieson two ingredients:
• 
ompositional indu
tive assertion networks, that are used to des
ribethe sequential parts of the system;
• 
ompositional proof rules, to dedu
e global properties of the system,resulting from the 
on
urrent intera
tion of the lo
al networks.72



4.3. Abstra
t Non-Rely/Guarantee MethodsThe basi
 idea is to introdu
e auxiliary variables in the assertional des
rip-tion of a network that represent logi
al histories. A logi
al history simulatesthe lo
al 
ommuni
ation history of some 
omponent.Ea
h 
omponent is spe
i�ed by a Hoare-like triple su
h as {φ}P{ψ},where φ, ψ are predi
ates over the logi
al histories variables, representingproperties of su
h histories respe
tively before and after the program P(represented by a syn
hronous transition diagram) is exe
uted. Finally,the 
ompositional method is based on an inferen
e rule for the parallel
omposition P1 ‖ P2 of two programs P1, P2. Under 
ertain 
onditions onthe predi
ates φi, ψi and on the variables involved in the 
ommuni
ation
hannels, the following inferen
e rule is sound and 
omplete for syn
hronoustransition diagrams.
{φ1}P1{ψ1}, {φ2}P2{ψ2}
{φ1 ∩ φ2}P1 ‖ P2{ψ1 ∩ ψ2}Various other modi�
ations and extensions of the method, to handle dif-ferent models of 
on
urren
y, as well as other methodologies, are thoroughlydis
ussed in the book [dRdBH+01℄.The lazy paradigm is an approa
h to 
ompositionality alternative to therely/guarantee one, proposed by Shankar in [Sha98℄.The motivation for the study of an alternative paradigm stems from thefa
t that, a

ording to Shankar, the rely/guarantee approa
h is often di�-
ult to apply in pra
ti
e, sin
e it requires to anti
ipate several details of theguarantees of a 
omponent so that they are strong enough to permit thedis
harging of the assumptions of the other modules. On the 
ontrary, onewould often prefer to produ
e a weak 
ompositional spe
i�
ation, addingthe ne
essary details only in later phases of development. Lazy 
omposi-tionality proposes to solve this problem by simply lazily postponing thedis
harging of the assumptions to later phases of development, when allthe ne
essary details naturally 
ome into the pi
ture.Under this respe
t, the lazy approa
h is more liberal than the rely/guar-antee approa
h, sin
e it does not enfor
e a pre-de�ned way of performingveri�
ation, but simply allows for the use of 
onventional te
hniques andmethods. Moreover, lazy 
omposition is mainly a methodologi
al approa
hto 
ompositionality, whereas rely/guarantee has a strong te
hni
al 
onno-tation. In a nutshell, lazy 
ompositionality 
ombines a re�nement method-ology with a 
ompositional methodology. The result is an approa
h whi
h73



4. Related Work on Compositionalityis quite general and 
an be applied to a large variety of formal spe
i�
a-tion languages and models. At the same time, its generality 
an also bea weakness, sin
e the veri�
ation burden is impli
itly subsumed to otheraspe
ts of system analysis, rather than exposed and dealt with dire
tly.In a hypotheti
al 
lassi�
ation of methods for the veri�
ation of large sys-tems, the lazy approa
h has an �intermediate� degree of 
ompositionality,in between truly 
ompositional approa
hes (and namely the rely/guaran-tee approa
h), and non-
ompositional (a.k.a. �global�) approa
hes (namelythe Owi
ki-Gries method [OG76℄ and derived methods). Indeed, we 
laimthat several �non-stri
tly-
ompositional� methods fall in this intermediateregion, and in parti
ular those des
ribed in this se
tion (i.e. Se
tion 4.3).Shankar eli
its the di�eren
es between lazy 
ompositionality and rely/guar-antee 
ompositionality in �ve points, namely:1. 
omponents are not treated as bla
k-boxes;2. 
omposition is not ne
essarily 
onjun
tion;3. environment assumptions are spe
i�ed as abstra
t 
omponents (ratherthan properties);4. no rely/guarantee proof obligations are generated;5. 
omposition 
an yield in
onsistent spe
i�
ations.A
tually, we note that these di�eren
es apply only in a typi
al setting wherewe spe
ify both a 
omputational model and a formal language to expressproperties of 
omputations in the model. For example, the �bla
k-box� viewreferred to in point 1 implies a distin
tion between the implementation ofa module (that is its des
ription in the 
omputational model) and someof its properties (whi
h are des
ribed in some logi
 language, in all theframeworks we have 
onsidered). Similarly, �
omposition as 
onjun
tion�of point 2 is, in this 
ase, a 
hara
teristi
 of the 
omputational model, andan �abstra
t 
omponent� (in point 3) is, again, the implementation (in the
omputational model) of an abstra
t spe
i�
ation.However, we are mainly interested in abstra
t frameworks; for su
hframeworks only the points 4�5 are relevant. Therefore, let us des
ribethese points in some more detail.No rely/guarantee proof obligations are generated. In fa
t, in lazy 
om-positionality the dis
harging of assumptions is simply lazily post-poned to when the ne
essary spe
i�
ation details are present. More74



4.3. Abstra
t Non-Rely/Guarantee Methodspre
isely, the environment assumption is embedded in the spe
i�
a-tion by means of a 
omponent that represents expli
itly the abstra
tenvironment. The goal of the following re�nement steps is to showthat the overall system subsumes the abstra
t environment of that
omponent, thus showing that the expli
it environment is super�u-ous and 
an be eliminated without a�e
ting the fun
tionality of the
omponent (in fa
t, the rest of the system does play the role of theassumed environment).Composition 
an yield in
onsistent spe
i�
ations. This feature is a 
on-sequen
e of the previous 
hara
teristi
: sin
e we lazily postpone thedis
harging of the assumptions, tentatively assuming that they areindeed dis
hargeable, it may happen that our suppositions show tobe false a

ording to any possible re�nement of the system. In su
h
ases, the spe
i�
ation is globally in
onsistent and we must amendsome previous spe
i�
ation 
hoi
e.We now �nally des
ribe how lazy 
ompositionality is a
tually 
arried out,with referen
e to two modules (the generalization to an arbitrary numberof modules is rather straightforward). Let us 
onsider two modules withspe
i�
ations P1 and P2. Note that we do not say anything about howthese lo
al spe
i�
ations should be written; in parti
ular they 
ould alsobe rely/guarantee spe
i�
ations, even if we will not use the rely/guaran-tee methodology to treat them. When 
omposing these two modules, weexpli
itly add to the spe
i�
ation of ea
h module the assumptions that theother module makes on its environment. So, if the two modules assume anenvironment with properties E1 and E2, respe
tively, then we strengthen
P1 to P1∧E2 and P2 to P2∧E1. Then, we 
ompose these two strengthenedmodules; in doing so, it is 
lear that the environment assumptions of ea
hmodule are satis�ed by its a
tual environment, by 
onstru
tion. Moreexpli
itly, in a setting where 
omposition is 
onjun
tion, we end up withthe system (E2∧P1)∧(E1∧P2), whi
h simply assumes expli
itly the validityof the environment assumptions.Then, the goal of lazy 
ompositional veri�
ation, is to show that (E2 ∧
P1)∧ (E1∧P2) 
an be re�ned to simply P1∧P2: this would show expli
itlythat the environment assumptions are satis�ed in the system whi
h thusguarantees its fun
tionalities. A drawba
k of this approa
h is that a module
annot be re�ned independently of the others, sin
e ea
h module is enlargedto 
omprehend the environment assumptions of the other modules, whi
hmust also be preserved in the re�nement. 75



4. Related Work on CompositionalityAll in all, we believe that the liberal lazy approa
h 
an be a useful alter-native to rely/guarantee 
ompositionality in some 
ases, even if it basi
allyamounts to shifting the burden of 
ompositional veri�
ation to other, stan-dard, methodologies and te
hniques for veri�
ation.Hooman presents in [Hoo98℄ a framework to support the top-down designof distributed real-time systems. The framework is based on assertions (i.e.it is denotational) and also mixed, that is a spe
i�
ation in the framework
an 
ontain both assertions and programming 
onstru
ts (namely 
ompu-tations).The framework is semanti
, in that it is based on des
riptions givenby simple semanti
 primitives. Moreover, it is parametri
 with respe
t tothe time model, whi
h 
an be, in parti
ular, dis
rete or 
ontinuous. Morepre
isely, the only assumption on the time model is that it is a stri
tlyordered set. The basi
 semanti
 primitive used to des
ribe the behaviorof a system (or of a module) is the observation fun
tion, whi
h is simplya fun
tion from the time domain to a set of events: thus, it asso
iatesea
h time instant to the primitive fa
ts that o

ur at that instant. A
omputation represents a history of a module, and it is 
onstituted by apair (α,OBS). α is a set of observable events, whi
h are the events thatmay be observed during the behavior of the 
omponent. OBS is a set ofobservation fun
tions of the events in α, that is a set of mappings fromtime to subsets of α (note that we have more than a single observationfun
tion, sin
e we allow for nondeterminism).Two di�erent de�nitions of parallel 
omposition of two 
omputations aregiven. Consider two 
omputations (α1,OBS1) and (α2,OBS2). A

ordingto the �rst de�nition, the 
omposition of the two 
omputations is obtainedby taking the union α1∪α2 of the observable events, and the pointwise (i.e.at all time points) union of the observation fun
tions, requiring that thesefun
tions agree on the events shared by both 
omponents (i.e. whi
h arein α1∩α2). The se
ond de�nition of parallel 
omposition allows for �open�
omputations where the observed events 
an also be not in α: this meansthat they in
lude arbitrary environment behaviors or, in other words, that
OBS is now a mapping from time to subsets of all the possible events(in
luding those not in α). In this 
ase, the parallel 
omposition is de�nedsimply by the union α1 ∪ α2 of the observable events, and the (pointwise)interse
tion of the observation fun
tions. The two de�nitions of parallel
omposition, although di�erent, are stri
tly related, and simple 
onditions,76



4.3. Abstra
t Non-Rely/Guarantee Methodsbasi
ally involving the removal of the environment observables, permit topass from a representation to the other. We indi
ate parallel 
ompositionwith the operator //.In Hooman's framework, a spe
i�
ation is a parti
ular form of 
ompu-tation, de�ned by a pair (α,A). A is an assertion, that is a predi
ate overobservation fun
tions. Thus, the spe
i�
ation is a 
omputation whi
h has
α as set of observable events, and all observation fun
tions whi
h satisfy theassertion A. Note that no parti
ular stru
ture is given to a spe
i�
ation,and in parti
ular the rely/guarantee paradigm is not adopted. Therefore,parallel 
omposition basi
ally redu
es to set interse
tion, without allowingfor mutual dependen
ies between 
omponents. On the other hand, re�ne-ment between spe
i�
ations is indi
ated by the operator ⇛.Now, the 
ore of the framework 
onsists in formulating a 
omposition rulethat permits to dedu
e soundly the spe
i�
ation of a parallel 
omposition oftwo spe
i�
ations. Let us 
onsider two spe
i�
ations (α1,A1) and (α2,A2).Then, their parallel 
omposition is a re�nement of the spe
i�
ation givenby the union of the α's and the logi
al 
onjun
tion of the assertions, undera simple 
ondition. Exa
tly, the soundness 
ondition is that the assertion
Ai only depends on the events in αi, for i = 1, 2; this amounts to requiringthat the two spe
i�
ations are de
oupled, and one does not predi
ate aboutthe behavior of the events that belong to the other. Under this simple
ondition, the following re�nement relation holds:

(α1,A1)//(α2,A2)⇛ (α1 ∪ α2,A1 ∧ A2)The paper also brie�y dis
usses the hiding operation to sele
tively removeobservable events from a spe
i�
ation or 
omputation.As it is 
lear even from this short presentation, Hooman's framework isvery simple and quite general. Nonetheless, even if the semanti
 primitivesare very basi
 notions, they naturally refer to semanti
 models su
h asthose based on sequen
es of events and interleaving semanti
s (e.g. su
has Abadi and Lamport's [AL95℄). One advantage of the simpli
ity of theframework is that it 
an be easily implemented in a theorem prover. Infa
t, the paper 
ompletely formalizes the framework in PVS [ORS92℄, anduses the formalization in proving properties of a hybrid system. A lessformal version of a very similar framework was proposed by the same authorin [Hoo94℄. 77



4. Related Work on Compositionality4.4. Other Approa
hes to CompositionalityThis se
tion brie�y summarizes approa
hes to 
ompositionality other thanthose for des
riptive formalisms, whi
h have been the fo
us of the previousse
tions. In parti
ular, we give minimal overviews of how the problemof 
omposition arises for model-
he
king frameworks, for automata-basedformalisms, and for Petri nets.The problem with the s
alability of formal methods does not a�e
t onlydedu
tive methods, su
h as those that we fo
used on elsewhere in this the-sis, but it appears also in algorithmi
 methods, and namely model 
he
kingte
hniques. The limitations of s
alability of model 
he
king manifest them-selves in the state explosion problem: under 
onditions that happen oftenin pra
ti
e, the size of the representation of the parallel 
omposition ofmodules is exponential in the size of the individual 
omponents. Hen
e,
omposing modules of manageable sizes yields a global system whose sizein unmanageable and 
annot be veri�ed automati
ally.Compositional te
hniques try to soothe this problem by permitting theveri�
ation of 
omponents in isolation, while allowing to infer global prop-erties of the overall system. We avoid a te
hni
al analysis of 
ompositionalmodel 
he
king as it would be beyond the s
ope of this work. Let us referto the work by Kupferman and Vardi [KV00℄, whi
h is espe
ially fo
usedon rely/guarantee te
hniques and algorithmi
 and 
omplex-theoreti
al as-pe
ts. [KV00℄ also 
ontains several pointers to related literature on 
om-positionality for model 
he
king.Just like logi
-based formalisms, also automata-based models de�ne anotion of 
omposition among modules. However, whereas the 
ompositionsemanti
s is very natural for logi
 languages, as it is usually redu
ible tologi
 
onjun
tion, de�ning a notion of 
omposition for automata is in gen-eral more problemati
. One of the problems in a
hieving su
h a de�nition
omes from the fa
t that automata 
an often be regarded as a syn
hronousformalism, that is where all the units of the system evolve �at the sametime� [FMMR07℄. This often implies that the syn
hronous 
omposition ofautomata is �less natural� than for logi
 languages, and it requires one todeal with more te
hni
al di�
ulties.Nonetheless, 
omposition has been extensively studied for automata-based formalisms for real-time systems, su
h as timed automata (TA)[AD94℄ and Timed Input/Output Automata (TIOA) [KLSV06℄. Of thetwo, TIOA are more general than TA: in fa
t, TA 
an be regarded as arestri
ted form of TIOA where automated veri�
ation is possible. On the78



4.4. Other Approa
hes to Compositionalityother hand, TIOA fo
us on providing a more general framework with a well-de�ned notion of input/output behavior, 
omposition, and abstra
tion, tofa
ilitate 
ompositional reasoning. Whereas TA rely mainly on automatedmodel-
he
king te
hniques for veri�
ation purposes, TIOA are supportedby a wider array of tools, in
luding theorem-proving tools [ALL+06℄, aswell as 
ode generators and testing tools [Gar06℄. They are being usedsu

essfully in dealing with the 
omposition of modules in the des
riptionof large systems [HALM06℄.Some of the te
hni
al di�
ulties of 
omposition may be soothed if asyn-
hronous 
omposition, where ea
h 
omponent evolves independently of theothers, is adopted. This is usually the 
ase with timed Petri Nets. Juanand Tsai [JT02℄, besides brie�y surveying a large spe
trum of 
ompositionalte
hniques for automata-based formalisms, espe
ially fo
us on the models ofMultiset Labeled Transition Systems and timed Petri Nets. The book also
onsiders experimental aspe
ts, pra
ti
ally 
omparing some model 
he
kingtools on a set of 
ommon veri�
ation problems.

79





5. Compositional Inferen
e Rulesand Methodology for TRIOThis 
hapter presents a 
ompositional framework for des
riptive logi
 lan-guages based on axiomati
/dedu
tive te
hniques, and for the TRIO lan-guage in parti
ular. The framework is based on a set of 
ompositionalinferen
e rules, whi
h are appli
able within a methodology to spe
ify andverify modular systems. On the one hand, the methodology exploits someTRIO language features to allow for an e�e
tive and natural way of stru
-turing a large spe
i�
ation into 
lasses. On the other hand, some spe
i�

ompositional requirements are satis�ed by exploiting the inferen
e rules tohandle 
ompositional spe
i�
ations written a

ording to the rely/guaranteeparadigm and presenting 
ir
ular referen
es.We dis
ussed in Se
tion 3.2 why 
ompositional inferen
e rules need notbe 
ir
ular to be of pra
ti
al interest. Some works reviewed in Chapter 4give other eviden
e to this fa
t. Therefore, we present both non-
ir
ularinferen
e rules (in Se
tion 5.1) and 
ir
ular inferen
e rules (in Se
tion 5.2).In ea
h 
ase, the user should 
hoose the style of rule whi
h is most appro-priate for the system under development. We 
omplement the presentationof ea
h rule with an analysis of its 
ompleteness, as well as general 
onsid-erations about features that permit or prevent 
ompleteness.For simpli
ity of presentation, the inferen
e rules of Se
tions 5.1 and 5.2are referred to systems 
omposed of two modules. Afterward, the samerules are generalized to systems of N > 2 modules in Se
tion 5.3.Finally, Se
tion 5.4 shows how the previously introdu
ed 
ompositionalrules 
an be exploited in pra
ti
e. Namely, a methodology that pres
ribeshow to ta
kle the 
ompositional spe
i�
ation and veri�
ation of a modularsystem is formally presented. The following Chapter 6 will demonstratethe 
ompositional framework in pra
ti
e on two signi�
ant examples. 81



5. Compositional Inferen
e Rules and Methodology for TRIO5.1. Non-Cir
ular Compositional Inferen
e RulesThis se
tion presents two non-
ir
ular 
ompositional inferen
e rules, andproves their soundness and 
ompleteness. For the sake of 
larity, let usbrie�y re
all the notation we introdu
ed in Se
tion 3.3.1:
• we 
onsider a system made of N ≥ 2 modules;
• to ea
h module i = 1, . . . , N , we asso
iate a lo
al assumption Ei, anda lo
al guarantee Mi;
• the N modules are 
omposed (and 
onne
ted) to form a global sys-tem;
• the global system has its own global assumption E, and its globalguarantee M .5.1.1. Non-Cir
ular Inferen
e RulesFor the sake of simpli
ity, let us �rst 
onsider simple systems 
onsisting oftwo modules only. The extension to the general 
ase of N ≥ 2 moduleswill be dis
ussed separately, in Se
tion 5.3.First of all, the non-
ir
ular rules that we present here use regular im-pli
ation as a 
ompositional operator, as they are simple 
onsequen
es ofthe logi
al rules of impli
ation and 
onjun
tion. Even more generally, weare able to present their proofs in terms of two generi
 logi
al 
onne
tivesdenoted as ⊑ and ⊓. ⊑ represents any operator whi
h is an order relation(i.e., it is re�exive, anti-symmetri
 and transitive), while the ⊓ 
onne
torrepresents an asso
iative, 
ommutative and idempotent operation whi
hrespe
ts the order relation (i.e., su
h that if A ⊑ C and B ⊑ D, then also

A ⊓B ⊑ C ⊓D for any A,B,C,D). It is immediate to realize that logi
alimpli
ation ⇒ and 
onjun
tion ∧ respe
tively satisfy su
h properties.Therefore, we have the two following proposition, that establish thesoundness of the 
orresponding two 
ompositional inferen
e rules.Proposition 5.1.1 (Non-Cir
ular Rely/Guarantee Inferen
e Rule 1). If:1. E2 ⊑M22. E ⊓M1 ⊑ E23. E ⊓M1 ⊓M2 ⊑M82



5.1. Non-Cir
ular Compositional Inferen
e Rules4. E ⊑M1then, E ⊑MProof. The following formal derivation proves the proposition.
∗) E ⊓M1 ⊑M2 by 2, 1 and transitivity of ⊑
∗∗) E ⊑ E by re�exivity of ⊑

E ⊓ E ⊑M1 ⊓ E by 4, the previous one and theorder-preservation of ⊓
E ⊑M1 ⊓ E by the previous one and theidempoten
e of ⊓
E ⊑ E ⊓M1 by the previous one and the
ommutativity of ⊓

E ⊑M2 by the previous one, ∗) and thetransitivity of ⊑
E ⊓ E ⊑M1 ⊓M2 by 4, the previous one, and theorder-preservation of ⊓

E ⊑M1 ⊓M2 by the previous one and theidempoten
e of ⊓
E ⊓ E ⊑ E ⊓M1 ⊓M2 by ∗∗), the previous one and theorder-preservation of ⊓

E ⊑ E ⊓M1 ⊓M2 by the previous one and theidempoten
e of ⊓
E ⊑M by the previous one, 3 andtransitivity of ⊑Noti
e that the rule of Proposition 5.1.1 is non-fully 
ompositional, a
-
ording to the de�nitions introdu
ed in Se
tion 3.3.2; instead, the followingis.Proposition 5.1.2 (Non-Cir
ular Rely/Guarantee Inferen
e Rule 2). If:1. a) E1 ⊑M1b) E2 ⊑M22. M1 ⊑ E23. E ⊓M1 ⊓M2 ⊑M4. E ⊑ E1then, E ⊑M 83



5. Compositional Inferen
e Rules and Methodology for TRIOProof. The proof is very similar to that of Proposition 5.1.1. In brief, justassume E holds; then, E1 by 4, M1 by 1a, E2 by 2, M2 by 1b, M by 3.We remark again that, however simple the two above non-
ir
ular rulesmay seem, they are those used in pra
ti
e in a lot of formal reasoningabout 
omposite systems. Indeed, their simpli
ity and wide appli
abilityshow that what we 
all �
ompositional reasoning� is naturally embedded inmathemati
al logi
 reasoning [Lam98℄.5.1.2. Completeness of the Non-Cir
ular RulesLet us show that the inferen
e rules of Propositions 5.1.1 and 5.1.2 arerelatively 
omplete. We need an extra assumption on the set of formulasover whi
h the order relation ⊑ is de�ned: we require that there exists amaximum element in the ordered set, indi
ated as ⊤, that is a formula su
hthat for any formula P , P ⊑ ⊤ is true.1 Moreover, ⊤ must be an identityelement for the ⊓ operation, that is for any formula P , P ⊓⊤ = ⊤⊓P = P .Noti
e that these assumptions are obviously satis�ed by the logi
al valuetrue, with respe
t to the logi
al impli
ation ⇒ and 
onjun
tion ∧ respe
-tively.Theorem 5.1.3 (Completeness of Non-Cir
ular Inferen
e Rules). Thenon-
ir
ular inferen
e rules in Proposition 5.1.1 and in Proposition 5.1.2are relatively 
omplete.Proof. Let us �rst 
onsider Proposition 5.1.1. Assume E ⊑M holds. Hen
e
hoose M1 = M and E2 = M2 = ⊤. Hypotheses 1 and 2 are trivially truebe
ause of the de�nition of⊤ as maximum element of the order. Hypothesis4 is E ⊑ M1, whi
h follows from E ⊑ M , M ⊑ M1 (sin
e M = M1)and transitivity of ⊑. Finally, hypothesis 3 is E ⊓M1 ⊓M2 ⊑ M , whi
h
orresponds to E⊓M⊓⊤ ⊑M be
ause of the equivalen
es, and to E⊓M ⊑
M be
ause of de�nition of identity. Now, sin
e E ⊑ M and M ⊑ M , thelast hypothesis 3 also holds.Let us now 
onsider Proposition 5.1.2 and assume E ⊑M . If we 
hoose
E1 = E, M1 = M and M2 = E2 = ⊤, 
onditions 1�4 
orrespond to:1. a) E ⊑M , assumed true.b) ⊤ ⊑ ⊤, trivially true.1Re
all that P = Q i� P ⊑ Q and Q ⊑ P84



5.2. Cir
ular Compositional Inferen
e Rules2. E ⊓M ⊑ ⊤, trivially true.3. E ⊓M ⊓ ⊤ ⊑M , equivalent to E ⊑M , assumed true.4. E ⊑ E, true by re�exivity of ⊑.5.1.3. Summary of Non-Cir
ular RulesTable 5.1 summarizes the two non-
ir
ular 
ompositional inferen
e ruleswe have presented above; for uniformity with the results of the followingse
tions, we use impli
ation and 
onjun
tion in pla
e of the generi
 ⊑ and
⊓ operators.Rule 1 (Prop. 5.1.1) Rule 2 (Prop. 5.1.2)

E2 ⇒M2 E1 ⇒M1, E2 ⇒M2

E ∧M1 ⇒ E2 M1 ⇒ E2

E ∧M1 ∧M2 ⇒M E ∧M1 ∧M2 ⇒M
E ⇒M1 E ⇒ E1

E ⇒M E ⇒MTable 5.1.: Non-
ir
ular 
ompositional inferen
e rules for two modules.5.2. Cir
ular Compositional Inferen
e RulesThis se
tion presents several 
ir
ular 
ompositional inferen
e rules, provestheir soundness, and dis
usses their 
ompleteness. More pre
isely, we aregoing to start in Se
tion 5.2.1 by introdu
ing a 
ompositional operator ։and present fully and non-fully 
ompositional rules that use this operator.Then, Se
tion 5.2.2 explores variations of the ։ that may be more suitedto model 
ertain 
lasses of systems; inferen
e rules for these variations arederived from the analogous ones in Se
tion 5.2.1. Finally, Se
tion 5.2.3studies the 
ompleteness of the previously introdu
ed 
ompositional rules.5.2.1. The Time Progression Compositional OperatorThe Time Progression OperatorLet us introdu
e a simple 
ompositional operator that allows us to de�nesound 
ir
ular inferen
e rules. It is 
alled time progression operator, and85



5. Compositional Inferen
e Rules and Methodology for TRIOit is denoted by the symbol ։. Informally, P ։ Q is true for two time-dependent formulas P,Q if, whenever P has been true in the immediatepast, then Q has also been true in the immediate past, is true now, and will
ontinue to hold for some time in the immediate future. This is formalizedby the following de�nition.
P ։ Q ≡

{
UpToNow(P )⇒ UpToNow(Q) ∧Q ∧NowOn(Q) if T dense
UpToNow(P )⇒ UpToNow(Q) ∧Q if T dis
reteThus, the rely/guarantee spe
i�
ations in our inferen
e rules are in theform E ։M . Noti
e that this is a reasonable way to express a rely/guar-antee spe
i�
ation: in fa
t, we say that the behavior of the module in theimmediate future is in�uen
ed only by the behavior of the environment inthe immediate past, so that if the environment stops behaving 
orre
tly,then the module 
an also stop behaving 
orre
tly only after �a while�.From a te
hni
al viewpoint, noti
e that the semanti
s of the time pro-gression operator allows us to build a sort of �temporal indu
tion� over thetimeline, where the indu
tive step is allowed by the Q ∧ NowOn(Q) partthat �makes time progress� past the 
urrent instant (hen
e, the name).This will be
ome apparent in the soundness proofs of the inferen
e rulesthat use this operator.Finally, let us also remark that a di�erent operator was also named timeprogression and denoted with the same symbol in [FRMM07℄. In Se
tion5.2.2 below we will show how the inferen
e rule for that operator, alsopresented in [FRMM07℄, 
an be derived from those for the time progressionoperator introdu
ed here.In the remainder, re
all that all TRIO formulas are impli
itly universallyquanti�ed over time, that is 
losed with an Alw operator. In parti
ular,this is the 
ase for the hypotheses and 
on
lusions of the rules that we arepresenting.Cir
ular Inferen
e Rules for the Time Progression OperatorLet us now present and prove the soundness of two 
ir
ular inferen
e rulesfor the time progression operator. The �rst rule is given in the followingproposition; a

ording to our taxonomy, it is a fully-
ompositional, nonself-dis
harging, globally initialized, 
ir
ular inferen
e rule.Let us also remark that, in pra
ti
e, the initialization predi
ate S wouldbe modeled in TRIO as a unique event, i.e., an event whi
h happens exa
tly86



5.2. Cir
ular Compositional Inferen
e Ruleson
e in time. This is rendered by the two formulas Som(S) and S ⇒
AlwP(¬S) ∧ AlwF(¬S). However, the soundness of this inferen
e rule, aswell as that of the others that we present in the remainder of this 
hapter,do not depend on S being a unique event.Proposition 5.2.1 (Rely/Guarantee Cir
ular Inferen
e Rule 1). If:1. a) E1 ։M1b) E2 ։M22. a) M1 ⇒ E2b) M2 ⇒ E13. M1 ∧M2 ⇒M4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for some i ∈ {1, 2}then SomPi(S)⇒ (E ։M).Proof for dense time domains. Let t be the 
urrent instant, and let us as-sume that SomPi(S) holds at t; thus, let t′ ≤ t be (any) instant at whi
h
S held. We have to show that E ։M holds at t.First of all, let us prove that UpToNow(M1 ∧M2), M1 ∧ M2, and
NowOn(M1 ∧M2) hold at t. To this end, we know that at t′ we have
UpToNow(Ei) or UpToNow(Mi) for some i, be
ause of (4). Let us assumethat UpToNow(Ei); this is without loss of generality, as if UpToNow(Mi),then (2) lets us 
on
lude immediately that also UpToNow

(
Eî

) at t′, wherewe adopt the 
onvention of denoting by î the �other� index {1, 2} \ {i} ∋ î.Then, let us 
onsider the 
onsequen
es of (1) at t′: sin
e UpToNow(Ei),then UpToNow(Mi), Mi, and NowOn(Mi) also at t′. Thus, let us 
onsider(1) and (2) again and see that also UpToNow
(
Eî

), UpToNow
(
Mî

), Eî∧Mî,
NowOn

(
Eî

), and NowOn
(
Mî

).Therefore, we have that M1 ∧ M2 holds until some instant t′′ > t′ inthe future w.r.t. t′; in other words, we 
an say that UpToNow(M1 ∧M2)holds at t′′. But then, UpToNow(E1 ∧M2) holds at t′′, be
ause of (2).It is not di�
ult to see that we 
an repeat everything that we did at t′again at t′′. Thus, we will have a stri
tly monotoni
 sequen
e of points
t′ < t′′ < t′′′ < · · · su
h that M1 ∧M2 holds throughout.Next, we have to show that the sequen
e gets (at least) until a point
u > t. We show this by 
ontradi
tion: assume to the 
ontrary thatM1∧M287



5. Compositional Inferen
e Rules and Methodology for TRIOholds until point t ≤ t only; that is NowOn(M1 ∧M2) is false at t. There-fore, UpToNow(M1 ∧M2) holds at t. Then, (2) lets us dedu
e that also
UpToNow(E1 ∧ E2) holds at t. But then we 
onsider (1) twi
e, on
e formodule 1 and on
e for module 2, to 
on
lude that both M1 ∧ M2 and
NowOn(M1 ∧M2) hold. This is in 
ontradi
tion with the hypothesis that
M1 ∧M2 held up until t, as expe
ted.All in all, we have shown thatM1∧M2 hold from before t′ until some u >
t. Therefore, in parti
ular UpToNow(M1 ∧M2), M1 ∧ M2, and
NowOn(M1 ∧M2) all hold at t.Finally, from (3) we easily infer that UpToNow(M) ∧M ∧ NowOn(M)at t.Proof for dis
rete time domains. We present a proof along the lines of theone for dense time domains. Alternatively, one 
ould use indu
tion to provethe same result for dis
rete time.Let t be the 
urrent instant, and let us assume that SomPi(S) holds at
t; thus, let t′ ≤ t be (any) instant at whi
h S held. We have to show that
E ։M holds at t.First of all, let us prove that UpToNow(M1 ∧M2) andM1∧M2 hold at t.To this end, we know that at t′ we have UpToNow(Ei) or UpToNow(Mi)for some i, be
ause of (4). Let us assume that UpToNow(Ei); this iswithout loss of generality, as if UpToNow(Mi), then (2) lets us 
on
ludeimmediately that also UpToNow

(
Eî

) at t′, where we adopt the 
onventionof denoting by î the �other� index {1, 2}\{i} ∋ î. Then, let us 
onsider the
onsequen
es of (1) at t′: sin
e UpToNow(Ei), then UpToNow(Mi) and
Mi also at t′. Thus, let us 
onsider (1) and (2) again and see that also
UpToNow

(
Eî

), UpToNow
(
Mî

), Eî, and Mî.Therefore, we have that M1 ∧M2 holds until t′′ = t′ + 1 in
luded; inother words, we 
an say that UpToNow(M1 ∧M2) holds at t′′ + 1. Butthen, UpToNow(E1 ∧M2) holds at t′′+1, be
ause of (2). It is not di�
ultto see that we 
an repeat everything that we did at t′ again at t′′+1. Thus,we will have a stri
tly monotoni
 sequen
e of points t′ < t′+1 < t′+2 < · · ·su
h that M1 ∧M2 holds throughout.Next, we have to show that the sequen
e gets (at least) until a point
u > t. We show this by 
ontradi
tion: assume to the 
ontrary thatM1∧M2holds until point t ≤ t in
luded only; that is NowOn(M1 ∧M2) is false at t.Therefore, UpToNow(M1 ∧M2) holds at t+1. Then, (2) lets us dedu
e thatalso
UpToNow(E1 ∧ E2) holds at t+1. But then we 
onsider (1) twi
e, on
e for88



5.2. Cir
ular Compositional Inferen
e Rulesmodule 1 and on
e for module 2, to 
on
lude in parti
ular that M1 ∧M2.This is in 
ontradi
tion with the hypothesis that M1 ∧M2 held up until t,as expe
ted.All in all, we have shown that M1∧M2 hold from t′−1 until some u > t.Therefore, in parti
ular UpToNow(M1 ∧M2) and M1 ∧M2 all hold at t.Finally, from (3) we easily infer that UpToNow(M) ∧M at t.Noti
e that in the above proofs we never a
tually introdu
ed any fa
tabout the value of E; in other words it is as if we had proved the 
on
lusion
true։M . Indeed, in this rule � and in some of the following ones � theglobal assumption E is introdu
ed in the 
on
lusion only in 
onforman
ewith the other rules; in other words we make no assumptions on the globalenvironment. On the 
ontrary, other rules a
tually require E to hold inorder to be sound; this is the 
ase, for instan
e, of the rules of Proposition5.2.4 and Proposition 5.2.7, whi
h we will present in the following se
tions.The se
ond rule we present is non-fully 
ompositional, self-dis
harging,globally initialized, and 
ir
ular. Noti
e that our 
hoi
e of 
ompositionaloperator, 
ombined with the fa
t that the rule is non-fully 
ompositional,requires to add a term in the 
on
lusion that requires the global assumption
E to hold �always in the past�. Otherwise (i.e., if E was false somewhere inthe past), it would be impossible, in general, to 
arry out the dis
hargingof lo
al assumptions, sin
e the rule is non-fully 
ompositional. We provethe soundness of the rule only for dense time models; the proof for dis
retetime models 
an be developed along the same lines.Proposition 5.2.2 (Rely/Guarantee Cir
ular Inferen
e Rule 2). If:1. a) E1 ։M1b) E2 ։M22. E ∧M1 ∧M2 ⇒ E1 ∧ E23. M1 ∧M2 ⇒M4. S ⇒ UpToNow(E1 ∧ E2) ∨UpToNow(M1 ∧M2)then SomPi(S) ∧AlwPe(E)⇒ (E ։M).Proof for dense time domains. Let t be the 
urrent instant, and let us as-sume that SomPi(S) and AlwPe(E) hold at t. We show that E ։M holds89



5. Compositional Inferen
e Rules and Methodology for TRIOat t; to this end, let us �rst show that UpToNow(M1 ∧M2), M1 ∧M2, and
NowOn(M1 ∧M2) hold at t.Let t′ ≤ t be an instant at whi
h S holds. From (4), let us assume that
UpToNow(E1 ∧ E2) holds at t′. This is without loss of generality, sin
e if
UpToNow(M1 ∧M2), then also UpToNow(E1 ∧ E2) at the same time, from(2) and the fa
t that AlwPe(E) at t ≥ t′.Then, let us 
onsider (1) at t′. We 
an infer that UpToNow(M1 ∧M2),
M1 ∧M2, and NowOn(M1 ∧M2) all hold at t′. Therefore, M1 ∧M2 holdsuntil some t′′ > t′. If t′′ > t, we are done proving the 
urrent goal; other-wise, we 
an iterate the reasoning and get to a new point t′′′ > t′′.The sequen
e of points t′ < t′′ < t′′′ < · · · must eventually rea
h a point
u > t. The proof by 
ontradi
tion goes just as in the 
ase of the proof ofProposition 5.2.1.So, �nally we have that UpToNow(M1 ∧M2), M1 ∧ M2, and
NowOn(M1 ∧M2) hold at t. The �nal step infers that also UpToNow(M),
M , and NowOn(M) from (3). Thus, we have shown that E ։M holds at
t.Lo
ally Initialized Cir
ular Inferen
e RulesLet us now provide lo
ally initialized variations of the two 
ir
ular inferen
erules introdu
ed above. They will be useful in dis
ussing the 
ompletenessof the inferen
e rules (see Se
tion 5.2.3). Re
all that, in lo
ally initializedrules, the use of the predi
ate S �simulates� an origin on the time axis.Noti
e that, in order to retain soundness, we have to introdu
e two small
hanges, other than lo
al initializations. First, the initialization predi
atein the 
on
lusion ex
ludes the 
urrent instant for S to o

ur; se
ond, theinitialization 
ondition now requires an interval in the future where a lo-
al assumption or guarantee holds. This is required to ensure that allpredi
ates are evaluated after the system has started, so that the lo
allyinitialized spe
i�
ation, dis
hargings, and global implementation formulashold there.Proposition 5.2.3 (Rely/Guarantee Cir
ular Inferen
e Rule 1(bis)). If:1. a) SomPe(S)⇒ (E1 ։M1)b) SomPe(S)⇒ (E2 ։M2)2. a) SomPe(S)⇒ (M1 ⇒ E2)b) SomPe(S)⇒ (M2 ⇒ E1)90



5.2. Cir
ular Compositional Inferen
e Rules3. SomPe(S)⇒ (M1 ∧M2 ⇒M)4. S ⇒ NowOn(Ei) ∨NowOn(Mi), for some i ∈ {1, 2}then SomPe(S)⇒ (E ։M).Proof for dense time domains. Let t be the 
urrent instant, and let us as-sume that SomPe(S) holds at t. To show that E ։ M holds at t, let us�rst show that UpToNow(M1 ∧M2),M1∧M2, and NowOn(M1 ∧M2) holdat t.Let t′ < t be an instant at whi
h S holds. From (4), let us assumethat NowOn(Ei) holds at t′. This is without loss of generality, sin
e if
NowOn(Mi), then also NowOn

(
Eî

) at the same time, from (2) and the fa
tthat in the right-neighborhood of t′ SomPe(S) holds. Sin
e NowOn(Ei) at
t′, then equivalently UpToNow(Ei) holds at some t′ + ǫ, for some ǫ > 0.Then, let us 
onsider (1) at t′ + ǫ. We 
an infer that UpToNow(Mi),
Mi, and NowOn(Mi) all hold at t′ + ǫ. Then, also UpToNow

(
Eî

) holdsat t′ + ǫ from (2); but then, by (1) again, also UpToNow
(
Mî

), Mî, and
NowOn

(
Mî

) all hold at t′ + ǫ.At this point, the proof goes on exa
tly as for Proposition 5.2.1. In parti
-ular, we infer that UpToNow(M1 ∧M2), M1 ∧M2, and NowOn(M1 ∧M2)are true at t, and we 
on
lude that E ։M by applying (3).Similar modi�
ations are done to get a lo
ally initialized 
ir
ular infer-en
e rule analogous to that of Proposition 5.2.2. We omit the proof, whi
his however all similar to the one we have just provided.Proposition 5.2.4 (Rely/Guarantee Cir
ular Inferen
e Rule 2(bis)). If:1. a) SomPe(S) ∧AlwPe(E)⇒ (E1 ։M1)b) SomPe(S) ∧AlwPe(E)⇒ (E2 ։M2)2. SomPe(S) ∧AlwPe(E)⇒ (E ∧M1 ∧M2 ⇒ E1 ∧ E2)3. SomPe(S) ∧AlwPe(E)⇒ (M1 ∧M2 ⇒M)4. S ⇒ NowOn(E1 ∧ E2) ∨NowOn(M1 ∧M2)then SomPe(S) ∧AlwPe(E)⇒ (E ։M).Finally, we present one more variation of the rule of Proposition 5.2.1.In this 
ase, we write the global implementation formula in terms of the91



5. Compositional Inferen
e Rules and Methodology for TRIO
։ operator, rather than using simple impli
ation. We may argue that theoriginal Proposition 5.2.1 is probably in a form whi
h is more likely to beappli
able in pra
ti
e, whereas the following rule overloads one hypothesiswith a large share of the 
omplexity involved in 
ompositional reasoning.Nonetheless, we will show that the following strengthening allows us tohave a 
omplete inferen
e rule, and in any 
ase it may be useful in pra
ti
ewith systems where the link between lo
al and global guarantees is moreinvolved than simple impli
ation.Proposition 5.2.5 (Rely/Guarantee Cir
ular Inferen
e Rule 1(ter)). If:1. a) E1 ։M1b) E2 ։M22. a) M1 ⇒ E2b) M2 ⇒ E13. E ∧M1 ∧M2 ։M4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for some i ∈ {1, 2}then SomPi(S)⇒ (E ։M).Proof. The proof is exa
tly the same as the one of Proposition 5.2.1 untilwe have established that UpToNow(M1 ∧M2) and M1∧M2 all hold at the
urrent instant t. Then, if also UpToNow(E) then 
learly we infer that
UpToNow(M) ∧M at t, from (3). This 
on
ludes the proof.5.2.2. Other Compositional Operators and CompositionalRulesThis se
tion provides other 
ir
ular 
ompositional inferen
e rules, exploringdi�erent 
ompositional operators and other di�erent features.A Stronger Time Progression OperatorLet us provide a 
ompositional inferen
e rule very similar to that dis
ussedand introdu
ed in [FRMM07℄. The rule exploits another 
ompositionaloperator � also 
alled �time progression� in [FRMM07℄ � that we denotewith the symbol ≫ here. Its semanti
s is the following.

P ≫ Q ≡
{

AlwPe(P )⇒ AlwPi(Q) ∧NowOn(Q) if T dense
AlwPe(P )⇒ AlwPi(Q) if T dis
rete92



5.2. Cir
ular Compositional Inferen
e RulesNoti
e that ≫ is stronger than ։ in the following sense: if P ։ Q holdsover the whole time axis, then P ≫ Q also holds, while the 
onverse is nottrue, in general. In fa
t, if for instan
e P holds exa
tly over (0, 10) and
Q is always false, then it is true that P ≫ Q everywhere, as AlwPe(P ) istrivially false, but P ։ Q is false, as Q should hold over some set (0, 10+ǫ),for some ǫ > 0.Despite ≫ being stronger than ։ in the above sense, we 
annot developa valid inferen
e rule for the new operator by simply repla
ing the timeprogression operator in Proposition 5.2.1 or 5.2.2 with the new 
omposi-tional operator. In fa
t, in general we also have to 
hange the initialization
ondition with one whi
h �triggers� the appli
ation of the new operator. Inparti
ular, the ≫ operator requires its left-hand argument to hold over al-ways in the past from the 
urrent instant; therefore, we require that at thesystem initialization either some lo
al assumption or some lo
al guaranteeare true always in the past. Thus, we obtain an inferen
e rule whi
h is aslight variation of the one presented in [FRMM07℄ for the ≫ operator.Proposition 5.2.6 (Rely/Guarantee Cir
ular Inferen
e Rule 3). If:1. a) E1 ≫M1b) E2 ≫M22. a) M1 ⇒ E2b) M2 ⇒ E13. M1 ∧M2 ⇒M4. S ⇒ AlwPe(Ei) ∨AlwPe(Mi), for some i ∈ {1, 2}then SomPi(S)⇒ (E ≫M).Proof sket
h for dense time domains. Let us just sket
h the beginning ofthe proof: the remainder is all similar to the previous proofs, as well as tothat presented in [FRMM07℄.Let t be the 
urrent instant and t′ ≤ t be an instant at whi
h S held.Then, without loss of generality we 
an assume that AlwPe(Ei) at t′; oth-erwise, it would be AlwPe(Mi), but then AlwPe

(
Eî

) would follow from(2). Then, from (1) we infer that AlwPi(Mi) and NowOn(Mi) at t′. More-over, from (2) and (1) it is simple to dedu
e that also AlwPi

(
Eî ∧Mî

) and
NowOn

(
Eî ∧Mî

). All in all we have �advan
ed� until some time t′′ > t′.93



5. Compositional Inferen
e Rules and Methodology for TRIOThen, the proof pro
eeds by the usual non a

umulation argument.When we have �nally shown that AlwPi(M1 ∧M2) ∧ NowOn(M1 ∧M2)at t, then E ≫M follows straight from (3).Impli
ation as a Compositional OperatorAs we also dis
ussed elsewhere [FRMM07℄, there are basi
ally two ways tomake a 
ir
ular inferen
e rule sound. One relies on writing spe
i�
ationsusing an ad ho
 operator that allows one to �propagate� the validity of somepredi
ate over time, thus allowing a sort of temporal indu
tion; this is theway we have followed with the time progression operator or, more generally,with other 
ompositional operators. The other way to a
hieve soundnessin presen
e of 
ir
ularity is to rely on semanti
 properties of the underlyingmodel or, equivalently, of the formulas that des
ribe that model.We follow this se
ond way with the following inferen
e rule. Ratherthan using an ad ho
 
ompositional operator, we simply write rely/guar-antee guarantee spe
i�
ations using impli
ation ⇒ to link assumption andguarantee of a module. On the other hand, we introdu
e assumptions onthe behavior of the lo
al assumptions and guarantee.Re
all the de�nitions of right-
ontinuous and left-
ontinuous states, givenin Se
tion 2.1.4. For a time-dependent predi
ate P , we denote by P ∈ ST−−the fa
t that it is a state, by P ∈ ST−−• the fa
t that it is a left-
ontinuousstate, and by P ∈ ST•−− the fa
t that it is a right-
ontinuous state. Alsonoti
e that a state whi
h is both left-
ontinuous and right-
ontinuous is
onstant over time.The inferen
e rule of the following proposition requires that a modulehas a lo
al assumption or lo
al guarantee that behaves as a left-
ontinuousstate, whereas the other module has a lo
al assumption or lo
al guaranteethat behaves as a right-
ontinuous state. These two fa
ts 
ombined allowsus to substitute an �alternation� of left- and right-
ontinuous predi
ates tothe use of a time progression operator, in order to set up an indu
tion overtime. In a sense, the interplay between left- and right-
ontinuous statesand the way they are logi
ally implied in the lo
al spe
i�
ations results inthe 
onstan
y over time of the lo
al spe
i�
ations. Compare this rule tothe one in Proposition 5.2.1, where no semanti
 assumptions are made onthe lo
al formulas, but a 
ompositional operator other than ⇒ is used.Proposition 5.2.7 (Rely/Guarantee Cir
ular Inferen
e Rule 4). If:1. a) E1 ⇒M194



5.2. Cir
ular Compositional Inferen
e Rulesb) E2 ⇒M22. a) M1 ⇒ E2b) M2 ⇒ E13. E ∧M1 ∧M2 ⇒M4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for some i ∈ {1, 2}5. E1 ∈ ST•−− or M1 ∈ ST•−−
26. E2 ∈ ST−−• or M2 ∈ ST−−•then SomPi(S)⇒ (E ⇒M).Proof for dense time domains. Let t be the 
urrent instant, and let us as-sume that SomPi(S) holds at t; thus, let t′ ≤ t be (any) instant at whi
h

S held. We have to show that E ⇒M holds at t.As usual, we fo
us on showing one �temporal indu
tive step�, the non a
-
umulation argument being all similar to that of the previous proofs. Morepre
isely, let us show that E1∧M1∧E2∧M2 and NowOn(E1 ∧M1 ∧ E2 ∧M2)hold at t′.We assume that UpToNow(E1) holds at t′. Indeed, this is withoutloss of generality: in fa
t, if UpToNow(M2) then UpToNow(E1) from(2b); if UpToNow(E2) then UpToNow(M2) from (1b); if UpToNow(M1)then UpToNow(E2) from (2a). But then, noti
e that UpToNow(E1) at
t′ implies UpToNow(M1) at t′ from (1a), and thus all in all we have
UpToNow(E1 ∧M1 ∧ E2 ∧M2) at t′.Let us now 
onsider (6), and let us distinguish two 
ases.
• If E2 ∈ ST−−•, then E2 holds at t′. Therefore, also M2 holds at t′for (1b); but then, (2b) implies that E1 also holds, and �nally (1a)implies that M1 also holds at t′.
• If M2 ∈ ST−−•, then M2 holds at t′. Therefore, also E1 holds at t′for (2b); but then, (1a) implies that M1 also holds, and �nally (2a)implies that E2 also holds at t′.All in all, E1 ∧M1 ∧ E2 ∧M2 holds at t′.The next step is to 
onsider (5) and still distinguish two 
ases.2Obviously, �xing whi
h module is des
ribed by a right-
ontinuous state is without lossof generality. 95



5. Compositional Inferen
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• IfE1 ∈ ST•−−, then NowOn(E1) holds at t′. Therefore, also NowOn(M1)holds at t′ for (1a); but then, (2a) implies that NowOn(E2) also holds,and �nally (1b) implies that NowOn(M2) also holds at t′.
• IfM1 ∈ ST•−−, then NowOn(M1) holds at t′. Therefore, also NowOn(E2)holds at t′ for (2a); but then, (1b) implies that NowOn(M2) alsoholds, and �nally (2b) implies that NowOn(E1) also holds at t′.All in all, we have shown that E1 ∧ M1 ∧ E2 ∧ M2 and

NowOn(E1 ∧M2 ∧ E2 ∧M2) at t′. The remainder of the proof is as forthe other propositions.Sin
e in the above proof we never evaluated hypothesis (3) at instants inwhi
h SomPi(S) is false, we 
an a
tually strengthen that hypothesis andget the following variation. By doing this, the rule be
omes 
omplete, aswe will show in Se
tion 5.2.3.Proposition 5.2.8 (Rely/Guarantee Cir
ular Inferen
e Rule 4(bis)). If:1. a) E1 ⇒M1b) E2 ⇒M22. a) M1 ⇒ E2b) M2 ⇒ E13. SomPi(S)⇒ (E ∧M1 ∧M2 ⇒M)4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for some i ∈ {1, 2}5. E1 ∈ ST•−− or M1 ∈ ST•−−6. E2 ∈ ST−−• or M2 ∈ ST−−•then SomPi(S)⇒ (E ⇒M).We 
on
lude this se
tion by pointing out that the notion of states (andright-
ontinuous or left-
ontinuous ones) is a meaningful one only whendealing with dense time models [GM01℄. Therefore, the above rules are ap-pli
able to su
h time models only, and have no dis
rete-time 
ounterparts.96



5.2. Cir
ular Compositional Inferen
e RulesA Cir
ular Inferen
e Rule Without Compositional OperatorLet us present one more 
ir
ular inferen
e rule. This rule di�erentiatesitself from the other ones, in that it does not use a 
ompositional operatorand it does not make any assumptions on the behavior of the assumptionand guarantee items. Moreover, it is substantially di�erent than all the pre-vious rules be
ause it does not assert the validity of some global guaranteeover a time interval that goes from the system initialization to the 
ur-rent time. Instead, it asserts that the system always responds in a timelymanner by making true the global guarantee, provided the global assump-tion holds 
ontinuously for some time, and some of the lo
al assumptionsor guarantees are periodi
ally initialized. Thus, in a sense, it des
ribes asystem with a �xed bounded response time to periodi
 initializations. Insu
h systems the 
ir
ularities are resolved periodi
ally, rather than on
efor all at the beginning. Therefore, the rule is suitable to prove propertiesabout systems 
omposed of modules periodi
ally responding to stimuli. InSe
tion 6.3 we will demonstrate how to use the rule with an example of
ommuni
ation proto
ol.A

ording to our taxonomy, the rule is 
ir
ular, non self-dis
harging, fully
ompositional, globally initialized (a
tually, not initialized at all), without
ompositional operator. Its soundness proof is rather simple, and requiresno temporal indu
tion, 
ontrarily to the other rules we have presented.3Proposition 5.2.9 (Rely/Guarantee Cir
ular Inferen
e Rule 5). If, forsome �xed duration TB > 0:1. a) E1 ⇒M1b) E2 ⇒M22. a) M1 ⇒ E2b) M2 ⇒ E13. E ∧M1 ∧M2 ⇒M4. ∃i ∈ {1, 2} : WithinF(Ei,TB) ∨WithinF(Mi,TB)3Noti
e that the 
on
lusion formula Lasts(E, TB) ⇒ WithinF(M, TB) is a weaker ver-sion of the bounded release operator Releases<T (P, Q). The operator is usuallyde�ned as ∀0 < t < T : Futr(Q, t) ∨ WithinF(P, t). Therefore Releases<TB
(M,¬E)implies Lasts(E, TB) ⇒ WithinF(M, TB), but not vi
e versa, as the latter is truewhenever E holds only over intervals of length less than TB. 97



5. Compositional Inferen
e Rules and Methodology for TRIOthen Lasts(E,TB)⇒WithinF(M,TB).Proof. Let t be a generi
 time instant at whi
h Lasts(E,TB) holds, andprove that WithinF(M,TB). Noti
e that the same proof works for bothdense and dis
rete time domains.From (4), let us assume that WithinF(E1,TB) at t. This is without loss ofgenerality: in fa
t, if WithinF(M2,TB), then WithinF(E1,TB) from (2b); if
WithinF(E2,TB), then WithinF(M2,TB) from (1b); if WithinF(M1,TB),then WithinF(E2,TB) from (2a).Thus, there exists a t′ su
h that t < t′ < TB and E1 holds at t′. There-fore, E1 ∧M1 ∧ E2 ∧M2 holds at at t′ by (1) and (2). Moreover, sin
e
t < t′ < TB and Lasts(E,TB) at t, then E also holds at t′. But then, Mholds at t′ by (3). Sin
e t < t′ < TB, this implies that WithinF(M,TB) at
t.5.2.3. Completeness of Cir
ular Inferen
e RulesThis se
tion analyzes the 
ompleteness of the 
ir
ular inferen
e rules pre-sented above.Theorem 5.2.10. The rely/guarantee 
ir
ular inferen
e rule 1 of Propo-sition 5.2.1 is in
omplete.Proof. Let σ, ǫ, µ be three Boolean basi
 time-dependent items; let us take
S = σ, E = ǫ, and M = µ. Then, in order to show in
ompleteness, weprovide a history for σ, ǫ, µ su
h that the 
on
lusion of the inferen
e ruleholds, but no 
hoi
e of Ei,Mi makes true all the premises of the rule.The history is as follows. µ and ǫ are false everywhere, whereas σ is trueonly at some point s internal to the time domain (and it is false everywhereelse). Noti
e that this history is de�nable in TRIO by the two formulas
Alw(¬µ ∧ ¬ǫ) and Som(σ ∧AlwP(¬σ) ∧AlwF(¬σ)).4Let us now realize that E ։ M is always true, sin
e E is always false;therefore the 
on
lusion of the inferen
e rule holds a fortiori.Let us now 
onsider what happens at s. In order to make (4) true,let us assume that it is UpToNow(E1) at s. As usual, this is withoutloss of generality, sin
e if UpToNow(M2) then UpToNow(E1) in order to4For simpli
ity, assume a bi-in�nite time domain su
h as R or Z, so that there are no(�nite) boundaries. Extensions to mono-in�nite or even in�nite time domains areroutine.98



5.2. Cir
ular Compositional Inferen
e Rulessatisfy (2b); if UpToNow(E2) then UpToNow(M2) in order to satisfy (1b);if UpToNow(M1) then UpToNow(E2) in order to satisfy (2a).Then, UpToNow(E1) at s implies UpToNow(M1) at s to satisfy (1a), andtherefore also UpToNow(M2) at s to satisfy (1b, 2). Sin
e UpToNow(M1∧
M2) at s, then (3) requires that UpToNow(M) at s as well. But M = µis false everywhere by assumption, so there is no 
hoi
e of E1, E2,M1,M2that is 
ompatible with all the premises of the rule.Theorem 5.2.11. The rely/guarantee 
ir
ular inferen
e rule 2 of Propo-sition 5.2.2 is in
omplete.Proof. Let σ, ǫ, µ be three Boolean basi
 time-dependent items; let us take
S = σ, E = ǫ, and M = µ. Then, in order to show in
ompleteness, weprovide a history for σ, ǫ, µ su
h that the 
on
lusion of the inferen
e ruleholds, but no 
hoi
e of Ei,Mi makes true all the premises of the rule.The history is as follows. µ is false everywhere, whereas σ is true onlyat some point s internal to the time domain (and it is false everywhereelse). At s, ǫ is true on a non-empty interval on the left whi
h is stri
tly
ontained within the time domain; that is, let us say that ǫ holds exa
tlyon the interval (s − γ, s) for some suitable γ > 0. Noti
e that the historyis de�nable in TRIO.Let us now realize that AlwPe(E) is always false, sin
e (s−γ, s) is stri
tly
ontained in the time domain by hypothesis. Therefore, the 
on
lusion ofthe inferen
e rule 
oin
ides with an impli
ation with false ante
edent, andit is therefore trivially true.Let us now 
onsider what happens at s. In order to make (4) true, it mustbe either UpToNow(E1 ∧ E2) or UpToNow(M1 ∧M2) at s. However, if
UpToNow(E1 ∧ E2) then also UpToNow(M1 ∧M2) by (1), so let us assumethe latter without loss of generality.Finally, noti
e that it is also UpToNow(E) at s, therefore it must be
UpToNow(M) at s. But M = µ is false everywhere, thus we have a falsepremise.If we look 
arefully at the above in
ompleteness proofs, we noti
e thatthe main obsta
le to a
hieving 
ompleteness is the impossibility of 
hoos-ing suitable values for Ei,Mi before the system is initialized, that is when
SomPi(S) is false. As a 
onsequen
e, by swit
hing to lo
ally initializedinferen
e rules, it may be possible to a
hieve 
ompleteness. Nonetheless,having a lo
ally initialized inferen
e rule is neither a su�
ient nor a ne
es-sary 
ondition for 
ompleteness. Indeed, in the remainder we show that the99



5. Compositional Inferen
e Rules and Methodology for TRIOlo
ally initialized inferen
e rule 1(bis) of Proposition 5.2.3 is in
omplete,whereas the lo
ally initialized inferen
e rule 2(bis) of Proposition 5.2.4 is
omplete. Moreover, we show that the globally initialized rule 1(ter) ofProposition 5.2.5 is also 
omplete. Therefore, in general the relationshipbetween the features of a 
ompositional rule and its 
ompleteness is subtleand non straightforward.Theorem 5.2.12. The rely/guarantee 
ir
ular inferen
e rule 1(bis) of Propo-sition 5.2.3 is in
omplete.Proof. As we did above, let σ, ǫ, µ be three Boolean basi
 time-dependentitems; let us take S = σ, E = ǫ, and M = µ. In order to show in
om-pleteness, we provide a history for σ, ǫ, µ su
h that the 
on
lusion of theinferen
e rule holds, but no 
hoi
e of Ei,Mi makes true all the premises ofthe rule.The history is as follows. µ and ǫ are false everywhere, whereas σ is trueonly at some point s internal to the time domain (and it is false everywhereelse). Noti
e that the history is de�nable in TRIO.Let us now realize that E ։ M is always true, sin
e E is always false;therefore the 
on
lusion of the inferen
e rule holds a fortiori.Let us now 
onsider what happens at s. In order to make (4) true, letus assume that it is NowOn(E1) at s. As usual, this is without loss ofgenerality, sin
e if NowOn(M2) then NowOn(E1) in order to satisfy (2b);if NowOn(E2) then NowOn(M2) in order to satisfy (1b); if NowOn(M1)then NowOn(E2) in order to satisfy (2a).Then, NowOn(E1) at s implies NowOn(M1) at s to satisfy (1a), andtherefore also NowOn(M2) at s to satisfy (1b, 2). Sin
e NowOn(M1 ∧M2)at s, then (3) requires that NowOn(M) at s as well. But M = µ is falseeverywhere by assumption, so there is no 
hoi
e of E1, E2,M1,M2 that is
ompatible with all the premises of the rule.Noti
e that in the proofs of the following Theorem (5.2.13) we assume todeal only with non-Zeno items. We 
onje
ture that the theorem holds alsofor Zeno items, but the proof would be even more involved � and not pra
-ti
ally very interesting, as Zenoness is anyway a sour
e of in
ompletenesson its own [GM01℄ � so we omit it for simpli
ity.Theorem 5.2.13. The rely/guarantee 
ir
ular inferen
e rule 1(ter) ofProposition 5.2.5 is 
omplete.100



5.2. Cir
ular Compositional Inferen
e RulesProof. Let us assume that the 
on
lusion SomPi(S) ⇒ (E ։ M) holds.Then, let us de�ne M1 as follows.
M1 ≡





E ։M if SomPi(S)

true if Until(M,S) ∨Until(¬M ∧ ¬E,S) and AlwPi(¬S)

false otherwiseEquivalently, we 
an express the de�nition above with the TRIO formula:
(SomPi(S)⇒ (M1 ⇔ (E ։M))) ∧

(AlwPi(¬S) ∧ (Until(M,S) ∨Until(¬M ∧ ¬E,S))⇒M1) ∧
(AlwPi(¬S) ∧ ¬Until(M,S) ∧ ¬Until(¬M ∧ ¬E,S)⇒ ¬M1)or, more 
on
isely, with the equivalent formula:

M1 ⇔ (SomPi(S) ∧ (E ։M))

∨ (AlwPi(¬S) ∧ (Until(M,S) ∨Until(¬M ∧ ¬E,S)))Similarly, let us 
hoose M2 = E1 = E2 as follows.
M2 = E1 = E2 ≡

{
true if Until(M,S) orUntil(¬M ∧ ¬E,S) or SomPi(S)

false otherwiseThen:
• Let us 
onsider hypothesis (1a) at some instant t. We distinguish thefollowing 
ases:� If SomPe(S) holds at t, then noti
e that the three formulas:

UpToNow(E ։M), NowOn(E ։M), and UpToNow(E1) alsohold at t. This is be
ause SomPe(S) implies UpToNow(SomPe(S))and NowOn(SomPe(S)). Therefore, (1a) is equivalent to
UpToNow(E1) ⇒ UpToNow(E ։M) ∧ (E ։ M) ∧ NowOn(E
։M), and it does hold at t.� If S at t (and ¬SomPe(S)), then without loss of generality letus assume that UpToNow(E1) holds as well; if not, (1a) is triv-ially true sin
e UpToNow(¬E1) would follow for properties ofZeno items. But from the de�nition ofM1 noti
e that whenever
UpToNow(E1) and S, then also UpToNow(M1). Moreover, af-ter t it is SomPe(S), and thus M1 = (E ։ M) holds there byassumption. Thus, at t it is also M1 and NowOn(M1). Thisestablishes (1a) in this 
ase. 101



5. Compositional Inferen
e Rules and Methodology for TRIO� Otherwise AlwPi(¬S) at t. Again, without loss of general-ity we 
an assume that UpToNow(E1). But then, whenever
AlwPi(¬S), M1 holds i� E1 holds. So, if also NowOn(¬S), (1a)holds at t. Otherwise, it must be NowOn(S) and ¬S at t. Inthis 
ase, NowOn(SomPi(S)) holds at t, and thus NowOn(M1)also holds at t (from the assumed 
on
lusion of the inferen
erule and the de�nition of M1). Thus �nally, (1a) holds at t inthis 
ase as well.

