
To Run What No One Has Run Before:
Executing an Intermediate Verification Language?

Nadia Polikarpova, Carlo A. Furia, and Scott West

Chair of Software Engineering, ETH Zurich, Switzerland
firstname.lastname@inf.ethz.ch

Abstract. When program verification fails, it is often hard to understand what
went wrong in the absence of concrete executions that expose parts of the im-
plementation or specification responsible for the failure. Automatic generation of
such tests would require “executing” the complex specifications typically used
for verification (with unbounded quantification and other expressive constructs),
something beyond the capabilities of standard testing tools.
This paper presents a technique to automatically generate executions of programs
annotated with complex specifications, and its implementation for the Boogie in-
termediate verification language. Our approach combines symbolic execution and
SMT constraint solving to generate small tests that are easy to read and under-
stand. The evaluation on several program verification examples demonstrates that
our test case generation technique can help understand failed verification attempts
in conditions where traditional testing is not applicable, thus making formal ver-
ification techniques easier to use in practice.

1 Help Needed to Understand Verification

Static program verification has made tremendous progress, and is now being applied
to real programs [16,11] well beyond the scale of “toy” examples. These achievements
are impressive, but still require massive efforts and highly-trained experts. One of the
biggest remaining obstacles is understanding failed verification attempts [19]. Most
difficulties in this area stem from inherent limits of static verification, and hence could
benefit from complementary dynamic techniques.

Static program proving techniques—implemented in tools such as Boogie [17],
Dafny [18], and VeriFast [8]—are necessarily incomplete, since they target undecid-
able problems. Incompleteness implies that program verifiers are “best effort”: when
they fail, it is no conclusive evidence of error. It may as well be that the specification is
sound but insufficient to prove the implementation correct; for example, a loop invariant
may be too weak to establish the postcondition. Even leaving the issue of incomplete
specifications aside, the feedback provided by failed verification attempts is often of
little use to understand the ultimate source of failure. A typical error message states
that some executions might violate a certain assertion but, without concrete input val-
ues that trigger the violation, it is difficult to understand which parts of the programs

? Work partially supported by SNF grants 200021-137931 (FullContracts), 200020-134974
(LSAT), and 200021-134976 (ASII); and by ERC grant 291389 (CME).

should be adjusted. And even when verification is successful, it would still be useful
to have “sanity checks” in the form of concrete executions, to increase confidence that
the written specification is not only consistent but sufficiently detailed to capture the
intended program behavior.

Dynamic verification techniques are natural candidates to address these shortcom-
ings of static program proving, since they can provide concrete executions that conclu-
sively show errors and help narrow down probable causes. Traditional dynamic tech-
niques based on testing are, however, poor matches to the capabilities of static provers.
Testing typically targets simple properties, such as out-of-bound and null dereferencing
errors, or, only in a minority of cases, lightweight executable specifications (e.g., con-
tracts). Program provers, in contrast, work with very expressive specification and imple-
mentation languages supporting features such as nondeterminism, unbounded quantifi-
cation, infinitary structures (sets, sequences, etc.), and complex first- or even higher-
order axioms; none of these is executable in the traditional sense. As we argue in
Sec. 2, however, even relatively simple programs may require such complex specifi-
cations. Program provers also support modular verification, where sufficiently detailed
specifications of modules or routines are used in lieu of missing or incomplete imple-
mentations; this is another scenario where runtime techniques fall short because they
require complete implementations.

In this paper, we propose a technique to generate executions of programs annotated
with complex specifications using features commonly supported by program provers
(nondeterminism, unbounded quantification, partial implementations, etc.). The tech-
nique combines symbolic execution with SMT constraint solving to generate small
and readable test cases that expose errors (failing executions) or validate specifications
(passing executions).

The proposed approach supports executing both imperative and declarative program
elements, which accommodates the implementation semantics of loops and procedure
calls, defined by their bodies, as well as their specification semantics, used in modu-
lar verification, where the effect of a procedure call is defined solely the procedure’s
pre- and postcondition and the effect of a loop by its invariant. The implementation
semantics is useful to discriminate between inconsistent and incomplete specifications;
while the specification semantics makes it possible to generate executions in the pres-
ence of partial implementations, as well as to expose spurious executions permitted by
incomplete specifications.

Our technique simplifies the constraints passed to the SMT solver, only targeting
the values required for a particular symbolic execution. This avoids the solver getting
bogged down when reasoning about complex specifications—a problem often arising
with program provers—without need for additional guidance in the form of quantifier
instantiation heuristics. The simplification also improves the predictability of test case
generation. Combined with model minimization techniques, it produces short—often
minimal-length—executions that are quite easy to read. While constraint simplifica-
tion might also produce false positives (infeasible executions), the evaluation of Sec. 5
shows that this rarely happens in practice: the small risk amply pays off by producing
easy-to-understand executions, symptomatic of the rough patches in the implementation

2

1 procedure Max(N: int, a: [int] int) returns (max: int)

2 ensures (∀ j: int • 0 ≤ j ∧ j < N =⇒ a[j] ≤ max);

3 ensures (∃ j: int • 0 ≤ j ∧ j < N ∧ a[j] = max);

4 {

5 var i: int;

6 i := 0;

7 max := 0;

8 while (i < N) {

9 if (a[i] > max) { max := a[i]; }

10 i := i + 1;

11 }

12 }

Fig. 1. Boogie procedure Max that finds the maximum element in an array. Both the specification
and the implementation contain errors, and no loop invariant is provided.

or specification that require further attention. We also identify a subset of the annotation
language for which no infeasible executions are generated.

We implemented our technique for the Boogie intermediate verification language,
used as back-end of numerous program verifiers [18,4,26]. Working atop an interme-
diate language opens up the possibility of reusing the tool with multiple high-level
languages and verifiers that already translate to Boogie. It also ensures that our tech-
nique is sufficiently general: Boogie is a small yet very expressive language (including
both specification and imperative constructs), designed to support translations of dis-
parate notations with their own supporting methodologies. Our implementation is avail-
able as a tool called Boogaloo, distributed as free software: https://bitbucket.org/
nadiapolikarpova/boogaloo/ and accessible through the web: http://cloudstudio.
ethz.ch/comcom/#Boogaloo. For simplicity, in the paper we will use “Boogaloo” to de-
note the execution generation technique as well as its implementation, and will employ
the self-explanatory Boogie syntax in the examples.

2 Illustrative Example

We give a concise overview of the capabilities of Boogaloo using a simple verification
example: finding the maximum element in an integer array.1 Fig. 1 shows a straight-
forward Boogie implementation as procedure Max, which inputs an integer N, denoting
the array size, and a map2 a that represents the array elements a[0], . . ., a[N-1]; it
returns an integer max for a’s maximum. The Boogie procedure includes specification
in the form of two postconditions (ensures), formalizing the definition of maximum:
max should be no smaller than any element of a (line 2); and it should be an element of
a (line 3).

