
Quantum Informatics: A Survey

Carlo Alberto Furia

January 2006

Abstract

We survey the emerging field of quantum computing by showing its mo-

tivations and founding principles, and by presenting the most significant

results in some selected areas. In particular, we outline the topics of quan-

tum information, quantum algorithms, quantum cryptography, quantum

finite automata, quantum error correction, and the physical realizations

of quantum computing systems.

1

Contents

1 Introduction 3
1.1 What Does It Mean ‘to Compute’? 3

1.1.1 Defining Computation: the Church-Turing Thesis 3
1.1.2 The Object of the Church-Turing Thesis 4

1.2 Non-Standard Models of Computation 4
1.3 Quantum Computing . 6

2 Quantum Computing: the Basics 7
2.1 Naming Issues . 7
2.2 A Definition of Quantum Computing 8

2.2.1 Motivations for Quantum Computing 9
2.3 Historical Overview . 10
2.4 A Mathematical Model of Quantum Mechanics 12

2.4.1 Mathematical Preliminaries 12
2.4.2 The Postulates of Quantum Mechanics 13
2.4.3 Nature is Really Nonlocal 14

2.5 A Mathematical Model of Quantum Computation 15
2.6 Examples of Quantum Computations 21

2.6.1 Superdense Coding . 21
2.6.2 Deutsch Algorithm . 22

3 Selected Issues in Quantum Computation 25
3.1 Quantum Information . 25
3.2 Quantum Algorithms . 26

3.2.1 Shor-type Algorithms . 26
3.2.2 Grover-type Algorithms 29
3.2.3 Other Quantum Algorithms? 33

3.3 Quantum Cryptography . 33
3.4 Quantum Finite Automata . 35

3.4.1 Stochastic Functions and Languages 36
3.4.2 Quantum Finite Automata Models 37
3.4.3 Properties of the Models 39

3.5 Robust Quantum Computation 41
3.6 Quantum Physical Realizations 44

4 Conclusions 47

2

1 Introduction

All of science is a method for reliably answering questions. And it often happens
that the deepest and most insightful of science’s theories grow out of efforts to
give new, deeper answers to previously, less satisfactorily tackled, basic ques-
tions [Kuh96]. Quantum computing fits this framework quite well, as it can be
regarded to as a novel answer to the basic question “What does it mean ‘to
compute’?” [Nie00].

1.1 What Does It Mean ‘to Compute’?

Information is physical.

— Rolf Landauer [Lan91].

1.1.1 Defining Computation: the Church-Turing Thesis

Although the idea of computation is a very ancient one, the earliest formal
definitions of it were first put forward during the 1930’s, with some famous
seminal works by Turing [Tur36] and others (such as Church [Chu36, Chu41],
Kleene [Kle36], and Post [Pos36]), who founded the field of computation theory.
In their works, these pioneers proposed different mathematical formalisms that
tried to capture the very idea of ‘computing’. All these disparate formalisms
(i.e., Turing machines, λ-calculus, recursive functions, etc.) were soon shown to
be equivalent in expressive power. This fact has cogently suggested that any of
them could be elected to be a suitable formal definition of the informal idea of
‘computing’. This idea — that a Turing machine captures precisely the notion
of ‘computable’ — has been deemed so significant to be taken as a principle
under the name of “Church-Turing thesis” (CTT), from the names of the first
two persons who formulated the ideas in their works, that is Church [Chu36]
and Turing [Tur48]. Let us introduce a “modern” statement of the thesis.

Principle 1 (Church-Turing Thesis [Yao03]). The most general concept
of computability is captured by the Turing machine model, or an equivalent
formalism.

Over the decades, and through the practice and experience of the developing
theory of computational complexity, the Church-Turing thesis has been quan-
titatively refined into an extended version. This strengthening says that not
only does the Turing machine model captures completely the intuitive idea of
computation, but it also captures its complexity. More precisely, we have the
following “Extended Church-Turing thesis” (ECTT).

Principle 2 (Extended Church-Turing Thesis [Yao03]). If a function is
computable by some device in time T (n) for input of size n, then it is com-
putable by a Turing machine in time (T (n))k for some fixed k (dependent on
the problem).

3

That is, everything which is computable is also computable by a Turing machine,
with a cost which is equivalent within a polynomial.

1.1.2 The Object of the Church-Turing Thesis

Let us now ask ourselves: what is the object of the CTT?
Traditionally, the CTT has been considered a statement about mathematics.

Namely, the CTT defines what is the subset of all mathematics which can be
automated (i.e., which is computable), while the ECTT defines what is the
subset of all mathematics which can be efficiently automated. For a beautiful
discussion on the interpretation of the CTT as a statement about mathematics
see [Hof99, Chap. 17].

However, in more recent years, it has first been observed by Deutsch [Deu85]
that the CTT should more appropriately be considered a statement about physics.
Namely, we consider computation as a physical process, that is one which is re-
alized by an evolving physical system. Therefore, the CTT means that every
physical process can be simulated by a Turing machine. This physical for-
mulation of the CTT is sometimes named “Church-Turing-Deutsch Principle”
(CTDP) to include the names of all its contributors.

Principle 3 (Church-Turing-Deutsch Principle [Deu85]). Every finitely
realizable physical system can be perfectly simulated by a Turing machine, or
an equivalent formalism.

Finally, the extension of the CTDP to the quantitative case (which we will
refer to as “Extended CTDP” (ECTDP)) is straightforward: every finitely re-
alizable physical system can be perfectly simulated by a Turing machine, with
a cost which is equivalent within a polynomial.

This shift in the perspective by which we consider the CTT has very signifi-
cant implications. In particular, we are interested in the following consequence.
Since the CTDP is a statement about the physical world, it is amenable to
validation, or more precisely to refutation by experiment. Conversely, given a
set of well-defined physical laws that have been validated through experiments,
it should be possible to derive the CTDP as a consequence of these laws, by
showing explicitly that all the systems described by the laws are (efficiently)
simulable with a Turing machine. Notice that these characterizations were not
elicited by the mathematical classical interpretation of the CTT.

1.2 Non-Standard Models of Computation

Therefore, an interesting research direction to follow consists in taking some
relevant classes of physical systems, described by some known mathematical
laws, and consider them as computing systems. Then, it should be possible to
validate or refute the CTDP against them.

This has been pursued rather extensively in the last two decades or so. The
results have been a variety of models of computations based on physical systems.
The paradigm of quantum computing is one of them, and it is the object of this

4

paper. Before focusing on it, we now consider and briefly describe some other
physical models of computation.

Analog computing Physical laws usually model quantities by means of con-
tinuous variables. Thus, in analog computation some computational mod-
els relying on continuous variables are introduced and studied. In partic-
ular, there are both proposals for continuous variables still managed in
a discrete-time setting (see e.g. [BCSS97]), and fully continuous models,
where time is a continuous as well (see [Orp97] for a survey).

DNA computing exploits the molecular processes that involve replication and
manipulation of DNA strands to perform computation. The idea was first
proposed by Adleman [Adl94]. The present technology of experimental
biology is sufficiently developed to implement in practice these microscopic
computation devices.

Brane computing In (mem)brane systems [Pǎu00] (a.k.a. P systems), highly
parallel systems of adjacent cells, communicating through their separating
membranes, undergo some evolution until they reach a stable (halting)
state. The mathematical models of brane systems are strong abstraction of
actual biological cells, which should be the actual implementation medium.

Chaos computing [SD99, Sin99] studies dynamical systems that exhibit chaotic
behavior and tries to exploit this behavior to perform some meaningful
computation. Experiments have shown that these computational models
can indeed be implemented in real chaotic systems. Chaos computing can
be considered a peculiar form of analog computing, one where the chaotic
behavior is explicitly exploited as a computational resource.

All of the above computational models suffer from one of two major short-
comings, with respect to quantum computing: either they are not really imple-
mentable, or they are not really more powerful than classical computing. With
respect to the CTD principle, it means that either they are not really accu-
rate physical models, or they can be perfectly simulated by a classical Turing
machine, so they give no new insights to the very idea of computation.

Brane computing, for instance, falls into the first category: although the
theoretical model of branes is demonstrably capable of solving efficiently com-
binatorial problem that we consider intractable (and in particular NP-complete
problems), it is not a really implementable model, since it relies on the as-
sumption that brane systems can relax to reach global energy minima. Actual
experiments have shown that local minima (i.e., metastable states) are often
reached in practice.

On the other hand, DNA computing is fully implementable, as it describes
faithfully the actual DNA recombination processes that happen in living cells.
Nonetheless, it seems to give no more computational power than ordinary Tur-
ing computing. In fact, the promising results in solving quickly combinatorial
problems come from the fact that the abundance of biological material permits

5

to exploit a high level of parallelism in solving problems. However, this paral-
lelism is bounded, even if by large constants. Thus, from the complex-theoretical
point of view, the model is perfectly equivalent to ordinary classical computing,
only with a smart and very efficient implementation.

For a thorough discussion of the relative merits of some of these models
of computation, as well as even more exotic ones, see the survey by Aaronson
[Aar05].

1.3 Quantum Computing

Let us finally introduce quantum computing. In quantum computing, we use a
quantum-mechanical system as computational model. This model promises to
be more significant, from the point of view of computational complexity theory,
than the other non-standard models of computations (some of which we outlined
above). In fact, quantum computing models are:

• implementable, since quantum mechanics models accurately real physical
systems and the interactions they can have. This has been demonstrated
by a vast number of experiments;

• computationally more powerful than classical computing. In fact there are
some problems which are provably exponentially more efficiently solvable
in a quantum computing model than in a classical one;

• robust, since we can perform error correction, so to make implementations
robust to noise. This is an essential feature for implementability, which
several analog computing models cannot achieve.

Thus, quantum computing models refute the Extended Church-Turing-Deutsch
principle. Therefore, we should change the principle by referring it to quantum
computational models.

Principle 4 (Extended Church-Turing-Deutsch Principle, quantum
version). Every finitely realizable physical system can be perfectly simulated
by a quantum universal computing device, with a cost which is equivalent within
a polynomial.

Organization of the paper. The remainder of the paper is organized as
follows.

Section 2 presents a general framework for quantum computation, and de-
scribes its connections with quantum mechanics, as well as with classical com-
puting models. More precisely, Section 2.2.1 gives some practical motivations
for the study of quantum computing; Section 2.3 outlines the historical origins
and first developments of the field; Sections 2.4 and 2.5 present a mathematical
model of quantum computation, and show its connections with the postulates of
quantum mechanics. Finally, Section 2.6 exploits the framework to show a cou-
ple of simple but interesting applications to computational and communication
problems.

6

Afterwards, Section 3 presents several different subfields of quantum com-
putation, and for each of them outlines the basic problems to be tackled and
the most important practical solutions to them. Therefore, Section 3.1 is about
the basics of quantum information. Section 3.2 deals with some interesting re-
sults in the design of algorithms for quantum computers. Section 3.3 presents
some promising applications of the quantum computing paradigm to crypto-
graphic tasks. Section 3.4 introduces some computational models that combine
the quantum model with (finite) automata theory, and explores some relations
among them from a language-theoretic point of view. Section 3.5 deals with the
important problem of making a quantum computation robust to noise, show-
ing how this may be possible in spite of the limitations imposed by quantum
mechanics on the manipulation of states. Section 3.6 briefly outlines some can-
didate physical systems for the actual implementation of quantum computing
devices, and refers to some actual experiments that have demonstrated the fea-
sibility of quantum computing (at least to small scales).

Finally, Section 4 draws some summarizing conclusions.
The field of quantum computation is already developed to such an extent

that giving a detailed recount of it is impossible; even treating exhaustively
only some selected aspects would require a lot of space and many details. In
this report, we have therefore simply tried to give the “big picture” of some
interesting aspects within quantum computation, with particular emphasis on
the most computer science oriented areas, thus necessarily sacrificing some tech-
nical detail. For further particulars, we refer the interested reader to the many
references given in the text.

2 Quantum Computing: the Basics

2.1 Naming Issues

Although the field of quantum computing is relatively new (see Section 2.3), it
has already developed into a conspicuous number of related subfields. Mirroring
these areas, a number of different names denoting the field have appeared. The
meanings of these names have substantial overlapping, although they are not
fully synonyms.

Under these respects, let us consider some of these different names for quan-
tum computing, and briefly outline what aspects they usually identify.

Quantum computing is probably the most widely used term to denote the
field as a whole. Under a more specific meaning, it denotes the subfields
centered about algorithms, computational models (quantum compu-
tation) and computational complexity, as opposed to the information-
theoretic aspects.

Quantum information (theory) refers to the information-theoretical aspects
of the field, such as the encoding of information with quantum systems,

7

error correction models, the measurement of aspects of quantum systems
such as entanglement, etc.

Quantum information sciences usually denotes the field as a whole, some-
times also under the name of quantum informatics.

Quantum information processing often refers to the most implementation-
oriented aspects of the discipline, such as models for implementations in
physical systems, models of noise, etc.

Quantum (something) Whenever one denotes very specifically applications
of the quantum paradigm to some aspects or disciplines, one dub them
with the word ‘quantum’. So, for instance, we have quantum algorithms,
quantum automata, quantum grammars, quantum circuits, quantum com-
plexity (theory), quantum control (theory), quantum game theory, etc.

Although the above differences in meanings are indicative, they are not strict,
and the naming is often used fairly liberally. Anyway, throughout this paper
we will prefer the term quantum computing to speak about the subject matter,
also mirroring the fact that we will focus on the computational aspects of the
field.

2.2 A Definition of Quantum Computing

So, then, “mono” means “one”,

and “rail” means “rail”. And that

concludes our intensive three-week

course.

— Simpsons Episode 9F10.

Quantum computing can be defined as a paradigm that exploits a computa-
tional model relying on the principles of quantum mechanics.

Quantum mechanics is the most accurate and reliable framework theory of
the physical world that we currently have. Notice that quantum mechanics
denotes, precisely, a framework within which it is possible to develop specific
physical theories; it is not a full physical theory itself. In fact, as we will
see in the remainder, quantum mechanics is formalized by some mathematical
postulates which state abstractly how to describe a system, its evolution over
time, the measurements we can perform on it, and the composition of different
systems into a larger one. Then, some actual physical systems can be described
with laws that conform to these basic axioms. For instance, we can then describe
a semi-conductor material by means of a specific quantum-mechanical physical
theory of solid state.

To better comprehend this difference, we can compare quantum mechanics
to classical (Newtonian) dynamics. Newtonian dynamics describes some gen-
eral features of physical systems, by defining the notion of force, linking it to
cinematic concepts, and introducing the notion of (Galilean) relativity. Then,

8

for instance, gravitation theory is a physical theory which is developed within
the framework of Newtonian dynamics, that is which obeys its principles.

Why should we consider the quantum mechanical paradigm interesting to
develop a theory of computation? The next subsection proposes some answers
to this question.

2.2.1 Motivations for Quantum Computing

Nature isn’t classical, dammit, and

if you want to make a simulation of

nature, you’d better make it quan-

tum mechanical, and by golly it’s

a wonderful problem, because it

doesn’t look so easy.

— Richard P. Feynman [Fey82].

We can identify at least three sets of motivations to consider quantum me-
chanics as a framework for a computational paradigm.

Bottom-Up Reasoning bottom-up, that is from a low level of abstraction to
a higher one, we consider the current trend in the developments of com-
puter processors implementations. We know that the miniaturization of
integrated components seems to follow Moore’s law [Moo65]: the capac-
ity of a component of some size doubles every 24 months. Equivalently,
the size of a transistor is halved every 24 months. In this strong push
towards miniaturization, we will, sooner or later, reach the atomic scale,
when a single transistor will be approximately the size of a single atom.
At this point, quantum mechanical effects will become prominent, and we
will have to deal with them in the construction of electronic components.
Therefore, it makes sense to think in advance about the impact of these ef-
fects on the behavior of the computing component. Even more, we should
consider if and how we can exploit the quantum mechanical effects of the
atoms to perform more efficiently some form of elementary computation.
Under this perspective, the quantum computing paradigm emerges.