• The reasoning for hypothesis (1b) is similar to that for hypothesis(1b), only a bit simpler sin
e E2 and M2 are everywhere equal. Weomit the details whi
h are the same as in the previous step.
• Let us 
onsider hypothesis (2a): if it is evaluated when SomPi(S),then is redu
es to (E ։ M) ⇒ true, whi
h is true by hypothesis.If instead AlwPi(¬S), then either Until(M,S) ∨ Until(¬M ∧ ¬E,S)or not. In the former 
ase, (2a) redu
es to an impli
ation with true
onsequent; in the latter 
ase it redu
es to an impli
ation with falseante
edent. Both are tautologies.
• A similar reasoning goes for hypothesis (2b), whi
h redu
es to either

true⇒ true or to false⇒ false.
• Let us 
onsider hypothesis (3) when SomPi(S). Then, it 
an berewritten as E ∧ (E ։ M) ։ M . Now, noti
e that if E ։ Mthen a fortiori E ∧ (E ։ M) ։ M , sin
e the latter 
an be writtenas an impli
ation with the same 
onsequent but a more demandingante
edent. Sin
e we are assuming that E ։M , we are done in this
ase.Otherwise, AlwPi(¬S), and let t be the instant at whi
h we are eval-uating (3). Now the analysis gets more involved. First of all, letus 
onsider the 
ase in whi
h AlwFe(¬S). Thus S is always false;therefore, Until(M,S)∨Until(¬M ∧ ¬E,S) is also false (sin
e we aredealing with strong until), and thus M2 = E1 = E2 = false every-where. Therefore UpToNow(M2) is always false, whi
h implies that
E ∧M1 ∧M2 ։M is always true.Otherwise S is true somewhere in the future. Without loss of general-ity, sin
e we are assuming non-Zeno items, let s > t be the next timeinstant at whi
h S or NowOn(S) holds. Now we further 
onsider two
ases:102



5.2. Cir
ular Compositional Inferen
e Rules� If Until(M,S) at t, then in parti
ular M holds over the interval
(t, s). Let us now 
onsider the next point in the past from t atwhi
hM be
omes false; let u ≤ t be this instant. Thus,M holds
ontinuously over the interval (u, s) and is false before u (thevalue of M exa
tly at u is not relevant now). Noti
e that for allinstants in (u, s), the formula UpToNow(M)∧M ∧NowOn(M)holds, sin
e we are within an open interval. This implies that(3) 
an be rewritten as an impli
ation with true 
onsequent (by
onsidering the de�nition of the ։ operator), whi
h is thereforetrue throughout (u, s).We still have to evaluate (3) in the interval (−∞, u]. Noti
ethat in all these instants, the formula UpToNow(M1 ∧M2) isfalse; in fa
t, M1 and M2 are true at most at u and after it,but false before it sin
e Until(M,S) no longer holds (re
all that
AlwPi(¬S) holds at t ≥ u). Therefore, a fortiori UpToNow(E∧
M1∧M2) is false at these instants. But then E∧M1∧M2 ։Mis equivalent to an impli
ation with false ante
edent, whi
h istrivially true.� If instead Until(¬M ∧ ¬E,S) at t, then let us repeat the abovereasoning for ¬M ∧ ¬E in pla
e of M . So, assume that M and
E are false throughout (u, s) for some u ≤ t. As a 
onsequen
e,
UpToNow(M)∧M ∧NowOn(M) is now false throughout (u, s),and so is UpToNow(E). Therefore, a fortiori UpToNow(E ∧
M1∧M2) is false at these instants. But then E∧M1∧M2 ։Mis equivalent to an impli
ation with false ante
edent, whi
h istrivially true.Similarly as the previous 
ase, in the interval (−∞, u] the for-mula UpToNow(M1 ∧M2) is false. Thus, E ∧M1 ∧M2 ։ Mis equivalent to an impli
ation with false ante
edent, whi
h istrivially true.� Noti
e that we have no other 
ases to 
onsider. In parti
ularif both Until(M,S) and Until(¬M ∧ ¬E,S) are false at t, then
UpToNow(E ∧ ¬M) holds at s. But this 
ontradi
ts the as-sumption that the 
on
lusion of the inferen
e rule is true there.

• Finally, hypothesis (4). Let us 
onsider any instant s at whi
h Sholds. At s, either UpToNow(M) or UpToNow(¬M), sin
e we aredealing with non-Zeno items. If UpToNow(M), then UpToNow(M2∧103



5. Compositional Inferen
e Rules and Methodology for TRIO
E1 ∧ M1), sin
e Until(M,S) holds in a left-neighborhood of s. If
UpToNow(¬M) then it must also be UpToNow(¬E), otherwise the
on
lusion
SomPi(S)⇒ (E ։M) would be false at s. Therefore, UpToNow(M2

∧E1 ∧M1), sin
e Until(¬M ∧ ¬E,S) holds in a left-neighborhood of
s.Theorem 5.2.14. The rely/guarantee 
ir
ular inferen
e rule 2(bis) of Propo-sition 5.2.4 is 
omplete.Proof. The proof is all the same as the previous one: let us assume that the
on
lusion SomPe(S) ∧ AlwPe(E) ⇒ (E ։ M) holds. Then, let us de�ne

M1 as M1 = E ։ M , and let M2 = E1 = E2 = true be all identi
allyequal to true.Therefore:
• Hypothesis (1a) is equivalent to SomPe(S)∧AlwPe(E)⇒ (E ։M)whi
h is exa
tly the 
on
lusion.
• Hypotheses (1b,2) are all equivalent to SomPe(S)∧AlwPe(E)⇒ true,whi
h is trivially true.
• Let us 
onsider hypothesis (3). Without loss of generality, let us takeany instant at whi
h SomPe(S) and AlwPe(E) hold. Then, we haveto establish that (E ։ M) ∧ true ⇒ M . Clearly, this is the sameas just M , sin
e E ։ M holds from the 
on
lusion. Now noti
ethat AlwPe(E) implies a fortiori that UpToNow(E) .5 Therefore, the
on
lusion allows us to assert that UpToNow(M)∧M ∧NowOn(M),so that M is, in parti
ular, true.
• Hypothesis (4) is trivially satis�ed for E1 = E2 = true.The following result has been already proved in [FRMM07℄.Theorem 5.2.15. The rely/guarantee 
ir
ular inferen
e rule 3 of Propo-sition 5.2.6 is in
omplete.5We are skipping a little te
hni
ality here: we are ta
itly assuming that we are at apoint internal to the time domain, otherwise it 
ould be that AlwPe(E) is triviallytrue, but UpToNow(E) is false sin
e there is no non-empty interval to the left of theboundary. However, this is not a problem, as we just have to noti
e that SomPe(S)being true implies that we are indeed in an internal point.104



5.2. Cir
ular Compositional Inferen
e RulesProof. Let σ, ǫ, µ be three Boolean basi
 time-dependent items; let us take
S = σ, E = ǫ, and M = µ. Then, in order to show in
ompleteness, weprovide a history for σ, ǫ, µ su
h that the 
on
lusion of the inferen
e ruleholds, but no 
hoi
e of Ei,Mi makes true all the premises of the rule.The history is as follows. µ and ǫ are false everywhere, whereas σ is trueonly at some point s internal to the time domain (and it is false everywhereelse). Noti
e that the history is de�nable in TRIO.Let us now realize that E ≫M is always true, sin
e AlwPe(E) is alwaysfalse; therefore the 
on
lusion of the inferen
e rule holds a fortiori.Let us now 
onsider what happens at s. Without adding details (as theyare all similar as in the other proofs), one realizes that in order for (4) tobe true, we must have AlwPe(E1 ∧ E2 ∧M1 ∧M2) at s.Then, (3) requires that AlwPe(M) at s. But M = µ is false everywhereby assumption, so there is no 
hoi
e of E1, E2,M1,M2 that is 
ompatiblewith all the premises of the rule.Theorem 5.2.16. The rely/guarantee 
ir
ular inferen
e rule 4 of Propo-sition 5.2.7 is in
omplete, whereas the rule 4(bis) of Proposition 5.2.8 is
omplete.Proof. The in
ompleteness proof is along the usual lines. Let S be trueexa
tly at some time s, M false everywhere, and E be true on some openinterval (s − ǫ, s), and false everywhere else (in parti
ular, this impliesthat UpToNow(E) ∧ ¬E holds at s). Noti
e that this implies that when-ever SomPi(S), then E is false, so E ⇒ M holds; thus the 
on
lusionof the inferen
e rule holds everywhere. Then, by (4) and (1�2) it mustbe UpToNow(E1 ∧ E2 ∧M1 ∧M2) at s. Moreover, by (3) UpToNow(M)must also hold at s, a 
ontradi
tion.The 
ompleteness proof instead is as follows. Let us assume that the
on
lusion SomPi(S)⇒ (E ⇒ M) holds. Then, let us de�ne M1 as M1 =
SomPi(S) ⇒ (E ⇒ M), and let M2 = E1 = E2 = true be all identi
allyequal to true.(1a) is the same as SomPi(S) ⇒ (E ⇒ M), whi
h holds by assump-tion. (1b) is trivially true, being an impli
ation with true 
onsequent. (2)are both trivially true, also being impli
ations with true 
onsequents. (3)
an be rewritten as SomPi(S) ⇒ (E ⇒ M), again true by assumption.(4) is satis�ed everywhere by E1 = E2 = true. Finally, noti
e that a
onstant Boolean time-dependent item is both a right-
ontinuous and aleft-
ontinuous state, so (5�6) is satis�ed by E1, E2. 105



5. Compositional Inferen
e Rules and Methodology for TRIOTheorem 5.2.17. The rely/guarantee 
ir
ular inferen
e rule 5 of Propo-sition 5.2.9 is 
omplete.Proof. Let us assume that the 
on
lusion Lasts(E,TB)⇒WithinF(M,TB)holds. Then, let us de�ne E1 = E2 = M1 = M2 impli
itly as follows.
(Lasts(E,TB)⇒ Lasts(E1 = E2 = M1 = M2 = M,TB)) ∧

(WithinF(¬E,TB)⇒
Until(E1 = E2 = M1 = M2 = ¬E,

Lasts(E,TB) ∧ E1 = E2 = M1 = M2 = ¬E)

∨AlwFe(WithinF(¬E,TB) ∧ E1 = E2 = M1 = M2 = ¬E))Thus 
learly (1�2) all redu
e to propositional tautologies of the form A⇒
A, sin
e E1 = E2 = M1 = M2 everywhere.Then, let us 
onsider (4) �rst, and let t be any instant. At t, either
Lasts(E,TB) or WithinF(¬E,TB). In the former 
ase, the 
on
lusion letsus dedu
e that WithinF(M,TB). But sin
e also Lasts(E1 = E2 = M1 =
M2 = M,TB) at t, then WithinF(E1 ∧ E2 ∧M1 ∧M2,TB), whi
h satis�es(4). Otherwise, we have a t < t′ < t+ TB su
h that ¬E holds at t′. Then,it is either AlwFe(E1 = E2 = M1 = M2 = ¬E ∧WithinF(¬E,TB)) at t,or not. In the former 
ase, we have E1 = E2 = M1 = M2 at t′, and thus(4) is satis�ed. In the latter 
ase, there exists an instant t′′ > t su
h that
E1 = E2 = M1 = M2 = ¬E holds until t′′ in
luded. If t′′ ≥ t′, then (4) isimplied; otherwise t′′ < t′, Lasts(E,TB) holds at t′′, whi
h 
ontradi
ts thefa
t that E is false at t′.Next, let us dis
uss hypothesis (3), at a generi
 time instant t. If E isfalse at t, then the impli
ation holds trivially.Otherwise E is true at t. Let us distinguish two 
ases: (a) if there existsan interval (p, p+ TB) su
h that t ∈ (p, p+ TB) and E is true throughout
(p, p+ TB); (b) if this is not the 
ase. Noti
e that if (b), then in parti
ularthere must exist an instant t − TB < q < t su
h that WithinF(¬E,TB)holds at q.Thus, if (a) is the 
ase, then let us 
onsider the instant p. At p Lasts(E,TB)holds, therefore Lasts(E1 = E2 = M1 = M2 = M,TB) also holds at p. Thusat t ∈ (p, p+TB): ifM , then alsoM1∧M2, thus (3) holds; if ¬M , then also
¬M1∧¬M2, thus (3) also holds, being an impli
ation with false ante
edent.Otherwise, (b) is the 
ase, and WithinF(¬E,TB) holds at q. Let usdistinguish whether Lasts(WithinF(¬E,TB) , t− q) holds at q or not. Ifit does, then surely E1 = E2 = M1 = M2 = ¬E at t, and therefore (4)106



5.3. Generalization to More Than Two Modulesredu
es to E ∧ ¬E ⇒ M , whi
h is trivially true having a 
ontradi
tion inthe ante
edent. If it does not, then there exists some q < q′ < t su
h that
Lasts(E,TB) holds at q′. But this 
orresponds to 
ase (a), a 
ontradi
tionwhi
h 
on
ludes this bran
h as well.5.2.4. Summary of Cir
ular RulesTable 5.2 summarizes the various 
ir
ular 
ompositional inferen
e rules wehave presented above; an I/C letter after before the proposition numberdenotes if the rule is in
omplete/
omplete.5.3. Generalization to More Than Two ModulesThis se
tion dis
usses how the 
ompositional inferen
e rules presented inSe
tion 5.1 and 5.2 
an be generalized to handle a system with any number
N ≥ 2 of modules.Let us point out that these generalizations are not stri
tly ne
essary toapply our 
ompositional rules to systems with more than two modules. Infa
t, the rules 
an be applied by re
ursively partitioning the set of modulesinto two suitable sets, and apply the 
ompositional rules by 
onsidering thetwo subsets as two (ma
ro) modules. Nonetheless, the stru
ture of a multi-modular system is often best exploited by 
onsidering the 
omposition ofall the modules at the same level. In fa
t, a well-designed system oftenhas a modular partitioning where it is �natural� to asso
iate some lo
alproperties to ea
h of its modules. Therefore, we extend our 
ompositionalrules to handle su
h 
ommonly en
ountered 
ases.Throughout this se
tion N is an integer greater than one, that representsthe number of modules.5.3.1. Non-Cir
ular Inferen
e RulesThe non-
ir
ular inferen
e rules of Propositions 5.1.1 and 5.1.2 
an be ex-tended to handle any number of modules by introdu
ing a way to des
ribea set of dis
harging formulas where the lo
al assumption of ea
h module isdis
harged by the lo
al guarantee of another module, and no 
ir
ularitiesare introdu
ed. To this end, it is su�
ient to des
ribe a permutation of theset of modules where the lo
al assumption of ea
h module is dis
harged bythe lo
al guarantee of the module whi
h follows in the permutation. 107



5.CompositionalInferen
eRulesandMethodologyforTRIO

Rule 1 (Prop. 5.2.1 I) Rule 1(bis) (Prop. 5.2.3 I) Rule 1(ter) (Prop. 5.2.5 C)
E1 ։ M1, E2 ։ M2 SomPe(S)⇒ (E1 ։ M1) ∧ (E2 ։ M2) E1 ։ M1, E2 ։ M2

M1 ⇒ E2, M2 ⇒ E1 SomPe(S)⇒ (M1 ⇒ E2) ∧ (M2 ⇒ E1) M1 ⇒ E2, M2 ⇒ E1

M1 ∧M2 ⇒M SomPe(S)⇒ (M1 ∧M2 ⇒M) E ∧M1 ∧M2 ։ M
S ⇒ UpToNow(Ei) ∨UpToNow(Mi) S ⇒ NowOn(Ei) ∨NowOn(Mi) S ⇒ UpToNow(Ei) ∨UpToNow(Mi)

SomPi(S)⇒ (E ։ M) SomPe(S)⇒ (E ։ M) SomPi(S)⇒ (E ։ M)Rule 2 (Prop. 5.2.2 I) Rule 2(bis) (Prop. 5.2.4 C) Rule 3 (Prop. 5.2.6 I)
E1 ։ M1, E2 ։ M2 SomPe(S) ∧AlwPe(E)⇒ (E1 ։ M1) ∧ (E2 ։ M2) E1 ≫M1, E2 ≫M2

E ∧M1 ∧M2 ⇒ E1 ∧ E2 SomPe(S) ∧AlwPe(E)⇒ (E ∧M1 ∧M2 ⇒ E1 ∧ E2) M1 ⇒ E2, M2 ⇒ E1

M1 ∧M2 ⇒M SomPe(S) ∧AlwPe(E)⇒ (M1 ∧M2 ⇒M) M1 ∧M2 ⇒M
S ⇒ UpToNow(E1 ∧ E2) ∨UpToNow(M1 ∧M2) S ⇒ NowOn(E1 ∧ E2) ∨NowOn(M1 ∧M2) S ⇒ AlwPe(Ei) ∨AlwPe(Mi)

SomPi(S) ∧AlwPe(E)⇒ (E ։ M) SomPe(S) ∧AlwPe(E)⇒ (E ։ M) SomPi(S)⇒ (E ≫M)Rule 4 (Prop. 5.2.7 I) Rule 4(bis) (Prop. 5.2.8 C) Rule 5 (Prop. 5.2.9 C)

E1 ⇒M1, E2 ⇒M2 E1 ⇒M1, E2 ⇒M2 E1 ⇒M1, E2 ⇒M2

M1 ⇒ E2, M2 ⇒ E1 M1 ⇒ E2, M2 ⇒ E1 M1 ⇒ E2, M2 ⇒ E1

E ∧M1 ∧M2 ⇒M SomPi(S)⇒ (E ∧M1 ∧M2 ⇒M) E ∧M1 ∧M2 ⇒M
S ⇒ UpToNow(Ei) ∨UpToNow(Mi) S ⇒ UpToNow(Ei) ∨UpToNow(Mi) WithinF(Ei ∨Mi, TB)
E1 or M1 ∈ ST•−−, E2 or M2 ∈ ST−−• E1 or M1 ∈ ST•−−, E2 or M2 ∈ ST−−•

SomPi(S)⇒ (E ⇒M) SomPi(S)⇒ (E ⇒M) Lasts(E, TB)⇒WithinF(M, TB)

Table5.2.:Cir
ular
ompositionalinferen
erulesfortwomodules.
108



5.3. Generalization to More Than Two ModulesThus, let us denote by πN permutations of the set {1, . . . , N}. By πN (i)we mean the ith element of the permutation, for i ∈ {1, . . . , N}. Forexample if N = 3 and π3 = [3, 1, 2], then π3(1) = 3, π3(2) = 1 and
π3(3) = 2.Let us �rst 
onsider the extension of rule 1 of Proposition 5.1.1.Proposition 5.3.1 (Non-Cir
ular Rely/Guarantee Inferen
e Rule 1N). Ifthere exists a permutation πN su
h that:1. for all i ∈ {1, . . . , N}: Ei ⊑Mi2. for all i ∈ {1, . . . , N − 1}: E ⊓MπN (i) ⊑ EπN (i+1)3. E ⊓M1 ⊓ · · · ⊓MN ⊑M4. E ⊑MπN (1)then E ⊑MProof sket
h. Let us just provide a sket
h, sin
e the proof is easily derivablefrom that of Proposition 5.1.1. Assume that E holds, then MπN (1) by (4).Then, by su

essively applying (1) and (2) for i = πN (1), πN (2), . . . , πN (N),we get that all EπN (2), MπN (2), . . . , MπN (N) hold. Therefore, M holds by(3).The extension of Proposition 5.1.2 is very similar, the only di�eren
ebeing that we now have a fully 
ompositional rule. For brevity, we omitthe (obvious) proof.Proposition 5.3.2 (Non-Cir
ular Rely/Guarantee Inferen
e Rule 2N). Ifthere exists a permutation πN su
h that:1. for all i ∈ {1, . . . , N}: Ei ⊑Mi2. for all i ∈ {1, . . . , N − 1}: MπN (i) ⊑ EπN (i+1)3. E ⊓M1 ⊓ · · · ⊓MN ⊑M4. E ⊑ EπN (1)then E ⊑M 109



5. Compositional Inferen
e Rules and Methodology for TRIOCompleteness. Let us remark that the 
ompleteness results about the tworules of Propositions 5.1.1 and 5.1.2 
learly 
arry on to Propositions 5.3.1and 5.3.2, whi
h therefore de�ne 
omplete inferen
e rules. In fa
t, if weassume E ⊑ M , then both Propositions 5.3.1 and 5.3.2 de�ne a 
ompleterule if we 
hoose MπN (1) = M , EπN (1) = E, and all other Ei' s and Mi'sequal to ⊤.Summary. Table 5.3 summarizes the two above non-
ir
ular inferen
erules. Rule 1N (Prop. 5.3.1 C) Rule 2N (Prop. 5.3.2 C)
∀i ∈ {1, . . . , N} : (Ei ⇒Mi) ∀i ∈ {1, . . . , N} : (Ei ⇒Mi)

∀i ∈ {1, . . . , N − 1} : (E ∧MπN (i) ⇒ EπN (i+1)) ∀i ∈ {1, . . . , N − 1} : (MπN (i) ⇒ EπN (i+1))
E ∧M1 ∧ · · · ∧MN ⇒M E ∧M1 ∧ · · · ∧MN ⇒M

E ⇒MπN (1) E ⇒ EπN (1)

E ⇒M E ⇒MTable 5.3.: Non-
ir
ular 
ompositional inferen
e rules for N ≥ 2 modules.5.3.2. Cir
ular Inferen
e RulesLet us now generalize the 
ir
ular 
ompositional inferen
e rules of Se
tion5.2 to the 
ase of more than two modules. There are basi
ally two modi�-
ations to introdu
e in ea
h rule to generalize it; the underlying rationalefor these two 
hanges is 
ommon.The �rst 
hange is to the dis
harging formulas. Whereas in the twomodule 
ase ea
h module's assumption was usually dis
harged by meansof the other module's guarantee, with N > 2 modules it is simpler andmore natural to spe
ify that the 
onjun
tion of all the modules' guaranteesdis
harges the 
onjun
tion of all the modules' assumptions: this makesthe rules self-dis
harging, but simpler to state as we do not have to spe
ify
ompli
ated dis
harging relations. Clearly, variations are possible, but theymay render the statement of the rule more involved. A

ording to ourgeneral approa
h to 
ompositionality, we re
ommend the formulation ofsu
h variations to be driven by the parti
ular systems being modeled, ratherthan a priori for the sake of exploring di�erent rules.The se
ond 
hange is related to the �rst one. In fa
t, if the dis
hargingof the assumptions depends on all the guarantees being true, we have tomodify the initialization 
ondition so that one 
an infer from S being true110



5.3. Generalization to More Than Two Modulesthat all the guarantees are also true at the same time. In pra
ti
e, this 
anbe usually implemented by requiring that the guarantee or the assumptionof ea
h module holds when S holds.In the remainder of this se
tion we present generalizations of the inferen
erules of Se
tion 5.2 along these lines. We provide proofs for just a few of thepropositions, the other proofs being routine. In the remainder, we denotethe �nite set {1, . . . , N} as IN .Cir
ular inferen
e rules for the time progression operator.Proposition 5.3.3 (Rely/Guarantee Cir
ular Inferen
e Rule 1N). If:1. for all i ∈ IN : Ei ։Mi2. ∧i∈IN
Mi ⇒

∧
i∈IN

Ei3. ∧i∈IN
Mi ⇒M4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for all i ∈ INthen SomPi(S)⇒ (E ։M).Proof. Let t be the 
urrent instant, and let us assume that SomPi(S) holdsat t; thus, let t′ ≤ t be (any) instant at whi
h S held. We have to showthat E ։M holds at t.For any i ∈ IN , either UpToNow(Ei) or UpToNow(Mi). In parti
ular, let

I ⊆ IN the set of modules' indexes for whi
h UpToNow(Ei) holds. Then,from (1) we 
an infer that also UpToNow(Mi) for all i ∈ I. Therefore, allin all we have that UpToNow
(∧

i∈IN
Mi

) at t′. From (2) this implies that
UpToNow

(∧
i∈IN

Ei

) also holds at t′. Therefore, we exploit (1) to dedu
ethat ∧i∈IN
Mi and NowOn

(∧
i∈IN

Mi

) both hold at t′ as well.This provides the usual �temporal indu
tive step� as in all the otherproofs for two modules. Therefore, we omit the remainder of the proofwhi
h amounts to the usual �non a

umulation� argument, whi
h is unaf-fe
ted by the fa
t that we are now dealing with N ≥ 2 modules.Sin
e we now introdu
ed self-dis
harging in the rule of Proposition 5.3.3,the only di�eren
e between Proposition 5.3.3 and the following is thatwe now have a non-fully 
ompositional rule. Also noti
e that hypothesis(4) below 
ould a
tually be relaxed to the same as in Proposition 5.3.3;111



5. Compositional Inferen
e Rules and Methodology for TRIOhowever, we leave as it is to 
onform with the original rule 2 of Proposition5.2.2.Proposition 5.3.4 (Rely/Guarantee Cir
ular Inferen
e Rule 2N). If:1. for all i ∈ IN : Ei ։Mi2. E ∧∧i∈IN
Mi ⇒

∧
i∈IN

Ei3. ∧i∈IN
Mi ⇒M4. S ⇒ UpToNow

(∧
i∈IN

Ei

)
∨UpToNow

(∧
i∈IN

Mi

)then SomPi(S)⇒ (E ։M).The following rules 1N(bis), 1N(ter), and 2N(bis) are all straightforwardextensions, so we introdu
e them without any 
omment or proof.Proposition 5.3.5 (Rely/Guarantee Cir
ular Inferen
e Rule 1N(bis)). If:1. for all i ∈ IN : SomPe(S)⇒ (Ei ։Mi)2. SomPe(S)⇒ (
∧

i∈IN
Mi ⇒

∧
i∈IN

Ei)3. SomPe(S)⇒ (
∧

i∈IN
Mi ⇒M)4. S ⇒ NowOn(Ei) ∨NowOn(Mi), for all i ∈ INthen SomPe(S)⇒ (E ։M).Proposition 5.3.6 (Rely/Guarantee Cir
ular Inferen
e Rule 2N(bis)). If:1. for all i ∈ IN : SomPe(S) ∧AlwPe(E)⇒ (Ei ։Mi)2. SomPe(S) ∧AlwPe(E)⇒ (E ∧∧i∈IN

Mi ⇒
∧

i∈IN
Ei)3. SomPe(S) ∧AlwPe(E)⇒ (

∧
i∈IN

Mi ⇒M)4. S ⇒ NowOn
(∧

i∈IN
Ei

)
∨NowOn

(∧
i∈IN

Mi

)then SomPe(S) ∧AlwPe(E)⇒ (E ։M).Proposition 5.3.7 (Rely/Guarantee Cir
ular Inferen
e Rule 1N(ter)). If:1. for all i ∈ IN : Ei ։Mi112



5.3. Generalization to More Than Two Modules2. ∧i∈IN
Mi ⇒

∧
i∈IN

Ei3. E ∧∧i∈IN
Mi ։M4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for all i ∈ INthen SomPi(S)⇒ (E ։M).A stronger time progression operator. The extension of rule 3 of Propo-sition 5.2.6 is also straightforward, and gives a rule whi
h is very similar tothat introdu
ed in [FRMM07℄.Proposition 5.3.8 (Rely/Guarantee Cir
ular Inferen
e Rule 3N). If:1. for all i ∈ IN : Ei ≫Mi2. ∧i∈IN

Mi ⇒
∧

i∈IN
Ei3. ∧i∈IN

Mi ⇒M4. S ⇒ AlwPe(Ei) ∨AlwPe(Mi), for all i ∈ INthen SomPi(S)⇒ (E ≫M).Impli
ation as a 
ompositional operator. The 
ir
ular rule 4 of Propo-sition 5.2.7 requires some more work to be generalized. In this 
ase, infa
t, the soundness of the rule relies on a mutual interplay between the twomodules, where one is required to have an assumption (or guarantee) be-having as a left-
ontinuous state, and the other module to have it behavingas a right-
ontinuous state.The idea to generalize this is thus to implement the same interplay be-tween two sets of all modules in the system. More pre
isely, we 
an assumethat the set of all modules IN 
an be partitioned into two non empty sub-sets L,R ⊂ IN su
h that any module i ∈ L (resp. i ∈ R) has its assumption
Ei or its guarantee Mi whi
h is a left-
ontinuous (resp. right-
ontinuous)state. Then, we require that the guarantees of the modules in L 
an dis-
harge all the assumptions of the modules in R, and vi
e versa. All in all,we have the following inferen
e rule.Proposition 5.3.9 (Rely/Guarantee Cir
ular Inferen
e Rule 4N). If, fortwo non empty subsets L,R ⊂ IN that partition IN :1. for all i ∈ IN : Ei ⇒Mi 113



5. Compositional Inferen
e Rules and Methodology for TRIO2. a) ∧i∈LMi ⇒
∧

i∈REib) ∧i∈RMi ⇒
∧

i∈LEi3. E ∧∧i∈IN
Mi ⇒M4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for all i ∈ IN5. Ei ∈ ST•−− or Mi ∈ ST•−−, for all i ∈ R6. Ei ∈ ST−−• or Mi ∈ ST−−•, for all i ∈ Lthen SomPi(S)⇒ (E ⇒M).Proof for dense time domains. Let t be the 
urrent instant, and let us as-sume that SomPi(S) holds at t; thus, let t′ ≤ t be (any) instant at whi
h

S held. We have to show that E ։M holds at t.As usual, we fo
us on showing one �temporal indu
tive step�, the non a
-
umulation argument being all similar to that of the previous proofs. Morepre
isely, let us show that ∧i∈IN
(Ei ∧Mi) and NowOn

(∧
i∈IN

(Ei ∧Mi)
)hold at t′.First of all, let us show that ∧i∈L UpToNow(Mi). In fa
t, let i be anyindex i ∈ L; from (4) it is either UpToNow(Ei) or UpToNow(Mi) at t′.But, if UpToNow(Ei) for some i, then also UpToNow(Mi) from (1).Next, from ∧i∈L UpToNow(Mi) and (2a) it follows that ∧i∈R UpToNow(

Ei). Then, we 
onsider (1) to dedu
e that∧i∈R UpToNow(Mi). Thus, from(2b), also ∧
i∈L UpToNow(Ei). So, all in all we have that∧

i∈IN
UpToNow(Ei ∧Mi) holds at t′.For all i ∈ L, (6) lets us infer that also Ei ∨Mi at t′. Moreover, from (1)we 
an a
tually state that ∧i∈LMi at t′, and from (2a) it also follows that∧

i∈REi at t′.But then, for all i ∈ R, (5) � 
ombined with (1) � lets us infer thatalso NowOn(Mi) at t′. Thus, also ∧i∈L NowOn(Ei) from (2b). (1) thenimplies that also ∧i∈L NowOn(Mi), and (2a) that ∧i∈R NowOn(Ei).All in all, we have shown that Ei∧Mi and NowOn(Ei ∧Mi) both hold at
t′, for all i ∈ IN . The remainder of the proof is as for the other propositions.Proposition 5.3.10 (Rely/Guarantee Cir
ular Inferen
e Rule 4N(bis)).If, for two non empty subsets L,R ⊂ IN that partition IN :1. for all i ∈ IN : Ei ⇒Mi114



5.3. Generalization to More Than Two Modules2. a) ∧i∈LMi ⇒
∧

i∈REib) ∧i∈RMi ⇒
∧

i∈LEi3. SomPi(S)⇒ (E ∧∧i∈IN
Mi ⇒M)4. S ⇒ UpToNow(Ei) ∨UpToNow(Mi), for all i ∈ IN5. Ei ∈ ST•−− or Mi ∈ ST•−−, for all i ∈ R6. Ei ∈ ST−−• or Mi ∈ ST−−•, for all i ∈ Lthen SomPi(S)⇒ (E ⇒M).A 
ir
ular inferen
e rules without 
ompositional operator. The exten-sion of rule 5 of Proposition 5.2.9 is along the same lines of those we havejust dis
ussed. Moreover, as it was the 
ase for other rules, the initializa-tion formula 
ould be made less restri
tive at the pri
e of 
ompli
ating thedis
harging formulas. Indeed, in the version we present, the dis
hargingformulas are not needed at all in the soundness proof.Proposition 5.3.11 (Rely/Guarantee Cir
ular Inferen
e Rule 5N). If, forsome �xed duration TB > 0:1. for all i ∈ IN : Ei ⇒Mi2. E ∧∧i∈IN

Mi ⇒M3. WithinF
(∧

i∈IN
(Ei ∨Mi),TB

)then Lasts(E,TB)⇒WithinF(M,TB).Proof. Let t be a generi
 time instant at whi
h Lasts(E,TB) holds, andprove that WithinF(M,TB).From (3), let us assume that WithinF
(∧

i∈IN
Mi,TB

) at t. This iswithout loss of generality: in fa
t, if WithinF(Ei,TB) for some i ∈ IN , then
WithinF(Mi,TB) from (1). Thus, there exists a t′ su
h that t < t′ < t+TBand ∧i∈IN

Mi holds at t′. Moreover, sin
e t < t′ < t+TB and Lasts(E,TB)at t, then E also holds at t′. But then, M holds at t′ by (3). Sin
e
t < t′ < TB, this implies that WithinF(M,TB) at t.Noti
e the following: the above rule works for any variation of the Lastsand WithinF operators, provided the two variations 
oin
ide. In otherwords, the above rule works for any 
hoi
e of Lastslr and WithinFlr opera-tor, where l, r ∈ {e, i}, provided l and r are the same in the two operators.115



5.CompositionalInferen
eRulesandMethodologyforTRIO

Rule 1N (Prop. 5.3.3 I) Rule 1N(bis) (Prop. 5.3.5 I) Rule 1N(ter) (Prop. 5.3.7 C)
∀i ∈ IN : (Ei ։ Mi) SomPe(S) ⇒ ∀i ∈ IN : (Ei ։ Mi) ∀i ∈ IN : (Ei ։ Mi)

V

i∈IN
Mi ⇒

V

i∈IN
Ei SomPe(S) ⇒ (

V

i∈IN
Mi ⇒

V

i∈IN
Ei)

V

i∈IN
Mi ⇒

V

i∈IN
Ei

V

i∈IN
Mi ⇒ M SomPe(S) ⇒ (

V

i∈IN
Mi ⇒ M) E ∧

V

i∈IN
Mi ։ M

S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi)) S ⇒ ∀i ∈ IN : (NowOn(Ei) ∨ NowOn(Mi)) S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi))
SomPi(S) ⇒ (E ։ M) SomPe(S) ⇒ (E ։ M) SomPi(S) ⇒ (E ։ M)Rule 2N (Prop. 5.3.4 I) Rule 2N(bis) (Prop. 5.3.6 C) Rule 3N (Prop. 5.3.8 I)
∀i ∈ IN : (Ei ։ Mi) SomPe(S) ∧ AlwPe(E) ⇒ ∀i ∈ IN : (Ei ։ Mi) ∀i ∈ IN : (Ei ≫ Mi)

E ∧
V

i∈IN
Mi ⇒

V

i∈IN
Ei SomPe(S) ∧ AlwPe(E) ⇒ (E ∧

V

i∈IN
Mi ⇒

V

i∈IN
Ei)

V

i∈IN
Mi ⇒

V

i∈IN
Ei

V

i∈IN
Mi ⇒ M SomPe(S) ∧ AlwPe(E) ⇒ (

V

i∈IN
Mi ⇒ M)

V

i∈IN
Mi ⇒ M

S ⇒ UpToNow
“

V

i∈IN
Ei

”

∨ UpToNow
“

V

i∈IN
Mi

”

S ⇒ NowOn
“

V

i∈IN
Ei

”

∨ NowOn
“

V

i∈IN
Mi

”

S ⇒ ∀i ∈ IN : (AlwPe(Ei) ∨ AlwPe(Mi))

SomPi(S) ⇒ (E ։ M) SomPe(S) ∧ AlwPe(E) ⇒ (E ։ M) SomPi(S) ⇒ (E ≫ M)Rule 4N (Prop. 5.3.9 I) Rule 4N(bis) (Prop. 5.3.10 C) Rule 5N (Prop. 5.3.11 C)
∀i ∈ IN : (Ei ⇒ Mi) ∀i ∈ IN : (Ei ⇒ Mi) ∀i ∈ IN : (Ei ⇒ Mi)

V

i∈L
Mi ⇒

V

i∈R
Ei, V

i∈R
Mi ⇒

V

i∈L
Ei

V

i∈L
Mi ⇒

V

i∈R
Ei, V

i∈R
Mi ⇒

V

i∈L
Ei

V

i∈IN
Mi ⇒

V

i∈IN
Ei

E ∧
V

i∈IN
Mi ⇒ M SomPi(S) ⇒ (E ∧

V

i∈IN
Mi ⇒ M) E ∧

V

i∈IN
Mi ⇒ M

S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi)) S ⇒ ∀i ∈ IN : (UpToNow(Ei) ∨ UpToNow(Mi)) WithinF
“

V

i∈IN
(Ei ∨ Mi), TB

”

∀i ∈ R : Ei or Mi ∈ ST•−−, ∀i ∈ L : Ei or Mi ∈ ST−−• ∀i ∈ R : Ei or Mi ∈ ST•−−, ∀i ∈ L : Ei or Mi ∈ ST−−•

SomPi(S) ⇒ (E ⇒ M) SomPi(S) ⇒ (E ⇒ M) Lasts(E, TB) ⇒ WithinF(M, TB)

Table5.4.:Cir
ular
ompositionalinferen
erulesfor
N
≥

2modules.
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5.4. Compositional MethodologyCompleteness. For the sake of brevity, we do not repeat the (in)
omplete-ness analysis performed in Se
tion 5.2.3 on the generalized rules for N ≥ 2modules. Nonetheless, it is not di�
ult to realize that the very same results
an be lifted from the two module to the N module 
ase. In fa
t, �rstly anin
ompleteness proof for a two module system implies the in
ompletenessof the generalization of the same rule (i.e., of the rule whi
h redu
es to thetwo module one if we 
hoose N = 2). Se
ondly, the 
ompleteness proofs
an be extended to the N module 
ase by suitably instantiating all the Ei'sand Mi's for i > 2 with the same values of E2,M2 in the two module 
ase.Summary. Table 5.4 summarizes the 
ir
ular inferen
e rules for N mod-ules.5.4. Compositional MethodologyThis se
tion presents a 
ompositional methodology that exploits the previ-ously introdu
ed 
ompositional inferen
e rules in the veri�
ation of a largemodular system.Let us start by sket
hing the overall rationale behind the methodology.The spe
i�
ation of a large system is stru
tured into 
lasses. The funda-mental behavior of the items of ea
h 
lass is 
aptured by axiom formulas.The derived behavior of ea
h 
lass, whi
h is to be veri�ed, 
an be expressedby theorem formulas. In general, a

ording to the rely/guarantee paradigm,we may need to relate the derived behavior of a 
lass with 
ertain proper-ties of the (external) environment of that 
lass. This 
an be a
hieved inessentially two ways. If the assumptions on the environment are tempo-rally 
losed formulas (i.e., they express time-invariant properties), one mayuse TRIO assumption formulas to represent them. If, on the other hand,one has to express assumptions on the environment that are not invariantbut temporally depend on the derived behavior they guarantee, we exploitone of the 
ompositional operators presented for the rules of Se
tion 5.3.6Then, the spe
i�
ation is 
ompleted by 
omposing some 
lasses together,as modules of the overall (global) system.The veri�
ation burden for the global system 
onsists essentially of twotasks. First, the assumptions that have been introdu
ed a

ording to therely/guarantee paradigm have to be proved. For the sake of methodolog-i
al distin
tion, we will generally use � whenever the obje
t is an as-6Noti
e that this operator 
an be ordinary impli
ation. 117



5. Compositional Inferen
e Rules and Methodology for TRIOsumption (rather than a theorem) � the verb �dis
harge� to mean �prove�(e.g., [Sha98℄). Assumptions expressed as 
losed TRIO formulas are dis-
harged by means of formulas of other 
lasses. When doing this, it isimportant to avoid 
ir
ularities, in order to guarantee the soundness ofthe whole dedu
tive pro
ess. Conversely, assumptions expressed by meansof the 
ompositional operator are dis
harged using the 
orresponding adho
 inferen
e rule for that operator. If the rule is 
ir
ular, it allows theappropriate handling of 
ir
ularities. Thus, dis
harging these assumptionsamounts to proving the truth of the premises of the inferen
e rule, whi
h
an still be done by means of ordinary (temporal) dedu
tive te
hniques.After dis
harging all the assumptions, the se
ond stage of the global veri�-
ation pro
ess 
onsists in proving the theorems from axioms, assumptions,and already proved theorems. This is done �rst for theorems that are lo
al(i.e., they 
an be proved within a single 
lass), and then for global the-orems (i.e., involving properties emerging from the 
ombined behavior ofsome modules). This meets the overall veri�
ation goal.5.4.1. Rely/Guarantee Spe
i�
ationsLet us 
onsider how to write the spe
i�
ation of a TRIO 
lass C. The basi
behavior of C is de�ned in terms of axioms over both visible and non-visibleitems, whi
h rely on no assumptions, sin
e they just state the very basi
behavior of the 
lass. Then, we state a number of derived properties of the
lass as theorems, that are going to be proved in the veri�
ation pro
ess.Sin
e in general a 
lass des
ribes an open 
omponent, it often happensthat the truth of some theorem depends on assumptions about how thea
tual 
lass environment behaves. In other words, some properties holdonly if the modules that will 
onstitute the external environment of the
lass satisfy some requirements. Therefore, a

ording to the rely/guaranteeparadigm, we make these assumptions expli
it in writing the spe
i�
ationof a TRIO 
lass, whi
h be
omes therefore a rely/guarantee spe
i�
ation.Now, we distinguish between two di�erent kinds of assumptions that onemay need to express. The �rst (and simplest) 
ase is that of assumptionswhi
h 
an be expressed as temporally 
losed formulas, that is formulaswhose truth is invariant over the whole temporal axis. In su
h 
ases, theassumptions 
an be stated using the TRIO language 
onstru
t of the as-sumption formula.The other 
ase, namely when the assumption is not expressed as a tem-porally 
losed formula, will be handled by using a 
ompositional operator,118



5.4. Compositional Methodologydis
ussed in Se
tions 5.1�5.2.Let us now introdu
e some notation that will help us des
ribe theseideas more pre
isely. Let AXC , ASC and T HC denote the disjoint sets ofaxioms, assumptions and theorems of 
lass C, respe
tively, and let FC =
AXC ∪ ASC ∪ T HC be the set of all formulas of C. Furthermore, forea
h set of formulas FC , we de�ne F⊻

C ⊆ FC as the set of visible formulasin FC , i.e., the formulas predi
ating over visible items only (see Se
tion2.2.3). Therefore, the 
omplete spe
i�
ation of C is represented by theformula AXC∪ASC ⊢ T HC , whi
h expresses the fa
t that the truth of thetheorems of 
lass C follows dedu
tively from its axioms and assumptions.To formalize rely/guarantee spe
i�
ations where the assumption is not atemporally 
losed formula, one 
hooses a parti
ular 
ompositional operatoramong those introdu
ed above, together with the 
orresponding inferen
erule. The 
ompositional operator 
an simply be impli
ation between two-dependent formulas, su
h as for the 
ir
ular 
ompositional inferen
e rule4N of Proposition 5.3.9 or for the non-
ir
ular inferen
e rules of Se
tion5.1, or 
an have a more 
ompli
ated semanti
s.In the following se
tion we show how to exploit modular rely/guaranteespe
i�
ations � written along the lines we have laid in this se
tion � inorder to verify a 
omposite systems built out of instan
es of these modules.5.4.2. Modules CompositionThis se
tion 
ompletes the des
ription of the 
ompositional framework byformalizing the 
omposition of TRIO 
lasses whi
h in
lude both assumptionformulas and rely/guarantee formulas written using the time progressionoperator. In a nutshell, we des
ribe a method to prove that the assumptionsof ea
h 
lass are met by the 
lasses that 
onstitute its a
tual environment.This is done by usual dedu
tive te
hniques for temporally 
losed assump-tion formulas, while resorting to the inferen
e rules of Tables 5.3 or 5.4 tohandle rely/guarantee formulas. After dis
harging all the assumptions, itis possible to pro
eed on proving the theorems that are global, that is areabout the 
ombined behavior of the 
omposed 
lasses.Overall Veri�
ation Pro
essLet us 
onsider n ≥ 2 TRIO 
lasses C1, . . . , Cn. For all i = 1, . . . , n, 
lass
Ci has a rely/guarantee spe
i�
ation expressed syntheti
ally by the formula
AX i ∪ASi ⊢ T Hi. Let Cglob be a 
lass that en
apsulates one instan
e for119



5. Compositional Inferen
e Rules and Methodology for TRIOea
h of the n 
lasses Ci as modules of Cglob. The 
omposition of the nmodules is des
ribed by the logi
al 
onjun
tion of all the lo
al spe
i�
ationformulas. Therefore TRIO modules are 
ompositional, in that the seman-ti
s of the 
omposition of 
lasses is given by the logi
al 
onjun
tion of thesemanti
s of the 
lasses whi
h are put together. In general, 
lass Cglob addsits own axioms, assumptions and theorems, to those of its en
losed modules(this also allows for the re
ursive appli
ation of the method). Hen
e, Cglobis des
ribed by the formula AX glob ∪ ASglob ∪
⋃

j=1,...,nFj ⊢ T Hglob.Our overall veri�
ation goal 
an be detailed as follows.
• Verify ea
h lo
al (i.e., within ea
h 
lass Ci) spe
i�
ation.
• Dis
harge the lo
al assumptions, that is prove that the assumptionsof ea
h 
lass are satis�ed by its a
tual environment (i.e., the other
lasses in the system).
• Verify the global spe
i�
ation, that is prove the global theorems fromthe lo
al visible formulas, global axioms and assumptions.It is simple to realize that the basi
 problem involved in the dis
hargingof assumptions is that su
h reasoning may involve a 
ir
ularity betweenassumptions and other formulas of the modules. As 
ir
ularity preventsthe veri�
ation pro
ess from being sound, these invalid dedu
tions must beruled out.To this end, we introdu
e two �
ir
ularity-breaking� me
hanisms, de-pending on what kind of assumptions we are 
onsidering. For assump-tions written as temporally 
losed TRIO formulas, we require an expli
itbreaking of 
ir
ularity: the veri�er has to organize the dis
harging of theseassumptions in su
h a way that 
ir
ularity is simply avoided. Conversely,for assumptions appearing in rely/guarantee spe
i�
ations using a 
ompo-sitional operator, we 
an exploit the 
orresponding inferen
e rule for thatoperator. If that is a 
ir
ular inferen
e rule, it performs an impli
it 
ir
u-larity breaking, thus ensuring that 
ir
ularities arising in the hypotheses ofthe inferen
e rule do not 
ompromise the soundness of the �nal dedu
tion.Otherwise, if it is a non-
ir
ular rule, the absen
e of 
ir
ularity is expli
itlyrequired in the premises of the rules, so applying it also guarantees a sounddedu
tion. All this must be done while respe
ting the requirements on thevisibility of formulas.120



5.4. Compositional MethodologyVeri�
ation of the Composite Spe
i�
ationIn general, one 
an 
hoose to any of the 
ompositional operators we haveintrodu
ed above to write lo
al rely/guarantee spe
i�
ations. Let us denoteby ≻ the 
hosen operator. Then, ea
h of the n 
omponent 
lasses mayhave one or more rely/guarantee formulas of the form E ≻ M among itstheorems. For ea
h 
lass Cj , j = 1, . . . , n, let T Hrg
j ⊆ T Hj be the set oftheorems we 
onsider in the form E ≻M of 
lass Cj , i.e., for ea
h theoremformula F ∈ T Hj , F ∈ T Hrg

j if F 
an be written as F ≡ E ≻M for someformulas E and M . For simpli
ity, we do not address expli
itly the 
ase ofspe
i�
ations where di�erent 
ompositional operators are used for di�erentformulas. However, these 
ases 
an be redu
ed to su

essive appli
ationsof our framework, one for ea
h 
ompositional operator, so our omission iswithout loss of generality.Noti
e that, in prin
iple, it may be that any formula 
an be writtenusing the ≻ operator. For instan
e, if ≻ is the time progression operator
։ introdu
ed in Se
tion 5.2, any temporally 
losed formula G is equivalentto Alw(true։ G), so the 
hoi
e of whi
h formulas to 
onsider in T Hrg

j ispartially up to the spe
i�er.7Let us de�ne m to be the number of rely/guarantee formulas over all
lasses: m =
∑

j=1,...,n |T H
rg
j |. Moreover, T Hnrg

j is de�ned as the 
om-plement set T Hj \ T Hrg
j for all j = 1, . . . , n. The 
omposite 
lass Cglobalso has its own rely/guarantee formula Eglob ≻Mglob among its theorems

T Hglob. It may be that the 
ompositional operator used for the globalrely/guarantee formula is di�erent than that used for the lo
al rely/guar-antee formulas. Again, this is only a matter of notation in expressing thefollowing veri�
ation method, but it 
an be done along the very same lines.Next, let us de�ne what is a dependen
y between two formulas. Letus 
onsider a formal proof π: it 
onsists of a �nite sequen
e of formulas,together with their justi�
ations (see, for example, [Men97℄). We say thata formula χ dire
tly depends upon another formula φ in the proof π, andwrite φ  π χ, if and only if φ appears before χ in the proof and χ is theresult of the appli
ation of an inferen
e rule whi
h uses φ. The transitive
losure + (�depends upon�) of the  relation is de�ned as usual.The notion of dependen
y 
an be extended to a set of proofs Π: for anytwo formulas φ, χ we say that φ + Π χ if and only if there exists a proof7Moreover, for the sake of simpli
ity, we do not address expli
itly more 
onvoluted
ases where rely/guarantee spe
i�
ations in the form E ≻ M appear as subformulasof larger formulas. 121



5. Compositional Inferen
e Rules and Methodology for TRIO
π ∈ Π su
h that φ + π χ. Note that the we will require the + Π relationto be irre�exive for the set Π of formal proofs 
onstituting the veri�
ationpro
ess; this requirement will be expressed a posteriori.Finally, let us illustrate the steps along whi
h the veri�
ation of the
omposite spe
i�
ation 
an pro
eed.1. Verify ea
h lo
al spe
i�
ation, that is prove that for all k = 1, . . . , n:

AX k ∪ ASk ⊢ T HkFrom our perspe
tive, this step is 
onsidered to be atomi
, but obvi-ously the 
ompositional approa
h 
an be applied re
ursively to ea
hmodule.2. Show that the lo
al assumptions 
an be dis
harged by means of globalformulas, visible formulas of other 
lasses, and lo
al axioms and theo-rems.8 Formally, this 
orresponds to proving that for all k = 1, . . . , n:
AX k ∪ T Hk ∪ Fglob ∪

⋃

j=1,...,n
j 6=k

F⊻

j ⊢ ASk3. Prove that the global non-rely/guarantee theorems (i.e., not involvingthe ≻ operator) follow from the lo
al visible formulas and from theglobal axioms, assumptions and other (i.e., rely/guarantee) theorems.In formulas, this means proving:
AX glob ∪ ASglob ∪ T Hrg

glob ∪
⋃

j=1,...,n

F⊻

j ⊢ T H
nrg
glob4. Show that the initialization 
ondition (see the generi
 rule of Table3.1) 
an be proved. In order to prove the initialization 
ondition,we allow one to use global formulas and lo
al visible formulas. Ifwe denote by init the initialization 
ondition, this 
orresponds toproving that:

Fglob ∪
⋃

i=1,...,n

F⊻

i ⊢ init8Of 
ourse, if an assumption 
an be proved just from lo
al axioms and theorems itshould be a theorem, but it might happen that lo
al formulas 
ontribute, togetherwith external ones, to the proof of an assumption.122



5.4. Compositional Methodology5. Show that ea
h lo
al rely/guarantee formula has assumptions that
an be dis
harged by means of global and lo
al formulas, or by theglobal assumption, or by means of guarantees of other 
lasses. This
orresponds to proving the assumption dis
harging formula of Table3.1. Formally, prove that for all k = 1, . . . ,m: for all j = 1, . . . , n: if
(Ek ≻Mk) ∈ T Hrg

j then:
Fglob ∪ Fj ∪

⋃

i=1,...,n

F⊻

i ⊢ Idsc
k ⇒


Eglob ∧

∧

i=1,...,m

Mi ⇒ Ek


6. Show that the global guarantee follows from the lo
al guarantees ofall modules, from the global assumption, and from global formulasand lo
al visible formulas of any 
lass. This 
orresponds to the globalimplementation formula of Table 3.1, i.e., prove that:

Fglob ∪
⋃

j=1,...,n

F⊻

j ⊢ I imp ⇒


E ∧

∧

j=1,...,m

Mj ⇒Mglob


7. Be sure that in all the above proofs (i.e., steps 1 to 6) there are no
ir
ular dependen
ies among any two 
losed formulas. This is theexpli
it 
ir
ularity-breaking requirement: formally, it 
orresponds to
he
king that in the set Π of all the above proofs, for all formulas

φ ∈ ⋃k=1,...,n(ASk ∪ T Hk) ∪ T Hglob:
¬(φ + Π φ)i.e., the relation + Π is irre�exive.From the appli
ation of the above steps, thanks to the inferen
e rulefor the 
hosen 
ompositional operator and the absen
e of 
ir
ularities, theglobal veri�
ation of the 
omposite spe
i�
ation is soundly 
ompleted.In fa
t, steps 1�3 a
hieve the veri�
ation of the theorems in T Hnrg

glob:sin
e + Π is irre�exive, it indu
es a partial ordering on 
losed formulas.Thus, any global ordering of formulas 
ompatible with the partial orderingde�nes a 
hain of proofs whi
h all are sound, sin
e they rely on ordinary(sound) inferen
e rules and have no 
ir
ular dependen
ies.Then, steps 4�6 apply the inferen
e rule for the 
hosen 
ompositionaloperator (presented above in the general form of Table 3.1) by dis
harging123



5. Compositional Inferen
e Rules and Methodology for TRIOits hypotheses by means of other formulas; sin
e we introdu
ed sound in-feren
e rule for the various 
ompositional operators, the theorem in T Hrg
globis soundly proved as well, 
ompleting the veri�
ation of the global 
lass.
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6. Illustrative Examples ofCompositional ProofsThis 
hapter demonstrates the appli
ation of the general �lightweight� ap-proa
h to 
ompositionality presented in the previous se
tions. The 
ompo-sitional framework is applied to three examples.The �rst is a very simple two-module system, whose purpose is to intro-du
e the reader to the 
ompositional te
hniques as smoothly as possible,through a terse example. It is dis
ussed in Se
tion 6.1.The se
ond is a real-time version of the dining philosophers problem;the basi
s of the problem have already been introdu
ed in Se
tion 2.3:the following Se
tion 6.2 
ompletes the example introdu
ing 
ompositionalte
hniques and methods.The third illustrative example 
onsists in a real-time formalization of (apart of) a peer-to-peer 
ommuni
ation proto
ol. It is presented in Se
tion6.3.The purpose of these examples is mainly that of being illustrations ofhow the te
hniques and methods, introdu
ed in the previous 
hapters, 
anbe applied. Obviously, they are not enough to assess the feasibility of thosemethods on pra
ti
al industrial-strength systems. In fa
t, in order to allowpra
titioners to use them pro�
iently, other, formidable, pra
ti
al problemsshould be ta
kled, su
h as how to de
ompose a system into modules, how tospe
ify formally a large real-time system, and to what extent the approa
h
an be automated. While leaving these important problems to future work,let us fo
us on providing some illustrative insights through the followingexamples.6.1. A Simple ExampleLet us 
onsider a very simple module that inputs a Boolean signal andoutputs another Boolean signal whi
h �e
hoes� the input. The example issimilar to that given in [AL95℄, and it is also presented, in a di�erent form,in [Fur03b℄. 125



6. Illustrative Examples of Compositional ProofsThe 
lass e
hoer. Formally, we introdu
e a 
lass e
hoer to model themodule. The 
lass en
apsulates two time-dependent predi
ates in and outthat hold, respe
tively, whenever the input and output signals are �high�.Then, we des
ribe the behavior of the 
lass through axioms; in other wordswe formalize the behavior of the Boolean signals as des
ribed above. Let usassume, for instan
e, that the timed behavior of the module is the following:
out rea
ts to the input in be
oming true by holding for some positive timespan of length λ, where λ is a positive �xed 
onstant. Note that we are
onsidering this behavior as given (for instan
e by those who built, or willbuild, a realization of the module); therefore it is a primitive des
riptionthat we 
apture through axioms. Using another kind of formula would beinappropriate in this 
ase, a

ording to this s
enario. Then, the axiom thatformalizes the given behavior is the following:Axiom 11 (e
hoer.e
ho). in⇒ Lastsie(out, λ)Noti
e that, in our 
ase, we have simply AX echoer = {e
ho}.A system of two e
hoers. Now, let us build a 
omposite system made oftwo modules of 
lass e
hoer. The input and output signals are 
onne
tedso that the out item of the �rst module is 
onne
ted (dire
tly, that iswithout delays) to the in item of the se
ond module, and 
onversely the
out item of the se
ond module is 
onne
ted to the in item of the �rstmodule. The resulting system is pi
tured in Figure 6.1.

in

inout

out

echoer2echoer1

sFigure 6.1.: A system of two e
hoers.As it 
an be seen in the pi
ture, besides the items of the two modules,the global system also has a start event s. It holds whenever the system isstarted by �for
ing� a high output signal of length λ in module 1. Formally,it is 
hara
terized by the following global axiom.126



6.1. A Simple ExampleAxiom 12 (start). s⇒ Lastedie(echoer1.out, λ)This 
ompletes the set of global axioms, so that AX glob = {start}.We 
omplete the des
ription by introdu
ing a requirement of the globalsystem, that we would like to prove from its 
omponents. It states that,if the system is �started� (by setting s to true), then from that momenton both output signals out stay true inde�nitely in the future. Sin
e thisis a putative property, and it is the result of the global fun
tioning of thesystem, we introdu
e it as a global theorem.Theorem 13 (req). s⇒ AlwF(echoer1.out ∧ echoer2.out)In the remainder of this se
tion, we are going to sket
h the proof of thisrequirement through our 
ompositional method.Rely/guarantee spe
i�
ations. We 
hoose the inferen
e rule of Proposi-tion 5.2.1 to 
arry out the veri�
ation. More pre
isely, we set the globalassumption and guarantee to E = true, and M = echoer1.out ∧ echoer2,and the predi
ate S to be the event s. The �rst 
hoi
e is reasonable asthe global system is 
losed, and thus we need no global assumption; these
ond 
hoi
e is instead suitable for our needs, as it is simple to real-ize that, from the 
on
lusion of the inferen
e rule SomPi(s) ⇒ (true ։
echoer1.out∧ echoer2.out), it is straightforward to infer the truth of the-orem req.Then, we have to set-up lo
al rely/guarantee spe
i�
ations a

ording toProposition 5.2.1. In other words, we have to write lo
al spe
i�
ations interms of the ։ operator. Looking at the lo
al axioms, we noti
e that thebasi
 behavior of the modules entails that out rea
ts to in be
oming true bystaying true �for some time�. Therefore, a derived behavior may be indeed
aptured by the ։ operator, as follows. Let us pi
k Ei = echoeri.in and
Mi = echoeri.out, for i = 1, 2. Then, we 
an 
onvin
e ourselves that thefollowing theorem is indeed provable within the e
hoer 
lass.Theorem 14 (e
hoer.rg). in։ outThis 
ompletes our lo
al spe
i�
ations; noti
e that this means that
T Hechoer = {rg} and ASechoer = ∅.Finally, we set T Hglob = T Hnrg

glob ∪T H
rg
glob = {req}∪ {rg_glob}, wheretheorem rg_glob 
oin
ides with the 
on
lusion of the 
hosen inferen
erule, and it is therefore as follows.Theorem 15 (rg_glob). SomPi(s)⇒ (true։ echoer1.out∧echoer2.out)127