1 The tool output messages in this section are abridged without sacrificing the gist of the original.
2 In general, maps have an infinite domain in Boogie

3

https://bitbucket.org/nadiapolikarpova/boogaloo/
https://bitbucket.org/nadiapolikarpova/boogaloo/
http://cloudstudio.ethz.ch/comcom/#Boogaloo
http://cloudstudio.ethz.ch/comcom/#Boogaloo

What happens if we try to verify procedure Max, as shown in Fig. 1, using Boogie?
Verification fails with a vague error message (“Postconditions on lines 2 and 3

might not hold.”) which is inconclusive and of little help to understand the source
of failure. Rather, running Boogaloo on the same input generates concrete inputs that
make the program fail; we get the message “Postcondition on line 3 violated

with N -> 0, a -> [], max -> 0”, which clearly singles out a problem with Max:
the maximum of an empty array is undefined.

We can formalize the expectation that Max ought to be a partial function (unde-
fined for empty arrays) as the precondition requires N > 0. Boogie’s output does
not, however, change if we add such a precondition: it still cannot establish either
postcondition since it would need a loop invariant to reason about loops—no matter
how simple they are. Instead, running Boogaloo on Max annotated with the precondi-
tion shows another input that triggers a failure: “Postcondition on line 3 violated

with N -> 1, a -> [0 -> -1], max -> 0”. This time the problem is with the imple-
mentation rather than with the specification: when a contains a single negative value,
initializing max to 0 (line 7) does not work. With this concise concrete counterexample,
it is easy to understand that the same problem occurs with any array containing only
negative elements. Designing a correction is also routine: we change the initialization
on line 7 to max := a[0], which is well-defined thanks to the precondition N > 0.

We can see that the modified program—including precondition and new initializa-
tion of max—is finally correct. However, Boogie’s behavior on it does not change at all:
without a loop invariant, it still fails to prove either postcondition. Boogaloo, in contrast,
can generate a number of test cases (1024 by default, which takes just a few seconds
with the running example on standard desktop hardware) and successfully check all of
them against the specification. While this still falls short of a formal correctness proof,
it provides evidence that the program is indeed correct, and that all we have to do is
strengthen the specification by adding a suitable loop invariant.

While we selected a simple example which can be briefly presented, we were able
to demonstrate, in a nutshell, several fundamental issues of working with static program
verifiers such as Boogie, and how Boogaloo can complement their weaknesses. Specif-
ically, Boogaloo’s capabilities to provide concrete inputs that show errors or amass
evidence for correctness; and to work with the same programs used for verification in-
cluding elements such as first-order quantification (lines 2 and 3), but without requiring
specifications at all costs (a loop invariant). Another distinguishing, and practically cru-
cially important, feature of Boogaloo is that it produces small (often minimal) tests:
in the example, the smallest arrays and the smallest integer values exposing faults and
discrepancies.

Comparison with other approaches. To further demonstrate the unique features
of Boogaloo, let us consider the behavior of other approaches to complementing static
program verification on the same example of procedure Max.

Assuming Max were a Boogie encoding produced from some high-level program-
ming language, we could use standard testing tools on the source program to generate
concrete inputs and discover failures. One problem is that first-order quantifications
(and other features used by Boogie) are inexpressible using the simple Boolean ex-
pressions of standard programming languages. While the quantifications used in Max

4

are bounded, and hence expressible using executable constructs such as finite iterations
over arrays or list comprehensions, getting rid of quantifiers and other non-executable
constructs is neither possible nor desirable in general. As soon as we look at examples
more complex than Max, we need to express abstract properties potentially involving
infinitely many elements, such as for framing and for reasoning about unbounded se-
quences of pointers to heap-allocated data. Even in an example as simple as sorting,
if a sorting procedure takes a function pointer as argument to denote the comparison
function, we need to express that it encodes a total order—something involving quan-
tification over a potentially unbounded domain. More generally, we designed Boogaloo
to work with the same proof-oriented annotated programs used by static verifiers, which
involve features difficult to execute and normally not found in high-level programming
languages.

Another option to debug Max is using the Boogie Verification Debugger (BVD [14]),
which extracts concrete counterexamples from failed verification attempts. The rele-
vance of such counterexamples is, however, limited in the presence of loops and proce-
dure calls with incomplete specifications. On Max as in Fig. 1, BVD returns the assign-
ment “N = 1, a = [], max = -900”; after adding N > 0 as precondition, it returns “N
= 797, a = [], max = -900”; after fixing the implementation, it returns “N = 797,

a = [0 -> -901], max = -901”. These examples fail to point out the two errors in
Max, because according to modular reasoning [17] and in the absence of an invariant,
any loop is equivalent to assigning arbitrary values to program variables. While BVD’s
modular semantics helps debug incompleteness in specifications, it also enforces an
“all-or-nothing” development style, where developers first have to get right the most
complicated part (the invariants), before they can proceed with debugging the rest of
the program. This lack of incrementality is what makes modular verification so hard in
the first place.

It is possible to make Boogie use loop and procedure bodies instead of their spec-
ification by unrolling loops and inlining procedures U times, for a given U ≥ 0. With
unrolling, BVD finds counterexamples for executions where N ≤ U , and in particu-
lar the same counterexamples constructed by Boogaloo. The approach, however, has
its limitations. First, unrolling and inlining require users to guess a suitable U ; since
all longer executions are ignored, verification vacuously succeeds when the shortest
counterexample requires > U iterations or nested calls, without providing any concrete
feedback. Second, unrolling of complex loops and inlining of recursive procedures scale
poorly, as they consist of literally rewriting the code U times; Boogaloo, in contrast,
uses symbolic execution techniques, which are less likely to incur blow up. Building a
debugger on top of the Boogie verifier also means that it cannot generate passing ex-
ecutions (Boogie does not produce a model in case verification succeeds) and cannot
help when the theorem prover gets bogged down. In contrast, Boogaloo uses simpler
verification conditions, designed for predictable generation and readability of counter
examples as opposed to sound proofs.

5

3 A Runtime Semantics of Boogie Programs

This section describes the syntax of Boogaloo programs (Sec. 3.1) and their opera-
tional semantics (Sec. 3.2). We use the following notation: Z is the set of mathe-
matical integers; and B is the set {>,⊥} of Boolean values. A map m is a math-
ematical function from a domain D1 × · · · × Dn, for n ≥ 0, to a codomain D0;
square brackets denote map applications. Whenever convenient, we see m as a set
of (n + 1)-tuples: m ⊂ D1 × · · · × Dn × D0 such that (d1, . . . , dn, d0) ∈ m iff
m[d1, . . . , dn] = d0. dom(m) and rng(m) denote the domain and range of m; m is
total if dom(m) = D1 × · · · × Dn, and finite if |dom(m)| ∈ Z; m[d1, . . . , dn 7→ d]
denotes a map m′ identical to m except that m′[d1, . . . , dn] = d. We overload this no-
tation to denote variable substitution: if e, y1, . . . , yn are expressions, and x1, . . . , xn,
are variable names, e[x1, . . . , xn 7→ y1, . . . yn] denotes e with all occurrences of xk
replaced by yk, for k = 1, . . . , n.