Top-Down Reasoning top-down, that is from a high level of abstraction to
a lower one, we consider quantum mechanics as an abstract and precise
set of rules that describe some generic systems with a very particular
behavior. Thus, it makes sense to consider it as a candidate to represent a
notion of computation, in order to explore to what extent its peculiarities
have some impact the computing tasks. Then, studying abstractly this
paradigm, we realize that it is not only a theoretically stimulating idea,
but it is also implementable in practice in real systems. Therefore, we can
concretely design implementations that exploit its advantages in terms of
computation.

Energy Consumption Finally, a motivation that is tightly connected to the
bottom-up considerations is the one about the energy consumption issue.

9

One of the major obstacles to the miniaturization of digital components
is energy consumption. From a purely thermodynamical point of view, a
physical process which minimizes the energy consumption for some task
is a reversible process. Although ordinary computation is not reversible,
it has been shown by Landauer [Lan61] and Bennett [Ben73] that all
computations can be made reversible exploiting suitable (non-standard)
mechanisms.1 Now, quantum mechanics describes intrinsically reversible
processes, this being a fundamental property of its. Therefore, it seems
that quantum-mechanical devices are the most natural way to implement
reversible, and thus energy efficient, computation.

2.3 Historical Overview

Without any pretense of exhaustiveness, this section outlines the most important
contributions to the birth and early development of quantum computing.

The physical and mathematical framework of quantum mechanics has been
introduced during the 1930s by the work of many outstanding physicists such
as Bohr, Heisenberg, Schrödinger, Dirac, Born, and many others. Moreover,
from our perspective, von Neumann’s contribution to the development of a
mathematical axiomatization of the principles of quantum mechanics [vN55] is
particularly significant, as it is a distillation of the very principles of quantum
mechanics in an abstract coherent form which serves as basis for the quantum
computing models.

The first investigations into the physical nature of computation were put
forward in some foreseeing works, during the 1960’s and 1970’s, mainly by Lan-
dauer [Lan61], Bennet [Ben73], and Feynman [Fey60]. Although the idea of
a quantum computer was still to come, these investigations were important in
focusing the attention on the physical aspects of computation, and in particular
on the idea reversibility.

Another key observation that suggested the introduction of quantum me-
chanical computational models was about the computational difficulty of simu-
lating quantum systems with a classical computer. This was first observed by
Manin [Man80] and by Feynman [Fey82] during the early 1980’s.

In the immediately following years, Feynman [Fey82] and Benioff [Ben80,
Ben82a, Ben82b] were the first to develop this observation into an explicitly
quantum mechanical computational model. It was Feynman, however, who was
able to really identify and introduce the peculiarities of quantum mechanics in
a computational framework. On the contrary, Benioff’s models are weaker and
completely reducible to the standard Turing model.

It was during the mid 1980’s that we see the first models that can be consid-
ered fully quantum mechanical computational devices. These were due again to
the late Feynman [Fey85b, Fey86], and to Deutsch [Deu85]. Deutsch was also
able to exhibit the very first simple examples of problems that can be solved with

1For a comprehensive survey of reversible computation see Bennet [Ben88] and Frank
[Fra99].

10

a quantum computer exponentially faster than with a classical one. Deutsch’s
examples were developed into more complex ones with Jozsa in [DJ92] during
the early 1990’s.

During the same period — namely the mid 1980’s — other important con-
tributions were made in showing the advantages in applying quantum models to
cryptography. In particular, Bennet and Brassard [BB84] proposed a protocol
to perform perfect cryptography between two parties that communicate through
a quantum channel. Their protocol was based on some ideas by Wiesner [Wie83]
that, although were first put forward circa in the year 1970, were not accepted
for publication until much later! Bennet and Brassard’s protocol has given birth
to a set of diverse and improved protocols to perform reliably cryptography.

So, at the beginning of the 1990’s the quantum computing inchoate commu-
nity already had some evidences of the superior power of quantum over classical
computation, but was still in search of a true “killer application” for the quan-
tum computer. In fact, the earliest evidences (i.e., mainly Deutsch and Jozsa’s
examples) were quite “artificial” and contrived, while it would have been signif-
icant to find similar results for some “natural” problems.

Such applications were soon found by Shor and Grover during the mid 1990’s.
Grover discovered a search algorithm [Gro96, Gro97] capable of searching for
an element in an unordered array of n elements in time O (

√
n), where the (ob-

vious) classical best possible performance is O (n) (as usual, we are considering
worst-case performances). Even if the quantum speedup is polynomial (namely
quadratic) and not exponential, this is nonetheless a very significant result since
it involves the widespread problem of searching; therefore it has many derived
applications.

Even more convincingly, Shor proposed a quantum algorithm to factor an
n-bit integer in time O

(

n3
)

[Sho94]. Although the exact computational com-
plexity of factoring is unknown, the best known classical algorithm takes super-
polynomial time [LL94], and the factoring problem is widely considered to be
intractable [Pap94, Sch95].

Grover’s and Shor’s breakthroughs sparkled a revived interest in quantum
computing during the 1990’s, and a significant enlargement of its research com-
munity. So far, however, the main results in quantum computation were mainly,
if not solely, theoretical. Indeed, a fundamental obstacle for the concrete imple-
mentation of a quantum computing device remained: the spontaneous degenera-
tion process known as decoherence. Nonetheless, this hurdle was soon overcome
by a new work by Shor that showed how it is possible to perform error correction
in a quantum computer [Sho95], thus permitting tolerance to faults caused by
decoherence. Shor’s new breakthrough was soon improved [Sho96, CS96], and
similar results were independently achieved by Steane [Ste96]. Later, during the
second half of the 1990’s the methods and techniques for fault-tolerant quan-
tum computation were generalized and largely improved by researchers such as
Gottesman [Got96], Preskill [Pre01], and many others.

During the same years, the quantum computing theoretical model was per-
fected and compared against the classical one; among the others, we mention
the seminal work by Bernstein and Vazirani [BV93, BV97]. Moreover, several

11

proposals to realize the original ideas of simulation of quantum systems were
put forward (see e.g. [AL97]).

Finally, during the late 1990’s, thanks to the progresses in the error-correction
models, it was finally possible to build the first real implementations of quan-
tum mechanical computing device (see e.g. [CVZ+98]). These implementations,
although still very primitive ones, show that quantum computation can indeed
be realized. Despite these deep and very promising results, some researchers
have put forward some critiques to the very idea of quantum computing and to
its concrete realizability. Discussing them is beyond the scope of this paper; we
refer the reader to the thorough discussion by Aaronson in [Aarar].

2.4 A Mathematical Model of Quantum Mechanics

Quantum mechanics needs no ‘in-

terpretation’.

— Christopher A. Fuchs and Asher
Peres [FP00].

The quantum mechanics framework can be completely described by means
of four simple postulates. Before showing them, let us briefly introduce some
mathematical notions that we are going to use, although we assume that the
reader is familiar with linear algebra on complex spaces. For more complete
expositions of the basic features of quantum computation, we refer the reader
to the articles by Aharonov [Aha98], by Mermin [Mer03], and in particular to
the textbook by Nielsen and Chuang [NC00], as well as the one by Gruska
[Gru99].

2.4.1 Mathematical Preliminaries

Let us consider finite-dimensional vector spaces over the complex field
�

. We
denote the complex conjugate of a number c ∈ �

as c∗.
We adopt the Dirac notation, where a generic vector ψ in a space is denoted

by a ket :
|ψ〉

One can think of |ψ〉 as a generic column vector. The dual of the vector |ψ〉 is
denoted by the bra 〈ψ|, which indicates a row vector.

Standard orthonormal basis. In a n-dimensional vector space, the standard
orthonormal basis is denoted by the vectors

|0〉 , |1〉 , . . . , |n− 1〉

Thus, every vector |ψ〉 in the space can be expressed as the linear combination:

|ψ〉 =
∑

i=0,...,n−1

ci |i〉

where ci ∈
�

for all i.

12

Inner products. The inner product between two vectors |ψ〉 = α0 |0〉+ · · ·+
αn−1 |n− 1〉 and |φ〉 = β0 |0〉 + · · · + βn−1 |n− 1〉 is defined as:

〈ψ|φ〉 = α0
∗β0 + · · · + αn−1

∗βn−1

By means of the inner product, we define the norm of a vector |ψ〉 as |||ψ〉|| =
√

〈ψ|ψ〉. We call unit vector any vector which has unit norm.

Linear operators. Linear transformations on vectors are represented by ma-
trices of complex numbers. If A is a linear operator (i.e., a matrix), we denote by
A∗ its conjugate matrix, by AT its transpose, and by A† its adjoint matrix, that
is A† = (A∗)T. The same operations are defined on vectors (and in particular

note the equivalence |ψ〉† = 〈ψ|).

Tensor product. The tensor product between two n-dimensional vectors |ψ〉 =
α0 |0〉 + · · · + αn−1 |n− 1〉 and |φ〉 = β0 |0〉 + · · · + βn−1 |n− 1〉 is denoted as
|ψ〉 ⊗ |φ〉, |ψ〉 |φ〉, |ψ, φ〉, or simply |ψφ〉. It is defined as the n2-dimensional
vector:

|ψ〉 ⊗ |φ〉 =
∑

i=0,...,n−1
j=1,...,n−1

αiβj |ij〉

Unitarity and Hermiticity. A linear operator U is unitary when it satisfies
U †U = UU † = I, where I is the identity matrix. It is simple to show that
a unitary operator maps unit vectors to unit vectors. A linear operator H is
Hermitian when it satisfies H† = H. Any Hermitian operator H can be written
as the sum of projectors onto orthogonal subspaces as H =

∑

i hiPi, where Pi

is the projector onto the subspace (eigenspace) with eigenvalue hi.

Hilbert spaces. In the finite-dimensional case, a Hilbert space is a complex
vector space with inner product. We need not consider the infinite-dimensional
case.

2.4.2 The Postulates of Quantum Mechanics

We finally present the four postulated that defines quantum mechanics. They
deal, respectively with:

1. the definition of the state of a quantum system

2. the definition of the dynamical evolution of the state over time

3. the definition of the measurements that we can perform on a quantum
state

4. the definition of the composition of subsystems to form a larger system

The exposition follows closely Nielsen and Chuang [NC00, Section 2.2].

13

Postulate 1 (State of a Quantum System). A quantum system is com-
pletely described by a state vector, which is a unit vector in the Hilbert space
associated to the system.

Postulate 2 (Evolution of the State). The evolution of a closed quantum
system is completely defined by a unitary operator U acting on it.

Postulate 3 (Measurements). Any measurement on a quantum system is
defined by a Hermitian operator M =

∑

imiPi. The (only) possible outcomes
of the measurements correspond to the eigenvalues mi’s. When measuring a
generic state |ψ〉, the probability of getting the result mi is:

p(mi) = 〈ψ|Pi|ψ〉

If the measurement has yielded the result mi, the state right after the measure-
ment has collapsed to:

Pi |ψ〉
√

p(mi)

Postulate 4 (Composition of Systems). The state vector of a quantum
system made by composing subsystems is given by the tensor product of the
composed state vectors.

These four postulates completely describes abstractly a quantum system.
The complete description of the system is given by a unit vector in complex
vector space. This state vector changes over time according to unitary transfor-
mations. We can “access” the value of the state only by measuring it; measure-
ments are stochastic events whose probability distributions are as in Postulate 3.
After a measurement the state collapses, according to the outcome of the mea-
surement, by following a projection and re-normalization. Finally, the size of a
composed system grows as in the tensor product of the component subsystems.

2.4.3 Nature is Really Nonlocal

What is proved by impossibility

proofs is lack of imagination.

— John S. Bell [Bel82].

The fact that quantum mechanical systems are composed only with tensor
product is strictly linked to a fundamental — many say the fundamental —
feature on quantum systems: entanglement. A state is entangled if it cannot be
written as the tensor product of two states of (smaller) spaces. For instance,
for a four-dimensional Hilbert space, the following state is entangled.

|ψ〉 =
|0〉 |0〉 + |1〉 |1〉√

2
(1)

Entanglement has a dramatic impact on how systems behave. For example,
consider the entangled state of Equation 1. There, the two composed subsystems

14

cannot be described in isolation: the system only admits a global description.
This is however completely independent of the spatial location of the two sub-
systems. In particular, the two subsystems could reside in locations which are
arbitrarily distant. Nonetheless, the measurement of the state of one of these
two subsystems would immediately determine the outcome of the measurement
of the state of the other subsystems, despite their being arbitrarily far away.

To understand this, consider the observable M = 1 |0〉 〈0| − 1 |1〉 〈1|. If we
measure the first subsystem according M , we get 1 with probability 1/2 and −1
with probability 1/2. If the outcome of the measurement is 1, the state after
the measurement is |0〉 |0〉, otherwise it is |1〉 |1〉. Therefore, in the former case a
measurement of the same observable on the second subsystem will yield 1 with
certainty, while in the latter case it will yield −1 with certainty. This behavior
is highly non local.

Since the birth of quantum mechanics, a central question has been about
whether this non-local behavior is really observed in nature and whether the
machinery of quantum mechanics is really necessary to describe it, that is if
it is possible or not in classical systems as well. The positive answer to the
first question soon came from a very large number of experiments. The positive
answer to the second question came instead with the work of Bell who proved,
in the mid 1960’s [Bel64, Bel66], that no physical theory which is both realistic
and local can produce outcome that are in accordance with quantum mechanics.
Therefore, since quantum mechanics is experimentally confirmed, any reliable
description of the world must be either non-realistic or non-local. Realism is
usually considered a fundamental ingredient of a physical theory, so quantum
mechanics explains the strange behavior of entangled states in terms of a non-
local theory. These non-local features plays an important role in determining the
additional power of quantum computation with respect to classical computation.

2.5 A Mathematical Model of Quantum Computation

The qubit. In describing a computational model, we have, first of all, to
describe the basic unit of information, that is the computational state. In
quantum computing, we model the basic unit of information with a quantum
state vector in a 2-dimensional Hilbert space, and call it qubit. In analogy with
the classical case (i.e., classical bits), we denote the standard basis vectors that
span the space as |0〉 and |1〉. Therefore, the generic qubit is a superposition
(i.e., a unit-norm linear combination with complex coefficients) of these vectors.

Notice that, although the qubit is the quantum version of the bit, there is a
fundamental difference in how one can access the information stored in a qubit
with respect to a bit. In fact, accessing the information of a qubit must obey the
rules of quantum measurement. Therefore, reading a qubit yields a probabilistic
result, and, in general, changes the value of the state.

15

Multiple qubits. Larger pieces of information can be described by multiple
qubit systems. In general, an n-qubit systems has a state which has the form:

|ψ〉 =
∑

i∈{0,1}n

αi |i〉

with the constraint that
∑

i∈{0,1}n |αi| = 1. Notice that an n-qubit system is in
fact a 2n-dimensional Hilbert space.

Quantum gates. Now that we have defined what kind of information is rep-
resented in quantum computing, that is how is the “memory” of a quantum
computer, we specify how we can manipulate it, that is how to do the actual
computation on the data. Here we consider the so called quantum circuit model.
Just like classical bits are modified by (Boolean) gates, qubits are modified by
quantum gates.

A quantum gates modifies an n-qubit state according to a unitary transform.
We represent it graphically as a box with the name of the unitary matrix on
it, and a number of wires on the left (representing the number of qubits of the
state being transformed) and on the right (representing the number of qubits of
the resulting state). Since we are dealing with unitary transformation — which
are therefore reversible — the number of qubits entering and exiting the gate
must be the same. As an example, Figure 1 pictures a single-qubit gate with
unitary transform represented by the matrix X. Therefore, the generic qubit
|q0〉 would take the value X |q0〉 after being transformed through the gate X.

|q0〉 X

Figure 1: A single-qubit quantum gate.