6. Illustrative Examples of Compositional ProofsVeri�
ation. Finally, we verify the system through the steps of Se
tion5.4.1. Step 1 
orresponds to proving that rg is indeed a theorem of 
lasse
hoer, that is it follows from axiom e
ho. We do not dis
uss thissimple proof, fo
using on the overall pi
ture.2. Step 2 is empty, sin
e we have no lo
al assumption formulas to prove.3. Step 3 
onsists in proving that req follows from theorem rg_globand axiom start. This is also ordinary theorem proving, and we donot dis
uss it.4. Step 4 requires to prove the initialization 
ondition for the 
hoseninferen
e rule, that is:
s⇒ UpToNow(echoeri.in) ∨UpToNow(echoeri.out)for some i = 1, 2. Now, global axiom start postulates that s ⇒

Lastedie(echoer1.out, λ), whi
h 
learly subsumes the required step(for i = 1).5. Step 5 
onsists in dis
harging the assumptions of ea
h module. In our
ase, noti
e that E1 = M2 and E2 = M1, due to the 
onne
tions inFigure 6.1. Therefore, proving that echoer1.out ⇒ echoer2.in and
echoer2.out⇒ echoer1.in is immediate.6. Step 6 is trivial, sin
e in our 
ase M1 ∧M2 = Mglob by de�nition.7. Finally, the 
he
k that no 
ir
ularities have been introdu
ed in theabove proofs is also simple, as there are no 
ir
ular dependen
iesbetween axioms or theorems in the system.This 
ompletes our 
ompositional veri�
ation pro
ess, and proves thatthe requirement req is indeed satis�ed by the global 
omposite system.The following se
tions introdu
e more signi�
ant examples that are more
omplex.6.2. Real-Time Dining PhilosophersSe
tion 2.3 introdu
ed the dining philosophers example by providing theaxioms of the philosopher 
lass, formalizing its basi
 postulated behavior.128



6.2. Real-Time Dining PhilosophersHere, we 
omplete the example by introdu
ing lo
al theorems and assump-tions (Se
tion 6.2.1), by stating lo
al rely/guarantee behaviors expressedusing a 
ompositional operator (Se
tion 6.2.2), by proving the theoremsthat are lo
al to the the philosopher 
lass (Se
tion 6.2.3), by providinga global veri�
ation goal (Se
tion 6.2.4), and (Se
tion 6.2.5) by provid-ing the 
omplete veri�
ation of the stated goals, a

ording to the guide-lines introdu
ed in Se
tion 5.4. Finally, Se
tion 6.2.6 sket
hes an informal
omparison between the 
ompositional proof of the example and another,non-
ompositional, proof of the same example.In this spe
i�
 example, we are going to use the ≫ 
ompositional oper-ator introdu
ed in Se
tion 5.2.2, and its 
orresponding 
ir
ular inferen
erule 3N of Proposition 5.3.8 (we 
onsider the N -module generalization).All details of the proofs have been 
he
ked with the en
oding of theTRIO language in the PVS proof 
he
ker [ORS92℄ (see [GM01,Fur03b℄ forsome details of this en
oding), even if we present them su

in
tly and inhuman-readable form. The interested reader 
an �nd the full PVS en
odingof formulas and proofs in [FRMM05b℄.6.2.1. Lo
al Assumptions and TheoremsA derived property of the philosopher 
lass is that there is always atime interval in whi
h both forks are available to the philosopher. This isthe �rst step in ensuring that the philosopher will eventually be able toa
quire both forks and eat. In parti
ular, the axioms allow us to prove thisavailability property for a time interval whi
h o

urs no later than Tt+2Tetime units from the 
urrent instant. This bound is su�
ient to prove all ofthe following derived properties. The above property is expressed by thefollowing TRIO theorem formula.Theorem 16 (philosopher.fork_availability).
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)Clearly, the validity of this theorem 
annot be guaranteed regardless ofthe behavior of the environment of this 
lass. Therefore, we introdu
e threeassumption formulas that su�
e to dedu
e theorem fork_availability.Note that the 
hoi
e of what formulas should be axioms and what as-sumptions is a methodologi
al one, and it is up to the user. In this 
ase,we realize that theorem fork_availability 
an be proved if we 
onsiderthe behavior of the other 
lasses (in the 
omposite system); therefore, we
hoose to abstra
t the essential behavior of the other philosophers, needed129



6. Illustrative Examples of Compositional Proofsto guarantee this theorem, in the following assumptions (rather than ax-ioms). This is methodologi
ally advisable, as it permits us to de
ouple thefa
ts needed to prove the theorem from the other information about thebehaviors of the neighbor 
lasses. Thus, �rst of all, we assume that, atany given time, ea
h fork be
omes available within Tt +Te time units or isalready available and remains so for a su�
iently long (i.e., ≥ Tt) amountof time.Assumption 17 (philosopher.availability).
(∃t ≥ Tt : Lasts(available(s) , t)) ∨
WithinFei(Becomes(available(s)) ,Tt + Te)Se
ond, we assume that ea
h fork is available, for a non-empty timeinterval, within Te time units. This is basi
ally like assuming that theadja
ent philosophers eat for no longer than Te time units.Assumption 18 (philosopher.availability_2).
WithinF(UpToNow(available(s)) ,Te)Finally, when a fork be
omes available, we assume it to stay so for (atleast) Tt time units; this 
orresponds to assuming that the thinking timeof the neighbor philosophers is not shorter than Tt.Assumption 19 (philosopher.lasting_availability).
Becomes(available(s))⇒ Lasts(available(s) ,Tt)Noti
e that ea
h of these formulas expresses a temporally-
losed property(for instan
e, 
onsidering assumption availability_2, at any given timeea
h fork is available within Te time units).Finally, let us introdu
e another theorem of the philosopher 
lass whi
hwill be used in its veri�
ation. The truth of this theorem is a dire
t 
on-sequen
e of the axioms of the 
lass, requiring no assumptions. It statesthat any philosopher is always in one of two situations: either he/she ishungry (i.e., Tt time units without eating have passed), or no more than
Tt + Te time units have elapsed sin
e the last time he/she ate or he/shebegan eating.Theorem 20 (philosopher.always_eating_or_not). hungry ∨
WithinPii((∃t > te : Lasted(eating, t)) ∨ Becomes(eating) ,Tt + Te)130



6.2. Real-Time Dining Philosophers6.2.2. Rely/Guarantee Spe
i�
ationFormulas availability, availability_2 and lasting_availability of theprevious se
tion express the assumptions that ea
h philosopher makes aboutthe behavior of his/her neighbors. In turn, the philosopher must guaranteeto them that he/she will not be unfair and will periodi
ally release theforks. This requirement is expressed by the two theorems taking_turnsand taking_turns_2, that are analogues to the assumptions availabilityand availability_2, while assumption lasting_availability 
orrespondsto axiom thinking_duration (see Se
tion 2.3.2).Theorem 21 (philosopher.taking_turns).
(∃t ≥ Tt : Lasts(¬holding(s) , t)) ∨
WithinFei(Becomes(¬holding(s)) ,Tt + Te)Theorem 22 (philosopher.taking_turns_2).
WithinF(UpToNow(¬holding(s)) ,Te)Up to this point, only assumptions expressed as temporally 
losed formu-las (e.g., assumption availability) have been 
onsidered. Now, we have toexpress a new fundamental lo
al rely/guarantee property of ea
h philoso-pher: it is a non-starvation property requiring that, under the assumptionof a regular availability of the forks, we 
an guarantee that, after the systemstarts, the philosopher eats regularly.In su
h a 
ase, it is 
onvenient to express the assumption as a time-dependent formula, and link it to the guarantee using the ≫ operator: werelate the availability of the forks in the past to the o

urren
e of the eatingsessions in the immediate future. Hen
e, let us take:

Ek = WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)and:
Mk = SomPi(start)⇒ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te))Thus, the following theorem expresses the lo
al non-starvation property inrely/guarantee form: as long as both forks are available within a boundedtime interval (i.e., Tt +2Te), the philosopher is able to eat for a su�
ientlylong (i.e., > te) time, within the same bound, provided the system hasstarted. 131



6. Illustrative Examples of Compositional ProofsTheorem 23 (philosopher.regular_eating_rg).
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)
≫ (SomPi(start)⇒ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te)))This theorem 
ompletes the spe
i�
ation of the philosopher 
lass.6.2.3. Lo
al Veri�
ationWe 
an �nally verify the whole spe
i�
ation, a

ording to the method de-s
ribed in Se
tion 5.4. Let us start from step 1, whi
h pres
ribes to proveea
h lo
al spe
i�
ation, i.e., ea
h lo
al theorem.Besides the lastly introdu
ed theorem regular_eating_rg, we have atotal of four theorems in 
lass philosopher. Theorems taking_turns[_2℄and always_eating_or_not are proved dire
tly from the axioms of the
lass, while theorem fork_availability relies on some of the assumptionsof the 
lass.Moreover, in all proofs we assume that the thinking time of ea
h philoso-pher is larger than twi
e the eating time: Tt > 2Te.1 This 
ondition allowsone to avoid the ra
e 
onditions, and is referred to as assumption TCCs(for �Type Corre
tness Constraints�, à la PVS).Similarly to what was dis
ussed when presenting Theoremfork_availability, one might try to determine whi
h are the �weakest�inequalities that have to be assumed for the following proof to hold. Adetailed dis
ussion of these issues is out of the s
ope of the present paper,and we leave it to future work.In summary, the whole proof dependen
ies for the philosopher 
lassare displayed in Figure 6.2: whenever we use a formula α in dedu
ing thevalidity of another formula β, there is a proof dependen
y between the twoformulas, graphi
ally represented by an arrow going from α to β. For sim-pli
ity, we did not represent the dependen
ies from axioms thinking_defand hungry in Figure 6.2, as they just de�ne elementary equivalen
es.For the sake of brevity, we do not show the proof of any of these theorems,ex
ept for regular_eating_rg whi
h is proved below, and whose overall
ase stru
ture is given in Figure 6.3. However, Appendix A reports theproofs of the other theorems in human-readable form, while PVS proofsare available in [FRMM05
℄.1After all, they are philosophers, not gourmands! (Unless they are Epi
ureans, onemay argue. . . ).132



6.2. Real-Time Dining Philosophers
start uniqueness init taking acquire

TCCs availability 2 lasting availability availability

always eating or not
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eating def holding synch putting eating duration

taking turns 2taking turns

AXIOMS

THEOREMS

fork availability

eat till release
AXIOMS

thinking duration

philosopher

hungry

thinking defFigure 6.2.: Proof dependen
ies in 
lass philosopherProof of philosopher.regular_eating_rg. By exploiting the de�nition ofthe ≫ operator, we assume AlwPe(WithinFei(UpToNow(available(l) ∧
available(r)),Tt+2Te)) as hypothesis and set our goal to proving AlwPi(F )and NowOn(F ) separately, where F is:

F ≡ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te)) ∨AlwPi(¬start)an equivalent statement of the impli
ation. First of all, we noti
e that, be-
ause of theorem fork_availability (16), we 
an a
tually strengthen our
urrent hypothesis to be AlwPi(WithinFei(UpToNow(available(l) ∧
available(r)),Tt + 2Te)), that is in
luding the 
urrent instant. Now, letus �rst prove AlwPi(F ) from the hypothesis, the axioms and the other(already proved) theorems of the 
lass. Let t be the generi
 time instantat whi
h the hypothesis holds. We have to prove that F holds for all timeinstants less than or equal to t, so let u ≤ t a generi
 time instant before t.Let us 
onsider theorem always_eating_or_not (20) at time u and per-form a 
ase analysis. The proof is split into two bran
hes whether hungry ≡
Lasted(¬eating,Tt) or WithinPii(Becomes(eating) ∨ . . . ,Tt + Te) holds at
u.The �rst bran
h 
onsiders the hypothesis instantiated at time u, thatis WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te) at u. There-fore, let us make expli
it the existentially quanti�ed time variable of the133



6. Illustrative Examples of Compositional Proofs
WithinF operator and name it f . Noti
e that 0 < f ≤ Tt + 2Te and we
an write that UpToNow(available(l) ∧ available(r)) at time u + f . Now,the proof is further split into two bran
hes whether or not the state eatingnever be
omes true for all time instants sin
e u to u+ f . In the �rst 
ase
Lastsie(¬Becomes(eating) , f) at u. Therefore, we 
an dedu
e from basi
properties of state items that eating is always false from u to u+ f . eatingwas also false for Tt time units in the past at u in this bran
h of the proof.Therefore, a short time before u + f the philosopher is hungry, and theforks are available in the immediate past and in the immediate future. Let
u+f−ǫ be this time instant (where ǫ > 0 is su�
iently small) and 
onsideraxiom a
quire (3) at this time. We immediately 
on
lude that both forksare taken at u+f−ǫ and therefore Becomes(holding(l) ∧ holding(r)) is trueat u+f − ǫ. Furthermore, we 
an 
onsider axiom eat_till_release (4) attime u+f−ǫ and dedu
e that there exists r > te su
h that Lasts(eating, r)holds at u + f − ǫ. Sin
e |f − ǫ| ≤ Tt + 2Te this bran
h of the proof is
on
luded.The other bran
h of the proof 
onsiders the 
ase in whi
h there is atime instant g between u and u + f where Becomes(eating) is true. Sin
e
eating be
omes true at g, we 
an apply axiom eat_till_release (4) anddedu
e that there exists r > te su
h that Lasts(eating, r) holds at g. Sin
e
u ≤ g < u+ f ≤ u+(Tt +2Te), this bran
h of the proof is also 
on
luded.Let us now 
onsider the 
ase in whi
h WithinPii(Becomes(eating)∨(∃t >
te : Lasted(eating, t)),Tt + Te) holds at u. This means that there is ageneri
 time instant v : u − (Tt + Te) ≤ v ≤ u where Becomes(eating) or
∃t > te : Lasted(eating, t) holds. In the �rst 
ase, axiom eat_till_release(4) lets us 
on
lude that eating lasts for a time at least as long as te startingfrom time instant v. Sin
e v ≥ u− (Tt +Te) ≥ u− (Tt +2Te), this bran
hof the proof is 
on
luded. In the se
ond 
ase, eating was true for r > tetime units, starting from v in the past; hen
e the whole bran
h of the proofis 
on
luded.The 
ase NowOn(F ) is proved similarly to the �rst bran
h, but withdi�erent base time instantiations and some te
hni
alities that we do notdis
uss here.This 
on
ludes the proof of AXphil ∪ ASphil ⊢ T Hphil, i.e., step 1 ofSe
tion 5.4.134



6.2. Real-Time Dining Philosophers
assume: AlwPe(WithinFei(UpToNow(available(l) ∧ available(r)), Tt + 2Te))

prove: AlwPi(F ) prove: NowOn(F )

case: hungry ≡ Lasted(¬eating, Tt)
case: WithinPii(Becomes(eating) ∨ . . . , Tt + Te)

case: Lastsie(¬Becomes(eating), f)

case: WithinFie(Becomes(eating), f)

case: Becomes(eating)

case: ∃t > te : Lasted(eating, t)

. . .

Figure 6.3.: Proof stru
ture for Theorem regular_eating_rg6.2.4. Global Rely/Guarantee Spe
i�
ationLet us now 
omplete the 
omposite spe
i�
ation of the dining philosophers.More pre
isely, we formulate the global property to be veri�ed, whi
his expressed by theorem liveness_rg of the 
omposite 
lass dining_N.It simply states that ea
h philosopher in the array eats regularly, un-less he/she has not started yet. Noti
e that in our example Eglob =
Edining_N = true sin
e the 
omposite system is 
losed, and Mglob =
Mdining_N 
oin
ides with the following formula.Theorem 24 (dining_N.liveness_rg).
∀k ∈ [0..N − 1] : ( SomPi(Philosophers[k].start)
⇒ (∃t > te : Withinii(Lasts(Philosophers[k].eating, t) ,Tt + 2Te)) )6.2.5. Global Veri�
ationHaving 
ompleted the global 
omposite spe
i�
ation, so that we are nowable to 
onsider step 2 of the veri�
ation pro
ess. Ea
h lo
al assumptionis dis
harged by a visible theorem or axiom of the modules adja
ent to the
urrent philosopher, as shown in Figure 6.4. Therefore, step 2 is 
ompletedwithout 
ir
ularities involved, sin
e thinking_duration is an axiom andtaking_turns[_2℄ are both proved dire
tly from axioms lo
al to ea
h 
lass(i.e., they do not rely 
ir
ularly on other assumptions).Step 3 is empty in our example, sin
e the only global theorem we haveto prove is theorem liveness_rg in T Hrg

dining_N.Let us 
onsider step 4, where in parti
ular we prove that lo
al rely/guar-antee assumption Ek is initialized, that is we show that hypothesis 4 ofProposition 5.3.8 holds for Ek. Sin
e the lo
al theorems have already135
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TCCs

dining N

TCCs

availability

availability 2 taking turns 2

taking turns

taking turns 2

taking turns

lasting availability thinking durationthinking duration

Philosophers[(i− 1) mod N ] Philosophers[(i + 1) mod N ]Philosophers[i]

Figure 6.4.: Dis
harging of assumptions in global 
lass dining_Nbeen proved without 
ir
ularities, we 
an use fork_availability to 
om-plete this step. The theorem simply states that the desired property
Ek = WithinFei(UpToNow(available(l) ∧ available(r)),Tt + 2Te) alwaysholds, whi
h subsumes the initialization 
ondition, and requires no expli
itmention to initialization predi
ate S.Step 5 requires to dis
harge the Ek's by means of other formulas, in orderto ful�ll hypothesis 2 of Proposition 5.3.8. In this 
ase as well, theoremfork_availability for module k works 
orre
tly sin
e it predi
ates thevalidity of the Ek's over the whole temporal axis.Step 6 is also very simple, sin
e Mglob = ∀k ∈ {1, . . . , n} : Mk in our
ase, so that the impli
ation of this step holds trivially. As a 
onsequen
e,hypothesis 3 of Proposition 5.3.8 is shown to hold.Finally, let us re
all that hypothesis 1 of Proposition 5.3.8 is subsumedby step 1 of our method, sin
e the formulas Ek ≫ MK are lo
al theoremsregular_eating_rgAs dis
ussed above and shown in the proof dependen
ies pi
tures, no
ir
ularities arise in proving the lo
al formulas, so we 
on
lude that theo-rem liveness_rg soundly holds as a 
onsequen
e of the inferen
e rule ofProposition 5.3.8 and a

ording to the steps in Se
tion 5.4.6.2.6. Dis
ussionAs hinted above, the a
tual veri�
ation was 
arried out with PVS support:this se
tion aims at sket
hing an analysis of the 
omplexity of the pro
ess.First, however, let us noti
e that the bare number of proof 
ommands ishardly a 
omplexity measure of some interest for 
omparing 
ompositionalrules and methods, as it is often strongly in�uen
ed by fa
tors whi
h do notpertain to the methodology, su
h as the en
oding of the logi
 in the proof
he
ker, the number of additional auxiliary lemmas generated in building136



6.2. Real-Time Dining Philosophersthe proofs, et
. Conversely, it would be meaningful to 
ompare our proofwith a non-
ompositional one, 
arried out with the same basi
 TRIO/PVSprover, in order to understand the bene�ts of a 
ompositional methodol-ogy in building our veri�
ation, and in order to assess the signi�
an
e ofthe philosophers example as a ben
hmark for 
ompositional veri�
ation.Indeed, there are 
ases where non-
ompositional methods may performbetter in pra
ti
e then 
ompositional ones; in su
h 
ases the additionalveri�
ation burden required by a 
ompositional framework is not tradedo� by any bene�t in proof simpli�
ation or reuse [dRdBH+01,Lam98℄.Under this respe
t, let us 
ompare the 
omplexity of our veri�
ationwith the 
ost of a non-
ompositional one. The basi
 problem with a non-
ompositional proof is that we 
annot exploit en
apsulation and reuse.Therefore, there is no distin
tion between lo
al and global items and ev-erything is ��attened� at the same level of visibility. In the 
ase of thedining philosopher problem, we 
an over
ome this problem by �simulating�modularization at the global level. In other words, we have to 
arefullyparameterize ea
h item with respe
t to an index whi
h separates di�erent�instan
es� of the philosopher.Moreover, and most importantly, we must devise a way to repla
e theuse of the ≫ operator by temporally 
losed formulas only. As we pointedout above, writing rely/guarantee formulas using the ≫ operator permitsto use an ad ho
 inferen
e rule whi
h 
an handle 
ir
ularities between as-sumptions and guarantees of the various lo
al formulas without need foran expli
it 
ir
ularity breaking to be provided by the veri�er. Therefore,repla
ing spe
i�
ations written using the time progression operator is moredi�
ult the tighter the 
ir
ularity between the lo
al Ek's andMk's is. Thisis usually the 
ase when we 
ompose modules whi
h are instan
es of thesame 
lass: having the same formulas by de�nition, the 
ir
ularity is likelyto arise between 
onne
ted 
lasses for symmetry reasons. This was the 
asein the philosopher example, albeit with a signi�
ant simpli�
ation, namelythe fa
t that the lo
al assumptions Ek's 
an be shown to hold over thewhole temporal axis, as dis
ussed above. This simpli�
ation made it pos-sible to build a non-
ompositional solution, though still with 
onsiderablee�ort. More generally, we point out that a system made of a (possiblylarge) set of instan
es of the same 
lass, 
onne
ted with some 
ir
ularities,is representative of a vast 
ategory of real systems. In parti
ular, those rep-resenting 
ommuni
ation proto
ols between a large number of hosts, su
has peer-to-peer proto
ols. Thus, we believe that the philosophers problem137
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an be regarded as a good abstra
tion of some of the 
ore problems arisingin verifying su
h systems.We 
arried out the unstru
tured, non-
ompositional proof of the philoso-phers problem;2 the result has been a proof of length roughly 
omparableto � or even a bit shorter than � the 
ompositional one, but fragmentedinto more intermediate lemmas, with more assumptions and more intri
ateproof dependen
ies. Another feature that distinguishes the 
ompositionalproof from the non-
ompositional one is the fa
t that the former is repet-itive while the latter is intri
ate. In other words, the 
ompositional proofhas a transparent, intelligible stru
ture made of several similar parts, in-di
ating that it is indeed simpler to manage for the human user who 
aneasily understand when previous proof patterns 
an be applied again withminor modi�
ations. All in all, even if the number of proof 
ommandswas not dramati
ally di�erent in the two proofs, the 
omplexity of thenon-
ompositional one, 
onsidering also the mental e�ort and di�
ulty inmanaging the proof, was mu
h greater. Furthermore, our experien
e withthe 
ompositional proof of the same property has guided and helped thebuilding of the non-
ompositional one: we believe that doing the non-
ompositional proof �rst would have been really hard and time-
onsuming.6.3. A Peer-to-Peer Communi
ation Proto
olThis se
tion illustrates our pra
ti
al approa
h to 
ompositionality throughanother example: the 
ompositional veri�
ation of the peer to peer 
om-muni
ation proto
ol BitTorrent (BT) [Coh01,Coh03℄. A
tually, we modeland verify only a very small part of the behaviors allowed by the 
omplexproto
ol, in a spe
i�
 situation � whi
h is nonetheless likely to happen inpra
ti
e �, and we provide a high-level des
ription whi
h abstra
ts awayfrom most implementation details, fo
using on timing aspe
ts.3The overall goal of this example is not only to show the appli
ation of theinferen
e rules in pra
ti
e, but also to demonstrate our general approa
hto 
ompositionality, as laid out in the previous 
hapters. To this end,we provide two di�erent, alternate veri�
ations of the proto
ol. The �rstapproa
h is the most straightforward and standard: we sele
t a suitable2It is available in PVS form [FRMM05
℄.3For another, 
ompletely di�erent example of veri�
ation of the BitTorrent proto
ol,based on the approximation of pro
ess algebras through di�erential equations, werefer the reader to [Dug06℄.138



6.3. A Peer-to-Peer Communi
ation Proto
olinferen
e rule, among those provided in the previous 
hapter, and we applyit to verify the system. Although 
ompositionality su

eeds in shifting themost part of the veri�
ation burden from global to lo
al, the appli
ationof the inferen
e rules is nonetheless highly nontrivial, and requires some
onsiderable ingenuity.The se
ond approa
h is instead more un
onventional, in that it doesnot use any previously de�ned inferen
e rule. On the 
ontrary, it buildsa new inferen
e rule by varying the existing rules in a way whi
h �ts theparti
ular spe
i�
ation we are trying to verify. In this 
ase the veri�
atione�ort required in applying the new rule is minimal, although this is of
ourse traded-o� against ingenuity required in designing the new inferen
erule, and in verifying its 
orre
tness.Then, we 
on
lude this se
tion with a brief 
omparison between the twoapproa
hes that highlights the advantages and disadvantages of both. Webelieve that our example, however small, 
onstitutes an eviden
e of theimportan
e of having a �exible approa
h to 
ompositionality, and of thene
essity of fo
using on real examples of appli
ations on a 
ase-by-
asebasis, rather than looking for a �one-size-�t-all� 
ompositional rule.In pra
ti
e, the example is 
arried out as follows. After providing suitableaxiomati
 spe
i�
ation of the 
lasses involved in des
ribing the proto
ol,we state a global theorem that we want to prove about the 
omposition ofthe various 
lasses. Then, we provide two di�erent proofs of the theorem,both a

ording to the general methodology of Se
tion 5.4 The �rst proofis an appli
ation of the inferen
e rule 5N of Proposition 5.3.11, that wehave dis
ussed above. The se
ond proof, instead, pursues in full the pra
-ti
al approa
h to 
ompositionality that we have advo
ated in Se
tion 3.2.Therefore, instead of �guring out how to �t our system spe
i�
ation withina prede�ned inferen
e rule, we develop a new rule, 
ombining the knownresults about the previously introdu
ed rules with the spe
i�
 stru
ture ofthe formulas that model our system.6.3.1. Proto
ol Basi
sLet us des
ribe the basi
 features of the BT proto
ol, namely those thatwe are going to spe
ify and use for veri�
ation.BT is a peer-to-peer 
ommuni
ation proto
ol for distributing �les overnetworks among a number of hosts. Hosts are partitioned among seeds andpeers. Let Ns be the number of seeds, and Np be the number of peers inthe system. Usually, it is Np ≫ Ns, although this is not ne
essary for the139
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orre
t fun
tioning of the proto
ol.When the proto
ol is started, ea
h seed possesses an entire 
opy of the �leto be distributed; let us represent the �le as split into P pa
kets, numberedfrom 0 to P − 1. The peers, instead, do not initially have any part of the�le; their goal is to get it. In order to do that, ea
h peer sends periodi
allya (random) pa
ket to any peer it is 
onne
ted to. After a peer has re
eived(and thus stored) at least a pa
ket, it also periodi
ally sends a pa
ketto any other peer it is 
onne
ted to. The 
onne
tions among peers andbetween seeds and peers 
hange dynami
ally and are 
oordinated by adedi
ated host 
alled tra
ker. For simpli
ity, we do not represent expli
itlythe tra
ker in our model, but simply spe
ify minimal assumptions aboutthe dynami
s of 
onne
tions between hosts.Let us des
ribe how the 
onne
tions between hosts are managed in ourmodel; re
all that this is a spe
ial 
ase of the real BT proto
ol. At anytime, the set of all peers is partitioned into a number of 
lusters. In ea
h
luster, the peers are 
onne
ted in a 
ir
le, and there is at least one peerwhi
h is 
onne
ted to a seed and 
an re
eive data from it. Moreover, the
onne
tions 
hange only periodi
ally. More pre
isely, we will ensure that,before the 
lusters are 
hanged, every peer in the 
luster has re
eived atleast a pa
ket (that is there has been at least a �passing around� of pa
ketsover the 
ir
le of peers in the 
luster).Noti
e that the 
onne
tions do not represent physi
al 
onne
tions, whi
hwould hardly be dynami
; instead, they represent 
oordination betweenpeers. Moreover, we negle
t the transmission time over the 
onne
tions,whi
h are 
onsidered instantaneous (this is a

eptable, sin
e the transmis-sion times 
an be modeled dire
tly in the spe
i�
ation of ea
h host asre-transmission delays).6.3.2. System Spe
i�
ationLet us now introdu
e the 
lasses of our BT spe
i�
ation. Noti
e that in theremainder we des
ribe a real-time strengthening of the real BT proto
ol;the latter does not have any hard real time 
onstraint built in, as it relieson the TCP/IP proto
ol whi
h is �best-e�ort�.The seed 
lass. The seeds in the system are represented by instan
es ofthe seed 
lass, whi
h is pi
tured in Figure 6.5. This 
lass is parametri
with respe
t to the number P of pa
kets of the �le, and the send time
Ts. Moreover, it has a single event item send(i), whi
h is true whenever140



6.3. A Peer-to-Peer Communi
ation Proto
olthe seed sends the pa
ket number i ∈ {0, . . . , P − 1} over its 
onne
tions.The axiomatization of the 
lass is very simple: every Ts time units (atmost), a pa
ket is nondeterministi
ally sent over the 
onne
tions. This isrepresented by the following axiom.4Axiom 25 (seed.sending). ∃i : WithinF(send(i) , Ts)

seed
send(i)Figure 6.5.: Interfa
e of the seed 
lassThe peer 
lass. The peers are represented by instan
es of the peer 
lass,pi
tured in Figure 6.6. The peer 
lass is also parametri
 with respe
t tothe number P of pa
kets of the �le, and the send time Ts. It has a sendevent, representing its sending a pa
ket over its 
onne
tion, and a recvevent, representing the re
eiving of a pa
ket (from another peer or from aseed). Moreover, the 
lass has a non-visible stored state: stored(i) beingtrue represents the fa
t that the pa
ket i has been re
eived and is thereforestored lo
ally; this is formalized by the following axioms (i is a variable oftype {0, . . . , P − 1}).Axiom 26 (peer.sending). stored(i)⇔ SomPi(recv(i))

peer send(i)

recv(i)stored(i)Figure 6.6.: Interfa
e of the peer 
lassThe send and recv a
tions happen a

ording to axioms peer.re
v_to_sendand peer.send_to_re
v: the former states that a recv triggers a send of4In the remainder of the spe
i�
ation, we do not mention expli
itly the types of thepredi
ates arguments whenever this is unambiguous. For example, we simply write
send(i) assuming impli
itly that i ∈ {0, . . . , P − 1}. 141



6. Illustrative Examples of Compositional Proofsa (nondeterministi
ally 
hosen) pa
ket within Ts time units; the latter 
on-versely states that a send only happens if a pa
ket has been re
eived in thepast, and the pa
ket is stored lo
ally.Axiom 27 (peer.re
v_to_send). ∃i : recv(i)⇒ ∃j : WithinF(send(j) , Ts)Axiom 28 (peer.send_to_re
v).
send(i)⇒ stored(i) ∧ ∃j : WithinP(recv(j) , Ts)The system 
lass. Now, let us des
ribe how the modules are 
omposedinto a global system, representing the network. The seeds are Ns instan
esof the seed 
lass that populate an array named Se, and the peers are Npinstan
es of the peer 
lass that populate an array named Pe.To represent the 
onne
tions among hosts in the system, we 
annot ex-ploit TRIO 
onne
tions whi
h are stati
. On the 
ontrary, we introdu
etwo state predi
ates connectedp(p1, p2) and connecteds(s, p) to indi
ate 
on-ne
tions between two peers, and between a seed and a peer, respe
tively.The meaning of the two predi
ates is obvious: whenever i is 
onne
ted to
j, it means that what i sends, it is re
eived by j. This is stated by theglobal axioms sp_
onne
tions and pp_
onne
tions.Axiom 29 (sp_
onne
tions).
connecteds(s, p)⇒ (Se[s].send(i) = Pe[p].recv(i))Axiom 30 (pp_
onne
tions).
connectedp(p1, p2)⇒ (Pe[p1].send(i) = Pe[p2].recv(i))Finally, we have to de�ne how the 
onne
tions 
hange over time. This isan important part of the spe
i�
ation, and requires some nontrivial details.Let K = {0, . . . , Np − 1} be the set of all peers. We postulate that, atany time, there exist k (time-dependent) sets K1, . . . ,Kk, named 
lusters,su
h that:1. The 
lusters form a partition of K;2. Ea
h 
luster is su
h that all its peers are 
onne
ted to form a ring;3. For ea
h 
luster, there is at least a peer in the 
luster whi
h is 
on-ne
ted to some seed.142



6.3. A Peer-to-Peer Communi
ation Proto
olConditions C(1�3) are formalized by axiom 
lustering below. In order topresent it, we �rst introdu
e the following notation.5
• The su

essor of index p modulo m (i.e., over a set of m elementsnumbered from 0 to m−1) is denoted by nextm(p) ≡ (p+1) mod m.
• We denote a permutation of the m-element set {0, . . . ,m − 1} as afun
tion πm : {0, . . . ,m− 1} → {0, . . . ,m− 1}.
• We asso
iate to every 
luster Ki its size ki ≡ |Ki|.Axiom 31 (
lustering).

∃0 < k ≤ Np : ∃K1, . . . ,Kk :(C1)∀i ∈ {1, . . . , k} : Ki ⊆ K ∧
⋃

i=1,...,k

Ki = K

∧ ∀i, j ∈ {1, . . . , k} : i 6= j ⇒ Ki ∩Kj = ∅


 ∧(C2)(∀i ∈ {1, . . . , k} :∃π̃ki

: ∀j ∈ {0, . . . , ki − 1} :

connectedp(π̃ki
(j), π̃ki

(nextki
(j)))

)
∧(C3)(∀i ∈ {1, . . . , k} : ∃j ∈ {0, . . . , ki − 1} :

∃s ∈ {0, . . . , Ns − 1} : connecteds(s, j)

)Noti
e that, from now on, with a little abuse of notation, we will treatthe Ki's as globally available items, that is we will be able to referen
ethem in any module of the system; noti
e that this is only a short
ut torepresent easily the sets, whose pre
ise formalization in TRIO would notbe di�
ult but would introdu
e some additional notational overhead.6.3.3. Rely/Guarantee Spe
i�
ationsLet us now des
ribe a global spe
i�
ation property of the system. Then, wealso provide suitable spe
i�
ations lo
al to ea
h peer module, from whi
hthe 
orre
tness of the global spe
i�
ation 
an be inferred 
ompositionally.The form of the lo
al spe
i�
ations depends on the inferen
e rule thatwe intend to use. Therefore, in this se
tion we �rst of all introdu
e the5In the following axiom, we slightly abuse TRIO notation by using higher-order quan-ti�
ations, namely on the fun
tions/sets Ki and πki
. Noti
e, however, that the samemeaning 
an be retained with suitable �rst-order predi
ates and quanti�
ations, butwith a mu
h more 
umbersome notation, whi
h we prefer to avoid for 
larity. 143



6. Illustrative Examples of Compositional Proofsglobal spe
i�
ation, and then we provide two di�erent sets of lo
al spe
i-�
ations: Se
tion 6.3.3 des
ribes those suitable to apply the inferen
e ruleof Proposition 5.3.11, whereas the following Se
tion 6.3.3 introdu
es a newad ho
 inferen
e rule, and shows how the basi
 spe
i�
ation of the system
an be seen as a lo
al rely/guarantee spe
i�
ation suitable to be used withthis new inferen
e rule.Global Spe
i�
ationOur overall veri�
ation goal is to show a liveness property about the peers,that is that every peer eventually sends a pa
ket, within an upper boundequal to the value NpTs. We 
hoose this parti
ular property as it allowsus to fo
us on temporal properties, and thus to demonstrate best the useof our inferen
e rules for temporal logi
. An orthogonal 
on
ern, whi
h weomit for brevity, would be the proof of the the 
orre
tness of the proto
ol.However, let us noti
e that similar, 
ompositional te
hniques 
ould be usedfor this purpose as well.Intuitively, our veri�
ation goal 
annot be guaranteed without introdu
-ing 
onstraints on how the 
onne
tions among peers vary. Basi
ally, weneed that the 
onne
tions do not 
hange �too often�, if we want the systemto a
tually 
onverge towards some goal. More pre
isely, let us introdu
ea predi
ate const(p, t) whi
h holds whenever its �rst argument keeps its
urrent value over an interval of given length given by its se
ond argument.Therefore, for any time-dependent predi
ate F with domain D, we havethe following de�nition (as usual, bb 
an be any of ee, ei, et
.).
constbb(F, T ) ≡ ∃d ∈ D : Lastsbb(F (d), T )Through this notation, we formulate the following global spe
i�
ationin a rely/guarantee form: if the 
onne
tions stay un
hanged over a timeinterval of length NpTs, then every peer eventually sends a pa
ket.Theorem 32 (global_send_liveness).

constie(connectedp(p1, p2) ∧ connecteds(s, p), NpTs) ⇒
WithinFie(∃i : Pe[p].send(i) , NpTs)Lo
al Spe
i�
ations for a Prede�ned Inferen
e RuleIn order to apply the inferen
e rule 5N of Proposition 5.3.11, we now setup suitable rely/guarantee spe
i�
ations, lo
al to ea
h peer 
lass.144



6.3. A Peer-to-Peer Communi
ation Proto
olThe following theorem peer.bounded_send_re
v provides su
h a spe
-i�
ation. As usual, i, j ∈ {0, . . . , P − 1} and k indi
ates the size of the
luster the 
urrent module is in.Theorem 33 (peer.bounded_send_re
v).
∃j : WithinF(recv(j) , kTs)⇒ ∃j : WithinF(send(j) , kTs)This formula is probably a bit 
ounterintuitive, sin
e it establishes a rela-tionship between two events that are both in the future. However rememberthat we are dealing with an abstra
t spe
i�
ation.Now that we have introdu
ed the lo
al rely/guarantee spe
i�
ation throughtheorem peer.bounded_send_re
v, we have to prove it by means of theother formulas of the peer 
lass, to show that it is indeed a valid lo
alspe
i�
ation. This 
orrespond to step 1 of the method of Se
tion 5.4.In order to do that, we introdu
e an assumption formula whi
h we willdis
harge by means of axioms of other peer 
lasses. The formula, namedpeer.late_re
v, states that if a late (i.e., later than (k− 1)Ts time units)
recv is re
eived, a send is also present within the overall kTs time period.Assumption 34 (peer.late_re
v).
∃j : Futr(WithinF(recv(j) , Ts) , (k − 1)Ts)⇒ ∃j : WithinF(send(j) , kTs)The need for this assumption will be 
lear in the following proof.Proof of Theorem peer.bounded_send_re
v. For simpli
ity, let 0 be the
urrent time instant. Assume the ante
edent of the impli
ation holds, thatis that recv(i) holds at a time instant 0 < t < kTs from the 
urrent timeinstant, for any i. We distinguish two 
ases: whether t > (k− 1)Ts or not.In the former 
ase, recv(i) holds at a time instant (k − 1)Ts < t < Ts.This means that at (k−1)Ts the formula WithinF(recv(i) , Ts) holds, whi
h
orresponds to the ante
edent of formula peer.late_re
v. Therefore the
onsequent holds, whi
h is what we have to prove.The latter 
ase is the one in whi
h the time instant in whi
h recv(i) holdsis t ≤ (k−1)Ts. Let us 
onsider axiom peer.re
v_to_send at time t. We
an infer that WithinF(send(j) , Ts) at t, for some j. In other words, thereis a time instant t < u < t+Ts su
h that send(j) at u. It is simple to realizethat u < (k− 1)Ts + Ts = kTs, in this bran
h of the proof. Therefore, it istrue that WithinF(send(j) , kTs) at the 
urrent time. 145



6. Illustrative Examples of Compositional ProofsMaking Up a New Inferen
e RuleIn a

ordan
e with the guidelines we have proposed in the previous se
tions,let us �nd suitable rely/guarantee inferen
e rule and lo
al spe
i�
ationsa

ording to try to the goal of our veri�
ation, stated in Se
tion 6.3.3.Lo
al spe
i�
ations. Let us seek a suitable formula to serve as lo
al spe
-i�
ation of the modules. More pre
isely, we need a spe
i�
ation for ea
hpeer, as we have many of them in ea
h 
luster. We noti
e that axiompeer.re
v_to_send is a lo
al spe
i�
ation about the behavior of the senditem in response to a behavior of the recv. Therefore, it is a suitablerely/guarantee lo
al spe
i�
ation.A suitable 
ompositional inferen
e rule. Let us now build a suitable in-feren
e rule to prove the truth of the global spe
i�
ation theoremglobal_send_liveness from the truth of the lo
al spe
i�
ations axiomspeer.re
v_to_send. Let us summarize the 
hara
teristi
s that it shouldpossess.
• it should be a rely/guarantee rule, as we have both a global spe
i�-
ation and the lo
al spe
i�
ations that are in rely/guarantee form;
• the link between the assumptions and the guarantees of the formulasshould be given by a temporal relationship expressed through the

WithinF operator;
• the rule must be 
ir
ular, as this mirrors the 
ir
ular nature of the
onne
tions among the peers in ea
h 
luster, ea
h of whose assump-tion 
an be satis�ed by the pre
eding peer;
• the rule need not be self-dis
harging, as the assumption of ea
h mod-ule is dis
harged solely by the guarantee of the module that pre
edesit;
• it must be non-fully 
ompositional, as the global assumption aboutthe 
onstan
y of the 
onne
tions over time de�nes what is the state ofthe 
onne
tions, and thus it is required in dis
harging lo
al assump-tions;
• there is no notion of initialization required, sin
e we are proving a�liveness� property, similarly as in the inferen
e rule of Proposition5.3.11.146



6.3. A Peer-to-Peer Communi
ation Proto
olAll in all, let us introdu
e the following 
ir
ular inferen
e rule, whosestru
ture of assumptions and guarantee mirrors 
losely the one of the lo
aland global spe
i�
ation formulas in our example. We provide a proof ofthe soundness of this inferen
e rule in Appendix BProposition 6.3.1. If, for some �xed duration TB > 0:1. for all i ∈ IN : Ei ⇒WithinF(Mi,TB)2. for all i ∈ IN : E ∧Mi ⇒ Eif i<N then i+1 else 13. ∧i∈IN
WithinF(Mi, NTB)⇒M4. WithinF(Ei,TB), for some i ∈ INthen Lasts(E,NTB)⇒M .6.3.4. Appli
ation of the Compositional RuleIn this se
tion, we provide the veri�
ation of the BitTorrent example throughthe appli
ations of 
ompositional inferen
e rules with the lo
al rely/guar-antee spe
i�
ations we have presented in the previous subse
tion.As we already mentioned, we provide two 
orre
tness proofs. The �rstone uses inferen
e rule 5N of Proposition 5.3.11; the se
ond one exploitsthe inferen
e rule of Proposition 6.3.1 introdu
ed beforehand.Using a Prede�ned Inferen
e RuleOur goal is to 
ompose the various theorems peer.bounded_send_re
v(one for ea
h instan
e of the peer 
lass) using the 
ompositional inferen
erule of Proposition 5.3.11 to dedu
e the validity of the global spe
i�
ation.In our system, we 
an identify two levels at whi
h to prove the livenessproperty for the peers: intra-
luster and inter-
luster. To wit: sin
e at anytime the set of all peers is divided into 
lusters, we 
an perform the globalproof in two steps:

• �rst, prove the liveness property within ea
h 
luster, independentlyof the others;
• then, show that the 
omposition of the intra-
luster liveness proper-ties yields the overall desired liveness property of the system.Therefore, we are going to �rst apply the 
ompositional veri�
ationmethod to ea
h 
luster separately. 147



6. Illustrative Examples of Compositional ProofsIntra-
luster proofs. Consider the (generi
) 
luster of size k and the thefollowing 
hoi
es for assumption and guarantee formulas. Noti
e that mod-ules in the inferen
e rule are numbered from 1, while peers (and seeds) arenumbered from 0. However, for simpli
ity, we now assume to have a 0-basednumbering in the modules: �lling the gap is straightforward.6
• Ek

i = ∃j : WithinF(Pe[i].recv(j) , kTs);
• Mk

i = ∃j : WithinF(Pe[i].send(j) , kTs);
• Lastsie

(
Ek, Ts

)
= constie(connectedp(p1, p2) ∧ connecteds(s, p), kTs),for all p1, p2, p in the 
luster and some seed s;

• Mk =
∧

i=1,...,k M
k
i ;

• N = k and T k
B = kTs.Let us now apply the inferen
e rule of Proposition 5.3.11 for the Lastsieand WithinFie operators. Therefore, the we split the proof into lemmas,ea
h 
orresponding to a 
ondition of the inferen
e rule, and thus also tosteps 1 and 4 through 6 of the 
ompositional method of Se
tion 5.4. Morepre
isely, noti
e that step 5 is empty in our 
ase, sin
e there is no require-ment on assumption dis
harging for the inferen
e rule 5N of Proposition5.3.11.Lemma 6.3.2 (Proof step 1).

∃j : WithinF(Pe[i].recv(j) , kTs)⇒ ∃j : WithinF(Pe[i].send(j) , kTs)Lemma 6.3.3 (Proof step 6). Ek ∧∧i ∃j : WithinF(Pe[i].send(j) , kTs)
⇒ ∧

i ∃j : WithinF(Pe[i].send(k) , kTs)Lemma 6.3.4 (Proof step 4).
WithinFie(

∧
i((∃j : WithinF(Pe[i].recv(j) , kTs))

∨ (∃j : WithinF(Pe[i].send(j) , kTs))), kTs)For brevity, we present the proofs of the three lemmas in Appendix B.6We add the supers
ript k for notational 
larity.148



6.3. A Peer-to-Peer Communi
ation Proto
olCon
lusion of intra-
luster proofs. So far, we have proved that, for ea
h
luster Ki of size ki:
constie(connectedp(p1, p2) ∧ connecteds(s, p), kiTs)

⇒WithinFie



∧

j∈Ki

∃l : WithinF(Pe[j].send(l) , kiTs) , kiTs


A
tually, an analysis of the performed proofs shows that all the 
on-sidered events o

urred within a time bound of kiTs time units, that is,equivalently, the outermost WithinF is always instantiated at the 
urrenttime. In other words, we 
an a
tually 
laim a strengthening of the aboveformula, and namely

constie(connectedp(p1, p2) ∧ connecteds(s, p), kiTs)

⇒
∧

j∈Ki

∃l : WithinFie(Pe[j].send(l) , kiTs)Proof of step 2. We also noti
e that we 
an dis
harge the Assumptionpeer.late_re
v intra-
luster. This 
orresponds to 
ompleting step 2 ofthe method of Se
tion 5.4. The proof of it is similar to that of Lemma6.3.4, and is therefore not dis
ussed. Moreover, noti
e that the dis
hargingdoes not involve any 
ir
ularity, as it ought to be.Proof of step 3. Finally, let us note that step 3 is empty in our 
ase, as wehave no non-rely/guarantee global theorem. This 
on
ludes the veri�
ationat the intra-
luster level.Inter-
luster proofs. We are now ready to put together the various intra-
luster proofs to dedu
e the validity of theorem global_send_liveness.Before doing that, let us state simple proper of the operators const(·, ·)and WithinF. The proofs are very simple and are therefore omitted.Lemma 6.3.5. For any n predi
ates P1, . . . , Pn, time distan
es T1, . . . , Tnand T ≥ maxi=1,...,n Ti:
constbb




∧

i=1,...,n

Pi, T


⇒

∧

i=1,...,n

constbb(Pi, Ti)
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6. Illustrative Examples of Compositional ProofsLemma 6.3.6. For any nm predi
ates P j
i for i = 1, . . . , n and j = 1, . . . ,m,time distan
es T1, . . . , Tn and T ≥ maxi=1,...,n Ti:

∧

i=1,...,n

∧

j=1,...,m

WithinFbb

(
P j

i , Ti

)
⇒

∧

i=1,...,n
j=1,...,m

WithinFbb

(
P j

i , T
)Finally, we prove the global liveness theorem.Proof of theorem global_send_liveness. Assume the ante
edent

constie(connectedp(p1, p2) ∧ connecteds(s, p), NpTs)By axiom 
lustering, it is obvious that ki ≤ Np, for every i and at anytime. Therefore, maxi kiTs ≤ NpTs, and we 
an apply Lemma 6.3.5, so∧
i=1,...,k constie(connectedp(p1, p2) ∧ connecteds(s, p), kiTs) holds.This means that the ante
edents of every intra-
luster result is satis�ed.Therefore, we have that:

∧

i=1,...,k

∧

j∈Ki

∃l : WithinFie(Pe[j].send(l) , kiTs)Now, we apply Lemma 6.3.6 and �nally 
on
lude:
∧

p=1,...,Np

∃l : WithinFie(Pe[p].send(l) , NpTs)where the last rearrangement of indi
es is justi�ed by the fa
t that the Ki'sare a partition of the set of all Np peers (axiom 
lustering).Using a Made Up New Inferen
e RuleWe already have all the ingredients to apply the 
ompositional inferen
erule of Proposition 6.3.1 in order to prove theorem global_send_liveness.As we did in the previous proof, let us split the proof between intra-
luster and inter-
luster proofs. A
tually, the inter-
luster proof is simple,and it is just like as it was done in Se
tion 6.3.4, the only di�eren
e be-ing that we now deal with ee variations of the constee(·, ·) and WithinFeeoperators. This is however immediately redu
ible to the previously seen
ase, as it is simple to 
he
k that constie(·, · · ·) implies constee(·, ·) for thesame arguments, and WithinFee implies WithinFie, for the same argument.Thus, let us just 
arry out the intra-
luster proof.150



6.3. A Peer-to-Peer Communi
ation Proto
olIntra-
luster proof. Let us 
onsider a generi
 
luster of size k; let usinstantiate the inferen
e rule of Proposition 6.3.1 as follows. Noti
e thatmodules in the rule are numbered from 1, while peers (and seeds) arenumbered from 0. Thus, we asso
iate the number i+ 1 in the rule to peernumber i.
• Ei = ∃j : Pe[i− 1].recv(j);
• Mi = ∃j : Pe[i− 1].send(j);
• E = constee(connectedp(p1, p2) ∧ connecteds(s, p), kTs), for all p1, p2, pin the 
luster, and some seed s;
• M =

∧
i∈IN

WithinF(Mi, kTs);
• N = k and TB = Ts.Applying the inferen
e rule of Proposition 6.3.1 amounts to the followingsteps, respe
tively 
orresponding to steps 1, 5, 6, and 4 of Se
tion 5.4:1. Prove that: ∃j : Pe[i− 1].recv(j)
⇒WithinF(∃j : Pe[i− 1].send(j) , Ts), for all i ∈ {1, . . . , k}.2. Prove that: E ∧ ∃j : Pe[i− 1].send(j)
⇒ ∃j : Pe[if i− 1 < k − 1 then i else 0].recv(j),for all i ∈ {1, . . . , k}.3. Prove that: ∧i∈IN

WithinF(∃j : Pe[i− 1].send(j) , kTs)
⇒ ∧

i∈IN
WithinF(∃j : Pe[i− 1].send(j) , kTs).4. Prove that: WithinF(∃j : Pe[i− 1].recv(j) ,TB),for some i ∈ {1, . . . , k}.We now orderly provide the proof justi�
ations.1. For any i ∈ {1, . . . , k}, this is exa
tly axiom peer.re
v_to_send formodule i− 1.2. For any i ∈ {1, . . . , k}, this is immediately implied by the 
onne
-tion axiom 
lustering, together with the de�nition of the 
onne
-tion predi
ate in axiom pp_
onne
tions, for module i − 1 and itssu

essor in the 
lustering. 151



6. Illustrative Examples of Compositional Proofs3. This is trivial as the left-hand side of the impli
ation is identi
al tothe right-hand side.4. This is a dire
t 
onsequen
e of axiom 
lustering again, together withaxiom seed.sending.Finally, note that steps 2 and 3 are empty, sin
e we have neither lo
alassumption formulas to prove, nor global non-rely/guarantee theorems.Dis
ussion. Let us 
ompare the two di�erent veri�
ation pro
esses wehave detailed in this se
tion.The �rst approa
h used a previously de�ned inferen
e rule, namely thatof Proposition 5.3.11. As we have seen, the appli
ation of the rule has beennontrivial, and has required some 
onsiderable ingenuity, as well as theproof of several details. On the other hand, the appli
ation of the inferen
erule in the se
ond veri�
ation has been straightforward and with little te
h-ni
al 
ompli
ations. This does not mean that in this 
ase the 
omplexityof veri�
ation has �disappeared�; in fa
t, we had to invest 
onsiderable in-genuity in devising a new 
ompositional inferen
e rule, one that was simpleto apply for the system being veri�ed. So, the two di�erent solutions haveresolved the trade-o� between di�
ulty in building a rule and di�
ulty inapplying it in two di�erent ways.In general, it is di�
ult � and perhaps highly subje
tive as well �to assess whi
h of the two approa
hes is preferable. Ideally, one should
onsider both approa
hes, and 
hoose a

ording to the parti
ular featuresof the system under 
onsideration, as well as his/her spe
i�
 skills andattitudes. All in all, the most important �lesson� that we 
an draw from thisexample is about the importan
e of �exibility in pursuing 
ompositionalveri�
ation, in a

ordan
e with what we have extensively advo
ated in theprevious 
hapters.
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Part II.Integration
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7. Integration as a Generalizationof CompositionalityThe �rst part of this thesis developed a framework for the 
ompositionalspe
i�
ation and veri�
ation of real-time modular systems, based on thelanguage TRIO, a very expressive formal language, whi
h allows one todeal with di�erent aspe
ts and di�erent systems.Nonetheless, the ultimate goal of applying formal methods to the des
rip-tion and analysis of large and heterogeneous systems inevitably requiresbeing able to model di�erent parts of the system using disparate notationsand languages. In fa
t, it is usually the 
ase that di�erent modules arenaturally des
ribed using diverse formal te
hniques, ea
h one tailored tothe spe
i�
 nature of that 
omponent.Indeed, the past de
ades have seen the birth and proliferation of aplethora of di�erent formal languages and te
hniques [FM05, FMMR07℄,ea
h one usually fo
used on the des
ription of a 
ertain kind of systemsand hinged on a spe
i�
 approa
h. On the one hand, this proliferation isadvantageous, as it allows the user to 
hoose the notation and methodologythat is best suited for her needs and that mat
hes her intuition. However,this is also inevitably a hurdle to the true s
alability in the appli
ation offormal te
hniques, sin
e we end up having heterogeneous des
riptions oflarge systems, where di�erent modules, des
ribed using distin
t notations,have no de�nite global semanti
s when put together. Therefore, we needto �nd ways to integrate dissimilar models into a global des
ription whi
h
an then be analyzed.Integration 
an be framed as a natural generalization of the idea of 
om-positionality: whereas the latter deals with spe
ifying and verifying systemswhose modules are formalized with the same language, integration aims atproviding ways to spe
ify and verify systems 
omposed of modules for-malized in di�erent languages. Di�erent languages means, in general, notonly di�eren
es of syntax, but also � and more 
ru
ially � of semanti
s.Thus, two modules spe
i�ed with languages referring to di�erent semanti
smodels have no a priori de�ned meaning when put together. 155



7. Integration as a Generalization of CompositionalityAs an example, let us 
onsider a module des
ribing a queue as an abstra
tdata type, spe
i�ed in a formal language su
h as Lar
h [GHGJ93℄. Then,let us 
onsider another 
omponent 
onsisting of a real-time s
heduler thatuses a queue to store in
oming data, whose temporal behavior is des
ribedwith, say, a temporal logi
 su
h as TRIO. It is not 
lear at all how theveri�
ation results about fun
tional properties of the queue data type 
anbe applied to proving properties of the s
heduler manipulating the queue.However sket
hily, this shows that integration te
hniques must relateformally the interpretations of the various languages, in a way whi
h is
onsistent. Spe
ifying exa
tly and formally what is the relation betweenthe formal interpretation is very important, as this passage is often donein pra
ti
e only informally, or through some rule of thumb [BGH+04℄. Inparti
ular, the relation should allow the veri�er to infer fa
ts in a 
ertainsemanti
s, deriving them from properties that hold in another semanti
s.This should be done without introdu
ing new formalisms to represent theheterogeneous system: integration stresses separation of 
on
erns in thedevelopment of a spe
i�
ation, as the modules des
ribing di�erent parts ofthe systems, that obey di�erent models, may be developed independentlyand then joined together to have a global des
ription of the system, in thesame vein as 
ompositionality.Integration for hybrid systems. The des
ription of real-time systems,whi
h requires a quantitative modeling of time, introdu
es a parti
ularlyrelevant instan
e of the problem of integration. Commonly, real-time sys-tems are 
omposed of some parts representing physi
al environmental pro-
esses and some others being digital 
omputing modules. The former oneshave to model physi
al quantities that vary 
ontinuously over time, whereasthe latter ones are digital 
omponents that are updated periodi
ally at ev-ery (dis
rete) 
lo
k ti
k. Hen
e, a natural way to model the physi
al pro-
esses is by assuming a 
ontinuous-time model, and using a formalism witha 
ompliant semanti
s, whereas digital 
omponents would be best des
ribedusing a dis
rete-time model, and by adopting a formalism in a

ordan
e.Thus, the need to integrate 
ontinuous-time formalisms with dis
rete-timeformalisms, whi
h is the goal of this se
ond Part.Systems where 
ontinuous- and dis
rete-time 
omponents 
oexist aresometimes 
alled hybrid systems [Ant00℄. Let us noti
e that our notionof hybrid system is di�erent than that of hybrid automata [AHLP00℄. Infa
t, in hybrid automata the same system undergoes an evolution whi
h156




onsists of alternations between 
ontinuous-time evolution (
alled ��ow�),and dis
rete swit
hing (
alled �jumps�); on the 
ontrary we are interested indes
ribing systems where the 
ontinuous-time and the dis
rete-time 
ompo-nents evolve in parallel, within the same �global� time. However, we sharewith the work on hybrid automata the overall goal of des
ribing systemswhere both dis
rete- and 
ontinuous-time dynami
s o

ur.Integration through the notion of sampling invarian
e. As we dis
ussedin Se
tion 2.1, TRIO 
an be interpreted over both 
ontinuous-time modelsand dis
rete-time ones: ea
h formula of the language 
an be interpretedin one of the two 
lasses of models. Therefore, our integration framework
onsiders modules written using TRIO under di�erent 
hoi
es for the timedomain.It is not di�
ult to realize that the dis
rete-time semanti
s and the
ontinuous-time one are unrelated in general, in that the same formulaunpredi
tably 
hanges its models when passing from one semanti
s to an-other. On the 
ontrary, integration requires di�erent formulas to des
ribeparts of the same system, thus referring to unique underlying models.To this end, we base our integration framework on the notion of samplinginvarian
e of a spe
i�
ation formula, introdu
ed in Se
tion 8.2. Informally,we say that a temporal logi
 formula is sampling invariant when its dis
rete-time models 
oin
ide with the samplings of all its 
ontinuous-time models.The sampling of a 
ontinuous-time model is a dis
rete-time model obtainedby observing the 
ontinuous-time model at periodi
 instants of time.The justi�
ation for the notion of sampling invarian
e stems from howreal systems are made. In fa
t, in a typi
al system the dis
rete-time part(e.g., a 
ontroller) is 
onne
ted to the (probed) environment by a sam-pler, whi
h 
ommuni
ates measurements of some physi
al quantities to the
ontroller at some periodi
 time rate (see Figure 7.1). The dis
rete-timebehaviors that the 
ontroller sees are samplings of the 
ontinuous-time be-haviors that o

ur in the system under 
ontrol. Our notion of samplinginvarian
e 
aptures abstra
tly this fa
t in relating a 
ontinuous-time for-mula to a dis
rete-time one, thus mirroring what happens in a real system.Uses of the integration framework. On
e we have a sampling invari-ant spe
i�
ation, we 
an integrate dis
rete-time and 
ontinuous-time parts,thus being able, among other things, to resort to veri�
ation in a dis
rete-157



7. Integration as a Generalization of Compositionality
SAMPLER

CONTINUOUS

TIME

DISCRETE

TIMEFigure 7.1.: A system with a sampler.time model, whi
h often bene�ts from more automated approa
hes, whilestill being able to des
ribe naturally physi
al pro
esses in a 
ontinuous-timemodel.Another approa
h that 
an be a
hieved with a sampling-invariant lan-guage whi
h is the subset of a more expressive one (TRIO, in our 
ase)is one based on re�nement. In the pro
ess of formal modeling of a digital
omponent � and of a 
omputer program in parti
ular � one would startwith a very high-level des
ription that would refer a
tions and events tothe �real, ideal, physi
al� time. The �nal implementation, however, willhave to refer to a more 
on
rete, measured view of time, su
h as the onea
hievable through periodi
 readings of an imperfe
t 
lo
k. The re�nementof the spe
i�
ation from the ideal to the 
on
rete 
ould then move from fullTRIO to the sampling-invariant subset of it; this latter des
ription wouldbe 
loser to the �implemented� view of time, and would therefore fa
ilitateits realization.A full development of these ideas is outside the s
ope of this thesis. Someof them have been pursued elsewhere [FRS+06℄, and others belong to futurework. In the remainder, we develop the integration framework in Chap-ter 8. The framework is based on a subset of the TRIO language whoseformulas 
omply with the notion of sampling invarian
e. The followingChapter 9 analyzes some features of the integration framework introdu
edbeforehand. In parti
ular, it dis
usses the expressiveness of the subset ofthe TRIO language introdu
ed for integration, 
lari�es the 
hara
teriza-tion of behaviors that has been introdu
ed in order to a
hieve integration,and 
ompares the notion of sampling invarian
e with other notions of dis-
retization that have been introdu
ed in the literature. Finally, ChapterE reviews literature related to our work about integration. In parti
ular,it fo
uses on works about the expressiveness of formalisms (both logi
 andautomata) 
lose to the subset of TRIO we de�ne in the Chapter 8.
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8. A Framework for Dis
rete- andContinuous-Time IntegrationThis 
hapter presents our framework for integrating dis
rete-time and 
on-tinuous-time modules. As we dis
ussed informally in the previous Chapter7, the framework relies on a the notion of sampling invarian
e to linkdis
rete-time behaviors to 
ontinuous-time ones.Full-�edged TRIO is a very expressive language, and therefore it allowsone to express 
omplex properties that do not 
onform to the notion ofsampling invarian
e. Therefore, in Se
tion 8.1 we introdu
e a proper subsetof the TRIO language, that we 
all R

