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ABSTRACT
Can one estimate the number of remaining faults in a soft-
ware system? A credible estimation technique would be im-
mensely useful to project managers as well as customers.
It would also be of theoretical interest, as a general law of
software engineering. We investigate possible answers in the
context of automated random testing, a method that is in-
creasingly accepted as an effective way to discover faults.
Our experimental results, derived from best-fit analysis of a
variety of mathematical functions, based on a large number
of automated tests of library code equipped with automated
oracles in the form of contracts, suggest a poly-logarithmic
law. Although further confirmation remains necessary on
different code bases and testing techniques, we argue that
understanding the laws of testing may bring significant ben-
efits for estimating the number of detectable faults and com-
paring different projects and practices.

1. INTRODUCTION
A scientific discipline is characterized by general laws,

such as Maxwell’s equations. Where the topics of discourse
involve human phenomena, and belong to engineering rather
than science, the laws cannot be absolute truths compara-
ble to the laws of nature, and often involve a probabilistic
element; but they should still describe properties and con-
straints that govern all or almost all instances of the phe-
nomena under consideration.

Software engineering is particularly in need of such laws.
Some useful ones have already been identified, in areas such
as project management; an example [5, 12] is the observa-
tion, first expressed by Barry Boehm on the basis of his
study of a large database of projects, that every software
project has a nominal cost, deducible from the project’s
overall characteristics, from which it is not possible to devi-
ate – whether by giving the project more time or by includ-
ing more developers – by more than about 25%.

One area in which such a general law would be of partic-
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ular interest is testing. It has been well known since at least
Lehmann and Belady’s seminal work on faults (“bugs”) in
successive IBM OS 360 releases [4] that if a project tracks
faults in a sufficiently diligent way the evolution of the num-
ber of faults in successive releases follows regular patterns.
Is it possible to turn this general, informal observation into
a precise law of software testing, on which project managers
and developers could rely to estimate, from the number of
faults uncovered so far through testing, the number of de-
tectable faults in an individual module or an entire system?
This is the question that we set out to explore, and on which
we are reporting our first results.

1.1 Expected benefits
Were it available, and backed by experimental evidence

covering a broad enough base of projects and environments
to make it credible, a law describing the rate of fault detec-
tion would be of considerable interest to the industry.

An immediate benefit would be to help project managers
answer one of the most common and also toughest questions
they face: can we ship yet? A release should be shipped
early enough to avoid missing a market opportunity or be-
ing scooped by the competition; but not too early if this
means that so many faults remain as to provoke an adverse
reaction from the market. Another application, for indi-
vidual developers, is to estimate the amount of testing that
remains necessary for a module or a subsystem. Yet another
benefit would be to help assess how a project’s or organiza-
tion’s fault patterns differ, for better or worse, from average
industry practices. Such an assessment would be particu-
larly appropriate in organizations applying strict guidelines,
for example as part of CMMI [8]. Also of interest is the
purely intellectual benefit of gaining insights into the na-
ture of software development, in the form of a general law of
software engineering that describes fault patterns and might
help in the effort to avoid faults in the first place.

1.2 Automatic testing
In the present work, we set out to determine through em-

pirical study if a general law of testing exists, predicting
the number of detectable faults. The context of the study
is automatic testing, in which test cases are not manually
prepared by humans but generated automatically through
appropriate algorithms. More specifically, we rely on auto-
mated random testing, where these algorithms use partly
random techniques. Once dismissed as ineffective [14], ran-
dom testing has shown itself, in recent years, to be a vi-
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able technique; such tools as AutoTest [13] for Eiffel and
Randoop [19] and YETI [17] for Java and .NET, which ap-
ply automatic random testing, succeed by the criterion that
matters most in practice: finding faults in programs, includ-
ing released libraries and systems.

With automated testing, the user selects a number of mod-
ules – in object-oriented programming, classes – for testing;
the testing tool then creates objects (class instances) and
performs method calls on them with arguments selected ac-
cording to a strategy that involves a random component. It
then records any abnormal behavior (failure) that may be
signaling a fault in the software.