Let us now define some of the most important single-qubit gates. The first
ones are the four Pauli matrices.

I = σ0 =

(

1 0
0 1

)

X = σx = σ1 =

(

0 1
1 0

)

Y = σy = σ2 =

(

0 −i
i 0

)

Z = σz = σ3 =

(

1 0
0 −1

)

Another useful gate is the Hadamard transform, defined by the matrix

H =
1√
2

(

1 1
1 −1

)

We also have the phase gate (denoted S), and the π/8 gate (denoted T).

S =

(

1 0
0 i

)

T =

(

1 0
0 eiπ/4

)

16

Finally, we also define an important two-qubit gate, the C-not gate (i.e.,
Controlled not), represented graphically in Figure 2.

Cnot = |0〉 〈0| ⊗ I + |1〉 〈1| ⊗X

|q0〉 •

|q1〉 ⊕

Figure 2: The C-not quantum gate.

Universality. For Boolean operations on “classical” bits, we know that any
arbitrarily complex Boolean function can be represented exactly by means of
a finite set of two-bit operations. We call such a set universal, since it can be
used to represent any Boolean function. A well known example of a universal
set for classical bits is the one made of the not ¬ and and ∧ operations.

We seek a similar result for quantum gates. The first remarkable difference
is that the set of transforms on qubits is a continuum, as there is an uncountable
number of unitary matrices, and each of them represents a different operation.
Therefore, we cannot expect to represent exactly any unitary gate by means of a
finite set of gates. However, we can relax the requirement by seeking a finite set
of quantum gates which is capable of representing any unitary operation within
a fixed threshold of accuracy. More explicitly, we have the following definition.

Definition 5 (Universality). A finite set Ug = {G1, . . . , Gn} of quantum
gates is universal iff for any threshold ε > 0 and any quantum gate G there
exists a quantum circuit G′ consisting only of operations from Ug such that:

||G− λG′||2 ≤ ε

for some complex number λ, where ||·||2 is the norm induced by Euclidean
distance.

According to the above definition, it can be shown that the set composed by
the single-qubit gates H and T , and the two-qubit gate Cnot is universal. The
proof of this important result, which we do not repeat here fully, is carried out
in three basic steps.

1. First, it has been shown [RZBB94] that an arbitrary unitary matrix (of
any size) can be represented exactly as a (product of) two-level unitary
gates, that is gates which act only on two (or fewer) components. This is
a basically vector-algebraic proof, where we are able to represent a generic
unitary in a sort of “factored” form.

2. Second, it has been shown [DiV95] that an arbitrary two-level gate can
be expressed exactly as (a product of) one-qubit operations and (a finite

17

number of) C-not two-qubit gates. Notice that we are now restricting the
number of qubits each gate acts on, but we are still allowing for arbitrary
one-qubit operations. In fact, with such restriction we are still able to
represent exactly a generic unitary. This proof step is constructive, in
that it shows explicitly how to build a circuit out of one- and two-qubit
operations to represent a two-level unitary gate.

3. Last, it has been shown [BMP+99] that an arbitrary single-qubit operation
can be approximated to arbitrary accuracy by means of the Hadamard H
gate and the π/8 T gate. The proof exploits clever representations of
single-qubit operations as rotations of the quantum state in the Hilbert
space.

Efficiency of universal representation. Now, it is natural to investigate
the efficiency of the universal representation by means of gates H, T , and
Cnot, which we outlined above. The representation of circuits made of one-
qubit generic operations and C-not operations solely by means of the gates in
{H,T,Cnot} can be done efficiently. This corresponds to the “passage” from
step 2 to step 3 above. More explicitly, any circuit made of m two-qubit C-
not gates, and generic single-qubit gates can be approximated within any fixed
ε > 0 by means of H, T , and Cnot gates of size O (m logc(m/ε)), where c is
some (small) constant. This means that the size of the circuit made out of gates
from a finite set is a poly-logarithm of the size of the circuit which is being
approximated to within ε. This result was first proved by Solovay [Sol95] and,
independently, by Kitaev [Kit97].

However, this nice result does not generalize to the other passage (i.e. that
from step 1 to step 2) of the transformation from a generic unitary operator on
n qubits. Explicitly, it is possible to show that there exist unitary operators
that require Ω (2n log(1/ε)/ log n) gates to be approximated to within ε. (See
the proof by Knill [Kni95]). An important question, whose answer is still largely
open, is whether there are “interesting” subsets of unitary operations which can
be represented efficiently, i.e. with a “small” number of elementary gates.

Quantum parallelism. Let us now present a remarkable effect that goes
under the name of quantum parallelism.

Let us consider a generic Boolean function f : {0, 1}d → {0, 1}c that maps d
bits onto c bits. It is always possible to build a (d+ c)-qubit quantum gate Uf

that performs the mapping |x, y〉 → |x, y ⊕ f(x)〉, where ⊕ denotes the addition
modulo 1 (or, equivalently, bitwise exclusive-OR). Informally, Uf performs the
mapping defined by f on the bits x, by changing the qubits |x〉 according to
the computational base; the use of an ancillary XOR-ed set of qubits is simply
a mechanism required in order to have reversibility. In fact, if we apply Uf to a
(d + c)-qubit state |x, 0〉, the result is the state |x, 0 ⊕ f(x)〉 = |x, f(x)〉 which
represents the application of f on the bits x, whose result is stored in the last
c qubits of the state.

18

Now, let us show how to apply simultaneously the function f on all the
possible 2d inputs by means of the gate Uf . Let us start with the initialized
d-qubit state |00 · · · 0〉, and apply the Hadamard transform H to it. Note that
H can be applied to d-qubit systems by considering the tensor-product operator
H ⊗ · · · ⊗H, where H is tensored d times. The effect is to put the state in a
uniform superposition of all possible base states |i〉, for i ∈ {0, 1}d. Thus, we
get the state:

1√
2d

(|00 · · · 0〉 + |00 · · · 1〉 + · · · |11 · · · 1〉) =
1√
2d

∑

i∈{0,1}d

|i〉

Then, we add a c-qubit register initialized to |0〉, thus getting the state

1/
√

2d
∑

i∈{0,1}d |i, 0〉. Now, if we apply Uf to this state, we get:

Uf





1√
2d

∑

i∈{0,1}d

|i, 0〉



 =
1√
2d

∑

i∈{0,1}d

Uf |i, 0〉 =
1√
2d

∑

i∈{0,1}d

|i, f(i)〉

This means that, for any possible input i ∈ {0, 1}d of f , the quantum state has
a component |i, f(i)〉 that encodes the result of the application f(i) to i, and

this component has an amplitude (i.e., a complex coefficient) of 1/
√

2d.
More explicitly, we have computed simultaneously all the possible values of

the function f for its possible inputs, and encoded them in the quantum state.
That is, we have manipulated an exponential amount of classical information in
a single operation, and stored it in a quantum system of linear size! Näıvely, it
may seem that this is the ultimate solution to all computational problems, by
performing an exponential amount of parallel computation with linear resources.
Of course this is not the end of the story, since we have to take into account
the fact that the quantum state can be observed only according to the (strict)
rule of Postulate 3. To the point, the effect of measuring the first d qubits of
the above state in the computational basis would be to make the system shift
into one of the states

|k, f(k)〉
for some random k ∈ {0, 1}d. Which state we measure would be totally random,

as the 2d possible outcomes have the same probability
(

1/
√

2d
)2

= 1/2d (since

the amplitudes are all the same).
Therefore, one of the most important goals in quantum algorithms is to find

ways in which to exploit quantum parallelism, overcoming the limitations im-
posed by the measurement postulate of quantum mechanics. We will present
two (successful) approaches to do so in Section 3.2. In a nutshell, the first of
such approaches consists in exploiting an interference process between quan-
tum states to amplify the outputs of interests. Amplification would augment
the amplitudes of such states, so that the probability of getting them in a mea-
surement is higher than that of getting the other ones. This approach is pursued

19

in Grover’s algorithm. The second approach consists instead in finding prop-
erties which are common to all values of the function being computed. This
approach is pursued in Shor’s algorithm.

The qubit vs. the bit. The uniqueness of the features of the quantum
world can be grasped only if compared against the classical situation, with
which we are familiar. To this end, the following table summarizes some of the
aforementioned features of quantum computing by comparing the qubit with
the bit.

(classical) bit qubit

State s of n (qu)bits s ∈ {0, 1}n s =
P

x∈{0,1}n cx |x〉,
with cx ∈ � and
P

x
|cx| = 1

Evolution of the state any Boolean function
f : {0, 1}n → {0, 1}n

any 2n×2n unitary matrix
U

Number of transformations finitely many uncountably many
What you get by measuring the state s some classical state (i.e.,

n bits)
State after a measurement unchanged irreversibly changed
Nature of measurement deterministic stochastic
Composition of subsystems by Cartesian product × by tensor product ⊗
Size of n-(qu)bits systems n 2n

Universality is achieved exactly with arbitrary precision
State of subsystems always defined undefined for entangled

states

The quantum gate and Turing completeness. So far, we have presented
the whole quantum computational model using the circuit model. However, a
quantum circuit, just like a classical one, defines a function only for inputs of
some fixed size, whereas we are interested in more general models that represent
the computation of some function on inputs of arbitrary size. This is achieved,
in the classical world, with models such as the Turing machine. The analogue for
the quantum world, the quantum Turing machine, was first defined in [Deu85],
and later perfected in [BV97].

However, we can still represent the same class of functions computed by
quantum Turing machines, by only using the circuit model, but considering
families of circuits {Cn}n∈ � — namely one for each input size — rather than
single circuits. Moreover, the size of the circuit is polynomially correlated to the
running time of the Turing machine computing on that input. The equivalence
was first shown by Yao in [Yao93], and constitutes the analogue of the same
result for classical Turing machines and classical Boolean circuits.

A couple of subtleties should be considered when defining a family of circuits
{Cn}n∈ � ; this discussion applies to both the classical and the quantum case.
First, we must require that each circuit Cn is algorithmically constructible in
time polynomial in n. This means that we must be able to provide an imple-
mentable description of each circuit in the family, for all n. This is required to
rule out the possibility of encoding uncomputable functions in the construction

20

of a circuit family; whenever a circuit family fulfills this requirement we call
it uniform. A second subtlety regards the fact that, for any given n, we can
actually perform a Turing machine computation with a circuit which has no
memory, since circuits are acyclic. This is counterintuitive, and proving it is
a highly non-trivial task; for details, we refer the interested reader to [Pap94,
Problem 2.8.10, pg. 54].

2.6 Examples of Quantum Computations

Time is ripe to put down a couple of examples that demonstrate the capabil-
ities of quantum information processing. The first example is an application
of quantum systems to information transmission, while the second is a simple
quantum algorithm that outperforms any classical one for the same problem.

2.6.1 Superdense Coding

The first application we consider is superdense coding, which is a technique to
transmit two bits of classical information by exchanging just one qubit. It was
first proposed by Bennett and Wiesner [BW92].

Let us consider two parties, customarily named Alice and Bob, wishing to
communicate. Beforehand, a pair of entangled particles is prepared in the state:

|ψ1〉 =
1√
2

(|00〉 + |11〉)

and Alice and Bob receive, respectively, the first and second particle. Notice that
this preparation does not involve any information exchange yet, as the prepared
state is fixed, regardless of the actual values one seeks to communicate.

Afterwards, Alice wants to send Bob two bits of information, that is an
integer in the range [1..4]. According on the actual value to be sent, Alice
performs one of the transformations U1, U2, U3, U4 to her qubit, where we take
Ui = σi−1, the Pauli matrices. Therefore, we have one out of four possible
resulting global states (where we apply the identity transformation to Bob’s
qubit to indicate that he does not change the state of his particle):
message transformation new global state

1 σ0 ⊗ I |ψ1〉 = 1/
√

2(|00〉 + |11〉)
2 σ1 ⊗ I |ψ2〉 = 1/

√
2(|10〉 + |01〉)

3 σ2 ⊗ I |ψ3〉 = i/
√

2(|10〉 − |01〉)
4 σ3 ⊗ I |ψ4〉 = 1/

√
2(|00〉 − |11〉)

After performing this transformation, Alice sends Bob her qubit: this is when
the actual information exchange takes place.

Now, Bob executes the following protocol to retrieve the two bits of infor-
mation Alice sent him. First, he applies a C-not gate to the two-qubit system
and measures the second qubit in the computational basis. Let us summarize
the four possible outcomes of this operation in the following table.

21

message C-notted state measure of second qubit

1 |ψ′
1〉 = 1/

√
2(|0〉 + |1〉) ⊗ |0〉 |0〉

2 |ψ′
2〉 = 1/

√
2(|1〉 + |0〉) ⊗ |1〉 |1〉

3 |ψ′
3〉 = i/

√
2(|1〉 − |0〉) ⊗ |1〉 |1〉

4 |ψ′
4〉 = 1/

√
2(|0〉 − |1〉) ⊗ |0〉 |0〉

Notice that the outcome of the measurement on the second qubit is certain in
all four cases.

Second, Bob applies the Hadamard gate to the first qubit and measures it.
The outcomes of these operations are:
message transformed first qubit measure of first qubit

1 |ψ′′
1 〉 = |0〉 |0〉

2 |ψ′′
2 〉 = |0〉 |0〉

3 |ψ′′
3 〉 = −i |1〉 |1〉

4 |ψ′′
4 〉 = |1〉 |1〉

where notice that the (phase) factor −i in the third case is not measurable.
All in all, Bob has two bits of information, encoding unambiguously the

value that Alice sent him according to the following scheme.
first bit second bit sent value

0 0 1
1 0 2
1 1 3
0 1 4

Notice that all Bob did was to distinguish between the four possible states for
the system; this was possible unambiguously because the four possible values
are encoded by orthogonal states, thus distinguishable. This clever encoding
scheme has been experimentally demonstrated by Mattle et al. [MWKZ96].

2.6.2 Deutsch Algorithm

Let us now consider a quantum algorithm to solve a very simple problem, which
nonetheless outperforms any classical algorithms for the same problem. The
problem can be states simply as follows: given a black-box function f : {0, 1} →
{0, 1}, determine the value of f(0) ⊕ f(1). We will evaluate the complexity of
an algorithm solving this problem by means of the number of queries to the
function f that the algorithm performs.

To frame the problem, let us first consider for a moment the classical solu-
tion. Determining the value of f(0) ⊕ f(1) requires to know the value of both
f(0) and f(1) independently, since knowing the value of one operand is not
enough to predict with certainty the outcome of the operations. Therefore, it
is simple to understand that the minimum possible number of queries required
to get the right solution with certainty is two. (More formally, one could apply
straightforwardly an adversary argument to prove this lower bound).