3.1 Input Language

Boogaloo desugars generic Boogie programs [17] into the simpler language described
in Fig. 2. Programs P are lists of declarations D, whose order is immaterial. Dec-
larations include uninterpreted types, global variables, and procedures with input
parameters, output parameters (returns), global variables the procedure may mod-
ify (modifies clause), and body (between braces). Procedure bodies consist of local
variable declarations followed by a list of labeled statements S. The latter include se-
quential composition, regular and nondeterministic assignment (:= and havoc, possibly
in parallel to multiple variables), procedure call, assume, nondeterministic goto a set
of label identifiers, and abrupt return to the caller procedure, as well as directives R
described shortly. Expressions must be properly typed as booleans, integers, maps
[T1, . . . , Tn]T0 from arbitrary domain (T1, . . . , Tn) and codomain T0 types, and user-
defined uninterpreted types3. Expressions E include literal constants C, variables V ,
map applications m[t1, . . . , tn], map updates m[t1, . . . , tn := t], old expressions which
refer to the value of an expression when the procedure was entered, plus the usual
applications of unary operators UOp, binary operators BOp, a ternary if/then/else
operator, and quantifications and lambda expressions QOp.

The directives halt, abort, and pick are Boogaloo-specific and characterize sym-
bolic executions: halt terminates the current execution with success (marking pass-
ing executions); abort also terminates the current execution but with error (mark-
ing failing executions); pick forces the interpreter to resolve nondeterminism by try-
ing to build a concrete state out of the current symbolic constraints. Boogaloo auto-
matically inserts a halt at the end of every control path in the input program; and
uses abort to desugar assert statements as follows. A Boogie statement assert B,
where B is a Boolean expression, indicates that B must hold in every non-failing ex-
ecution reaching the statement; assume B, on the other hand, indicates that only ex-
ecutions where B holds upon reaching the assume are feasible. Therefore, Boogaloo

3 While Boogaloo supports Boogie’s type constructors with arguments, as well type parameters
in procedures and maps, we do not include them in the discussion for simplicity.

6

P ::= D∗

D ::= type tid | var V : T

| procedure pid (〈V : T 〉∗) returns (〈V : T 〉∗) modifies (V ∗) 〈{ 〈V : T 〉∗ 〈lid : S〉∗ }〉?
S ::= S;S | havoc V + | V + :=E+ | call V ∗ := pid (E+) | assume E | goto lid+ | return | R
R ::= halt | abort | pick
T ::= bool | int | [T+]T | tid
E ::= C | V | E [E+] | E [E+ :=E] | old E

| UOp E | E BOp E | if E then E else E | QOp 〈V : T 〉+ • E
V ::= vid C ::= true | false | 0 | 1 | 2 | · · ·

UOp ::= − | ¬ BOp ::= + | − | · · · | < | ≤ |=| · · · | ∧ | ∨ | · · · QOp ::= ∃ | ∀ | λ

Fig. 2. Desugared language supported by Boogaloo, consisting of programs P , declarations D,
statements S, types T , and expressions E. Angular brackets 〈 〉 are part of the grammar metalan-
guage, used to mark optional (?) or repeated (∗, +) expressions.

expresses the semantics of assert B using assume, abort, and nondeterministic choice
as: goto T, F; F: assume ¬ B; abort; T: assume B. Boogaloo also injects a pick

statement right before every halt and abort, so that every terminating execution gets
a concrete state. Boogaloo automatically instruments programs with the directives R,
based on different strategies (see Section 5) so that one can use Boogie programs with-
out additional annotations.

The rest of the desugaring of Boogie into the language of Fig. 2 is fairly stan-
dard. We rewrite function declarations function f(T1, . . . , Tn) returns(T0) into con-
stants const f: [T1, . . . , Tn]T0 of map type, and express the corresponding function
definitions as axioms. In turn, we express axioms and other specification constructs—
where clauses (used to constrain the values of uninitialized variables), pre- and post-
conditions, and loop invariants—using assume and assert reflecting the standard se-
mantics. We replace constants with variables. Finally, we transform procedure bodies
into sets of basic blocks (labeled sequential blocks of code that end with a return or
goto) using standard techniques [17].

3.2 Runtime Operational Semantics

We now describe an operational semantics for the language in Fig. 2. The presentation
focuses on the most interesting aspects while omitting standard details.

Let us start with an informal overview of the basic concepts. The operational seman-
tics describes the effect, on the symbolic state, of executing statements. The symbolic
state associates symbolic values to program variables in scope. Executing some state-
ments may involve enforcing constraints between symbolic values; the most obvious
example is that of assume P: the symbolic values associated to variables mentioned in
P must satisfy P in every computation that continues after the statement. Therefore, the
symbolic state includes constraints which are updated as execution progresses. Finally,
pick directives select concrete values that satisfy the current constraints; executions
continue after pick with the selected concrete state components replacing the corre-
sponding symbolic state components (but subsequent statements will be executed sym-

7

bolically until the next pick). In this sense, symbolic executions are speculative, in that
the constraints may not have a solution (infeasible executions), and nondeterministic,
in that the constraints may have more than one solution; pick forces the interpreter to
resolve nondeterministic choice before continuing. Another source of nondeterminism
comes from executing gotos with multiple labels; such choices are resolved immedi-
ately, resulting in explicit path enumeration. Since Boogaloo injects pick statements at
every terminating location, it can provide concrete input and output values for every
feasible execution, while still availing of symbolic representation to limit the combina-
torial explosion introduced by the inherently nondeterministic nature of specifications.

The main source of complexity in executing Boogie programs lies in solving con-
straints, in particular when they involve universal quantifiers and uninterpreted maps
with infinite domains. Even though state-of-the-art SMT solvers can decide satisfia-
bility of quantified formulas in many practical cases, they can hardly generate read-
able “natural” infinite models. In light of these difficulties, we drop Boogie’s standard
interpretation—where all maps are total—and replace it with a finitary interpretation
where maps have finite domains. Finite, small instances are sufficient to expose errors
and inconsistencies in most programs; Alloy’s techniques are based on a similar “small
scope” hypothesis [7]. We also treat universally quantified constraints in a special way:
the pick directive finitizes them, that is turns them into simpler quantifier-free con-
straints. Finitization is in general unsound, but Sec. 5 demonstrates that the precision
loss is normally acceptable, especially if the goal is finding inconsistencies and errors.

Concrete values. Each Boogie type corresponds to a set of concrete values: bool
corresponds to B, int corresponds to Z; each user-defined type U corresponds to a
countable uninterpreted set U ; each map type [T1, . . . , Tn] T0 corresponds to the set of
all finite maps from T1 × · · · × Tn to T0, where Tk is the set of concrete values of type
Tk, for k = 0, . . . , n. K denotes the union of all concrete value sets.

Symbolic values correspond to the set Σ defined as:

Σ ::= K | L | UOp Σ | Σ BOp Σ | ifΣ thenΣ elseΣ ,

where K is the set of concrete values defined above; unary UOp and binary BOp op-
erators are in Fig. 2, and L denotes a set of logical variables of the same types as the
concrete values. A logical variable ` of type T corresponds to a symbolic placeholder
(a “promise”) for a concrete value of type T . To represent quantifiers in constraints, we
also introduce a set of universal symbolic values Σ∀ ::= ∀ 〈V : T 〉+ • ΣV , where ΣV
is a symbolic expression, which can also include bound variables V . Given a set X of
expressions, LV(X) is the set of all logical variables appearing in X .