The work described here relies on automated random test-
ing as just described. This approach has the advantage of
simplicity, and of not relying on hard-to-control human ac-
tions. Another advantage is reproducibility (up to the vari-
ation caused by the choice of seeds in random number gen-
eration). It also has the disadvantage of limiting the gen-
eralizability of our findings (Section 3.2); but it is hardly
surprising that a general empirical understanding of test-
ing is likely to require much more investigation and varied
experiments.

The paper’s main experiments involve software equipped
with contracts (specification elements embedded in the soft-
ware and subject to run-time evaluation, such as pre- and
postconditions and class invariants); in such a context, the
testing process focuses on generating failures due to contract
violations. Since contracts are meant to express the specifi-
cation of the methods and classes being tested, they provide
testing oracles [23] to reliably identify faults (as opposed
to mere failures). The bulk of our experiments (Section 2.2)
target code with contracts and studies the evolution of found
faults over time. Therefore, the goal is to obtain experimen-
tally a general law F(t), where t is the testing time, mea-
sured in number of drawn test cases and F(t) is the number
of unique faults uncovered by the tests up to time t.

If contracts are not available, a fully automated approach
must rely on failures such as arithmetic overflow or running
out of memory. In these cases, a methodological issue arises
in practice since automated testing finds failures rather than
faults; obtaining F requires a sound policy to determine
whether two given failures relate to the same fault. We hint
at some ways to address this problem in Section 2.3.

Extended version. More detailed data and graphs are
available in an extended version of the paper at:

http://arxiv.org/abs/1211.3257

2. EXPERIMENTS
The experiments run repeated random testing sessions

on Eiffel classes (Section 2.2) with AutoTest, and on Java
classes (Section 2.3) with YETI. Each testing session is char-
acterized by:

• c: the tested class;

• T: the number of rounds in the simulation, that is the
number of test cases (valid and invalid) drawn;

• ϕ : [0..T] → N: the function counting the cumulative
number of unique failures or faults after each round.

The dataset Dc for a class c consists of a collection of count-
ing functions ϕ1, ϕ2, . . . , ϕSc , where Sc is the total number
of testing sessions on c. In our experiments, all source code

was tested “as is”, without injecting any artificial error or
modifying it in any way.

Given a dataset Dc, consider the mean function of the
fault count:

φc
mean(k) =

1

Sc

∑
1≤i≤Sc

ϕi(k)

as well as the median φc
median(k). We considered nine model

functions, described in Section 2.1, suggested by various
sources, and fit each model function to each of φc

mean(k)
and φc

median(k) from the experimental data. We used Mat-
lab 2011 for all data analysis and fitting computations. The
following sections illustrate the main results.

2.1 Model functions
We consider a number of “reasonable” fitting functions,

suggested either by intuition or by the theoretical model
discussed in Section 3.1. Some of the functions are special
cases of other functions; nonetheless, it is advisable to try to
fit both – special and general case – because the performance
of the fitting algorithms may be sensitive to the form in
which a function is presented. In all the examples, lower-
and upper-case names other than the argument x denote
parameters to be instantiated by fitting.

Following an original intuition of analogy with biological
phenomena – suggested in related work [16] – we consider
the Michaelis-Menten equation:

Φ1(x) =
ax

x+B
(1)

as well as its generalizations into a rational function of third
degree:

Φ2(x) =
ax3 + bx2 + cx+ d

Ax3 +Bx2 + Cx+D
(2)

and a rational function of arbitrary degree:

Φ3(x) =
axb + c

AxB + C
(3)

The model analyzed in Section 3.1 suggests including func-
tional forms similar to polynomials, as well as logarithms
and exponentials. Hence, we consider logarithms to any
power:

Φ4(x) = a logb(x+ 1) + c (4)

and poly-logarithms of third degree:

Φ5(x) = a log3(x+1)+b log2(x+1)+c log(x+1)+d (5)

where the translation coefficient +1 is needed because the
fault function φ is such that φ(0) = 0, but log(0) = −∞.
The base of the logarithm is immaterial because the mul-
tiplicative parameters can accommodate any. We also con-
sider exponentials of powers:

Φ6(x) = abx
1/c

+ d (6)

Polynomials up to degree three are covered by Φ2, but we
still consider some special cases explicitly; third degree:

Φ7(x) = ax3 + bx2 + cx+ d (7)

arbitrary degree:

Φ8(x) = axb + c (8)

and third degree with negative powers:

Φ9(x) = ax−3 + bx−2 + cx−1 + d (9)
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2.2 Experiments with Eiffel code
Experiments with Eiffel used AutoTest [13]; they targeted

42 Eiffel classes, from the widely used open-source data
structure libraries EiffelBase [10] and Gobo [11]. Table 1
reports the statistics about the testing sessions with Au-
toTest on these classes; for each class, the table lists the
number of testing sessions (S), the test cases sampled per
session (T), the maximum number of unique faults found
(F, corresponding to unique contract violations), the mean
sampled standard deviation and skewness (E [σ] ,E [γ]) of
the faults found across the class’s multiple testing sessions,
and the mean and standard deviation (E [∆] , σ[∆]) of the
new faults found with every test case sampled (thus, for
example, E [∆] = 10−3 means that a new fault is found
every thousand test cases on average). The bottom rows
display mean, median, and standard deviation of the values
in each column. The data was collected according to the
suggested guidelines for empirical evaluation of randomized
algorithms [2]; in particular, the very large number of drawn
test cases makes the averaged data robust with respect to
statistical fluctuations.

2.2.1 Fitting results
Table 2 reports the result of fitting the models Φ1–Φ9

on the mean fault count φc
mean(k) curves; for each class, col-

umn Best Fit Ranking ranks the Φi’s from the best fitting
to the worst, according to the coefficient of determination
R2 (the higher, the better), and the root mean squared er-
ror RMSE (the smaller, the better); the rankings according
to the two measures agreed in all experiments. The other
columns report the R2 and RMSE scores of the best fit, and
the absolute value of the difference between such scores for
the best fit and the same scores for Φ5. The data shows that
Φ5 emerges as consistently better than the other functions;
as the bottom of the table summarizes, Φ5 is the best fit in
62% and one of the top two fits in 90% of the cases; when
it is not the best, it fares within 1% of the best in terms
of scores. A Wilcoxon signed-rank test confirms that the
observed differences between Φ5 and the other functions are
highly statistically significant: for example, a comparison of
the R2 values indicates that the values for Φ5 are different
(smaller) with high probability (7.14·10−7 < p < 1.65·10−8)
and large effect size (between 0.54 and 0.62, computed using
the Z-statistics). The same data with respect to the median
curves is qualitatively the same as with the mean; hence we
do not report it in detail.

In a few cases, models other than Φ5 achieve a higher
fitting score even if visual inspection of the curves shows that
it is obviously unsatisfactory. The reasons for this behavior
are arguably due to numerical errors; there are, however, a
few cases of fits with high scores but visibly unsatisfactory,
whose fitting process converged without Matlab signaling
any numerical approximation problem. In any case, visual
inspection confirms that Φ5 is a visibly proper fit to ϕ in all
cases.

2.2.2 Poly-logarithmic fits
Once acknowledged that the evidence points towards a

poly-logarithmic law, it remains the question of which poly-
nomial degree achieves the best fit. Consider seven poly-
logarithmic model functions Lk, 1 ≤ k ≤ 7, of various
degrees. L1–L5 have degree equal to the number of their

nonzero coefficients plus one:

Lk(x) = c0 +
∑

1≤j≤k

cj logj(x+ 1) , 1 ≤ k ≤ 5 (10)

L6 and L7 are, instead, binomials whose degree is a param-
eter; namely, L6 equals Φ4 and:

L7(x) = a log1/b(x+ 1) + c (11)

The results show that it is always the case that L5 >
L4 > L3 > L2 > L1, that is the higher the degree the bet-
ter the fit; in hindsight, this is an unsurprising consequence
of the fact that models of higher degree offer more degrees
of freedom, hence they are more flexible. L3 = Φ5, how-
ever, still fares quite well on average; the few cases where its
performance is as much as 10% worse than L5 correspond
to more irregular curves with fewer faults and hence fewer
new datapoints, such as for class ARRAYED QUEUE. Fi-
nally, L6 and L7 occasionally rank third; whenever this hap-
pens, however, the difference with the best (and with Φ5) is
negligible. In all, Φ5 seems to be a reasonable compromise
between flexibility and economy, but poly-logarithmic func-
tions of higher order could be considered when useful. Notice
that, even if in principle we could obtain enough degrees of
freedom with any function of arbitrarily high degree, only
poly-logarithmic works for reasonable degrees; for example,
polynomials of fifth degree (which generalize Φ7) never pro-
vide good fits.