Let us now present a quantum algorithm for the same problem, first proposed
by Deutsch in his seminal paper [Deu85]. Let us start by preparing a two-qubit
state |ψ〉 = |0〉 ⊗ |1〉. Then, we apply the Hadamard transform to both qubits,

22

thus getting to the state:

|ψ′〉 = (H⊗H) |0〉⊗|1〉 =

(|0〉 + |1〉√
2

)

⊗
(|0〉 − |1〉√

2

)

=
|00〉 − |01〉 + |10〉 − |11〉

2

Now, recall that, when discussing quantum parallelism in Section 2.5, we
have shown that for any Boolean function f it is possible to build a unitary
gate Uf that performs the mapping |x, y〉 → |x, y ⊕ f(x)〉. Thus, let us consider
the gate Uf for the function we are evaluating, and let us apply it to our two-
qubit system. Note that this application of the gate Uf counts as one “quantum
query” to the function f , in its unitary form. By linearity, we get:

|ψ′′〉 = Uf |ψ′〉 =
|0, f(0)〉 − |0,¬f(0)〉 + |1, f(1)〉 − |1,¬f(1)〉

2

Notice that the state |ψ′′〉 can be rewritten in two forms, according to whether
f(0) ⊕ f(1) equals 1 or 0. Namely, we have:

|ψ′′〉 =

{ |0〉+|1〉√
2

⊗ |f(0)〉−|¬f(0)〉√
2

if f(0) ⊕ f(1) = 0
|0〉−|1〉√

2
⊗ |f(0)〉−|¬f(0)〉√

2
if f(0) ⊕ f(1) = 1

Finally, let us apply one more Hadamard transform on the first qubit only,
getting the state:

|ψ′′′〉 = H |ψ′′〉 =

{

|0〉 ⊗ |f(0)〉−|¬f(0)〉√
2

if f(0) ⊕ f(1) = 0

|1〉 ⊗ |f(0)〉−|¬f(0)〉√
2

if f(0) ⊕ f(1) = 1

Therefore, it is immediate to notice that we can retrieve the value of f(0)⊕f(1)
by measuring the first qubit in the computational base. All in all we performed
just one evaluation of Uf , against the minimum of two evaluations of f in the
classical case. This was made possible by an interference between the quantum
states, by which a global property of f has emerged into a measurable state.
Finding ways to exploit interference processes to emerge interesting properties
is one of the key challenges in designing quantum algorithms.

Deutsch-Jozsa algorithm. The above algorithm has been generalized by
Deutsch and Jozsa in [DJ92] to a more significant problem. The problem solved
by the Deutsch-Jozsa algorithm — of which Deutsch algorithm is a special case
— is the following. We are given a function f : {0, 1}n → {0, 1} of n-bits in
its “unitary form” Uf . We are promised that f is either constant, that is it
evaluates to the same value for all inputs, or balanced, that is it evaluates to 0
for exactly half of the inputs, and to 1 for the other half. The problem is to
determine whether f is constant or balanced.

Let us present the algorithm succinctly; the following steps are also summa-
rized in the circuit in Figure 3.

1. Start with the state |ψ〉 = |0n〉 |1〉;

23

2. Apply the Hadamard transform to all n + 1 qubits, thus getting to the
superposition:

|ψ′〉 = H⊗(n+1) |ψ〉 =
1√
2n

∑

x∈{0,1}n

|x〉
(|0〉 − |1〉√

2

)

3. Apply the Uf transform, getting to the state |ψ′′〉 which can be conve-
niently written as:

|ψ′′〉 = Uf |ψ′〉 =
1√
2n

∑

x∈{0,1}n

(−1)f(x) |x〉
(|0〉 − |1〉√

2

)

4. Apply H on the first n qubits. With some work, one can understand that
the resulting state is expressed as:

|ψ′′′〉 = (H⊗n ⊗ I) |ψ′′〉 =
1

2n

∑

y∈{0,1}n

∑

x∈{0,1}n

(−1)xy+f(x) |y〉
(|0〉 − |1〉√

2

)

where xy denotes bitwise product (i.e., bitwise and).

5. Measure the first n qubits. If f is constant, then it is easy to check that
the amplitude for the state |0n〉 must be ±1, depending on whether f
takes constant value 0 or 1 (thus, all other amplitudes are 0 for unitarity).
Therefore, the measurement in the computational basis yields the state
|0n〉 with certainty. Otherwise, f is balanced, and thus the amplitude for
the state |0n〉 must be 0. Therefore, the measurement in the computational
basis yields to a state other than |0n〉 with certainty. In any case, we have
decided whether f is constant or balanced.

|q0〉 = |0n〉 / H⊗n

Uf

H⊗n :=;<

|q1〉 = |1〉 H

Figure 3: A circuit for the Deutsch-Jozsa algorithm.

The Deutsch-Jozsa is capable of determining the nature of the function f
with one query to Uf , whereas it is rather straightforward to show that the
best a classical deterministic algorithm can do is performing 2n−1 + 1 queries
to f (that is more than half of the possible inputs). This shows an exponential
speedup between the classical and quantum case.

Remarks. A few concluding remarks that put the Deutsch-Jozsa algorithm in
the right perspective are worth doing. First, it is clear that the problem solved
by the Deutsch-Jozsa algorithm is rather made up, and it is hard to see practical

24

applications for it. Nonetheless, we will be able to demonstrate the possibilities
of quantum algorithms also on “natural” problems, of which the Deutsch-Jozsa
algorithm constitutes an interesting and important premise.

Second, one may deem more significant to compare the performances of the
Deutsch-Jozsa algorithm to those of a probabilistic, rather than deterministic,
classical algorithm for the same task. In this case, it is not hard to see that we
can get to an answer with ε > 0 probability of error by performing just log2(2/ε)
queries to f , so the gap seems to shrink in perspective.

Third, one may feel a mismatch in comparing the number of classical queries
to a Boolean function f against the number of application of a quantum gate
Uf . Answering satisfactorily to these concerns is a deep task, in the direction
of finding ways to evaluate quantum computational resources and comparing
them against classical ones. We will see some more of this topic later.

3 Selected Issues in Quantum Computation

This section presents some interesting results in a few of the diverse subfields
of quantum computation. Each of these topics is very developed and the object
of intense past and present research. While this section simply illustrates some
results that characterize the various subfields, we also give some pointers to
references for further reading.

3.1 Quantum Information

The field of quantum information aims at building a theory of information about
quantum systems, where the information is stored in quantum states, and at
commensurating this new kind of information with the classical one.

For the sake of simplicity, we do not present any advanced result in this field,
which is very developed and whose results often rely on advanced mathematical
techniques. On the contrary, we illustrate a simple example, which is however
representative of common trends in quantum information. The result can be
simply stated and simply proved; nonetheless it characterizes a striking differ-
ence of quantum states with respect to classical ones, from the point of view of
information. This deep difference (and lack of intuitiveness) is likely the reason
why this result, in spite of its simplicity, has been explicitly discovered as late
as the early 80’s [WZ82].

The result we consider is usually referred to as no cloning theorem. It shows
that it is not possible to perform a copy operation on arbitrary quantum states.
This limitation seems to cast a shadow on the feasibility information-processing
tasks which are instead common in the classical world. In particular, we are
thinking about duplication of states to achieve fault tolerance. This will be
discussed in Section 3.5.

Let us now prove the no cloning theorem. For the sake of contradiction, let
us assume that we can clone quantum states, that is there exists some unitary

25

transform U such that
U |ψ〉 |p〉 = |ψ〉 |ψ〉

for all states |ψ〉 and some initialized state |p〉. Now, let us take any two quantum
states |ψ〉 and |φ〉. Since cloning works for both, we have:

U |ψ〉 |p〉 = |ψ〉 |ψ〉
U |φ〉 |p〉 = |φ〉 |φ〉

Let us take the inner product of these two equations. We get

〈p, ψ|U †U |φ, p〉 = (〈ψ| |φ〉)2

that is
〈ψ|φ〉 = (〈ψ|φ〉)2

Considering this as an equation in the variable 〈ψ|φ〉, it only admits the solutions
〈ψ|φ〉 = 0 and 〈ψ|φ〉 = 1. This means that the either |ψ〉 and |φ〉 are orthogonal,
or they are parallel. But this contradicts the fact that we have a general cloning
transformation, working for any two states. Therefore, we cannot clone arbitrary
states.

3.2 Quantum Algorithms

Hilbert space is a big place!

— Carlton M. Caves [Cav].

All quantum algorithms designed so far fall into one of two categories, ac-
cording to the basic techniques they use to “harness the quantum power” (and
in particular quantum parallelism, hence the opening quote). Algorithms in the
first category try to find global properties of a (classical) function by manipulat-
ing its Fourier transform; they are described in Section 3.2.1. These algorithms
are named “Shor-type” since they have their first and most important represen-
tative in Shor’s factoring algorithm. The algorithms in the second category try
instead to perform an interfering manipulations between quantum amplitudes
in order to increase those of interest, whose states can therefore be measured
with high probability; these algorithms are named “Grover-type” since they are
all phrased in the setting of Grover’s search algorithm, and are described in
Section 3.2.2.

3.2.1 Shor-type Algorithms

All of Shor-type algorithms are based on performing the Fourier transform us-
ing quantum gates to determine the global properties of some function applied
through quantum parallelism. In this section, we first illustrate briefly what is
the quantum Fourier transform, and then detail the steps of Shor’s algorithm
for factoring integers, which is the most known, and successful, application of
these quantum Fourier transform techniques. We do not discuss other appli-
cations of the same techniques, and generalizations, such as the algorithms for

26

the discrete logarithm [Sho97], Simon’s problem [Sim94, Sim97], the Abelian
stabilizer [Kit96], and the general framework of the hidden subgroup problem
[ME98].

The quantum Fourier transform. The discrete Fourier transform (DFT)
is a discrete analogue of the (continuous) Fourier transform. It takes as input
n complex values xk, and outputs another n complex values Xj given by:2

Xj =
1√
n

n−1
∑

k=0

xke
2πi

n
jk for j = 0, . . . , n− 1

The fast Fourier transform (FFT) is a fast algorithm to perform the DFT
when n is a power of 2. The quantum Fourier transform (QFT) performs the
same task as the FFT using quantum resources. Namely, for n = 2m for some
m, the QFT operates on the amplitudes of the quantum state, by transforming
the states |j〉, for j = 0, . . . , n− 1 to:

UF |j〉 =
1√
2m

2m−1
∑

k=0

e
2πi

2m jk |k〉

Shor showed [Sho97] explicitly that the above unitary gate UF can be build
efficiently, that is with O

(

m2
)

standard gates.
Let us now consider a function g : [0..n − 1] → [0..n − 1], periodic (modulo

n) with respect to some period c, and let G : [0..n−1] → [0..n−1] be a function
such that the values G(j) represent the DFT of the values g(k). If the period c is
a factor of n, then the Gj ’s are non-zero only for those j’s which are multiples of
n/c. Otherwise, the non-zero values will still concentrate near these multiples,
but only approximately. In the quantum case, this means that we will have the
largest amplitudes about these multiples, so that these will be the most likely
outcomes of a measurement.

Shor-type algorithms try to exploit these properties of the QFT in order
to compute efficiently interesting properties of some functions g. In particular,
Shor’s algorithm efficiently computes the factorization of an integer, and we
illustrate it next.

Shor’s algorithm. The best known classical algorithm for factoring an n-bit

integer is the number field sieve [LL94] that takes time O
(

exp(cn1/3 log2/3 n)
)

.

In general, the factoring problem is considered to be computationally intractable,
so much that the most widely used protocols for public key cryptography rely on
its hardness to guarantee security [Pap94, Sch95]. Therefore, Shor’s algorithm
[Sho94, Sho97] — capable of factoring an n-bit integer in timeO

(

n2 log n log log n
)

— is a great achievement, and constitutes an important breakthrough.
Let us describe Shor’s algorithm by detailing its steps. Let M an integer to

be factored; let n = dlog2Me.
2The factor 1/

√
n is a normalization factor to have a unitary transform.

27

1. Pick a random integer p. If p is a factor of M we are done, otherwise
choose an m such that M2 ≤ 2m ≤ 2M2. Prepare m + n qubits in the
state |ψ〉 = |0m+n〉 and apply the Hadamard transform on the first m
qubits, thus getting to the superposition:

|ψ′〉 =
(

H⊗m ⊗ I⊗n
)

|ψ〉 =
1√
2m

2m−1
∑

x=0

|x, 0n〉

2. Now, consider the function f : [0..2m−1] → [0..M−1] defined as f(x) = px

mod M .3 Apply the corresponding quantum gate Uf to the state |ψ′〉. We
get:

|ψ′′〉 = Uf |ψ′〉 =
1√
2m

2m−1
∑

x=0

|x, px mod M〉

3. Measure the last n qubits in the computational basis, obtaining some
random state |u〉. Regardless of the actual measured value u ∈ [0..M − 1],
we have the state:

|ψ′′′〉 =
1

S

2m−1
∑

x=0

gx |x, u〉

where S is some proper scale factor we need not worry about, and the
coefficients gx are such that:

gx =

{

1 if px mod M = u

0 otherwise

That is, the only state values x which “survived” are those differing by
(multiples of) the period c of the function f .

4. Discard the last n qubits, and only consider the first m qubits. Apply
the quantum Fourier transform to the state |ψ′′′〉, obtaining some state
|ψ′′′′〉. As we discussed in the previous paragraph, if the period c of the
coefficients gx is a factor of 2m, that is it is a power of two, then the state
|ψ′′′′〉 is exactly:

|ψ′′′′〉 =
∑

k

xk |k
2m

c
〉

where the actual value of the coefficients xk is not important, as long as it
is non-zero for some integer values k. If the period c is not a factor of 2m,
then |ψ′′′′〉 still approximates the exact case to a degree which is sufficient
for the remainder of the algorithm to be exact with sufficient precision.
For simplicity of exposition, from now on we will only consider the case
in which c is a power of 2.

3Notice that f(x) is an n-bit value.

28

5. Measure the qubits in the computational base, obtaining some state |v〉.
It is easy to understand that v must be v = k2m/c for some integer k. If k
and c are relatively prime, then consider the fraction v/2m and reduce it
to its lowest terms. Clearly, the denominator of the reduced fraction is the
period c, since v/2m = k/c. Otherwise, i.e. if k and c are not relatively
prime, we have found a factor of the period: in such cases, just repeat the
whole process.

6. Now, it is likely that the quantity

pc/2 ± 1

has a non-trivial common factor with M . This can be checked by com-
puting the greatest common divisor (GCD) between M and pc/2 ± 1; if
the result is neither 1 nor M , we have found a factor of M . Otherwise,
repeat the whole process.

Let us explain why the above GCD computation is valid. Since c is the
period of f(x) = px mod M , then px+c = px mod M , and thus pc = 1
mod M . Now, since we are assuming that c is even (being a power of 2),
we can write:

pc − 1 = 0 mod M = (pc/2 + 1)(pc/2 − 1) mod M

Therefore, if pc/2 ± 1 are not multiples of M , they have a common factor
with it.

Notice that the above algorithm have several steps which may fail, thus
forcing one to repeat the whole process. Shor showed [Sho97] that it succeeds
with high probability, so that a limited number of repetitions almost inevitably
yields a valid outcome. Figure 4 summarizes Shor’s algorithm.

|q0〉 = |0m〉 / H⊗m

Uf

UF
:=;<

|q1〉 = |0n〉 / :=;<

Figure 4: A circuit for Shor’s factoring algorithm.

3.2.2 Grover-type Algorithms

All of Grover-type algorithms solve problems which are phrased as search prob-
lems. Indeed, the search setting is a broad one, in that many different problems
can be formulated as search problems. Very generally, we formulate a search
problem as following: given a Boolean predicate P : {0, 1}n → {0, 1}, find a
value x ∈ {0, 1}n such that P (x) is true. In particular, it is simple to under-
stand that all NP-complete problems can be formulated as search problem. For

29

instance, the satisfiability (SAT) problem is a search problem where we look for
a satisfying assignment among the set of all possible truth assignments.

Let us now consider search problems in their purest form, that is as un-
structured search. This means that we have no extra information to find the
values x making the predicate P true. Thus, the only possible search strategy
is based on querying a black-box that can evaluate P for any given x. It is
simple to understand that in such setting, a classical algorithm may have to try
all possible assignments. Therefore, the worst-case complexity for the unstruc-
tured search problem for classical algorithms is O (2n), where 2n is the number
of possible assignment values, Surprisingly, using a quantum algorithm we can
perform the same task with a complexity of O

(√
2n
)

, that is with a polynomial
speedup. Grover’s algorithm performs this task and is described in the following
paragraph.

Grover’s search algorithm. Grover’s algorithm [Gro96, Gro97] is fairly sim-
ple, at least comparatively to Shor’s algorithm. Let us describe its steps in detail.
Let P : {0, 1}n → {0, 1} be the predicate we search for satisfying assignments.

