
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

AutoProof: auto-active functional verification of
object-oriented programs?

Carlo A. Furia1, Martin Nordio2, Nadia Polikarpova3, Julian Tschannen2??

1 Chalmers University of Technology, Gothenburg, Sweden
2 Chair of Software Engineering, ETH Zurich, Zurich, Switzerland
3 MIT CSAIL, Cambridge, MA, USA

The date of receipt and acceptance will be inserted by the editor

Abstract. Auto-active verifiers provide a level of au-
tomation intermediate between fully automatic and in-
teractive: users supply code with annotations as input
while benefiting from a high level of automation in the
back-end. This paper presents AutoProof, a state-of-
the-art auto-active verifier for object-oriented sequential
programs with complex functional specifications. Auto-
Proof fully supports advanced object-oriented features
and a powerful methodology for framing and class invari-
ants, which make it applicable in practice to idiomatic
object-oriented patterns. The paper focuses on describ-
ing AutoProof’s interface, design, and implementation
features, and demonstrates AutoProof’s performance on
a rich collection of benchmark problems. The results
attest AutoProof’s competitiveness among tools in its
league on cutting-edge functional verification of object-
oriented programs.

Key words: Functional verification · Auto-active verifi-
cation · Object-oriented verification · Verification bench-
marks

1 Auto-active functional verification of
object-oriented programs

Program verification techniques differ wildly in their de-
gree of automation and, correspondingly, in the kinds of
properties they target. One class of approaches—which
includes techniques such as abstract interpretation—is

? A preliminary version of this work appeared in the 21st Inter-
national Conference on Tools and Algorithms for the Construction
and Analysis of Systems in 2015 [50].
?? Work mainly done while all the authors where affiliated with
ETH Zurich.

fully automatic or “push button”, the only required in-
put being a program to be verified; to achieve com-
plete automation, these approaches tend to be limited
to verifying predefined, possibly implicit properties such
as the absence of invalid pointer dereferences. At the
other end of the spectrum are interactive approaches
to verification—which include tools such as KIV [15]—
where the user is ultimately responsible for providing
input to the prover on demand, whenever it needs guid-
ance through a successful correctness proof; in principle,
this makes it possible to verify arbitrarily complex prop-
erties, but it is approachable only by highly trained ver-
ification experts. The classification into automatic and
interactive is ultimately fuzzy, but it is nonetheless prac-
tically useful to assess the level of abstraction at which
the user/tool interaction takes place. In the trade-off
between expressiveness and scalability, automatic tools
tend to prioritize the latter, and interactive tools the
former.

In more recent years, a new class of approaches have
emerged that try to achieve an intermediate degree of au-
tomation in the continuum that goes from automatic to
interactive—hence their designation [33] as the portman-
teau auto-active.1 Auto-active tools need no user input
during verification, which proceeds autonomously until
it succeeds or fails; however, the user is still expected to
provide guidance indirectly (“off-line”) through annota-
tions (such as loop invariants or intermediate lemmas)
in the input program. Provided such annotations belong
to a higher level of abstraction than the proof details ex-
posed by purely interactive tools, auto-active tools have
a chance to be more approachable by non-experts while
retaining full support for proving arbitrary properties.

More broadly, the auto-active approach has the po-
tential to better support incrementality : proving simple
properties would require little annotations and of the

1 Although inter-matic would be as good a name.

2 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

simple kinds that novice users may be able to provide;
proving complex properties would still be possible by
sustaining a heavy annotation burden.

This paper describes AutoProof, an auto-active ver-
ifier for functional properties of (sequential) object-ori-
ented programs. In its latest development state, Auto-
Proof offers a unique combination of features that make
it a powerful tool in its category and a significant con-
tribution to the state of the art. AutoProof targets a real
complex object-oriented programming language (Eiffel)—
as opposed to more abstract languages designed specif-
ically for verification. It supports most language con-
structs, as well as a full-fledged verification methodol-
ogy for heap-manipulating programs based on a flexi-
ble annotation protocol, sufficient to completely verify
a variety of programs that are representative of object-
oriented idioms as used in practice. AutoProof was de-
veloped with extensibility in mind: its annotation library
can be augmented with new mathematical types and the-
ories, and its implementation can accommodate changes
in the input language. While Eiffel has a much smaller
user base than other object-oriented languages such as
C++, Java, and C#, the principles behind AutoProof
are largely language independent; hence, they are rel-
evant to a potentially large number of researchers and
users—for whom this paper is written.

The problems we use to evaluate AutoProof (Sect. 6)
include verification challenges, a realistic container li-
brary, and the performance of students on a master’s
course project. Verification challenges are emerging as
the gold standard [28] to demonstrate the capabilities of
program provers for functional correctness which, unlike
fully automatic tools, use different formats and conven-
tions for input annotations and support specifications
of disparate expressiveness, and hence cannot directly
be compared on standard benchmark implementations.
The container library—called EiffelBase2, and discussed
in detail in related work [14]—offers all the features cus-
tomary in modern language frameworks with realistic
implementations; formally verifying its full functional
correctness poses challenges that go beyond those of in-
dividual benchmark problems. Master’s students repre-
sent serious non-expert users of AutoProof, who helped
us assess to what extent auto-active verification was in-
cremental, and highlighted a few features critical for Au-
toProof’s usability at large.

Previous work of ours, summarized in Sect. 2.2, de-
scribed the individual techniques available in AutoProof.
This paper demonstrates how those techniques together
make up a comprehensive verification methodology (Sect. 4),
and in addition presents AutoProof’s user interface (Sect. 3),
describes significant aspects of its design and implemen-
tation (Sect. 5), and outlines the results of experiments
(Sect. 6) with realistic case studies, with the goal of
showing that AutoProof’s features and performance demon-
strate its competitiveness among other tools in its league—
auto-active verifiers for object-oriented programs.

AutoProof is available as part of the open-source Eif-
fel verification environment (EVE) as well as online in
your browser; the page

http://tiny.cc/autoproof

contains source and binary distributions, detailed usage
instructions, a user manual, an interactive tutorial, and
the benchmark solutions discussed in Sect. 6.

2 Related work

2.1 Program verifiers

In reviewing related work, we focus on the tools that
are closer to AutoProof in terms of features, and design
principles and goals.