2.3 Experiments with Java code
With the goal of confirming (or invalidating) the results of

the Eiffel experiments, we used YETI to test 9 Java classes
from java .util and 29 classes from java . lang. For lack of
space, we only present a summary of the results and high-
light the differences in comparison with Eiffel and the ques-
tions about the comparison that remain open.

Unlike in Eiffel, where the code has contracts, interpreting
a Java failure to know whether it is a “real” fault cannot be
done in a fully automated way in normal Java code without
contracts. To address this point at least in part, YETI col-
lects all the exceptions triggered during random testing and
considers the following exceptions as not provoked by a fault,
but merely accidents of the testing process: (1) declared ex-
ceptions, including RuntimeException, as client code knows
that they may be thrown and may even be part of a code
pattern; (2) InvalidArgumentException, comparable to pre-
condition violations. This still falls short of a complete iden-
tification of real faults, but it helps to reduce the number of
spurious failures.

Given this filtering performed by YETI, the experiments
with the 38 Java classes are in two parts. The first part tar-
gets the 9 java . util classes and 2 classes from java . lang,
and analyzes all unique failures filtered by YETI as de-
scribed above (two failures are the same if they generate
the same stack exception trace). The second part targets
the 29 classes from java . lang and only reports failures man-
ually pruned by discarding all failures that reflect behavior
compatible with the informal documentation (for example,
division by zero when the informal API documentation re-
quires an argument to be non-zero). In this case, we get to a
fairly reasonable approximation of real faults; hence we will
refer to the first part of Java experiments as “failures” and
to the second as “faults”.
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Table 1: Eiffel classes statistics.
Class S T F E [σ] E [γ] E [∆] σ[∆]
ACTIVE LIST 11 2.14E+06 18 1.0553 -4.88E+00 8.39E-04 2.27E-19
ARRAY 11 1.58E+06 69 5.0972 -3.36E+00 4.24E-03 9.02E-05
ARRAYED CIRCULAR 15 7.77E+05 52 5.2882 -2.09E+00 6.12E-03 2.75E-04
ARRAYED LIST 14 1.25E+06 24 1.4279 -4.06E+00 1.70E-03 9.89E-05
ARRAYED QUEUE 12 1.99E+06 6 0.3742 -2.00E+01 2.56E-04 1.45E-05
ARRAYED SET 15 2.69E+06 15 1.0823 -3.72E+00 5.34E-04 2.35E-05
BINARY TREE 13 2.25E+06 40 5.3739 -2.14E+00 1.66E-03 7.56E-05