1. Let us start with n+1 qubits, prepared in the state |ψ〉 = |0n〉⊗1/
√

2 (|0〉 − |1〉).

2. Let us apply the Hadamard transform to the first n qubits, getting to the
(usual) superposition:

|ψ′〉 = (H⊗n ⊗ I) |ψ〉 =
1√

2n+1

2n−1
∑

x=0

|x〉 ⊗ (|0〉 − |1〉)

3. Let UP be the unitary gate performing the mapping |x, y〉 → |x, y ⊕ P (x)〉,
and let us apply it to the state |ψ′〉. Let X0 be the set of values x ∈ {0, 1}n

such that P (x) = 0 and let X1 be the complement set {0, 1}n \X0. As it
is relatively straightforward to check, we can write the resulting state as:

|ψ′′〉 = UP |ψ′〉

=
1√

2n+1
UP

(

∑

x∈X0

|x〉 |0〉 +
∑

x∈X1

|x〉 |0〉 −
∑

x∈X0

|x〉 |1〉 −
∑

x∈X1

|x〉 |1〉
)

=
1√

2n+1

(

∑

x∈X0

|x〉 |0 ⊕ 0〉 +
∑

x∈X1

|x〉 |0 ⊕ 1〉 −
∑

x∈X0

|x〉 |1 ⊕ 0〉 −
∑

x∈X1

|x〉 |1 ⊕ 1〉
)

=
1√

2n+1

(

∑

x∈X0

|x〉 −
∑

x∈X1

|x〉
)

⊗ (|0〉 − |1〉)

=

((

∑

x∈X0

1√
2n

|x〉
)

+

(

∑

x∈X1

−1√
2n

|x〉
))

⊗
(

1√
2

(|0〉 − |1〉)
)

30

All in all, after this step we end up in a state |ψ′′〉 where all and only
basis states for which P (x) = 1 have an amplitude with inverted sign with
respect to |ψ′〉. More precisely, if we ignore the last qubit, we have a state
where all the states |x〉 such that P (x) = 0 have a positive amplitude
of 1/

√
2n, whereas all the states |y〉 such that P (y) = 1 have a negative

amplitude of −1/
√

2n. This is visualized in Figure 5.

x

am

pl

it

ud

e

Figure 5: Change of sign in Grover’s algorithm.

4. Let us now apply the gate Uinv to the first n qubits of |ψ′′〉, where Uinv is
defined as follows:

Uinv =









2/2n − 1 2/2n · · · 2/2n

2/2n 2/2n − 1 · · · 2/2n

· · · · · · · · · · · ·
2/2n 2/2n · · · 2/2n − 1









It is relatively simple to check that Uinv is unitary, and that it can be ex-
pressed withO (n) elementary gates. The action on the state that Uinv per-

forms can be described as follows. For a generic state |φ〉 =
∑n−1

k=0 ck |k〉,
let A = (1/n)

∑n−1
k=0 ck be the average of the amplitudes ck’s. Then, Uinv

performs an inversion about the average, that is substitutes each ampli-
tude ck with the value 2A − ck. Therefore, we get to the state (ignoring
the last qubit)

|ψ′′′〉 =

(

∑

x∈X0

(

2A− 1√
2n

)

|x〉
)

+

(

∑

x∈X1

(

2A+
1√
2n

)

|x〉
)

where A = (1/
√

23n) (|X0| − |X1|), in this case. The result of this step is
the amplification of the amplitudes for which P is true, with respect to
the other amplitudes. This is visualized in Figure 6.

5. Repeat steps 3 and 4 for (π/4)
√

2n times.

6. After successive amplifications, measure the last qubit. If it is 1, then
reading the other n qubits yield an x such that P (x) = 1; this occurs
with high probability, because of the amplification process. If you get a
0, repeat the whole process.

31

x

am

pl

it

ud

e

Figure 6: Inversion about average in Grover’s algorithm.

The kernel of Grover’s algorithm is indeed simple. The main catch lies in the
number of repetitions of the steps changing the sign of the “good” amplitudes,
and the inversion about the average. Indeed, if we repeat them too few times, or
too many times, we get to a state where the amplification of the desired states is
not large enough to yield the results we are looking for when measuring. In fact,
unitary transforms are rotations in the complex space, and therefore repeating
them a certain number of times brings the state back to its original value.

This is a general feature of all Grover-type algorithms. Extensive research
has determined how to guess reliably the optimal number of repetitions in var-
ious contexts [BHT98]. Grover also extended his techniques to problems other
than search, such as computing the mean and median of a function [Gro98].

Structured search. So far, we have only considered unstructured search
problems, where no information about the search space is available. Thus all of
Grover-type algorithms do is performing a blind search by exploiting “quantum
guessing” to reduce the number of queries to be performed.

However, whenever we consider a problem where some information about the
structure of the search space is available, it is still possible to exploit techniques
like that of Grover’s algorithm, but combining them with optimization based
on the structure of the specific problem. Among others, Hogg has developed
[Hog98] some heuristic techniques that search in structured search spaces, cou-
pling them with Grover-type techniques. The most difficult part in developing
these kinds of algorithms lies in evaluating precisely the effectiveness (in terms of
computational complexity) of the heuristic techniques. Actually, this happens
for classical heuristic algorithms as well. However, while classical algorithms
can be simulated to assess their performances (at least experimentally), the
same cannot be done with quantum algorithms, since the simulation of quan-
tum systems on classical computers is exponentially expensive. Therefore, most
complexity evaluations of these heuristic Grover-type algorithms are partial,
limited to some (simple) cases only.

Beyond quadratic speedup? Although the polynomial speedup granted by
Grover-type algorithms is practically very appealing, one may speculate about
possible modifications of the algorithms that, still in the same vein, would yield
an exponential advantage over classical computation. In particular, achiev-

32

ing an exponential speedup in solving generic unstructured search problems
would imply the possibility of solving NP-complete problems in polynomial
time. However, this exponential speedup is not possible by applying the “quan-
tum guessing” techniques of Grover’s algorithms. In fact, it has been shown in
[BBBV97, BBHT98, Zal99] that Grover’s algorithm is asymptotically optimal
for the quantum model of computation. We briefly discuss other (speculative)
ways to achieve quantum speedups in the following section.

3.2.3 Other Quantum Algorithms?

Basically of all of quantum algorithms offering better performances (than those
of the classical algorithms for the same tasks) can be classified as either Shor-
type or Grover-type algorithms. Whether other different techniques for harness-
ing the quantum features can be developed is an open research question. The
task seems particularly difficult as it requires to understand how the peculiarities
of quantum mechanics (which are unnatural if compared to the more familiar
classical world, which we experience every day) can be exploited while avoiding
the inherent limitations given by unitarity and the measurement postulate.

Some research has also been pursued about the highly speculative problem
of determining how possible physical theories, derived form quantum mechanics
but different than it in some respects, may yield computational models with
a larger algorithmic power than quantum computing. We refer the interested
reader to the survey by Aaronson [Aar05].

Here, we only hint to the the result by Abrams and Lloyd [AL98], who have
shown that any modification to quantum mechanics introducing a non linearity
in the dynamics of systems (that is, in other words, where operators need not be
unitary), however small, would produce a physical theory where computations
of NP-complete problems (as well as]P problems) would be feasible in poly-
nomial time. In a nutshell, these techniques would still use a modification of
Grover’s algorithm, where the amplification of amplitudes would however have
exponentially faster effects due to the nonlinearities of the transforms. Notice
however that, given the present status of knowledge of the physical world, a
non-linear quantum theory is considered highly implausible. In fact, the nonlin-
earity would imply the possibility of, among other things, superluminal signaling
[Gis90], that is the possibility of sending faster-than-light information. This in
turn would break causality links in the description of physical phenomena. Fur-
ther discussion of these very speculative issues is out of the scope of the present
paper.

3.3 Quantum Cryptography

Quantum cryptography explores what cryptographic tasks can be better per-
formed using quantum systems rather than just classical ones.

We have seen in Section 3.2.1 that it is possible to factor a large integer
in polynomial time using Shor’s algorithm. Therefore, most used public key
encryption schemes (such as RSA [RSA78]) would be broken by a quantum

33

computer. On the other hand, quantum computing is capable of enhancing the
security of private key encryption schemes, by providing a way to perform key
distribution between two parties with perfect security.

In the remainder, we describe the famous protocol developed by Bennet
and Brassard in the mid 1980’s [BB84]. Several other quantum key exchange
protocols are variants and refinement of it.

Let us consider the encryption of a message through a key which is entirely
made of random bits and is as long as the message itself. This technique is called
one-time pad or Vernam cipher [Sch95] and is the only encryption scheme that
guarantees perfect security: this means that the encrypted message is totally
unintelligible without the key. The problem with this scheme is, of course, that,
being the key as long as the message, sending it to the receiver becomes the real
problem, as complex as the encryption of the original message.

The protocol we now illustrate solves this problem, by providing a mecha-
nism by which:

• the two communicating parties can agree on a string of n random bits:

• if an eavesdropper intercepts some of the exchanged bit, this fact can be
detected; therefore in this case the protocol is aborted, without compro-
mising the security of the message

The protocol requires the two communicating parties, named Alice and Bob,
to share a classical communication channel, as well as a quantum one, the latter
being a channel where quantum particles can be sent and received. We assume
that both channels are unprotected, so can be read by an intruder (called Eve).

Let us first describe the protocol, then we will demonstrate its security
against eavesdropping.

1. Alice wants to share n random bits with Bob. To this end, she prepares 4n
random bits, and encodes each of them in a quantum state as follows. For
each bit b, she picks randomly one of the following two encoding schemes,
and prepares the state accordingly.
bit encoding 1 encoding 2

0 |0〉 |↗〉 = (|0〉 + |1〉)/
√

2

1 |1〉 |↘〉 = (|0〉 − |1〉)/
√

2

Afterwards, she sends the 4n prepared qubits to Bob.

2. For each received qubit, Bob picks a random encoding of the two Alice
used, and measures that qubit accordingly. On the average, Bob will
pick the same encoding as Alice half of the time. Therefore, about 2n
bits will be correctly retrieved (exactly when the right measurement was
performed).

3. Alice sends over the classical channel the sequence of 4n encoding choices.

4. Bob compares these encodings against the ones he picked, thus knowing
which 2n bits of the total 4n bits are correctly agreed upon between him
and Alice. He communicates, over the classical channel, this information
so that now Alice and Bob shares exactly the same 2n bits B.

34

5. Alice sends n of the bits in B to Bob for a check.

6. If Bob agrees on them (except for some small fraction due to possible com-
munication errors), the protocol succeeds and the non-exchanged remain-
ing n bits are the string which can be used for one-time pad. Otherwise,
it means that something went wrong and the protocol is aborted (since
security cannot be guaranteed).

Let us now see what happens if Eve intercepts some of the messages. We
assume that all the classical messages are exchanged in public, therefore Eve
can read them but cannot change them without everybody noticing. Instead, if
Eve intercepts a large fraction of the exchanged qubits, all she can do is measure
them according to a random encoding, and then send them to Bob. Eve will
pick a wrong encoding approximately half of the time, and therefore she will
resend a wrongly encoded qubit half of the time to Bob. Accordingly, Bob will
now measure the wrong bit approximately a quarter of the times he picks the
right basis (with respect to Alice). In the final step of the protocol, Bob will
notice that approximately one quarter of the n sent bits are indeed different
between Alice and Bob, thus showing that some eavesdropping has taken place.
This causes the protocol to abort, and the information retrieved by Eve becomes
useless.

3.4 Quantum Finite Automata

So far, we have always considered models of quantum computation which are
generalizations of the full classical Turing machine, and thus achieve universal
computation. Nonetheless, the classical theory of computation and formal lan-
guages has benefited from extensively studying model of computations which
are less powerful than the Turing machine, but are nonetheless of interest in
defining some classes of languages, which can give the way to interesting practi-
cal developments. Just to mention a couple of them, consider the application of
the theory of regular languages to string matching algorithms [CLRS01, Chap.
32], and the theory of context-free languages to the construction of parsers and
automated translators [App97, ASU86].

In the same vein, it may be useful to study extensions of those restricted
models of computations to the quantum case. This might help in two respects,
at least. First, studying “simpler” models of quantum computation may help
in developing some intuition on how the quantum models may be exploited
to perform computation. This intuition is hard to gain, because we are used
to classical models. Developing it may help in designing quantum algorithms
for new classes of problems [Sho03]. Second, techniques and solutions based
on simple quantum models of computations are likely to be physically realized
much earlier than full-scale quantum computation [AW02]. Therefore, studying
these models of computation may help in developing the first quantum devices
to be actually built and used.

Under these respects, this section presents a number of different generaliza-
tions to the quantum world of the basic finite state automata. We will briefly

35

present formally the models, outline some of their characteristics, explore some
of the relations among them, and compare them against classical models.

3.4.1 Stochastic Functions and Languages

Let us now set the framework in which to present quantum finite state automata.

Stochastic functions on words. Let Σ be an alphabet, that is a finite set
of symbols. As usual, Σ∗ denotes the free monoid on Σ, that is the set of all
(finite-length) strings over the alphabet Σ.

We associate a probability distribution over words in Σ∗ by specifying a
function φ : Σ∗ → [0, 1] that associates a real number between 0 and 1 to every
word in Σ∗; thus φ(w) denotes the probability associated to the word w ∈ Σ∗.
We may have more general definitions, but this will suffice for the present needs.

Bounded probability and languages. We consider (finite) automata as
language acceptors. That is, they are devices which, given in input a string
w ∈ Σ∗, accept or reject it after performing some computation. Therefore, we
describe the behavior of some automaton A by giving a stochastic function φA

which accepts each word w ∈ Σ∗ with probability given by φA(w).
Moreover, given a constant λ ∈ [0, 1], we say that A accepts a language

L ⊆ Σ∗ with cut-point λ, iff:

• for all w ∈ L the probability of accepting w is greater than λ, that is
φA(w) > λ;

• for all w /∈ L the probability of accepting w is at most λ, that is φA(w) ≤ λ.

This provides an acceptable definition of the accepted language L, in that all
words in L are accepted with probabilities higher than any word not in L.

In general, however, we seek a stronger definition of language. Thus, we
say that a cut-point is isolated if |φ(w) − λ| > ε for some real ε > 0, for all
words w ∈ Σ∗. A language accepted with some isolated cut-point is said to be
accepted with bounded probability.

In fact, whenever a language is accepted with some isolated cut-point, the
probabilities of acceptance for string in and out of the language are well sep-
arated, and do not “accumulate” about the cut-point. Informally, this implies
that we can ascertain the language accepted by the automaton by a “majority
vote” over subsequent runs over the same strings. If a string is accepted over
all runs, then with high probability it belongs to L, as the probability of always
rejecting it decreases exponentially (with the number of runs). It is also not
difficult to see that the actual values of λ and ε are not important, as long as
they are both non-zero.

Using bras. In the remainder, we will represent quantum states using bra
vectors, rather than their duals ket vectors. Thus, for instance every automaton

36

will have an initial state represented as 〈s0|. Consequently, operators will be
applied to the right of states.

We perform this shift of notation to aid the intuition in representing the
automata computations. In fact, in general we will have a unitary operator
Uσ associated to every letter σ ∈ Σ. Then, when performing the computation
corresponding to some word w = σ1σ2 · · ·σ|w|, starting from the initial state
〈s0|, we will apply the operators Uσ1

, Uσ1
, . . . , Uσ|w|

in the same order as the
characters in the string w. Thus, by applying them to the right of the start
state 〈s0| we have the advantage of having them in the same order as the letters
of the word, rather than reversed.4

3.4.2 Quantum Finite Automata Models

In general, a quantum finite automaton is an automaton which can be, at any
time, in a state which is a superposition of a finite set of base states. In other
words, it is an automaton whose state space is a finite-dimensional Hilbert space
(or subset thereof).