Only few of them are, like AutoProof, auto-active,
work on real object-oriented programming languages,
and support the verification of general functional prop-
erties. Krakatoa [16] belongs to this category, as it works
on Java programs annotated with a variant of JML (the
Java Modeling Language [29]). Since it lacks a full-fledg-
ed methodology for reasoning about object consistency
and framing, using Krakatoa to verify object-oriented id-
iomatic patterns—such as those we discuss in Sects. 6.1
and 6.2—would be quite impractical; in fact, the refer-
ence examples distributed with Krakatoa target the ver-
ification of algorithmic problems where object-oriented
features are immaterial.

Similar observations apply to the few other auto-
active tools working on Java and JML, such as ESC/-
Java2 [7] or the more recent OpenJML [38,11], as well as
to the KeY system [5,1]—which started out as an inter-
active prover but has provided increasingly more sup-
port for automated reasoning. Even when ESC/Java2
was used on industrial-strength case studies (such as the
KOA e-voting system [27]), the emphasis was on mod-
eling and correct-by-construction development, and ver-
ification was normally applied only to limited parts of
the systems. KeY has been successfully applied to a va-
riety of program domains such as information flow anal-
ysis [4] and runtime verification [8], with a lesser focus
on object-oriented heap-manipulating programs.

By contrast, the Spec# system [2] was the forerunner
in a new research direction, also followed by AutoProof,
which focuses on the complex problems raised by object-
oriented structures with sharing, object hierarchies, and
collaborative patterns. Spec# works on an annotation-
based dialect of the C# language and supports an own-
ership model which is suitable for hierarchical object
structures, as well as visibility-based invariants to spec-
ify more complex object relations. Collaborative object
structures as implemented in practice (Sect. 6.1) require,
however, more flexible methodologies [42] not currently
available in Spec#.

http://tiny.cc/autoproof

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 3

Tools, such as VeriFast [24], based on separation logic,
provide powerful methodologies through abstractions dif-
ferent from class invariants, which may lead to a lower
level of automation than tools such as AutoProof and
a generally higher annotation overhead—ultimately tar-
geting highly trained users. To address this shortcoming,
recent research has focused on reducing the amount of
low-level annotations by inferring them [39]; we provide
a more direct comparison of AutoProof with separation
logic provers in related work [14].

The experience with the Spec# project suggested
that targeting a real object-oriented programming lan-
guage introduces numerous complications and may di-
vert the focus away from fundamental problems in tool-
supported verification. The Dafny program verifier [32]
was developed based on this lesson: it supports a sim-
ple language expressly designed for verification, which
eschews most complications of real object-oriented pro-
gramming languages (such as inheritance and a complex
memory model). Other auto-active verifiers target pro-
gramming language paradigms other than object orien-
tation. Leon [45] and Why3 [17], for example, work on
functional programming languages—respectively, a sub-
set of Scala and a dialect of ML; VCC [10] works on
C programs and supports object invariants, but with an
emphasis on memory safety of low-level concurrent code.

AutoProof occupies a sweet spot between automatic
and interactive in the wide spectrum of verification tools.
The CodeContract static checker (formerly known as
Clousot [37]) is a powerful static analyzer for .NET lan-
guages that belongs to the former category of fully auto-
matic tools (and hence it is limited to properties express-
ible in its abstract domains). The KIV environment [15]
for Java belongs to the latter category: its full-fledged us-
age requires explicit user interaction to guide the prover
through the verification process.

2.2 Our previous work on AutoProof

In previous work, we formalized some critical object-
oriented features as they are available in Eiffel, notably
function objects (called “agents” in Eiffel) and inheri-
tance and polymorphism [48]. An important aspect for
usability is improving feedback when verification fails;
to this end, we introduced heuristics known as “two-step
verification” [49] and demonstrated them on algorithmic
challenges [46]. We presented the theory behind Auto-
Proof’s invariant methodology [42], which includes full
support for class invariants, framing, and ghost code.
We later added support for model-based specifications
and inheritance, and used it to verify the full functional
correctness of a realistic container library [14]. The cur-
rent paper discusses how all these features are available
in AutoProof, with a focus on advanced object-oriented
verification challenges.

Fig. 1. The AutoProof output panel showing verification results
in EVE.

3 Using AutoProof

AutoProof is a static verifier for Eiffel programs which
interacts with users according to the auto-active par-
adigm [33]: verification attempts are completely auto-
mated (“push button”), but users are expected in general
to provide additional information in the form of annota-
tions (loop invariants, intermediate assertions, etc.) for
verification to succeed.

AutoProof targets the verification of functional cor-
rectness. Given a collection of Eiffel classes, it tries to
establish that: routines satisfy their pre/post and frame
specifications and maintain class invariants;2 routine calls
take place in states satisfying the callee’s precondition;
loops and recursive calls terminate; integer variables do
not overflow;3 there are no dereferences of Void (Eiffel’s
equivalent of null in other languages) objects.

AutoProof’s techniques are sound :4 successful veri-
fication entails that the input program is correct with
respect to its given specification. Since it deals with ex-
pressive specifications, AutoProof is necessarily incom-
plete: failed verification may indicate functional errors,
but also shortcomings of the heuristics of the underly-
ing theorem prover (which uses such heuristics to reason
in practice about highly complex and undecidable logic
fragments).

3.1 User interface (UI)

AutoProof offers its core functionalities both through
a command line interface (CLI) and a library (API).
End users normally interact with AutoProof through one
of two graphical interfaces (GUI): a Web-based GUI is
available at:

http://tiny.cc/web-autoproof

and AutoProof is fully integrated in EVE, the open-
source research branch of the EiffelStudio development
environment. The following presentation focuses on Au-
toProof in EVE, but most features are available in every
UI.

2 Maintaining invariants is the default, which can be overridden;
see Sect. 4.5 for details.

3 Overflow checking can be disabled to treat integers as mathe-
matical integers.

4 As usual, modulo bugs in the implementation.

http://tiny.cc/web-autoproof

4 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

Users launch AutoProof on the current project, or
on specific classes or members thereof. Verification pro-
ceeds in the background until it terminates, is stopped,
or times out. Results are displayed in a panel such as
in Fig. 1: each entry corresponds to a routine of some
class and is colored to summarize the verification out-
come. Green entries are successfully verified; red entries
have failed verification; and yellow entries denote invalid
input, which cannot be translated and verified (for exam-
ple, impure functions with side effects used as specifica-
tion elements determine invalid input). Red entries can
be expanded into more detailed error messages or sug-
gestions to fix them; when enabled, two-step verification
(Sect. 3.2) helps provide more precise suggestions. For
example, the failed verification entry for a routine may
detail that its loop invariant may not be maintained, or
that it may not terminate, and suggest that the loop
invariant be strengthened, or a suitable variant be pro-
vided.