Symbolic states. A symbolic state (environment) is a tuple E = 〈σ, λ, µ, κ, υ, τ〉,
where the store σ : V → Σ maps variables to symbolic values; the logical store λ :
L → Σ maps scalar logical variables to symbolic values; the map store µ : L →
(Σ∗ → Σ) maps map logical variables to symbolic maps; κ ⊂ Σ is a finite set of
simple state constraints; υ ⊂ Σ∀ is a finite set of universal state constraints; and τ
is one of G,3,7, denoting an intermediate state (G), or the final state of a passing
(3) or failing (7) execution. The map store associates logical variables of map type to
symbolic maps: finite maps whose domain and range are in Σ; symbolic maps extend

8

LOG-IN
` ∈ dom(λ)

J`K E=Eλ[`]
LOG-OUT

` 6∈ dom(λ)

J`K E=E`

VAR-IN
v ∈ dom(σ) Jσ[v]K E=Ee

JvK E=Ee
VAR-OUT

v 6∈ dom(σ) ` is fresh σ′ = σ[v 7→ `]

JvK E=E′
`

SEL-IN
J(m,a)K E=E′

(`m,a
′) a′ ∈ dom(µ′[`m]) Jµ′[`m][a′]K E′

=E′
e

Jm[a]K E=E′
e

SEL-OUT
` is fresh J(m,a)K E=E1 (`m,a1) a1 /∈ dom(µ1[`m]) m′ = [µ1[`m][a1] 7→ `]

Jm[a]K E=E′
` E′ = 〈σ1, µ1[`m 7→ m′], υ1〉

UPD
` is fresh J(m,a, e)K E=E1 (`m,a1, e1) m′ = [µ1[`m][a1] 7→ e1]

Jm[a :=e]K E=E′
` E′ = 〈σ1, µ1[` 7→ m′], υ1 ∪ {∀x •x 6= a1 ⇒ `[x] = `m[x]}〉

LAMBDA
` is fresh JeK E=E1e1 σ1(x) = `1

Jλx • eK E=E′
` E′ = 〈σ1, µ1, υ1 ∪ {∀x • e1[`1 7→ x]}〉

QUANT-T Skolem[Q1x1 · · ·Qnxn • q] E=E1 ∀y • q1 Jq1K E1=E2q2 σ2(y) = `

JQ1x1 · · ·Qnxn • qK E=E′
> E′ = 〈σ2, µ2, υ2 ∪ {∀y • q2[` 7→ y]}〉

QUANT-F JQ̃1x1 · · · Q̃nxn • ¬qK E=E′
>

JQ1x1 · · ·Qnxn • qK E=E′
⊥

Fig. 3. Symbolic evaluation (significant cases).

their finite domains as execution progresses; pick concretizes their domain and range,
turning symbolic maps into concrete ones.

Expression evaluation. Let E denote the set of all expressions defined by E in
Fig. 2 but whose atoms range over C ∪ V ∪ L (i.e., including logical variables L). The
evaluation of an expression e ∈ E in an environment E is a symbolic value in Σ. We
use the notation: JeK E=E

′
e′ to denote that e ∈ E evaluates in E to e′ ∈ Σ. As we de-

tail shortly, evaluating an expression may change the environment; correspondingly, E ′
denotes the updated environment, whose components are written 〈σ′, λ′, µ′, κ′, υ′, τ ′〉.
When convenient, we extend this notation to sequences e = e1, . . . , en of expressions,
evaluated one after another as follows: JeK E=E

′
e′ iff JekK Ek=E

′
ke′k for k = 1, . . . , n,

E ′k = Ek+1 for k = 1, . . . , n − 1, and e′ = e′1, . . . , e
′
n. Fig. 3 shows the evaluation

rules for the most interesting expression kinds. Since evaluation does not change the
λ, κ, and τ environment components, Fig. 3 omits them. Also notice that evaluating a
symbolic value never changes the environment, and every concrete value evaluates to
itself.

Rules LOG-IN and LOG-OUT describe the simple cases of evaluating a logical vari-
able `: if λ[`] is defined, it yields `’s evaluation; otherwise, ` evaluates to itself. Since λ
is only changed by executing pick, which assigns concrete values to all logical variables
in κ, λ evaluates to concrete values when defined: LV(rng(λ)) = ∅.

Rules VAR-IN and VAR-OUT describe the evaluation of a (program) variable v. If
it has already been initialized, the evaluation of σ[v] gives its symbolic value. Other-
wise (VAR-OUT), such as when v enters the scope or after executing havoc v, σ[v] gets
initialized to a fresh logical variable `.

9

The rules for map selection are similar to those for variables but target the map
store µ: if a map selection has already been evaluated, its symbolic value is returned
(SEL-IN); otherwise, a fresh logical variable is generated and stored in µ (SEL-OUT).

Rules UPD and LAMBDA deal with evaluating expressions of map type for updates
and lambda abstractions. Both rules introduce a fresh map logical variable and add
to υ a universally quantified constraint that defines the map. Thus, map expressions
(variables, updates, and lambdas) always evaluate to a logical variable; this justifies
using the evaluation `m of m as an index in µ in the premises of SEL-IN, SEL-OUT, and
UPD.

The rules for quantified expressions are non-deterministic. Consider an expression
Q = Q1x1 · · ·Qnxn • q in prenex normal form, where n > 0, Qk is one of ∀ and ∃
for all k’s, and q is quantifier-free. Rule QUANT-T evaluates Q to true and adds it to
the universal constraints υ after the following transformation. First,Q is Skolemized as
∀y • q1, where y is the subsequence of x1, . . . , xn including only those xk’s for which
Qk is ∀; E1 is the environment after Skolemization, which contains fresh logical vari-
ables for the Skolem functions introduced by the process. Evaluating q1 in E1 yields
some q2 where the bound variables y map to fresh logical variables `; after performing
the substitution q′ = q2[` 7→ y], ∀y • q′ is added to υ. In the special case where Q is
purely existential, Skolemization yields a quantifier-free formula, and the correspond-
ing q2 is directly added to κ. Rule QUANT-F, which evaluates Q to false, follows by
duality (∀̃ denotes ∃, and ∃̃ denotes ∀).

Procedure call semantics. The precise semantics of procedure calls involves sev-
eral details to support recursion—mainly, maintaining a stack of environments and cor-
respondingly keeping track of scope. We overlook these tedious aspects and focus on
the gist of the semantics of a call to a generic procedure P (before desugaring):

procedure P (a) returns (o) requires p ensures q modifies(m) 〈{B}〉?

with formal input a and output o parameters, modified global variables m, bodyB, and
pre- and postcondition p and q. The desugaring of Sec. 3.1 turns pre- and postcondition
into checks at the call site:

assert p[a 7→ u]; call v := P(u); assume q[a,o 7→ u,v];

(For brevity, we do not discuss the handling of old expressions in postconditions.) It
also generates a modified procedure body B′ to reflect the implementation or specifi-
cation semantics, according to whether P has a body or not: if B is defined, B′ adds an
assert q before each return statement in B; if B is not defined, B′ consists of the sin-
gle statement havoco,m (which, combined with assuming the postcondition at the call
site, renders the specification semantics). The effect of the call statement is then given
by B′[a 7→ u]@entry where B′[a 7→ u] is a shorthand for B′ with actual arguments
replaced for formals and @entry denotes the basic block of statements at procedure P’s
entry. Even though Boogaloo defaults to implementation semantics whenever a body is
available, one can always switch to the specification semantics for a particular proce-
dure by commenting out its body.