Quite a large number of finite state quantum automata have been intro-
duced in the literature. Here, we present three variants of the simplest 1-way
automata, that is those were the reading head always moves to the right; these
are the most natural extensions of the corresponding classical finite state au-
tomata. These variants are:

Measure Once (MO) [MC00, BC01, BP02], where the state is measured just
once, after reading the whole input string;

Measure Many (MM) [KW97, AF98, BP02], where successive measurements
are performed on the state while reading the input string;

With Control Language (CL) [BMP03b], where the acceptance condition
is controlled by specifying an auxiliary control language.

In the remainder of this section, we are going to define them precisely. For
simplicity, we never mention the dimension of the state, but we always take it
to be finite. Other 1-way quantum automata may be defined, such as reversible
quantum automata [GK02, BMP03b], which are similar to MM automata, but
with intermediate measurements restricted as to be reversible. For the sake of
brevity, we do not consider them in this paper.

Measure once quantum automata (MO). A measure once quantum au-
tomaton (MO, for short) is defined by a tuple 〈〈s0| , {Uσ}σ∈Σ,M〉, where 〈s0| is
the initial state, the Uσ’s are unitary transformations, one for each letter in the
alphabet Σ, and M is an observable decomposable into the two projectors P+

and P− (for acceptance and rejection, respectively).

4On this idiosyncrasy in the notation of quantum mechanics Feynman made a jokingly
politically-incorrect comment in [Fey85a].

37

For any word w = σ1σ2 · · ·σ|w|, the behavior of the automaton is described
by the stochastic function φ : Σ∗ → [0, 1] defined as:

φ(w) =
∣

∣

∣

∣〈s0|Uσ1
Uσ2

· · ·Uσ|w|
P+

∣

∣

∣

∣

2

That is, a transformation Uσ is applied to the initial state for every letter in the
word w. Finally, the probability of getting a measurement in the acceptance
subspace P+ defines the acceptance probability for w.

We denote by BMO the class of languages accepted by measure once quantum
automata with bounded probability.

Measure many quantum automata (MM). A measure many quantum
automaton (MM, for short) is defined by a tuple 〈〈s0| , {Uσ}σ∈Σ,M〉, where 〈s0|
is the initial state, the Uσ’s are unitary transformations, one for each letter in
the alphabet Σ, and M is an observable decomposable into the three projectors
P+, P−, and P0 (for acceptance, rejection, and “continue”, respectively).

For any word w = σ1σ2 · · ·σ|w|, the behavior of the automaton is described
by the stochastic function φ : Σ∗ → [0, 1] defined as:

φ(w) =

|w|
∑

k=1

∣

∣

∣

∣〈s0|Uσ1
P0 Uσ2

P0 · · · Uσk−1
P0 Uσk

P+

∣

∣

∣

∣

2

That is, starting from the initial state, for each letter σ, a transformation Uσ is
applied, and a measurement is immediately performed. The process continues
only as far as measurement results fall in the subspace P0. As soon as the
measurement yields the result for the subspace P+, the string is accepted.

We denote by BMM the class of languages accepted by measure many quan-
tum automata with bounded probability.

Quantum automata with control language(CL). A quantum automaton
with control language (CL, for short) is defined by a tuple 〈〈s0| , {Uσ}σ∈Σ,M,L〉,
where 〈s0| is the initial state, the Uσ’s are unitary transformation, one for each
letter in the alphabet Σ, M is an observable decomposable into s projectors
P1, . . . , Ps with corresponding measurable eigenvalues {v1, . . . , vs} = V , and
L ⊆ v∗ is a regular language over the alphabet V (called the “control language”).

For any input word w = σ1σ2 · · ·σ|w|, and control word c = c1c2 · · · c|w|, the
probability of accepting the input word for that control word is given by:

p(c;w) =
∣

∣

∣

∣〈s0|Uσ1
Pc1

Uσ2
Pc2

· · ·Uσ|w|
Pc|w|

∣

∣

∣

∣

2

That is, starting from the initial state, a transformation Uσ is applied, and a
measurement is performed for every letter in w. The process continues only as
far as the outcome of the measurement matches the corresponding letter in the
control word.

38

Then, for any input word w = σ1σ2 · · ·σ|w|, the behavior of the automaton
is described by the stochastic function φ : Σ∗ → [0, 1] defined as:

φ(w) =
∑

c∈L
|c|=|w|

p(c;w)

That is, a word is accepted iff it is accepted for any control word of conformant
size.

We denote by BCL(V,L) the class of languages accepted with bounded prob-
ability by quantum automata with control language L over the alphabet V , and
by BCL the class of languages accepted by quantum automata with control lan-
guage, for any choice of control language and control alphabet.

3.4.3 Properties of the Models

Let us now present some closure properties of the classes of languages accepted
by the above automata, as well as some inclusion relations among those classes.

Group languages. A clear-cut characterization of the language class BMO

can be done in terms of group languages. Group languages are a subclass of
regular languages, which we will denote as GRL. More precisely, a regular
language accepted by some deterministic finite automaton D = 〈Q, s0 ∈ Q, δ :
Q×Σ → Q,F ⊆ Q〉, where Q is the set of states, s0 is the initial state, δ is the
(deterministic) transition function, and F are the accepting states, is a group
language iff for every state s ∈ Q and every input symbol σ ∈ Σ, there exists
exactly one state s′ ∈ Q such that δ(s′, σ) = s, that is δ is a complete one-to-one
function. In other words, a group language is accepted by a deterministic finite
automaton where, for every σ ∈ Σ, δ(·, σ) : Q → Q is a permutation of the
elements in Q.

Another, equivalent, way of expressing this requirement is obtained by refer-
ring to the matrix representation of the transition relation δ of the deterministic
finite automaton; thus, if we consider the set T = {Tσ}σ∈Σ, the accepted lan-
guage is a group language iff the elements in T generate a group with respect
to ordinary matrix multiplication.

Remind that T generating a group means that there exists a set, formed
by arbitrary multiplications of the matrices in T , where multiplication is an
internal, associative operation, there exists neutral element, and every element
has inverse. Note that all the properties but the existence of an inverse are
satisfied by any generating set of matrices.

BMO equals GRL. Let us now sketch the proof that the class of languages
BMO equals the class of group languages GRL. Note that this implies that MO
automata are less powerful than classical deterministic finite automata. We will
follow the proofs given in [MC00].

Proving that GRL ⊆ BMO is fairly easy, as the transition matrices of any
DFA accepting a group language are also valid (unitary) transition matrices

39

of a MO automaton that accepts the same language with certainty (i.e., all
probabilities are either 0 or 1).

Let us now show why BMO ⊆ GRL. First of all, it is possible to show that
the class BMO is a proper subset of the regular languages; we omit the proof of
this fact. Then, let L ∈ BMO be any language accepted by a MO automaton;
we now show that any sequence of transition matrices U = Uσ1

· · ·Uσh
has an

inverse. As we hinted to above, this is enough to prove that the transition
matrices generate a group, and therefore that L ∈ GRL.

Let χL : Σ∗ → {0, 1} be the characteristic functions for the language L,
defined as χL(w) = 1 iff w ∈ L. Then, a pumping lemma for languages in BMO

holds (see [MC00]), such that for every word w ∈ Σ∗, there exists an integer k
such that, for all word u, v, we have χL(uwkv) = χL(uv). Therefore, the words
uwk and u are equivalent, for all u, since yield to equivalent states whenever
followed by the same suffixes (v in this case). Thus, we have U k = I for some k,
since w can be any word, and it returns any word u to its original equivalence
class. This means that U has inverse Uk−1, and thus the transition matrices
form a group.

An immediate consequence of the class of languages BMO coinciding with
the group languages is that it inherits all the closure properties of the class GRL.
In particular, BMO is thus closed with respect to all Boolean operators.

Although the class BMO coincides with a small subset of the regular lan-
guages, MO automata do have some advantages over the language equivalent
DFAs. In particular, they are often more succinct than their classical counter-
parts. See for instance the results in [MPP01, MP02, BMP03a].

BCL is closed under Boolean operations. As shown by Bertoni et al. in
[BMP03b], the class BCL is also closed under all Boolean operations. This can
be shown by first proving that the class of the formal power series associated
with the stochastic functions defining the CL automata is closed under the op-
erations of f -complement, Hadamard product, and convex linear combination.
Then, these properties of the formal series translate into properties of the cor-
responding languages accepted with bound probability. Namely, f -complement
translates to closure under union, Hadamard product translates to closure under
intersection, and convex linear combination translates to closure under comple-
ment.

Let us just give some definitions. Given a stochastic function φ : Σ∗ →
[0, 1], we associate to it the formal power series φS =

∑

w∈Σ∗ φ(w)w. Then,
given two formal power series φS and ψS , Hadamard product is defined as the
series φS �ψS =

∑

w∈Σ∗ φ(w)ψ(w)w. Their linear combination with coefficients
a, b ∈ � is defined as the series aφS +bψS =

∑

w∈Σ∗ (aφ(w) + bψ(w))w. Finally,
the f -complement of φS is defined as the series 1 − φS =

∑

w∈Σ∗ (1 − φ(w))w.

Closure properties of BMM. Contrarily to the other two language classes,
BMM is not closed under all Boolean operations. More precisely, it has been
shown [AKV01] that it is closed under complement, but not under union (and

40

therefore not even under intersection, by De Morgan’s laws). Although giving
an exact characterization of the class BMM has shown to be a very hard task,
it is possible to identify some necessary conditions that any language in BMM

must satisfy. More precisely, some regular language cannot belong to BMM if
the minimal deterministic automaton accepting it contains some characteristics
subgraphs in the representation of the transition function. So, for instance,
it is possible to show that the two languages L1 = (00)∗1(00)∗0 and L2 =
0(00)∗1(00)∗0 are both accepted by MM automata, but their union L1 ∪ L2 =
0∗1(00)∗0 is accepted by a minimal DFA that contains a “forbidden” subgraph.
Therefore L1 ∪ L2 /∈ BMM, which is then not closed under union.

Inclusions among the models. The known relations among the models are
summarized in [BMP03b, Theorem 10]. They are:

• BMO ⊂ BCL({a, r}, a∗), that is a CL automaton can simulate a MO au-
tomaton by suitable choice of the intermediate observables. Moreover,
some trivial languages are accepted by CL automata but not by MO au-
tomata (thus showing that the inclusion is strict).

• BCL({a, r}, a∗) ⊆ BCL({a, r, g}, g∗a{a, r, g}∗), by introducing a sort of
generalizations of the control language.

• BCL({a, r, g}, g∗a{a, r, g}∗) = BMM, that is MM automata are in fact a
particular instance of CL automata. This suggests that CL automata are
a superclass of MM automata, and in fact this is stated next.

• BMM ⊂ BCL, as the previous point shows that BMM ⊆ BCL, and BMM

is not closed under Boolean operations while BCL is.

3.5 Robust Quantum Computation

Fight entanglement with entangle-

ment.

— John Preskill [Pre01].

The postulates of quantum mechanic, presented in Section 2.4.2, are (im-
plicitly) referred to closed systems. However, in practice, it is impossible to
completely isolate a physical system from the rest of the world, that is its envi-
ronment. Therefore, every physical system is, to some extent, an open one; this
means that unpredictable interactions with the environment may occur.

These interactions are obviously detrimental to performing computational
tasks, where the evolution of the system must be strictly under control. This
is true also of classical systems performing classical computations. In quantum
computing, however, the problem is all the more crucial, since systems exhibit-
ing quantum-mechanical behavior are usually very small ones, and therefore
susceptible of perturbations even for causes of very little magnitude.

41

The phenomenon of perturbation of the quantum state is referred to as deco-
herence. Decoherence is therefore the main obstacle to the practical realization
of a quantum computing device.

Classical computing devices solve the problem of the undesired “faulty” in-
teractions with the environment by exploiting techniques of error correction.
In extreme summary, the classical theory of error correction [MS98, Bay97] —
initiated by von Neumann [vN56] — performs error correction by exploiting
redundancy. Therefore, information is stored redundantly, and the redundancy
is then used to reconstruct the correct state whenever it is corrupted.

This general scheme would seem unappliable to quantum computing models
for at least three main reasons. First, as we have shown in Section 3.1, quantum
states cannot be cloned, therefore it seems impossible to duplicate them to
create redundant encodings. Second, since unitary transforms are uncountably
many, we have a whole continuum of possible “transformation errors”, while
classical error correction assumes a discrete set of possible errors. Third, since
measurement changes the quantum states, it seems impossible to even detect
errors without altering the computational processes completely and undesirably.

Remarkably, all of these limitations can be overcome, and error correction
for quantum states is indeed possible. Therefore, it is possible to realize robust
quantum computers in spite of decoherence. In particular, it is possible to
exploit the peculiarities of quantum mechanics (and in particular entanglement)
to overcome its own limitations for error correction. This is in contrast with
what happens with other computational models involving continuous quantities,
such as analog computing. There, the effects of noise cannot be corrected, and
thus those computations are not realizable in practice, at least in conformance
with the theoretical models for them. See the informal comment by Bacon for
a sharp further discussion of these aspects [Bac05].

Describing in some detail the results for quantum error correction, and robust
quantum computation in general, would require to introduce a lot of material
[Pre01]. In the remainder of this section, we simply sketch how a trivial quantum
error correcting code works, and demonstrate it with a very simple example,
taken from [RP00].

Error correction. Any model of error correction assumes a set E = {Ei}i

of errors, where each Ei is an operator on quantum states of, say, n qubits.
Therefore, each conceivable error in this model can be expressed as a linear
combination

∑

i eiEi for some coefficients ei.
Then, an error correcting scheme consists of the following elements.

• An encoding C, which maps each base n-qubit vector to a (n+s)-qubit vec-
tor, introducing some redundancy. Note that this encoding is performed
on the prepared states at the beginning of a computation, and therefore
can be realized without altering the computation. All the computing op-
erations are then applied accordingly, exploiting quantum parallelism.

• A syndrome extractor operator S that maps, someway, each (n+ s)-qubit
vector to some set of indices ε = {j for some Ej ∈ E} of correctable errors.

42

This syndrome extraction must be performed in the quantum state. Notice
that it must be, for all j in ε and for all states x: j ∈ S(Ej(C(x))).

• A set of error recovery operators, E−1 = {E−1
i }i, one for each Ei ∈ E.

Clearly, it must be, E−1
i (Ei(C(x))) for all used i’s.

Let us now summarize how an error-correcting scheme would be employed,
illustrating it through a very simple example.