Verifier’s options. AutoProof’s UI is deliberately kept
simple with few options and sensible defaults. For ad-
vanced users, fine-grained control over AutoProof’s be-
havior is still possible, on a per-class or per-feature ba-
sis, through program annotations that express verifica-
tion options. Using note clauses (Eiffel’s mechanism for
meta-annotations), users can disable generating boiler-
plate implicit contracts, skip verification of a specific
class, disable purity checking of some or all functions,
disable termination checking (only verify partial correct-
ness), and define a custom mapping of a class’s type to a
theory of the underlying reasoning engine. AutoProof’s
manual includes a complete list of features, options, and
examples of usage.

3.2 Two-step verification

Dealing with inconclusive error reports in incomplete
tools is a practical hurdle to usability that can spoil user
experience—especially for novices. To improve user feed-
back in case of failed verification attempts, AutoProof
implements a collection of heuristics known as “two-step
verification” [49].

When two-step verification is enabled, each failed
verification attempt is transparently followed by a sec-
ond attempt that uses inlining (of routine bodies) and
unrolling (of loop bodies). In other words, the first verifi-
cation step performs standard modular reasoning—using
a called routine’s specification or a loop’s invariant to
reason about its effects within the callee—whereas the
second verification step directly uses bodies while ignor-
ing specifications.

The second step is in general unsound (as it uses
underapproximations such as loop unrolling5), but helps

5 Somewhat similarly to other verification techniques like
bounded model checking [9].

discern whether failed verification is due to real errors or
just to insufficiently detailed annotations. For example,
consider a routine sort that relies on another routine
swap to rearrange elements in an array. If the verification
of sort fails using modular reasoning (first step), but
succeeds with swap’s body inlined within sort (second
step), it means that swap’s specification—precisely its
postcondition—is too weak a characterization of swap’s
effects within sort to reason about them.

When two-step verification is enabled, users see the
combined output from the two steps in the form of sug-
gestions to improve the program, its annotations, or both.
In the example of sort, AutoProof suggests strengthen-
ing swap’s postcondition until modular verification suc-
ceeds, or adding a special annotation to swap so that
AutoProof will always inline it (which is sound in this
particular case, because no approximation is involved).
In either case, users are aware that verification fails not
because there is an error in the implementations of sort
or swap (which would be revealed by inlining), but be-
cause more detailed annotations are needed. AutoProof
provides similar suggestions for loops about their invari-
ants: if verification of a loop fails in the first step but
succeeds with finite loop unrolling, AutoProof deduces
that there are no obvious errors in the loop and suggests
strengthening the loop invariant to make it inductive.

4 The theory behind AutoProof: specification
and verification methodology

AutoProof inputs Eiffel programs, each program a col-
lection of classes, complete with assertions and other
kinds of annotations. The Eiffel language is broadly sup-
ported, with the exception of a few features that we out-
line in Sect. 4.1. Expressing concisely complex specifi-
cations requires mathematical abstractions, such as sets
and sequences, and ghost code, used to record redun-
dant state information necessary for constructing proofs:
we describe how AutoProof flexibly supports such con-
structs in Sects. 4.2, 4.3, and 4.4. Reasoning about re-
alistic object-oriented programs also requires a compre-
hensive methodology to express dependencies between
objects: we give a brief introduction to Semantic Col-
laboration, AutoProof’s powerful approach to reasoning
about heap-manipulating programs, in Sect. 4.5.

4.1 Input language support

AutoProof supports most of the Eiffel language as used
in practice, obviously including Eiffel’s native notation
for contracts (specification elements) such as pre- and
postconditions, class invariants, loop invariants and vari-
ants, and inlined assertions such as check (assert in
other languages). Object-oriented features—classes and

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 5

types, multiple inheritance, polymorphism—are fully sup-
ported [48], and so are imperative and procedural con-
structs.

Basic annotations. Fig. 2 shows an example of anno-
tated input: an implementation of binary search (prob-
lem bins in Tab. 1) that AutoProof automatically veri-
fies. From top to bottom, the routine binary_search in-
cludes signature, precondition (require), local variable
declarations, body consisting of an initialization (from),
followed by a loop that executes until its exit condition
becomes true, and postcondition (ensure). The loop’s
annotations include a loop invariant (to establish par-
tial correctness) and a variant (to establish termina-
tion). Each specification element consists of clauses, one
per line, possibly with tags (such as sorted for the lone
precondition clause), which are just names used for iden-
tification in error reports.

Quantified expressions in contracts use the across

syntax, which corresponds to universal (across ... all)
and existential (across ... some) (bounded) first-order
quantification. For example, the loop invariant clause
not_left expresses the quantification:

∀i : 1 ≤ i < low =⇒ a.sequence [i] < value .

Partially supported and unsupported features. A few lan-
guage features that AutoProof does not currently fully
support have a semantics that violates well-formedness
conditions required for verification: AutoProof does not
support specification expressions with side effects (for
example, a precondition whose evaluation creates an ob-
ject). It also does not support the semantics of once

routines (somewhat similar to static in Java and C#),
which would require global reasoning, thus breaking mod-
ularity. This is not a significant limitation in practice,
since once routines are used only infrequently in Eiffel
programs.

Other partially supported features originate in the
distinction between machine and mathematical repre-
sentation of types. Among primitive types, INTEGERs are
fully supported, and users can choose whether Auto-
Proof should model them as mathematical integers or
as machine integers (including overflows). Floating-point
REALs are only modeled as infinite-precision mathemat-
ical reals, which are different in general from their run-
time behavior. STRINGs are not supported except for single-
character operations.

Arrays and lists with simplified interfaces are sup-
ported out of the box. Other container types require cus-
tom specification; in a closely related effort, we recently
developed a fully verified full-fledged data structure li-
brary [14], which we describe in Sect. 6.2.