Operational semantics. Fig. 4 describes the operational semantics of statements
other than procedure calls, using the notation E −S E ′ to denote that executing state-

10

SEQ
τ = G E −I E1 E1 −J E′

E −I; J E′
GOTO

τ = G k ∈ {1, . . . , n} E −@xk E′

E −goto x1, . . . , xn E′

RETURN
τ = G E −@caller E′

E −return E′
ASSUME

τ = G JPK E=E′
p

E −assume P 〈σ′, λ′, µ′, κ′ ∪ {p}, υ′, τ ′〉

HAVOC τ = G

E −havoc v 〈σ \ {(v, σ[v])}, λ, µ, κ, υ, τ〉
ASSIGN

τ = G JeK E=E′
e′

E −v := e 〈σ[v 7→ e′], λ′, µ′, κ′, υ′, τ ′〉

HALT τ = G

E −halt 〈σ, λ, µ, κ, υ,3〉
ABORT τ = G

E −abort 〈σ, λ, µ, κ, υ, 7〉

PICK
τ = G κ′ = κ ∪ κµ ∪ Φ(υ) dom(Λ) = {` ∈ LV(κ′) | ` is scalar} E′ = 〈σ, λ ∪ Λ, µ, ∅, υ, τ〉 J

∧
κ′K E′

=E′
>

E −pick E′

Fig. 4. Symbolic execution: operational semantics. All rules describe transformations of a generic
symbolic state E = 〈σ, λ, µ, κ, υ, τ〉.

ment S changes the environment E into E ′. Rules are applicable only if τ = G, that is
if the computation has not terminated yet; after rules HALT or ABORT have changed τ
to passing 3 or failing 7 no rule is applicable and hence the computation terminates.

Rules SEQ for sequential composition, GOTO for branch, and RETURN for abrupt
termination are standard, using the notation @caller to denote the basic block beginning
after the current call in the caller procedure. Rule GOTO is clearly nondeterministic.

Rule ASSUME adds the assumed Boolean formula to the set κ of state constraints.
Rule HAVOC “forgets” the symbolic value of the variable v, as if uninitialized. Rule
ASSIGN updates the symbolic value in σ associated to the assigned variable v.

The most interesting rule is PICK, which details how pick concretizes symbolic
states. It extends κ into κ′, adding map instance constraints κµ = {m[x] = y |
(m,x, y) ∈ µ}, which express the information in µ about symbolic maps; as well
as finitized universal constraints Φ(υ). It then picks a solution Λ : L → K of κ′: an
assignment of concrete values to scalar logical variables for which the conjunction of
constraints in κ′ evaluates to true. It finally adds the picked solution to λ and drops
the solved constraints. The rule is nondeterministic, as κ′ might have multiple solu-
tions. When κ′ has no solutions, the rule cannot apply and executions gets stuck at
pick: we call such executions infeasible. The rule is also agnostic with respect to the
exact method of solving simple constraints, as well as to the finitization mapping Φ.
To solve constraints one can leverage an external constraint solver or even brute force
enumeration; even if the solving process is unsound, one can always evaluate κ′ in E ′
and discard solutions that do not simplify to >. The only requirement on Φ : Σ∀

∗ → Σ
is that it is an over-approximation: any valid solution of υ is also a solution of Φ(υ).
In practice, Φ performs quantifier instantiation: it replaces a quantified formula ∀x • q
with a finite set of quantifier-free formulas {q[x 7→ e] | e ∈ R}, for some finite set
R of “relevant” symbolic values. The challenge is to choose an R that is large enough
to describe all relevant values in the current environment, yet small enough to produce

11

constraints that can be solved efficiently. Sec. 4 gives more details about Boogaloo’s
finitization procedure.

Boogaloo vs. Boogie semantics. How does the operational semantics discussed in
this section compare with the original Boogie semantics? For this discussion, a seman-
tics of a program P is a set of sequences of concrete states, corresponding to its feasible
terminating executions; a (concrete) state C = 〈σ, τ〉 consists of a store σ (involving
finitely many variables) and a termination flag τ ∈ {G,3,7}. A state C is finitary if
it involves only finite maps: for all m ∈ dom(σ), |dom(σ[m])| is finite; otherwise, it
is infinitary. A state CF finitizes another state C (written CF vF C) iff CF is finitary,
τF = τ , dom(σF) = dom(σ) and, for all map variables m ∈ dom(σ), σF [m] ⊆ σ[m].
A sequence e of states is finitary (infinitary) if all its elements are finitary (infinitary); e
finitizes another sequence e′ if every state of e finitizes the corresponding state of e′.

For a program P , I[P] denotes the Boogie semantics defined in [17], which is
infinitary since all maps are total (I is for “infinitary”); and F [P] denotes the fini-
tary semantics of this paper, where all maps have finite domains.4 Assuming perfect
constraint-solving capabilities, the only aspect where F may drop information w.r.t.
I is in the rule PICK, and more precisely in the finitization mapping Φ. The require-
ment that Φ be an over-approximation implies that every Boogie execution is finitized
by some Boogaloo execution. The converse does not hold in general: in particular, for
some programs S, I[S] = ∅ but F [S] 6= ∅ contains executions (which we regard as
spurious). For example, the following program:

var a: [int] int;

assume (∀ i, j: int • i < j =⇒ a[i] < a[j]);

assume a[0] = 0 ∧ a[1000] = 1;

has no feasible executions in I, while the current implementation of Boogaloo produces
a passing execution where the quantified constraint is only instantiated for i = 0 and
j = 1000. Sec. 5 demonstrates that such unsound executions are infrequent in practice,
and, even when they occur, workarounds are possible, for example forcing the evalua-
tion on more points by accessing them in a loop. Also, Boogaloo’s implementation of
Φ does not produces spurious executions for programs where all quantified constraints
are derived from terminating recursive function definition (see Sec. 4).

There is an additional source of discrepancies between I and F , due to the fact that
Boogie always uses the specification semantics for loops and procedure calls, while
Boogaloo defaults to the implementation semantics, which might contain fewer exe-
cutions. This discrepancy between the two semantics is a useful feature, which makes
it possible to debug programs in presence of incomplete specifications. The specifica-
tion semantics is still available on demand in Boogaloo: it is sufficient to replace an
imperative construct with its specification.

4 The soundness of desugaring implies that all feasible executions both in the Boogie and in the
Boogaloo semantics agree on being passing or failing.

12

4 Boogaloo: Implementation Details

This section presents some details of the Boogaloo tool—our prototype implementa-
tion of the approach described in the previous sections. The tool takes as input a Boogie
source file and a procedure name as entry point, and produces a set of feasible execu-
tions, characterized by their concrete initial and final states. Boogaloo is implemented
in Haskell, and uses the SMT solver Z3 [5] in the back-end.

Finitizing universal constraints. The choice of the finitization mapping Φ plays
an important role. Our experiments suggest that the powerful quantifier instantiation
strategies available in SMT solvers such as Z3 have some downsides when applied to
solve constraints generated by executing Boogie programs, as their performance is un-
predictable unless additional user input (in the form of “triggers”) is provided. Instead,
Boogaloo preprocesses constraints using a simple strategy, based on the observation that
universally quantified formulas are typically used to axiomatize uninterpreted maps;
since we are only interested in finitely many points (those stored in µ), we just instanti-
ate the bound variables at those points. Quantified constraints that do not contain map
applications are simply ignored; the examples in Sec. 5 suggests that this finitization
strategy is not too restrictive on typical verification examples.