Z
TRIO.1 We fully de�ne the semanti
sof R

Z
TRIO, parametri
ally with respe
t to the 
hosen time domain.Then, Se
tion 8.2 de�nes formally the 
on
ept of sampling invarian
e of aTRIO formula (De�nition 8.2.1). Se
tion 8.3 
ompletes the presentation ofthe integration framework by presenting su�
ient 
onditions under whi
h

R

Z
TRIO formulas a
hieve the sampling invarian
e property. Finally, Se
tion8.4 presents an example of integration for a simple 
ontrolled reservoirsystem made of two modules.8.1. R

Z
TRIO: A Simple Metri
 Temporal Logi
For the purposes of integration, we 
onsider a proper subset of the TRIOlanguage, whi
h is stri
tly less expressive and whi
h we 
all R

Z
TRIO.8.1.1. SyntaxAs we illustrated in Se
tion 2.1, TRIO is based on a single modal operatornamed Dist. R

Z
TRIO is instead based on the two primitive temporal oper-ators Until and Since, as well as the usual propositional 
onne
tives. Forsimpli
ity, we also introdu
e R

Z
TRIO as a purely propositional language.Let us de�ne formally the syntax of R

Z
TRIO. Let Ξ be a set of time-dependent 
onditions. These are basi
ally Boolean expressions obtained1You 
an read it as �ar-zee-TRIO�. 159



8. A Framework for Dis
rete- and Continuous-Time Integrationby fun
tional 
ombination of basi
 time-dependent items with 
onstants.We are going to de�ne them pre
isely later on (in Se
tion 8.3), for now letus just assume that they are time-dependent formulas whose truth valueis de�ned at any given time. Let us 
onsider a set S of 
onstants symbols.We denote intervals by expressions of the form 〈l, u〉, with l, u 
onstantsfrom S, 〈 a left parenthesis from {(, [}, and 〉 a right parenthesis from {), ]};let I be the set of all su
h intervals. Then, if ξ, ξ1, ξ2 ∈ Ξ, I ∈ I, 〈∈ {(, [},and 〉 ∈ {), ]}, well-formed formulas φ are de�ned re
ursively as follows.
φ ::= ξ |UntilI〉(φ1, φ2) | SinceI〈(φ1, φ2) | ¬φ | φ1 ∧ φ2From these basi
 operators, let us de�ne a number of derived operators:in Table 8.1 we de�ne the most 
ommon ones.2 As it will be 
lear afterproviding a semanti
 de�nition of R

Z
TRIO formulas, derived R

Z
TRIO opera-tors share the same semanti
s as the TRIO ones, the only di�eren
e beingthe primitive operators from whi
h they are de�ned.8.1.2. Semanti
sIn de�ning R

Z
TRIO semanti
s we assume that 
onstants symbols in S are in-terpreted naturally as numbers from the time domain T plus the symbols

±∞, whi
h are treated as usual. Correspondingly, intervals I are inter-preted as intervals of T whi
h are 
losed/open to the left/right (as usualsquare bra
kets denote an in
luded endpoint, and round bra
kets denotean ex
luded one).Then, we de�ne the semanti
s of a R

Z
TRIO formula using as interpreta-tions mappings from the time domain T to the domain D the basi
 itemsmap their values to. Let BT be the set of all su
h mappings, whi
h we 
allbehaviors, and let b ∈ BT be any element from that set. If we denote by

ξ|b(t) the truth value of the 
ondition ξ at time t ∈ T a

ording to behavior
b, we 
an de�ne the semanti
s of R

Z
TRIO formulas as follows. We write

b |=T φ to indi
ate that the behavior b is a model for formula φ under thetime model T. Thus, let us de�ne the semanti
s for the generi
 time model2Impli
ation⇒, disjun
tion ∨ and double impli
ation⇔ are de�ned as usual. Moreover
δ is a positive real 
onstant that will be de�ned shortly. Finally, for simpli
ity weassume that I = 〈l, u〉 is su
h that l, u ≥ 0 or l, u ≤ 0 in the de�nition of the ∃t ∈ Iand ∀t ∈ I operators.160



8.2. Sampled Behaviors and Sampling Invarian
e
T.
b(t) |=T ξ i� ξ|b(t)
b(t) |=T UntilI〉(φ1, φ2) i� there exists d ∈ I su
h that

b(t+ d) |=T φ2 and, for all u ∈ [0, d〉it is b(t+ u) |=T φ1

b(t) |=T SinceI〈(φ1, φ2) i� there exists d ∈ I su
h that
b(t− d) |=T φ2 and, for all u ∈ 〈−d, 0]it is b(t+ u) |=T φ1

b(t) |=T ¬φ i� b(t) 2T φ
b(t) |=T φ1 ∧ φ2 i� b(t) |=T φ1 and b(t) |=T φ2

b |=T φ i� for all t ∈ T: b(t) |=T φThus, a R

Z
TRIO formula φ 
onstitutes the spe
i�
ation of a system, rep-resenting exa
tly all behaviors that are models of the formula. We de-note by [[φ]]T the set of all models of formula φ with time domain T, i.e.,

[[φ]]T ≡ {b ∈ BT | b |=T φ}.8.2. Sampled Behaviors and Sampling Invarian
eWe want to relate the models of a formula with a 
ontinuous-time domainto those of the same formula with a dis
rete-time domain. To do that, weintrodu
e the notion of sampling of a 
ontinuous-time behavior. Basi
ally,given a 
ontinuous-time behavior b ∈ BR, we de�ne its sampling as thedis
rete-time behavior σδ,z [b] ∈ BZ that agrees with b at all integer timeinstants 
orresponding to multiples of a 
onstant δ ∈ R>0
3 from a basi
o�set z ∈ R. We 
all δ the sampling period and z the origin of the sampling.More pre
isely, we have the following de�nition:

∀k ∈ Z : σδ,z [b] (k) ≡ b(z + kδ)8.2.1. Sampling Invarian
eNow, given a R

Z
TRIO formula φ we want to relate the set [[φ]]Z of its dis
rete-time models to the set of behaviors obtained by sampling its 
ontinuous-time models [[φ]]R. Ideally, we would like that, for some sampling period δand origin z, the following holds.3We use the symbol R>c, for some c ∈ R, to denote the set {x ∈ R |x > c}, and similarones for integer numbers. 161



8. A Framework for Dis
rete- and Continuous-Time Integration
• For any 
ontinuous-time behavior b ∈ BR whi
h is a model for φ, thesampling of b is a model for φ in dis
rete time, that is:

b ∈ [[φ]]R ⇒ σδ,z [b] ∈ [[φ]]ZWhen this holds, we say that φ is 
losed under sampling.
• For any dis
rete-time behavior b ∈ BZ whi
h is a model for φ, any
ontinuous-time behavior, whose sampling 
oin
ides with b, is a modelfor φ in 
ontinuous time, that is:

b ∈ [[φ]]Z ⇒ ∀b′ :
(
σδ,z

[
b′
]

= b ⇒ b′ ∈ [[φ]]R
)When this holds, we say that φ is 
losed under inverse sampling.When all the formulas of a language are 
losed both under sampling andunder inverse sampling we say that the language is sampling invariant. Webrie�y note that it is possible to explore variations of the above de�ni-tions, for example by allowing to pi
k a sampling period and/or an originwhi
h depend on the parti
ular behavior being 
onsidered. We leave thedis
ussion of the impa
t of these variations to future work.8.2.2. On Continuous versus Dis
rete Semanti
sA
tually, the above requirement is a too demanding one, as there are anumber of fa
ts indi
ating that it is not possible, in general, to a
hieve it,unless we adopt a logi
 language with su
h a limited expressiveness that itis of no pra
ti
al use. In this subse
tion we brie�y hint at some of thesefa
ts: noti
e that the exposition is deliberately a bit loose, as we only wantto motivate the developments that will follow.Cardinality. The �rst fa
t is a simple 
ardinality argument, that remindsus that the mappings from R are �many more� than the mappings from Z.In fa
t, for any domain D of size d = |D|, the 
ardinality of the set of allmappings Z → D is dℵ0 , whereas the set of all mappings R → D has themu
h larger 
ardinality dC = d2ℵ0 .Time Units and Sampling Period. Another issue that needs to be dealtwith is the problem of time units. Let us illustrate it with the R

Z
TRIOformula Lasts(A, 1/2), where A is a primitive 
ondition. In a dis
rete-time162



8.2. Sampled Behaviors and Sampling Invarian
esetting, we would like the formula to mean: for all (integer) time distan
esthat fall in an interval between the two time instants 
orresponding to thesampling instants 
losest to 0 and 1/2, et
. Hen
e, we should a
tuallyadopt the formula Lasts(A, 1/2δ) as dis
rete-time 
ounterpart, dividingevery time 
onstant by the sampling period.Conversely, there is another 
hange in the time 
onstants � probablyless manifest � that must be introdu
ed when interpreting a dis
rete-timeformula in 
ontinuous time. To give the intuition, 
onsider the formula
Lastsii(A, 1) in dis
rete time: A holds for two 
onse
utive time steps (in-
luding the 
urrent one). In 
ontinuous time, when evaluating the 
orre-sponding Lastsii(A, δ) between two 
onse
utive sampling instants (
f. in-stant t in Figure 8.1(b)), we 
an only state a weaker property about Aholding, namely that A holds in a subset of the δ-wide interval in the fu-ture. On basi
 formulas, this requirement is rendered as a shrinking (orstret
hing, for existential formulas) of the intervals bounds by one dis
retetime unit.

z + kδ z + (k + 1)δ

1

0

k k + 1

1

0

(a)

k − 1 t

(b)

δ

Figure 8.1.: (a) Change dete
tion failure; (b) Moving interval.In order to do this, in Se
tion 8.2.3 we are going to de�ne how to modifythe time 
onstants in any R

Z
TRIO formula when passing from 
ontinuous todis
rete time and vi
e versa. Let us name adaptation fun
tion this simpletranslation rule, as it just adapts the time bounds in our formulas, without
hanging its stru
ture. We denote the adaptation fun
tion from 
ontinu-ous to dis
rete time as ηRδ {·}, and the 
onverse fun
tion from dis
rete to
ontinuous time as ηZδ {·}.Items Velo
ity and Change Dete
tion. A basi
 intuition that should bedeveloped about the above idea of sampling is that, whenever the values ofthe basi
 items of our spe
i�
ation � whose evolution over time is des
ribedby behaviors � 
hange �too fast� with respe
t to the 
hosen sampling163



8. A Framework for Dis
rete- and Continuous-Time Integrationperiod δ, it is impossible to guarantee that those 
hanges are �dete
ted� atsampling instants, so that the properties of the behavior are preserved inthe dis
rete-time setting.Consider, for instan
e, the example of Figure 8.1(a). There, a Boolean-valued item 
hanges its values twi
e (from true to false and then ba
kto true) within the interval, of length δ, between two adja
ent samplinginstants. Therefore, any 
ontinuous-time formula predi
ating about thevalue of the item within those instants may be true in 
ontinuous time andfalse for the sampling of the behavior, whi
h only �sees� two 
onse
utivetrue values. Instead, we would like that the �rate of 
hange� of the itemsvalues is slow-pa
ed enough that every 
hange in the value of an item isdete
ted at some sampling instant, before it 
hanges again.To this end, let us introdu
e a 
onstraint on the 
ontinuous-time be-haviors of a formula: only behaviors 
onforming to the 
onstraint 
an beinvariant under sampling. The pre
ise form of the 
onstraint to be intro-du
ed depends on the kind of items we are dealing with in our spe
i�
ation(namely, whether they take values to dis
rete or 
ontinuous domains); wewill de�ne it pre
isely in the next Se
tion 8.2.3. In pra
ti
e, however, the
onstraint is expressed by an additional R

Z
TRIO formula χ, whi
h depends,in general, on the parti
ular spe
i�
ation we have written; we 
all χ thebehavior 
onstraint.8.2.3. Constrained Behaviors and AdaptationIn order to de�ne a subset of R

Z
TRIO whi
h is sampling invariant, it is
onvenient to assume that every formula is written in a suitable normalform. We are going to show that every R

Z
TRIO formula 
an be put innormal form, provided we 
an introdu
e auxiliary basi
 items. How thisimpa
ts the expressiveness of the language will be dis
ussed in Se
tion9.2.3.Normal Form. R

Z
TRIO formulas in normal form are written a

ording tothe following grammar, where ξ, ξ1, ξ2 ∈ Ξ are primitive 
onditions (de�nedformally in Se
tion 8.3).

φ ::= ξ | φ1 ∨ φ2 | φ1 ∧ φ2 |UntilI〉(ξ1, ξ2) | SinceI〈(ξ1, ξ2)

ReleasesI〉(ξ1, ξ2) | ReleasedI〈(ξ1, ξ2)164



8.2. Sampled Behaviors and Sampling Invarian
eNoti
e that the normal form prohibits nesting of temporal operators andnegations of formulas. Moreover, we have an additional synta
ti
 restri
-tion whi
h applies to dis
rete-time formulas only (that is, to formulasthat are meant to be interpreted in dis
rete time): we require that the
Until and Since operators always use an in
luded boundary, while the
Releases and Released operators always use an ex
luded boundary. Inother words, we 
onsider only dis
rete-time formulas using the temporaloperators UntilI](·), SinceI[(·), ReleasesI)(·), and ReleasedI((·).Despite the above restri
tions, any R

Z
TRIO formula 
an be expressed withthis R

Z
TRIO language fragment, with the additional requirement that weare allowed to introdu
e new auxiliary basi
 items in the spe
i�
ation, aswe are going to show shortly. First, for the ease of exposition of the fol-lowing proofs, let us introdu
e expli
itly the semanti
s for the operators ofthe normal form whi
h are not basi
 R

Z
TRIO operators, namely Releases,

Released, and ∨.
b(t) |=T ReleasesI〉(ξ1, ξ2) i� for all d ∈ I it is either b(t+ d) |=T ξ2or there exists u ∈ [0, d〉 su
h that

b(t+ u) |=T ξ1
b(t) |=T ReleasedI〈(ξ1, ξ2) i� for all d ∈ I it is either b(t− d) |=T ξ2or there exists u ∈ 〈−d, 0] su
h that

b(t+ u) |=T ξ1
b(t) |=T φ1 ∨ φ2 i� b(t) |=T φ1 or b(t) |=T φ2In Appendix D.1, we show how any R

Z
TRIO formula 
an be expressedusing just the above operators, possibly introdu
ing auxiliary items.Semanti
 Constraint. The pre
ise form of the semanti
 
onstraint to beintrodu
ed depends on the kind of items we are dealing with in our spe
i�-
ation, and namely whether they take values to dis
rete or dense domains.We are going to dis
uss separately the two 
ases in Se
tion 8.3. In a nut-shell, we 
onstrain the dynami
s of the basi
 items and/or 
onditions of thespe
i�
ation by requiring that at least δ time units (where δ is the 
hosensampling period) elapse between ea
h pair of instants of time at whi
h theitems 
hange their values. This restri
tion � whi
h mandates a �maxi-mum rate of 
hange� of the items' values � assures that every 
hange inthe truth value of a formula is propagated until either the previous or thenext sampling instant, before being possibly reversed by another 
hange.Therefore, there is no information loss by observing the system just at thesampling instants, where by information we (informally) mean the truth165



8. A Framework for Dis
rete- and Continuous-Time Integrationvalue of a spe
i�
ation formula (whi
h is the only des
ription of the systemthat we 
onsider).In pra
ti
e, the semanti
 
onstraint is expressed by an additional R

Z
TRIOformula χ, whi
h in general depends on the parti
ular spe
i�
ation we havewritten. Thus, whenever we write a spe
i�
ation φ, we are a
tually 
onsid-ering the (more restri
tive) spe
i�
ation φ∧χ, whi
h only has models withthe desired qualities. We 
an see the semanti
 
onstraint χ as a pri
e thatwe have to pay in order to have a sampling invariant spe
i�
ation. Clearly,whenever the spe
i�
ation already entails the semanti
 
onstraint, sam-pling invarian
e 
omes simply at no pri
e. In future work, we will dis
usshow the semanti
 
onstraint impa
ts on the des
ription of real systems, aswell as on the limitations it imposes on the properties that a system 
anhave.Adaptation Fun
tion. We de�ne an adaptation fun
tion ηRδ {·} whi
htranslates formulas by s
aling the time 
onstants, appearing as endpointsof the intervals, to their values divided by the sampling period δ. We alsode�ne its �inverse� ηZδ {·}, whi
h translates valid dis
rete-time formulas tovalid 
ontinuous-time ones, by s
aling ba
k the endpoints. Noti
e that, indis
rete time, it su�
es to de�ne the adaptation rule for 
losed intervals.Thus, for any formula respe
ting the all of the above synta
ti
 restri
tions,adaptation is de�ned formally indu
tively on the stru
ture of the formulasof R

Z
TRIO as follows.

166



8.2. Sampled Behaviors and Sampling Invarian
e
ηRδ {ξ} ≡ ξ
ηRδ
{
Until〈l,u〉〉(φ1, φ2)

}
≡ Until[⌊l/δ⌋,⌈u/δ⌉])

(
ηRδ {φ1} , ηRδ {φ2}

)

ηRδ
{
Since〈l,u〉〈(φ1, φ2)

}
≡ Since[⌊l/δ⌋,⌈u/δ⌉](

(
ηRδ {φ1} , ηRδ {φ2}

)

ηRδ
{
Releases〈l,u〉〉(φ1, φ2)

}
≡ Releases〈l′,u′〉]

(
ηRδ {φ1} , ηRδ {φ2}

)where l′ = {⌊l/δ⌋ if 〈 is (

⌈l/δ⌉ if 〈 is [and u′ = {⌈u/δ⌉ if 〉 is )

⌊u/δ⌋ if 〉 is ]

ηRδ
{
Released〈l,u〉〈(φ1, φ2)

}
≡ Released〈l′,u′〉[

(
ηRδ {φ1} , ηRδ {φ2}

)where l′ = {⌊l/δ⌋ if 〈 is (

⌈l/δ⌉ if 〈 is [and u′ = {⌈u/δ⌉ if 〉 is )

⌊u/δ⌋ if 〉 is ]

ηRδ {φ1 ∧ φ2} ≡ ηRδ {φ1} ∧ ηRδ {φ2}
ηRδ {φ1 ∨ φ2} ≡ ηRδ {φ1} ∨ ηRδ {φ2}Noti
e that in the dis
rete-to-
ontinuous adaptation of the Until and

Since operators, the adapted interval 〈(l − 1)δ, (u − 1)δ〉 
an indi�erentlybe taken to in
lude or ex
lude its endpoints.
ηZδ {ξ} ≡ ξ
ηZδ
{
Until[l,u]](φ1, φ2)

}
≡ Until〈(l−1)δ,(u+1)δ〉]

(
ηZδ {φ1} , ηZδ {φ2}

)

ηZδ
{
Since[l,u][(φ1, φ2)

}
≡ Since〈(l−1)δ,(u+1)δ〉[

(
ηZδ {φ1} , ηZδ {φ2}

)

ηZδ
{
Releases[l,u])(φ1, φ2)

}
≡ Releases[(l+1)δ,(u−1)δ])

(
ηZδ {φ1} , ηZδ {φ2}

)

ηZδ
{
Released[l,u]((φ1, φ2)

}
≡ Released[(l+1)δ,(u−1)δ](

(
ηZδ {φ1} , ηZδ {φ2}

)

ηZδ {φ1 ∧ φ2} ≡ ηZδ {φ1} ∧ ηZδ {φ2}
ηZδ {φ1 ∨ φ2} ≡ ηZδ {φ1} ∨ ηZδ {φ2}Sampling Invarian
e: A De�nitionFinally, a

ording to the above ideas, we 
an formulate a de�nition ofsampling invarian
e whi
h is the one we are a
tually going to use in theremainder.De�nition 8.2.1 (Sampling Invarian
e). Given a formula φ, a behavior
onstraint formula χ, two adaptation fun
tions ηRδ {·} and ηZδ {·}, a samplingperiod δ, and an origin z, we say that: 167
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• φ is 
losed under sampling i� for any 
ontinuous-time behavior b ∈
BR:

b ∈ [[φ ∧ χ]]R ⇒ σδ,z [b] ∈ [[ηRδ {φ}]]Z
• φ is 
losed under inverse sampling i� for any dis
rete-time behavior
b ∈ BZ:
b ∈ [[φ]]Z ⇒ ∀b′ ∈ [[χ]]R :

(
σδ,z

[
b′
]

= b ⇒ b′ ∈ [[ηZδ {φ} ∧ χ]]R
)

• A language is sampling invariant i� all the formulas of the languageare 
losed under sampling (when interpreted in the 
ontinuous-timedomain) and are 
losed under inverse sampling (when interpreted inthe dis
rete-time domain).8.3. Sampling Invariant Spe
i�
ationsIn this se
tion we formulate a su�
ient 
ondition for the sampling invari-an
e of a R

Z
TRIO spe
i�
ation formula φ. This 
ondition involves the de�-nition of a suitable 
onstraint formula χ on the 
ontinuous-time behaviors,as well as a de�nition of the forms of the 
onditions ξ that 
an appear in

R

Z
TRIO formulas. More pre
isely, we distinguish two 
ases, whether we aredealing with time-dependent items whi
h take values onto a dis
rete set,or with time-dependent items whi
h take values onto a dense set.Let us introdu
e this idea with more pre
ision. We assume that everyspe
i�
ation is built out of primitive time-dependent items from a (�nite)set Ψ. For example one su
h item may represent � by a Boolean value �the state of a light bulb (on or o�), another one may instead represent �by a real value � the measure of the temperature in a room, et
. So, everytime-dependent item ψi in Ψ is a mapping from time T to a suitable domain
Di, for i = 1, . . . , n, where n is the number of primitive time-dependentitems. Therefore, every behavior b ∈ BT represents the evolution over timeof the values of all primitive items; in other words, every behavior b ∈ BTis a mapping from time T to the domain D ≡ D1×· · ·×Dn. Note that wedo not 
onsider the de�nition of more 
ompli
ated time-dependent items,su
h as time-dependent fun
tions, whi
h are part of standard TRIO. Thesewould not be di�
ult to introdu
e, but we leave them out of the presentwork, in favor of a simpler exposition. The next two subse
tions will drawsu�
ient 
onditions for sampling invarian
e in the two 
ases of when every
Di is a dis
rete set (Se
tion 8.3.1) and when some Di is a dense set (Se
tion8.3.2).168



8.3. Sampling Invariant Spe
i�
ations8.3.1. Dis
rete-valued ItemsLet us 
onsider the 
ase in whi
h all time-dependent items in Ψ have dis-
rete 
o-domains, i.e., ψi is a time-dependent item taking values to thedis
rete set Di, for all i = 1, . . . , n. Thus, behaviors are mappings T→ Dwhere D ≡ D1 × · · · × Dn. We also assume that a total order is de�nedon ea
h Di. Although this assumption 
ould be avoided, we introdu
eit for uniformity of presentation; still, one 
an easily extend the presentexposition to unordered sets as well.Conditions. Let Λ be a set of 
onstants from the sets Di's, and Γ be a setof fun
tions4 having domains in subsets of D and 
o-domains in some Di's.Then, if λ ∈ Λ, f, f1, f2 ∈ Γ, and ⊲⊳ ∈ {=, <,≤, >,≥}, 
onditions ξ 
an bede�ned re
ursively as follows, assuming type 
ompatibility is respe
ted:
ξ ::= f(ψ1, . . . , ψn) ⊲⊳ λ | f1(ψ1, . . . , ψn) ⊲⊳ f2(ψ1, . . . , ψn) | ¬ξ | ξ1 ∧ ξ2Abbreviations and notational 
onventions are introdu
ed in the obviousways.Constraint on Behaviors. The 
onstraint on behaviors is expressed byFormula χ◦ and basi
ally requires that the values of the items in Ψ varyover time in su
h a way that 
hanges happen at most every δ time units,i.e., the value of ea
h item is held for δ, at least. This 
an be expressedformally with the following R

Z
TRIO5 formula.6

χ◦ , ∀v ∈ D : (〈ψ1, . . . , ψn〉 = v

⇒ WithinPii(Lastsii(〈ψ1, . . . , ψn〉 = v, δ) , δ))A Su�
ient Condition for Sampling Invarian
e. We �nally prove a su�-
ient 
ondition for sampling invarian
e of R

Z
TRIO formulas in the following.4These are of 
ourse time-independent fun
tions, in TRIO terms.5A
tually, R

Z
TRIO as we de�ned it above is purely propositional, while χ◦ uses a uni-versal quanti�
ation on non-temporal variables. However, later it will be shown whythis modi�
ation is a natural and a

eptable generalization whi
h is orthogonal tosampling invarian
e.6WithinPii(φ, τ) , ∃u ∈ [−τ, 0] : Dist(φ, u), and Lastsii(φ, τ) , ∀u ∈ [0, τ ] : Dist(φ, u).169



8. A Framework for Dis
rete- and Continuous-Time IntegrationTheorem 8.3.1 (Sampling Invarian
e for Dis
rete-valued Items). Normal-form R

Z
TRIO is sampling invariant, for items mapping to a dis
rete set D,with respe
t to the behavior 
onstraint χ◦, the adaptation fun
tions ηRδ {·}and ηZδ {·}, for any sampling period δ and origin z.Proof sket
h. Let us sket
h the outline of the proof and refer to AppendixD.2 for all the details.Let φ be any R

Z
TRIO formula: the proof is split into two main parts:�rst we show that any R

Z
TRIO formula φ, interpreted in the 
ontinuous-time domain, is 
losed under sampling; then we show that any formula φ,interpreted in the dis
rete-time domain, is 
losed under inverse sampling.To prove 
losure under sampling, let b be a 
ontinuous-time behavior in

[[χ◦]]R, φ′ = ηRδ {φ}, and b′ be the sampling σδ,z [b] of behavior b with thegiven origin and sampling period. For a generi
 sampling instant t = z+kδ,one 
an show that b(t) |=R φ implies b′(k) |=Z φ′, by indu
tion on thestru
ture of φ. Even if all the details are quite 
onvoluted, the overall ideais fairly terse: assuming φ holds we infer that some 
ondition ξ holds atsome instant u that depends on the bounds of the time intervals involved in
φ; then, 
ondition χ◦ (or χφ

• ) ensures that the truth of ξ is held at least untilthe previous or the next sampling instant (w.r.t. u); therefore, the dis
rete-time formula φ′, whose time bounds have been relaxed by the adaptationfun
tion ηRδ {·}, mat
hes this sampling instant and is thus shown to holdat k.To prove 
losure under inverse sampling let b be a dis
rete-time behavior,
φ′ = ηZδ {φ}, and b′ be a 
ontinuous-time behavior su
h that b′ ∈ [[χ◦]]R and
b = σδ,z [b′] for the given origin and sampling period. The proof is nowsplit into two parts. The former shows that, for a generi
 sampling instant
t = z + kδ, if b(k) |=Z φ then b′(t) |=R φ′, that is φ′ holds in 
ontinuous-time at all sampling instants. Again, this involves reasoning on the intervalsinvolved in the operators and the 
ondition χ◦ (or χφ

• ). Afterward, we showthat φ′ holds in between sampling instants: if it holds at some samplinginstant t, then it is either always true in the future and past, or there existde�nite �
hanging points� in the future and past where φ′ 
hanges its truthvalue to false. These 
hanging points, however, 
an be shown to 
orrespondto 
hanges in the truth value of some 
ondition ξ (be
ause in normal formwe have no nesting), and thus there 
an be at most one of them betweenany two 
onse
utive sampling instants. A �nal analysis shows that indeedif any φ′ holds at all sampling instants, then it also holds in between them,sin
e it should otherwise 
hange its value twi
e between two of them.170



8.3. Sampling Invariant Spe
i�
ations8.3.2. Dense-valued ItemsLet us now 
onsider the 
ase in whi
h some time-dependent items in Ψ havedense 
o-domains, i.e., ψi has a dense 
o-domain Di, for some i = 1, . . . , n.Without loss of generality, we 
an even assume that all Di's are dense sets,sin
e we 
an handle separately the dis
rete sets as seen in the previoussubse
tion (we do not dis
uss the details of that as it is straightforward).Similarly as for dis
rete-valued items, we assume that ea
h Di is a totallyordered set, with no pra
ti
al loss of generality.Conditions. Let Λ be a set of n-tuples of the form 〈〈1l1, u1〉1, . . . , 〈nln, un〉n〉,with li, ui ∈ Di, li ≤ ui, 〈i∈ {(, [}, and 〉i ∈ {), ]}, for all i = 1, . . . , n. More-over, for any λ ∈ Λ, we denote by λ|i its proje
tion to the ith 
omponent,i.e., λ|i ≡ 〈ili, ui〉i. Then, if λ ∈ Λ, 
onditions ξ are de�ned simply asfollows:
ξ ::= 〈ψ1, . . . , ψn〉 ∈ λ | ¬ξ | ξ1 ∧ ξ2For a behavior b : T → D, we de�ne 〈ψ1, . . . , ψn〉|b(t) ≡ ∀i = 1, . . . , n :

ψi(t) ∈ 〈ili, ui〉i, i.e., all items are in their respe
tive ranges at time t.Also in this 
ase, it is simple to introdu
e abbreviations and notational
onventions.Constraint on Behaviors. The 
onstraint on behaviors is now dependenton the a
tual 
onditions ξ that we have introdu
ed in our spe
i�
ationformula φ. This is di�erent than the 
onstraint χ◦ for dis
rete-valued items,whi
h was independent of φ. Now, if we let Ξ̃ be the set of 
onditions thatappear in φ, we have to require that the value of every item in Ψ is su
hthat 
hanges with respe
t to the 
onditions in Ξ̃ happen at most every δtime units. In other words, if any 
ondition ξ̃ ∈ Ξ̃ is true (resp. false) atsome time, then it stays true (resp. false) in an interval of length δ (atleast). This is expressed by the following �pseudo�-R
Z
TRIO formula, wherethe higher-order quanti�
ation ∀ξ̃ ∈ Ξ̃ is to be meant as a shorthand forthe expli
it enumeration of all the 
onditions in (the �nite set) Ξ̃.

χφ
• , ∀ξ̃ ∈ Ξ̃ : WithinPii

(
Lastsii

(
ξ̃, δ
)
, δ
)
∨WithinPii

(
Lastsii

(
¬ξ̃, δ

)
, δ
)Theorem 8.3.2 (Sampling Invarian
e for Dense-valued Items). Normal-form R

Z
TRIO is sampling invariant, for items mapping to a dense set D,with respe
t to the behavior 
onstraint χφ

• , the adaptation fun
tions ηRδ {·}and ηZδ {·}, for any sampling period δ and origin z. 171



8. A Framework for Dis
rete- and Continuous-Time IntegrationProof. Similarly as in Theorem 8.3.1, for dense-valued items the truth valueof any 
ondition ξ 
annot 
hange between any two 
onse
utive samplinginstants, exa
tly be
ause of the behavior 
onstraint χφ
• . In fa
t, χφ

• requiresthat if the value of any item ψi is in (resp. out of) an interval λ|i, it staysin (resp. out of) λ|i until the next sampling instant. Therefore, thanks tothis observation, the proof is exa
tly as in Theorem 8.3.1 (see AppendixD.2 for details).8.4. An Example of Integration: The ControlledReservoirLet us now dis
uss an example that demonstrates our approa
h to inte-gration. Let us 
onsider a simple 
ontrol system made of two modules:a reservoir and a 
ontroller. We model the former using 
ontinuous-timeTRIO, and the latter using dis
rete-time TRIO. This mirrors the assump-tions that the reservoir models a physi
al systems, where quantities vary
ontinuously, while the 
ontroller is a digital devi
e, that updates its stateat periodi
 instants.8.4.1. System Spe
i�
ationThe reservoir 
an nondeterministi
ally leak; this is modeled by the Booleanitem L whi
h is true i� the reservoir leaks. Leaking 
an happen at any time.The reservoir 
an also be �lled with new liquid: this happens whenever theBoolean item F is true. It is the 
ontroller whi
h is responsible for setting
F to true, thus repla
ing the �uid that has been split, whenever needed.Finally, the reservoir has a (nonnegative) real-valued time-dependent item
l that represents the measure of the level of �uid in the reservoir at anyinstant. In our example, we model the Boolean items F and L as TRIOstates (see Se
tion 2.1.4).When the reservoir is leaking, the level of �uid de
reases at a 
onstantrate of rl units of �uid per unit of time. Conversely, when it is being �lled,the level of �uid in
reases at a 
onstant rate of rf , and we assume that
rf > rl, i.e., the �lling 
an 
ontrast the leaking. The four possible resultingbehaviors are des
ribed by the following TRIO axioms.Axiom 35 (reservoirR.level_behavior_1).

Lastsee(F ∧ L, t) ∧ l = l ⇒ Futr(l = l + (rf − rl)t, t)172



8.4. An Example of Integration: The Controlled ReservoirAxiom 36 (reservoirR.level_behavior_2).
Lastsee(F ∧ ¬L, t) ∧ l = l ⇒ Futr(l = l + rft, t)Axiom 37 (reservoirR.level_behavior_3).

Lastsee(¬F ∧ L, t) ∧ l = l ⇒ Futr(l = max(l − rlt, 0), t)Axiom 38 (reservoirR.level_behavior_4).
Lastedee(¬F ∧ ¬L, t) ∧ l = l ⇒ Futr(l = l, t)For spe
ifying the 
ontrol a
tion of the 
ontroller we de�ne two 
onstantvalues l, t ∈ R≥0 that represent, respe
tively, the minimum desired levelof �uid in the reservoir and a threshold below whi
h the 
ontrol a
tion istriggered. More pre
isely, t is su
h that t > l + rlδ, i.e., a leaking 
annotempty the di�eren
e t − l in less than δ time units, for some δ ∈ R+

0 .Thus, we formalize very simply 
ontrol a
tion as follows (re
all that this isinterpreted over dis
rete time):Axiom 39 (
ontrollerZ.�lling_behavior).
l < t ⇒ FWe also assume that the reservoir is initially �lled properly.Axiom 40 (reservoirR.initialization).

Som(AlwPe(l ≥ t))8.4.2. Sampling Invariant Derived Spe
i�
ationAxioms 35�36 above use free variables, so they are not R

Z
TRIO formulas.However, it is straightforward to derive some simpler formulas, using only
onstant values, that are full R

Z
TRIO formulas and 
an therefore be shownto be sampling invariant. They are listed below as four theorems, whoseelementary proofs are shown in Appendix C for referen
e.Theorem 41 (reservoirR.abstra
t_behavior_1).

Lastsee(F, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ) 173



8. A Framework for Dis
rete- and Continuous-Time IntegrationTheorem 42 (reservoirR.abstra
t_behavior_2).
l ≥ t ⇒ Futr(l ≥ l, δ)Theorem 43 (reservoirR.abstra
t_behavior_3).

Lastsee(¬F ∧ ¬L, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ)Noti
e, instead, that the other axioms already qualify as R

Z
TRIO formu-las.8.4.3. System RequirementThe goal of the veri�
ation problem for this example is to prove the fol-lowing R

Z
TRIO formula, whi
h formalizes the requirement that the level ofthe reservoir never goes below the value l. Note that this formula 
an beequivalently interpreted over the reals or the integers.Theorem 44 (level_invarian
e).

Alw(l ≥ l)8.4.4. Adapted Spe
i�
ationLet us now put all the relevant formulas in normal form; note that we omitthe parenthesis index in operators (su
h as the 〉 in UntilI〉(· · ·)), wheneverit 
an be anything. For brevity, let us not des
ribe the full trans
riptionpro
ess.Theorem 45 (reservoirR.abstra
t_behavior_1-normal).
l < l ∨ Until(0,δ)(true,¬F) ∨ Releases[δ,δ](false, l ≥ l)Theorem 46 (reservoirR.abstra
t_behavior_2-normal).

l < t ∨ Releases[δ,δ](false, l ≥ l)Theorem 47 (reservoirR.abstra
t_behavior_3-normal).
l < l ∨ Until(0,δ)(true,F ∨ L) ∨ Releases[δ,δ](false, l ≥ l)In the following axiom, note that S is the auxiliary item introdu
ed toeliminate nesting.174



8.4. An Example of Integration: The Controlled ReservoirAxiom 48 (reservoirR.initialization-normal).
((

S ∧ Released(0,∞)(false, l ≥ t)
)
∨
(
¬S ∧ Since(0,∞)(true, l < t)

))

∧
(
Since(0,∞)(true,S) ∨ S ∨Until(0,∞)(true,S)

)Next, we adapt the 
ontinuous-time Theorems 45�47 and Axiom 48 intodis
rete-time formulas a

ording to a sampling period δ. The resulting for-mulas, after putting them ba
k into more readable form, are the following,where re
all that Lastsii(φ, t) = ∀d ∈ [0, t] : Dist(φ, d).Theorem 49 (reservoirZ.abstra
t_behavior_1).
Lastsii(F, 1) ∧ l ≥ l ⇒ NowOn(l ≥ l)Theorem 50 (reservoirZ.abstra
t_behavior_2).

l ≥ t ⇒ NowOn(l ≥ l)Theorem 51 (reservoirZ.abstra
t_behavior_3).
Lastsii(¬F ∧ ¬L, 1) ∧ l ≥ l ⇒ NowOn(l ≥ l)Axiom 52 (reservoirZ.initialization).

Som(AlwPi(l ≥ t))8.4.5. System Veri�
ationLet us assume that the behavior 
onstraint χφ
• (49− 52) for Formulas 49�52 holds. In the following se
tion we will dis
uss the a
tual impa
t of the
onstraint and how it 
an be removed.Proof of Theorem 44 (Alw(l ≥ l)). Thanks to Axiom 52, we have a timeinstant u at whi
h AlwPi(l ≥ t) holds. This instant serves as the base ofthe indu
tion.So, for all instants up to u the property l ≥ l holds trivially.Let us now 
onsider a generi
 time instant v ≥ u and assume that l ≥ lholds up to v, in
luded. We show that l ≥ l holds at v + 1 as well, by 
asedis
ussion at v for the predi
ates F and L. More pre
isely, we have thefollowing 
ases. 175



8. A Framework for Dis
rete- and Continuous-Time Integration1. NowOn(¬F), that is F is false at v + 1.Then, by Axiom �lling_behavior, l ≥ t > l at v + 1.2. NowOn(F), that is F is true at v+ 1. Then, we distinguish two more
ases.a) F at v. Therefore, we have immediately l ≥ l at v+1 by Theorem49.b) ¬F at v. Therefore, by Axiom �lling_behavior, l ≥ t at v.Then, by Theorem 51, l ≥ l at v + 1.It 
an be noti
ed that the proof is remarkably simple. In parti
ular,thanks to the sampling invarian
e 
onditions it has been possible to ab-stra
t away from all the details on the 
ontinuous variability of the l item,while being guaranteed that nothing �unpleasant� happens between anytwo dis
rete-time instants. Thanks to the simpli
ity, the proof 
an also be
ompletely automated. In parti
ular, we proved it using model-
he
kingte
hniques for TRIO and the SPIN model 
he
ker (see Se
tion 2.4.1).For a 
omparison, the reader may 
onsider [FR04℄, where a similar exam-ple of a 
ontrolled reservoir was veri�ed in 
ontinuous-time TRIO exploitinga 
ompositional framework. The system des
ription in [FR04℄ was less ab-stra
t than the present one, and the proof was 
onsequently substantiallymore 
ompli
ated even after the simpli�
ations permitted by the 
omposi-tional approa
h. In parti
ular, it was not possible to 
ompletely automatethe proof pro
ess, whi
h 
ould only be 
he
ked with the aid of PVS.Finally, we note that the property, proved in the dis
rete-time setting, im-mediately translates through sampling invarian
e to the theoremlevel_invarian
e.
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8.4. An Example of Integration: The Controlled Reservoir
Operator Definition

ReleasesI〉(φ1, φ2) ¬UntilI〉(¬φ1,¬φ2)

ReleasedI〈(φ1, φ2) ¬SinceI〈(¬φ1,¬φ2)

∃t ∈ I = 〈l, u〉 : Dist(φ, t)

{
Until〈l,u〉〉(true, φ) if u ≥ l ≥ 0

Since〈−l,−u〉〉(true, φ) if u ≤ l ≤ 0

∀t ∈ I = 〈l, u〉 : Dist(φ, t)

{
Releases〈l,u〉〉(false, φ) if u ≥ l ≥ 0

Released〈−l,−u〉〉(false, φ) if u ≤ l ≤ 0

Dist(φ, d) ∀t ∈ [d, d] : Dist(φ, t)
Futr(φ, d) d ≥ 0 ∧Dist(φ, d)
Past(φ, d) d ≥ 0 ∧Dist(φ,−d)
SomF(φ) ∃t ∈ (0,+∞) : Dist(φ, t)
SomP(φ) ∃t ∈ (−∞, 0) : Dist(φ, t)
Som(φ) SomF(φ) ∨ φ ∨ SomP(φ)
AlwF(φ) ∀t ∈ (0,+∞) : Dist(φ, t)
AlwP(φ) ∀t ∈ (−∞, 0) : Dist(φ, t)
Alw(φ) AlwF(φ) ∧ φ ∧AlwP(φ)

WithinF(φ, τ) ∃t ∈ (0, τ) : Dist(φ, t)
WithinP(φ, τ) ∃t ∈ (−τ, 0) : Dist(φ, t)
Within(φ, τ) WithinF(φ, τ) ∨ φ ∨WithinP(φ, τ)
Lasts(φ, τ) ∀t ∈ (0, τ) : Dist(φ, t)
Lasted(φ, τ) ∀t ∈ (−τ, 0) : Dist(φ, t)
Until(φ1, φ2) Until(0,+∞))(φ1, φ2)

Since(φ1, φ2) Since(0,+∞)((φ1, φ2)

NowOn(φ)

{
Lasts(φ, δ) if the time domain is R
Futr(φ, 1) if the time domain is Z

UpToNow(φ)

{
Lasted(φ, δ) if the time domain is R
Past(φ, 1) if the time domain is Z

Becomes(φ) UpToNow(¬φ) ∧NowOn(φ)Table 8.1.: TRIO derived temporal operators
177





9. Features of the IntegrationFrameworkThis 
hapter analyzes some important features of the integration frameworkpresented in the previous Chapter 8.More pre
isely, the following aspe
ts are investigated.
• The adaptation fun
tion, that is part of the integration framework,pres
ribes to shrink intervals appearing in temporal operators; it mayhappen that a shrinking 
auses an interval to be
ome empty. Se
tion9.1 shows 
onditions on the size of the intervals under whi
h this doesnot happen.
• The expressiveness of R

Z
TRIO is investigated in Se
tion 9.2. In par-ti
ular, we 
ompare its expressiveness to that of the MTL temporallogi
, showing that the two languages are in fa
t equally expressive.

• Se
tion 9.3 studies properties of the behaviors obeying the 
onstraint
χ. Namely, we show 
onditions under whi
h the �slow variability�enfor
ed by χ 
an be lifted up from formulas, thus permitting to nestformulas while retaining the results about sampling invarian
e statedin the previous 
hapter for nesting-free formulas. Moreover, it isshown how to (partially) 
hara
terize the requirement of the behav-ior 
onstraint χφ

• for dense-valued items through the mathemati
alnotion of uniform 
ontinuity.
• In the literature, the most used notion of dis
retization is that basedon the notion of digitization, introdu
ed by Henzinger, Manna andPnueli [HMP92℄. This notion has similarities and di�eren
es withour notion of sampling invarian
e. Therefore, Se
tion 9.4 formally
ompares the two notions.
• Although temporal logi
s are less expressive than automata (sin
ethe former 
annot express �
ounting� properties), it may be usefulto be able to 
hara
terize the behavior of an automaton through179



9. Features of the Integration Frameworka set of logi
 formulas. This allows one, among other things, to de-rive properties of the automata through logi
 inferen
e, and therefore
onsists another approa
h to modeling and veri�
ation (
alled �dual-language� [FMMR07℄). In Se
tion 9.5 we provide an axiomatizationof timed automata in R

Z
TRIO.9.1. How to Avoid Degenerate IntervalsIn presenting the results about sampling invarian
e for R

Z
TRIO, we madeno assumptions on the size of the intervals involved in the formulas. Inparti
ular, it may happen that the adaptation fun
tion 
hanges an intervalso that it be
omes degenerate, that is empty. Although the above proofsstill hold, it may be obje
ted that a degenerate formula makes little sense,sin
e it is either trivially true or trivially false. In this se
tion we presentsu�
ient 
onditions on the size of the un-adapted intervals that guaranteethat adaptation gives non-degenerate adapted intervals.Table 9.1 lists the requirements on unadapted intervals that guaranteethat the adapted intervals are non-empty (i.e., of size greater than 0, butallowing the endpoints to 
oin
ide for intervals of R).The su�
ien
y of these requirements is proved in Appendix D.3.Operator (in R) Interval Requirement

UntilI〉(·, ·) I = 〈l, u〉 u− l > 0

SinceI〈(·, ·) I = 〈l, u〉 u− l > 0

ReleasesI〉(·, ·) I = 〈l, u〉 6= (l, u) u− l ≥ δ
ReleasedI〈(·, ·) I = 〈l, u〉 6= (l, u) u− l ≥ δ
ReleasesI〉(·, ·) I = (l, u) u− l ≥ 2δ

ReleasedI〈(·, ·) I = (l, u) u− l ≥ 2δOperator (in Z) Interval Requirement
UntilI〉(·, ·) I = [l, u] u− l ≥ 0

SinceI〈(·, ·) I = [l, u] u− l ≥ 0

ReleasesI〉(·, ·) I = [l, u] u− l ≥ 2

ReleasedI〈(·, ·) I = [l, u] u− l ≥ 2Table 9.1.: Requirements for non-degenerate adapted intervals
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9.2. On the Expressiveness of R

Z
TRIO9.2. On the Expressiveness of R

Z
TRIOThis se
tion 
ompares the expressiveness of R

Z
TRIO with those of otherrelated formalisms, and dis
usses how the nesting-freeness requirement onformulas also in�uen
es the expressiveness of the resulting language.9.2.1. Stri
t vs. Non-Stri
t Operators

R

Z
TRIO de�nition of the until and sin
e operators is non-stri
t in the �rstargument, in that the �rst argument is required (in parti
ular) to holdat the 
urrent instant as well (see Se
tion 8.1). This 
hoi
e is not very
ommon, and it has been made ne
essary to a
hieve sampling invarian
e.On the 
ontrary, the usual 
hoi
e for dense-time domains is a stri
t one.This se
tion dis
usses how the 
hoi
e of stri
t and non-stri
t operatorsimpa
ts the expressiveness of a language, by showing that non-stri
t metri
operators are as expressive as stri
t ones. For brevity and ease of exposition,we moved most of the proofs to Appendix D.4, fo
using here on presentingthe results.It is usually held that the expressive equivalen
e between stri
t and non-stri
t operators does not hold, in general, over dense time, where stri
tvariants are believed to be stri
tly more expressive. This is a �folk theorem�whi
h has never been expli
itly proved � to the best of our knowledge �but whose validity is generally a

epted. For instan
e, [BCM05℄ 
laimsthat the formula ¬a ∧ Ũntil(0,+∞))(a, b) � where Ũntil denotes a stri
tvariation of the until operator that we are going to de�ne shortly � 
annotbe expressed using only non-stri
t until.1 [Hen98℄ 
laims in Footnote 5 that�in real time, stri
t until 
annot be de�ned from weak until and next�2 
itinga personal 
ommuni
ation with Raskin as a referen
e. [AFH96℄ 
laims thatMITL's bounded until �
annot be de�ned in terms of an until operator thatis not stri
t in its �rst argument�.However, these 
laim are not true for our 
ontinuous-time semanti
s,if we restri
t ourselves to non-Zeno behaviors (as it is 
ustomary, and asit is impli
it with models su
h as the interval-based sequen
e), as we arenow going to show. Let us remark that we are fo
using on the dense-timesemanti
s, unless expli
itly stated otherwise.1A
tually, it is not 
lear if [BCM05℄ refers the 
laim to qualitative and/or dis
rete-timetemporal logi
.2Noti
e, however, that the referen
e is to a point-based semanti
s, while we 
onsiderinterval-based models. 181



9. Features of the Integration FrameworkStri
t semanti
s of operators. Let us de�ne formally the semanti
s ofstri
t until and sin
e, denoted as Ũntil and S̃ince, respe
tively.
b(t) |=T ŨntilI〉(φ1, φ2) i� there exists d ∈ I su
h that

b(t+ d) |=T φ2 and, for all u ∈ (0, d〉it is b(t+ u) |=T φ1

b(t) |=T S̃inceI〈(φ1, φ2) i� there exists d ∈ I su
h that
b(t− d) |=T φ2 and, for all u ∈ 〈−d, 0)it is b(t+ u) |=T φ1We refer to the de�nitions in Se
tion 8.1 for the semanti
s of the non-stri
tuntil and sin
e, as well as the derived operators that we are going to use.In parti
ular, let us remark that we always assume that the intervals I arenon empty, i.e., the right end-point is at least as large as the left end-point.It is not di�
ult to see that this is without loss of generality.Stri
t is at least as expressive as non-stri
t. It is quite 
lear that stri
tmetri
 operators are at least as expressive as non-stri
t one. In fa
t, ingeneral the following equivalen
es hold both over dense and over dis
retetime.

UntilI〉(φ1, φ2) ≡
{
φ2 ∨ (φ1 ∧ Ũntil(0,u〉)(φ1, φ2) if I = [0, u〉 and 〉 is )

φ1 ∧ ŨntilI〉(φ1, φ2) otherwise (0 6∈ I or 〉 =])The 
ase for the sin
e is immediately derivable.Over dis
rete time, stri
t is exa
tly as expressive as non-stri
t. Overdis
rete time, it is also straightforward to noti
e that the 
onverse holds,i.e., non-stri
t operators are at least as expressive as stri
t ones. In fa
twe have the following (re
all that, in dis
rete time, all intervals 
an beexpressed as 
losed ones).
Ũntil[l,u]〉(φ1, φ2) ≡Z





NowOn
(
Until[l−1,u−1]〉(φ1, φ2)

) if l ≥ 1

NowOn
(
Until[l,u−1]〉(φ1, φ2)

)
∨ φ2 if l = 0 < u

φ2 if l = u = 0The 
ase for the sin
e is immediately derivable.Noti
e that, in the above equivalen
es, we used the NowOn operator,whi
h in dis
rete time 
an be expressed as NowOn(φ) = Futr(φ, 1), whi
h isthe same as the usual Linear Temporal Logi
 (LTL) next operator [GHR94℄.Therefore, the equivalen
e in expressive power over dis
rete time does not182



9.2. On the Expressiveness of R

Z
TRIO
ontradi
t the well-known result that next in LTL 
annot be de�ned fromnon-stri
t until only [GHR94℄, as the result for LTL does not deal with themetri
 modality of bounded until � whi
h is instead the basis of R

Z
TRIO� but with qualitative (unbounded) until only.Stri
t and non-stri
t NowOn operators. In order to better 
ompre-hend the problem in the dense-time setting, let us strip it down to its
ore. Let us de�ne two variations of the nowon and uptonow opera-tors whi
h are useful over dense time. ǫNowOn(φ) denotes that φ holdsin a non-empty right-open left-
losed interval on the right of the 
ur-rent instant; therefore ǫNowOn(φ) ≡ Until(0,+∞))(φ, true). Its past 
oun-terpart is ǫUpToNow(φ); it denotes that φ holds in a non-empty left-open right-
losed interval on the left of the 
urrent instant, and it is de-�ned as ǫUpToNow(φ) ≡ Since(0,+∞)((φ, true). Their stri
t 
ounterpartspredi
ate over intervals that are open on both ends; their de�nitions arethe following: ˜ǫNowOn(φ) ≡ Ũntil(0,+∞))(φ, true) and ˜ǫUpToNow(φ) ≡

S̃ince(0,+∞)((φ, true).3As we are going to show more expli
itly shortly, the problem of expres-siveness for the stri
t vs. non-stri
t until and sin
e requires in parti
ular toexpress the stri
t nowon and uptonow using their non-stri
t 
ounterparts.In order to a
hieve this, we have to �rst re
all a basi
 property of non-Zeno time-dependent predi
ates. As it is shown in [GM01℄, any non-Zenoprimitive p item obeys the following formulas:
Alw

(
˜ǫNowOn(p) ∨ ˜ǫNowOn(¬p)

)

Alw
(

˜ǫUpToNow(p) ∨ ˜ǫUpToNow(¬p)
)That is, there is always a non-empty interval in the future (and one inthe past) where p has a de�nite 
onstant value. It is not di�
ult to �lift�su
h property from basi
 items to arbitrary formulas, by showing that forany R

Z
TRIO formula φ, if all of the basi
 items on whi
h it predi
ates arenon-Zeno, then the truth value of φ as a fun
tion of time is also non-Zeno.In other words, (temporal) operators preserve non-Zenoness. The proofwould go by stru
tural indu
tion. So we have, for any R

Z
TRIO formula φ,3Re
all that in standard TRIO the operators ˜ǫNowOn and ˜ǫUpToNow are denotedsimply as NowOn and UpToNow [GM01℄. Here, however, we adopt the notation andde�nitions of R

Z
TRIO (see Se
tion 8.1). 183



9. Features of the Integration Frameworkthat:
Alw

(
˜ǫNowOn(φ) ∨ ˜ǫNowOn(¬φ)

) (9.1)
Alw

(
˜ǫUpToNow(φ) ∨ ˜ǫUpToNow(¬φ)

) (9.2)Therefore, we exploit this basi
 non-Zenoness property to express stri
toperators using non-stri
t ones. We have the following equivalen
es.
˜ǫNowOn(φ) ⇔ ǫNowOn(φ) ∨ (¬φ ∧ ¬ ǫNowOn(¬φ))

˜ǫUpToNow(φ) ⇔ ǫUpToNow(φ) ∨ (¬φ ∧ ¬ ǫUpToNow(¬φ))The proof is simple, and relies on properties 9.1 and 9.2. Let us demonstratethe proof for the nowon 
ase, the other being obviously all similar.Proof. Let us start by proving the ⇒ dire
tion: assume that ˜ǫNowOn(φ)holds at some instant t. Let us �rst 
onsider the 
ase: φ true at t; then also
ǫNowOn(φ), and we satisfy the �rst term of the disjun
tion. Otherwise,let us 
onsider φ false at t. Then, ǫNowOn(¬φ) must also be false at t,otherwise ˜ǫNowOn(φ) 
annot be true. This 
on
ludes this bran
h, sin
e wesatisfy the se
ond term of the disjun
tion.For the ⇐ dire
tion, let us start by 
onsidering the 
ase ǫNowOn(φ)at t; then, a fortiori, ˜ǫNowOn(φ), at t and we are done. Otherwise, letus assume that ¬φ ∧ ¬ ǫNowOn(¬φ) holds at the 
urrent instant t. Byevaluating Formula 9.1 at time t, we immediately 
on
lude that ˜ǫNowOn(φ)at t, whi
h 
on
ludes the whole proof.Stri
t until expressed with non-stri
t operators. Let us assume a > 0;then, the following equivalen
e hold (it is proved in Appendix D.4.1).
Ũntil(a,b〉)(φ1, φ2) ⇔ Until(a,b〉)(true, φ2)∧ Lastsei

(
Until(0,+∞))(φ1, φ2) , a

)(9.3)Now, using Formula 9.3, it is not di�
ult to prove the following (still for
a > 0, see Appendix D.4.2).

Ũntil[a,b〉)(φ1, φ2) ⇔ Ũntil(a,b〉)(φ1, φ2) ∨ (Lastsee(φ1, a) ∧ Futr(φ2, a))(9.4)184



9.2. On the Expressiveness of R

Z
TRIOVariants with ]. It is simple to express the ] variants of the until usingthe ) variants used above; in fa
t, we have the following.

Ũntil(a,b〉](φ1, φ2) ⇔ Ũntil(a,b〉)(φ1, φ2 ∧ φ1) (9.5)
Ũntil[a,b〉](φ1, φ2) ⇔ Ũntil[a,b〉)(φ1, φ2 ∧ φ1) (9.6)No need for pun
tual intervals. Noti
e that Formula 9.4 uses a pun
tualinterval, i.e., it spe
i�es an exa
t time distan
e through the Futr operator.Nonetheless, this is not ne
essary, as far as the expression of the stri
tuntil is 
on
erned. In fa
t, we provide alternative equivalent formulas thatdo not use pun
tual intervals (of 
ourse, provided the stri
t until itself is
onstrained by a non-pun
tual interval). They will be useful in de�ningthe relation between R

Z
TRIO and MITL in Se
tion 9.2.2. The proofs areprovided in Appendix D.4.3.This time, we start with the ] variant of the until operator, and we �rstestablish the following (for a > 0).

Ũntil[a,b〉](φ1, φ2) ⇔
Lastsei

(
Until[0,+∞)](φ1, φ2) , a

)
∧Until[a,b〉](true, φ2 ∧ φ1) (9.7)Finally, in the following we express the ) variant through the ] variant(as always, assume a > 0).

Ũntil[a,b〉)(φ1, φ2) ⇔ Ũntil[a,b〉](φ1, φ2) ∨(
Lastsee

(
Until(0,+∞))(φ1,¬φ1 ∧ φ2) , a

)
∧Until[a,b〉)(true,¬φ1 ∧ φ2)

)(9.8)When the left bound is zero. Finally, we have to handle the a = 0
ase for the intervals. Let us start with left-open intervals; the 
ase forleft-
losed will be an immediate 
onsequen
e.Now, we �nally need the above results about the expressibility of the
˜ǫNowOn operator. In fa
t, we prove the following (see proof in AppendixD.4.3).

Ũntil(0,b〉)(φ1, φ2) ⇔ Until(0,b〉)(true, φ2) ∧ ˜ǫNowOn
(
Until(0,+∞))(φ1, φ2)

)(9.9)185



9. Features of the Integration FrameworkThen, it is simple to express the 
ase in whi
h the left endpoint is in-
luded.
Ũntil[0,b〉)(φ1, φ2) ⇔ Ũntil(0,b〉)(φ1, φ2) ∨ φ2 (9.10)Finally, noti
e that Formulas 9.5 and 9.6 are valid also when a = 0 < b.For a = b = 0 it is routine to verify the following, whi
h 
on
ludes our setof equivalen
es.

Ũntil[0,0]〉(φ1, φ2) ⇔ φ2 (9.11)Swit
hing to other semanti
 models. Let us 
on
lude this se
tion witha remark. Noti
e that the above equivalen
e proofs still hold if we makesome variations on the semanti
 model a

ording to whi
h we interpret
R

Z
TRIO formulas. In parti
ular, the equivalen
e between stri
t and non-stri
t operators holds even for mono-in�nite time domains (namely, thenonnegative reals R≥0), and for the future-only fragment of R

Z
TRIO (thatis, the fragment whi
h does not use the Since operator). This remark willbe useful in 
omparing the expressiveness of R

Z
TRIO to that of other metri
temporal logi
s.9.2.2. R

Z
TRIO, MTL and MITLThis se
tion 
ompares R

Z
TRIO with the metri
 temporal logi
 MTL [Koy90,AH93℄, and its synta
ti
 fragment MITL [AFH96℄.Syntax and Semanti
s of MTL and MITLLet us start by introdu
ing formally the syntax and semanti
s of MTL (andMITL).Koymans's and Alur and Henzinger's MTL. First of all, let us remark afa
t that is usually left impli
it (or only brie�y hinted at) in the literature.There are a
tually two metri
 temporal logi
s that are referred to as �MTL�.The original one is that �rst de�ned by Koymans in [Koy90℄. Noti
ethat Koymans's MTL permits full quanti�
ation on variables, in
ludingtime variables, as well as the expression of arithmeti
 relations betweentime bounds (or other variables). Therefore, as it was originally de�ned,MTL is a very expressive (and fundamentally unde
idable) language whi
hmay be 
ompared to full TRIO for several of its features.Afterward, Alur and Henzinger published several in-depth analyses ofthe expressiveness of metri
 temporal logi
s, in
luding MTL. In parti
ular186



9.2. On the Expressiveness of R

Z
TRIO[AH93℄ shows that a suitable subset of Koymans's MTL, interpreted overthe naturals, 
an be regarded as an expressively 
omplete (elementarilyde
idable) fragment of a monadi
 �rst-order language over the time sort.Even if [AH93℄ simply 
alls �MTL� the proposed logi
, it is indeed a propersubset of Koymans's �full� MTL, in that it is purely propositional, and onlyintervals with 
onstant endpoints are allowed. Mu
h subsequent literaturehas also used simply the term �MTL� to refer to Alur and Henzinger's MTLfragment.In the same vein, we warn the reader that in this paper the name �MTL�will refer to MTL à la Alur and Henzinger, not Koymans's. Moreover, we
onsider the MTL variant with past operators, as also done in [AH93℄.MTL syntax. MTL syntax is de�ned by the following grammar:

φ ::= ξ | φ1UIφ2 | φ1SIφ2 | ¬φ | φ1 ∧ φ2where I is an interval of R≥0
4, whose endpoints are 
onstants.It is 
ustomary to de�ne some derived operators in MTL (as it is donewith R

Z
TRIO). In Table 9.2 we list the most 
ommon ones. Also noti
e thatOperator Definition Name
♦Iφ trueUIφ time-
onstrained eventually
�Iφ ¬♦I¬φ time-
onstrained always

φ1WIφ2 ¬ (¬φ2UI¬φ1) time-
onstrained unless←−
♦ Iφ trueSIφ time-
onstrained eventually (past)←−
� Iφ ¬←−♦ I¬φ time-
onstrained always (past)

φ1TIφ2 ¬ (¬φ2SI¬φ1) time-
onstrained unless (past)Table 9.2.: MTL derived temporal operatorswe freely introdu
e abbreviations to denote intervals. Namely, we denoteas ≤ u, < u, ≥ l, > l, and = l the intervals [0, u], [0, u), [l,+∞), (l,+∞),and [l, l], respe
tively.4Another di�eren
e with respe
t to most papers dealing with MTL is that they usually
onsider intervals of the rationals or integers only. These restri
tions are howeveradopted solely to a
hieve de
idability properties, whi
h we do not deal with here;hen
e, we do not adopt su
h restri
tions � that are however orthogonal to the notionof sampling invarian
e and to the related issues � in our presentation of MTL.187



9. Features of the Integration FrameworkMTL semanti
s. In de�ning MTL semanti
s, we 
onsider operators thatare stri
t in their �rst arguments (as it is more 
ommon in MTL-relatedliterature), and we adopt bi-in�nite temporal domains, in 
onforman
e with
R

Z
TRIO. Moreover, we 
onsider interpretations over behaviors, adapting thestandard interval-based sequen
e interpretation of MTL (and MITL, seee.g. [AFH96℄). Finally, we remark that standard MTL semanti
s does notuse the ] variation of the until (and sin
e) operators, where the �rst andthe se
ond argument are required �to meet�, whi
h is instead introdu
ed in

R

Z
TRIO.
b(t) |=T ξ i� ξ|b(t)
b(t) |=T φ1UIφ2 i� there exists d ∈ I su
h that b(t+ d) |=T φ2and, for all u ∈ (0, d) it is b(t+ u) |=T φ1

b(t) |=T φ1SIφ2 i� there exists d ∈ I su
h that b(t− d) |=T φ2and, for all u ∈ (0, d) it is b(t− u) |=T φ1

b(t) |=T ¬φ i� b(t) 2T φ
b(t) |=T φ1 ∧ φ2 i� b(t) |=T φ1 and b(t) |=T φ2

b |=T φ i� for all t ∈ T: b(t) |=T φMITL. MITL [AFH96℄ is simply de�ned as a synta
ti
 subset of MTL,where all intervals I in formulas are required to be non-singular, i.e., notin the form [l, l] for any l ∈ R≥0.Equivalen
e between MTL and R

Z
TRIOIn order to show that MTL and R

Z
TRIO are equally expressive languages,we provide two translations � one from MTL formulas to R

Z
TRIO and theother from R

Z
TRIO formulas to MTL � that preserve truth of formulas.Noti
e that these translations will make use of the equivalen
e betweenstri
t and non-stri
t operators shown in Se
tion 9.2.1; therefore, we willuse stri
t versions of R

Z
TRIO operators whenever needed. For brevity, weomit the proofs that the translations preserve truth of formulas, as theyare straightforward by 
ase dis
ussion.