Agents (function objects) are partially supported,
with some restrictions in their specifications [48]. The
semantics of native external routines is reduced to their
specification. We designed [48] a translation for excep-
tions based on the latest draft of the Eiffel language stan-

dard, but AutoProof does not support it yet since the
Eiffel compiler still only implements the obsolete syntax
for exceptions. However, exceptions have very limited us-
age in Eiffel programs compared to other object-oriented
languages; hence, this limitation has little practical im-
pact.

AutoProof is currently limited to sequential code,
which excludes support for threaded libraries and the
SCOOP concurrency mechanism [52].

4.2 Logic classes and specification library

Functional specifications should abstract from implemen-
tation details to capture the gist of what an algorithm or
program does. To this end, they are naturally expressed
in terms of mathematical structures such as sets and se-
quences, which uphold abstract specifications and have a
direct mapping to the underlying theorem prover’s logic.
For example, the specification of binary search in Fig. 2
refers to the content of the input array a through its
attribute sequence, which represents the mathematical
sequence of integer values stored in a’s cells; this way,
binary search’s specification abstracts away from the de-
tail that the implementation operates on an array and
remains applicable to any data structure storing a se-
quence of integer values.

To support abstract and concise, yet expressive, spec-
ifications, AutoProof provides logic classes: immutable
wrapper classes that encapsulate mathematical struc-
tures, whose instances and operations are mapped di-
rectly into theories of the underlying reasoning engine
(as we describe in Sect. 5.2) instead of being treated as
regular Eiffel classes.

AutoProof comes with a standard library of logic
classes called MML (mathematical model library), which
provides relations, sets, sequences, bags (multisets), and
maps, and common operations on them. In Fig. 2, at-
tribute a.sequence has type MML_SEQUENCE [INTEGER], which
is MML’s class for mathematical sequences.

An advantage of providing mathematical types by
means of a library of classes instead of natively—as most
other auto-active verifiers do—is that a library is easily
extensible with new structures and new operations. In
Sect. 5.2, we discuss how this is possible in AutoProof.
While extending MML is normally not necessary, and
certainly not required, the extension mechanisms pro-
vide great flexibility to the most advanced users of Au-
toProof.

4.3 Model-based contracts

AutoProof supports model-based contracts: an approach
to writing interface specifications that helps maintain a
consistent level of abstraction among features of a class,
so as to provide clients with all the information necessary

6 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

binary_search (a: ARRAY [INTEGER]; value: INTEGER): INTEGER
require

sorted: is_sorted (a.sequence)
local

low, up, middle: INTEGER
do

from low := 1; up := a.count + 1
invariant

low_and_up_range: 1≤ low and low≤ up and up≤ a.count + 1
result_range: Result = 0 or 1≤ Result and Result≤ a.count
not_left: across 1 |..| (low−1) as i all a.sequence [i] <value end

not_right: across up |..| a.count as i all value <a.sequence [i] end
found: Result >0 implies a.sequence [Result] = value

until low ≥ up or Result >0
loop

middle := low + ((up − low) // 2)
if a [middle] <value then low := middle + 1
elseif a [middle] >value then up := middle

else Result := middle end

variant (a.count − Result) + (up − low) end
ensure

present: a.sequence.has (value) = (Result >0)
not_present: (not a.sequence.has (value)) = (Result = 0)
found_if_present: Result >0 implies a.sequence [Result] = value

end

Fig. 2. Binary search implementation verified by AutoProof.

to reason about the observable behavior of the class in-
stances without revealing implementation details. Each
class declares a model clause, which designates a subset
of the class’s attributes as the class model. The model
should characterize the publicly observable abstract state
of the class, which is the only information clients of the
class can rely on. For example, the model of a stack is the
sequence of values stored in the stack, listed, say, from
bottom to top; correspondingly, class STACK in Fig. 3 de-
clares attribute sequence of class MML_SEQUENCE (from the
MML library described in Sect. 4.2) as its model. Imple-
mentation details, such as how the stack internally stores
elements in a list, are invisible to clients, and hence not
part of the model. Specifications of routines refer to the
model, such as push’s postcondition: pushing an element
v onto the stack extends sequence by appending v to the
tail.

By using model-based contracts, we can also define
the completeness of interface specifications (see our pre-
vious work for a formal definition [40]). In Eiffel, it is cus-
tomary to follow the command/query separation design
principle, whereby class features are either commands
or queries: a command is a state-modifying routine that
returns no value; a query is a pure function that re-
turns a value without changing the object state. Given
model-based specifications of a class, a command’s post-
condition is complete if it uniquely defines the effect of

the command on the model; a query’s postcondition is
complete if it defines the returned result as a function
of the model; the class model is complete if it permits
expressing complete specifications of all public routines
in the class such that different abstract states are distin-
guishable by public routine calls. This means that a set
is not a complete model for STACK in Fig. 3, because the
precise result of item cannot be defined as a function of
a set (where the order of elements is immaterial); con-
versely, a sequence would not be a complete model for a
class SET because no features in the interface of SET can
discriminate different element orderings.

AutoProof currently does not support mechanized
completeness proofs based on model-based contracts; how-
ever, we found that even reasoning informally about
completeness helps provide clear guidelines for writing
interface specifications and substantiates the notion of
full functional correctness.

4.4 Ghost code

Ghost code identifies program elements—variables, in-
structions, and routines—that are only used in speci-
fications and verification, and erased upon compilation
(hence, not present in the executable). In the auto-active
paradigm, ghost code provides advanced support for ab-
straction and for indirectly interacting with the verifier

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 7

class STACK

model sequence

list: LIST [G]

sequence: ghost MML_SEQUENCE [G]

item: G
require

not is_empty

do

Result := list.item (count)
ensure

Result = sequence.last
end

count: INTEGER
do

Result := list.count
ensure

Result = sequence.count
end

push (v: G)
modify model [sequence] Current
do

list.extend_back (v)
ensure

sequence = old sequence & v

end

. . .
invariant

list 6= Void

owns = {list}
sequence = list.sequence

end

Fig. 3. Excerpt from class STACK, which uses a LIST as its internal
representation. The specification of STACK uses the model class
MML_SEQUENCE to refer to the mathematical sequence of stack
elements.

in a way that goes beyond assertions on the concrete
program state.