This is how Boogaloo implements Φ for a formula ∀x • P (x). For each term m[y]
in P such that y includes some bound variable (i.e., y ∩ x 6= ∅), Boogaloo extracts
a parametrized map constraint of the form (m,Q(y,m[y])), where Q is a subformula
of P including the term, and y are the parameters free in Q; if x 6⊆ y, then Q is
itself quantified. For example, ∀i • a[i] > i ∧ b[i, 0] = 1 determines two parametrized
constraints: (a, a[i] > i) and (b, j = 0 =⇒ b[i, j] = 1); whereas ∀i, j • i < j =⇒
c[i] < c[j] determines: (a,∀j • i < j =⇒ c[i] < c[j]).

Boogaloo evaluates parametrized constraints for a given map store µ iteratively:
pick an element p = (m, e, s) of µ, instantiate all parametrized constraints for m with
e and evaluate them, and mark p; repeat until all elements of µ are marked. If a Q in a
parametrized constraint (m,Q) contains quantifiers, instantiating m triggers the gener-
ation of new parametrized constraints from Q (also to completion until all constraints
are quantifier-free).

Since evaluating a parametrized constraint may add new points to µ, termination
of the evaluation procedure is not guaranteed in the presence of recursive formulas,
which determine constraints (m,Q(y,m[y])) where Q also contains applications of m
to elements other than y. For example, an axiomatization of the factorial f as f [0] = 1
and ∀i • i > 0 =⇒ f [i] = i · f [i − 1] determines the constraint q = (f, i > 0 =⇒
f [i] = i · f [i − 1]). If µ[f] = (`0, `1), evaluating q for i = `0 introduces a new
map application at `0 − 1, which then introduces an application at `0 − 2, and so on.
Boogaloo evaluates such recursive constraints using fair unrolling similarly to [24],
based on the notion of guard: a parametrized constraint is guarded if has the form
(m,G(y) =⇒ B(y)). When Boogaloo’s iterative evaluation picks an element p =
(m, e, s), it nondeterministically chooses a subset D of all guarded constraints for m
and “disables” them in the evaluation determined by p: for a parametrized constraint
q = (m,G =⇒ B), it evaluates the constraint ¬G if q ∈ D, and G ∧ B otherwise.
For the “right” selection of D, recursive definitions are disabled, so that they do not
add new points to µ and evaluation terminates. In the factorial example, there are two

13

choices for f [`0]: disabling or enabling the guarded constraint. Disabling it terminates
the finitization process, producing an execution with `0 = 0; enabling the guarded
constraints produces one iteration (for f [`0 − 1]), which in turn recursively leads to the
same two choices, and so on. Unlike [24], which works only with function definitions
and thus assumes that guards are mutually exclusive and cover all cases, Boogaloo’s
fair enumeration applies to guards of any form and constraints other than equality; it
also provides an option to limit the number of unrollings, because recursive constraints
may be not well-founded (a sufficient condition for termination).

Nondeterminism. There are four sources of nondeterminism in Boogaloo seman-
tics: evaluation of quantified expressions (rules QUANT-T and QUANT-F), gotos, and
pick—involving the disabling of guarded constraints in Φ and constraint solving to se-
lect a solution Λ. Boogaloo enumerates nondeterministic choices using backtracking
monads (e.g. [9]). The command-line interface currently offers depth-first and fair ex-
ploration strategies, but the implementation easily accommodate others parametrically.

When executing goto statements, the order in which labels are tried may affect
progress: if the first chosen label leads back to the same statement, execution gets stuck
in a loop. To avoid this situation, Boogaloo keeps track of how often each label was
taken along the current execution path, and always tries labels in ascending order of
their frequencies (least frequent first). This strategy also has the nice effect of enumer-
ating shorter executions before longer ones in the long run. A similar strategy applies
to disabling parametrized constraints.

Since symbolic computation is speculative, it introduces the risk that long compu-
tations are constructed only to realize, when solving the symbolic constraints, that they
are infeasible. This risk is mitigated by the enumeration technique, which produces
short execution first. Moreover, whenever a constraint evaluates to the concrete value
⊥, the current execution path is immediately aborted. This mitigates the overhead in-
curred by nondeterministic evaluation of quantified expressions: such expressions are
likely to occur inside assume statements, thus branches where they evaluate to false are
immediately abandoned. Additionally, Boogaloo transparently tests the satisfiability of
the current constraints κ at various points during an execution, and proceeds only if
the constraints are satisfiable; unlike pick which may enumerate multiple solutions, a
satisfiability check does not cause additional nondeterminism. One can still explore the
trade-off between few expensive symbolic executions and many cheap concrete execu-
tions by adding pick directives at arbitrary points.

Minimization. In addition to producing short executions first, Boogaloo also uses
a minimization technique based on binary search (similar to the one in [12]) in order to
favor small integers for concrete values. In our experience, this significantly improves
readability: for example, a constraint “x is positive and divisible by 5” with minimiza-
tion produces the most natural solution x = 5 as first witness.

5 Experimental Evaluation

We evaluated Boogaloo on a choice of 15 examples from various sources5. Tab. 1 lists
the programs and some data about them. The bulk of the evaluation targets the veri-

5 Examples are available online at http://se.inf.ethz.ch/people/polikarpova/boogaloo/

14

http://se.inf.ethz.ch/people/polikarpova/boogaloo/

fication of algorithms of various kinds, listed in the top part of the table. For each of
these problems, we constructed a correct version equipped with consistent but gener-
ally incomplete specifications, and a buggy one, obtained by injecting implementation
or specification errors. We ran Boogaloo on both versions, with the goal of generating
executions: passing executions for the correct programs, and failing executions expos-
ing the bug for the buggy programs. The rest of the programs, in the bottom part of
Tab. 1, are examples of declarative programming, which exercise Boogaloo’s constraint
solving capabilities to generate outputs satisfying given properties, in the absence of im-
perative implementations. We now briefly mention the most interesting features of our
examples, and summarize the experimental results.