188



9.2. On the Expressiveness of R

Z
TRIOTranslating MTL to R

Z
TRIO. The fun
tion ♯{·} provides a translationfrom MTL formulas to R

Z
TRIO ones that preserves truth values.

♯{ξ} ≡ ξ
♯{¬φ} ≡ ¬ ♯{φ}
♯{φ1 ∧ φ2} ≡ ♯{φ1} ∧ ♯{φ2}
♯{φ1UIφ2} ≡ ŨntilI)(♯{φ1} , ♯{φ2})
♯{φ1SIφ2} ≡ S̃inceI)(♯{φ1} , ♯{φ2})Translating R

Z
TRIO to MTL. The fun
tion ♭{·} provides a translationfrom R

Z
TRIO formulas to MTL ones that preserves truth values. In this
ase, we have to take 
are of R

Z
TRIO's non-stri
t operators (whi
h are sim-ply expressible using MTL's stri
t ones), and to deal with the variation of

R

Z
TRIO's operators with a ] subs
ript (whi
h is also rather simply redu
ibleto the standard variation).
♭{ξ} ≡ ξ
♭{¬φ} ≡ ¬ ♭{φ}
♭{φ1 ∧ φ2} ≡ ♭{φ1} ∧ ♭{φ2}

♭
{
UntilI〉(φ1, φ2)

}
≡





♭{φ1} ∧ (♭{φ1}UI♭{φ2})if 0 6∈ I and 〉 is )

♭{φ2} ∨
(
♭{φ1} ∧

(
♭{φ1}U(0,u〉♭{φ2}

))if 0 ∈ I = [0, u〉 and 〉 is )

♭{φ1} ∧ (♭{φ1}UI ♭{φ2 ∧ φ1})if 0 6∈ I and 〉 is ]

♭{φ1 ∧ φ2} ∨
(
♭{φ1} ∧

(
♭{φ1}U(0,u〉 ♭{φ2 ∧ φ1}

))if 0 ∈ I = [0, u〉 and 〉 is ]

♭
{
SinceI〉(φ1, φ2)

}
≡





♭{φ1} ∧ (♭{φ1}SI♭{φ2})if 0 6∈ I and 〉 is )

♭{φ2} ∨
(
♭{φ1} ∧

(
♭{φ1} S(0,u〉♭{φ2}

))if 0 ∈ I = [0, u〉 and 〉 is )

♭{φ1} ∧ (♭{φ1}SI ♭{φ2 ∧ φ1})if 0 6∈ I and 〉 is ]

♭{φ1 ∧ φ2} ∨
(
♭{φ1} ∧

(
♭{φ1}S(0,u〉 ♭{φ2 ∧ φ1}

))if 0 ∈ I = [0, u〉 and 〉 is ] 189



9. Features of the Integration Framework
R

Z
TRIO and MITLAs we re
alled above, MITL is the synta
ti
 subset of MTL where intervalsare all non-singular. We have shown that MTL is as expressive as R

Z
TRIO.Moreover, as we noti
ed in Se
tion 9.2.1, the expression of stri
t operatorsusing non-stri
t ones does not require to 
hange the non-singularity of theintervals that are involved. In other words, any MTL formula involvingnon-singular intervals 
an be expressed as an R

Z
TRIO formula also involvingnon-singular intervals only. The translation ♭{·} shows that the 
onversealso holds: any R

Z
TRIO formula involving non-singular intervals only 
anbe rendered as a MTL formula without singular intervals.All in all, the synta
ti
 restri
tion on R

Z
TRIO formulas that requires thatall intervals are non-singular yields a language whose expressiveness 
oin-
ide with that of MITL's. Therefore, all general results about MITL de
id-ability and expressiveness are retained when dealing with R

Z
TRIO formulaswithout singular intervals � of 
ourse, provided the same semanti
 assump-tions (e.g., point-based vs. interval-based, mono-in�nite vs. bi-in�nite, et
.)are made).9.2.3. Expressiveness and De
idability IssuesNow, thanks to the equivalen
e between R

Z
TRIO and MTL (or MITL) weare able to 
ollo
ate R

Z
TRIO's relative expressiveness, by drawing from theseveral works about the expressiveness of MTL and variants thereof thatare available in the literature. To this end, Appendix E reviews severalrelevant works about su
h an important topi
.Noti
e, however, that most � if not all � works in the literature 
onsidera semanti
s for MTL whi
h is di�erent than the one we introdu
ed above.Nonetheless, a

ording to the remark outlined at the end of Se
tion 9.2.1,our equivalen
e results still hold for two 
ommon semanti
s, and namely:

• the use of a mono-in�nite time domain, namely the nonnegative reals
R≥0;
• the use of future-only operators (i.e., only Until and not Since astemporal operator).Therefore, we are able to 
ollo
ate adequately R

Z
TRIO among other logi
sinterpreted in the interval-based semanti
s.An issue that we do not deal with here, for brevity, is how our results
an be adapted when dealing with another popular semanti
 model, namely190



9.2. On the Expressiveness of R

Z
TRIOthe point-based semanti
s (a.k.a. the timed tra
e). This is an interestingdire
tion whi
h belongs to future work. We noti
e, however, that the point-based semanti
s 
arries several pe
uliar features that sometimes may makeit somewhat unwieldy to model naturally some features of real-time systems(see [HR04℄ and its summary in Appendix E). We believe that this defendsour 
hoi
e of fo
using on the interval-based semanti
s �rst.Let us 
on
lude this se
tion by adding a 
ouple of notes about the expres-siveness of R

Z
TRIO with respe
t to that of full TRIO, and that of nesting-free R

Z
TRIO formulas. Noti
e that we deliberately stay on an informallevel: rather than proving the stated expressiveness results, we just givesome eviden
e, and refer to other works for further details. In this 
ase, weprefer this approa
h for the sake of brevity and 
larity, as a detailed and
ompletely formal analysis of these issues would likely distra
t us from ourmain fo
us.

R

Z
TRIO and TRIO. It is rather obvious that R

Z
TRIO is stri
tly less ex-pressive than full TRIO. The latter is a very expressive language, whi
heven in
ludes all arithmeti
 and full �rst-order quanti�
ation. R

Z
TRIO isinstead purely propositional, and 
onsiders only 
onstant bounds for timeintervals. This is enough to separate the two expressive powers.Nesting operators and expressiveness. An issue whi
h has not been in-vestigated often for metri
 temporal logi
s over dense time is how the nest-ing depth of temporal operators impa
ts the expressiveness of the resultinglanguage. It is however to be expe
ted that the nesting depth of temporaloperators de�nes an expressively stri
t hierar
hy of formulas, that is ea
hlevel of nesting introdu
es a larger 
lass of expressible properties. In par-ti
ular, it should be possible to prove that nesting-free R

Z
TRIO formulasde�ne a 
lass of properties whi
h is stri
tly 
ontained in that de�ned by

R

Z
TRIO formulas that nest temporal operators at any depth.Moreover, noti
e that the results about the expressively stri
t nestinghierar
hy also hold in the dis
rete time setting. Therefore, it is likelythat the same holds for 
ontinuous-time behaviors whi
h are restri
ted bythe 
onstraint χ, i.e., of bounded variability, sin
e they 
an be basi
allydes
ribed as dis
rete histories.We refer the reader to Appendix E where we summarize some relatedworks about the problem of the expressiveness of nesting with metri
 tem-poral logi
s over dense (and dis
rete) time. In parti
ular, we mention here191



9. Features of the Integration Frameworkthe works [AH92a,KS05℄ for their results, and [BCM05,PD06℄ for the proofte
hniques they use, whi
h rely on 
hara
terizing the expressiveness of atemporal logi
 formula given the values of its interval bounds and the nest-ing depth of its operators.9.3. Berkeley and Non-Berkeley BehaviorsThis se
tion 
onsiders behaviors subje
t to the regularity 
onstraint χ �introdu
ed in Se
tion 8.2.2 � shows some operators that preserve the regu-larity (Se
tion 9.3.1), and studies how su
h a regularity 
an be 
hara
terizedwhen dealing with items varying over dense domains (Se
tion 9.3.2).Let us re
all that Abadi and Lamport introdu
ed the term Zeno [AL94℄to identify those behaviors where time 
onverges to a �nite value, and thus,in a sense, �stops�. The name is after the an
ient Greek philosopher Zenoof Elea5 and his paradoxes on time advan
ement. In the same vein, wepropose to 
all �Berkeley behaviors� those behaviors failing to satisfy aregularity 
onstraint su
h as χ, from the name of the famous Irish philoso-pher George Berkeley6 who 
riti
ized the use of the notion of in�nitesimalamong the founding prin
iples of 
al
ulus. In fa
t, in Berkeley behaviorsthe distan
e between any two transitions is in�nitesimal, that is inde�nitelysmall (or with in�mum equal to zero), even if the in�nitesimal times maynot a

umulate (otherwise, the behavior is also Zeno). Therefore, in theremainder of this report we will refer to behaviors satisfying the 
onstraint
χ as non-Berkeley behaviors.9.3.1. Shiftable OperatorsThe results about the sampling invarian
e of R

Z
TRIO we presented in Chap-ter 8 
onsider only nesting-free formulas. In general, as we have argued inSe
tion 9.2.3, this restri
ts the expressiveness of our formal language. Inthe previous 
hapter we have also shown how to put any R

Z
TRIO formulainto a nesting-free one by introdu
ing auxiliary items. This does not 
ontra-di
t the results on the expressiveness: in fa
t the auxiliary items are thensubje
t to the 
onstraint χ, and therefore we end up with a nesting-freeformula whi
h is, in general, stronger than the original one, as any subfor-mula of the original formula is required to hold over intervals at least as5Cir
a 490�430 B.C.61685�1753 A.D.192



9.3. Berkeley and Non-Berkeley Behaviorslong as δ.In this respe
t, we now investigate what kind of R

Z
TRIO formulas preservethe χ 
onstraint, or, in other words, what formulas 
an be nested withoutneed for introdu
ing additional 
onstraints. The basi
 idea is the following:if, for any behavior b, a formula holding at some instant t is shown to betrue over a full δ-length interval that 
ontains t, then the non-Berkeleyvariability of the basi
 items 
an be �lifted� up to the truth value of theformula itself over time, thus allowing one to nest the formula withoutintrodu
ing additional 
onstraints.Under this respe
t, we introdu
e the following de�nitions, parametri
with respe
t to a parameter ǫ > 0.De�nition 9.3.1 (ǫ-Shiftable Operator). An n-argument operator Op in-terpreted over the basi
 items ξ1, . . . , ξn is:

• positively ǫ-shiftable i�, for all behaviors b ∈ [[χ◦]]R, whenever b(t) |=R

Op(ξ1, . . . , ξn) for some t, there exists an interval I = [u, u+ ǫ] su
hthat t ∈ I and, for all v ∈ I it is b(v) |=R Op(ξ1, . . . , ξn);
• negatively ǫ-shiftable i�, for all behaviors b ∈ [[χ◦]]R, whenever b(t) |=R

¬Op(ξ1, . . . , ξn) for some t, there exists an interval I = [u, u+ ǫ] su
hthat t ∈ I and, for all v ∈ I it is b(v) |=R ¬Op(ξ1, . . . , ξn);
• ǫ-shiftable i� it is both positively and negatively ǫ-shiftable, and its�
hange points� for some behavior b, that is the instants at whi
h itswit
hes its truth value with respe
t to b, 
oin
ide with some 
hangepoints of b.7 In other words, the 
hange points of the operator are asubset (possibly equal to) of the 
hanging points of b.Therefore, if an operator is δ-shiftable, then its truth value over timerespe
ts the 
onstraint χ if its arguments do. Therefore, it 
an be nestedwithout impa
ting sampling invarian
e.Non-Shiftable OperatorsLet us start by showing that � unsurprisingly � not all operators are

δ-shiftable. In parti
ular, let us show that the Until operator is not, at7Noti
e that this additional requirement on the �
hange points� is not redundant. Forinstan
e the �rigid shift� of a basi
 item ξ (i.e., Futr(ξ, τ)) does 
hange its value atinstants other than those of the item itself, even if it is both positively and nega-tively δ-shiftable. We also note that this requirement is similar to that of stabilityintrodu
ed elsewhere [Rab03℄. 193



9. Features of the Integration Frameworkleast in its most general appli
ation. Let ξ1, ξ2 be two basi
 Boolean time-dependent items. Let us 
onsider the behavior b in Figure 9.1, su
h that ξ1and ξ2 both hold over [t, t+ δ], and are both false everywhere else. Clearly
t t + δ

¬ξ1 ∧ ¬ξ2 ¬ξ1 ∧ ¬ξ2

ξ1 ∧ ξ2

b(t)Figure 9.1.: Until is non-shiftable.
b ∈ [[χ◦]]R, and b(t) |=R Until[δ,+∞)](ξ1, ξ2), but Until[δ,+∞)](ξ1, ξ2) is falsethroughout I ′ = (−∞, t) be
ause ξ1 is false in any right-neighborhood of apoint in I ′, and it is false through I ′′ = (t,+∞), be
ause ξ2 is always falsein the interval (t+ δ,+∞). Therefore, the Until operator is in general nonshiftable.In the remainder of this se
tion, we 
onsider some mu
h more restri
tedappli
ations of the Until (and Since) operator, in parti
ular by avoidingmetri
 
onstraints and thus expressing only qualitative properties; we areable to show that su
h restri
tions are δ-shiftable.Qualitative FormulasAlthough it is simple to see that �existential� operators � su
h as WithinF� are positively δ-shiftable under simple restri
tions of the bound (e.g., for
WithinF(ξ, u) su
h that it is u > δ), and dually �universal� operators �su
h as Lasts � are negatively δ-shiftable under the same restri
tions, thetwo fa
ts are in 
ontrast, so that existential operators that are positively
δ-shiftable are not negatively δ-shiftable, and vi
e versa for the universaloperators. More expli
itly, it is relatively easy to 
he
k that WithinF(ξ, 2ǫ)is positively ǫ-shiftable but not negatively so, and its negation Lasts(¬ξ, 2ǫ)is negatively ǫ-shiftable (and not positively so). Therefore, positive andnegative shiftability are orthogonal notions, as one does not imply theother.These 
onsiderations suggest that it is the use of metri
 itself that hin-ders the shiftability of temporal operators. Therefore, we try to 
onsider194



9.3. Berkeley and Non-Berkeley Behaviorsoperators that de�ne qualitative properties, and we show that these areindeed fully shiftable.De�nition 9.3.2 (Qualitative Formulas). A formula φ is qualitative i�one of the following applies:
• φ = ξ for some basi
 item ξ;
• φ = UntilI〉(φ1, φ2) with I = [0,+∞) and φ1, φ2 qualitative formulas;
• φ = SinceI〉(φ1, φ2) with I = [0,+∞) and φ1, φ2 qualitative formulas;
• φ is a Boolean 
ombination of qualitative formulasEstablishing that qualitative formulas are δ-shiftable amounts to te-diously 
onsidering several 
ases: we sket
h the proof for the most im-portant ones.Qualitative Until is δ-shiftable. Let ξ1, ξ2 be two basi
 Boolean time-dependent items, and let us show that the formula φ = Until[0,+∞)〉(ξ1, ξ2)is δ-shiftable.Positively shiftable. Let b ∈ [[χ◦]]R be any non-Berkeley behavior, and let

t be an instant su
h that b(t) |=R φ. Thus, there exists a d ∈ [t,+∞) su
hthat b(d) |=R ξ2, and for all u ∈ [t, d〉 it is b(u) |=R ξ1. Let us 
onsiderseveral 
ases:
• if d ≥ t+ δ, φ 
an be shifted forward over the interval [t, t+ δ];
• if d < t+ δ, then there exist t′, d′ su
h that t′ ≤ t, d′ ≥ d, d′ − t′ = δand for all v′ ∈ [t′, d′] it is b(v′) |=R ξ1. Therefore φ 
an be surelyshifted over the interval [t′, d). Let us further distinguish two 
ases:� if t− t′ ≥ δ we are done, as φ is positively shiftable over [t′, t];� otherwise, it must be d′ > d and t − t′ < δ; therefore noti
ethat ξ2 
annot swit
h its value to false before or at d′, otherwisethere would be two swit
hes within δ time units (against thehypothesis b ∈ [[χ◦]]R). Hen
e, φ 
an be shifted over the interval

[t′, d′], and we are done.This proves that qualitative Until is positively δ-shiftable. For brevity, weomitted some �ner-grain details in the above proof sket
h, but they 
an beeasily re
onstru
ted by the observant reader. 195



9. Features of the Integration FrameworkNegatively shiftable. Let us now show that Until is negatively δ-shiftable.This is the same as proving that φ = Releases[0,+∞)〉(ξ1, ξ2) is positively δ-shiftable. Note that we drop the negations over ξ1, ξ2 as they are inessentialin the proof (i.e., the proof has a symmetry with respe
t to 
omplementingthe truth value of primitive 
onditions). Thus, let b ∈ [[χ◦]]R be any non-Berkeley behavior, and let t be an instant su
h that b(t) |=R φ: for all d ∈
[t,+∞) either b(d) |=R ξ2 or there exists a u ∈ [t, d〉 su
h that b(u) |=R ξ1.Pro
eeding by 
ontradi
tion simpli�es a bit the proof. Thus let us assumethat φ is not positively δ-shiftable. In parti
ular, this is the 
ase if thereexists r ∈ [t, t + δ] su
h that Until[0,+∞)〉(¬ξ1,¬ξ2) holds at r. Therefore,there exists a dr ∈ [r,+∞) su
h that b(dr) |=R ¬ξ2 and for all ur ∈ [r, dr〉 itis b(ur) |=R ¬ξ1. Then, from the de�nition of the Releases operator, theremust be a u ∈ [t, dr〉 su
h that b(u) |=R ξ1. To avoid 
ontradi
tions, itmust be u ∈ [t, r). Moreover, let u′ be the largest instant in [t, r] su
h that

˜ǫUpToNow(ξ1) holds at u′ (it may be that u′ = u). Then, in 
omplian
ewith the regularity 
onstraint χ, for all v′ ∈ [u′− δ, u′) it must be b(v′) |=R

ξ1. Noti
e that t ∈ [u′ − δ, u′). But then, φ is shiftable over [u′ − δ, u′),and a little reasoning (still based on the properties implied by χ) lets us
on
lude that we 
an even extend the interval to a right-
losed one (eitherby in
luding u′ or by shifting its left endpoint to the left a bit before u′−δ),so that φ is indeed δ-shiftable, against the assumption.Shiftable. We need a key observation to 
on
lude that Until is δ-shiftable;it is not unlike some 
onsiderations we did when proving 
losure underinverse sampling (see proofs in Appendix D).. A δ-shiftable quantitative
Until or Since has indeed the additional property of 
hanging its truth valuein 
orresponden
e with some basi
 item 
hanging its value. For instan
e, itis easy to see that φ = Until[0,+∞)〉(ξ1, ξ2) 
hanges its value to false exa
tlywhen either ξ2 be
omes false, or ξ1 does. To this end, 
onsider an instantat whi
h b(t) |=R φ; then there exists a u ∈ [t,+∞) su
h that b(u) |=R ξ2and for all v ∈ [t, u〉 it is b(v) |=R ξ1. If we 
an shift φ to the left, then
ξ1 must be true also on some interval of the form 〈t′, t) for some t′ < t; φ
an only be
ome false when ξ1 also does, and with the same �edge� (i.e.,right-
ontinuously or not). On the other hand, if u > t we 
an surely shift
φ to the right, at least until instant u; afterward, φ swit
hes to false only if
ξ2 does so, or ξ1 does, or both. All in all, qualitative Until (and Since) is
δ-shiftable. Therefore, the appli
ation of a qualitative temporal operatoryields a formula whose truth value over time respe
ts the 
onstraint χ196



9.3. Berkeley and Non-Berkeley Behaviorstogether with the other basi
 items.Boolean 
ombinations are shiftable. That δ-shiftable formulas are 
losedunder 
omplement is apparent from De�nition 9.3.1. Thus, let us justprove that 
onjun
tion of formulas preserves δ-shiftability. For a formula
φ = φ1 ∧ φ2 su
h that φ1 and φ2 are both δ-shiftable, not only do φ1 and
φ2 ea
h hold over a δ-length interval, but they also hold over a 
ommon δ-length interval. This is due to the fa
t that they both shift values togetherwith some basi
 items, and these have �
hange points� that are at least δtime units apart, due to χ. In parti
ular, noti
e that situations su
h asthe one in Figure 9.2 
annot happen as the value of b 
hanges from (T,F)to (F,F) and then to (F,T) in less than δ time units. This means thatany 
onjun
tion φ also holds over a δ-length interval. Moreover, note thatthe same argument about the instants where the truth value 
hange 
anbe lifted the the 
onjun
tion formula φ itself, as any of φ1 or φ2 be
omingfalse implies that φ be
omes false there as well. All in all, 
onjun
tion is
δ-shiftable.

t

b(t)|1

b(t)|2Figure 9.2.: A bi-dimensional behavior not 
omplying with χ.Left-open intervals are not δ-shiftable. Let us also remark that the adop-tion of a left-
losed interval in the Until is ne
essary to have δ-shiftableformulas. In fa
t, Figure 9.1 serves as a 
ounterexample: Until(0,∞)〉(ξ1, ξ2)only holds in the right-open interval [t, t + δ), while it is false pre
isely at
t+ δ, sin
e ξ2 is false everywhere in the interval (t+ δ,+∞).Su�
ien
y and (Non) Ne
essity of ShiftabilityLet us now provide the straightforward proofs that having a formula thatnests shiftable operators only is a su�
ient but not ne
essary 
ondition for197



9. Features of the Integration Frameworkthe formula to be 
losed under sampling.Shiftability is su�
ient for 
losure under sampling. This 
omes straight-forwardly from the de�nition of δ-shiftability. In fa
t, let us 
onsider aformula φ that nests some operators. Let φ′ be the formula obtained byputting φ in normal form (a

ording to the de�nition given in Se
tion8.2.3), and in parti
ular by �unnesting� all operators by introdu
ing addi-tional items ξ′1, ξ′2, . . ..Then, let us 
onsider any of these additional items ξ′i. In the normal form,we have a 
onstraint of the form ξ′i ⇔ Op(· · ·), where Op is a δ-shiftableoperator by hypothesis. Therefore, the 
onstraint χ simply evaluates to
true for the item ξ′i. In other words, the item ξ′i satis�es all requirements for
losure under sampling; in parti
ular, the formulas in whi
h it is mentionedare 
losed under sampling. Sin
e the same applies to any additional item ξ′i,all in all the original formula φ is 
losed under sampling, with the 
onstraint
χ applying to basi
 items only.Shiftability is not ne
essary for 
losure under sampling. Let us 
onsiderthe formula ζ = Lastsee(ξ, τ), for any τ > δ. Clearly, ζ is not δ-shiftablea

ording to the de�nition, as the item ξ is not 
onstrained to stay true outof the τ -length interval introdu
ed by the Lastsee operator. Nonetheless, itis easy to see that b |=R Alw(ζ) is the same as b |=R Alw(ξ). The formula
Alw(ξ) is obviously sampling invariant. Therefore, so is the formula Alw(ζ),even if it nests a non-δ-shiftable operator.8Shiftability and 
losure under inverse sampling. Noti
e that δ-shiftabilityis a requirement on formulas interpreted over 
ontinuous time, whereas thenotion of 
losure under inverse sampling applies to formulas interpretedover dis
rete time. Nonetheless, the above results about shiftability have
onsequen
es also to 
losure under inverse sampling. In fa
t, it is easy to seethat whenever a formula φ nests only subformulas ϕ1, ϕ2, . . . all of whoseadaptations ηZδ {ϕ1} , ηZδ {ϕ2} , . . . are δ-shiftable, then φ is 
losed under in-verse sampling. Thus, shiftability of the dis
rete-to-
ontinuous adaptation8As an aside, let us point out that the de�nition of sampling invarian
e implies thatwhenever two formulas φ1, φ2 are equivalent both in dense and in dis
rete time, and soare their adaptations (i.e., ηR

δ {φ1} ≡ ηR

δ {φ2} in dis
rete time, and ηZ

δ {φ1} ≡ ηZ

δ {φ2}in dense time), then φ1 is sampling invariant if and only if φ2 is also samplinginvariant.198



9.3. Berkeley and Non-Berkeley Behaviorsof operators is a su�
ient 
ondition for a formula to be 
losed under in-verse sampling. It is also straightforward to realize that the 
ondition isnot ne
essary (we 
ould provide examples along the same lines as the oneabove about 
losure under sampling).Finally, let us point out that this requirement 
annot be moved to thenon-adapted formula itself, for qualitative formulas. In other words, thereare qualitative formulas whose dis
rete-to-
ontinuous adaptations are not
δ-shiftable (thus, in parti
ular, are not qualitative formulas). Therefore,in general nesting qualitative formulas in dis
rete-time formulas 
annotbe done �for free� � that is without introdu
ing additional 
onstraintson the variability of the adapted formula � for the sake of 
losure un-der inverse sampling. As a proof of this fa
t, let us 
onsider the for-mula φ = Until[0,+∞)](ξ1, ξ2) and its dis
rete-to-
ontinuous adaptation
φ′ = ηZδ

{
Until[0,+∞)](ξ1, ξ2)

}. It is easy to see that φ′ is equivalent to
WithinPie(ξ2, δ)∨Until[0,+∞)](ξ1, ξ2); let us show that φ′ is not δ-shiftable.To this end, let us 
onsider the behavior b represented by the interval-based sequen
e 〈(−∞, 0.7], ξ2 ∧ ¬ξ1〉, 〈(0.7,+∞),¬ξ2 ∧ ξ1〉. Clearly, φ′ ispositively and negatively δ-shiftable over b, sin
e it is true in the interval
(−∞, δ+0.7] and false in the 
omplement interval (δ+0.7,+∞). However,its truth value 
hanges at δ+ 0.7, whi
h is not a 
hange point for either ξ1or ξ2 (as δ > 0). Therefore, φ′ is not (fully) δ-shiftable.A Formula Not Closed Under SamplingLet us now exhibit a formula φns whi
h nests non-shiftable operators and,in fa
t, is not 
losed under sampling.

φns ≡ Som(Lastsii(ξ, δ))Let us 
onsider the behavior b ∈ [[χ◦]]R of Figure 9.3 � where we assumethat ξ is false everywhere ex
ept that in some interval, larger than δ andinternal to (t, t + 2δ) � as a proof (by 
ounterexample). Remember thatthe de�nition of sampling invarian
e requires invarian
e for any 
hoi
e ofthe origin z; hen
e, let us 
hoose adversarially the sampling as in the �gure.Clearly b |=R φns; nonetheless, the adaptation ηRδ {φns} of φns is:
ηRδ {φns} = Som(Lastsii(ξ, 1))It is easy to realize that Lastsii(ξ, 1) = ξ1∧NowOn(ξ1) holds at no dis
retesampling point of σδ,z [b], so σδ,z [b] 6|=Z η

R

δ {φns}. That is, φns is not 
losedunder sampling, and a fortiori nor sampling invariant. 199



9. Features of the Integration Framework
t ξ

b(t)

z + (k + 1)δ z + (k + 2)δz + kδ

> t + δ

Figure 9.3.: Proof of non sampling invarian
e.With a very similar proof, it 
an be seen that the regularity 
onstraint
χ itself is not a sampling-invariant formula (in parti
ular, it is not 
losedunder sampling).9.3.2. Towards Chara
terizing Berkeley Behaviors ofDense-Valued ItemsThis se
tion aims at 
hara
terizing non-Berkeley behaviors for basi
 itemsthat map to a dense (or, more spe
i�
ally, 
ontinuous) domain. Morepre
isely, we aim at giving a mathemati
al 
hara
terization of the behaviorsthat satisfy the 
onstraint χφ

• for dense-valued items.As we have already dis
ussed in Se
tion 8.3.2, the behavior 
onstraint
χφ
• for dense-valued items depends, in general, on the parti
ular formula
φ that 
onstitutes our spe
i�
ation; the notation χφ

• stresses this fa
t. Ingeneral, the spe
i�
ation formula φ 
an be very 
omplex, and so 
an be the
onditions in Ξ. Therefore, the a
tual �physi
al� impa
t of the 
onstraint
χφ
• may be very di�
ult to predi
t and 
hara
terize in a 
lear-
ut manner.To fo
us our dis
ussion, let us 
hoose a parti
ular � yet signi�
antand rather general � form for the 
onditions in Ξ. Namely, we 
onsider
onditions of the form x ∈ 〈l,u〉, where x is a basi
 item (for simpli
ity,taking values to the set R), l,u ∈ R : l < u are two 
onstant boundvalues, and 〈∈ {(, [} (resp. 〉 ∈ {), ]}) denotes whether the left (resp. right)endpoint in ex
luded or in
luded. We point out that the generalizationto n > 1 items is straightforward. In this basi
 
ase, the 
ondition χφ

•be
omes:
χφ
• = WithinPii(Lastsii(x ∈ 〈l,u〉, δ) , δ)∨WithinPii(Lastsii(x 6∈ 〈l,u〉, δ) , δ)Let us now 
onsider a generi
 behavior b ∈ BR for x, that is a generi
200



9.3. Berkeley and Non-Berkeley Behaviorsfun
tion b : R→ R. We now give an �approximate� mathemati
al 
hara
-terization of the subset [[χφ
• ]]R ⊂ BR for any φ where Ξ is in the form wehave outlined.Noti
e that we will not give a 
ompletely equivalent 
hara
terizationsin
e, as we will show, there are some aspe
ts implied by χφ

• whi
h arehard to 
hara
terize in a simple way. Nonetheless, we are going to pro-vide a mathemati
al notion that 
an be reasonably regarded as a formaldes
ription of the behaviors satisfying χφ
• , within some toleran
e.Uniformly Continuous Fun
tionsLet us start by de�ning formally the notion of uniform 
ontinuity. As wewill show, it will 
onstitute our 
hara
terization of non-Berkeley behaviors.Continuity. First, let us re
all the well-known de�nition of 
ontinuousfun
tion. A fun
tion b : R → R is 
ontinuous at some point t i�: for any

ǫ > 0 there exists a δǫ,t > 0 su
h that for all x su
h that |x− t| < δǫ,t it is:
|f(x)− f(t)| < ǫ. Noti
e that in the de�nition δǫ,t is in general a fun
tionnot only of ǫ, but also of t, and the notation stresses this fa
t.Then, a fun
tion b is 
ontinuous over an interval I ⊆ R i� it is 
ontinuousat all points in I.Uniform 
ontinuity. A fun
tion b : R → R is uniformly 
ontinuous overan interval I ⊆ R i�: for any ǫ > 0 there exists a δǫ > 0 su
h that, for all
x, t ∈ I su
h that |x− t| < δǫ it is: |f(x) − f(t)| < ǫ. Noti
e that the keydi�eren
e with respe
t to the de�nition of 
ontinuity is that now δǫ doesnot depend on the 
hosen t, but it must be unique for all points in I.Noti
e that uniform 
ontinuity is a notion 
lose to, but more general,than having bounded derivative. In fa
t, one 
an show that any fun
tionwith bounded derivative (i.e., su
h that supx∈I |b′(x)| < K for some K) isuniformly 
ontinuous. But the 
onverse is in general not true: for instan
e,the fun
tion √x has derivative 1/(2

√
x) whi
h is unbounded over the openinterval (0, 1) as it goes to ∞ as x goes to 0. Nonetheless, it is not di�
ultto see that √x is uniformly 
ontinuous over (0, 1).Sampling a Uniformly Continuous BehaviorLet us now show what is the link between uniformly 
ontinuous fun
tionsand the slow-variability requirement expressed by χφ

• . 201



9. Features of the Integration FrameworkUniformly 
ontinuous behaviors. Let us 
onsider a 
ondition Ξ of theform x ∈ 〈l,u〉 = I; if b is uniformly 
ontinuous over R, then it is alwayspossible to �nd a δ su
h that |b(t′)− b(t)| < |I| = u− l for all instants t, t′su
h that |t′ − t| < δ. Therefore, let su
h δ be our sampling period. Then,let us 
onsider any instant at t whi
h b �enters� the interval I su
h that b ismonotoni
 non-de
reasing over I; then b will remain in I for at least δ timeunits before 
rossing it and exiting above. Thus, for monotoni
 behaviors,the 
ondition χφ
• is always satis�ed.More generally, however, b is non monotoni
. In this 
ase, let us pi
ka 2ǫ < u − l and require that every behavior we 
onsider does not do thefollowing: enter I, rea
h at least l + ǫ, exit I again, all this in less than asampling period. Then, if b is uniformly 
ontinuous, we always have a δǫwhi
h depends on 2ǫ, su
h that, if we pi
k δǫ as sampling period, b satis�esthe requirement.In general, ǫ 
an be as small as desired: uniform 
ontinuity ensures thata suitable δǫ 
an always be found. Obviously, this 
an be generalized toseveral intervals partitioning the domain of x, by 
onsidering the smallestof su
h intervals in pla
e of the unique I. We assume that the variousintervals are derived from a spe
i�
ation formula φ whi
h is �nite in size;therefore the number of su
h intervals will always be �nite as well (andthus the notion of �smallest� is well-de�ned).Undesired behaviors about extrema. Although what dis
ussed aboveallows one to �nd behaviors that 
omply with the regularity 
onstraint χφ

•to within some toleran
e (given by the 
hoi
e of ǫ), it is also 
lear that,however small ǫ is, one 
an always �nd behaviors that do not 
omply with
χφ
• but nonetheless are uniformly 
ontinuous. Figure 9.4 gives a graphi
alrepresentation of this fa
t: if b enters the interval I �just a little bit�, rea
hesa maximum at t̂ < ǫ, and exits it afterward, it 
an do so within less thanany �xed δ while still having bounded derivative. So, uniform 
ontinuityis not pre
isely a 
hara
terization of the requirement expressed by χφ

• , butonly within some arbitrarily small toleran
e, given by the 
hoi
e of ǫ.Sets of behaviors. One more thing should be said about the use of thenotion of uniform 
ontinuity to 
hara
terize behaviors satisfying χφ
• . Sofar, we have only 
onsidered the uniform 
ontinuity of a single behavior b.However, one would like to derive similar properties about a whole set ofbehaviors B = {bi}. In general, even if ea
h bi ∈ B is uniformly 
ontinuous,202



9.3. Berkeley and Non-Berkeley Behaviors
R

l

u

b(t)

t t + δt̂Figure 9.4.: A behavior violating χφ
• about an extremum.the δǫ for bi may also depend on i, so it is a
tually a δi,ǫ. If, for a given ǫ,

infi δi,ǫ is zero, then it is not possible to �nd a unique sampling period δsu
h that all samplings of any behavior in B with period δ satisfy χφ
• (upto the 
hosen toleran
e ǫ). Therefore, we are going to in
lude expli
itlythat su
h an in�mum is greater than zero, to rule out undesirable 
ases.Quasi-Non-Berkeley behaviors. All in all, a

ording to what we havedis
ussed above and generalizing, we introdu
e the following terminology.Let m be a basi
 time-dependent item mapping to the setD ≡ D1×· · ·×Dn,su
h that every Di is a 
ontinuous set. Let b be a behavior mapping Rto the set D. If b is uniformly 
ontinuous in R, then we say that b isquasi-non-Berkeley.A set B = {bi} of behaviors is quasi-non-Berkeley if ea
h bi ∈ B isuniformly 
ontinuous, and, for all ǫ > 0, the in�mum infi δi(ǫ) of the δi's(given by the uniform 
ontinuity requirement for ea
h bi), is stri
tly greaterthan zero.Clearly, a non-Berkeley behavior is a fortiori a quasi-non-Berkeley one.However, we have outlined above behaviors that are 
ompatible with beingquasi-non-Berkeley but are not fully non-Berkeley (i.e., they fail to satisfy

χφ
• ).Also noti
e that we are unable to express the quasi-non-Berkeley require-ment in R

Z
TRIO as we did for the non-Berkeley requirement. In the former
ase we were interested in the orthogonal 
on
ern of giving a mathemati-
al 
hara
terization of the behaviors, rather than one easily expressible intemporal logi
. 203



9. Features of the Integration FrameworkContinuity, Uniform Continuity, and Analyti
ityGargantini and Morzenti dis
ussed in [GM01℄ how the non-Zeno require-ment for dense-valued items 
an be mathemati
ally 
hara
terized by thenotion of analyti
ity. We know that, for dis
rete-valued items, the quasi-non-Berkeley requirement is stri
tly stronger than the non-Zeno require-ment: while the former requires that the lower bound on the 
onstan
yintervals of the items is stri
tly positive, the latter just requires that inter-vals of in�nitesimal length do not a

umulate.In this vein, Appendix D.5 makes a brief mathemati
al detour to showthat uniform 
ontinuity and analyti
ity are orthogonal notions.Uniform 
ontinuity over �nite time. Let us also re
all a 
lassi
 resultof mathemati
al analysis whi
h goes under the name of Heine-Cantor the-orem. The theorem states that every 
ontinuous fun
tion de�ned over a
ompa
t (metri
) domain is also uniformly 
ontinuous over the same do-main. In parti
ular, over the real line every 
losed interval is a 
ompa
t set,thus every 
ontinuous fun
tion is also uniformly 
ontinuous over a 
losedinterval. This means that if we restri
t ourselves to behavior over �nitetime, and we ensure that the 
hosen �nite interval is also 
losed, then itis su�
ient to require that our behaviors are 
ontinuous fun
tions to meetthe quasi-non-Berkeley requirement.9.4. A Comparison With DigitizationHenzinger, Manna and Pnueli [HMP92℄ were the �rst ones � to the bestof our knowledge � to study expli
itly the 
ontinuous- and dis
rete-timesemanti
s of timed systems in general, and temporal logi
 in parti
ular.Their results are based on the notion of digitization. This se
tion brie�yreports the main results of [HMP92℄ and relate them to our results aboutsampling invarian
e.Informal 
omparison. Let us start with an informal 
omparison betweenthe notions of digitization and of sampling invarian
e. Digitizability issimilar to our sampling invarian
e in that they both de�ne a notion ofinvarian
e between dis
rete- and dense-time interpretations of the sameformula.204



9.4. A Comparison With DigitizationHowever, they di�er in other aspe
ts. First, [HMP92℄ 
ompares analog-and digital-
lo
k models, that is behaviors 
onsisting of a dis
rete sequen
esof events, ea
h 
arrying a timestamp: in analog-
lo
k behaviors the times-tamp is a real value, whereas in digital-
lo
k ones it is an integer value.On the 
ontrary, our work 
onsiders truly 
ontinuous-time behaviors anden
ompasses the des
ription of dense-valued items; these features are bothneeded to faithfully model 
ontinuous physi
al quantities. Clearly, the in-trodu
tion of the behavior 
onstraint χ does limit in pra
ti
e the dynami
sof the items, in order to render them ultimately dis
retizable and thusequivalent to a dis
rete sequen
e; nonetheless, the possibility of modelingdense-valued items is una�e
ted, and we believe that the expli
it (synta
ti
)introdu
tion of the 
onstraint χ � required to a
hieve invarian
e � per-mits a 
learer understanding of what we �lose� exa
tly by dis
retization, andmakes it possible, whenever needed, a 
omparison with the un
onstrained
ontinuous-time model.The other major di�eren
e between our approa
h and the one presentedin [HMP92℄ 
on
erns the physi
al motivation for the notion of invarian
e.In fa
t, sampling invarian
e models � albeit in an abstra
t and idealizedway � the sampling pro
ess whi
h really o

urs in systems 
omposed by adigital 
ontroller intera
ting with a physi
al environment. On the 
ontrary,digitization is based on the idea of �shifting� the timestamps of the analogmodel to make them 
oin
ide with integer values; informally, we may saythat behaviors are �stret
hed�, without 
hanging the relative order of theevents. This notion allows for a neater statement of the results about digi-tization; however it is more oriented towards mathemati
al and veri�
ationresults, and less to physi
al reasons.Te
hni
al di�eren
es. There are two main te
hni
al di�eren
es betweenour approa
h and the one in [HMP92℄.
• First, while the framework in [HMP92℄ adopts a point-based seman-ti
s based on (timed) tra
e (
alled timed state sequen
e in [HMP92℄),ours refers to total fun
tions from time to the state domain (i.e., be-haviors). In pra
ti
e, sin
e it is 
ustomary to restri
t to non-Zenobehaviors, we 
an equivalently say that our framework has interval-based sequen
es as its semanti
 stru
ture [GM01,HR04℄.
• Se
ond, while sampling invarian
e is de�ned for a formula, digitiza-tion is de�ned for a property, that is a set of timed tra
es. In other205



9. Features of the Integration Frameworkwords, digitization is de�ned independently of any language, whereassampling invarian
e is de�ned with respe
t to the metri
 temporallogi
 R

Z
TRIO.Under this respe
t, the next Se
tion 9.4.1 introdu
es the framework in[HMP92℄, while Se
tion 9.4.2 suggests how it 
an be 
ompared to ours.Afterward, Se
tion 9.4.3 
arries out the 
omparison under those lines, andshows that the two notions of sampling invarian
e and digitization areorthogonal. Finally, Se
tion 9.4.4 sket
hes other aspe
ts that have notbeen tou
hed upon in the 
omparison, and may belong to future work.9.4.1. Timed Tra
es and DigitizationLet us 
onsider a generi
 timed tra
e; while timed tra
es are usually de-�ned as mono-in�nite sequen
es, our framework refers to bi-in�nite timedomains. Therefore, we 
hange the de�nitions of [HMP92℄ to refer themto bi-in�nite sequen
es. It is routine to 
he
k that all the relevant resultsare retained in the new setting. Moreover, we 
ould have equivalentlyrephrased all our framework in terms of mono-in�nite sequen
es, obtainingbasi
ally the same results in the 
omparison.Timed tra
es. So, let us 
onsider the generi
 timed tra
e:

ρ : · · · (σ−2, τ−2)(σ−1, τ−1)(σ0, τ0)(σ1, τ1)(σ2, τ2) · · ·where τi ∈ R for all i ∈ Z. Following [HMP92℄, we assume weak mono-toni
ity of the timestamps (i.e., τi ≤ τi+1 for all i ∈ Z), and progress (i.e.,for all t ∈ R there exists a i ∈ Z su
h that τi ≥ t).
ǫ-digitizations. For any 0 ≤ ǫ < 1, and any timed tra
e ρ, the ǫ-digitization
[ρ]ǫ is the integer-timed tra
e that results from rounding, with respe
t to
ǫ, every timestamp in ρ to an integer value. Namely:

[ρ]ǫ : · · · (σ−2, [τ−2]ǫ)(σ−1, [τ−1]ǫ)(σ0, [τ0]ǫ)(σ1, [τ1]ǫ)(σ2, [τ2]ǫ) · · ·where:
[x]ǫ =

{
⌊x⌋ if x ≤ ⌊x⌋+ ǫ

⌈x⌉ otherwise206



9.4. A Comparison With DigitizationDigitization of a property. Given a property π, that is a set of timedtra
es, its digitization [π] is a property 
ontaining all and only integer-timed tra
es resulting from digitizing all tra
es in π with respe
t to allfra
tional values 0 ≤ ǫ < 1:
[π] = {[ρ]ǫ | ρ ∈ π and 0 ≤ ǫ < 1}Digitizable properties. Given a property π, we say that:

• π is 
losed under digitization i� [π] ⊆ π (or, equivalently, for all timedtra
es ρ: ρ ∈ π implies [ρ] ⊆ π);
• π is 
losed under inverse digitization i�, for all timed tra
es ρ, [ρ] ⊆ πimplies ρ ∈ π;
• π is digitizable i� it is 
losed under both digitization and inversedigitization (or, equivalently, for all timed tra
es ρ: ρ ∈ π i� [ρ] ⊆ π).9.4.2. Digitizable FormulasLet us now suggest a way to 
ompare the two frameworks of samplinginvarian
e and digitizability. First of all, let us de�ne an R

Z
TRIO semanti
sover timed tra
es, that mirrors as 
losely as possible that over behaviors.Se
ond, let us give a de�nition of what it means for an R

Z
TRIO formula tobe digitizable.Timed tra
e semanti
s of R

Z
TRIO. Let us de�ne the satis�ability relationfor R

Z
TRIO formulas and a generi
 timed tra
e ρ. Let i ∈ Z be a generi
position in the tra
e. Then:9

ρi |= ξ i� ξ ∈ σi

ρi |= UntilI〉(φ1, φ2) i� there exists j ≥ i su
h that: τj ∈ τi + I,
ρj |= φ2, and for all integers k ∈ [i, j〉:
ρk |= φ1

ρi |= SinceI〈(φ1, φ2) i� there exists j ≤ i su
h that: τj ∈ τi − I,
ρj |= φ2, and for all integers k ∈ 〈j, i]:
ρk |= φ1

ρi |= ¬φ i� ρi 6|= φ
ρi |= φ1 ∧ φ2 i� ρi |= φ1 and ρi |= φ2

ρ |= φ i� for all i ∈ Z: ρi |= φ9Sums between a real value and an interval are meant to be Minkovsky sums, with thefamiliar meaning. 207



9. Features of the Integration FrameworkDigitizable formulas. Given an R

Z
TRIO formula φ, we say that:

• φ is 
losed under digitization i� the property {ρ | ρ |= φ} is 
losedunder digitization;
• φ is 
losed under inverse digitization i� the property {ρ | ρ |= φ} is
losed under inverse digitization;
• φ is digitizable i� the property {ρ | ρ |= φ} is digitizable.9.4.3. Digitization and Sampling Invarian
e Are OrthogonalNotionsThis se
tion shows that the two notions of digitization and sampling in-varian
e de�ne in
omparable 
lasses of formulas, when the 
omparison is
arried out along the lines introdu
ed in the previous se
tions. To this end,�rst of all we exhibit a formula whi
h is sampling invariant but not digi-tizable; then, we provide a formula whi
h is digitizable but not samplinginvariant.We remark that, throughout this se
tion, we always refer to the notion ofsampling invarian
e a

ording to the adaptation fun
tions ηRδ {} , ηZδ {} aswe de�ned them in Se
tion 8.2.3. Exploring the 
onsequen
es of adoptingdi�erent de�nitions of adaptation fun
tions in the 
omparison with digiti-zation is out of the s
ope of the present work.Sampling Invariant Non-Digitizable FormulasIt is simple to �nd sampling invariant non-digitizable formulas, as they 
anbe build dire
tly out of some examples of non-digitizable formulas givenin [HMP92℄. In parti
ular, let us 
onsider the formula:

Θ ≡ Som(WithinFie(ξ, 1))It is simple to 
he
k that Θ is sampling invariant, sin
e the outer existen-tial quanti�
ation on time (i.e., the Som operator) does not a�e
t samplinginvarian
e.On the other hand, Θ is not 
losed under digitization. The timed tra
e:
ρ′ = · · · (¬ξ, k)(ξ, k + µ)(¬ξ, τ) · · ·with k ∈ Z, 0 < µ < 1, τ > k + 1, and su
h that ξ is false at any otherposition in the tra
e, provides a proof of this (in the form of a 
ounterex-ample). In fa
t, ρ′ satis�es Θ, but any of its ǫ-digitizations with respe
t to208



9.4. A Comparison With Digitizationany ǫ < µ does not, as they all 
orrespond to · · · (¬ξ, k)(ξ, k+1)(¬ξ, τ ′) · · ·with τ ′ ≥ k + 1.Digitizable Non-Sampling Invariant FormulasLet us 
onsider the following R

Z
TRIO formula (also put in normal form).

Υ ≡ Som
(
ξ ∧ ¬Until(0,+∞))(ξ, true)

)

≡ Som
(
ξ ∧ Releases(0,+∞))(¬ξ, false)

)Let us also build the the formula:
Ω ≡ Υ ∧ φnswhere φns was de�ned in Se
tion 9.3.1. We now show that Ω is not samplinginvariant, but it is digitizable.

Ω is digitizable. Let us write out expli
itly the semanti
s of Υ, wheninterpreted over timed tra
es a

ording to the weak-time semanti
s de�nedbeforehand. For a timed tra
e ρ = (σ, τ): ρ |= Υ i� there exists a i ∈ Zsu
h that:1. σi |= ξ, and, for all j ≥ i:2. either σj 6|= true and τj > τi, whi
h however never holds,3. or σk 6|= ξ, for some i ≤ k < j.Now, sin
e 
ondition 3 must hold for any j ≥ i, in parti
ular (for j = i+1)it requires that σi 6|= ξ. This is in 
ontradi
tion with 
ondition 1, therefore
Υ ≡ false in the timed tra
e semanti
s.Thus also Ω ≡ Υ ∧ φns ≡ false ∧ φns ≡ false. The formula false istrivially 
losed under digitization, sin
e so is the empty set of timed tra
es
∅. Moreover, it is also trivially 
losed under inverse digitization, therefore
Ω is digitizable.
Ω is not sampling invariant. Let us now 
onsider the adaptation of Υ:

ηRδ {Υ} ≡ Som
(
ξ ∧ Releases(0,+∞)](¬ξ, false)

) 209



9. Features of the Integration FrameworkIt is not di�
ult to realize that, thanks to the adaptation of the Releasessubformula to the ] bra
ket, ηRδ {Υ} is satis�able in dis
rete time.10Then, let us 
onsider the behavior b in Figure 9.5, whi
h is derived fromthe one in Figure 9.3 by additionally assuming that ξ holds at t and at
t+ µ as well. (In the �gure, 
rosses now denote sampling instants). Now,

t ξ

b(t)

z + (k + 1)δ z + (k + 2)δz + kδ

t + µ > t + δ

Figure 9.5.: Proof of non sampling invarian
e.
learly b(t+µ) |=R ξ∧Releases(0,+∞))(¬ξ, false), and b(t) |=R Lastsii(ξ, δ),therefore b |=R Ω ∧ χ◦. However, while σδ,z [b] |=Z ηRδ {Υ}, we have shownin Se
tion 9.3.1 that σδ,z [b] 6|=Z ηRδ {φns}. Therefore σδ,z [b] 6|=Z Ω, andthus Ω is not 
losed under sampling, and thus a fortiori it is not samplinginvariant.9.4.4. Other Aspe
ts for ComparisonsLet us now brie�y hint at other aspe
ts that may pertain to a 
omparisonbetween the notions of sampling invarian
e and digitizability, but whi
hhave not been addressed here. We present them in a rather informal way.
• A feature that distinguishes [HMP92℄'s semanti
 model is that it isweakly monotoni
. This introdu
es some pe
uliarities, su
h as a pred-i
ate whi
h 
an be both true and false for some timestamp value τ ,but still at di�erent positions in the timed tra
e. In other words,weak monotoni
ity really exposes the existen
e of �two times�, onebeing the position in the timed word, the other being the value of thetimestamp.10Therefore, the parti
ular de�nition of ηR

δ {} plays an important role here. As usual,we do not dis
uss (for the sake of brevity) the impa
t of 
hoosing di�erent de�nitionsfor ηR

δ {}.210



9.4. A Comparison With DigitizationAn analysis of digitization may therefore 
onsider what are the fea-tures whi
h are pe
uliar to weak monotoni
ity, and what would 
hangeby swit
hing to a strongly monotoni
 time.
• More generally, we already dis
ussed how digitization is an intrinsi-
ally semanti
 notion, while sampling invarian
e is de�ned for for-mulas. Indeed, [HMP92℄'s analysis of digitizable formulas is lim-ited to two simple 
lasses of formulas, namely bounded response andbounded invarian
e properties, whi
h basi
ally represent the notionof upper and lower bound on a response, respe
tively.Therefore, we may extend the analysis of digitizability to seek a wider
hara
terization of digitizable formulas. Conversely, we may also pro-vide a semanti
 
ounterpart to sampling invarian
e, and 
arry out the
omparison in a semanti
 setting.
• A feature of our framework is that it 
hanges interval bounds in for-mulas, in parti
ular by weakening formulas when passing from dis-
rete to 
ontinuous in order to preserve entailment. [HMP92℄ alsointrodu
es a notion of weakening (and strengthening) of formulas, al-though it uses it for di�erent purposes (namely to outline veri�
ationte
hniques).We may see if [HMP92℄'s notion of weakening 
an be used in a similarmanner as our adaptation, and 
ompare the resulting framework.
• Noti
e that digitization always rounds timestamp values to the near-est integer value; in other words, it approximates to within a pre
isionof one. It would be straightforward, though, to generalize the de�-nition to other �xed values, with a �ner grain than one unit. Thishas been done in other works (see Appendix E). It seems that su
h
hanges would not a�e
t our 
omparison in any �qualitative� way, as
hanging this just amount to a res
aling of timing informations.
• More generally, we noti
e that the timed tra
e semanti
s has severalpe
uliar (and, somewhat, unintuitive [HR04℄) features that make a
omparison with other semanti
 models more di�
ult and problem-ati
. Among other things (and see Appendix E for referen
es):� metri
 temporal logi
s over timed tra
e models are stri
tly lessexpressive than over interval-based sequen
es; therefore, one211



9. Features of the Integration Frameworkmay suggest to restri
t 
omparisons to properties expressiblein both models;� a straightforward way to des
ribe a timed tra
e as an interval-based sequen
e is to introdu
e isolated events at any timestamp,separated by �no-a
tion� intervals where all predi
ates are false;noti
e that su
h sequen
es would all fail to satisfy the regularity
onstraint χ and thus would be trivially sampling invariant;� otherwise, one 
ould represent interval-based sequen
es as timedtra
es with �samplings� taken to within some pre
ision (and,possibly, a

ording to the property at hand). Noti
e in parti
-ular that the granularity of su
h �samplings� would depend ingeneral on the 
onstants used in the formulas, if one seeks to pre-serve entailment. Possibly, the granularity should also be relatedto the regularity of the interval-based sequen
e (as mandated by
χ).9.5. Formalizing Timed Automata in R

Z
TRIOIt is well-known from the literature that automata languages 
annot bede�ned using �standard� propositional temporal logi
s [Wol83℄, as the latterla
k the ability to �
ount�, whi
h is instead a feature of �nite-state automata[MP72℄. In parti
ular, more re
ent work has shown that there are languagesa

epted by timed automata [AD94℄ that 
annot be de�ned by any metri
temporal logi
 formula. See Appendix E for more extensive referen
esabout these fa
ts.This expressiveness gap notwithstanding, it is still possible to pursue adual language approa
h [FMMR07, FMM94℄ for automata and temporallogi
. This 
onsists basi
ally in des
ribing a system through a 
ombinationof an operational formalism and a des
riptive formalism: in our 
ase, timedautomata are the operational formalism and metri
 temporal logi
s (and

R

Z
TRIO in parti
ular) are its des
riptive 
ounterpart. The dual languageapproa
h then requires to formalize the behavior of the automata throughlogi
 formulas, so that one 
an prove properties about the automaton bylogi
 dedu
tion (rather than, e.g., algorithmi
 methods). Moreover, if wehave a formalization of timed automata in R

Z
TRIO, it is possible to exploita notion of dis
retization on the des
ription of the automata, by applyingthe results about sampling invarian
e to the formalization. This se
tionshows how to formalize the behavior of timed automata in R

Z
TRIO.212



9.5. Formalizing Timed Automata in R

Z
TRIOWe stress the fa
t that the aforementioned expressiveness results about�
ounting� do not prevent one from performing su
h a formalization: evenif, in general, one 
annot de�ne the language a

epted by a timed automa-ton through R

Z
TRIO formulas, it is still possible to 
hara
terize the runsof the automaton through logi
 formulas. That is, one in
ludes in the for-malization the state of the automaton, and how it evolves in response toinputs.119.5.1. Timed Automata De�nitionLet us re
all the de�nition of timed automata; all of them are from theoriginal paper by Alur and Dill [AD94℄.Syntax of Timed AutomataFirst, we 
onsider the de�nition of 
lo
k 
onstraints, then we de�ne timedautomata themselves.Clo
k 
onstraints. For a set X of 
lo
k variables, the set Φ(X) of 
lo
k
onstraints ξ is de�ned indu
tively by

ξ ::= x ≤ c | c ≤ x | ¬ξ | ξ1 ∧ ξ2where x is a 
lo
k in X and c is a 
onstant in Q.Timed automaton. A timed automaton A is a tuple 〈Σ, S, S0, C,E〉,where:
• Σ is a �nite alphabet,
• S = {s0, s1, . . . , sNs−1} is a �nite set of Ns states,
• S0 ⊆ S is a �nite set of start states,
• C is a �nite set of 
lo
ks, and11We remark the fa
t that one 
ould then swit
h to the formalization of the a

eptedlanguage itself if the logi
 had a proje
tion (a.k.a. hiding or existential quanti�
ation)operator (see Appendix E), whi
h is equivalent to saying that �a logi
 with proje
tion
an 
ount�. R

Z
TRIO is not endowed with proje
tion, and therefore we will limitourselves to the formalization of automata runs. 213



9. Features of the Integration Framework
• E ⊆ S × S × Σ× 2C × Φ(C) gives the set of transitions.An edge 〈s, s′, a,Λ, ξ〉 represents a transition from state s to state s′on input symbol a. The set Λ ⊆ C gives the 
lo
ks to be reset withthis transition, and ξ is a 
lo
k 
onstraint over C.Simpli�
ations. For simpli
ity, let us restri
t all the automata we 
onsiderto avoid self-loops among the transitions; i.e., 〈s, s, a,Λ, ξ〉 6∈ E for all s ∈ S.For our purposes, this restri
tion is without loss of generality, as it 
an beshown that any timed automaton with self-loops 
an be transformed intoone that re
ognizes the same language but does not use any self-loops.Moreover, let us avoid the use of ǫ-moves, whi
h 
an however be renderedby augmenting the input alphabet by a spe
ial symbol.Semanti
s of Timed AutomataIn order to de�ne the semanti
s of timed automata, we re
all the de�nitionof timed words and timed languages. Noti
e that we have some di�eren
eswith respe
t to the de�nition in Se
tion 9.4.1; in the remainder we willreferen
e to the following de�nitions only.Timed words. A timed word over an alphabet Σ is a pair of sequen
es

(σ, τ). σ is an in�nite word σ = σ1σ2σ3 · · · over Σ. τ is a time sequen
e,that is an in�nite sequen
e τ = τ1τ2τ3 · · · of time values τi ∈ R≥0; thesequen
e must be stri
tly monotoni
 (that is τi < τi+1 for all i ≥ 1) anddivergent (that is, for all r ∈ R≥0 there exists a i ≥ 1 su
h that τi > r).Timed languages. A timed language is de�ned as a set of timed words.Run of a timed automaton. To de�ne the semanti
s of timed automataas a

eptors of timed languages, we introdu
e the notion of run of a timedautomaton. A run of a timed automaton 〈Σ, S, S0, C,E〉 over a timed word
(σ, τ) is an in�nite sequen
e of the form:

(s0, ν0)
σ1,τ1−−−→ (s1, ν1)

σ2,τ2−−−→ (s2, ν2)
σ3,τ3−−−→ · · ·where si ∈ S and νi ∈ [C → R], for all i ≥ 0, satisfying the followingrequirements:

• Initiation: s0 ∈ S0 and ν0(x) = 0 for all x ∈ C.214
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• Conse
ution: for all i ≥ 1, there is an edge in E of the form
(si−1, si, σ1,Λi, ξi) su
h that νi−1 + τi− τi−1 satis�es ξi and νi equals
[Λi 7→ 0](νi−1 + τi − τi−1).Language a

epted by a timed automaton. Consequently, given a timedautomaton A, and a set F ⊆ S of a

epting states, we say that A a

eptsthe timed word (σ, τ) i� the timed word has a run that visits some state in Fin�nitely often (Bü
hi a

eptan
e 
ondition). Finally, a timed automaton

A a

epts the language identi�ed by all and only timed words a

epted by
A.Berkeley Behaviors for Timed AutomataSin
e the ultimate goal of this se
tion is to provide a formalization thatallows us to harness the dis
retization results about sampling invarian
eover languages de�ned by timed automata, we would like not only to for-malize timed automata in R

Z
TRIO, but also to formalize them in a waywhi
h 
omplies with the requirements of sampling invarian
e. Namely, weseek a formalization over slowly-variable behaviors (a

ording to χ), andwith nesting-free formulas.Under this respe
t, the present subse
tion extends the notion of non-Berkeley behaviors to timed automata. This allows us to identify exa
tlythose timed words that are representable by non-Berkeley behaviors.Zeno behaviors and divergen
e. First of all, let us re
all that Zeno be-haviors are those where the time values in τ , although ever in
reasing,
onverge to a �nite value τ : time �stops� at the value τ . The require-ment that timestamps sequen
es in timed words be divergent is assumedpre
isely to rule out Zeno timed words.Berkeley behaviors and �nite di�eren
e time. As shown in [AD94, Ex-ample 3.16℄, and �rst expli
itly dis
ussed in [CHR02℄, in timed automata�in�nitely fast� Berkeley behaviors 
an manifest themselves even if we ruleout Zeno phenomena. Let us dis
uss an example of this fa
t with somedetail.An example of Berkeley timed automaton. Let us 
onsider the timedautomaton of Figure 9.6, where k ∈ R>0 is some positive 
onstant. Let215



9. Features of the Integration Framework
A

B

C

x := 0

y := 0 x = k

x := 0

y = k
z := 0

b

a

c
z > 0

y := 0

Figure 9.6.: A timed automaton with Berkeley behavior.
x0 = 0 and y0 = 0 be the initial values of the 
lo
ks x and y. Then, forall i ≥ 1, let xi be the values of the same 
lo
ks when entering the state Aafter the ith iteration of the loop. Let αi, βi, γi be the times spent sitting inthe states A,B,C, respe
tively, during the ith iteration of the loop. Thisnotation 
orresponds to the timed word:

(a, α1) (b, α1 + β1) (c, α1 + β1 + γ1) · · ·

(a, αn +
n−1∑

i=1

(αi + βi + γi)) (b, αn + βn +
n−1∑

i=1

(αi + βi + γi))

(c, αn + βn + γn +
n−1∑

i=1

(αi + βi + γi)) · · ·Let us noti
e immediately that it must be xi + αi+1 = k, be
ause of theguard on transition a, that is k−αi+1 = xi. Now, be
ause of the guard ontransition b, it must also be αi+1 + βi+1 = k (noti
e that y is reset whenentering A). Finally, we have xi+1 = βi+1 + γi+1, sin
e the 
lo
k x is lastreset when entering B.Thus, from the last equation, we get xi+1 = βi+1 + γi+1 = (k − αi+1) +
γi+1 = xi +γi+1. This holds for all i, thus we 
an iteratively substitute andget: xi+1 = xi +γi+1 = (xi−1 +γi)+γi+1 = · · · = x0 +

∑i+1
j=1 γj =

∑i+1
j=1 γj .Finally, let us noti
e that it must be xi ≤ k for all i, otherwise the atransition 
annot be taken. So we must have ∑∞j=1 γj ≤ k, that is theresiden
e times γi must get arbitrarily 
lose to zero, while not being zero,in order to satisfy the 
onstraint on the z 
lo
k.Berkeley timed words and languages. Su
h kind of behaviors 
orrespondto timed words where the di�eren
e between adja
ent timestamps get ar-216
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Z
TRIObitrarily small, even if time does not a

umulate and stop. More pre
isely,we 
all Berkeley a timed word (σ, τ) = (σ1, τ1)(σ2, τ2) · · · where the lowerbound of the di�eren
es between adja
ent timestamps λ = infi≥1(τi+1−τi)is zero, and non-Berkeley if it equals instead some θ ∈ R>0. Similarly, aset of timed words (σ, τ)i∈I (where I ⊆ N) is Berkeley i� the lower bound

infi∈I λi of the lower bounds of the timed words is zero. Consequently, atimed automaton is Berkeley i� the timed language it a

epts is Berkeley.In the rest of this se
tion, when dis
ussing the 
orresponden
e betweentimed words and timed behaviors in R

Z
TRIO, we assume that all timedlanguages are non-Berkeley, unless otherwise expli
itly stated. We leave tofuture work the analysis of how ruling out Berkeley behaviors impa
ts theexpressiveness of timed automata.9.5.2. Axiomatization of Timed Automata with R

Z
TRIOLet us now 
onsider how to des
ribe in R

Z
TRIO all the runs of a given timedautomaton. For simpli
ity, let us not 
onsider a

eptan
e 
onditions, that islet us assume that all states are a

epting. Note, however, that introdu
inga

eptan
e 
onditions (e.g., Bü
hi, Muller, et
) in the formalization wouldbe routine.First of all, sin
e timed automata are interpreted over timed words,whereas R

Z
TRIO formulas are interpreted over behaviors b : T → D, wehave to relate the two semanti
 models. Remember that we want to beable to 
onsider 
onstrained behaviors, i.e., regular a

ording to the 
on-straint χ◦ for some �xed sampling period δ. Therefore, let us pi
k δ < θ/2,where θ is the lower bound of the transition times for the automaton. Thereason for taking θ halved will be 
lear in the remainder.Timed Words and Timed BehaviorsLet us 
onsider a timed automaton A = 〈Σ, S, S0, C,E〉; it is interpretedover timed words of the form 〈σ, τ〉, where σ ⊆ Σω.To map runs (over timed words) to behaviors, we have �rst to 
hoose a setof basi
 time-dependent items for the R

Z
TRIO des
ription. More pre
isely,we 
onsider the following items.