The model attributes of a class are often (but not
always) ghost, such as sequence in Fig. 3. Indeed, the
sequence of elements represents redundant information,
since it corresponds to the content of list as specified
in the last clause of the class invariant; hence, it is only
used to support abstract specifications and effective rea-
soning, but it is not compiled so as not to introduce
unnecessary runtime overhead.

Another usage of ghost code is to represent lemmas: a
ghost routine lm with precondition P and postcondition
Q represents the formula P =⇒ Q; calling lm makes the
formula available to the prover at the call site; the body

of lm builds a proof of the formula following the code-
as-proof paradigm [25].

More generally, users can mark variables and other
program elements as ghost. Since Eiffel lacks native sup-
port for ghost code, AutoProof uses note status: ghost
to this effect. In Fig. 3, as well as in the other code snip-
pets in the paper, we simplify the syntax for readability,
and use ghost and other AutoProof-specific annotations
as if they were native keywords.

4.5 Heap-manipulating programs: framing and
invariants

Reasoning effectively about heap-manipulating programs
in general, and object-oriented ones in particular, re-
quires flexible support for framing and object-consistency
specification.

4.5.1 Framing

Framing is the fundamental part of the specification of a
command that describes which elements in the heap the
command may modify. A dual notion applies to queries
(pure functions), whose specification must describe which
elements in the heap the query may read. AutoProof pro-
vides support for framing specifications in the style of
dynamic frames [26]. A command whose execution may
modify objects in set declares its frame specification us-
ing a clause modify (set). Since Eiffel doesn’t natively
support modify clauses, AutoProof introduces a dummy
feature named modify, which can be used in a routine’s
precondition to specify the frame, as it is done in various
places in Fig. 4.

Model attributes support a special kind of frame spec-
ifications: a routine annotated with the clause

modify model [m1,. . .,mn] s

may only modify attributes m1,. . .,mn in the abstract state
of s (the model), with no direct restrictions on mod-
ifying the concrete state of s. Routine push in Fig. 3
uses this construct to specify that pushing an element
onto the stack modifies the model attribute sequence

of the Current instance (denotes by this in other lan-
guages); this stipulates that it may modify Current.list,
but it should not modify any model attribute other than
Current.sequence.6 This construct enables fine-grained,
yet abstract, frame specifications, in a style similar to
data groups [36].

4.5.2 Invariants: object consistency

Class invariants are a natural way to define when an
object is in a consistent state. However, specifying con-

6 Even though class STACK does not explicitly define any other
model attributes, such attributes might be added in descendant
classes; in addition, the invariant methodology described below
equips each class with implicit model attributes owns, subjects,
and observers.

8 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

class SUBJECT

value: INTEGER
subscribers: LIST [OBSERVER]

update (v: INTEGER)
require

across observers as o all o.wrapped end

modify (Current, observers)
do

unwrap_all (observers)
value := v

across subscribers as o do o.notify end

wrap_all (observers)
ensure

across observers as o all o.wrapped end

observers = old observers

end

register (o: OBSERVER) -- Internal

require

not subscribers.has (o)
wrapped

o.open
modify (Current)
do

unwrap

subscribers.add (o)
observers := observers & o

wrap

ensure

subscribers.has (o)
wrapped

end

invariant

observers = subscribers.range
owns = { subscribers } and subjects = {}

end

class OBSERVER

subject: SUBJECT
cache: INTEGER

make (s: SUBJECT) -- Constructor

require

modify (Current, s)
do

subject := s

s.register (Current)
cache := s.value
subjects := { s }

ensure

subject = s

end

notify -- Internal

require

open

subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

modify (Current)
do

cache := subject.value
ensure

inv

end

invariant

cache = subject.value
subjects = { subject }
subject.observers.has (Current)
observers = {}
owns = {}

end

Fig. 4. The observer pattern in AutoProof using semantic collaborations. See [42] for a detailed explanation.

sistency may become tricky when multiple objects that
are independently accessible depend on each other: if
the invariant of some object x depends on the state
of another object y, any change to y may invalidate x
indirectly. This may break modularity, because x may
have no direct control of the calls to y that modifies its
state. To handle such object dependencies, AutoProof
features two integrated mechanisms: a standard owner-
ship scheme [34], combined with a novel methodology
called semantic collaboration, which we introduced in a
previous work [42].

Common to the two methodologies is the notion of
open/closed objects: an object is closed when it is in
a stable, consistent state where its invariant holds; con-
versely, it is open when it is in a transient state where its
invariant may not hold. AutoProof equips every object
with the implicit ghost Boolean attribute closed, which
holds iff the object is closed. Attribute closed is ma-
nipulated indirectly by calling built-in routines unwrap

and wrap. Informally, a “canonical” modification of an
object o involves following a three-part protocol: signal
that o is being modified (and hence its invariant cannot
be relied upon) by calling o.unwrap; perform the actual

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 9

modification; check that o is back in a consistent state
(and hence its invariant holds) by calling o.wrap.

Ownership is suitable to specify object dependencies that
are hierarchical. This is the case for the dependency be-
tween instances of STACK in Fig. 3 and the object at-
tached to their list attribute, since the latter is part of
the stack’s internal representation. Following a semantic
treatment similar to that available in VCC [10], Auto-
Proof introduces an implicit ghost attribute owns, which
is used to specify the set of objects that are “owned”
by the current instance, and hence are part of Current’s
internal representation (owns = {list} in STACK’s invari-
ant). AutoProof checks the property that any object can-
not be unwrapped, and thus modified, as long as it has a
closed owner, thereby effectively ensuring that all mod-
ifications to an owned object (the list, in the example)
go through its owner (the stack).

Semantic collaboration is suitable to specify object de-
pendencies that are not hierarchical but “peer-to-peer”.
Two objects x and y form a collaborative (non-hierarchi-
cal) structure when they collaborate to achieve a com-
mon goal while retaining access independence.