PROGRAM FEATURES LOC FUN ANNOTATIONS TIME BUG
A S U R E I N tΣ tC N tΣ tC

ArrayMax see Sec. 2 33 0 0 0 1 1 2 1 26 4 0 0 0 0
ArraySum recursive definition 34 1 0 0 1 1 1 2 26 75 2 1 0 0
BinarySearch complex precondition 49 1 0 0 2 2 3 2 26 2 0 0 0 0
BubbleSort complex postcond. and invariants 74 1 0 0 2 1 4 5 6 80 21 2 0 0
DutchFlag user-defined types [6] 96 3 0 0 2 2 8 6 7 132 43 1 0 0
Fibonacci recursive procedure 40 1 3 1 0 2 0 0 11 88 0 0 0 0
Invert complex pre- and postconditions 37 0 0 0 3 3 2 1 9 19 118 2 0 2
LinkedListTraversal heap model 49 3 2 0 0 1 1 1 8 50 54 2 0 0
ListInsert see [14] 52 1 0 0 2 1 1 0 6 78 5 1 0 0
QuickSort helper and recursive procedures 89 3 0 0 2 1 6 0 3 4 1 2 ∞ 0
QuickSort PI partial implementation 79 3 0 0 2 2 9 0 4 ∞ 64 2 1 0
TuringFactorial unstructured control flow 37 1 2 5 0 1 1 0 11 1 0 3 0 0
Split linear arithmetic [13] 22 0 0 0 0 1 3 0 – 0 0
SendMoreMoney fixed-size array constraints [12] 36 1 0 0 15 0 0 0 – 2 2
Primes recursive definition [12] 31 2 0 0 0 0 2 0 8 7 4
NQueens variable-size array constraints 37 2 1 0 3 0 0 0 11 45 1

Table 1. Programs tested with Boogaloo: name, main features, lines of code, number of specifi-
cation functions, annotations (axioms A, asserts S, assumes U , requires R, ensures E, loop
invariants I), time to generate passing executions, time to generate failing executions for the
buggy version. Times in seconds, rounded to the nearest integer: for a given input sizeN , time tΣ
with fully symbolic execution and tC with concretization.∞ denotes a timeout of 180 seconds.

Verification. The majority of the programs in the top part of Tab. 1 are slightly
adapted examples from the Boogie project repository6, verification competitions [10],
or previous work [6,14]; they contain features that exercise various aspects of the test-
case generation process. Strong preconditions (such as an array being sorted in Binary-
Search or being a permutation in Invert) make generating valid executions challenging
using standard testing enumeration techniques. Inlining (available in Boogie) scales
poorly with the recursive procedure calls of Fibonacci and QuickSort. The specifica-
tions of BinarySearch, BubbleSort, QuickSort, and Invert use nested universal quan-
tifiers with bound variables mentioned in different predicates. QuickSort PI (partial
implementation) is a variant of QuickSort whose partitioning procedure has a complete
pre- and postcondition but no implementation. This may represent an intermediate de-
velopment step where we want to validate the overall logic of QuickSort before pro-
ceeding with implementing the partitioning procedure. Boogaloo simulates array parti-

6 http://boogie.codeplex.com/

15

http://boogie.codeplex.com/

tioning based only on its specification—something unachievable with traditional testing
techniques. The injected bugs are mostly off-by-one errors and missing preconditions,
both of which frequently occur in practice; the bugs in BinarySearch are among those
found in textbooks [22].

Declarative programming. The other four examples come from previous work
on constraint programming and code synthesis [13,12], and involve linear arithmetic,
recursively defined functions, and quantification over variable-sized arrays. Constraints
are declared using assume statements or procedures without implementation; Boogaloo
generates program outputs satisfying the constraints.

Experimental results. All problems in Tab. 1 but two include a parameter N that
defines the input size (the input array or list for most problems). Column TIME displays
the value of N used in the experiments; and the time required to generate a passing
execution with different concretization strategies: tΣ corresponds to fully symbolic ex-
ecutions where the state is concretized only once after terminating; tC , instead, corre-
sponds to executions where the state is concretized before every jump statement. Col-
umn BUGGY displays the same time measures for the buggy programs; for these, the
value of N corresponds to the input size exposing the bug found by Boogaloo (which
is the smallest possible for all programs). In all experiments we imposed a timeout of
180 seconds, to reflect the expectation to use Boogaloo with good responsiveness.

Concretizing before jumping generally leads to faster executions, even with an
order-of-magnitude difference. This strategy may lead to heavy backtracking when the
constraints on a given logical variable are imposed incrementally, with one or more
concretization points in between, producing potentially lengthy combinatorial enumer-
ations. In most examples this does not happen—constraints are “local”—and hence
concretizing does not degrade performance. The performance difference between fully
symbolic and concretized executions for the same example is particularly conspicuous
in the current prototype implementation, which uses Z3 through a pure API and hence
cannot make use of incremental constraint solving (which would be useful to avoid
solving the same constraints multiple times during a single symbolic execution). We
speculate that incremental solving would greatly reduce the performance difference be-
tween the two concretization strategies. Even though the current implementation has a
big potential for improving performance, the experimental results are encouraging: in
particular, exposing bugs—the primary purpose of Boogaloo—is fast, even in the pres-
ence of partial implementations. Understanding the unexpected behavior with Quick-
Sort, where fully symbolic execution times out, requires further investigation.

6 Related Work

Debugging failed verification attempts. While still an incipient research area, a few
techniques have recently been proposed to help understand and debug failed attempts of
program verifiers. Sec. 2 already mentioned the Boogie Verification Debugger (BVD,
[14]); the Spec# debugger [21] implements similar functionalities which construct con-
crete counterexamples from failed Boogie runs. Two-step verification [27] compares
verification with different semantics (based on unrolling and inlining) to attribute veri-
fication failures to either inconsistent or incomplete specifications.

16

The fact that all these approaches are built around the output provided by a program
verifier determines their main limitations compared to Boogaloo. As we demonstrated
in Sec. 2, when verification fails because of insufficient specification, the counterexam-
ples generated by BVD or similar tools are typically uninformative or even misleading,
because they ignore the implementation even when it is correct (e.g., a loop), unless
it is comes with an accurate specification (e.g., a loop invariant). Boogaloo supports
a more incremental approach, where users can concentrate on fixing major bugs first.
Sec. 2 also discussed how inlining and unrolling (available in Boogie and automatically
used in two-step verification) ameliorate these problems, but they are also not directly
comparable to Boogaloo, since they scale poorly and require to know explicit unrolling
bounds. Of course, the finitary semantics implemented by Boogaloo comes with its
own shortcomings: if the shortest counterexamples are very long, it may be infeasible
to generate them by enumeration, whereas a static verifier’s modular reasoning is insen-
sitive to the length of concrete execution paths since it is entirely symbolic; tools such
as BVD can directly work on any failed verifier attempts.

Another approach to produce readable counterexamples is restricting the input lan-
guage (e.g., [24]), trading off expressiveness for decidability. Bounded model-checking
techniques (e.g., [3]) also target standard programming languages and the verification of
properties that do not include features such as infinite mappings and unbounded quan-
tification. Boogaloo follows a different course: it supports the entire Boogie language
as used in practice, which does not restrict expressiveness a priori, but may produce
spurious counterexamples.

Testing is the process of executing programs to make them fail. Since it is based on
execution, it is typically limited to violations of simple properties that can be efficiently
evaluated at runtime and are implicit in the programming language semantics (e.g., null
dereferencing). Languages such as Eiffel [23], JML [15], and Jahob [28] incorporate a
richer language for annotations that is still executable, so as to extend the applicability
of standard testing techniques. Another line of research in testing is the combination
with static techniques, with the goal of complementing each other’s strengths to search
the input state space more efficiently. In [25], we combined testing with program prov-
ing at a high level. A different array of techniques combines testing with symbolic
execution; see the recent survey [2]. Boogaloo is also based on symbolic execution, but
with a different overall goal; as future work, we will leverage other techniques from
symbolic execution to improve the enumeration of executions.