• a time-dependent item st taking values to the set of states S;
• a time-dependent item in taking values to the alphabet set Σ∪{ǫ};1212Noti
e that ǫ does not represent ǫ-moves but simply absen
e of input. 217



9. Features of the Integration Framework
• a time-dependent predi
ate rs() having the set of 
lo
ks C as domain;
• a time-dependent (Boolean) time-dependent predi
ate start.Here it is the intuitive meaning of these items.
• st = si means that the automaton is in state si ∈ S;
• in = σ means that the symbol σ ∈ Σ is 
urrently being inputted (orno 
urrent input, in the 
ase of ǫ);
• rs(x) means that the 
lo
k x ∈ C is 
urrently being reset;
• start represents the initialization event.Note that this 
hoi
e of items prevents multiple input symbols from arrivingat the same time, whereas multiple resets (for di�erent 
lo
ks) 
an happenat the same instant.Mapping a timed word onto a timed behavior. Let us 
onsider a run ofthe automaton A:

(s0, ν0)
σ1,τ1−−−→ (s1, ν1)

σ2,τ2−−−→ (s2, ν2)
σ3,τ3−−−→ · · ·Given a sampling period δ, we asso
iate to the run the behavior b for theabove items as follows.

• for every transition σi,τi−−−→ (si, νi)
σi+1,τi+1−−−−−−→, the item st takes the value

si exa
tly from time τi to time τi+1, left-
ontinuously;
• for every input pair (σi, τi), the item in takes the value σi exa
tlyfrom time τi (in
luded) to time τi + δ (in
luded); otherwise (i.e., atany other time) in takes the value ǫ;
• for every 
lo
k x ∈ C that is reset when taking the transition 
orre-sponding to the input pair (σi, τi), the predi
ate rs(x) is true exa
tlyfrom time τi (in
luded) to time τi + δ (in
luded); moreover, rs(x)holds from time 0 until δ (in
luded) for every 
lo
k x ∈ C;
• start is true from time −∞ to time δ (in
luded), and false everywhereelse.218
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Z
TRIOMapping a timed behavior onto a timed word. The inverse mapping
an be de�ned, for the present purposes, as follows. Simply, given a timedbehavior b, if there exists a timed word (σ, τ) su
h that the latter maps tothe former a

ording to the previously de�ned mapping, then we say that bmaps to (σ, τ), otherwise the mapping of b is unde�ned. Noti
e that, whenit is de�ned, this inverse mapping is also uniquely de�ned.Axiomatization of a Timed AutomatonLet us �nally 
onsider a timed automaton A = 〈Σ, S, S0, C,E〉. We nowgive a set of R

Z
TRIO axioms that formally des
ribe its runs as behaviors,a

ording to the mapping we outlined above. First, we present the axioms;afterward we justify their 
orre
tness.In the remainder, we assume that there are no edges going from a stateto itself (self-loops); this does not impa
ts on the expressiveness of timedautomata, as it 
an be shown.Translating 
lo
k 
onstraints into formulas. We asso
iate a R

Z
TRIO for-mula Ξ to every 
lo
k 
onstraint ξ. In order to simplify this step of theformalization, we assume that all 
onstants in the 
lo
k 
onstraints arestri
tly greater than δ. It 
an be shown that this 
an always be a
hievedby properly s
aling all 
onstants by some suitable fa
tor [AD94℄; this 
or-responds to a 
hange in the time s
ale. This restri
tion is inessential inthe formalization, but we introdu
e it for the sake of simpli
ity, leaving tofuture work the full dis
ussion of all the possible 
ases.Let us de�ne indu
tively Ξ on the stru
ture of ξ as follows:

x ≤ c −→ WithinPei(rs(x), c− δ)
c ≤ x −→ Lastedee(¬rs(x), c− δ)
¬ξ −→ ¬Ξ
ξ1 ∧ ξ2 −→ Ξ1 ∧ Ξ2Basi
ally, Ξ translates the guard ξ by 
omparing the 
urrent time to thelast time a reset for the 
lo
k x happened. The o�set δ is introdu
ed totake into a

ount the fa
t that ea
h reset item holds 
ontinuously for δ timeunits from the moment when the reset is a
tually triggered (to 
omply withthe slow variability requirement χ◦).1313It 
an be shown that derived properties of 
omposite 
lo
k 
onstraints hold for the
orresponding temporal logi
 formulas. For instan
e x ≤ x ∧ c ≤ x 
orresponds to219



9. Features of the Integration FrameworkNe
essary 
onditions for state 
hange. Let us state the ne
essary 
on-ditions that 
hara
terize a state 
hange. For any pair of states si, sj ∈ Ssu
h that 〈si, sj , σ,Λ, ξ〉 ∈ E for some σ, Λ = c1, . . . , cr, ξ, we introdu
ethe axiom:14
UpToNow(st = si) ∧NowOn(st = sj)

⇒ NowOn(in = σ) ∧NowOn(rs(c1) ∧ · · · ∧ rs(cr)) ∧ Ξ (9.12)Su�
ient 
onditions for state 
hange. We have multiple su�
ient 
on-dition for state 
hanges; basi
ally, they a

ount for rea
tions to read-ing input symbols and resetting 
lo
ks. Let us 
onsider input �rst: forea
h input symbol σ ∈ Σ, let us 
onsider all the relations of the form
〈sk

i , s
k
j , σ,Λ

k, ξk〉 ∈ E. Then, we introdu
e the axiom:
NowOn(in = σ)⇒

∨

k

(
UpToNow

(
st = sk

i

)
∧NowOn

(
st = sk

j

)
∧

NowOn



∧

λ∈Λk

rs(λ)


 ∧ Ξk

) (9.13)This postulates the fa
t that, whenever a symbol σ is inputted, it arrivesunder 
onditions that are 
ompatible with one of the transitions spe
i�edby the relation E.Similarly, for ea
h reset of a 
lo
k c ∈ C, let us 
onsider all the relationsof the form 〈sk
i , s

k
j , σ

k,Λk, ξk〉 ∈ E, su
h that c ∈ Λk for all k. Then, we
φ = WithinPei(rs(x), c − δ)∧Lastedee(¬rs(x), c − δ); it 
an be shown that if φ holds,then rs(x) last held exa
tly c − δ time units in the past. Therefore, the last resethas o

urred exa
tly c − δ + δ = c time units in the past, whi
h 
orresponds to the
ondition x = c being true, as expe
ted.14Throughout the formalization, we assume NowOn(p) = Lastsee(p, δ), and
UpToNow(p) = Lastedee(p, δ).220
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TRIOintrodu
e the axiom:

NowOn(rs(c))⇒
∨

k

(
UpToNow

(
st = sk

i

)
∧NowOn

(
st = sk

j

)
∧NowOn

(
in = σk

)

∧NowOn



∧

λ∈Λk

rs(λ)


 ∧ Ξk

)
∨NowOn(start) (9.14)Initialization and liveness 
ondition. We 
omplete our axiomatizationby �rst des
ribing the system initialization: at the beginning the predi
ate

start is true for δ time units, the system is in an initial state and all the
lo
k are reset.
UpToNow(start) ∧NowOn(¬start)

⇒ AlwP(in = ǫ) ∧ (∃s ∈ S0 : AlwP(st = s))

∧ (∀λ ∈ C : AlwP(rs(λ))) (9.15)Then, we have to say that start a
tually be
omes true, sometimes, and ithas been true always in the past and will be false in the future.
Som(AlwP(start)) ∧ Som(¬start)

∧ (AlwP(start) ∧NowOn(¬start)⇒ AlwF(¬start)) (9.16)Re
all that the nesting of the temporal operator Som and AlwP does nota�e
t sampling invarian
e of the resulting formula.Finally, a �liveness� 
ondition states that we eventually have to moveout of every state (this 
orresponds to the fa
t that timed tra
es are madeof in�nite words). Thus, for every state si ∈ S, let Si ⊂ S be the set ofstates that are dire
tly rea
hable from si through a single transition; thenwe 
onsider the axiom:
UpToNow(st = si)⇒ SomF



∨

s∈Si

st = s


 (9.17)Corre
tness and Completeness of the AxiomatizationWe refer the reader to Appendix D.6 for a proof of the 
orre
tness and
ompleteness of the above axiomatization of timed automata. 221



9. Features of the Integration FrameworkAxiomatization of Berkeley Timed AutomataLet us also dis
uss how it is possible to modify the above axiomatization inorder to des
ribe the behavior of any non-Zeno timed automaton, in
lud-ing those with Berkeley behaviors. Noti
e that now we forget about therequirements of the integration framework (su
h as the non-Berkeleyness
onstraint χ◦), and we only fo
us to formalizing the behavior of a generi
timed automaton with R

Z
TRIO. In this 
ase, we give an extension of thedual language approa
h to deal with any timed automaton, giving up thepossibility of applying our notion of dis
retization through sampling invari-an
e.To this end, it is 
onvenient to de
lare the item st as a state, whereasall the other items are events, a

ording to the de�nitions given in Se
tion2.1.4. Note that the input item would now simply be false for all σ ∈ Σwhen no 
hara
ter is inputted. Then, these items would be true exa
tly atthose times when an input is re
eived, a reset is triggered, or the system isstarted.The translation of 
lo
k 
onstraints into formulas would take into a

ountthese 
hanges, so that the bounds of the WithinP and of the Lasted wouldsimply be the 
onstant c against whi
h a 
lo
k is 
ompared, without the δo�set.Finally, the overall stru
ture of the axioms would be un
hanged, ex
eptthat all the referen
es to event items would now get rid of the UpToNow or

NowOn operators. On the 
ontrary, UpToNow and NowOn remains whentheir arguments are states; however we now have to use the ˜ǫUpToNowand ˜ǫNowOn versions (de�ned in Se
tion 9.2.1), as states are no moreguaranteed to hold over δ. For 
larity, we repli
ate here the new versionsof the axioms.
UpToNow(st = si) ∧NowOn(st = sj)

⇒ in = σ ∧ (rs(c1) ∧ · · · ∧ rs(cr)) ∧ Ξ (9.18)222
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in = σ ⇒
∨

k


UpToNow

(
st = sk

i

)
∧NowOn

(
st = sk

j

)
∧



∧

λ∈Λk

rs(λ)


 ∧ Ξk


(9.19)

rs(c)⇒
∨

k

(
UpToNow

(
st = sk

i

)
∧NowOn

(
st = sk

j

)
∧ in = σk

∧



∧

λ∈Λk

rs(λ)


 ∧ Ξk

)
∨ start (9.20)

start⇒ AlwP(∀σ ∈ Σ : in 6= σ) ∧ (∃s ∈ S0 : AlwP(st = s))

∧ (∀λ ∈ C : rs(λ)) (9.21)
Som(start) ∧ (start⇒ AlwP(¬start) ∧AlwF(¬start))

UpToNow(st = si)⇒ SomF



∨

s∈Si

st = s


 (9.22)Now, note that the same 
orre
tness and 
ompleteness proofs for thenon-Berkeley 
ase hold, with some te
hni
al modi�
ations, for the un
on-strained 
ase as well. For brevity, we omit the details.9.5.3. An ExampleLet us apply the above axiomatization on a simple example: the automatonof Figure 9.7, modeling a train. In the model, the input symbols a, i, o, erepresent, respe
tively, the train approa
hing a 
rossing area, entering thearea, exiting it, and notifying its exit. The example automaton is takenfrom [AD94℄.It is straightforward to realize that the automaton a

epts the language:

{((aioe)ω, τ) | ∀i(i ≡ 1 mod 4→ τi+1 ≥ τi + 2 ∧ τi+3 ≤ τi + 5)} 223
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S0 S1

S3

x := 0
x := 0

o

a

e

x ≤ 5

S2

i

x ≥ 2Figure 9.7.: A timed automaton modeling a train.Let us now write out all the axioms. First of all, axiom 9.12 is imple-mented as the four following axioms.
UpToNow(st = S0) ∧NowOn(st = S1)⇒ NowOn(in = a) ∧NowOn(rs(x))

UpToNow(st = S1) ∧NowOn(st = S2)

⇒ NowOn(in = i) ∧ Lastedee(¬rs(x), 2− δ)
UpToNow(st = S2) ∧NowOn(st = S3)⇒ NowOn(in = o)

UpToNow(st = S3) ∧NowOn(st = S0)

⇒ NowOn(in = e) ∧WithinPii(rs(x), 5− δ)Let us now 
onsider axiom 9.13, whi
h gets to:
NowOn(in = a)⇒ UpToNow(st = S0) ∧NowOn(st = S1) ∧NowOn(rs(x))

NowOn(in = i)

⇒ UpToNow(st = S1) ∧NowOn(st = S2) ∧ Lastedee(¬rs(x), 2− δ)
NowOn(in = o)⇒ UpToNow(st = S2) ∧NowOn(st = S3)

NowOn(in = e)

⇒ UpToNow(st = S3) ∧NowOn(st = S0) ∧WithinPii(rs(x), 5− δ)Axiom 9.14 gets simply into:
NowOn(rs(x))⇒ (UpToNow(st = S0) ∧NowOn(st = S1)

∧NowOn(in = a)) ∨ NowOn(start)We do not write out expli
itly the initialization 
onditions of axioms9.15�9.16, as they do not depend on the a
tual automaton (ex
ept for the224
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Z
TRIOsimple 
ondition on start states). Thus, let us just 
onsider the liveness
ondition of axiom 9.17; this is rendered by the following four axioms.

UpToNow(st = S0)⇒ SomF(S1)

UpToNow(st = S1)⇒ SomF(S2)

UpToNow(st = S2)⇒ SomF(S3)

UpToNow(st = S3)⇒ SomF(S0)This 
on
ludes the axiomatization for the present example.
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10. Con
lusionsThis thesis fo
used on the problem of improving the s
alability in the useof formal methods towards large and heterogeneous systems. In parti
ular,emphasis has been put on real-time systems, where time is a fundamentaldimension of analysis, and a further sour
e of 
omplexity. Our referen
elanguage was the metri
 temporal logi
 TRIO, whi
h we presented in Chap-ter 2. We pursued the des
riptive approa
h, where both the spe
i�
ationand the requirements of a system are formalized as a set of temporal logi
formulas.Compositionality. Our solution was grounded in the well-known softwareengineering prin
iples of modularization and abstra
tion. When these te
h-niques are applied to formal methods, they usually 
ome under the name
ompositionality. Therefore, 
ompositionality was the topi
 of Part I of thisthesis. In Chapter 3, we de�ned pre
isely the notion of 
ompositionality.In parti
ular, we dis
ussed how it 
onsists of both te
hniques and methodsto spe
ify and verify modular systems.Compositional te
hniques usually boil down to the availability of 
ompo-sitional inferen
e rules. A 
ompositional inferen
e rule allows one to inferfa
ts that are global to a 
omposite systems from the 
omposition of fa
tsthat are lo
al to the various modules out of whi
h the system is built. InChapter 3 we also provided the generi
 
omponents of a �typi
al� 
ompo-sitional inferen
e rule, and we dis
ussed various features that a rule mayhave or not have. In parti
ular, we linked the features of a rule to thefeatures of a system, whose 
orre
tness one veri�es through appli
ation ofthe rule.On the other hand, 
ompositional methods provide frameworks withinwhi
h a 
ompositional inferen
e rule 
an be applied. Moreover, they givegeneral guidelines a

ording to whi
h one 
an manage modularization bothwhen writing the spe
i�
ation and when building the veri�
ation of a sys-tem.Chapter 4 reviewed the most signi�
ant literature about 
ompositional-ity in formal methods. The review showed that most frameworks provided227



10. Con
lusionsin the literature are fo
used mostly on the te
hni
al aspe
ts of 
omposi-tionality, and in parti
ular on the study of 
ompositional inferen
e rules.We 
laimed that this is impra
ti
al, and therefore we advo
ated a morebroad and versatile approa
h to 
ompositionality.This approa
h was developed in Chapter 5. There we introdu
ed anarray of te
hniques, ea
h suited for verifying 
ertain 
lasses of systemsbetter than others. Our array of inferen
e rules developed along the di-mensions presented in Chapter 3. In parti
ular, we provided both 
ir
ularand non-
ir
ular rules: although the literature deals mostly with the te
h-ni
al 
ompli
ations introdu
ed by the former, we maintained that mosta
tual systems do not exhibit 
ir
ular dependen
ies among modules, andtherefore non-
ir
ular rules are often su�
ient. Another te
hni
al issuewhi
h is often given great importan
e in the literature is the 
ompletenessof inferen
e rule. We provided a 
ompleteness analysis for ea
h rule wehave introdu
ed, but we also redis
ussed the signi�
an
e of 
ompletenessfor the pra
ti
al use of 
ompositionality, 
laiming that it is not always anindispensable feature.Together with the 
ompositional inferen
e rules, Chapter 5 also intro-du
ed a general methodology to formalize and verify modular systems. Themethodology exploits TRIO's modular features at the spe
i�
ation level,and it 
ombines them with 
ompositional and general dedu
tive veri�
a-tion te
hniques to provide support at the system veri�
ation level. Ourmethodology 
an be regarded as a lightweight approa
h to 
ompositional-ity, where it is the system under development that guides and suggests thete
hniques and methods to be used, rather than the opposite.Chapter 6 demonstrated our approa
h on two illustrative examples: areal-time version of the dining philosophers problem, and a peer-to-peer
ommuni
ation proto
ol. Although not industrial-strength 
ase studies,we believe that the two examples are su�
iently large and 
ompli
ated toassess, to some extent, the feasibility of our approa
h, and the advantagesof using su
h an approa
h to 
ompositionality in redu
ing the burden ofveri�
ation.Integration. The natural generalization of the 
ompositional problem o
-
urs when we 
onsider 
omposite systems whose modules are spe
i�ed bymeans of di�erent formalisms, and a

ording to di�erent semanti
 mod-els. For su
h systems, the key problem is to integrate the various moduleswithin a global semanti
s, so that it is possible to verify the overall system.228



Under this respe
t, Part II of the thesis dealt with the problem of inte-gration, that is 
omposing modules written using di�erent languages andsemanti
s.The fo
us of this thesis being on real-time systems, we dire
ted ouranalysis on a parti
ular, but very 
ommon, 
ase of integration, namely theintegration of 
ontinuous-time modules with dis
rete-time modules. As wedis
ussed in Chapter 7, systems where 
ontinuous-time and dis
rete-timedynami
s 
oexist are 
alled hybrid ; they are of great interest as most 
ontrolsystems are naturally des
ribed as hybrid systems.We developed our solution to the integration problem in Chapter 8. Thebasi
 ingredient of our framework was a formal relation between dis
rete-time and 
ontinuous-time semanti
s that abstra
ts what happens in a sys-tem where the dis
rete-time 
omponent has a

ess to an ideal samplingof the visible variables of the 
ontinuous-time 
omponents. Our relationwas 
alled sampling, and temporal logi
 formulas 
onsistent with respe
t tosampling were said to be sampling invariant. The basi
 result of Chapter 8was then the identi�
ation of a subset of the TRIO language whose formu-las are sampling invarian
e. This subset was named R

Z
TRIO and formallyde�ned in the same 
hapter. Moreover, sampling invarian
e also requiredto restri
t the interpretations of R

Z
TRIO formulas to suitably regular be-haviors; more pre
isely, in order not to lose any �information� throughsampling, we required that the variability of a behavior is su�
iently slow.The following Chapter 9 provided a pre
ise analysis of several aspe
ts ofour integration framework. In parti
ular, we dealt with three fundamentalproblems. First, we investigated the expressiveness of R

Z
TRIO, relating itto the MTL temporal logi
. Se
ond, we gave alternative 
hara
terizationsof the variability restri
tion on behaviors introdu
ed in the framework; inparti
ular, we showed how it 
ould be related to the mathemati
al notionof uniform 
ontinuity. Third, we 
ompared our approa
h to integrationwith another widespread notion of dis
retization, introdu
ed by Henzinger,Manna, and Pnueli [HMP92℄, 
alled digitization. Finally, Chapter 9 alsoshowed how R

Z
TRIO 
ould be used in pra
ti
e to formalize the behavior ofanother popular formalism for timed systems, namely timed automata.The expressiveness analysis and the 
omparison with digitization per-formed in Chapter 9 showed several subtleties that in�uen
e the expressive-ness of formalisms 
lose to R

Z
TRIO in expressive power. Correspondingly,Appendix E reviewed related work about the expressiveness of metri
 tem-poral logi
 languages and automata. This 
ollo
ated more pre
isely R

Z
TRIO229



10. Con
lusionswithin several other formalisms with similar features, and it allowed us tosee to what extent our results about integration 
an be moved to otherformal languages.We believe that the results on 
ompositionality and integration providedin this thesis improve the feasibility in � some aspe
ts of � the use offormal methods on large and heterogeneous systems, in a way whi
h is
oherent with the well-known and e�e
tive pra
ti
es of modularization andseparation of 
on
erns of �
lassi
al� software-engineering.Future work. Sin
e the overall goal of this thesis was to apply formalmethods to large and heterogeneous systems, an important topi
 for futurework is to 
on
retely use the solutions we provided on some industrial-strength appli
ations. Indeed, the �te
hnology transfer� from resear
h re-sults to industrial pra
ti
e is something that is always advo
ated but veryrarely � if ever � done in pra
ti
e. From this point of view, this thesis wasno ex
eption, thus we stress the importan
e of this further development forthe future.Another important aspe
t to ameliorate the pra
ti
al use of formal meth-ods is the availability of tools. Tool development was not the fo
us of thisthesis; nonetheless, all our te
hniques should be integrated in the TRIOIDE environment, 
urrently under full development (see Se
tion 2.4). Inparti
ular, not only our 
ompositional te
hniques, but also our 
omposi-tional methods should be given adequate tool support from IDE tools.As we dis
ussed in the in
ipit of Part II, integration en
ompasses a verybroad number of problems. Although we fo
used on timing aspe
ts in thisthesis, other aspe
ts of integration deserve investigation. Among many, letus mention the problem of integrating stati
 
omplex data within timedsystems.More spe
i�
ally with referen
e to the integration framework we pro-vided, there are at least two major dire
tions for future work. First, our no-tion of dis
retization allows for the dis
rete-time veri�
ation of 
ontinuous-time properties. This was not the primary goal of our integration e�ort,but it is an interesting by-produ
t. On the other hand, dis
rete-time ver-i�
ation was the fo
us of the digitization approa
h, whi
h we reviewed inthis thesis and 
ompared to ours. Therefore, it would be interesting to seewhat pra
ti
al advantages our notion of integration brings to automatedveri�
ation through the use of dis
retization te
hniques.230



Re�nement is a se
ond appli
ation area for our notion of integration, andin parti
ular the re�nement of abstra
t spe
i�
ations into implementations.In this sense, one would start from a high-level spe
i�
ation that dealswith 
ontinuous time, and then he/she would re�ne it to refer to a more
on
rete view of implementable time, namely a dis
rete one; our integrationframework may help in this respe
t. We already developed some of theaspe
ts of this problem elsewhere [SFR+06, FRS+06℄; future work shouldbring the results about integration we provided in this thesis to within amore general approa
h to the development and re�nement of spe
i�
ations.
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A. The Dining PhilosophersA.1. TRIO Spe
i�
ation of the philosopher Class
lass philosopher (
onst te, 
onst Te, 
onst Tt)signature:visible: start, eating, holding, available, thinking;temporal domain: R;domains: S : {l, r};items:
event start, take(S), release(S);
state eating, holding(S), available(S), thinking, hungry;formulae:vars: s : S, t : R;axioms:holding_syn
h: holding(l)⇔ holding(r);hungry: Lasted(¬eating, Tt)⇔ hungry;a
quire: hungry ∧UpToNow(available(l) ∧ available(r))

⇒ (take(l) ∧ take(r))∨NowOn(¬available(l) ∨ ¬available(r));eat_till_release: Becomes(holding(l) ∧ holding(r))
⇒ (∃t > te : Lasts(eating, t) ∧ Futr(release(l) ∧ release(r) , t));eating_duration: Lasted(eating, t)⇒ t < Te;eating_def: holding(l) ∧ holding(r)⇔ eating;thinking_def: thinking⇔ ¬eating;thinking_duration: Becomes(thinking)⇒ Lasts(thinking, Tt);taking: take(s)∧UpToNow(¬holding(s))∧UpToNow(available(s))
⇒ Until(holding(s) , release(s));putting: release(s) ∧UpToNow(holding(s))
⇒ Until(¬holding(s) , take(s)); 233



A. The Dining Philosophersassumptions:TCCs: Te > te > 0 ∧ Tt > 2Te;availability: (∃t ≥ Tt : Lasts(available(s) , t))
∨ WithinFei(Becomes(available(s)) , Tt + Te);availability_2: WithinF(UpToNow(available(s)) , Te);lasting_availability: Becomes(available(s))
⇒ Lasts(available(s) , Tt);theorems:taking_turns: (∃t ≥ Tt : Lasts(¬holding(s) , t))
∨ WithinFei(Becomes(¬holding(s)) , Tt + Te);taking_turns_2: WithinF(UpToNow(¬holding(s)) , Te);fork_availability:

WithinFei(UpToNow(available(l) ∧ available(r)) , Tt + 2Te);always_eating_or_not: hungry

∨ WithinPii((∃t > te : Lasted(eating, t))
∨ Becomes(eating) , Tt + Te);regular_eating_rg:

WithinFei(UpToNow(available(l) ∧ available(r)) , Tt + 2Te)
≫

(SomPi(start)⇒ (∃t > te : Withinii(Lasts(eating, t) , Tt + 2Te)));end
A.2. TRIO Spe
i�
ation of the dining_N Class
lass dining_N (
onst te, 
onst Te, 
onst Tt, 
onst N)import: philosopher;signature:visible: start;temporal domain: R;items: event start;234



A.3. Proofs of the philosopher Classmodules:Philosophers: array [0..N − 1] of philosopher
[te is 
onst te, Te is 
onst Te, Tt is 
onst Tt];
onne
tions:vars: i : [0..N − 1];

(direct Philosophers[i].available(l) ,
¬Philosophers[(i− 1) mod N ].holding(r)),

(direct Philosophers[i].available(r) ,
¬Philosophers[(i+ 1) mod N ].holding(l)),

(broadcast start,Philosophers.start);formulae:vars: k : [0..N − 1], t : R;assumptions:TCCs: Te > te > 0 ∧ Tt > 2Te ∧ N ≥ 2;theorems:liveness_rg: ∀k ∈ [0..N − 1] : ( SomPi(Philosophers[k].start)
⇒ (∃t > te : Withinii(Lasts(Philosophers[k].eating, t) , Tt + 2Te)));endA.3. Proofs of the philosopher ClassIn this se
tion we provide proofs for all the theorems of the philosopher
lass not proved in the main body of this thesis.Theorem 53 (philosopher.taking_turns).

(∃t ≥ Tt : Lasts(¬holding(s) , t))
∨ WithinFei(Becomes(¬holding(s)) ,Tt + Te)Proof. Let us take t = Tt and show that:

Lasts(¬holding(s) ,Tt) ∨WithinFei(Becomes(¬holding(s)) ,Tt + Te)for a generi
 s. The proof pro
eeds by 
ontradi
tion: assume the negationof the goal, that is, after some simple rewriting, WithinF(holding(s) ,Tt)and Lastsei(¬Becomes(¬holding(s)) ,Tt + Te).Let us 
onsider the �rst term WithinF(holding(s) ,Tt); by the de�nitionof the WithinF operator, this is the same as saying that there is a timeinstant 0 < u < Tt in the future in whi
h holding(s) is true. It is simple toinfer, by axioms holding_syn
h and eating_def, that eating is true atthe same instant u. 235



A. The Dining PhilosophersWe have brie�y highlighted the fa
t that eating holds on right-
ontinuousintervals. It 
an be shown that, for any right-
ontinuous state S and for anytime distan
e d, if S ∧ Lasts(¬Becomes(¬S) , d) is true at a 
ertain time,then it follows that Lasts(S, d) at the same time (intuitively, this is simpleto understand). Therefore, 
onsider the state eating and the distan
e Te.We have just shown that at time u eating is true. Furthermore, our initialassumption of the proof by 
ontradi
tion Lastsei(¬Becomes(¬holding(s)) ,
Tt + Te) implies that Lasts(¬Becomes(¬holding(s)) ,Te) at time u, being
Te + u < Te + Tt. Again, by 
ombining axioms holding_syn
h andeating_def, this last statement implies Lasts(¬Becomes(¬eating) ,Te).Hen
e, we dedu
e that Lasts(eating,Te) holds at time u.Equivalently, this last fa
t 
an be stated at time u+Te as Lasted(eating,
Te). It is immediate to derive a 
ontradi
tion with the statement of axiomeating_duration.Theorem 54 (philosopher.taking_turns_2).
WithinF(UpToNow(¬holding(s)) ,Te)Proof. By axiom eating_duration, we 
an assume that it is false that
Lasted(eating,Te) at Te time instants in the future or, equivalently, that
Lasts(eating,Te) is false at the 
urrent time. By the de�nition of the Lastsoperator, this is equivalent to assuming that WithinF(¬eating,Te) is trueat the 
urrent time.Let 0 < u < Te be the time instant in the future at whi
h eating is false.Sin
e eating is a right-
ontinuous state, it follows that NowOn(¬eating) istrue at u. More expli
itly, these fa
ts 
an be stated as Lastsie(¬eating, v)at u, for some v > 0.Now, 
onsider any time instant after u, before u+ v and before Te. Forexample, take the time instant w = u+min(Te−u, v)/2 (
learly, w < u+vand w < Te by 
onstru
tion). We realize that UpToNow(¬eating) holds at
w, sin
e it is true that Lasted(¬eating,min(Te − u, v)/2) holds at w.Finally, by 
onsidering axioms holding_syn
h and eating_def, we de-du
e the statement UpToNow(¬holding(s)) at w < Te, whi
h 
on
ludesthe proof.Theorem 55 (philosopher.fork_availability).
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)Proof. Let us 
onsider two instan
es of assumption availability, one forthe left fork and one for the right fork, and �x t = Tt. A

ording to thedisjun
tion, the proof 
an be split into four 
ases, whether:236



A.3. Proofs of the philosopher Class1. Lasts(available(l) ,Tt) and Lasts(available(r) ,Tt)2. Lasts(available(l) ,Tt) and WithinFei(Becomes(available(r)) ,Tt + Te)3. Lasts(available(r) ,Tt) and WithinFei(Becomes(available(l)) ,Tt + Te)4. WithinFei(Becomes(available(l)) ,Tt + Te) and
WithinFei(Becomes(available(r)) ,Tt + Te),all formulas holding at the 
urrent time.Let us �rst 
onsider the simpler 
ase 1. Let us 
onsider the time instant

u = Tt/2 in the future. We 
laim that UpToNow(available(l) ∧ available(r))holds at u; sin
e u < Tt + 2Te this would 
on
lude this part of the proof.In fa
t, obviously Lasts(available(l) ∧ available(r) ,Tt/2) holds, being animmediate 
onsequen
e of the hypotheses. Equivalently, this 
an be statedas Lasted(available(l) ∧ available(r) ,Tt/2) at time u. By 
onsidering thede�nition of the UpToNow operator, this implies UpToNow(available(l) ∧
available(r)) holds at u, what we just 
laimed.Let us now pass to 
ase 2 and just assume WithinFei(Becomes(available(r))
,Tt+Te) at the 
urrent time. Now, let 0 < u < Tt+Te be the time instantat whi
h Becomes(available(r)) holds. By assumption lasting_availability,it follows that Lasts(available(r) ,Tt) also holds at u. Now, let us 
onsiderthe other assumption availability_2, taking u as the base time and l asfork: therefore we assume that WithinF(UpToNow(available(l)) ,Te) holdsat u. Let u+v < u+Te be the time instant at whi
h UpToNow(available(l))holds. Sin
e Te < Tt/2, it follows that u + v < u + Tt and therefore afortiori Lasts(available(r) , v) holds at u. This last formula implies that
UpToNow(available(r)) holds at u + v. All in all, UpToNow(available(l) ∧
available(r)) holds at u+ v. Now, sin
e u+ v < (Tt +Te)+Te = Tt +2Te,this bran
h of the proof is su

essfully 
on
luded.Case 3 has a proof whi
h is all similar to 
ase 2, be
ause of the symmetrybetween the left and right forks.Finally, 
ase 4 
an be redu
ed to 
ase 2 or 3: in fa
t in both of them wedid not use the hypothesis Lasts(available(s) ,Tt) in the proof.Theorem 56 (philosopher.always_eating_or_not). hungry ∨
WithinPii((∃t > te : Lasted(eating, t)) ∨ Becomes(eating) ,Tt + Te)Proof. In order to prove the disjun
tion, we assume the negation of the�rst term as hypothesis. Therefore, we assume ¬Lasted(¬eating,Tt) at the
urrent time or, equivalently, WithinP(eating,Tt). Writing the WithinP237



A. The Dining Philosophersout expli
itly, this means that there exists a time distan
e 0 < u < Tt su
hthat eating holds at −u.Being eating a right-
ontinuous state, we also have that NowOn(eating)at −u, that is Lasts(eating, v) at −u, for some positive time v. Now,
onsider the time instant −w = −u + min(u, v)/2. Clearly −u < −w < 0and −w < −u + v, by 
onstru
tion. Therefore, we 
an 
hara
terize thebehavior of eating at −w by noti
ing that the state is true before and after
−w, that is UpToNow(eating) and NowOn(eating) at −w.Now, for any right-
ontinuous state predi
ate S su
h that NowOn(S), it
an be proved1 that either S stays true always in the future (i.e., AlwF(S)),or there is a future time instant p at whi
h S be
omes false, and beforethat time it stays true (i.e., ∃p > 0 : Lasts(S, p) ∧ Futr(NowOn(¬S) , p)).A similar result holds for any right-
ontinuous state predi
ate S su
h that
UpToNow(S): either S stays true always in the past (i.e., AlwP(S)), orthere is a past time instant −p at whi
h S be
omes false, and beforethat time it stays true (i.e., ∃p > 0 : Lasted(S, p) ∧ Past(NowOn(¬S) ∨
UpToNow(¬S) , p)).2 Therefore, for eating, we 
an 
ombine the two prop-erties in the past and in the future to split the proof into four 
ases.1. AlwF(eating) and AlwP(eating);2. Lasts(eating, p)∧Futr(NowOn(¬eating) , p) and AlwP(eating), for some

p > 0;3. AlwF(eating) and Lasted(eating, p) ∧
Past(NowOn(¬eating) ∨UpToNow(¬eating) , p), for some p > 0;4. Lasts(eating, pf ) ∧ Futr(NowOn(¬eating) , pf ) and
Lasted(eating, pp)∧Past(NowOn(¬eating) ∨UpToNow(¬eating) , pp),for some pf , pp > 0;all of them evaluated at time −w.Bran
h 1 is simple, sin
e we have that eating always holds (note that

eating is true exa
tly at −w as well, sin
e Lasts(eating, v) holds at −u, and
−w < −u+ v).Let us 
onsider bran
h 2. From AlwP(eating) at −w, a fortiori Lasted(
eating,Te) at −w. Sin
e Te > te and w < u < Tt < Tt + Te, 
learly1A weaker but similar result holds for generi
 time-dependent predi
ates, but we donot need it here. We do not dis
uss neither proof.2The asymmetry with the future 
ase is due to the fa
t that S is right-
ontinuous.238



A.3. Proofs of the philosopher Class
WithinPii(∃t > te : Lasted(eating, t) ,Tt + Te) is satis�ed, thus 
on
ludingthis bran
h.Now for bran
h 3. Let us �rst try the 
ase in whi
h UpToNow(¬eating) at
−w−p and Lasted(eating, p) at −w. If p > Te, it is true that Lasted(eating,
Te) at −w > −(Tt + Te), so the goal WithinPii(∃t > te : Lasted(eating, t) ,
Tt + Te) is satis�ed. On the 
ontrary, if p ≤ Te, we 
an show that
Becomes(eating) holds at −w−p. In fa
t, we know that UpToNow(¬eating)at −w − p. Moreover, it is not hard to realize that Lasted(eating,Te)at −w implies that NowOn(eating) at −w − p, sin
e p ≤ Te. Therefore
UpToNow(¬eating)∧NowOn(eating) at −w−p > −(u+Te) > −(Tt +Te),whi
h is the de�nition of Becomes(eating).We are now 
onsidering the 
ase in whi
h NowOn(¬eating) at −w − pand Lasted(eating, p) at −w. This 
ase derives a 
ontradi
tion, sin
e it isboth NowOn(¬eating) and NowOn(eating) at −w − p. In fa
t, the latterfollows from Lasted(eating, p) at −w, whi
h is equivalent to Lasts(eating, p)at −w − p. So, bran
h 3 is 
on
luded.Finally, bran
h 4 
an be redu
ed to step 3, where we did not use theadditional hypothesis AlwF(eating).
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B. The BitTorrent ExampleVeri�
ationB.1. Proof of Proposition 6.3.1Proposition B.1.1. If, for some �xed duration TB > 0:1. for all i ∈ IN : Ei ⇒WithinF(Mi,TB)2. for all i ∈ IN : E ∧Mi ⇒ Eif i<N then i+1 else 13. ∧i∈IN
WithinF(Mi, NTB)⇒M4. WithinF(Ei,TB), for some i ∈ INthen Lasts(E,NTB)⇒M .Proof. Let us assume that Lasts(E,NTB) holds at the 
urrent time t, thatis E holds throughout the interval (t, t + NTB). By (4), there exists a

t < t1 < t + TB su
h that Ei holds at t′ for some i. Without loss ofgenerality, let i = N : this amounts just to a re-numbering of the modules.Next, let us show that there exists N instants t1, t2, . . . , tN su
h that Miholds at ti, and t < ti < t+ iTB, for all i ∈ IN . The proof goes by (�nite)indu
tion. The base 
ase i = 1 is obvious: sin
e EN at t1, then also M1 at
t1 by (2), and t < t1 < t+ TB by assumption.For the indu
tive step, assume thatMi−1 holds at t < ti−1 < t+(i−1)TB;noti
e that E holds at ti−1 as well. Therefore, Ei holds at ti−1 from (2). Letus evaluate (1) at ti−1; it follows that there exists a ti−1 < ti < ti−1 + TBsu
h that Mi holds at ti. Given the bounds on ti−1, it is 
lear that t <
ti−1 < ti < ti−1 + TB < t+ (i− 1)TB + TB = t+ iTB. This 
on
ludes theindu
tion.All in all we have shown that ∧i∈IN

WithinF(Mi, NTB) holds at t. (3)lets us 
on
lude that M holds at t. 241



B. The BitTorrent Example Veri�
ationB.2. Proof of Lemmas 6.3.2�6.3.4Noti
e that, in proving ea
h lemma, we 
an safely assume that we are in atime interval where Lastsie
(
Ek, kTs

) holds, that is where the 
onne
tionsare 
onstant. In fa
t, the 
on
lusion of the whole 
ompositional proof holdsunder the 
ondition Lastsie
(
Ek
)
kTs. Now, for the proofs.Proof of Lemma 6.3.2. For every i in a 
luster of size k, this lemma isequivalent to theorem peer.bounded_send_re
v.Proof of Lemma 6.3.3. Trivial, sin
e the 
onsequent is immediately sub-sumed by the ante
edent.Modular distan
e and properties. The proof of Lemma 6.3.4 is more
ompli
ated than the others, and requires an additional de�nition for adistan
e between two peers in the 
luster, together with a property of thisnew item. The property is not hard to prove, but it requires a somewhatinvolved 
ase dis
ussion.Let us �rst de�ne the distan
e between two peers p1, p2 in a 
luster as:

distN (p1, p2) ≡ (p2 − p1) mod N . Then, we have the following property.Lemma B.2.1.
distN (p1,nextN (p2)) =

{
0 if nextN (p2) = p1

distN (p1, p2) + 1 otherwiseProof. Let us �rst 
onsider the simple 
ase nextN (p2) = p1. We then 
on-
lude, by the de�nition of distan
e, distN (p1,nextN (p2)) = distN (p1, p1) =
0. Let us now take the other 
ase nextN (p2) 6= p1. Considering the de�ni-tions of distan
e and next element, we have to prove

(((p2 + 1) mod N)− p1) mod N = ((p2 − p1) mod N) + 1. (B.1)The proof is split into two bran
hes, whether p2 + 1 < N or not.1. p2 + 1 < N . In this 
ase, (B.1) rewrites to
((p2 + 1)− p1) mod N = ((p2 − p1) mod N) + 1 (B.2)Let us distinguish whether p2 − p1 + 1 ≥ 0 or not.242



B.2. Proof of Lemmas 6.3.2�6.3.4a) p2 − p1 ≥ −1. Noti
e that p2 − p1 = −1 i� nextN (p2) = p1, sowe have p2 − p1 ≥ 0 in this bran
h of the proof. Hen
e, (B.2) isestablished
p2 − p1 = (p2 − p1) mod N = p2 − p1b) p2−p1 < −1. Noti
e that, for any natural number k ∈ [1..N−1],we have −k mod N = N − k. So, we 
an rewrite (B.2) as

N − (−p2 + p1 − 1) = (N − (−p2 + p1)) + 1whi
h 
on
ludes this bran
h of the proof.2. p2 + 1 ≥ N . It is simple to realize that it must be p2 + 1 = N , sin
e
p2 < N . Hen
e, (B.1) be
omes

(0− p1) mod N = N − p1 = ((N − 1− p1) mod N) + 1It is also obvious that N − 1− p1 ≥ 0, so we �nally 
on
lude
N − p1 = (N − 1− p1) + 1To simplify the notation, we also introdu
e a notion of distan
e amongpeers in a 
luster that refers to the permutation of the indexes indu
ed bythe 
onne
tions. Namely, the distan
e between two peers with respe
t to apermutation is given by the distan
e between their indexes in the permu-tation and denoted as: distπN

(p1, p2) ≡ distN (π−1
N (p1), π

−1
N (p2)). Conse-quently, a similar notion for the next peer is introdu
ed. That is, the next ofa peer with respe
t to a permutation is given by the element next to the peerin the permutation, and it is denoted as: nextπN

(p) ≡ πN (nextN (π−1
N (p))).Noti
e that Lemma B.2.1 
an be shown to hold also for the fun
tions

distπN
(p1, p2) and nextπN

(p) we have just de�ned; we omit the straightfor-ward proof of this fa
t.Proof of Lemma 6.3.4. We still need to prove an intermediate lemma,before a
tually performing the proof of Lemma 6.3.4. Noti
e that, for thesake of brevity, we now write simply dist(p1, p2) and next(p) instead of
disteπk

(p1, p2) and nexteπk
(p) respe
tively, whenever the permutation π̃k isunderstood to be the one de�ned by axiom 
lustering at a given timeinstant. 243



B. The BitTorrent Example Veri�
ationLemma B.2.2 (futr_re
v). Pe[p1].recv(i)⇒ ∀0 < d < ki : ∀p2 :
(dist(p1, p2) = d⇒ ∃j : WithinF(Pe[p2].recv(j) , dTs))Proof. The proof goes by indu
tion on the distan
e d > 0.The base 
ase d = 1 requires us to show that, for all p2 su
h that
dist(p1, p2) = 1, Pe[p1].recv(i)⇒ ∃i : WithinF(Pe[p2].recv(i) , Ts). Now, asa 
onsequen
e of axiom peer.re
v_to_send, it follows from Pe[p1].recv(i)that
WithinF(Pe[p1].send(j) , Ts) for some pa
ket j. It is not hard to realizethat, if dist(p1, p2) = 1, then p2 = next(p1). Moreover, we are 
onsideringa time interval in the future where the 
onne
tions are stable, so in parti
-ular we have that connectedp(p1, p2), that is Pe[p1].send(j) is equivalent to
Pe[p2].recv(j). In other words, we have shown that WithinF(Pe[p2].recv(j) ,
Ts), 
on
luding the base step.Now, let us 
onsider a d > 1. The indu
tive step requires us to assumethat the property holds for d and to show that it holds for d + 1 as a
onsequen
e. So, let us 
onsider two generi
 peers su
h that dist(p1, p2) =
d+1, and assume that Pe[p1].recv(i) for some pa
ket i. Let us also 
onsiderthe peer p3 su
h that next(p3) = p2, that is the peer immediately pre
eding
p2 in the ring of 
onne
tions. We 
an apply Lemma B.2.1 to show thateither dist(p1,next(p3)) = dist(p1, p2) = 0 or dist(p1, p2) = dist(p1, p3)+1.However, it is not the 
ase that p2 = p1, otherwise it would be dist(p1, p2) =
0 < 1. Hen
e dist(p1, p3) = d.The indu
tive step lets us imply that ∃j : WithinF(Pe[p3].recv(j) , dTs),assuming Pe[p1].recv(i). Considering the de�nition of the WithinF oper-ator, and assuming 0 as the 
urrent time, this means that there existsa time instant 0 < t < dTs time units in the future,when Pe[p3].recv(j)holds. With a proof similar to that of the base 
ase, 
onsidering the fa
tthat connectedp(p3, p2) we 
an show that there exists a time instant q, o
-
urring no later than Ts time units after t, when Pe[p2].recv(l) for somepa
ket l. Sin
e q − t < Ts, then 0 < q < (d + 1)Ts and therefore we 
anwrite WithinF(Pe[p3].recv(l) , (d+ 1)Ts), thus establishing the property for
d+ 1 and 
on
luding the indu
tive proof.We are now ready for the �nal proof.Proof of Lemma 6.3.4. We are a
tually going to prove ∃i : WithinF(
Pe[j].recv(i) , kTs) for all j in the 
luster, whi
h subsumes the statement ofthe lemma.244



B.2. Proof of Lemmas 6.3.2�6.3.4Let us start by noting that axiom 
lustering implies that there exist apeer p and a seed s su
h that connecteds(s, p), and the 
onne
tions staysstable over the next kTs time units, be
ause of the usual assumption. In theremainder, let us assume 0 as the 
urrent instant. As a 
onsequen
e of ax-iom seed.sending for the seed s, it is true that WithinF(Se[s].send(i) , Ts)for some pa
ket i, that is there exists a time instant 0 < t < Ts in the futurewhen Se[s].send(i) holds. Therefore, be
ause of the 
onne
tion, Pe[p].recv(i)at the same time t.Let us 
onsider any generi
 peer j in the 
luster. We 
an assume that
dist(p, j) > 0 without loss of generality. In fa
t, if dist(p, j) = 0, then it issimple to realize that p = j and therefore the proof is 
on
luded. Otherwise,we 
an apply lemma futr_re
v, substituting p, j and dist(p, j) for p1, p2and d respe
tively and 
onsidering t as the base time instant. We infer that
Futr(WithinF(Pe[j].recv(l) ,dist(p, j)Ts) , t) for some pa
ket l. Consideringthe de�nitions of the 
orresponding TRIO operators, this means that thereexists a time instant t < q < dist(p, j)Ts+t in the future when Pe[j].recv(l)happens. It is simple to realize that dist(p, j) < k, sin
e this is true of anypair of peers in a 
luster of size k. So c = dist(p, j) + 1 ≤ k, t < q < cTsand q < kTs. This is the same as saying that WithinF(Pe[j].recv(i) , kTs)for the generi
 peer j in the 
luster, what we had to prove.
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C. The Reservoir IntegrationExampleC.1. Proofs of Theorems 41�43Theorem 57 (reservoirR.abstra
t_behavior_1).
Lastsee(F, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ)Proof. Sin
e L is a state item, it 
hanges its value a �nite number of timesin the interval of length δ from the 
urrent instant. In ea
h of the re-sulting 
onstan
y intervals, we have that either F ∧ L or F ∧ ¬L holds;in both 
ases the level of �uid must in
rease in the interval, by Axiomslevel_behavior_1 and level_behavior_2, respe
tively. Thus, after a�nite number of in
reases, it must be l > l ≥ l after δ time instants.Theorem 58 (reservoirR.abstra
t_behavior_2).

l ≥ t ⇒ Futr(l ≥ l, δ)Proof. Let l′ be the value of l at δ time instants in the future, and l the
urrent value. By Axioms 35 through 38, it is simple to understand thatthe level 
annot go below the value max(l − rlδ, 0) = l − rlδ ≥ l, sin
e weare assuming that t− rlδ > l.Theorem 59 (reservoirR.abstra
t_behavior_3).
Lastsee(¬F ∧ ¬L, δ) ∧ l ≥ l ⇒ Futr(l ≥ l, δ)Proof. Let l′ be the value of l at δ time instants in the future, and l the
urrent value. Then, l′ = l ≥ l by Axiom level_behavior_4.
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D. Proofs for the IntegrationFrameworkD.1. Transforming R

Z
TRIO Formulas into NormalFormElimination of negations. In order to eliminate negations in a formula,we just push them inward to boolean 
onditions. Sin
e 
onditions are
losed under 
omplement (as it will be 
lear in their de�nition, see Se
tion8.3), and we have the dual of ea
h basi
 operator, we 
an always eliminatenegations from formulas. More expli
itly, we perform the substitutions:

¬ (¬φ) −→ φ
¬ (φ1 ∧ φ2) −→ ¬φ1 ∨ ¬φ2

¬UntilI〉(φ1, φ2) −→ ReleasesI〉(¬φ1,¬φ2)

¬SinceI〈(φ1, φ2) −→ ReleasedI〈(¬φ1,¬φ2)re
ursively, until all negations are eliminated or on 
onditions.Elimination of nesting. Nesting 
an be eliminated from R

Z
TRIO by in-trodu
ing auxiliary basi
 items (whi
h are primitive 
onditions). Moreexpli
itly, if ξ is a primitive 
ondition, ξ′ is an auxiliary item (not usedanywhere else in the spe
i�
ation), φ is a generi
 formula, and Op is anytemporal operator (i.e., Until, Since, Releases, or Released), we performthe substitutions:

OpI〉(φ, ξ) −→ (ξ′ ⇔ φ) ∧ OpI〉(ξ
′, ξ)

OpI〉(ξ, φ) −→ (ξ′ ⇔ φ) ∧ OpI〉(ξ, ξ
′)re
ursively, until nestings of temporal operators are eliminated. It is simpleto 
he
k, by dire
t appli
ation of the de�nition of the operators, that theabove substitutions preserve the semanti
s of the formula. Exa
tly, one
an 
he
k that if ξ′ ⇔ φ then OpI〉(φ, ξ) ≡ OpI〉(ξ

′, ξ) and OpI〉(ξ, φ) ≡
OpI〉(ξ, ξ

′). 249



D. Proofs for the Integration FrameworkFinally, one has obviously to eliminate the double impli
ations by in-trodu
ing the 
orresponding de�nitions: ξ′ ⇔ φ ≡ (ξ′ ∧ φ) ∨ (¬ξ′ ∧ ¬φ);the negations whi
h are introdu
ed in the pro
ess are then eliminated asexplained in the above step.Elimination of Until) and Releases] in dis
rete time. Let us �rst note thefollowing equivalen
es. If ξ1, ξ2 are any 
onditions, and ξ′ is an auxiliaryitem (not used anywhere else in the spe
i�
ation), then:
(ξ′ ⇔ NowOn(ξ2)) ⇒

(
Until〈l,u〉)(ξ1, ξ2) ≡ Until〈l−1,u−1〉](ξ1, ξ

′)
)

(ξ′ ⇔ UpToNow(ξ2))⇒
(
Since〈l,u〉((ξ1, ξ2) ≡ Since〈l−1,u−1〉[(ξ1, ξ

′)
)

(ξ′ ⇔ UpToNow(ξ2))⇒
(
Releases〈l,u〉](ξ1, ξ2) ≡ Releases〈l+1,u+1〉)(ξ1, ξ

′)
)

(ξ′ ⇔ NowOn(ξ2)) ⇒
(
Released〈l,u〈[(ξ1, ξ2) ≡ Released〈l+1,u+1〈((ξ1, ξ

′)
)Let us sket
h the proof of the above equivalen
es, for a generi
 dis
rete-time behavior b ∈ BZ.