BOUNDED QUEUE 14 2.34E+06 5 0.3135 -1.46E+01 2.14E-04 0.00E+00
COMPACT CURSOR TREE 14 5.56E+05 67 5.6622 -2.47E+00 1.13E-02 3.35E-04
DS ARRAYED LIST 12 2.07E+06 91 7.0082 -3.69E+00 4.29E-03 6.65E-05
DS AVL TREE 15 5.10E+05 16 2.0347 -1.82E+00 2.53E-03 2.02E-04
DS BILINKED LIST 14 2.70E+06 30 2.2035 -3.77E+00 8.90E-04 9.43E-05
DS BINARY SEARCH TREE 11 8.95E+05 15 1.8224 -1.93E+00 1.51E-03 9.16E-05
DS BINARY SEARCH TREE SET 12 5.96E+05 5 0.4048 -6.31E+00 5.18E-04 1.67E-04
DS HASH SET 14 1.86E+06 19 1.5352 -1.32E+00 6.31E-04 1.83E-04
DS HASH TABLE 14 1.66E+06 25 2.0158 -1.39E+00 1.07E-03 1.88E-04
DS LEFT LEANING RED BLACK TREE 14 7.18E+05 33 2.9464 -3.45E+00 4.32E-03 1.73E-04
DS LINKED LIST 14 2.17E+06 94 7.7943 -2.67E+00 3.88E-03 1.88E-04
DS LINKED QUEUE 14 2.23E+06 9 1.3880 -4.98E-01 3.05E-04 5.89E-05
DS LINKED STACK 14 2.22E+06 10 1.4648 -5.39E-01 3.57E-04 6.23E-05
DS MULTIARRAYED HASH SET 14 2.61E+06 22 3.7948 -7.99E-01 7.61E-04 5.60E-05
DS RED BLACK TREE 15 6.62E+05 32 2.9321 -3.55E+00 4.62E-03 9.67E-05
FIXED TREE 13 7.54E+05 49 4.9311 -2.47E+00 6.25E-03 1.67E-04
HASH TABLE 14 2.95E+06 24 3.6472 -8.98E-01 6.59E-04 8.49E-05
LINKED AUTOMATON 14 4.03E+06 14 0.4384 -1.74E+01 3.28E-04 1.06E-05
LINKED CIRCULAR 15 1.50E+06 40 4.2747 -1.92E+00 2.50E-03 1.10E-04
LINKED CURSOR TREE 14 1.34E+06 51 4.6304 -1.75E+00 3.56E-03 1.42E-04
LINKED DFA 13 2.72E+06 135 12.9783 -1.97E+00 4.67E-03 1.69E-04
LINKED LIST 14 3.41E+06 21 1.4436 -2.84E+00 5.30E-04 3.89E-05
LINKED PRIORITY QUEUE 14 1.20E+06 23 2.1477 -2.34E+00 1.80E-03 6.35E-05
LINKED SET 14 2.59E+06 29 2.1800 -3.45E+00 1.03E-03 4.48E-05
LINKED TREE 15 1.68E+06 136 22.3981 -9.56E-01 7.20E-03 4.06E-04
MULTI ARRAY LIST 14 4.73E+05 35 3.4960 -3.22E+00 6.92E-03 3.66E-04
PART SORTED SET 13 3.27E+06 33 3.6535 -2.12E+00 9.60E-04 3.43E-05
PART SORTED TWO WAY LIST 13 2.61E+06 36 3.7867 -2.01E+00 1.28E-03 5.73E-05
SORTED TWO WAY LIST 15 2.60E+06 34 3.3816 -2.37E+00 1.22E-03 4.64E-05
SUBSET STRATEGY TREE 15 3.08E+06 20 1.8972 -2.87E+00 5.84E-04 3.47E-05
TWO WAY CIRCULAR 13 1.53E+06 41 4.3326 -1.88E+00 2.46E-03 1.37E-04
TWO WAY CURSOR TREE 13 1.35E+06 50 4.5548 -1.86E+00 3.56E-03 1.11E-04
TWO WAY LIST 15 2.01E+06 22 1.7119 -3.45E+00 9.61E-04 6.42E-05
TWO WAY SORTED SET 14 3.09E+06 47 4.2784 -3.43E+00 1.47E-03 3.29E-05
TWO WAY TREE 14 2.46E+06 163 28.6749 -1.02E+00 6.27E-03 1.77E-04
Mean 14 1.93E+06 40 4.3299 -3.55E+00 2.54E-03 1.15E-04
Median 14 2.04E+06 31 3.1640 -2.42E+00 1.49E-03 9.09E-05
Stdev 1 9.04E+05 36 5.3955 4.08E+00 2.49E-03 9.59E-05