Constraint programming supports program definitions based on declarative con-
straints, describing properties of the solution, rather than on traditional imperative con-
structs. Logic programming extends functional programming languages [1]; more re-
cent approaches combine declarative constraints with imperative languages [20,12].
All these approaches restrict the expressiveness of the constraint language to have pre-
dictable performance and some guarantees about soundness, completeness, or both. As
briefly demonstrated in Sec. 5, Boogaloo can also be used as a Boogie-based constraint
programming language. Unless we also restrict the language of assertions, we cannot
offer strong guarantees about properties of the executions generated by Boogaloo (see
the end of Sec. 3.2 for a discussion). However, the usage as a constraint programming
language brings much flexibility to Boogaloo as a testing environment for Boogie pro-

17

grams, since users can achieve different trade-offs between modularity and scalability
opting for the implementation or the specification semantics.

7 Conclusions and Future Work

We presented a technique and a prototype implementation to execute programs with
complex specifications and nondeterministic constructs, written in the Boogie interme-
diate verification language.

Among the various directions for future work, let us mention: integrating domain-
specific decision procedure to reduce spurious counterexamples; improving the perfor-
mance by solving constraints incrementally and by pruning infeasible branches; more
experiments with automatically generated Boogie translations; and a user study to as-
sess the practical usability alongside Boogie.

References

1. S. Antoy and M. Hanus. Functional logic programming. Commun. ACM, 53(4):74–85, 2010.
2. C. Cadar and K. Sen. Symbolic execution for software testing: three decades later. Commun.

ACM, 56(2):82–90, 2013.
3. E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based predicate

abstraction for ANSI-C. In TACAS, volume 3440 of LNCS, pages 570–574, 2005.
4. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinenbach, M. Moskal, T. Santen, W. Schulte,

and S. Tobies. VCC: A practical system for verifying concurrent C. In TPHOLs, volume
5674 of LNCS, pages 23–42. Springer, 2009.

5. L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, pages 337–340,
2008.

6. C. A. Furia, B. Meyer, and S. Velder. Loop invariants: Analysis, classification, and examples.
http://arxiv.org/abs/1211.4470, 2012.

7. D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.
8. B. Jacobs and F. Piessens. The VeriFast program verifier. Technical Report CW-520, De-

partment of Computer Science, Katholieke Universiteit Leuven, Aug. 2008.
9. O. Kiselyov, C.-c. Shan, D. P. Friedman, and A. Sabry. Backtracking, interleaving, and

terminating monad transformers: (functional pearl). In ICFP, pages 192–203. ACM, 2005.
10. V. Klebanov et al. The 1st verified software competition: Experience report. In FM, volume

6664 of LNCS, pages 154–168. Springer, 2011.
11. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe, K. En-

gelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4: Formal
verification of an OS kernel. In SOSP, pages 207–220. ACM, 2009.

12. A. Köksal, V. Kuncak, and P. Suter. Constraints as control. In POPL, pages 151–164, 2012.
13. V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In PLDI,

pages 316–329. ACM, 2010.
14. C. Le Goues, K. R. M. Leino, and M. Moskal. The Boogie verification debugger (tool paper).

In SEFM, volume 7041 of LNCS, pages 407–414. Springer, 2011.
15. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How the design of JML

accommodates both runtime assertion checking and formal verification. Sci. Comput. Pro-
gram., 55(1-3):185–208, 2005.

18

http://arxiv.org/abs/1211.4470

16. D. Leinenbach and T. Santen. Verifying the Microsoft Hyper-V hypervisor with VCC. In
Proceedings of the 2nd World Congress on Formal Methods, FM ’09, pages 806–809, Berlin,
Heidelberg, 2009. Springer-Verlag.

17. K. R. M. Leino. This is Boogie 2, 2008. http://goo.gl/QsH6g.
18. K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR-

16, volume 6355 of LNCS, pages 348–370. Springer, 2010.
19. K. R. M. Leino and M. Moskal. Usable auto-active verification. In Usable Verification

Workshop. http://fm.csl.sri.com/UV10/, 2010.
20. A. Milicevic, D. Rayside, K. Yessenov, and D. Jackson. Unifying execution of imperative

and declarative code. In ICSE, pages 511–520. ACM, 2011.
21. P. Müller and J. N. Ruskiewicz. Using debuggers to understand failed verification attempts.

In FM, volume 6664 of LNCS, pages 73–87. Springer, 2011.
22. R. E. Pattis. Textbook errors in binary searching. In SIGCSE, pages 190–194. ACM, 1988.
23. N. Polikarpova, C. A. Furia, Y. Pei, Y. Wei, and B. Meyer. What good are strong specifica-

tions? In ICSE, pages 257–266. ACM, 2013.
24. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs. In SAS,

volume 6887 of LNCS, pages 298–315. Springer, 2011.
25. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Usable verification of object-oriented

programs by combining static and dynamic techniques. In SEFM, volume 7041 of LNCS.
Springer, 2011.

26. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Verifying Eiffel programs with Boogie.
In BOOGIE workshop, 2011. http://arxiv.org/abs/1106.4700.

27. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer. Program checking with less hassle. In
VSTTE. To appear, 2013.

28. K. Zee, V. Kuncak, M. Taylor, and M. C. Rinard. Runtime checking for program verification.
In RV, volume 4839 of LNCS, pages 202–213. Springer, 2007.

19

http://goo.gl/QsH6g
http://fm.csl.sri.com/UV10/
http://arxiv.org/abs/1106.4700

A New Experimental Results

PROGRAM TIME BUG
N tΣ tC N tΣ tC

ArrayMax 46 0.5 0.4 0 0.0 0.0
26 0.2 0.2

ArraySum 46 0.3 0.4 1 0.0 0.0
26 0.1 0.2

BinarySearch 46 0.1 0.0 0 0.1 0.2
26 0.1 0.0

BubbleSort 11 9.3 113.9 2 0.1 0.3
6 0.6 6.1

15 115.1 ∞
DutchFlag 20 3.8 7.6 1 0.0 0.0

7 0.3 0.6
Fibonacci 19 93.9 3.7 0 0.0 0.0

11 0.3 0.1
20 ∞ 6.4

Invert 10 48.1 1.4 2 0.0 0.1
9 11.2 1.0

20 ∞ 13.3
LinkedListTraversal 20 61.8 2.5 2 0.0 0.0

8 0.5 0.2
ListInsert 4 2.4 4.1 1 0.0 0.0

6 41.4 ∞
7 164.5 ∞

QuickSort 15 8.4 177.9 2 ∞ 0.1
3 0.2 0.3

20 36.1 ∞
QuickSort PI 4 0.2 42.1 2 0.1 ∞

13 111.6 ∞
TuringFactorial 21 0.2 0.2 3 0.0 0.0

11 0.1 0.1
Split – 0.0 0.0
SendMoreMoney – 0.3 0.3
Primes 8 0.2 0.9

10 ∞ 5.6
NQueens 15 1.2 31.8

11 0.2 0.8
25 26.6 ∞

Table 2. New experimental results with Boogaloo v. 0.4.1/2013-09-18 on the same programs as
in Table 1. For each program, the table lists the time performance: on the largest instance size
(N) among those tried where neither the symbolic (tΣ) nor the concrete (tC) strategy timed out;
on the same instance size as Table 1 (for direct comparison); on the largest instance size where at
least one strategy did not time out. When two or more lines coincide, they are only listed once.

20

	To Run What No One Has Run Before: Executing an Intermediate Verification Language