Let us consider the encoding C that maps one qubit to 1 + 2 = 3 qubits as
follows.
base state encoded state

|0〉 |000〉
|1〉 |111〉

We consider errors which flip single qubits, according to the Pauli X matrix.
Therefore, we have:

E = {E0 = I ⊗ I ⊗ I, E1 = X ⊗ I ⊗ I, E2 = I ⊗X ⊗ I, E3 = I ⊗ I ⊗X}

The syndrome extractor operator performs the mapping:

S : |b0, b1, b2, 000〉 → |b0, b1, b2, b0 ⊕ b1, b0 ⊕ b2, b1 ⊕ b2〉

Notice that S is in this case a mapping over 6 qubit states, since the last 3
qubits are used to store the set of indices of correctible errors. More precisely,
we assume that the error Ei is encoded as follows:
encoding error

|000〉 E0

|110〉 E1

|101〉 E2

|011〉 E3

Finally note that E−1
i = Ei for all i = 0, . . . , 3, since double flips correspond to

identities.
Let us now assume we end up, after some computational steps, to the state:

|ψ〉 =
1√
2

(|000〉 − |111〉)

in the “error-correction basis”. Let us also consider the error:

E =
4

5
E1 +

3

5
E2

Therefore, after some simple calculation, we see that the error state can be
written as:

|ψE〉 = E |ψ〉 =
4

5
√

2
(|100〉 − |011〉) +

3

5
√

2
(|010〉 − |101〉)

Now, to perform error correction, the syndrome extractor operator is applied
to the error state padded with 3 extra qubits initialized to |000〉, where the result

43

of the syndrome extraction will be stored. Therefore, we end up in a state where
the indices of the errors are encoded in the last 3 qubits. In fact, we get:

|ψ′′〉 = S (|ψE〉 ⊗ |000〉) = S
((

E |ψ〉
)

⊗ |000〉
)

= S

(

4

5
√

2
(|100, 000〉 − |011, 000〉) +

3

5
√

2
(|010, 000〉 − |101, 000〉)

)

=
4

5
√

2
(|100, 110〉 − |011, 110〉) +

3

5
√

2
(|010, 101〉 − |101, 101〉)

=
4

5
√

2
(|100〉 − |011〉) |110〉 +

3

5
√

2
(|010〉 − |101〉) |101〉

Next, the last three qubits of the state are measured. We get some random
result, and precisely either |110〉 or |101〉. Assuming that the result is the most
likely, that is the former, the resulting states becomes:

|ψ′′′〉 =
1√
2

(|100〉 − |011〉) |110〉

The measured state corresponds to the error E1. Thus, we apply the E−1
1 = E1

to the first three qubits of the state, finally getting:

|ψ′′′′〉 =
(

E1 ⊗ I⊗3
)

|ψ′′′〉 =
1√
2

(|000〉 − |111〉) ⊗ |110〉 = |ψ〉 ⊗ |110〉

which is the original state, recovered.

3.6 Quantum Physical Realizations

Quantum phenomena do not occur

in a Hilbert space. They occur in

a laboratory.

— Asher Peres [Per95, Per02].

If quantum computing was to remain a purely speculative technology, it
would not deserve most of the efforts that the research community is devel-
oping. On the contrary, one of the earliest drives towards theoretical research
on quantum computing models was exactly the belief that those models would
eventually be implemented.

Choosing and realizing physical implementations of quantum computers is a
task for the physicists. Indeed, current experimentation in implementations is a
topic of large interest for experimental physicists and engineers. Besides realiz-
ing quantum computers, the effort might even have the — extremely important
— side effect of helping in discovering new physical theories, while probing the
limits of quantum mechanics.

In this section, we will present this important subject under three different
perspectives. First, we will list the most important characteristics a physical
system should possess in order to be a viable candidate for implementing a

44

quantum computer. Afterwards, we will list some technologies for actual imple-
mentations that have been tried experimentally. Finally, we will cite physical
realizations of some of the algorithms and protocols we have seen — only theo-
retically — in the previous sections.

Physical implementation desiderata. DiVincenzo summarizes [DiV00] the
most important requirements a physical system should possess in order to be a
candidate for implementing physical computations. Let us consider them.

• Scalable physical system with well characterized qubits. This means that
some physical states of the system must be suitable to represent a two-
level quantum state in a well-defined way. For instance, we may have a
base state, associated with the value |0〉 and an excited state, which would
represent a state |1〉. These representations must be scalable, in that it
must be possible to couple several qubit systems in such a way that they
do not interact unexpectedly but keep their individual qubit states as long
as possible.

• Initializable to a simple fiducial state, such as |00 · · · 0〉. This would be
the starting point of any computation, and therefore the initialized state
must be set with high confidence and precision.

• Long relevant decoherence time, much longer than the gate operation time.
The decoherence time is the minimum time within which a quantum state
can be considered stable and not corrupted by unexpected interaction
with the external environment. The gate operation time is instead the
maximum time required for a quantum unitary operation to take place.
Ideally, we would like a system where the decoherence time is very long, so
that error correction must be performed only with reasonably long delays,
and where the gate time is very short, so that computations are performed
very fast. In practice, we usually require a ratio in the order of 104 between
the former and the latter times, at least given the current error correcting
performances.

• A universal set of quantum gates. The system must offer a viable way to
implement a universal set of quantum gate operations, that is all of one-
qubit operations (within a certain precision) and at least one two-qubit
operations (e.g., the C-not).

• A qubit-specific measurement capability. This corresponds to the ease of
measurement of the system state after a computation has been performed.
This “output” capability is in contrast with the requirement of having a
low decoherence effect, since they both involve interaction with the en-
vironment, being the latter an undesired one, and the former a required
one.

45

Candidate systems for physical implementations. Let us now consider
some systems that have been experimented as devices for implementing quantum
computation.

Ion traps. Ion traps are lattices of solid material where ions can be trapped
and manipulated using interacting laser beams. This is a technology taken
from material science, adapted to the need of quantum computation.

Atoms in optical lattices. This technology is, similarly to the ion traps case,
a lattice trapping some quantum particles. Here, however, the lattice is
made entirely of electromagnetic radiation, and the particles are neutral
atoms, rather than charged ions. The main advantage is that neutral par-
ticles interact weakly than charged one, thus having a larger decoherence
time. Most of the physics for these devices comes from the experience
with Bose-Einstein condensates.

Solid state technologies. Examples of solid state technologies are the quan-
tum dots, which are sort of “artificial atoms” where electrons are trapped
within matter artificial impurities. The main advantages of solid state
technologies over other technologies is their speed at performing unitary
operations, and their good controllability. The drawback is having to deal
with short decoherence times.

Optic devices. Using photon beams as quantum system is clearly the best
technology for implementing communication quantum devices, as pho-
tons travel at the speed of light, and have weak interactions with the
environment (being massless). On the other hand, it is hard to perform
computational tasks with optic devices, as implementing arbitrary unitary
operations seems difficult.

Cavity quantum electrodynamics. In this technology, atoms or ions are
coupled to photons by means of cavities. This seems a good way to ex-
change quantum information between optic and material qubits, which is
desired in order to be able to build a quantum computer where some tasks
(e.g., communication) are performed by optic technologies, and some oth-
ers (e.g., memorization) by means of solid state ones, thus exploiting the
advantages of each one.

Nuclear magnetic resonance. The nuclear magnetic resonance (NMR) tech-
nology consists of large amounts of identical atoms which are put into a
resonant coherent state by means of very strong magnetic pulses. Histor-
ically, NMR has been a very important test bed for many of the ideas
of quantum information processing, and several full implementations of
quantum algorithms have first been realized using NMR. However, it seems
unlikely that it will be a technology for the future, as it has inherent strong
limitations for what concerns scalability (using large amounts of atoms in
the same state, rather than simple subsystems) and read out of the results.

46

Some successful experiments and techniques. Some of the algorithms
and protocols we have discussed in the previous sections have been actually
implemented using some of the technologies we have outlined above. Moreover,
some techniques have been studied that should make it possible to try other
implementation media in the near future. Although most, if not all, of the
realizations have been toy-scaled ones, they are encouraging in showing that
the quantum computing paradigm is indeed implementable, and its workings
are intimately related to how nature really behaves.

For instance, [BK00] describes how the dense coding protocols can be real-
ized with electromagnetic quantities. Still with reference optical technologies,
the Deutsch-Jozsa algorithm has been studied and realized [CY95]. Shor’s al-
gorithm has been concretely implementing using a NMR device [VSB+01], fac-
toring the number 15 into the product of 3 and 5 (!). Grover’s algorithm has
been implemented both using optical technologies [KMSW00] (using simulation
techniques), and NMR [CGK98]. Finally, the key exchange protocol described
in Section 3.3 has been implemented with success, both through fiber opti-
cal cables [HBK+97], and through the atmosphere [HBK+99], over distances
of several kilometers. Quantum communication implementations are definitely
less problematic than full quantum computing tasks, so much that we already
witness some commercial implementations of the key exchange protocol [Mag].

4 Conclusions

We presented motivation and a general framework for the emerging field of
quantum computation. In doing this, we showed how the efforts behind quantum
computation can be seen as an attempt to develop more satisfactory definitions
of the very idea of computation, putting them on a physical — rather than
purely mathematical — ground.

We outlined the fundamental steps in the birth of quantum computation,
from a historical perspective. We also presented a mathematical model of quan-
tum computation, namely one based on an extension to the quantum case of
the classical Boolean circuit model, showing how the new model is linked with
the fundamental postulates of quantum mechanics.

After discussing these general features, we presented some issues within the
broad field of quantum computation which deserve, in our opinion, some atten-
tion. We briefly introduced the idea of quantum information, discussing some
very basic, but interesting, results. We presented the two families of quantum
algorithms known to date, that is those based on Shor’s factoring algorithm,
and those based on Grover’s search algorithm. We gave some hints as to if
other classes of quantum algorithms may be discovered in the future, still in
relation with the physical features of quantum theory. Clever applications of
the principles of quantum computation to the design of secure cryptographic
protocols were discussed; in particular, a key exchange protocol based on com-
munications through exchange of quantum particles was presented. Afterwards,
we introduced some theoretical models of finite state automata “enriched” with

47

quantum characteristics. We discussed some features of them, especially for
what concerns their expressive power, and their relations to classical finite au-
tomata. The important problem of how to build quantum computing circuits
that are robust against unwanted noisy interactions with the environment was
outlined, and some positive results in these directions were discussed and ref-
erenced. Finally, we presented some candidate real physical systems that may
be suitable to implement quantum computation, and on which considerable
experimental effort is being put toward that goal.

We conclude by noting that all the research in the field of quantum com-
putation — that is being fervently pursued — is and will be profitable for a
better understanding of the fundamental limits and capabilities that the physi-
cal universe puts on the ability to compute, that is to manipulate information.
Given the ubiquity of information processing tasks in today’s world, this better
understanding is very likely to have a strong impact in several aspects of science
and technology, at large.

Figure 7: Dilbert comic of 1997/3/22 by Scott Adams

Acknowledgements

This work was carried out as minor research for the Ph.D. program in Computer
Science at Politecnico di Milano. I would like to thank Angelo Morzenti, for
supporting my research interests and serving as minor advisor, and Carlo “Mere”
Mereghetti, for his reviewing and proofreading work, as well as his kind support
and expertise in quantum computing.

Note to the References

Several papers in the bibliography are available in electronic form through the
arXiv archive. To get the abstract (and the full text) of any of them, just
point your browser to the URL http://arxiv.org/abs/category/number; for
instance http://arxiv.org/abs/quant-ph/0011064 for the reference [Nie00].

48

References

[Aar04] Scott Aaronson. Multilinear formulas and skepticism of quan-
tum computing. In Proceedings of 36th Annual ACM Sympotium
on Theory of Computing (STOC’04), pages 118–127. ACM Press,
2004.

[Aar05] Scott Aaronson. NP-complete problems and physical reality.
SIGACT News, 2005. Complexity Theory Column.

[Aarar] Scott Aaronson. Multilinear formulas and skepticism of quantum
computing. SIAM Journal on Computing, to appear. Journal ver-
sion of [Aar04]. Also quant-ph/0311039.

[Adl94] Leonard M. Adleman. Molecular computation of solutions to com-
binatorial problems. Science, 266:1021–1024, 1994.

[AF98] Andris Ambainis and Rusin Freivalds. 1-way quantum finite au-
tomata: Strengths, weakness and generalizations. In Proceed-
ings of the 39th Symposium on Foundations of Computer Science
(FOCS’98), pages 332–342. ACM Press, 1998.

[Aha98] Dorit Aharonov. Quantum computation — a review. In Diet-
rich Stauffer, editor, Annual Review of Computational Physics, vol-
ume 6. World Scientific, 1998. Also quant-ph/9812037.

[AKV01] Andris Ambainis, Arnolds Kikusts, and Maris Valdats. On the class
of languages recognizable by 1-way quantum finite automata. In
Afonso Ferreira and Horst Reichel, editors, Proceedings of the 18th
Annual Symposium on Theoretical Aspects of Computer Science
(STACS’01), volume 2010 of Lecture Notes in Computer Science,
pages 305–316. Springer-Verlag, 2001. Also quant-ph/0001005.

[AL97] Daniel S. Abrams and Seth Lloyd. Simulation of many-body Fermi
systems on a quantum computer. Physical Review Letters, 79:2586–
2589, 1997.

[AL98] Daniel S. Abrams and Seth Lloyd. Nonlinear quantum mechan-
ics implies polynomial-time solution for NP-complete and #P
problems. Physical Review Letters, 81:3992–3995, 1998. Also
quant-ph/9801041.

[App97] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1997.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers. Ad-
dison Wesley, 1986.

[AW02] Andris Ambainis and John Watrous. Two-way finite automata
with quantum and classical states. Theoretical Computer Science,
287(1):299–311, 2002. Also cs.CC/9911009.

49

[Bac05] Dave Bacon. Digital, analog, deterministic, probabilistic. Blog
entry http://dabacon.org/pontiff/?p=882, May 2005.

[Bay97] John Baylis. Error Correcting Codes: A Mathematical Introduction.
Chapman & Hall, 1997.

[BB84] Charles H. Bennett and Gilles Brassard. Quantum cryptography:
Public key distribution and coin tossing. In Proceedings of IEEE
International Conference on Computer Systems and Signal Process-
ing, pages 175–179. IEEE, 1984.

[BBBV97] Charles H. Bennett, Gilles Brassard, Ethan Bernstein, and Umesh
Vazirani. Strengths and weaknesses of quantum computing. SIAM
Journal on Computing, 26(5):1510–1523, 1997.

[BBHT98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. Tight
bounds on quantum searching. Fortschritte der Physik, 46:493–506,
1998. Also quant-ph/9605034.

[BC01] Alberto Bertoni and Marco Carpentieri. Regular languages ac-
cepted by quantum automata. Information and Computation,
165:174–182, 2001.

[BCSS97] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. Com-
plexity and Real Computation. Springer-Verlag, 1997.

[Bel64] John S. Bell. On the Einstein Podolsky Rosen paradox. Physics,
1:195, 1964. Reprinted in [Bel87].

[Bel66] John S. Bell. On the problem of hidden variables in quantum me-
chanics. Reviews of Modern Physics, 38:447, 1966. Reprinted in
[Bel87].

[Bel82] John S. Bell. On the impossible pilot wave. Foundations of Physics,
12(10):989–999, 1982.

[Bel87] John S. Bell. Speakable and Unspeakable in Quantum Mechanics.
Cambridge University Press, 1987.

[Ben73] Charles H. Bennet. Logic reversibility of computation. IBM Journal
of Research and Development, 17(6):525–532, 1973.

[Ben80] Paul Benioff. The computer as a physical system: a microscopic
quantum mechanical Hamiltonian model of computers as repre-
sented by Turing machines. Journal of Statistical Physics, 22:563–
591, 1980.

[Ben82a] Paul Benioff. Quantum mechanical Hamiltoniam models of Turing
machines. Journal of Statistical Physics, 29:515–546, 1982.

50

[Ben82b] Paul Benioff. Quantum mechanical Hamiltoniam models of Tur-
ing machines that dissipate no energy. Physical Review Letters,
48:1581–1585, 1982.

[Ben88] Charles H. Bennett. Notes on the history of reversible compu-
tation. IBM Journal of Research and Development, 32(1):16–23,
1988. Reprinted in [LR90, Chap. 4, pp. 281–288].

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting.
quant-ph/9805082, 1998.

[BK00] Samuel L. Braunstein and H. J. Kimble. Dense coding for
continuous variables. Physical Review A, 61(4), 2000. Also
quant-ph/9910010.

[BMP+99] P. Oscar Boykin, Tal Mor, Matthew Pulver, Vwani Roychowdhury,
and Farrokh Vatan. On universal and fault-tolerant quantum com-
puting. In Proceedings of the 40th Annual Symposium on Founda-
tions of Computer Science (FOCS’99), pages 486–494. IEEE, 1999.
Also quant-ph/9906054.

[BMP03a] Alberto Bertoni, Carlo Mereghetti, and Beatrice Palano. Golomb
rulers and difference sets for succint quantum automata. Interna-
tional Journal of FOundations of Computer Science, 14(5):871–888,
2003.