• Until and Sin
e. Assume that b |=Z ξ′ ⇔ NowOn(ξ2). Then, if
b(k) |=Z Until〈l,u〉)(ξ1, ξ2) for some instant k, then there exists a d ∈
〈l, u〉 su
h that ξ2 is true at k+ d and ξ1 is true in the whole interval
[0, d) from k, whi
h in dis
rete time is equivalent to [0, d− 1]. Thus,for d′ = d − 1, we have that ξ′ is true at k + d′, sin
e ξ2 is true at
k + d = k + d′ + 1. Noti
e that d′ ∈ 〈l − 1, u− 1〉. All in all we havethat b(k) |=Z Until〈l−1,u−1〉](ξ1, ξ

′).For the 
onverse, assume that b(k) |=Z Until〈l−1,u−1〉](ξ1, ξ
′). So,there exists a d ∈ 〈l − 1, u − 1〉 su
h that ξ′ holds at k + d and

ξ1 holds in the whole interval [0, d] from k. Therefore, ξ2 holds at
k + d + 1, and d + 1 ∈ 〈l, u〉. Hen
e, for d′ = d + 1 we have that
b(k) |=Z UntilI)(ξ1, ξ2) holds.The proof for the Since is all similar, but for the past dire
tion oftime.
• Releases and Released. The equivalen
es follow from the above equiv-alen
e about the Until operator, exploiting the fa
t that the Releasesis its dual, as well as the easily veri�able equivalen
es of ¬NowOn(ξ)with NowOn(¬ξ), and of ξ′ ⇔ NowOn(ξ′′) with ξ′′ ⇔ UpToNow(ξ′).All similarly for the Released, but derived from the property of the

Since.250



D.2. Proof of Theorem 8.3.1Therefore, we perform the following substitutions to put a formula intonormal form.
Until〈l,u〉)(ξ1, ξ2) −→ (ξ′ ⇔ NowOn(ξ2)) ∧ Until〈l−1,u−1〉](ξ1, ξ

′)

Since〈l,u〉((ξ1, ξ2) −→ (ξ′ ⇔ UpToNow(ξ2)) ∧ Since〈l−1,u−1〉[(ξ1, ξ
′)

Releases〈l,u〉](ξ1, ξ2) −→ (ξ′ ⇔ UpToNow(ξ2)) ∧ Releases〈l+1,u+1〉)(ξ1, ξ
′)

Released〈l,u〉[(ξ1, ξ2) −→ (ξ′ ⇔ NowOn(ξ2)) ∧ Releases〈l+1,u+1〉((ξ1, ξ
′)D.2. Proof of Theorem 8.3.1D.2.1. Size of an IntervalIn order to prove the theorem, let us �rst introdu
e the de�nition of size ofan interval, for both time models. To this end, we introdu
e here the | · |Toperator, whi
h is de�ned as follows, a

ording to the time model. If thetime domain is dense, then:

|〈l, u〉|R =

{
u− l if u ≥ l
0 if u < lIf the time domain in instead dis
rete, we have the following de�nitions:

|(l, u〉|Z = |[l + 1, u〉|Z
|〈l, u)|Z = |〈l, u− 1]|Z

|[l, u]|Z =

{
u− l + 1 if u ≥ l
0 if u < lD.2.2. Items Change PointsLet us noti
e the following fa
t that we will use in the following.Lemma D.2.1 (Items Change Points). For any behavior obeying the 
on-straint χ◦, if for some time t ∈ R it is b(t) |=R 〈ψ1, . . . , ψn〉 = v for some

v, then there exists cn ≥ t and cp ≤ t su
h that:
• b(cn) |=R Becomes(〈ψ1, . . . , ψn〉 6= v) or
b(t) |=R AlwF(〈ψ1, . . . , ψn〉 = v);
• b(cp) |=R Becomes(〈ψ1, . . . , ψn〉 = v) or
b(t) |=R AlwP(〈ψ1, . . . , ψn〉 = v) 251



D. Proofs for the Integration Framework
• for all t′ ∈ (cp, cn) it is b(t′) |=R 〈ψ1, . . . , ψn〉 = v;
• cn − cp ≥ δ.Moreover, the same property holds for any 
ondition ξ.Proof. Sin
e χ◦ holds for b, then there exists a p ∈ [0, δ] su
h that for all

u ∈ [−p,−p + δ] it is b(t + u) |=R 〈ψ1, . . . , ψn〉 = v. In parti
ular, it is
b(t− p) |=R 〈ψ1, . . . , ψn〉 = v and b(t− p+ δ) |=R 〈ψ1, . . . , ψn〉 = v. Sin
e
χ◦ implies the non-Zenoness of the items values, then [GM01℄ there exista dp, dn ≥ 0 su
h that:
• either for all u′ ∈ [0, dn) it is b(t − p + δ + u′) |=R 〈ψ1, . . . , ψn〉 =
v, and there exists an ǫn > 0 su
h that for all u′′ ∈ (0, ǫn) it is
b(t − p + δ + dn + u′′) |=R 〈ψ1, . . . , ψn〉 6= v, or 〈ψ1, . . . , ψn〉 = valways in the future;
• either for all u′ ∈ [0, dp) it is b(t− p− u′) |=R 〈ψ1, . . . , ψn〉 = v, andthere exists an ǫp > 0 su
h that for all u′′ ∈ (0, ǫn) it is b(t− p− dn−
u′′) |=R 〈ψ1, . . . , ψn〉 6= v, or 〈ψ1, . . . , ψn〉 = v always in the past.In other words, either there is a point where the items 
hange (some of)their values, or they keep their 
urrent value inde�nitely.If the latter is the 
ase, then the lemma follows immediately. Otherwise,noti
e that (−p+δ+dn)−(−p) = δ+dn ≥ δ, therefore we have b(t−p+δ+

dn) |=R UpToNow(〈ψ1, . . . , ψn〉 = v). Similarly, noti
e that −((−p− dp)−
(−p+δ)) = dp+δ ≥ δ, therefore b(t−p−dp) |=R NowOn(〈ψ1, . . . , ψn〉 = v).Finally, by 
onsidering 
ondition χ◦ again for the instants t−p+δ+dn+ǫ′and t− p− dp− ǫ′ �to the limit� as ǫ goes to 0, then we realize that it mustalso be b(t−p+δ+dn) |=R NowOn(〈ψ1, . . . , ψn〉 6= v) and b(t−p−dp) |=R

UpToNow(〈ψ1, . . . , ψn〉 6= v).Therefore, for cn = t− p+ δ + dn and cp = t− p− dp the lemma holds.Finally, sin
e the value of a 
ondition 
hanges only if some values 
hangetheir values, the lemma holds immediately for 
onditions as well.D.2.3. Theorem 8.3.1Theorem D.2.2 (Sampling Invarian
e for Dis
rete-valued Items). Normal-form R

Z
TRIO is sampling invariant, for items mapping to a dis
rete set D,with respe
t to the behavior 
onstraint χ◦, the adaptation fun
tions ηRδ {·}and ηZδ {·}, for any sampling period δ and origin z.252



D.2. Proof of Theorem 8.3.1Proof. The proof is split into two main parts: �rst we show that any R

Z
TRIOformula φ, interpreted in the 
ontinuous-time domain, is 
losed under sam-pling; then we show that any formula φ, interpreted in the dis
rete-timedomain, is 
losed under inverse sampling. We assume formulas written inthe normal form presented above; this is without loss of generality as itdoes not restri
t the expressiveness of the language as it was shown.For ease of exposition, let us also introdu
e the following abbreviations:for a real number r, let us denote by Ω(r) the sampling instant z + ⌊(r −

z)/δ⌋δ, whi
h is immediately before r, and by O(r) the sampling instant
z+ ⌈(r− z)/δ⌉δ whi
h is immediately after r. Moreover, we also denote by
ω(r) and o(r) the distan
es between r and its previous and next samplinginstant, respe
tively, that is ω(r) = r−Ω(r) and o(r) = O(r)−r. Obviously
ω(r), o(r) ≥ 0.(Closure under sampling).1 Let b be a 
ontinuous-time behavior in [[χ◦]]Rand let φ′ = ηRδ {φ}. Then, let b′ be the sampling σδ,z [b] of behavior b withthe given origin and sampling period.Now, for a generi
 sampling instant t = z + kδ, we show that b(t) |=R φimplies b′(k) |=Z φ

′, by indu
tion on the stru
ture of φ.
• φ = ξ.By de�nition of sampling of a behavior, the truth value of ξ at t and
k is the same, i.e., ξ|b(t) = ξ|b(z+kδ) = ξ|b′(k).
• φ = Until〈l,u〉〉(ξ1, ξ2).Noti
e that φ′ is Until[l′,u′])(ξ1, ξ2), with l′ = ⌊l/δ⌋ and u′ = ⌈u/δ⌉.Let d be a time instant in 〈l, u〉 su
h that b(t+ d) |=R ξ2 and, for alltime instants e ∈ [0, d〉 it is b(t+e) |=R ξ1. Condition χ◦ at time t+dimplies that there exists a p ∈ [0, δ] su
h that for all f ∈ [−p,−p+ δ]it is b(t + d + f) |=R ξ2. In other words, ξ2 holds on the 
losed realinterval I = [t+d−p, t+d−p+δ]. Sin
e I has size δ, its interse
tionwith the sampling points (whi
h are δ time units apart) must be non-empty. In parti
ular, it is either p ≥ ω(t + d) or −p + δ ≥ o(t + d):otherwise it would be δ = p + (−p + δ) < ω(t + d) + o(t + d) =
O(t + d) − Ω(t + d) = δ(⌈(t + d − z)/δ⌉ − ⌊(t + d − z)/δ⌋) ≤ δ, a
ontradi
tion (where we exploited the property: ⌈r⌉−⌊r⌋ ≤ 1 for anyreal r).1This proof exploits some properties of the �oor and 
eiling fun
tions. We refer thereader to [GKP94℄ for a thorough treatment of these fun
tions. 253



D. Proofs for the Integration FrameworkSo, let t′ be the sampling instant:
t′ =

{
Ω(t+ d) if p ≥ ω(t+ d)

O(t+ d) otherwiseIt is not di�
ult to 
he
k that (t′ − t)/δ ∈ [l′, u′]. In fa
t:� if p ≥ ω(t + d), then t′ − t = Ω(t + d) − t = δ(⌊(kδ + d)/δ⌋ −
k) = δ⌊d/δ⌋. Re
all that d ∈ 〈l, u〉, and then a fortiori d ∈
[l, u] ⊇ 〈l, u〉. So d/δ ∈ [l/δ, u/δ], and (t′ − t)/δ = ⌊d/δ⌋ ∈
[⌊l/δ⌋, ⌊u/δ⌋] ⊆ [l′, u′].� if p < ω(t + d), then t′ − t = O(t + d) − t = δ(⌈(kδ + d)/δ⌉ −
k) = δ⌈d/δ⌉. Re
all that d ∈ 〈l, u〉, and then a fortiori d ∈
[l, u] ⊇ 〈l, u〉. So d/δ ∈ [l/δ, u/δ], and (t′ − t)/δ = ⌈d/δ⌉ ∈
[⌈l/δ⌉, ⌈u/δ⌉] ⊆ [l′, u′].So far, we have shown that b(t′) |=R ξ2. By indu
tive hypothesis, itfollows that for d′ = (t′− t)/δ it is b′(k+d′) |=Z ξ2. Sin
e d′ ∈ [l′, u′],to 
on
lude this bran
h of the proof we have to show that for all

e′ ∈ [0, d′ − 1] it is b′(k + e′) |=Z ξ1. To this end, we just haveto realize that δ(d′ − 1) < d. In fa
t, we have shown above that
d′ ≤ ⌈d/δ⌉ < d/δ + 1, sin
e ⌈r⌉ < r + 1 for any real number r.So obviously δ(d′ − 1) < δ(d/δ) = d. Sin
e for all e ∈ [0, d〉 wehave b(t + e) |=R ξ1, and sin
e [0, δ(d′ − 1)] ⊂ [0, d〉, then a fortiorifor all e ∈ [0, δ(d′ − 1)] it is b(t + e) |=R ξ1. Finally, by indu
tivehypothesis, it follows that for all integers e′ ∈ [0, d′ − 1] = [0, d′) it is
b′(k + e′) |=Z ξ1, whi
h lets us 
on
lude that b′(k) |=Z φ

′.
• φ = Since〈l,u〉〈(ξ1, ξ2).Noti
e that φ′ is Since[l′,u′]((ξ1, ξ2), with l′ = ⌊l/δ⌋ and u′ = ⌈u/δ⌉.Let d be a time instant in 〈l, u〉 su
h that b(t− d) |=R ξ2 and, for alltime instants e ∈ 〈−d, 0] it is b(t+e) |=R ξ1. Condition χ◦ at time t−dimplies that there exists a p ∈ [0, δ] su
h that for all f ∈ [−p,−p+ δ]it is b(t − d + f) |=R ξ2. In other words, ξ2 holds on the 
losed realinterval I = [t−d−p, t−d−p+δ]. Sin
e I has size δ, its interse
tionwith the sampling points (whi
h are δ time units apart) must be non-empty. In parti
ular, it is either p ≥ ω(t − d) or −p + δ ≥ o(t − d):otherwise it would be δ = p + (−p + δ) < ω(t − d) + o(t − d) =
O(t − d) − Ω(t − d) = δ(⌈(t − d − z)/δ⌉ − ⌊(t − d − z)/δ⌋) ≤ δ, a254



D.2. Proof of Theorem 8.3.1
ontradi
tion (where we exploited the property: ⌈r⌉−⌊r⌋ ≤ 1 for anyreal r).So, let t′ be the sampling instant:
t′ =

{
Ω(t− d) if p ≥ ω(t− d)
O(t− d) otherwiseIt is not di�
ult to 
he
k that (t− t′)/δ ∈ [l′, u′]. In fa
t:� if p ≥ ω(t − d), then t − t′ = t − Ω(t − d) = δ(k − ⌊(kδ −

d)/δ⌋) = δ(−⌊−d/δ⌋) = δ⌈d/δ⌉, sin
e ⌊−r⌋ = −⌈r⌉ for any real
r. Re
all that d ∈ 〈l, u〉, and then a fortiori d ∈ [l, u] ⊇ 〈l, u〉. So
d/δ ∈ [l/δ, u/δ], and (t− t′)/δ = ⌈d/δ⌉ ∈ [⌈l/δ⌉, ⌈u/δ⌉] ⊆ [l′, u′].� if p < ω(t + s), then t − t′ = t − O(t − d) = δ(k − ⌈(kδ −
d)/δ⌉) = δ(−⌈−d/δ⌉) = δ⌊d/δ⌋, sin
e ⌈−r⌉ = −⌊r⌋ for any real
r. Re
all that d ∈ 〈l, u〉, and then a fortiori d ∈ [l, u] ⊇ 〈l, u〉. So
d/δ ∈ [l/δ, u/δ], and (t− t′)/δ = ⌊d/δ⌋ ∈ [⌊l/δ⌋, ⌊u/δ⌋] ⊆ [l′, u′].So far, we have shown that b(t′) |=R ξ2. By indu
tive hypothesis, itfollows that for d′ = (t− t′)/δ it is b′(k−d′) |=Z ξ2. Sin
e d′ ∈ [l′, u′],to 
on
lude this bran
h of the proof we have to show that for all

e′ ∈ [−(d′ − 1), 0] it is b′(k + e′) |=Z ξ1. To this end, we just haveto realize that δ(d′ − 1) < d. In fa
t, we have shown above that
d′ ≤ ⌈d/δ⌉ < d/δ + 1, sin
e ⌈r⌉ < r + 1 for any real number r. Soobviously δ(d′ − 1) < δ(d/δ) = d. Sin
e for all e ∈ 〈−d, 0] we have
b(t + e) |=R ξ1, and sin
e [−δ(d′ − 1), 0] ⊂ 〈−d, 0], then a fortiorifor all e ∈ [−δ(d′ − 1), 0] it is b(t + e) |=R ξ1. Finally, by indu
tivehypothesis, it follows that for all integers e′ ∈ [−(d′−1), 0] = (−d′, 0]it is b′(k + e′) |=Z ξ1, whi
h lets us 
on
lude that b′(k) |=Z φ

′.
• φ = Releases〈l,u〉〉(ξ1, ξ2).Noti
e that φ′ is Releases〈l′,u′〉](ξ1, ξ2), where l′, u′ depend on the kindof interval I = 〈l, u〉 is.Let d′ be a generi
 integer in 〈l′, u′〉. We have to show that either
b′(k+d′) |=Z ξ2 or there exists a e′ ∈ [0, d′] su
h that b′(k+e′) |=Z ξ1.Now, we 
laim that 〈l′, u′〉 ⊆ 〈l/δ, u/δ〉. To show this we dis
uss thefour possible 
ases for the interval I ′ = 〈l′, u′〉. 255



D. Proofs for the Integration Framework� I = [l, u], so I ′ = [l′, u′], where l′ = ⌈l/δ⌉ and u′ = ⌊u/δ⌋.Thus, [l′, u′] ⊆ [l/δ, u/δ], sin
e ⌊r⌋ ≤ r and ⌈r⌉ ≥ r for any realnumber r.� I = [l, u), so I ′ = [l′, u′), where l′ = ⌈l/δ⌉ and u′ = ⌈u/δ⌉.Thus, [l′, u′) ⊆ [l/δ, u/δ), sin
e [l′, u′) = [⌈l/δ⌉, ⌈u/δ⌉ − 1] ⊆
[l/δ, u/δ), noting that ⌈r⌉ ≥ r, and that ⌈r⌉−1 < r, for any real
r.� I = (l, u], so I ′ = (l′, u′], where l′ = ⌊l/δ⌋ and u′ = ⌊u/δ⌋.Thus, (l′, u′] ⊆ (l/δ, u/δ], sin
e (l′, u′] = [⌊l/δ⌋ + 1, ⌊u/δ⌋] ⊆
(l/δ, u/δ], noting that ⌊r⌋ ≤ r, and that ⌊r⌋+1 > r, for any real
r.� I = (l, u), so I ′ = (l′, u′), where l′ = ⌊l/δ⌋ and u′ = ⌈u/δ⌉.Thus, (l′, u′) ⊆ (l/δ, u/δ), sin
e (l′, u′) = [⌊l/δ⌋+1, ⌈u/δ⌉− 1] ⊂
(l/δ, u/δ), noting that ⌊r⌋+1 > r, and that ⌈r⌉− 1 < r, for anyreal r.All in all, by hypothesis it is either b(t+ δd′) |=R ξ2 or there exists a

e ∈ [0, δd′〉 su
h that b(t+ e) |=R ξ1.In the former 
ase, by indu
tive hypothesis we have that b′(k+d′) |=Z

ξ2, whi
h ful�lls the goal. In the latter 
ase, we 
an write that b(t) |=R

Until[0,δd′〉〉(true, ξ1). Thus, by indu
tive hypothesis, we infer that
b′(k) |=Z Until[0,d′〉)(true, ξ1). Therefore, from the de�nition of the
Until operator, we have that there exists a e′ ∈ [0, d′〉 ⊆ [0, d′] su
hthat b′(k + e′) |=Z ξ1, as required.
• φ = Released〈l,u〉〈(ξ1, ξ2).Noti
e that φ′ is Released〈l′,u′〉[(ξ1, ξ2), where l′, u′ depend on the kindof interval I = 〈l, u〉 is.Let d′ be a generi
 integer in 〈l′, u′〉. We have to show that either
b′(k− d′) |=Z ξ2 or there exists a e′ ∈ [−d′, 0] su
h that b′(k+ e′) |=Z

ξ1.Now, we 
laim that 〈l′, u′〉 ⊆ 〈l/δ, u/δ〉. In fa
t, we showed this fa
tin the above proof for the Releases operator (noti
e that the bounds
l′, u′ are the same for the Releases and Released operators).All in all, by hypothesis it is either b(t− δd′) |=R ξ2 or there exists a
e ∈ 〈−δd′, 0] su
h that b(t+ e) |=R ξ1.256



D.2. Proof of Theorem 8.3.1In the former 
ase, by indu
tive hypothesis we have that b′(k−d′) |=Z

ξ2, whi
h ful�lls the goal. In the latter 
ase, we 
an write that b(t) |=R

Since[0,δd′〉〈(true, ξ1). Thus, by indu
tive hypothesis, we infer that
b′(k) |=Z Since[0,d′〉((true, ξ1). Therefore, from the de�nition of the
Since operator, we have that there exists a e′′ ∈ [0, d′〉 ⊆ [0, d′] su
hthat b′(k − e′′) |=Z ξ1, or equivalently, by substituting e′ for −e′′,there exists a e′ ∈ [−d′, 0] su
h that b(k + e′) |=Z ξ1, as required.
• φ = φ1 ∧ φ2.Sin
e b(t) |=R φi implies b′(k) |=Z φ′i for i = 1, 2, then also b(t) |=R

φ1 ∧ φ2 implies b′(k) |=Z φ
′
1 ∧ φ′2.

• φ = φ1 ∨ φ2.Sin
e b(t) |=R φi implies b′(k) |=Z φ′i for i = 1 or i = 2, then also
b(t) |=R φ1 ∨ φ2 implies b′(k) |=Z φ′1 ∨ φ′2.Sin
e the above holds for a generi
 sampling instant t, we have shown thatif b |=R φ then σδ,z [b] |=Z ηRδ {φ} for any behavior b ∈ [[χ◦]]R. Therefore, wehave shown that any R

Z
TRIO formula φ, interpreted in the 
ontinuous-timedomain, is 
losed under sampling(Closure under inverse sampling.) Let b be a dis
rete-time behavior,and let φ′ = ηZδ {φ}. Then, let b′ be a 
ontinuous-time behavior su
h that

b′ ∈ [[χ◦]]R and b = σδ,z [b′] for the given sampling period δ and origin z.In the remainder, for a generi
 sampling instant t = z + kδ, we �rst showthat if b(k) |=Z φ then b′(t) |=R φ′.Let us also introdu
e the following terminology. For any formula φ′ =
ηZδ {φ} whi
h holds at a sampling point t = z + kδ:
• if for all s ∈ (−δ, 0) it is b′(t+ s) |=R φ′, we say that φ′ �shifts to theleft�;
• if for all s ∈ (0, δ) it is b′(t + s) |=R φ′, we say that φ′ �shifts to theright�;
• if there exists a c ∈ (0, δ) su
h that for all t′ ∈ [t, t+c) it is b′(t′) |=R φ′and for all t′′ ∈ (t + c, t + c + ǫ) it is b′(t′′) |=R ¬φ′, we say that φ′�turns false at c�.
• if there exists a c ∈ (−δ, 0) su
h that for all t′ ∈ (t+c, t] it is b′(t′) |=R

φ′ and for all t′′ ∈ (t+ c− ǫ, t+ c) it is b′(t′′) |=R ¬φ′, we say that φ′�turned false at c�. 257



D. Proofs for the Integration FrameworkIn the following proof, we will also show that, for any φ′ = ηZδ {φ}:
• either φ′ shifts to the right, or there exists a c ∈ (0, δ) and a 
ondition
ξ su
h that φ′ and ξ turn false at c;
• either φ′ shifts to the left, or there exists a c ∈ (−δ, 0) su
h that φ′and ξ turned false at c.We 
all the point c the �
hange point� of φ′. Noti
e that, whenever theabove properties hold, φ′ be
omes false together with some 
ondition ξbe
oming false, at any 
hange point. Therefore, in su
h 
ases, φ′ be
omingfalse is ultimately a 
onsequen
e of some basi
 item 
hanging its value.Let us now pro
eed by indu
tion on the stru
ture of the formula φ.
• φ = ξ.By de�nition of sampling of a behavior, the truth value of ξ at k and
t is the same, i.e., ξ|b(k) = ξ|b′(z+kδ) = ξ|b′(t).By Lemma D.2.1, there exist cn, cp su
h that the 
ondition ξ 
hangesits value at these points, or ξ is inde�nitely true in the past and/orfuture. If the latter is the 
ase, then ξ obviously shifts to the left/rightrespe
tively. Thus, let us assume that the former is the 
ase.Let us 
onsider cp �rst, and show that either ξ shifts to the left, orthere exists a c ∈ (−δ, 0) su
h that ξ turned false at c. Indeed, if
cp − t ∈ (−δ, 0), then ξ is true for all t′ ∈ (cp, t] = (t + c, t], and for
ǫ = δ, we have that for all t′′ ∈ (cp−ǫ, cp) it is b′(t′′) |=R ¬ξ, therefore
ξ turned false at t− cp. Otherwise, ξ shifts to the left.Similarly, by 
onsidering cn, we show that either ξ shifts to the right,or there exists a c ∈ (0, δ) su
h that ξ turns false at c. Indeed, if
cn − t ∈ (0, δ), then ξ is true for all t′ ∈ [t, cn) = [t, t + c), and for
ǫ = δ, we have that for all t′′ ∈ (cn, cn+ǫ) it is b′(t′′) |=R ¬ξ, therefore
ξ turns false at cn − t. Otherwise, ξ shifts to the right.
• φ = Until[l,u]](ξ1, ξ2).Noti
e that φ′ = Until[l′,u′]](ξ1, ξ2), with l′ = (l−1)δ and u′ = (u+1)δ.First, let us show that b′(t) |=R Until[lδ,uδ](ξ1, ξ2). Noti
e that thisimplies b′(t) |=R φ′, as [lδ, uδ] ⊂ [(l − 1)δ, (u+ 1)δ].Let d ∈ [l, u] be the integer time instant su
h that b(k + d) |=Z ξ2,whi
h exists by hypothesis. Let d′ = dδ, and noti
e that d′ ∈ [lδ, uδ].Then, by indu
tive hypothesis, it is b′(t+ d′) |=R ξ2.258



D.2. Proof of Theorem 8.3.1By hypothesis we also know that for all integers e ∈ [0, d] it is b(k +
e) |=Z ξ1. Thus, by indu
tive hypothesis, we have that for all δ-multiples e′ ∈ [0, d′] it is b′(t + e′) |=R ξ1. Finally, be
ause of the
ondition χ◦, it must also be that, for all real values e′′ ∈ [0, d′],it is b′(t + e′′) |=R ξ1. Therefore, we have shown that b′(t) |=R

Until[lδ,uδ]](ξ1, ξ2).Now, let us show that Until shifts to the right, that is for all s ∈ (0, δ)it is b′(t+ s) |=R φ′.Let s be a generi
 time instant in (0, δ). Let us 
onsider c = d′ − s,and noti
e that c > d′ − δ ≥ lδ − δ = l′, and c < d′ ≤ uδ < u′,thus c ∈ [l′, u′]. Sin
e t + s + c = t + d′, we have shown above that
b′((t+ s) + c) = b′(t+ d′) |=R ξ2.Moreover, [s, s + c] ⊂ [0, d′], thus a fortiori for all f ∈ [0, c] it is
b′((t + s) + f) |=R ξ1, from what we have shown above. This showsthat b′(t+ s) |=R φ′ for any s ∈ (0, δ).Finally, let us show that either φ′ also shifts to the left, or there exista c ∈ (−δ, 0) and a 
ondition ξ su
h that φ′ and ξ turned false at c.To this end, take any f ∈ (−δ, 0), and let ξ = ξ1. For d′′ = d′ − f wehave that d′′ ∈ [lδ, (u+1)δ] ⊂ [(l−1)δ, (u+1)δ] and b′(t+f+d′′) |=R

ξ2.Now, let us 
onsider ξ1. By indu
tive hypothesis, either there existsa c ∈ (−δ, 0) su
h that ξ1 turned false at c, or ξ1 shifts to the left. Inthe latter 
ase, φ′ shifts to the left as well. In the former 
ase, it iseasy to realize that for all t′ ∈ (t+ c, t] we have b′(t′) |=R φ′ ∧ ξ1 and
φ′ turned false at c, sin
e �right before� t+ c the Until must be false,sin
e ξ1 is false there.
• φ = Since[l,u][(ξ1, ξ2).Noti
e that φ′ = Since[l′,u′][(ξ1, ξ2), with l′ = (l−1)δ and u′ = (u+1)δ.First, let us show that b′(t) |=R Since[lδ,uδ][(ξ1, ξ2). Noti
e that thisimplies b′(t) |=R φ′, as [lδ, uδ] ⊂ [(l − 1)δ, (u+ 1)δ].Let d ∈ [l, u] be the integer time instant su
h that b(k − d) |=Z ξ2,whi
h exists by hypothesis. Let d′ = dδ, and noti
e that d′ ∈ [lδ, uδ].Then, by indu
tive hypothesis, it is b′(t− d′) |=R ξ2.By hypothesis we also know that for all integers e ∈ [−d, 0] it is
b(k + e) |=Z ξ1. Thus, by indu
tive hypothesis, we have that for all
δ-multiples e′ ∈ [−d′, 0] it is b′(t+ e′) |=R ξ1. Finally, be
ause of the
ondition χ◦, it must also be that, for all real values e′′ ∈ [−d′, 0],259



D. Proofs for the Integration Frameworkit is b′(t + e′′) |=R ξ1. Therefore, we have shown that b′(t) |=R

Since[lδ,uδ][(ξ1, ξ2).Now, let us show that Since shifts to the left, that is for all s ∈ (−δ, 0)it is b′(t+ s) |=R φ′.Let s be a generi
 time instant in (−δ, 0). Let us 
onsider c = d′ + s,and noti
e that c > d′ − δ ≥ lδ − δ = l′, and c < d′ ≤ uδ < u′,thus c ∈ [l′, u′]. Sin
e t− (c− s) = t− d′, we have shown above that
b′((t+ s)− c) = b′(t− d′) |=R ξ2.Moreover, [s − c, s] ⊂ [−d′, 0], thus a fortiori for all f ∈ [−c, 0] it is
b′((t + s) + f) |=R ξ1, from what we have shown above. This showsthat b′(t+ s) |=R φ′ for any s ∈ (−δ, 0).Finally, let us show that either φ′ also shifts to the right, or thereexist a c ∈ (0, δ) and a 
ondition ξ su
h that φ′ and ξ turn false at c.To this end, take any f ∈ (0, δ), and let ξ = ξ1. For d′′ = d′ + f wehave that d′′ ∈ [lδ, (u+1)δ] ⊂ [(l−1)δ, (u+1)δ] and b′((t+f)−d′′) =
b′(t− d′) |=R ξ2.Now, let us 
onsider ξ1. By indu
tive hypothesis, either there existsa c ∈ (−δ, 0) su
h that ξ1 turns false at c, or ξ1 shifts to the right. Inthe latter 
ase, φ′ shifts to the right as well. In the former 
ase, it iseasy to realize that for all t′ ∈ [t, t+ c) we have b′(t′) |=R φ′ ∧ ξ1 and
φ′ turns false at c, sin
e �right after� t + c the Since must be false,sin
e ξ1 is false there.
• φ = Releases[l,u])(ξ1, ξ2).Noti
e that φ′ = Releases[l′,u′])(ξ1, ξ2), with l′ = (l + 1)δ and u′ =

(u− 1)δ.First, let us show that b′(t) |=R Releases[lδ,uδ])(ξ1, ξ2). Noti
e thatthis implies b′(t) |=R φ′, as [lδ, uδ] ⊃ [l′, u′].Let d′ be a generi
 instant in [lδ, uδ]: we have to show that either
b′(t+d′) |=R ξ2 or there exists a e′ ∈ [0, d′) su
h that b′(t+e′) |=R ξ1.We distinguish two 
ases, whether t+ d′ is a sampling instant or not.� If t + d′ is a sampling instant, then d = d′/δ is an integer, and

d ∈ [l, u] by hypothesis.Therefore, by hypothesis it is either b(k + d) |=Z ξ2 or thereexists an integer e ∈ [0, d− 1] su
h that b(k + e) |=Z ξ1.In the former 
ase, by indu
tive hypothesis we have that b′(t+
d′) |=R ξ2, whi
h satis�es the de�nition of the Releases operator260



D.2. Proof of Theorem 8.3.1for d′.Otherwise, by indu
tive hypothesis we have that b′(t+e′) |=R ξ1,for e′ = eδ. Sin
e e′ ∈ [0, d′−δ] ⊂ [0, d′), we have that the de�ni-tion of the Releases operator is satis�ed for d′ in this 
ase as well.� If t+ d′ is not a sampling instant, let us 
onsider the distan
es
p′ = d′ − ω(t+ d′) and n′ = d′ + o(t+ d′); these are δ-multiplesby de�nition of ω(·) and o(·). Noti
e that p′ > d′− δ ≥ lδ− δ =
(l− 1)δ, and n′ < d′+ δ ≤ uδ+ δ = (u+1)δ. Therefore, the twointegers p = p′/δ and n = n′/δ are ≥ l and ≤ u respe
tively,that is p, n ∈ [l, u].Thus, by hypothesis we have that:
∗ b(k + p) |=Z ξ2 or there exists a ep ∈ [0, p − 1] su
h that
b(k + ep) |=Z ξ1; and that:
∗ b(k + n) |=Z ξ2 or there exists a en ∈ [0, n − 1] su
h that
b(k + en) |=Z ξ1.Therefore, we distinguish the following three 
ases (
overing allthe possibilities):
∗ b(k + p) |=Z ξ2 and b(k + n) |=Z ξ2;
∗ there exists a ep ∈ [0, p− 1] su
h that b(k + ep) |=Z ξ1;
∗ there exists a en ∈ [0, n− 1] su
h that b(k + en) |=Z ξ1.Let us �rst 
onsider the 
ase: b(k + p) |=Z ξ2 and b(k + n) |=Z

ξ2. Noti
e that n = p + 1, so ξ2 is true on two adja
ent timeinstants. By indu
tive hypothesis, we have that b′(t+ p′) |=R ξ2and b′(t + n′) |=R ξ2. Moreover, thanks to the 
onstraint χ◦whi
h holds for b by hypothesis, ξ2 must also be true for all timeinstants in the interval [t + p′, t + n′] = [t + p′, t + p′ + δ]. Inparti
ular, sin
e d′ ∈ [p′, p′ + δ], then b′(t+ d′) |=R ξ2. That is,the de�nition of the Releases is satis�ed for d′.Now, for the other two 
ases, noti
e that (p− 1)δ ≤ (n− 1)δ <
(d′ + δ)− δ = d′; hen
e ep, en ∈ [0, n− 1] and δep, δen ∈ [0, (n−
1)δ] ⊂ [0, d′). Therefore, if there exists a ep ∈ [0, p − 1] su
hthat b(k + ep) |=Z ξ1, or if there exists a en ∈ [0, n − 1] su
hthat b(k + en) |=Z ξ1, then there exists an e′ = δep or e′ = δen,respe
tively, su
h that e′ ∈ [0, d′) and b′(t + e′) |=R ξ1. Thatis, the de�nition of the Releases is satis�ed for d′ in both these
ases. 261



D. Proofs for the Integration FrameworkAll in all, sin
e d′ is generi
, we have shown that
b′(t) |=R Releases[lδ,uδ])(ξ1, ξ2), and thus a fortiori b′(t) |=R φ′.Now, let us show that Releases shifts to the left, that is for all
s ∈ (−δ, 0) it is b′(t+ s) |=R φ′.Let s be any time instant in (−δ, 0), and 
onsider a generi
 d ∈
[l′, u′]. Sin
e s + d ∈ [lδ, uδ], we have shown above that it is ei-ther b′(t + (s + d)) |=R ξ2 or there exists a e′ ∈ [0, s + d) su
h that
b′(t+ e′) |=R ξ1.In the former 
ase, we have shown that b′((t + s) + d) |=R ξ2. Oth-erwise, let e′′ = e′ − s; then e′′ ∈ [−s, d) ⊂ [0, d), as s < 0. There-fore, we have that there exists a e′′ ∈ [0, d) su
h that b′(t + e′) =
b′((t+ s) + e′′) |=R ξ1. All in all, we have shown that b′(t+ s) |=R φ′for a generi
 s ∈ (−δ, 0).Finally, let us show that either φ′ also shifts to the right, or thereexist a c ∈ (0, δ) and a 
ondition ξ su
h that φ′ and ξ turn false at c.To this end, take generi
 f ∈ (0, δ) and d′′ ∈ [(l + 1)δ, (u− 1)δ], andlet ξ = ξ1. Noti
e that d′′ + f ∈ [lδ, uδ], therefore by hypothesis it iseither b′(t+ d′′ + f) |=R ξ2 or there exists a c ∈ [0, d′′ + f) su
h that
b′(t+ c) |=R ξ1.Now let us 
onsider two 
ases:� For all f and d′′ as above, it is either b′((t+ f) + d′′) |=R ξ2 orthere exists a c ∈ [f, d′′ + f) su
h that b′(t + c) = b′((t + f) +

(c− f)) |=R ξ1.Sin
e c − f ∈ [0, d′′), this shows that b′(t + f) |=R φ′, and thus
φ′ shifts to the right sin
e f is generi
.� Otherwise, assume that the previous 
ase is false, that is there issome f and d′′ as above su
h that b′((t+f)+d′′) |=R ¬ξ2 and forall c′ ∈ [f, d′′+ f) it is b′(t+ c′) = b′((t+ f) + (c′− f)) |=R ¬ξ1.Therefore, it must be that there exists a c ∈ [0, f) su
h that
b′(t+ c) |=R ξ1.Now, if we 
onsider Lemma D.2.1, and be
ause of the non-Zenobehavior of the basi
 items values, a point t + v at whi
h ξ1be
omes false must exist for some v, that is for some v it must be
b′(t+v) |=R Becomes(¬ξ1). Then, ξ1 is true in the whole interval
[t, t + v), sin
e v = c < f < δ in this bran
h of the proof, andfalse afterward, and in parti
ular in the interval (t+v, t+v+δ).Consequently, φ′ is also true in the whole interval [t, t+ v), and262



D.2. Proof of Theorem 8.3.1it be
omes false �right after� t+v, as a 
onsequen
e of ξ1 turningfalse.A little reasoning should 
onvin
e us that the two 
ases do indeed
over all the possibilities. Then, sin
e f is generi
, we have shownthat either φ′ shifts to the right, or there exists a c ∈ (0, δ) su
h that
φ′ and ξ1 turn false at c.
• φ = Released[l,u]((ξ1, ξ2).Noti
e that φ′ = Released[l′,u′]((ξ1, ξ2), with l′ = (l + 1)δ and u′ =

(u− 1)δ.First, let us show that b′(t) |=R Released[lδ,uδ]((ξ1, ξ2). Noti
e thatthis implies b′(t) |=R φ′, as [lδ, uδ] ⊃ [l′, u′].Let d′ be a generi
 instant in [lδ, uδ]: we have to show that either
b′(t−d′) |=R ξ2 or there exists a e′ ∈ (−d′, 0] su
h that b′(t+e′) |=R ξ1.We distinguish two 
ases, whether t− d′ is a sampling instant or not.� If t − d′ is a sampling instant, then d = d′/δ is an integer, and

d ∈ [l, u] by hypothesis.Therefore, by hypothesis it is either b(k − d) |=Z ξ2 or thereexists an integer e ∈ [−(d− 1), 0] su
h that b(k + e) |=Z ξ1.In the former 
ase, by indu
tive hypothesis we have that b′(t−
d′) |=R ξ2, whi
h satis�es the de�nition of the Released operatorfor d′.Otherwise, by indu
tive hypothesis we have that b′(t+e′) |=R ξ1,for e′ = eδ. Sin
e e′ ∈ [−(d′ − δ), 0] ⊂ (−d′, 0], we have that thede�nition of the Released operator is satis�ed for d′ in this 
aseas well.� If t− d′ is not a sampling instant, let us 
onsider the distan
es
p′ = d′ − o(t− d′) and n′ = d′ + ω(t− d′); these are δ-multiplesby de�nition of ω() and o(). Noti
e that p′ > d′ − δ,≥ lδ − δ =
(l− 1)δ, and n′ < d′+ δ ≤ uδ+ δ = (u+1)δ. Therefore, the twointegers p = p′/δ and n = n′/δ are ≥ l and ≤ u respe
tively,that is p, n ∈ [l, u].Thus, by hypothesis we have that:
∗ b(k− p) |=Z ξ2 or there exists a ep ∈ [−(p− 1), 0] su
h that
b(k + ep) |=Z ξ1; and that: 263



D. Proofs for the Integration Framework
∗ b(k−n) |=Z ξ2 or there exists a en ∈ [−(n− 1), 0] su
h that
b(k + en) |=Z ξ1.Therefore, we distinguish the following three 
ases (
overing allthe possibilities):
∗ b(k − p) |=Z ξ2 and b(k − n) |=Z ξ2;
∗ there exists a ep ∈ [−(p− 1), 0] su
h that b(k + ep) |=Z ξ1;
∗ there exists a en ∈ [−(n− 1), 0] su
h that b(k + en) |=Z ξ1.Let us �rst 
onsider the 
ase: b(k−p) |=Z ξ2 and b(k−n) |=Z ξ2.Noti
e that −n = −p − 1, so ξ2 is true on two adja
ent timeinstants. By indu
tive hypothesis, we have that b′(t− p′) |=R ξ2and b′(t − n′) |=R ξ2. Moreover, thanks to the 
onstraint χ◦whi
h holds for b by hypothesis, ξ2 must also be true for all timeinstants in the interval [t− n′, t− p′] = [t− n′, t− (n′ − δ)]. Inparti
ular, sin
e d′ ∈ [n′ − δ, n′], then b′(t− d′) |=R ξ2. That is,the de�nition of the Released is satis�ed for d′.Now, for the other two 
ases, noti
e that −(p − 1)δ ≥ −(n −

1)δ > −d′ + δ − δ = −d′; hen
e ep, en ∈ [−(n − 1), 0] and
δep, δen ∈ [−(n − 1)δ, 0] ⊂ (−d′, 0]. Therefore, if there exists a
ep ∈ [−(p− 1), 0] su
h that b(k + ep) |=Z ξ1, or if there exists a
en ∈ [−(n − 1), 0] su
h that b(k + en) |=Z ξ1, then there existsan e′ = δep or e′ = δen, respe
tively, su
h that e′ ∈ (−d′, 0]and b′(t + e′) |=R ξ1. That is, the de�nition of the Released issatis�ed for d′ in both these 
ases.All in all, sin
e d′ is generi
, we have shown that

b′(t) |=R Released[lδ,uδ]((ξ1, ξ2), and thus a fortiori b′(t) |=R φ′.Now, let us show that Released shifts to the right, that is for all
s ∈ (0, δ) it is b′(t+ s) |=R φ′.Let s be any time instant in (0, δ), and 
onsider a generi
 d ∈
[l′, u′]. Sin
e d − s ∈ [lδ, uδ], we have shown above that it is ei-ther b′(t− (d− s)) |=R ξ2 or there exists a e′ ∈ (−(d− s), 0] su
h that
b′(t+ e′) |=R ξ1.In the former 
ase, we have shown that b′((t+ s)− d) |=R ξ2. Other-wise, let e′′ = e′ − s; then e′′ ∈ (−d,−s] ⊂ (−d, 0], as s > 0. There-fore, we have that there exists a e′′ ∈ (−d, 0] su
h that b′(t + e′) =
b′((t+ s) + e′′) |=R ξ1. All in all, we have shown that b′(t+ s) |=R φ′for a generi
 s ∈ (0, δ).264



D.2. Proof of Theorem 8.3.1Finally, let us show that either φ′ also shifts to the left, or there exista c ∈ (−δ, 0) and a 
ondition ξ su
h that φ′ and ξ turned false at c.To this end, take generi
 f ∈ (−δ, 0) and d′′ ∈ [(l+1)δ, (u−1)δ], andlet ξ = ξ1. Noti
e that d′′ − f ∈ [lδ, uδ], therefore by hypothesis it iseither b′(t− (d′′−f)) |=R ξ2 or there exists a c ∈ (d′′+f, 0] su
h that
b′(t+ c) |=R ξ1.Now let us 
onsider two 
ases:� For all f and d′′ as above, it is either b′((t+ f)− d′′) |=R ξ2 orthere exists a c ∈ (−(d′′−f), f ] su
h that b′(t+ c) = b′((t+f)+

(c− f)) |=R ξ1.Sin
e c− f ∈ (−d′′, 0], this shows that b′(t+ f) |=R φ′, and thus
φ′ shifts to the left sin
e f is generi
.� Otherwise, assume that the previous 
ase is false, that is thereis some f and d′′ as above su
h that b′((t+f)−d′′) |=R ¬ξ2 andfor all c′ ∈ (−(d′′ − f), f ] it is b′(t + c′) |=R ¬ξ1. Therefore, itmust be that there exists a c ∈ (f, 0] su
h that b′(t+ c) |=R ξ1.Now, if we 
onsider Lemma D.2.1, and be
ause of the non-Zenobehavior of the basi
 items values, a point t + v at whi
h ξ1be
omes false must exist for some v < 0, that is for some v < 0 itmust be b′(t+v) |=R Becomes(ξ1). Then, ξ1 is true in the wholeinterval (t + v, t], sin
e −v = −c < −f < δ in this bran
h ofthe proof, and false beforehand, and in parti
ular in the interval
(t + v, t + v − δ). Consequently, φ′ is also true in the wholeinterval (t + v, t], and it be
ame false �right before� t + v, as a
onsequen
e of ξ1 turned false.A little reasoning should 
onvin
e us that the two 
ases do indeed
over all the possibilities. Then, sin
e f is generi
, we have shownthat either φ′ shifts to the left, or there exists a c ∈ (−δ, 0) su
h that

φ′ and ξ1 turned false at c.
• φ = φ1 ∧ φ2.Sin
e b(k) |=Z φi implies b′(t) |=R φ′i for i = 1, 2 by indu
tive hy-pothesis, then also b(k) |=Z φ1 ∧ φ2 implies b′(t) |=R φ′1 ∧ φ′2.Now, by indu
tive hypothesis, for both i = 1, 2: either φ′i shifts tothe right, or there exists a ci ∈ (0, δ) and some 
ondition ξi su
h that
φ′i and ξi turn to false at ci. Thus, if both φ′1 and φ′2 shift to theright, then φ′ = φ′1∧φ′2 also shifts to the right; otherwise there exists265



D. Proofs for the Integration Frameworka c ∈ (0, δ) = mini=1,2 ci su
h that φ′1 ∧ φ′2 turns to false at c.Similarly, by indu
tive hypothesis for both i = 1, 2: either φ′i shiftsto the left, or there exists a ci ∈ (−δ, 0) and some 
ondition ξi su
hthat φ′i and ξi turned to false at ci. Thus, if both φ′1 and φ′2 shiftto the left, then φ′ = φ′1 ∧ φ′2 also shifts to the left; otherwise thereexists a c ∈ (−δ, 0) = maxi=1,2 ci su
h that φ′1 ∧ φ′2 turned false at c.
• φ = φ1 ∨ φ2.Sin
e b(k) |=Z φi implies b′(t) |=R φ′i for i = 1 or i = 2 by indu
tivehypothesis, then also b(k) |=Z φ1 ∨ φ2 implies b′(t) |=R φ′1 ∨ φ′2.Now, we realize that if b′(t) |=R φ′i for some i = 1 or i = 2, thenby indu
tive hypothesis either φ′i shifts to the right or there exists a
c ∈ (0, δ) and a 
ondition ξi su
h that φ′i and ξi turn false at c. Thus,a fortiori either φ′ shifts to the right, or there exist a c ∈ (0, δ) anda 
ondition ξ = ξi su
h that φ′ and ξ turn false at c.Similarly, by indu
tive hypothesis either φ′i shifts to the left or thereexists a c ∈ (−δ, 0) and a 
ondition ξi su
h that φ′i and ξi turnedfalse at c. Thus, a fortiori either φ′ shifts to the left, or there exist a
c ∈ (−δ, 0) and a 
ondition ξ su
h that φ′ and ξ = ξi turned false at
c.(Filling in the gaps between sampling points.) So far, we have provedthat, for any formula φ, if b |=Z φ then for all t = z + kδ for integer k's,it is b′(t) |=R φ′. Moreover, we have proved some results about shifting oftemporal operators that we are going to use in the remainder.Now, in order to �nish the proof by showing that b′(t) |=R φ′ for all

t ∈ R, that is b′ |=R φ′, we have to demonstrate that any formula φ′ whi
his true at all sampling points 
annot be
ome false between any two of them.More pre
isely, we prove that whenever φ′ = ηZδ {φ} is true at two adja
entsampling points tp = z + kδ and tn = tp + δ = z + (k + 1)δ, then for all
t′ ∈ [tp, tn] it is b′(t′) |=R φ′.If φ′ at tp shifts to the right, or φ′ at tn shifts to the left, then the
on
lusion follows trivially.Thus, let us assume that φ′ does not shift to the right at tp and does notshift to the left at tn. Therefore, we proved above that:
• there exist a cp ∈ (0, δ) and a 
ondition ξp su
h that φ′ and ξp turnfalse at cp; and266



D.3. Su�
ient Conditions for Non-Degenerate Intervals
• there exist a cn ∈ (−δ, 0) and a 
ondition ξn su
h that φ′ and ξnturned false at cn.Now noti
e that |(tn+cn)−(tp+cp)| = |δ+cn−cp| < δ. Therefore, be
auseof 
ondition χ◦, the two 
hanging points must a
tually 
oin
ide, otherwisethere would be two 
hanging points (
orresponding to two 
hanging pointsfor the value of the 
onditions ξp and ξn, and thus to the 
hanging pointsof some basi
 items) within δ time units. But the two formulas above
ontradi
t ea
h other if the two 
hanging points 
oin
ide. Thus, this meansthat φ′ a
tually never be
omes false in the interval [tp, tn], whi
h is whatwe had to prove.Sin
e tp, tn are a
tually generi
, we have proved that b |=R φ′, that isany R

Z
TRIO formula φ is 
losed under inverse sampling.Sin
e any formula of the R

Z
TRIO language is both 
losed under samplingand 
losed under inverse sampling, then R

Z
TRIO is sampling invariant.D.3. Su�
ient Conditions for Non-DegenerateIntervalsLet us provide the proofs for the formulas in Table 9.1.Adapting from 
ontinuous time to dis
rete time.

• Until and Sin
e. Let l′ = ⌊l/δ⌋ and u′ = ⌈u/δ⌉. Thus, u′ − l′ +
1 ≥ u/δ − l/δ + 1 ≥ 1 by de�nition of �oor and 
eilings, that is
|[l′, u′]|Z > 0.
• Releases and Released. Let I ′ = 〈l′, u′〉 be the adapted interval. Wedistinguish the following four 
ases.� I ′ = [l′, u′], with l′ = ⌈l/δ⌉ and u′ = ⌊u/δ⌋. Thus, ⌊u/δ⌋−⌈l/δ⌉+

1 ≥ ⌊u/δ⌋−⌊l/δ⌋−1+1 = ⌊u/δ⌋−⌊l/δ⌋ ≥ ⌊u/δ−l/δ⌋ ≥ 1, sin
e
|[u, l]|R ≥ δ by hypothesis, and ⌈r⌉ ≤ r + 1 and ⌊r1⌋ − ⌊r2⌋ ≥
⌊r1 − r2⌋ for any real numbers r, r1 ≥ r2. That is, |[l′, u′]|Z ≥ 1.� I ′ = [l′, u′), with l′ = ⌈l/δ⌉ and u′ = ⌈u/δ⌉. Thus, |[l′, u′)|Z =
|[l′, u′ − 1]|Z = u′ − l′, and then ⌈u/δ⌉ − ⌈l/δ⌉ ≥ u/δ − ⌈l/δ⌉ >
u/δ− (l/δ+1) ≥ 0, sin
e |[l, u)|R ≥ δ by hypothesis, ⌈r⌉ < r+1for any real r, and we are 
onsidering integer numbers (hen
e
> 0 implies ≥ 1). That is, |[l′, u′)|Z ≥ 1. 267



D. Proofs for the Integration Framework� I ′ = (l′, u′], with l′ = ⌊l/δ⌋ and u′ = ⌊u/δ⌋. Thus, |(l′, u′]|Z =
|[l′ + 1, u′]|Z = u′ − l′, and then ⌊u/δ⌋ − ⌊l/δ⌋ ≥ ⌊u/δ⌋ − l/δ >
(u/δ−1)− l/δ ≥ 0, sin
e |(l, u]|R ≥ δ by hypothesis, ⌊r⌋ > r−1for any real r, and we are 
onsidering integer numbers (hen
e
> 0 implies ≥ 1). That is, |(l′, u′]|Z ≥ 1.� I ′ = (l′, u′), with l′ = ⌊l/δ⌋ and u′ = ⌈u/δ⌉. Thus, |(l′, u′)|Z =
|[l′ + 1, u′ − 1]|Z = u′ − l′ − 1, and then ⌈u/δ⌉ − ⌊l/δ⌋ − 1 ≥
u/δ− l/δ−1 ≥ 1, sin
e |(l, u)|R ≥ 2δ by hypothesis, and ⌊r⌋ ≤ rand ⌈r⌉ ≥ r for any real number r. That is, |(l′, u′)|Z ≥ 1.Adapting from dis
rete time to 
ontinuous time.

• Until and Sin
e. Let I ′ = [l′, u′], with l′ = (l− 1)δ and u′ = (u+ 1)δ.Thus, u′ − l′ = δ(u − l + 2) = δ((u − l + 1) + 1) ≥ 2δ > 0, sin
e
|[l, u]|Z = u− l + 1 ≥ 1 by hypothesis.
• Releases and Released. Let I ′ = [l′, u′], with l′ = (l + 1)δ and u′ =

(u− 1)δ. Thus, u′ − l′ = δ(u− l − 2) = δ((u− l + 1)− 3) ≥ 0, sin
e
|[l, u]|Z = u− l + 1 ≥ 3 by hypothesis.D.4. Theorems about Stri
t vs. Non-Stri
tOperatorsD.4.1. Proof of Formula 9.3Proof of Formula (9.3). Let us start with the ⇒ dire
tion: assume that

b(t) |=R Ũntil(a,b〉)(φ1, φ2). That is, there exists a u ∈ (t + a, t + b〉 su
hthat b(u) |=R φ2 and, for all v ∈ (t, u) it is b(v) |=R φ1. From b(u) |=R φ2 itfollows immediately that Until(a,b〉)(true, φ2), so the �rst 
onjun
t is proved.Then, let us show that b(t) |=R Lastsei
(
Until(0,+∞))(φ1, φ2) , a

). Let α beany instant in (0, a]; we have to show that b(t+α) |=R Until(0,+∞))(φ1, φ2).Noti
e that (t + a, t + b〉 ⊆ (t + α,+∞), as t + a ≥ t + α, therefore
u ∈ (t + α,+∞) a fortiori. Moreover, [t + α, u) ⊂ (t, u), as α > 0, sofor all v′ ∈ [t + α, u) it is b(v′) |=R φ1. Therefore, we have shown that
b(t+ α) |=R Until(0,+∞))(φ1, φ2).Let us now 
onsider the ⇐ dire
tion. First of all, let us noti
e that
b(t) |=R Lastsei

(
Until(0,+∞))(φ1, φ2) , a

) implies that b(t) |=R Lastsee(φ1, a).268



D.4. Theorems about Stri
t vs. Non-Stri
t OperatorsMoreover, in parti
ular b(t+a) |=R Until(0,+∞))(φ1, φ2). That is, there ex-ists a u ∈ (t+ a,+∞) su
h that b(u) |=R φ2 and, for all v ∈ [t+ a, u) it is
b(v) |=R φ1.Let us now 
onsider the 
ase u ∈ (t + a, t + b〉. All in all, φ1 holdsover the interval (t, u), and φ2 holds at u; therefore, we have b(t) |=R

Ũntil(a,b〉)(φ1, φ2).Otherwise, let us 
onsider the 
ase u 6∈ (t + a, t + b〉; therefore u ∈
〈′t+ b,+∞), where 〈′ is the �
omplement� of 〉.2 In parti
ular, this impliesthat for all v ∈ (t, t+ b) it is b(v) |=R φ1. Moreover, we are also assumingthat b(t) |=R Until(a,b〉)(true, φ2) in this bran
h of the proof. That is, thereexists a u′ ∈ (t + a, t + b〉 su
h that b(u′) |=R φ2. Sin
e (t, u′) ⊆ (t, t + b),then we have shown that b(t) |=R Ũntil(a,b〉](φ1, φ2), as required.D.4.2. Proof of Formula 9.4Proof of Formula (9.4). Beginning with the⇒ dire
tion, assume that thereexists a u ∈ [t + a, t + b〉 su
h that b(u) |=R φ2 and for all v ∈ (t, u) it is
b(v) |=R φ1. Then, if u ∈ (t+a, t+b〉, obviously b(t) |=R Ũntil(a,b〉)(φ1, φ2).Otherwise, it is u = t + a; therefore b(t) |=R Futr(φ2, a) and b(t) |=R

Lastsee(φ1, a).For the ⇐ dire
tion, let us �rst 
onsider b(t) |=R Ũntil(a,b〉)(φ1, φ2); thenthere exists a u ∈ (t+ a, t+ b〉) su
h that b(u) |=R φ2 and for all v ∈ (t, u)it is b(v) |=R φ1. Sin
e (t + a, t + b〉 ⊂ [t + a, t + b〉, then a fortiori
b(t)Ũntil[a,b〉)(φ1, φ2). Otherwise, b(t) |=R Lastsee(φ1, a) ∧ Futr(φ2, a) im-plies b(t) |=R Ũntil[a,b〉)(φ1, φ2) for u = t+ a.D.4.3. Proofs of Formulas 9.7�9.9Proof of Formula 9.7. Let us start with the ⇒ dire
tion, and let t be the
urrent instant. We assume that there exists a u ∈ [t + a, t + b〉 su
hthat b(u) |=R φ2 and, for all v ∈ (t, u] it is b(v) |=R φ1. Clearly, b(t) |=R

Until[a,b〉](true, φ2 ∧ φ1) is immediately implied. We still have to show that,for all d ∈ (t, t+ a], it is b(d) |=R Until[0,+∞)](φ1, φ2).So, let us 
onsider a generi
 d; noti
e that u ∈ [d,+∞) as d ≤ t+ a ≤ u,and re
all that b(u) |=R φ2. Moreover, let v′ be any point in [d, u]; sin
e
d > t, a fortiori v′ ∈ (t, u]. Thus, by hypothesis b(v′) |=R φ1, so we aredone with proving b(d) |=R Until[0,+∞)](φ1, φ2).2That is )′ is [ and ]′ is (. 269



D. Proofs for the Integration FrameworkLet us now 
onsider the ⇐ dire
tion. First of all, let us realize that
b(t) |=R Lastsei

(
Until[0,+∞)](φ1, φ2) , a

) implies b(t) |=R Lastsee(φ1, a). Infa
t, otherwise there would be a y ∈ (t, t+ a) su
h that b(y) |=R ¬φ1; butsin
e it is also b(y) |=R Until[0,+∞)](φ1, φ2) we 
learly have a 
ontradi
tion.Next, let us 
onsider the 
onsequen
es of b(t+a) |=R Until[0,+∞)](φ1, φ2):it means that there exists a u′ ∈ [t+a,+∞) su
h that b(u′) |=R φ2 and forall v′ ∈ [t+ a, u′] it is b(v′) |=R φ1.Let us �rst distinguish the 
ase u′ ∈ [t + a, t + b〉. All in all, φ1 holdsover the interval (t, u′], and φ2 holds at u′; therefore, we have b(t) |=R

Ũntil[a,b〉](φ1, φ2).Otherwise, let us 
onsider the 
ase u′ 6∈ [t + a, t + b〉; therefore u′ ∈
〈′t+ b,+∞), where 〈′ is the �
omplement� of 〉. In parti
ular, this impliesthat for all v′ ∈ (t, t+ b) it is b(v′) |=R φ1. Moreover, we are also assumingthat b(t) |=R Until[a,b〉](true, φ2 ∧ φ1) in this bran
h of the proof. Thatis, there exists a u′′ ∈ [t + a, t + b〉 su
h that b(u′′) |=R φ2 ∧ φ1. Sin
e
(t, u′′) ⊆ (t, t + b), then we have shown that b(t) |=R Ũntil[a,b〉)(φ1, φ2), asrequired.Proof of Formula 9.8. Let us start with the ⇒ dire
tion, and let t be the
urrent instant. We assume that there exists a u ∈ [t+ a, t+ b〉 su
h that
b(u) |=R φ2 and, for all v ∈ (t, u) it is b(v) |=R φ1. If, furthermore, b(u) |=R

φ1, then b(t) |=R Ũntil[a,b〉](φ1, φ2) and we are done. Otherwise, let us
onsider the 
ase b(u) |=R ¬φ1: 
learly, b(t) |=R Until[a,b〉](true,¬φ1 ∧ φ2)is immediately implied (as ¬φ1∧φ2 holds at u). We still have to show that,for all d ∈ (t, t+ a), it is b(d) |=R Until(0,+∞))(φ1,¬φ1 ∧ φ2).So, let us 
onsider a generi
 d; noti
e that u ∈ (d,+∞) as d < t+ a ≤ u,and re
all that b(u) |=R φ2 ∧ ¬φ1. Moreover, let v′ be any point in [d, u);sin
e d > t, a fortiori v′ ∈ (t, u). Thus, by hypothesis b(v′) |=R φ1, so weare done with proving b(d) |=R Until(0,+∞))(φ1,¬φ1 ∧ φ2).Let us now 
onsider the⇐ dire
tion. The impli
ation Ũntil[a,b〉](φ1, φ2)⇒
Ũntil[a,b〉)(φ1, φ2) is straightforward, so let us assume that b(t) |=R

Lastsee
(
Until(0,+∞))(φ1,¬φ1 ∧ φ2) , a

) and b(t) |=R Until[a,b〉](true,¬φ1 ∧ φ2).First of all, let us realize that b(t) |=R Lastsee
(
Until(0,+∞))(φ1,¬φ1 ∧ φ2) , a

)implies b(t) |=R Lastsee(φ1, a). In fa
t, otherwise there would be a y ∈
(t, t+ a) su
h that b(y) |=R ¬φ1; but sin
e it is also b(y) |=R Until(0,+∞))(
φ1,¬φ1 ∧ φ2) we 
learly have a 
ontradi
tion, as the latter requires in par-ti
ular that b(y) |=R φ1.Next, let us realize that the fa
ts b(t) |=R Lastsee(φ1, a) and b(t) |=R270



D.4. Theorems about Stri
t vs. Non-Stri
t Operators
Lastsee

(
Until(0,+∞))(φ1,¬φ1 ∧ φ2) , a

) holding together require that b(t +
a) |=R Until[0,+∞))(φ1,¬φ1 ∧ φ2). In fa
t, φ1 
annot be
ome false before
t + a, but it must be
ome false somewhere after (or at) t + a to satisfy
Until(0,+∞))(φ1,¬φ1 ∧ φ2, a). For the same reason, φ1 must hold until itbe
omes false after or at t + a. All this is exa
tly what is required by
b(t+ a) |=R Until[0,+∞))(φ1,¬φ1 ∧ φ2).Next, let us 
onsider the 
onsequen
es of this fa
t: it means that thereexists a u′ ∈ [t + a,+∞) su
h that b(u′) |=R ¬φ1 ∧ φ2 and for all v′ ∈
[t+ a, u′) it is b(v′) |=R φ1.Let us �rst distinguish the 
ase u′ ∈ [t + a, t + b〉. All in all, φ1 holdsover the interval (t, u′), and φ2 holds at u′; therefore, we have b(t) |=R

Ũntil[a,b〉)(φ1, φ2).Otherwise, let us 
onsider the 
ase u′ 6∈ [t + a, t + b〉; therefore u′ ∈
〈′t+ b,+∞), where 〈′ is the �
omplement� of 〉. In parti
ular, this impliesthat for all v′ ∈ (t, t+ b) it is b(v′) |=R φ1. Moreover, we are also assumingthat b(t) |=R Until[a,b〉)(true,¬φ1 ∧ φ2) in this bran
h of the proof. Thatis, there exists a u′′ ∈ [t + a, t + b〉 su
h that b(u′′) |=R ¬φ1 ∧ φ2. Sin
e
(t, u′′) ⊆ (t, t + b), then we have shown that b(t) |=R Ũntil[a,b〉)(φ1, φ2), asrequired.Proof of Formula (9.9). Let us start with the ⇒ dire
tion: assume that
b(t) |=R Ũntil(0,b〉)(φ1, φ2). That is, there exists a u ∈ (t, t + b〉 su
h that
b(u) |=R φ2 and, for all v ∈ (t, u) it is b(v) |=R φ1. From b(u) |=R φ2 itfollows immediately that Until(0,b〉)(true, φ2), so the �rst 
onjun
t is proved.Then, let us show that b(t) |=R

˜ǫNowOn
(
Until(0,+∞))(φ1, φ2)

). Morepre
isely, we 
an show that for all α ∈ (t, u) it is b(α) |=R Until(0,+∞))(φ1, φ2).In fa
t, noti
e that u > α, so u ∈ (α,+∞); moreover [α, u) ⊂ (t, u), as
α > t. All in all, we have that b(α) |=R Until(0,+∞))(φ1, φ2).Let us now 
onsider the ⇐ dire
tion, and let us assume that b(t) |=R

Until(0,b〉)(true, φ2). That is, there exists a u ∈ (t, t+ b〉 su
h that b(u) |=R

φ2. If, furthermore, for all v ∈ (t, u) it is b(v) |=R φ1, then the left-handside holds obviously.Otherwise, let v′ be the smallest instant in (t, u) su
h that b(v′) |=R ¬φ1or b(v′) |=R
˜ǫNowOn(¬φ1). Re
all that we are assuming as hypothesis theright-hand side of the double impli
ation. So, from the de�nition of the

˜ǫNowOn operator, we are also assuming that there exists a β > 0 su
h thatfor all γ ∈ (t, t + β) it is b(γ) |=R Until(0,+∞))(φ1, φ2). Noti
e that thisimplies that for all γ ∈ (t, t+ β) it is also b(γ) |=R φ1. 271



D. Proofs for the Integration FrameworkNext, let m be the minimum of the two time distan
es β/2 and (v′−t)/2.Sin
e t + m ∈ (t, t + β) we have that b(t + m) |=R Until(0,+∞))(φ1, φ2).That is there exists a u′ ∈ (t + m,+∞) su
h that b(u′) |=R φ2 and forall v′′ ∈ [t + m,u′) it is b(v′′) |=R φ1. But sin
e m ≤ (v′ − t)/2, then we
on
lude that for all instants t′ in (t, u′) it is b(t′) |=R φ1.Now, if u′ > v′, we have a 
ontradi
tion. Thus, it must be u′ ≤ v′. Inthis 
ase, noti
e that: u′ ∈ (t, u) ⊂ (t, t + b〉, whi
h implies that b(t) |=R

Ũntil(0,b〉)(φ1, φ2) as required.D.5. Analyti
ity and Uniform ContinuityLet us study the relations between the notions of 
ontinuity, uniform 
onti-nuity, and analyti
ity to understand how non-Zenoness and non-Berkleynessare related for dense-valued items. In parti
ular, we show why uniform
ontinuity and analyti
ity are orthogonal notions. In the remainder, un-less otherwise stated, we 
onsider the whole real axis R as the domain offun
tions.Analyti
 and not uniformly 
ontinuous. The simple polynomial fun
tion
f1(x) = x2 is trivially analyti
. However, its �rst-order derivative f ′1(x) = xis not bounded, and indeed f1 is not uniformly 
ontinuous.Uniformly 
ontinuous and not di�erentiable. It is apparent from thede�nitions that a uniformly 
ontinuous fun
tion is also a fortiori 
ontin-uous. However, there exist fun
tions whi
h are uniformly 
ontinuous butare not even di�erentiable (and thus a fortiori not even C1-smooth andthus 
learly not analyti
). The following fun
tion f2 is an example of su
hfun
tions.

f2(x) = |x− [x]|where [·] denotes the nearest integer fun
tion:
[x] =

{
⌊x⌋ if x ≤ ⌊x⌋+ 1/2

⌈x⌉ otherwise
f2(x) indi
ates the distan
e from the integer whi
h is nearest to x; as it
an be seen 
learly from the plot of the fun
tion if Figure D.1, f2 is notdi�erentiable at all integer and half-integer3 points.3I.e., points k + 1/2 for some k ∈ Z.272
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ity and Uniform Continuity
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Figure D.1.: A fun
tion f2 whi
h uniformly 
ontinuous but not di�eren-tiable.Uniformly 
ontinuous, C∞-smooth, and not analyti
. Let us now showan example of fun
tion whi
h is uniformly 
ontinuous, has 
ontinuousderivatives of all orders (i.e., it is C∞-smooth), but nonetheless fails tobe analyti
.
f3(x) =

{
0 if x = 0

e−1/x2 if x 6= 0Figure D.2 shows a plot of f3, for referen
e.First of all, it 
an be shown by indu
tion that the n-th order derivativeof f3 is of the form:
f

(n)
3 (x) =

{
0 if x = 0

ρn(x)e−1/x2 if x 6= 0where ρn(x) is some rational fun
tion without singularities in R 6=0; there-fore, ea
h derivative is 
ontinuous over R 6=0, and the fun
tion is in�nitelydi�erentiable. Moreover, the form of the derivative implies that its limit as
x goes to zero is also zero, so all the derivatives are indeed 
ontinuous overall R.However, f3 is not analyti
 at the origin. In fa
t, sin
e f (n)

3 (0) = 0 forall n, the Taylor series of f3 at 0 is simply the 
onstant 0. Therefore, theseries about the origin does not 
onverge to the fun
tion. 273
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Figure D.2.: A fun
tion f3 whi
h is uniformly 
ontinuous and C∞, but notanalyti
.Finally, let us demonstrate that f3 is uniformly 
ontinuous. To this end,let us just 
onsider the �rst-order derivative f ′3 of f3:
f ′3(x) =

{
0 if x = 0
2
x3 e
−1/x2 if x 6= 0Without a detailed analysis, let us just look at the plot of f ′3 in Figure D.3and see that it is indeed bounded; therefore f3 is uniformly 
ontinuous,having bounded derivative.D.6. Axiomatization of Timed AutomataCompleteness of the axiomatization. In order to show the 
omplete-ness of the above axiomatization, let us 
onsider a generi
 run of a giventimed automaton, for whi
h the axioms introdu
ed in Se
tion 9.5 have beenspelled out.