Tables 3–4 report the summary statistics about the testing
sessions with YETI on all classes, with the same data as for
Eiffel (see Section 2.2). The data for faults, where manual
pruning eliminated the vast majority of failures as spurious,
has far fewer significant datapoints. Skewness is not com-
putable when there are no faults found, which happens for
15 classes; hence the summary statistics about skewness are
immaterial (NaN stands for “Not a Number”).

Table 3: Java classes tested for failures: statistics.
Summary S T F E [σ] E [γ] E [∆] σ[∆]
Mean 30 1.23E+05 32 3.9044 -8.02E+00 1.03E-02 1.86E-04
Median 30 1.18E+05 15 1.7799 -6.10E+00 7.16E-03 6.68E-05
Stdev 1.65E+04 29 3.8803 4.70E+00 8.86E-03 2.63E-04

Table 4: Java classes tested for faults: statistics.
Summary S T F E [σ] E [γ] E [∆] σ[∆]
Mean 4 4.68E+05 2 0.2356 NaN 1.73E-03 2.51E-05
Median 4 2.61E+05 0.0000 NaN 0.00E+00 0.00E+00
Stdev 1 9.45E+05 3 0.4094 NaN 2.72E-03 1.26E-04

Fitting results
We tried to fit the models Φ1,Φ2,Φ4,Φ5 on the mean fault
count φc

mean(k) curves, for both Java failures and faults. The
data is somewhat harder to fit than in the Eiffel experiments,
and in fact we had to exclude the other models because they
could produce converging fixes in only a fraction of the ex-
periments. In comparison with the Eiffel data, there is a

detectable overall difference: Φ2 and Φ1 seem to emerge as
the best models, whereas Φ5 is best only in a limited num-
ber of cases. Looking at the R2 scores, Φ1 and Φ2 alternate
as best model for the failure curves, and their difference is
often small (p = 0.067 and effect size 0.398); for the fault
curves, Φ1 ranks first in the majority of classes, but its differ-
ence w.r.t. Φ2 is statistically insignificant (p = 0.5 and effect
size 0.095). A common phenomenon is that the majority of
curves φc

mean(k) with YETI show an horizontal asymptote,
which Φ1 or Φ2 can accommodate much better than Φ5 can.

A closer look suggests that the differences w.r.t. the Eif-
fel experiments may still be reconcilable. First, in the ma-
jority of cases of failures, Φ5 fits to within the 5% of the
best model; the only exceptions are the java . util classes
ArrayList, Hashtable, and LinkedList where visual inspection
shows curves with a steeper initial phase that Φ2 fits best,
and where Φ1 and Φ5 behave similarly. For the fault exper-
iments, the picture is more varied; but Φ5 fits to within the
20% of the best models in all classes but three; and the qual-
ity of fitting a certain model is much more varied because of
the small number of faults found in these experiments (but
we excluded from these statistics the classes with no faults
found). Finally, the difference between Φ2 and Φ5 is often
statistically insignificant; the difference between Φ1 and Φ5