The observer pattern is a paradigmatic example of
collaborative structure, where an arbitrary number of
OBSERVER objects (called “subscribers”) monitor the pub-
lic state of a single instance of class SUBJECT: see a fully
annotated implementation in Fig. 4. Each subscriber
caches a copy of the subject’s attribute value in its local
attribute cache. The fundamental consistency property
is that the value of cache remains a faithful copy of value
in the subject. This property is specified by the invariant
clause cache = subject.value in class OBSERVER, which
introduces a dependency on another object’s state; since
subscribers are peers, and we cannot realistically assume
that one of them has exclusive control over the subject,
the dependency between OBSERVER and SUBJECT objects
is not hierarchical. Consistency is instead enforced by
explicit collaboration: the subject maintains a list of
subscribers, updated whenever a new subscriber regis-
ters itself by calling register on the subject. Whenever
calls to routine update change value, the subject takes
care of explicitly notifying all registered subscribers (the
across loop in update’s body calls notify on every ob-
ject o in subscribers).

To specify collaboration patterns, AutoProof equips
objects with implicit ghost attributes subjects and
observers.7 Given an object o, o.subjects stores the
set of objects on which o’s invariant may depend, and
o.observers stores the set of objects whose invariant
may depend on o. (In the example, the invariant clause
observers = subscribers.range specifies that the obser-
vers’ consistency depends on the state of the subject.)

7 While the names are inspired by the observer pattern, they
are applicable also to many other collaboration patterns, as we
extensively demonstrated in related work [42,41].

AutoProof checks that every update of o preserves the
validity of its observers (in the example, that routine
update notifies the observers). AutoProof also checks
that the “subject” and “observer” relations are each
other’s inverse (in the example, the invariant clause
subject.observers.has (Current)), so that the subject
cannot cheat by kicking a subscriber out of its observers
set (and hence satisfying the specification by dumping
contractual obligations).

4.5.3 Default annotations

Defaults reduce the amount of required manual annota-
tions in many practical cases. AutoProof offers defaults
for the following elements:

Preconditions and postconditions: every public command
m requires and ensures that m’s arguments, Current,
and Current’s observers are wrapped (closed and not
owned).

Modify clauses: commands may modify Current; queries
may modify nothing.

Invariants: Built-in implicit attributes owns, subjects,
and observers are empty if they are not mentioned
in programmer-written invariant clauses.

Wrapping : public commands call Current.unwrap as first
instruction in their body, and Current.wrap as last
instruction.

Implicit ghost attributes: if a ghost attribute a is men-
tioned in an invariant clause of the form a = expr,
every wrap of objects with a is preceded by the im-
plicit assignment a:= expr.8

AutoProof’s defaults are modeled after a program-
ming style where clients always operate on consistent
objects, and objects have to ensure consistency of them-
selves and all their observers upon terminating the exe-
cution of their public routines. Although this style pro-
motes encapsulation and is convenient for clients, the
defaults are optional suggestions that can be overrid-
den by providing explicit annotations. The combination
of flexibility and useful defaults is instrumental in mak-
ing AutoProof usable on complex examples of realistic
object-oriented programs.

5 How AutoProof works: architecture and
implementation

As it is customary in deductive verification, AutoProof
translates input programs into verification conditions
(VCs): logic formulas whose validity entails correctness
of the input programs. Following the approach pioneered
by Spec# [2] and since then adopted by numerous other
tools, AutoProof does not generate VCs directly but

8 This default is inspired by VCC’s static owns [10].

10 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

annotated
Eiffel

program

Boogie-like
AST

Boogie
program

Verification
ConditionsBoogie

SMT
solver

Fig. 5. Workflow of AutoProof with Boogie back-end.

translates Eiffel programs into Boogie programs [31] and
calls the Boogie tool to generate VCs from the latter.

Boogie is a simple procedural language tailored for
verification, as well as a verification tool that takes pro-
grams written in the Boogie language, generates VCs for
them, feeds the VCs to an SMT solver (Z3 by default),
and interprets the solver’s output in terms of elements of
the input Boogie program. Using Boogie decouples VC
generation from processing the source language (Eiffel,
in AutoProof’s case) and takes advantage of Boogie’s
efficient VC generation capabilities.

As outlined in Fig. 5, AutoProof implements the trans-
lation from Eiffel to Boogie in two stages. In the first
stage, it processes an input Eiffel program and trans-
lates it into a Boogie-like abstract syntax tree (AST); in
the second stage, it transcribes the AST into a textual
Boogie program.

The rest of this section outlines the overall mapping
from Eiffel to Boogie (Sect. 5.1) as well as the special
mapping of logic classes (Sect. 5.2), and then focuses
on describing how AutoProof’s architecture (Sect. 5.3)
and implementation features make for a flexible and cus-
tomizable translation process. We focus on discussing
the challenges tackled when developing AutoProof and
the advantages of our implemented solutions.

5.1 Eiffel to Boogie encoding

We briefly recall the core features of how Eiffel is encoded
in Boogie; see our previous work [48] for details.

Since Boogie is a simple procedural language without
explicit support for object-oriented features or any form
of dynamic memory, a key feature of the encoding is a
memory model, mapping Eiffel’s heap, references, and
objects. The Heap is a Boogie global variable

var Heap : 〈α〉 [ref, Field α] α

which maps pairs of reference (type ref) and field name
(type Field) into values.

The heap type is polymorphic with respect to the
value type α, which can be any of the available types—
including references ref and Boogie primitive types such
as int and bool. In the encoding, Eiffel reference types
become ref in Boogie, whereas Eiffel primitive types be-
come Boogie primitive types with axiomatic constraints
to ensure consistent representation. For example, Eif-
fel variables of type INTEGER map to Boogie variables

of type int; the latter, however, corresponds to math-
ematical integers, whereas the former has 32-bit preci-
sion. To bridge the semantic gap, constraints such as
−231 ≤ iv ≤ 231 − 1, where iv is a variable of type int,
are used in the Boogie encoding to check for absence of
overflows in operations that manipulate Eiffel integers.

An Eiffel class declaration of the form

class C

inherit B

feature a: A
...

introduces a class C, inheriting from another class B,
that includes an attribute a of type A. The Boogie en-
coding of C comprises an uninterpreted type identifier
const unique C: Type related, in an axiom, to B’s type
identifier by the “subtype of” partial order relation C < : B.
The axioms about classes are built around this relation
so as to support polymorphism.

C’s attribute a determines a name C.a declared as
const C.a: Field ref, which is used to access the ob-
ject attached to a in the heap. For example, the Eiffel
assignment c.a := x (where c is a reference of class C and
a is one of C’s attributes) is expressed in Boogie as

Heap := Heap[c, C.a := x]

which updates to x the mapping of the pair (c, C.a) in
global variable Heap, while leaving the rest of the map-
ping unchanged.