(s0, ν0)
σ1,τ1−−−→ (s1, ν1)

σ2,τ2−−−→ (s2, ν2)
σ3,τ3−−−→ · · ·We have to show that all the above axioms are made true by the timedbehavior asso
iated with the given timed word. First of all, let us noti
ethat axiom 9.16 is true by 
onstru
tion, if we 
onsider the behavior of the

start predi
ate asso
iated to any behavior. Considering the other axioms,274
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Figure D.3.: The derivative f ′3 of f3 is bounded everywhere.sin
e they all are impli
itly universally quanti�ed with respe
t to time (asevery TRIO formula), we prove their truth by indu
tion of the length ofthe timed word.Base 
ase: up to time τ1. Without loss of generality, we assume that
τ1 > δ. Re
all that:
• start is true from −∞ to δ;
• s0 ∈ S0 is true from 0 to τ1 > δ;
• in = ǫ holds from 0 to τ1;
• rs(c) holds from 0 to δ for all 
lo
ks c ∈ C.As a 
onsequen
e, all axioms (but axiom 9.14) are trivially true from −∞until δ ex
luded, as all their ante
edents are false (sin
e they 
onsider aninterval of length δ with their UpToNow operators). For what 
on
ernsaxiom 9.14, it is also true, as at time 0 NowOn(start) holds.Now, from time δ up to time τ1 ex
luded, we have that:
• start is false;
• s0 ∈ S0 is true;
• in = ǫ holds; 275
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• rs(c) is false for all 
lo
ks c ∈ C.Consequently, axioms 9.12�9.14 are trivially true sin
e their ante
edentsare false. Axiom 9.15 is also true, sin
e after δ its ante
edent is false,whereas exa
tly at δ its 
onsequent is satis�ed by 
onstru
tion. Regardingaxiom 9.17, it is also true as the state will 
hange to s1 at τ1.Indu
tive 
ase: from time τi to time τi+1 . We now show that, assumingthe axioms are satis�ed until time τi ex
luded, then they are also satis�eduntil time τi+1 ex
luded. Let us �rst 
onsider what happens exa
tly at time

τi. Let 〈si−1, si, σi,Λi, ξi〉 ∈ E be the transition that is taken; therefore:
• start is false;
• UpToNow(st = si−1) is true;
• NowOn(st = si) is true;
• in = σi holds from τi to τi + δ;
• rs(c) holds from τi to τi + δ for all 
lo
ks c ∈ Λi.Therefore, axiom 9.12 holds, as the symbol σi is inputed, the right 
lo
ksare reset and the 
ondition Ξ is met by 
onstru
tion, thus making trueboth sides of the impli
ation. Similarly for axioms 9.13 and 9.14, bothsides of their impli
ations are true. Axiom 9.15 holds trivially as start isfalse, whereas axiom 9.17 is satis�ed for s = si.From time τi until time τi+1, we have that:
• start is false;
• si is true;
• in = σi holds until τi + δ, and in = ǫ holds afterward;
• rs(c) for all 
lo
ks c ∈ Λi holds until τi + δ, and rs(c) is false for all
lo
ks c ∈ C afterward.Thus, all axioms are trivially true, their ante
edents being false, ex
ept foraxiom 9.17, whi
h is however satis�ed for s = si+1.276



D.6. Axiomatization of Timed AutomataCorre
tness of the axiomatization. Conversely, in order to assess the
orre
tness of the axiomatization, we have to show that any timed behaviorsatisfying all the axioms 
orresponds to a run whi
h is a valid run of theautomaton. This is also shown by indu
tion on the timed behavior.Base 
ase: up to time τ0. Let us �rst of all 
onsider axiom 9.16. Let tsbe the time instant at whi
h AlwP(start) holds. Be
ause of the 
ondition
χ◦, it must be ts ≥ δ. Moreover, axiom 9.16 also implies that start 
annotbe always true, but it must exist an instant τ0 ≥ ts where start 
hangesits value from true to false; more pre
isely, still be
ause of the regularity
onditions, it must be UpToNow(start) and NowOn(¬start) at τ0.Let us 
onsider axiom 9.15 at τ0. Sin
e AlwP(st = s), AlwP(in = ǫ), and
AlwP(rs(λ)) for all 
lo
ks λ, the value of the state, input, and resets is
ompletely de�ned until τ0. Therefore, we realize that this 
orresponds tothe �rst element (s, 0) of a valid timed word, whi
h just spe
i�ed the reset
onditions of the automaton.Indu
tive 
ase: from time τi to time τi+1. The state si holds until time
τi by indu
tive hypothesis. It 
annot be that st = si holds forever, be
auseof axiom 9.17. More pre
isely, thanks to the regularity of the behaviors,it is well de�ned a time instant τi+1 > τi + δ > τi su
h that st 
hangesits value from si to some si+1 at τi+1. Let us now tra
e the run of theautomaton from time τi to τi+1.Let us �rst noti
e that start is 
onstantly false, as it has been so sin
etime τ0, due to axiom 9.16.Exa
tly at time τi, it might be that NowOn(in = σ) for some input 
har-a
ter σ. This would 
orrespondingly set the resets rs(λ) for the appropriate
lo
ks λ's; this behavior would of 
ourse be 
ompatible with both axioms9.12 and 9.14. Otherwise, if NowOn(ǫ) at τi, noti
e that there would be noresets from time τi to time τi + δ.Now, noti
e that in must equal ǫ for all remaining time instants, up to
τi+1. In fa
t, if this would not be the 
ase, then we should re
ord a statetransition at that time, be
ause of axiom 9.13. Similarly, by axiom 9.14,
rs(c) must be false for all 
lo
ks c, otherwise a state transition should alsoo

ur (as we already noted, NowOn(start) is false).Correspondingly, we 
an add the next step in the timed word (si−1, νi−1)
σ,τi−−→ (si, νi), 
ompatibly with the timed behavior of the axiomatized au-tomaton. 277





E. Integration and Metri
Temporal Logi
s: RelatedWorkThis 
hapter reviews several works broadly related with the notion of inte-gration, and with the problem of expressiveness of metri
 temporal logi
s
lose to R

Z
TRIO.In parti
ular, Se
tion E.1 presents other notions of dis
retization andintegration, di�erent from both our notion of sampling and Henzinger,Manna, and Pnueli's digitization. Se
tion E.2 
olle
ts several re
ent re-sults about the expressiveness of (metri
) temporal logi
s of expressivepower 
lose to R

Z
TRIO. Se
tion E.3 presents several formalisms that arevariations of timed automata, and summarizes results about their relativeexpressiveness. Finally, Se
tion E.4 reports about expressiveness and de
id-ability issues 
on
erning formalisms other than �standard� metri
 temporallogi
s and timed automata.E.1. Other Notions of Integration andDis
retizationA straightforward way to 
ompose 
ontinuous-time and dis
rete-time mod-els is to integrate dis
rete models into 
ontinuous ones, by introdu
ing somesuitable 
onventions. This is the approa
h followed by Fidge in [Fid99℄,with referen
e to timed re�nement 
al
ulus. The overall simpli
ity of theapproa
h is probably its main strength; nonetheless we noti
e that inte-grating everything into a 
ontinuous-time setting has some disadvantagesin terms of veri�
ation 
omplexity, as 
ontinuous time usually introdu
essome pe
uliar di�
ulties that render veri�
ation less automatizable. Onthe 
ontrary, our approa
h wants to a
hieve a sort of equivalen
e betweendis
rete-time and 
ontinuous-time des
riptions, so that one 
an resort tothe simpler dis
rete time when verifying properties, while still being able279



E. Integration and Metri
 Temporal Logi
s: Related Workto des
ribe naturally physi
al systems using a full 
ontinuous-time model.Hung and Giang [HG96℄ de�ne a sampling semanti
s for Duration Cal-
ulus (DC), whi
h is a formal way to relate the models of a formula to itsdis
rete observations, approximating DC's integrals of state variables bysums. The notion is based on the notion of digitization [HMP92℄.As expe
ted, for general DC formulas the standard semanti
s and thesampling semanti
s di�er. Hen
e, the authors derive some inferen
e rulesthat outline what is the relation between the two semanti
 models under
ertain assumptions. In parti
ular, the main aim is to formulate su�
ient
onditions that guarantee the soundness of re�nement rules, that permitto move from a 
ontinuous-time des
ription to a sampled one, thus movingfrom spe
i�
ation to implementation.Noti
e that our framework deals instead with integration of 
ontinuousand dis
rete, whi
h, in a sense, 
oexist within the same formal model. Onthe 
ontrary, [HG96℄ fo
uses on re�nement from 
ontinuous to dis
retetowards implementation.The general problem of integrating di�erent temporal (and modal) log-i
s is studied by Chen and Liu in [CL04℄ in a very abstra
t setting. Theirsolution is based on the introdu
tion of a very general semanti
 stru
ture,
alled resour
e 
umulator, that 
an a

ommodate several 
on
rete seman-ti
s and their respe
tive modalities. The framework is then based on re-�nement rules that permit to translate from one logi
 language to anotherone, while mapping appropriately the 
orresponding resour
e 
umulators.The approa
h seems indeed general and abstra
t, even if we believe thatone may desire more intuitiveness and simpli
ity of use from that. More-over, it fo
uses on re�nement among semanti
ally di�erent temporal logi
spe
i�
ations, while our framework fo
uses on the di�erent problem of in-tegrating di�erent semanti
s at the same level of abstra
tion, thus stressingmodularity and reuse of spe
i�
ations.Asarin, Maler and Pnueli in [AMP98℄ ta
kle the problem of dis
retiz-ing the behavior of digital 
ir
uits in a way that preserves the qualitativebehavior of the 
ir
uit in a stri
t sense, that is su
h that the ordering ofevents in 
ontinuous time must be un
hanged in the dis
retized behav-ior. In parti
ular, this implies that events o

urring at di�erent times,however 
lose, must o

ur at distin
t dis
rete time instant, in the same280
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sorder. This is a stronger notion than � in parti
ular � those by Hen-zinger et al. [HMP92℄, where a stri
tly monotoni
 sequen
e is allowed tobe dis
retized into a weakly monotoni
 one.More pre
isely, the authors are basi
ally 
onsidering Boolean signals,that is interval-based behaviors over in�nite time (i.e., the time domain is
R≥0). The same authors have shown in [MP95℄ that the sub
lass signalsthat are de�nable by their digital 
ir
uits 
an also be a

epted by timedautomata.The results about digitizability are demonstrated by geometri
 argu-ments about polyhedra. While for the simpler a
y
li
 
ir
uits digitizabil-ity is always possible for some suitable 
hoi
e of dis
retization step δ, forgeneral 
y
li
 
ir
uits the distan
e between state 
hanges 
an be
ome ar-bitrarily small, so that dis
retization is impossible for any 
hoi
e of step
δ > 0. On the 
ontrary, the same 
y
li
 
ir
uits are dis
retizable a

ordingto the weaker notion of dis
retization introdu
ed in [HMP92℄ (see Se
tion9.4).E.2. Temporal Logi
sA detailed summary about expressiveness, de
idability and 
omplexity re-sults for real-time temporal logi
s is given by Henzinger [Hen98℄. In theremainder, we report on some (more or less) re
ent result about expres-siveness for temporal logi
 that is not dealt with extensively in [Hen98℄.E.2.1. Nesting Operators in Dis
rete-Time Linear TemporalLogi
The problem of the expressiveness indu
ed by the nesting depth of oper-ators in LTL (with the �traditional� interpretation over dis
rete time) hasbeen thoroughly studied by Wilke et al. in various works; see [Wil99℄ for asurvey of related results.In parti
ular, Etessami and Wilke [EW96℄ have shown that the hierar
hyof LTL formulas de�ned by the maximum depth of nested until operators(independently of the number of next operators) is expressively stri
t, andthe same holds for LTL formulas where one evaluates the depth of nesteduntil and sin
e operators. The proof is 
onstru
tive and based on game-theoreti
 te
hniques. More exa
tly, it is shown that, for all k ≥ 2 theproperty denoted as STAIRk, indi
ating the strings over the ternary al-281



E. Integration and Metri
 Temporal Logi
s: Related Workphabet Σ = {a, b, c} su
h that there is a substring where a o

urs k timesbut no b o

urs, is expressible with LTL formulas with k − 1 nested untiloperators, but it is not expressible with fewer than k−1 nestings. We notethat the given LTL formula for STAIRk uses k − 1 nested next operatorsas well. A similar result holds if we allow the past sin
e operator as well.Thérien and Wilke further 
hara
terize the so-
alled �until -sin
e hierar-
hy� of LTL in [TW04℄ by algebrai
 means. Without des
ribing the detailswhi
h are quite 
onvoluted and te
hni
al, let us just mention that any LTLproperty is expressible with a formula with nesting depth of k if and onlyif the (synta
ti
) semigroup asso
iated with the property (
onsidered as aformal language) belongs to a 
ertain (de
idable) 
lass of �nite semigroups.Ku£era and Strej£ek [KS05℄ ta
kle similar problems as [EW96℄, but froma more �pra
ti
al� (and less algebrai
) perspe
tive. [KS05℄ 
an be seenas a ni
e generalization of previously known results about the stutteringinvarian
e of LTL. Let us start by noting that we 
onsider future-only LTL,whi
h basi
ally 
onsists of all formulas expressible with the two modalitiesnext (X) and until (U). Note that we 
onsider a weak until, i.e., one whi
hdoes in
lude the 
urrent instant; therefore next is not redu
ible to it. Forthis de�nition of LTL, we de�ne a stri
t synta
ti
 hierar
hy of formulas,a

ording to the maximum number of nested until and next operators ina formula: LTL(Um,Xn) denotes the set of all LTL formulas where thenesting depth of until is at most m, and the nesting depth of next is atmost n. If one of the two supers
ript is omitted, we pla
e no restri
tions onthe nesting depth of that operator: for instan
e LTL(Um,X) denotes theset of all formulas where there are at mostm nested untils, and any numberof nested nexts. The natural question, answered a�rmatively in [KS05℄,is whether the above hierar
hy is also semanti
ally stri
t. The answer
onstitutes an extension of the 
lassi
al results by Lamport [Lam83℄, andPeled and Wilke [PW97℄ about stutter-free languages.In order to state the main result of the paper, we have to brie�y introdu
ethe notion of (m,n)-stutter equivalen
e. Let Σω ∋ α = α0α1α2 · · · an ω-word of alphabet Σ. For m,n ≥ 1, a �nite subword β = αiαi+1 · · ·αi+(j−1)of α is (m,n)-redundant whenever the subword αi+jαi+j+1 · · ·
αi+j+(mj−(m−n−1))−1 is a pre�x of βω. Informally, the subword β is re-dundant if it is repeated �basi
ally� m + 1 times, ex
ept for a su�x oflength m − 1 − n whi
h 
an be ignored. We naturally introdu
e a partialorder relation between words a

ording to whether one 
an be obtainedfrom another by removing some (even in�nitely many) non-overlapping282
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s
(m,n)-redundant subwords. The partial order indu
es a least equivalen
eamong words, whi
h we 
all (m,n)-stutter equivalen
e.Let us now state the main results of the paper.
• every LTL(Um,Xn) language is 
losed under (m,n)-stutter equiva-len
e;
• a language is de�nable in LTL(U,X) i� it is (m,n)-stutter 
losed forsome m,n ≥ 1;
• the following results are 
orollaries of the above main fa
ts, but wereport them expli
itly for their signi�
an
e:� for all n ≥ 1, the LTL(U0,Xn) formula n times︷ ︸︸ ︷

XX · · ·X p 
annot beexpressed in LTL(U,Xn−1);� for all m ≥ 1, the LTL(Um,X0) formula F(p1 ∧ F(p2 ∧ · · · ∧
F(pm−1 ∧ Fpm) · · · )) 
annot be expressed in LTL(Um−1,X);1� for all m,n ≥ 1, the 
lasses LTL(Um−1,Xn) and LTL(Um,Xn−1)have in
omparable expressive power.E.2.2. (Un)De
idability and Expressiveness of MTLOuaknine and Worrel investigate in [OW05℄ some questions on the de
id-ability of the temporal logi
 MTL with a point-based semanti
s. It isknown that MTL is unde
idable for interval-based semanti
s, as it hasbeen dis
ussed in [AH92b,AH93,Hen98℄. In [AFH96℄ it has been demon-strated that the key property of MTL that renders it unde
idable is itspossibility of expressing pun
tuality, that is exa
t time distan
es betweenevents. Due to the denseness of the time domain, unde
idability 
arriesover to �nite interval-based semanti
s (see also [DP06℄).Somewhat surprisingly, things 
hange when 
onsidering a point-based(timed word) semanti
s. First of all, noti
e that if we allow past operatorsin the language (i.e. we 
onsiderMTLP), unde
idability stays (supposedly,with �nite domains as well) [Hen91℄. As pointed out in [OW05, Footnote3℄, this is a 
onsequen
e of the unde
idability proof in [AH93,Hen91℄, whi
hwas 
arried out in a monadi
 se
ond-order theory of event sequen
es, whi
hsubsumes both future and past operators. However, the authors show thatMTL over �nite timed words is instead de
idable.1Assuming the usual de�nition for the eventually operator: Fp ≡ ⊤Up 283



E. Integration and Metri
 Temporal Logi
s: Related WorkThe proof goes through the use of timed alternating automata (TAA,also introdu
ed in [LW05℄), that are an extension of the traditional ideaof alternating automata to the timed 
ase. More pre
isely, let us 
onsiderTAA with just one 
lo
k; this restri
tion is ne
essary in order to attainde
idability, sin
e the emptiness problem is unde
idable for general TAA,but de
idable for single-
lo
k ones. Noti
e that, sin
e the 
lass TAA is
losed under all Boolean operations (and 
omplementation, in parti
ular),the universality problem is also de
idable for one-
lo
k TAA. Then, theauthors show how to 
onstru
t a one-
lo
k TAA that a

epts the samelanguage as that of any given MTL formula. By the way, noti
e thatthe 
onstru
tion exploits stri
t semanti
s [Hen98℄ for the until operator ofMTL, but it is easy to pass to the weak semanti
s while keeping the sameresults. Finally, noti
e that, again due to 
losure under 
omplementation ofMTL formulas, the model-
he
king problem is equivalent to satis�ability.[OW05℄ also dis
usses additional results, among whi
h we only mentionthe 
omplexity of de
iding MTL formulas over �nite timed words. It isshown to be nonprimitive re
ursive (this means that, while being re
ursive,the 
omplexity measure grows faster than any primitive re
ursive fun
tion;it also implies that it is nonelementary � as elementary languages are astri
t subset of primitive re
ursive ones).The de
idability of full MTL over in�nite timed words is settled in[OW06℄, again by Ouaknine and Worrel. The result is a negative one,so the de
idability results over �nite timed words [OW05℄ do not 
arryover to the in�nite 
ase. More pre
isely, it is shown that both satis�abilityand model-
he
king (against timed automata) are unde
idable for MTLover in�nite-length timed words, even if we limit ourselves to the synta
-ti
 fragment with 
onstrained next2, eventually, and always operators. Asa side result, 
ombining these results with the open problems about one-
lo
k alternating timed automata dis
ussed in [OW05℄, one also gets thatthe emptiness problem for one-
lo
k timed alternating automata with weakparity a

eptan
e 
onditions is unde
idable; a fortiori, this implies the un-de
idability of the same problem for the more expressive one-
lo
k timedalternating automata with Bü
hi a

eptan
e 
onditions.The main results of the paper are drawn by showing how to translatesatis�ability questions for MTL (for both in�nite and �nite point-based2For timed words, this means referen
ing to the next timestamped symbol in the word.284
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ssemanti
s) formulas into re
urrent-state3 and halting problems for a par-ti
ular 
lass of state ma
hines known as insertions 
hannel ma
hines withemptiness testing, or ICMETs for short. ICMETs are queue ma
hines with�nite-state 
ontrol and with insertions errors, that is where 
hannels (wheredata is a

essed with a FIFO poli
y as in a queue) may nondeterministi
allyinsert or remove symbols. Channel ma
hines without insertion errors areas expressive as Turing ma
hines; faulty 
hannel ma
hines are instead lesspowerful, to the extent that their halting and re
urrent-state problems arede
idable with polynomial-time 
omplexity. By endowing faulty 
hannelma
hines with emptiness testing (i.e., the ability to test whether a 
hannelis empty), we get a 
lass of automata of intermediate power: their halt-ing problem is de
idable (albeit with non-primitive re
ursive 
omplexity),whereas their re
urrent-state problem is still unde
idable. Therefore, theaforementioned 
orresponden
e between MTL and ICMETs immediatelytranslates to the stated (un)de
idability results.D'Souza and Prabhakar in [DP06℄ 
ompare the expressiveness of MTL inthe point-based and interval-based (or, as they 
all it, �
ontinuous�) seman-ti
s over �nite-length interpretations. It is known that MTL is unde
idableover interval-based semanti
s [AH93,AFH96℄, whereas it is de
idable over�nite-length point-based (i.e., �nite timed words) semanti
s [OW05℄. Theauthors exploit this di�eren
e to show that, over �nite-length interpreta-tions, interval-based MTL is more expressive than point-based MTL. Letus add some detail about how they get to the result.First of all, they introdu
e a point-based semanti
s (they 
all it pointwiseMTL, and denote it as MTLpw), and a 
ontinuous semanti
s (denoted asMTLc) whi
h is di�erent from the traditional interval-based semanti
s.In fa
t, both semanti
s interpret MTL formulas over �nite-length timedwords, so that the two semanti
s 
an be put on a 
ommon ground and
ompared. The di�eren
e is that, while in pointwise semanti
s ea
h formula
an predi
ate only about instants of time that 
orrespond to events in theword, in the 
ontinuous semanti
s formulas assert at all instants of time,in
luding in between any two timestamped events.It is fairly easy to show that MTLc is at least as expressive as MTLpw.In order to show that the in
lusion is stri
t, the authors 
onsider the unde-
idability proof forMTLc, whi
h relies on en
oding deterministi
 2-
ounterma
hines. Then, the separation proof pro
eeds by 
ontradi
tion: if one as-3That is, determining whether a state is visited in�nitely often in a 
omputation. 285



E. Integration and Metri
 Temporal Logi
s: Related Worksumes that MTLpw is as expressive as MTLc, then it must be possible toperform the same en
oding of 2-
ounter ma
hines in MTLpw. But then,the satis�ability problem for MTLpw would unde
idable, a 
ontradi
tionof a previously known result [OW05℄.Bouyer et al. [BCM05℄ analyze the expressiveness of the two well-knownreal-time temporal logi
s TPTL [AH94℄ and MTL [Koy90, AH93℄. Morepre
isely, they 
arefully analyze a long-held 
onje
ture [AH92b,AH93,Hen98℄about TPTL being more expressive than MTL over dense time.The main 
ontribution paper is an in-depth proof of the 
onje
ture forboth the point-based and the interval-based semanti
s. However, it isshown that the formula �(p⇒ x.♦(q∧♦(r∧x ≤ 5))) proposed in [AH93℄ asa witness of the 
onje
ture is a
tually not expressible in MTL only in thepoint-based semanti
s. The authors, however, provide a di�erent witness(namely, the formula �(p ⇒ x.♦(q ∧ x ≤ 1 ∧ �(x ≤ 1 ⇒ ¬r)))) whi
hseparate the expressiveness 
lasses in the interval-based semanti
s as well.The result is very te
hni
al and quite 
onvoluted (as most expressivenessresults are), so we do not report here the low-level details, for simpli
ity.Let us remark, however, that both families of models that separate TPTLand MTL in the point-based or interval-based semanti
s are (simply) 
har-a
terizable using past operator of MTL's. Therefore, a 
orollary of theexpressiveness results for TPTL and MTL is that MTLP (i.e., MTL withpast operators) is stri
tly more expressive than future-only MTL in boththe point-based and the interval-based semanti
s.Finally, it is shown that the existential fragments of TPTL and MTL �de�ned as the fragments where the only allowed modality is ♦ � are fullyde
idable, and the two language fragments are equally expressive.Prabhakar and D'Souza present several results about the expressivenessof MTL, and synta
ti
 and semanti
 variants thereof, in [PD06℄. Several ofthe results use similar te
hniques as those in [BCM05℄, while generalizingand extending them to handle other 
ases.The authors 
onsider four basi
 semanti
s for the temporal logi
 lan-guages they analyze: point-based semanti
s (
alled pointwise in the pa-per), a variant of interval-based semanti
s (
alled 
ontinuous semanti
s;basi
ally it 
onsists of an interval-based semanti
s where all items are 
on-strained to behave as instantaneous events. This is the same semanti
s asin [DP06℄.), and both in�nite- and �nite-length variants of the two seman-286
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sti
s. Con
erning syntax, they 
onsider three variants of the MTL language:one is �regular� MTL (i.e., with the 
onstrained until as only modality);then we have MTLS , whi
h isMTL enri
hed with the un
onstrained sin
eoperator for the past; and �nally we have MTLSI
, whi
h is MTL withboth 
onstrained until and 
onstrained sin
e operators.Before su

in
tly summarizing the results of the paper, let us brie�ypresent a preliminary result whi
h is used in the paper to extend knownresults about the expressiveness of MTL over in�nite behaviors (and inparti
ular, those in [BCM05℄) to �nite-length behaviors as well. The result,whi
h holds over both the pointwise and the 
ontinuous semanti
s, is a sortof 
ounter-freeness property ofMTL, whi
h 
an be regarded as an analogueof the 
ounter-freeness 
hara
terization of LTL over dis
rete time domains[MP72℄ (see also [Wil99℄ for a brief history of the subje
t). Informally,the result 
an be stated as follows. Given an (in�nite) sequen
e of �nitetimed words σ0, σ1, σ2, . . ., whi
h are periodi
 (i.e., one 
an be obtainedfrom a previous one by �pumping� a �xed �nite subword), we say that thesequen
e ultimately satis�es an MTL formula φ if from some index k ≥ 0all words in the sequen
e satisfy φ. If, from some index k ≥ 0, all words inthe sequen
e do not satisfy φ, we say that the sequen
e ultimately does notsatisfy φ. The 
ounter-freeness property says that, given an MTL formula

φ, all periodi
 sequen
es of �nite timed words either ultimately satisfy orultimately do not satisfy φ. This 
hara
terization is useful in extendingexpressiveness results for MTL to �nite words.Finally, here it is a short summary of the expressiveness results of thepaper.
• MTL in the 
ontinuous semanti
s is stri
tly more expressive thenMTL in the pointwise semanti
s, for both �nite and in�nite behav-iors; here, the proof for in�nite behaviors of [BCM05℄ is extended tothe �nite 
ase;
• in the 
ontinuous semanti
s, MTL is stri
tly 
ontained in MTLS ,for both �nite and in�nite behaviors; again, the proof for in�nite be-haviors of [BCM05℄ is extended here to the �nite 
ase (in a

ordan
ewith the results in [DP06℄);
• the languageMTL in the 
ontinuous semanti
s is stri
tly less expres-sive than the languageMTLS , over both �nite and in�nite behaviors;
• the language MTLS is stri
tly less expressive than MTLSI

in thepointwise semanti
s, over both �nite and in�nite behaviors; note that287



E. Integration and Metri
 Temporal Logi
s: Related Workwhether the same in
lusion is stri
t in the 
ontinuous semanti
s is stillunknown.E.2.3. De
ision Te
hniques for MITLMaler, Ni
kovi
 and Pnueli 
onsider in [MNP05℄ the language MITLP
[a,b],whi
h is a bounded future-and-past version of the temporal logi
 MITL[AFH96℄. More pre
isely, it is MITL enhan
ed with past modalities (i.e.,the bounded sin
e operator), with the restri
tion to temporal intervalsof the form [a, b], with 0 ≤ a < b su
h that a, b ∈ N. The languageMITLP

[a,b] is interpreted over �nite-length Boolean signals (also 
alled statesequen
es), that is behaviors b that are (total) fun
tions from [0, r) to Bnfor some r ∈ N, with non-Zeno requirements. Noti
e that the restri
tionto natural numbers is basi
ally the same as the 
ommon restri
tion to ra-tionals, after a proper s
aling. Moreover, sin
e we 
onsider �nite-lengthsignals, the restri
tion to �nite intervals in MITL formulas is also irrele-vant. Thus, we are basi
ally dealing with the same logi
 as in [AFH96℄,ex
ept that we enhan
e it with past modalities and restri
t it to �nite-length state sequen
es.About MITLP
[a,b] with the �nite-length interval-based semanti
s, the au-thors prove the following results:

• past-MITLP
[a,b] is deterministi
, that is for every past-MITLP

[a,b] for-mula π one 
an 
onstru
t a deterministi
 timed automaton a

eptingexa
tly the behaviors satisfying π;
• future-MITLP

[a,b] is nondeterministi
, that is there exist future-MITLP
[a,b] formulas φ that are a

epted by some nondeterministi
timed automaton but by no deterministi
 timed automaton; noti
ethat this implies a fortiori the same result for MITL over in�niteinterval sequen
es.The reason for this asymmetry turns out to be related to the fa
t that pastformulas have a synta
ti
 idiosyn
rasy that guarantees that �fast� 
hanges(i.e., 
hanges whose duration is less than the size of the smallest intervalappearing in formulas) 
an be forgotten as they do not in�uen
e the truth ofpast formulas. This is also due to the fa
t that we avoid pun
tual intervals(this is MITL's fundamental feature), otherwise the asymmetry betweenpast and future would not arise.288



E.2. Temporal Logi
sFinally, the authors point out that determinizability may be obtainedby �enfor
ing some minimal delay of sub-formulas that imply somethingtoward the future�; this requirement is 
aptured by our notion of behavior
onstraint for formulas in normal form [FR05℄, or, equivalently, by theinertial bi-bounded delay operator of Maler and Pnueli [MP95℄.Maler, Ni
kovi
 and Pnueli in [MNP06℄ 
onsider on
e more the languageMITL, and propose a translation of MITL formulas to timed automataalternative to the �rst one proposed by Alur et al. in [AFH96℄. Theiralternative translation is simpler and is therefore mu
h more amenable toimplementation than the original one.In a

ordan
e with [AFH96℄, the authors 
hoose an in�nite-length interval-based semanti
s of signals. With respe
t to the semanti
s assumptions,there are only two departures from what 
hosen in [AFH96℄. First, theydisallow pun
tual behaviors in signals; more pre
isely, they 
onsider be-haviors over R≥0 that are 
onstant over left-
losed right-open intervals.Se
ond, they 
onsider a variation of the (bounded) until operator su
hthat whenever p U q is true, then p must hold as well when q holds in thefuture, not just before. The authors 
laim that both assumptions simplifythe exposition without appre
iable sa
ri�
e of generality.Correspondingly, the authors show how to build a timed signal trans-du
er for any MITL formula. It is a nondeterministi
 � as future MITLoperators are in general nondeterministi
 [MNP05℄ � timed automatonthat takes as input a signal, representing a behavior of primitive items,and outputs a Boolean signal 
orresponding to the truth value of the for-mula over time for the given input. The 
onstru
tion is based on two basi
ideas. The �rst is modularity : the stru
ture of the automaton mirrors
losely the stru
ture of the formula it models. Moreover, the 
onstru
tionbuilds on similar work for untimed automata [KP05℄. The se
ond in anobservation, also made in [AFH96℄, that Boolean signals representing thetruth over time of any MITL formula have the property of holding theirtruth values for at least δ time units, where δ is the size of the smallestinterval appearing in the formula. This property is 
ru
ial in ensuring thatthe testing the truth of signals that range over a 
ontinuous domain 
anbe done with �nitely many 
lo
k, even if, a priori, a signal 
ould 
hangeits value an in�nite number of times in any �nite interval. 289



E. Integration and Metri
 Temporal Logi
s: Related WorkE.2.4. Expressive Completeness of Future Linear TemporalLogi
Hirshfeld and Rabinovi
h 
onsider in [HR03℄ the problem of �nding a (un-timed) temporal logi
 whi
h is expressively 
omplete for the future frag-ment of the monadi
 logi
 of order (MLO).MLO is traditionally 
onsidered the standard setting in whi
h orderingproperties about linear sequen
es of events 
an be expressed. Similarly,Linear Temporal Logi
 is traditionally 
onsidered a language suitable toexpress the same properties as withMLO, but in a mu
h more natural andintuitive way. In other words, the use of modalities in pla
e of �rst-orderlogi
 with ordering predi
ates 
an be 
onsidered as a way of �synta
ti
-sugaring� the underlying MLO. The sugaring is desirable as long as themodal logi
 language is expressively 
omplete with respe
t to MLO. ForLTL the expressive 
ompleteness has been �rst proved by Kamp [Kam68℄.Kamp's result holds for LTL with the until and sin
e modalities, forMLOinterpreted over Dedekind-
omplete stru
tures4; in parti
ular the standardmodels of natural and nonnegative real numbers � with respe
t to standardordering � are 
omprised in Kamp's result.[HR03℄ 
onsiders the derived problem of �nding a temporal logi
, usingonly future operators, whi
h is expressively 
omplete for the future frag-ment of MLO, whi
h is 
hara
terized in a pre
ise way. This apparentlysimple restri
tion yields nonetheless surprising results. First of all, the useof the sole until operator does not bring expressive 
ompleteness over thereals (whereas it is well-known that it does so over the naturals [GPSS80℄).Even more surprisingly, [HR03℄ shows that no temporal logi
 with a �nitenumber of future modal operators 
an be expressively 
omplete for futureproperties. Note, however, that this limitation holds only for general be-haviors over the reals (and rationals as well). If we restri
t our analysis to�nitely-variable (i.e., non-Zeno) behaviors only � as it is routinely done� then the expe
ted result (that until is expressively 
omplete) holds.E.2.5. De
idable Metri
 Temporal Logi
s over the Real LineHirshfeld and Rabinovi
h in [HR04℄ (and, previously, in [HR99b,HR99a℄)present some results about de
idability and expressiveness of modal logi
sfor real-time, 
omparing them with other well-known 
ontributions in thesame area. The followed approa
h is rather di�erent than those of most �4That is su
h that every non empty bounded subset has a lowest upper bound.290



E.2. Temporal Logi
sif not all � other similar works, and it is insightful in 
onsidering 
ommonproblems and questions from a di�erent perspe
tive.The semanti
 base is the 
anoni
al time model of the nonnegative realnumbers. Noti
e that one of the main features of the work is that wedo not restri
t ourselves to non-Zeno behaviors over su
h a time model,but 
onsider any possible behavior of Boolean-valued monadi
 predi
ates(i.e., time-dependent propositions, with another wording). From a purelymathemati
al point of view, it is quite natural to introdu
e a monadi
language to express metri
 properties in these models. Sin
e qualitativeproperties are naturally expressed with the monadi
 logi
 of order (MLO),its straightforward generalization that introdu
es a unary fun
tion +1 overthe time sort is 
onsidered as the �standard� language in whi
h to expressquantitative temporal properties. We 
all this language MLO+.Sin
e MLO+ is unde
idable, we seek a �su�
iently expressive� subset ofit whi
h is de
idable. To do this, [HR04℄ starts by de�ning a metri
 modallogi
 with two metri
 modalities ♦1,
←−
♦ 1, in addition to the standard untiland sin
e. It is 
alled Quantitative Temporal Logi
 (QTL). The formula

♦1p (respe
tively, ←−♦ 1p) denotes that p will hold (has held) within the next(previous) time unit. The 
orresponding synta
ti
 fragment of MLO+, forwhi
h QTL is expressively 
omplete, is denoted as QMLO.Although QTL may seem not very expressive, [HR04℄ demonstrates thatthis is not the 
ase. In parti
ular, it is at least as expressive as all knownde
idable real-time logi
s (su
h as MITL). Indeed, QTL is also de
id-able. [HR04℄ shows this with purely logi
al methods, without resorting toautomata theory. In a nutshell, the basi
 idea is to redu
e the satis�abil-ity problem of any QTL formula to the satis�ability of another formulain timer normal form, using auxiliary variables. The timer normal form ismade of a 
onjun
tion of aMLO (and thus non-metri
) formula, and a par-ti
ular QMLO formula Timer expressing quantitative 
onstraints. Then,it is shown that Timer 
an be further redu
ed to a pure MLO formula byobserving that, roughly speaking, its satis�ability is preserved by �stret
h-ings� of the real line. Therefore, sin
e MLO is fully de
idable, QTL (andQMLO, being as expressive) is de
idable as well.Still resorting solely to logi
-based methods, it is shown that the satis-�ability problem for QTL is in PSPACE. Just like the other results, thisholds both for unrestri
ted behaviors, and for non-Zeno (a.k.a. �nitely-variable) ones.Next, [HR04℄ 
onsiders possible extensions of QMLO and QTL that291
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 Temporal Logi
s: Related Workare more expressive, but still de
idable. In parti
ular, let us mention theintrodu
tion of a hierar
hy of modal logi
s, of in
reasing expressive power,that are all de
idable: for ea
h n > 0, the logi
 QTL(n) has a modality
apable of expressing the fa
t that n predi
ates eventually be
ome true (inthe given order) within one time unit. Other enri
hments using automata
onne
tives and variants thereof are brie�y dis
ussed.In this vein, the other paper [HR06℄ proves a 
onje
ture by Pnueli, anda generalization of it, about the expressiveness of �
ounting modalities�similar to those of the logi
 QTL(n) mentioned in the previous paragraph.Even more generally, it is shown that for any temporal logi
 � even within�nitely many modalities � all of whose modalities are expressible inthe se
ond-order monadi
 logi
 of order (enri
hed with the unary additionpredi
ate to a

ount for metri
 properties) with a bounded quanti�er depth,there exists some n su
h that the property that a predi
ate is true at least
n times within the next unit of time is not expressible in the logi
. Thisresult is strong, even if we have to 
onsider that several variants may opendi�erent perspe
tives. In parti
ular, one may ask what happens if we allowmore arithmeti
 than just addition by one, or, more generally, what othermodalities should be 
onsidered as �basi
�. Finally, noti
e that the generalresult is proved for the whole real line, even if it is 
onje
tured that it holdsfor the nonnegative reals as well.Finally, [HR04℄ 
on
ludes with a 
riti
al dis
ussion and 
omparison withexisting similar works. In parti
ular, it remarks how the two widely used
ω-models of timed words and timed interval sequen
es la
k some basi
 fea-tures and their 
ustomary use has refrained some basi
 results about moregeneral (and natural) models from being dis
overed (espe
ially unrestri
tedbehaviors over the reals). On the other hand, the proliferation of di�erentmodels and temporal logi
 languages for quantitative properties is mostlydue to the short
oming of su
h models, in the opinion of [HR04℄. As anexample, it is remarked how point-based models fail to satisfy intuitivelyperfe
tly reasonable properties su
h as �←−♦ 1true, whi
h is not satis�ed bytimed words where some pair of timestamps di�er by more than one timeunit. For what 
on
erns interval-based sequen
es, although they representpre
isely the �nite-variability requirement, they are not unique representa-tions, in that the same behavior is representable with more than one 
hoi
eof interval 
overage. Moreover, as it is also well-known [AFH96℄, the 
or-responding logi
s do not distinguish between a real and a rational model;a

ording to [HR04℄ this is an indi
ation that the a

epted models need292



E.3. Timed Automatare
onsideration.E.3. Timed AutomataThis se
tion reviews some variants of timed automata, and dis
usses theexpressiveness of the resulting formalisms.Alur and Henzinger 
onsider in [AH92a℄ two-way timed automata, thatis timed automata that 
an go ba
k and forth on a timed word. Theyadopt an point-based (i.e., timed word) �nite-length semanti
s. The basi
nondeterministi
 version of these automata is denoted as 2NTA. Theirdeterministi
 subset is denoted by 2DTA; noti
e that determinism ensuresthat there is a unique run for any timed word, but a 2-way determinis-ti
 timed automaton may be
ome nondeterministi
 when rendered as a(1-way) traditional timed automaton. Let us also introdu
e the notionof bounded timed automata: the 
lass 2NTAk is the sub
lass of two-way(nondeterministi
) timed automata su
h that in every run over any timedword the automaton visits any symbol in the word at most 2k+1 times; the
lass 2DTAk is its deterministi
 
ounterpart. Noti
e that standard non-deterministi
 and deterministi
 timed automata (usually denoted by NTAand DTA, respe
tively) 
orrespond to the 
lasses 2NTA0 and 2DTA0,respe
tively.The authors draw the following results:
• the automata in ea
h 
lass 2DTAk give a stri
tly less expressive for-malism than those in the 
lass 2DTAk+1;
• 
onversely, in
reasing the number of nondeterministi
 reversals doesnot add expressiveness to that a
hieved by 2NTA0 (i.e., NTA);
• sin
e deterministi
 (two-way) timed automata are 
losed under allBoolean operations, while NTA are not, and it is easily seen thatone.way nondeterminism 
an simulate any �nite number of deter-ministi
 reversals, the 
lass of languages de�ned by 2DTAk for any
k ∈ N is stri
tly 
ontained in the 
lass of languages de�ned by NTA;
• for every MITL formula φ, there exists an automaton in 2DTA1that a

epts pre
isely the behaviors that satisfy φ; the 
onverse isnot true, as there exist MITL formulas that require nondeterminism(see also [MNP05℄); 293
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• let us 
onsider MITLP, that is MITL enri
hed with past operators.As the number of alternations in the nesting of subformulas betweenpast and future modalities in a MITLP formula in
reases, the num-ber of reversals required by an automaton in 2DTAk � a

eptingthe same language as the formula � in
reases 
orrespondingly. Abyprodu
t of this result is that MITL remains de
idable even if en-ri
hed with past operators;
• let us �nally 
onsider the language MITL=, the extension of MITLthat allows singular (i.e., pointwise) intervals in temporal operators;remember that in [AFH96℄ it was shown that this introdu
es unde-
idability over in�nite-time interval-based interpretations, but alsosee [OW05℄ for related results with di�erent interpretations. Theauthors show that the models of any MITL= formula 
an be re
og-nized by some automaton in 2DTA, but not by any �nite number ofreversals (i.e., an unbounded number is required in the worst 
ase);
• the authors also 
onje
ture that unbounded deterministi
 two-waynessis not powerful enough to model nondeterminism, even if the latteris without reversals; they also propose a language that they believe
annot be a

epted by any 2DTA, but is re
ognized by a NTA.Alur, Fix and Henzinger introdu
e in [AFH99℄ three 
lasses of relatedvariations of timed automata: event-re
ording automata, event-predi
tingautomata, and event-
lo
k automata. The semanti
s they 
onsider is overpoint-based sequen
es of �nite length, that is �nite timed words.Event-re
ording automata are automata endowed with 
lo
k that re
ordthe time of the last o

urren
e of any event in the alphabet. Event-predi
ting automata have instead 
lo
k that �predi
t� the time of the o
-
urren
e of an event. Finally, event-
lo
k automata have both re
ordingand predi
ting 
lo
ks. We let ERA, EPA, and ECA denote the 
lasses ofeven-re
ording, event-predi
ting, and event-
lo
k automata, respe
tively.Event-
lo
k automata have the ni
e properties of being determinizable,and so are the sub
lasses of event-re
ording and event-predi
ting automata.Moreover, their emptiness problem is de
idable, through a region 
onstru
-tion that draws from the 
orresponding one for timed automata [AD94℄,and the languages they a

ept are 
losed under all Boolean operations. Alsonoti
e that event-
lo
k automata are instead not 
losed under renaming orhiding of input symbols (
ontrarily to (nondeterministi
) timed automata).294



E.3. Timed AutomataThe authors draw the following results about the expressiveness of thevarious 
lasses of automata they have introdu
ed:
• the 
lasses of languages re
ognized by automata in ERA and EPAare in
omparable;
• the possibility of having both predi
ting and re
ording 
lo
ks in thesame automaton (as in ECA) gives stronger expressive power thanthat given by union of ERA and EPA;
• ECA are stri
tly less expressive than nondeterministi
 timed au-tomata NTA (obviously, as the former are determinizable, while thelatter are not):
• ERA 
an be fully translated to deterministi
 timed automata DTA,while the 
onverse is in general not true;
• EPA and DTA yield language 
lasses that are in
omparable;
• ECA and DTA also yield language 
lasses that are in
omparable.Lasota and Walukiewi
z introdu
e in [LW05℄ the notion of alternatingtimed automata (denoted as ATA). An ATA is a 
lassi
 alternating au-tomaton [CKS81,Var97℄ enri
hed with 
lo
ks, just like timed automata arean enri
hment of 
lassi
 automata. Note that ATA were also indepen-dently introdu
ed by Ouaknine and Worrel [OW05℄. The authors give agame-theoreti
 semanti
s for ATA, based on �nite-length timed words (i.e.,a point-based semanti
s).Languages a

epted by ATA are easily shown to be 
losed under allBoolean operations. Moreover, it is also simple to show that the emptinessproblem is unde
idable for ATA with more than one 
lo
k: the universalityproblem for timed automata with the same number of 
lo
ks � well-knownto be unde
idable [AD94℄ � 
an be easily en
oded as an emptiness problemfor ATA. Therefore, the paper fo
uses on one-
lo
k ATA. For this 
lassof automata, the following results are drawn.
• emptiness (and thus, as a simple 
orollary deriving from 
losure un-der Boolean operations, universality and language 
ontainment aswell) is de
idable for one-
lo
k ATA. The proof relies on a region
onstru
tion that builds a �nite bisimilar transition system;
• the 
omplexity of the emptiness problem is non-primitive re
ursive;295
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• ATA enri
hed with ǫ-moves be
ome unde
idable even with one 
lo
k:this is shown by redu
tion from the rea
hability problem for perfe
t
hannel systems (whereas without ǫ-moves one 
an only en
ode lossy
hannel systems);
• the authors also brie�y hint at the fa
t that universality for one-
lo
knondeterministi
 timed automata over in�nite words (and thus forATA over in�nite words as well) is unde
idable; this is given withoutproof, but it is dis
ussed in [ADOW05℄.Abdulla et al. [ADOW05℄ study the language in
lusion problem for timedautomata with one 
lo
k. More pre
isely, they 
onsider a point-based (i.e.,timed word) semanti
s and study the problem of de
iding, given a 1-
lo
kTA A and another TA B (with no restri
tions on B), whether every worda

epted by B is also a

epted by A. Previously, Alur and Dill [AD94℄showed the problem unde
idable for A with two or more 
lo
ks, and de
id-able for A without 
lo
ks.The results drawn in the paper 
an be summarized as follows; they allexploit redu
tions from rea
hability problems in 
hannel ma
hines [AJ96,CFP96,S
h02℄.
• over �nite-length words, the one-
lo
k language in
lusion problem isde
idable with non-primitive re
ursive 
omplexity. This was alreadyshown by the same authors in [OW04℄;
• if we allow ǫ-transitions, the problem is unde
idable even for one-
lo
kautomata over �nite words;
• the problem is also unde
idable for one-
lo
k timed automata overin�nite words with Bü
hi a

eptan
e 
onditions.E.4. Other FormalismsA de
idable monadi
 se
ond-order logi
. Wilke 
onsiders in [Wil94℄ ade
idable monadi
 se
ond-order logi
, whi
h is suitable to express proper-ties of timed state sequen
es. The starting point is the monadi
 logi
 ofdistan
e, denoted by Ld; this is a monadi
 se
ond-order language whi
hallows one to predi
ate about distan
es between instants in timed words.296



E.4. Other FormalismsTherefore, noti
e that the work assumes a point-based in�nite-length se-manti
s (i.e., timed ω-words). This language is unde
idable, as the sameresults of [AH93℄ 
arry over for Ld.Thus, the author introdu
es a fragment of Ld where the use of expres-sions about distan
e is restri
ted to relative distan
es only. The resultingfragment, 
alled the monadi
 logi
 of relative distan
e, is denoted by L←→
d
.

L←→
d
is shown to de�ne exa
tly the same 
lass of timed languages as timedautomata. Therefore, it is a logi
al 
hara
terization of timed automata,and its satis�ability problem is de
idable (by building the 
orrespondingtimed automaton and 
he
king for emptiness).Being as expressive as timed automata, L←→

d
is in general not 
losed under
omplement. However, if we restri
t the interpretation of formulas in thelanguage to timed words with bounded variability (i.e., su
h that there isan upper bound on the number of events that 
an o

ur in any �nite-lengthinterval), then the resulting 
lass of languages is 
losed under 
omplement.Clearly, the resulting theory is also fully de
idable.Finally, the author embeds some known temporal logi
s in the lan-guage L←→

d
, thus showing their e�e
tive de
idability. The 
hosen logi
sare TLΓ [MP93℄, MITLP (i.e., MITL with past operators) and an ex-tension thereof 
alled EMITLP (whi
h extends MITLP with automataoperators [WVS83℄).The regular real-time languages. Henzinger et al. [HRS98℄ provide a
lassi�
ation of (mostly de
idable) real-time formalisms, interpreted overtimed state sequen
es (i.e., for interval-based semanti
s). The paper sum-marizes previous results, and adds new 
ontributions to the pi
ture.Basi
ally, the paper identi�es three levels of expressiveness. Ea
h levelis represented by one (or more) temporal logi
 languages, a monadi
 logi
theory, and variants of timed automata. Let us brie�y 
onsider them.

• The lowest expressiveness level is labeled R-timed 
ounter-free ω-regular, and represents a fully de
idable 
lass of languages.The 
orresponding monadi
 theory is 
alled MinMaxML1; in a nut-shell, it is a �rst-order sequential 
al
ulus over timed sequen
es, en-dowed with two basi
 quanti�ers min,max (with the intuitive mean-ings) for quanti�
ation over the time sort (as a side remark, noti
ethat the interpretation is nonstandard, en
ompassing both unde�nedvalues and in�nitesimal values to handle open and 
losed intervals ina uniform manner). 297



E. Integration and Metri
 Temporal Logi
s: Related WorkThe 
orresponding temporal logi
 languages are MITL [AFH96℄ andSCL [RS97℄ (named EventClo
kTL in [HRS98℄).There is no 
orresponding automata 
lass, as this 
lass of languages
annot perform �modulo-
ounting� (hen
e the label 
ounter-free),whereas automata 
an (by exploiting states).Con
erning the 
omplexity of the de
idability problem, it is nonele-mentary forMinMaxML1, PSPACE-
omplete for SCL, EXPSPACE-
omplete for MITL. More pra
ti
ally, one may say that the two ex-pressively equivalent languages MITL and SCL are orthogonal forwhat 
on
erns the ease and naturalness of expressing properties ofinterest.
• Next, we have a 
lass labeled R-timed ω-regular, whi
h is still fullyde
idable.The 
orresponding monadi
 theory is 
alled MinMaxML2; it is ase
ond-order extension of MinMaxML1, where se
ond-order quan-ti�
ation over monadi
 predi
ates is allowed. Note that quanti�
ationis still restri
ted to predi
ates not o

urring within the s
ope of a minor max quanti�er.At the same level of expressiveness we have two equivalent extensionsof both MITL and SCL that a
hieve 
ounting for the logi
s. Theformer 
onsists in using automata 
onne
tives (like those introdu
edin [WVS83℄); the 
orresponding logi
s are labeled E-MITL and E-EventClo
kTL. The latter 
onsists in introdu
ing se
ond-orderquanti�
ation over predi
ates; a restri
tion (analogous to that of themonadi
 logi
) requires that the quanti�ed predi
ates do not o

urin any of SCL's history or prophe
y operators (denoted as ⊳ and
⊲, respe
tively). The resulting logi
s are labeled Q-MITL and Q-EventClo
kTL.The 
orresponding automata 
lass if that of event-
lo
k timed au-tomata ECA [AFH99℄; more pre
isely, an equally-expressive vari-ation of them, whi
h allows for re
ursive de�nition, is 
onsideredin [HRS98℄.Con
erning the 
omputational 
omplexity of de
idability, it is thesame as that of the 
ounter-free level of expressiveness.
• If we still in
rease the expressiveness of formalisms we get the 
lasslabeled proje
tion-
losed R-timed ω-regular ; as the name suggests,298



E.4. Other Formalismsit is a
hieved by introdu
ing proje
tion in our languages. The re-sulting theories are only positively de
idable, that is satis�ability isde
idable, but validity is not. This obviously implies that the 
or-responding formalisms are 
losed under positive Boolean operations,but not 
losed under 
omplement,More pre
isely, we introdu
e a monadi
 theory 
alled P-MinMaxML2;whi
h is obtained by allowing outermost existential se
ond-order quan-ti�
ation (i.e., proje
tion) over monadi
 predi
ates o

urring withinthe s
ope of a min or max quanti�er. This monadi
 theory is asexpressive as Wilke's L←→
d
theory [Wil94℄.One 
an introdu
e the 
orresponding proje
tion operators for thelogi
 SCL, getting the language P-EventClo
kTL, and for event-
lo
k automata, getting the automata 
lass P-ECA. Noti
e thatP-ECA 
orrespond to �vanilla� timed automata [AD94℄, for whi
h itis well known that emptiness is de
idable, and universality is unde-
idable.

• Finally, one may permit full quanti�
ation over monadi
 predi
ates;the 
orresponding formalisms would be equivalent in expressive powerto Boolean 
ombinations of timed automata, and it would be fullyunde
idable.Automata over 
ontinuous time. Rabinovi
h in [Rab03℄ 
onsiders theproblem of �lifting� the 
lassi
al 
on
epts of automata theory from dis
reteto 
ontinuous time. Di�erently than most other works with similar obje
-tives, it tries to do so in a very general and abstra
t way, starting fromgeneral 
on
epts and re�ning them into more 
on
rete notions. Su
h anapproa
h allows one to re
onsider most ad ho
 solutions that have beenprovided elsewhere, and to evaluate their respe
tive merits and short
om-ings.The fundamental entity is the signal, whi
h is a mapping from the timedomain (namely, the nonnegative reals) to some �nite set Σ. Most of thetimes only non-Zeno signals will be 
onsidered, even if some general anduseful results about general signals are also drawn. A ma
hine is thendes
ribed as a devi
e that implements some signal-to-signal fun
tion. Theauthor fo
uses on fun
tions with the following 
hara
teristi
s (that we re
allhere informally):
• strongly retrospe
tive, that is 
ausal fun
tions; 299
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s: Related Work
• �nite memory, that is su
h that they distinguish their future behavioramong only a �nite number of 
lasses of signal histories.Afterward, it is shown how a non-Zeno signal 
an be represented bymeans of ω-strings (pairs of them, more pre
isely) and time sequen
es,thus introdu
ing a des
ription of signals whi
h is 
loser to the traditionalview of dis
rete-time automata. Noti
e, however, that the resulting modelis di�erent than the usual timed tra
e or timed interval sequen
es.Then, it is shown that a fun
tion with �nite memory is ne
essarily speedindependent, that is it is invariant under �stret
hings� (te
hni
ally, order-preserving bije
tions) of the time axis. Therefore, every ma
hine with �nitememory is in
apable of dealing with metri
 
onstraints. On the positiveside, it is shown how for �nite-memory strongly retrospe
tive fun
tions one
an asso
iate a des
ription of a state whi
h allows for a natural represen-tation of su
h fun
tions by means of �nite transdu
ers. Therefore, one 
ansee how some familiar notions that are typi
ally introdu
ed as the basisfor the formalization of �nite-state ma
hines 
an instead be derived frombasi
 prin
iples. Noti
e that this helps the understanding of some intrinsi
limitations of su
h models.Several other notions about signals and fun
tions on signals are intro-du
ed and studied in [Rab03℄, but we do not dis
uss them here for brevity.Finite automata extensions for hybrid systems. Rabinovi
h and Trakht-enbrot ta
kle the problem of extending the basi
 �nite automaton model todeal with the des
ription of hybrid systems in [RT97℄, and they do so withtheir typi
al �top-down� approa
h, with the profound goal of lifting some
lassi
al results about automata (or labeled transition systems), nets (i.e.,systems of logi
 equations), and monadi
 logi
 (and its �synta
ti
 sugar�temporal logi
), whi
h they dub the �trinity� [Tra95℄. Namely, they sepa-rately 
onsider two extensions: relativization and 
ontinuous time. Noti
ethat we re
all here the notions and results of [RT97℄ in a very informal, andthus also somewhat impre
ise, way: our only goal is to 
onvey an informalmeaning, while we refer to [RT97℄ for te
hni
al, unambiguous explanations.Relativization is a fundamental 
on
ept in theoreti
al 
omputer s
ien
e.To de�ne it, a notion of produ
t between automata and proje
tion of anautomaton with respe
t to an alphabet are introdu
ed. Then, the rela-tivization of an automaton A with respe
t to another automaton B (
alledthe �ora
le), denoted as AB, is the proje
tion over the alphabet of A whi
his not in the alphabet of B of the produ
t automaton of A and B. In other300



E.4. Other Formalismswords, AB is an automaton whi
h �delegates� to B the 
omputation neededfor the a

eptan
e of some �aspe
ts� of the input.Then it is 
onsidered whi
h of �ve issues relativize, that is still hold for�nite automata with a

ess to some ora
le (in general, in�nite-state). Theissues are:
• whether monadi
 logi
 is as expressive as the relativized automata;
• whether there exists a �nite set of basi
 operators su
h that netsbuilt out of this set of operators are as expressive as the relativizedautomata;
• whether relativized automata 
an always be made deterministi
;
• whether relativized a

eptor automata are as expressive as relativizedtransdu
er automata (that is if uniformization is possible);
• whether emptiness is de
idable for relativized automata.It is shown that, while the former two are retained for any ora
le, the othersmay hold or fail depending on the parti
ular 
hoi
e of ora
le.On the other hand, it is shown that for another extension of �nite au-tomata, one that deals with 
ontinuous time without any relativization, allof the �ve issues are answered a�rmatively for non-Zeno signals.Finally, noti
e that most automata extensions that have been proposedin the literature to deal with hybrid systems, 
an indeed be seen as arelativization and/or 
ontinuous-time extension of 
lassi
al automata, evenif they have not been presented as su
h in the literature. In parti
ular,timed automata [AD94℄ are basi
ally a �nite automata with a

ess to a�
lo
k� ora
le.
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