is significant (p ' 0.2) but not large for faults (effect size
0.3); in contrast, the difference between Φ5 and Φ4 is highly
statistically significant and large (p < 10−3 and effect size
from 0.43 to 0.62). In all, further experiments are necessary
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Table 2: Testing of Eiffel classes: best fits with mean.
Class Fit Ranking R2 (best) RMSE (best) R2 (∆ best) RMSE (∆ best)
ACTIVE LIST 2 5 4 1 9 6 8 3 7 0.9825 0.1304 0.0108 -0.0353
ARRAY 5 4 1 9 8 6 3 7 2 0.9894 0.5151 0.0000 0.0000
ARRAYED CIRCULAR 5 3 4 8 1 2 9 6 7 0.9978 0.2461 0.0000 0.0000
ARRAYED LIST 3 5 4 1 8 9 6 7 2 0.9877 0.1485 0.0202 -0.0932
ARRAYED QUEUE 8 5 4 3 1 9 2 6 7 0.7299 0.1547 0.0027 -0.0008
ARRAYED SET 5 4 1 2 8 9 6 3 7 0.9550 0.2078 0.0000 0.0000
BINARY TREE 3 5 4 8 1 7 9 6 2 0.9987 0.1943 0.0030 -0.1566
BOUNDED QUEUE 5 4 1 3 2 9 6 8 7 0.8048 0.1043 0.0000 0.0000
COMPACT CURSOR TREE 5 4 3 8 1 2 9 6 7 0.9830 0.7254 0.0000 0.0000
DS ARRAYED LIST 5 4 1 8 2 9 6 3 7 0.9860 0.8201 0.0000 0.0000
DS AVL TREE 5 4 8 3 1 2 9 6 7 0.9861 0.2299 0.0000 0.0000
DS BILINKED LIST 5 4 3 1 2 9 6 8 7 0.9947 0.1528 0.0000 0.0000
DS BINARY SEARCH TREE 5 3 4 8 1 2 9 6 7 0.9913 0.1618 0.0000 0.0000
DS BINARY SEARCH TREE SET 8 4 5 3 2 1 9 6 7 0.8727 0.1145 0.0912 -0.0355
DS HASH SET 8 5 4 3 1 2 9 6 7 0.9782 0.2085 0.0021 -0.0097
DS HASH TABLE 8 5 4 3 1 9 6 7 2 0.9653 0.3536 0.0053 -0.0258
DS LEFT LEANING RED BLACK TREE 5 4 3 1 8 9 6 7 2 0.9888 0.3015 0.0000 0.0000
DS LINKED LIST 5 4 8 1 2 9 6 3 7 0.9905 0.7505 0.0000 0.0000
DS LINKED QUEUE 8 4 5 7 3 1 9 6 2 0.9940 0.0986 0.0094 -0.0595
DS LINKED STACK 8 3 4 5 1 9 6 2 7 0.9914 0.1265 0.0077 -0.0480
DS MULTIARRAYED HASH SET 5 8 4 3 7 1 2 9 6 0.9852 0.4465 0.0000 0.0000
DS RED BLACK TREE 5 4 1 9 6 8 3 2 7 0.9915 0.2625 0.0000 0.0000
FIXED TREE 5 4 1 8 2 9 6 3 7 0.9920 0.4335 0.0000 0.0000
HASH TABLE 8 5 4 3 7 1 2 9 6 0.9979 0.1621 0.0010 -0.0353
LINKED AUTOMATON 1 2 5 9 6 4 8 3 7 0.9693 0.0669 0.2517 -0.1361
LINKED CIRCULAR 5 3 4 1 8 2 9 6 7 0.9982 0.1774 0.0000 0.0000
LINKED CURSOR TREE 5 8 4 3 1 9 6 7 2 0.9904 0.4413 0.0000 0.0000
LINKED DFA 5 4 8 3 1 2 9 6 7 0.9954 0.8751 0.0000 0.0000
LINKED LIST 3 5 4 8 1 2 9 6 7 0.9678 0.2441 0.0005 -0.0017
LINKED PRIORITY QUEUE 5 4 3 8 1 2 9 6 7 0.9866 0.2391 0.0000 0.0000
LINKED SET 5 4 1 8 2 9 6 3 7 0.9749 0.3313 0.0000 0.0000
LINKED TREE 5 4 8 3 7 1 2 9 6 0.9992 0.6490 0.0000 0.0000
MULTI ARRAY LIST 5 1 4 8 9 6 3 2 7 0.9951 0.2402 0.0000 0.0000
PART SORTED SET 5 4 3 8 1 2 9 6 7 0.9976 0.1747 0.0000 0.0000
PART SORTED TWO WAY LIST 5 4 8 1 3 2 9 6 7 0.9851 0.4510 0.0000 0.0000
SORTED TWO WAY LIST 5 4 3 8 1 2 9 6 7 0.9790 0.4763 0.0000 0.0000
SUBSET STRATEGY TREE 5 3 4 1 8 2 9 6 7 0.9871 0.2066 0.0000 0.0000
TWO WAY CIRCULAR 5 3 4 8 1 2 9 6 7 0.9953 0.2898 0.0000 0.0000
TWO WAY CURSOR TREE 5 4 1 2 9 8 6 3 7 0.9897 0.4469 0.0000 0.0000
TWO WAY LIST 5 4 1 8 2 9 6 3 7 0.9862 0.1899 0.0000 0.0000
TWO WAY SORTED SET 5 4 1 8 3 2 9 6 7 0.9933 0.3427 0.0000 0.0000
TWO WAY TREE 4 5 8 3 7 1 2 9 6 0.9993 0.7493 0.0000 -0.0191

69% (5 is best) Mean 0.0097 -0.0156

to conclusively determine what the exact magnitude and the
ultimate causes of these differences are: possible candidates
are the fault density of the software tested, the details of the
algorithms implemented by the testing tools (AutoTest and
YETI), and the availability of contracts to detect faults.

3. DISCUSSION AND THREATS

3.1 Towards a justification for the law
Arcuri et al. [3] model random testing as a coupon collec-

tor problem [22]: “Consider a box which contains N types of
numerous objects. An object in the box is repeatedly sam-
pled on a random basis. Let pi > 0 denote the probability
that a type-i object is sampled. The successive samplings
are statistically independent and the sampling probabilities,
p1, p2, . . . , pN , are fixed. When a type-i object is sampled
for the first time, we say that a type-i object is detected. To
find the number of samplings required for detecting a set of
object types (say, object types indexed by i = 1, . . . , n ≤ N)
is traditionally called coupon collector problem.” In random
testing, the objects are test cases U , and each type Ui ⊆ U is
a testing target : a unique failure or fault in our experiments.