Eiffel routines translate to Boogie procedures: Eiffel
procedures (not returning any value) update the heap
according to their modify clauses; Eiffel functions are as-
sumed pure by default, in which case an Eiffel function
f of class C translates to both a Boogie procedure C.f

and a Boogie function fun.C.f. The former’s postcon-
dition includes a check that C.f returns values consistent
with fun.C.f’s definition. Then, C.f is used to check f’s
correctness against its specification and to reason about
usages of f in imperative code; fun.C.f encodes f’s values
when they are used in specification elements.

The translation of control-flow structures (condition-
als and loops) uses the corresponding Boogie structures
whenever possible.

5.2 Implementation of logic classes

Logic classes (Sect. 4.2) are a mechanism for defining
specification constructs with custom semantics; Auto-
Proof handles their translation into Boogie differently
from regular Eiffel classes, using a mechanism based on
the work of Darvas and Müller [12] for JML. In Auto-
Proof, each logic class declares, by means of a maps_to

clause, a Boogie type that will represent the class type in
Boogie. The constructors and functions9 of logic classes

9 Since they are immutable, logic classes do not include state-
modifying commands.

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 11

class MML_SEQUENCE [G]
inherit ITERABLE [G]
maps_to Seq

theory "sequence.bpl"
typed_sets Seq#Range

count: INTEGER
maps_to: Seq#Length

last: G
require count >0
. . .

range: MML_SET [G]
. . .

extended (x: G): MML_SEQUENCE [G]
alias "&"
. . .

to_bag: MML_BAG [G]
. . .

shorter_equal (s: MML_SEQUENCE [G]): BOOLEAN
alias "≤ "
. . .

new_cursor: CURSOR [G]
maps_to Seq#Range

end

Fig. 6. Model class MML_SEQUENCE equipped with AutoProof
logic class annotations. Features with no maps_to clause use the
default naming scheme: for example, last maps to Seq#Last.

are also directly connected to Boogie functions using a
maps_to clause—in the absence of such a clause, Au-
toProof looks for a Boogie function with a name de-
rived from the Eiffel feature name. Fig. 6 shows how the
MML_SEQUENCE logic class uses the maps_to clause.

Using logic classes requires Boogie theories that en-
code the classes’ features together with useful lemmas
and other axiomatic definitions. To this end, AutoProof
supports the theory clause, which specifies a Boogie file
that is to be included with every translation of an Eif-
fel program that uses a specific logic class. Fig. 7 shows
an excerpt of the Boogie theory sequence.bpl, which en-
codes the operations of the logic class MML_SEQUENCE.

AutoProof also implements a number of advanced
features, which aim at making custom logic classes as ex-
pressive and convenient as built-in mathematical types.
We describe the most significant ones in the remainder
of this section.

Quantifiers. Eiffel’s across syntax

across s as x all B(x) end
across s as x some B(x) end

supports quantification over any object structure s that
inherits from class ITERABLE and implements a feature
new_cursor. If s is a logic class whose new_cursor fea-
ture maps to a set-valued function, AutoProof trans-
lates the across expressions into first-order quantifica-
tion over the domain defined by the Boogie translation
of new_cursor. For example, across expressions over ob-
jects of class MML_SEQUENCE translate to first-order quan-
tification over the range of elements in a sequence, as
per Fig. 6.

Ordering. If a logic class L includes a feature with alias

‘‘≤’’ (such as shorter_equal in Fig. 6), AutoProof as-
sumes that the feature defines a well-founded order on
the values of L. Hence, loop variants can use expression
of type L to prove termination.

Element types are a technique [31] to map several generic
reference types of a source language to a single Boogie
type, while encoding more precise type information us-
ing automatically generated predicates. In AutoProof,
this technique helps encode logic classes, which often
represent immutable collections of elements of generic
type—such as class MML_SEQUENCE [G] with respect to the
generic type parameter G. Whenever a logic class is used
in annotations, AutoProof has to record the informa-
tion about how its generic type parameter is instantiated
with a concrete type. For example, an Eiffel declaration
s: MML_SEQUENCE [PERSON] entails that all elements of s

are of type PERSON (or its subtypes via polymorphism).
This is done concisely using element types: Auto-

Proof’s typed_sets clause provides a way to associate
a set-valued Boogie function ts to each generic param-
eter G of a logic class, such that ts defines all objects
of type G collected in an instance of the logic class.
For example, the declaration typed_sets Seq#Range in
Fig. 6 makes AutoProof generate, for the Eiffel decla-
ration s: MML_SEQUENCE [PERSON], a Boogie axiom stating
that the Eiffel type of every object in the range of s is a
subtype of PERSON.

Type constraints. Logic classes may imposes constraints
on the values of their instances that have to hold when-
ever a value of the class is chosen nondeterministically.
AutoProof supports such constraints using where clauses.
For example, logic class MML_BAG includes a where clause
to state that the multiplicity (number of occurrences) of
every elements in a bag is a nonnegative number.

To our knowledge, AutoProof is the only auto-active
verifier with support for extensible mathematical types
that enjoy the same level of language integration and
underlying prover support as built-in types in other ver-
ifiers.

12 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

// Sequence type
type Seq T;

// Sequence length
function Seq#Length<T>(Seq T) : int;

// Element at a given index
function Seq#Item<T>(Seq T, int) : T;

// Last element
function Seq#Last<T>(q : Seq T) : T

{ Seq#Item(q, Seq#Length(q)) }

// Set of values
function Seq#Range<T>(Seq T) : Set T;
axiom (∀<T> q : Seq T, o : T •Seq#Has(q, o) ⇐⇒Seq#Range(q)[o]);

// Sequence extended with x at the end
function Seq#Extended<T>(s : Seq T, val : T) : Seq T;
axiom (∀<T> s : Seq T, v : T •
Seq#Length(Seq#Extended(s,v)) =1 + Seq#Length(s));

axiom (∀<T> s : Seq T, i : int, v : T •
(i =Seq#Length(s) + 1 =⇒Seq#Item(Seq#Extended(s,v), i) =v) ∧
(i ≤Seq#Length(s) =⇒Seq#Item(Seq#Extended(s,v), i) =Seq#Item(s, i)));

// Sequence converted to a bag
function Seq#ToBag<T>(Seq T) : Bag T;
axiom (∀<T> •Seq#ToBag(Seq#Empty() : Seq T) =Bag#Empty() : Bag T);
axiom (∀<T> s : Seq T, v : T •
Seq#ToBag(Seq#Extended(s, v)) =Bag#Extended(Seq#ToBag(s), v));

// Is |q0| ≤|q1|?
function Seq#LessEqual<T>(q0 : Seq T, q1 : Seq T) : bool
{ Seq#Length(q0) ≤Seq#Length(q1) }

Fig. 7. An excerpt from sequence.bpl, which contains a manual Boogie encoding of MML_SEQUENCE.