[BMP03b] Alberto Bertoni, Carlo Mereghetti, and Beatrice Palano. Quantum
computing: 1-way quantum automata. In Zoltán Ésik and Zoltán
Fülöp, editors, Proceedings of the 7th International Conference on
Developments in Language Theory, pages 1–20, 2003.

[BP02] Alex Brodsky and Nicholas Pippenger. Characterizations of 1-
way quantum finite automata. SIAM Journal on Computing,
31(5):1456–1478, 2002.

[BV93] Ethan Bernstein and Umesh Vazirani. Quantum complexity the-
ory. In Proceedings of the 25th ACM Symposium on the Theory of
Computation (STOC’93), pages 11–20. ACM Press, 1993.

[BV97] Ethan Bernstein and Umesh Vazirani. Quantum complexity theory.
SIAM Journal on Computing, 26:1411–1437, 1997.

[BW92] Charles H. Bennett and Stephen J. Wiesner. Communication
via one- and two-particles operators on Einstein-Podolsky-Rosen
states. Physical Review Letters, 69(20):2881–2884, 1992.

[Cav] Carlton M. Caves. Brief description of CMC research. Online at
http://info.phys.unm.edu/∼caves/research.html.

51

[CGK98] Isaac L. Chuang, Neil Gershenfeld, and Mark Kubinec. Experi-
mental implementation of fast quantum searching. Physical Review
Letters, 80(15):3408–3411, 1998.

[Chu36] Alonzo Church. An unsolvable problem of elementary number the-
ory. American Journal of Mathematics, 58:345–363, 1936.

[Chu41] Alonzo Church. The Calculi of Lambda-Conversion, volume 6 of
Annals of Mathematical Studies. Princeton University Press, 1941.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms. MIT Press, 2nd edition,
2001.

[CS96] A. Robert Calderbank and Peter W. Shor. Good quantum error-
correcting codes exist. Physical Review A, 54:1098–1105, 1996.

[CVZ+98] Isaac L. Chuang, Lieven M.K. Vandersypen, Xinlan Zhou, Deb-
bie W. Leung, and Seth Lloyd. Experimental realization of a quan-
tum algorithm. Nature, 393:143–146, 1998.

[CY95] Isaac L. Chuang and Y. Yamamoto. A simple quantum computer.
Physical Review A, 52:3489–3496, 1995. Also quant-ph/9505011.

[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and
the universal quantum computer. Proceedings of the Royal Society
of London A, 400:97–117, 1985.

[DiV95] David P. DiVincenzo. Two-bit gates are universal for quantum
computation. Physical Review A, 51(2):1015–1022, 1995.

[DiV00] David P. DiVincenzo. The physical implementation of quantum
computation. Fortschritte der Physik, 48:771, 2000.

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by
quantum computation. Proceedings of the Royal Society of London
A, 439:553–558, 1992.

[Fey60] Richard P. Feynman. There’s plenty of room at the bottom: an
invitation to open up a new field of physics. Engineering and Science
(California Institute of Technology), 23(5):22–36, 1960.

[Fey82] Richard P. Feynman. Simulating physics with computers. Interna-
tional Journal of Theoretical Physics, 21(6/7):467–488, 1982.

[Fey85a] Richard P. Feynman. Seminar at AT&T, 1985. Edited (no jokes)
text in [Fey85b].

[Fey85b] Richard P. Feynman. Quantum mechanical computers. Optics
News, pages 11–21, February 1985. Reprinted in [HA00].

52

[Fey86] Richard P. Feynman. Quantum mechanical computers. Foundations
of Physics, 16(6):507–531, 1986.

[FP00] Christopher A. Fuchs and Asher Peres. Quantum mechanics needs
no ‘interpretation’. Physics Today, March 2000.

[Fra99] Michael P. Frank. Reversibility for Efficient Computing. PhD thesis,
EECS Department, Massachussets Institute of Technology, 1999.

[Gis90] N. Gisin. Weinberg’s non-linear quantum mechanics and superlu-
minal communications. Physical Review A, pages 1–2, 1990.

[GK02] Marats Golovkins and Maksim Kravtsev. Probabilistic reversible
automata and quantum automata. In Proceedings of the 8th In-
ternational Computing and Combinatorics Conference (ICCC’02),
volume 2387 of Lecture Notes in Computer Science, pages 574–583.
Springer-Verlag, 2002.

[Got96] Daniel Gottesman. A class of quantum error-correcting codes satu-
rating the quantum Hamming bound. Physical Review A, 54:1862–
1868, 1996.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database
search. In Proceedings of the Annual ACM Symposium on the The-
ory of Computation (STOC’96), pages 212–219. ACM Press, 1996.

[Gro97] Lov K. Grover. Quantum mechanics helps in searching for a needle
in a haystack. Physical Review Letters, 79:325–328, 1997.

[Gro98] Lov K. Grover. A framework for fast quantum mechanical algo-
rithms. In Proceedings of the 30th Annual ACM Symposium on
Theory of Computation (STOC’98), pages 53–62, 1998.

[Gru99] Jozef Gruska. Quantum Computing. McGraw-Hill, 1999.

[HA00] Tony Hey and Robin W. Allen, editors. Feynman Lectures on Com-
putation. Perseus Books Group, 2000.

[HBK+97] Richard J. Hughes, William T. Buttler, Paul G. Kwiat, Gabriel G.
Luther, George L. Morgan, Jane E. Nordholt, C. Glen Peterson,
and Charles M. Simmons. Secure communications using quantum
cryptography. In Steven P. Hotaling and Andrew R. Pirich, edi-
tors, Photonic Quantum Computing, volume 3076 of Proceedings of
SPIE, pages 2–11, 1997.

[HBK+99] Richard J. Hughes, William T. Buttler, Paul G. Kwiat, Steve K.
Lamoreaux, George L. Morgan, Jane E. Nordholt, and C. G. Peter-
son. Practical quantum cryptography for secure free-space commu-
nications. Technical Report LA-UR-99-737, Los Alamos National
Laboratory, 1999. Also quant-ph/9905009.

53

[Hof99] Douglas R. Hofstadter. Gödel, Escher, Bach: An Eternal Golden
Braid. Basic Books, 20th anniversary edition, 1999.

[Hog98] Tad Hogg. Highly structured searches with quantum computers.
Physical Review Letters, 80:2473–2476, 1998.

[Kit96] Alexei Y. Kitaev. Quantum measurements and the Abelian stabi-
lizer problem. In Electronic Colloquium on Computational Com-
plexity (ECCC), volume 3, 1996. Also quant-ph/9511026.

[Kit97] Alexei Y. Kitaev. Quantum computations: Algorithms and error
correction. Russian Mathematical Surveys, 52(6):1191–1249, 1997.

[Kle36] Stephen C. Kleene. General recursive functions of natural numbers.
Mathematische Annalen, 112:727–742, 1936.

[KMSW00] P. G. Kwiat, J. R. Mitchell, P. D. D. Schwindt, and A. G. White.
Grover’s search algorithm: An optical approach. Journal of Modern
Optics, 47:257–266, 2000.

[Kni95] E. Knill. Approximation by quantum circuits. Technical Report
LAUR-95-2225, LANL, 1995. Also quant-ph/9508006.

[Kuh96] Thomas S. Kuhn. The Structure of Scientific Revolutions. Univer-
sity of Chicago Press, 3rd edition, 1996.

[KW97] Attila Kondacs and John Watrous. On the power of quantum finite
state automata. In Proceedings of the 38th Symposium on Founda-
tions of Computer Science (FOCS’97), pages 66–75. ACM Press,
1997.

[Lan61] Rolf Landauer. Irreversibility and heat generation in the computing
process. IBM Journal of Research and Development, 5:183–191,
1961. Reprinted in [LR90, Chap. 4, pp. 188–196].

[Lan91] Rolf Landauer. Information is physical. Physics Today, 44(5):23–29,
1991.

[LL94] Arjen K. Lenstra and Hendrik W. Lenstra, Jr., editors. The Devel-
opment of the Number Field Sieve, volume 1554 of Lecture Notes
in Computer Science. Springer-Verlag, 1994.

[LR90] Harvey S. Leff and Andrew F. Rex, editors. Maxwell’s Demon: En-
tropy, Information, Computing. Princeton series in physics. Prince-
ton University Press, 1990.

[Mag] MagiQ, quantum information solutions for the real world.
http://www.magiqtech.com/.

[Man80] Yuri I. Manin. Computable and uncomputable. Sovetskoye Radio,
Moscow, 1980. In Russian. Partial English translation in [Man99].

54

[Man99] Yuri I. Manin. Classical computing, quantum computing, and
Shor’s factoring algorithm. quant-ph/9903008, 1999.

[MC00] Cristopher Moore and James P. Crutchfield. Quantum automata
and quantum grammars. Theoretical Computer Science, 237(1–
2):275–306, 2000.

[ME98] Michele Mosca and Artur Ekert. The hidden subgroup problem
and eigenvalue estimation on a quantum computer. In Colin P.
Williams, editor, Proceedings of the 1st NASA International Con-
ference on Quantum Computing and Quantum Communication,
volume 1509 of Lecture Notes in Computer Science, pages 174–188.
Springer-Verlag, 1998. Also quant-ph/9903071.

[Mer03] N. David Mermin. From Cbits to Qbits: Teaching computer scien-
tists quantum mechanics. American Journal of Physics, 71(1):23–
30, 2003. Also 0207118.

[MM69] B. Meltzer and D. Michie, editors. Machine Intelligence, volume 5.
Edinburgh University Press, 1969.

[Moo65] Gordon E. Moore. Cramming more components onto integrated
circuits. Electronics Magazine, 38(8), 1965.

[MP02] Carlo Mereghetti and Beatrice Palano. On the size of one-way
quantum finite automata with periodic behaviors. Informatique
Théorique et Applications (Theoretical Informatics and Applica-
tions), 36(3):277–291, 2002.

[MPP01] Carlo Mereghetti, Beatrice Palano, and Giovanni Pighizzini. Note
on the succinctness of deterministic, nondeterministic, probabilistic
and quantum finite automata. Informatique Théorique et Appli-
cations (Theoretical Informatics and Applications), 35(5):477–490,
2001.

[MS98] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-
Correcting Codes. North Holland, 1998.

[MWKZ96] Klaus Mattle, Harald Weinfurter, Paul G. Kwiat, and Anton
Zeilinger. Dense coding in experimental quantum communication.
Physical Review Letters, 76(25):4656, 4659 1996.

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation
and Quantum Information. Cambridge University Press, 2000.

[Nie00] Michael A. Nielsen. Introduction to quantum information theory.
Talk abstract, September 2000. quant-ph/0011064.

[Orp97] Pekka Orponen. A survey of continuous-time computation theory.
In Ding-Zhu Du and Ker-I Ko, editors, Advances in Algorithms,
Languages, and Complexity, pages 209–224. Kluwer, 1997.

55

[Pap94] Christos Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[Pǎu00] Gheorghe Pǎun. Computing with membranes. Journal of Computer
and System Sciences, 61(1):108–143, 2000.

[Per95] Asher Peres. Quantum Theory: Concepts and Methods. Kluwer
Academic, 1995.

[Per02] Asher Peres. What’s wrong with these observables?
quant-ph/0207020, 2002.

[Pos36] Emil Post. Finite combinatory processes: Formulation I. Journal
of Symbolic Logic, 1:103–105, 1936.

[Pre01] John Preskill. Fault-tolerant quantum computation. In Hoi-Kwong
Lo, Sandu Popescu, and Tim Spiller, editors, Introduction to Quan-
tum Computation and Information, pages 213–269. World Scien-
tific, 2001. Also quant-ph/9712048.

[RP00] Eleanor G. Rieffel and Wolfgang Polak. An introduction to quan-
tum computing for non-physicists. ACM Computing Surveys,
32(3):300–335, 2000. Also quant-ph/9809016.

[RSA78] Ronald R. Rivest, Adi Shamir, and Leonard Adleman. A method
for obtaining digital signatures and public key cryptosystems. Com-
munications of the ACM, 21(2):120–126, 1978.

[RZBB94] Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip
Bertani. Experimental realization of any discrete unitary operator.
Physical Review Letters, 73(1):58–61, 1994.

[Sch95] Bruce Schneier. Applied Cryptography: Protocols, Algorithms, and
Source Code in C. Wiley & Sons, 2nd edition, 1995.

[SD99] Sudeshna Sinha and William L. Ditto. Computing with distributed
chaos. Physical Review E, 60(1):363–377, 1999.

[Sho94] Peter W. Shor. Algorithms for quantum computation: Discrete
log and factoring. In Shafi Goldwasser, editor, Proceedings of the
35th Annual Symposium on the Foundations of Computer Science
(FOCS’94), pages 124–134. IEEE Computer Society, 1994.

[Sho95] Peter W. Shor. Scheme for reducing decoherence in quantum mem-
ory. Physical Review A, 52:2493–2496, 1995.

[Sho96] Peter W. Shor. Fault tolerant quantum computation. In Proceedings
of the 37th Symposium on the Foundations of Computer Science
(FOCS’96), pages 56–65. IEEE Computer Society, 1996.

56

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer. SIAM Journal on
Computing, 26(5):1484–1509, 1997.

[Sho03] Peter W. Shor. Why haven’t more quantum algorithms been found?
Journal of the ACM, 50(1):87–90, 2003.

[Sim94] Daniel R. Simon. On the power of quantum computation. In Pro-
ceedings of the 35th Annual Symposium on Foundations of Com-
puter Science (FOCS’94), pages 116–123. IEEE Press, 1994.

[Sim97] Daniel R. Simon. On the power of quantum computation. SIAM
Journal on Computing, 26(5):1474–1483, 1997.

[Sin99] Sudeshna Sinha. A “computing” chaotic system. In N. Pradhan,
P. E. Rapp, and R. Sreenivasan, editors, Nonlinear Dynamics and
Brain Functioning. Nova Science, 1999.

[Sol95] Robert Solovay. Unpublished manuscript, 1995.

[Ste96] Andrew M. Steane. Error correcting codes in quantum theory. Phys-
ical Review Letters, 77:793–797, 1996.

[Tur36] Alan M. Turing. On computable numbers, with an application to
the Entscheidungsproblem. Proceedings of the Londom Mathemati-
cal Society, 2(42):230–265, 1936. Corrections in no. 43, pp. 544-546,
1937.

[Tur48] Alan M. Turing. Intelligent machinery. Report, National Physical
Laboratory, 1948. Published in [MM69].

[vN55] John von Neumann. Mathematical Foundations of Quantum Me-
chanics. Princeton University Press, 1955. Reprinted in 1996.

[vN56] John von Neumann. Probabilistic logics and the synthesis of reliable
organisms from unreliable components. In Automata Studies, pages
329–378. Princeton University Press, 1956.

[VSB+01] Lieven M. K. Vandersypen, Matthias Steffen, Gregory Breyta,
Costantino S. Yannoni, Mark H. Sherwood, and Isaac L. Chuang.
Experimental realization of Shor’s quantum factoring algorithm us-
ing nuclear magnetic resonance. Nature, 414:883–887, 2001. Also
quant-ph/0112176.

[Wie83] Stephen Wiesner. Conjugate coding. SIGACT News, 15:78–88,
1983.

[WZ82] William K. Wootters and Wojciech H. Zurek. A single quantum
cannot be cloned. Nature, 299:802–803, 1982.

57

[Yao93] Andrew C.-C. Yao. Quantum circuit complexity. In Proceedings
of the 34th IEEE Symposium on Foundations of Computer Science
(FOCS’93), pages 352–361, 1993.

[Yao03] Andrew C.-C. Yao. Classical physics and the Church-Turing thesis.
Journal of the ACM, 50(1):100–105, 2003.

[Zal99] Christof Zalka. Grover’s quantum searching algorithm is optimal.
Physical Review A, 60:2746–2751, 1999.

58