Following [22], let τi be a random variable denoting the
number of samplings required to draw a test case in target
Ui, and let τ(n) be max{τ1, . . . , τn}, for n ≤ N , that is the
number of samplings to cover all the first n targets (in any
order). It is possible to prove that the expected value of

τ(n) is:

E [τ(n)] =
∑

1≤i≤n

(−1)i+1
∑

J;|J|=i

1∑
j∈J pj

(12)

The inverse φ̃(k) of τ(n) is a function from the number of
test cases to the expected number of failures, hence it cor-
responds to an analytic version of φc

mean(k).
It is possible to approximate τ(n) for two special cases

of probabilities pi’s: when they are all equal (p1 = p2 =
. . . = pN = θ), and when they are exponentially decreasing
(pi = θ/10i−1). We can show that, in the first case, τ(n) is

polynomial in Θ(logh(n)) for some constant k, hence φ̃(k) is
Θ(exp(gk)) for some constant g; in the second case, τ(n) is

Θ(exp(hn)), hence φ̃(k) is Θ(logh(k)).
This might provide a partial explanation for why the faults

in AutoTest follow a poly-logarithmic curve: the distribution
of faults has exponentially decreasing probability. It may
also justify some of the moderate differences in the Java
experiments, if the fault distribution is different in the Java
code with respect to the Eiffel code analyzed.

A more general problem related with this explanation has
to do with how the coupon collector model applies to ran-
dom testing of object-oriented programs the way it is avail-
able in AutoTest and YETI. Such tools generate test cases
dynamically by incrementally populating a pool of objects
with random calls. This behavior entails that the probabil-
ity of sampling an object with certain characteristics (and
hence of constructing a test case that belongs to a certain
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target) is not fixed but dynamically varies, and successive
draws are not statistically independent. For example, the
first round can only successfully call creation procedures,
and the probability of constructing a test case involving any
other routine is zero. Hence, test cases are not really sam-
pled uniformly at random, and the problem is to determine
the connection between the real process and its represen-
tation as a coupon collection process. All we can say with
the currently available data is that object-oriented random
testing with AutoTest seems to be describable as a coupon
collection process with a probability distribution over faults
that is always exponentially decreasing; this is not quite the
same as saying that the distribution of bugs is exponentially
decreasing.

3.2 Threats to validity
Threats to construct validity are present in the Java ex-

periments where we have no reliable way of reconstructing
faults from failures; a similar threat occurs with the Eiffel ex-
periments if the contracts incorrectly capture the designer’s
intended behavior. However, even if we may be measuring
different things, we are arguably still measuring things that
significantly correlate; the results partially confirm so.

The very large number of repeated experiments should
have reduced the potential threats to internal validity – re-
ferring to the possibility that the study does not support the
claimed findings – to the minimum [2]. As discussed in Sec-
tion 2.3, however, the Java experiments are somehow less
clear-cut than the Eiffel experiments; further experiments
will hopefully provide conclusive evidence.

External validity – which refers to the findings’ generaliz-
ability – is limited by the focus on random testing and by
the availability of software that can be tested with this tech-
nique. This limitation is largely a consequence of the need
of designing experiments approachable with the currently
available technology. In future work, we will target more
software with contracts (e.g., JML and .NET code equipped
with CodeContracts) and more testing frameworks (see Sec-
tion 4) to improve the generalizability of our findings.

4. RELATED WORK
Automated random testing is a technique that is inexpen-

sive to run and proved to find bugs in different contexts,
including Java libraries and applications [18, 9, 21]; Eiffel
libraries [6]; and Haskell programs [7]. For brevity, we only
succinctly mention the most closely related work.

Yeti and AutoTest are two representatives in a series of
random testing tools developed during the last decade, in-
cluding Randoop [19], JCrasher [9], Eclat [18], Jtest [20],
Jartege [15], and RUTE-J [1].

Arcuri et al.’s theoretical analysis of random testing [3] is
an important basis to understand also the practical and em-
pirical side. Section 3.1 outlined the connection between the
work in [3] and the present paper’s, as well as the points that
still remain open. Our preliminary results, hint at a plausi-
ble consistency between the two results (the theoretical and
the empirical). To our knowledge, [16] is the only other em-
pirical result about random testing; [16] considers only one
model, which we have included as Φ1 in our analysis.
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