5.3 Extensible architecture

The architecture of AutoProof deploys widely used de-
sign patterns to facilitate the reuse and extension of its
functionality.

5.3.1 Top-level API

Class AUTOPROOF is the main entry point of AutoProof’s
API. It offers features to submit Eiffel code, and to start
and stop the verification process. Objects of class RESULT
store the outcome of a verification session, which can be
queried by calling routines of the class. One can also reg-
ister an Eiffel agent (function object) with an AUTOPROOF

object; the outcome RESULT object is passed to the agent
for processing as soon as it is available. This pattern is
customary in reactive applications such as AutoProof’s
GUI in EVE.

5.3.2 Translation to Boogie

An abstract syntax tree (AST) expresses the same se-
mantics as Eiffel source code, but using elements reflect-
ing Boogie’s constructs. Type relations such as inheri-
tance are explicitly represented (based on type check-
ing) using axiomatic constraints, so that an AST con-
tains all the information necessary for verification. The
transcription of an AST into a concrete Boogie program
is implemented by a visitor [21] of the AST. Modify-
ing AutoProof in response to changes in Boogie’s syntax
would only require to modify the visitor.

5.3.3 Extension points

AutoProof’s architecture incorporates extension points
where it is possible to programmatically modify and ex-
tend AutoProof’s behavior to implement different verifi-
cation processes. Each extension point maintains a num-

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 13

ber of handlers that take care of aspects of the transla-
tion from Eiffel to the Boogie-like AST. Multiple han-
dlers are composed according to the chain of responsi-
bility pattern [21]; this means that a handler may only
implement the translation of one specific source language
element, while delegating to the default AutoProof han-
dlers in all other cases. A new translation feature can
thus be added by writing a handler and registering it at
an extension point. Extension points target three pro-
gram elements of different generality.

Across extension points handle the translation of Eif-
fel across expressions, which correspond to quanti-
fied expressions. Handlers can define a semantics of
quantification over arbitrary data structures and do-
mains. (AutoProof uses this extension point to trans-
late quantifications over arrays and lists.)

Call extension points handle the translation of Eiffel
calls, both in executable code and specifications. Han-
dlers can define translations specific to certain data
types. (AutoProof uses this extension point to trans-
late functions on integers and dummy features for
specification.)

Expression extension points handle the translation of
expressions. Handlers can define translations of prac-
tically every Eiffel expression into a Boogie-like AST
representation. This extension point subsumes the
other two, which offer a simpler interface sufficient
when only specific language elements require a dif-
ferent translation.

The flexibility provided for by extension points is par-
ticular to AutoProof: the architecture of other similar
tools (Spec#, Dafny, and OpenJML) does not seem to
offer comparable architectural features for straightfor-
ward extensibility in the object-oriented style.

5.3.4 Modular translation

AutoProof performs modular reasoning: the effects of a
call to p within routine r’s body are limited to what is
declared in p’s specification (its pre- and postcondition
and frame) irrespective of p’s body (which is only used
to verify p’s correctness).

Modular reasoning, in turn, permits a modular trans-
lation from Eiffel to Boogie, which only includes code
elements necessary for the current verification targets.
AutoProof maintains a translation pool of references to
Eiffel elements (essentially, routines and their specifica-
tions); initially, it populates the pool with references to
the routines of the classes specified as input to be veri-
fied. Then, it proceeds as follows: (1) select an element
el from the pool that has not been translated yet; (2)
translate el into Boogie-like AST and mark el as trans-
lated; (3) if el refers to (i.e., calls) any element p not in
the pool, add a reference to p’s specification to the pool;
(4) if all elements in the pool are marked as translated
stop, otherwise repeat (1). This process populates the

pool with the transitive closure of the “calls” relation,
whose second elements in relationship pairs are specifi-
cations, starting from the input elements to be verified.

5.3.5 Traceability of results

The auto-active paradigm is based on interacting with
users at the high level of the source language as much as
possible; in case of failed verification, reports must refer
to the input Eiffel program rather than to the lower level
(Boogie code). To this end, AutoProof follows the stan-
dard approach of adding structured comments to various
parts of the Boogie code—most importantly to every as-
sertion that undergoes verification: postconditions; pre-
conditions of called routine at call sites; loop invariants;
and other intermediate asserts. Comments may include
information about the type of condition that is checked
(postcondition, loop termination, etc.), the tag identify-
ing the clause, a line number in the Eiffel program, the
called routine’s name (at call sites), and whether an as-
sertion was generated by applying a default schema that
users have the option to disable (such as in the case of
default class invariant annotations [42]).

For each assertion that fails verification, AutoProof
reads the information in the corresponding comment and
makes it available in a RESULT object to the agents reg-
istered through the API to receive verification outcomes
about some or all input elements. RESULT objects also
include information about verification times. This pub-
lish/subscribe scheme provides fine-grained control on
how results are displayed.

5.3.6 Bulk vs. forked feedback

AutoProof provides feedback to users in one of two modes.
In bulk mode, all input is translated into a single

Boogie file; the results are fed back to users when verifi-
cation of the whole input is completed. Using AutoProof
in bulk mode minimizes translation and Boogie invoca-
tion overhead, but provides feedback synchronously, only
when the whole batch has been processed.

In contrast, AutoProof’s forked mode offers asyn-
chronous feedback: each input routine (and implicit proof
obligations such as for class invariant admissibility check-
ing) is translated into its own self-contained Boogie file;
parallel instances of Boogie run on each file and results
are fed back to users asynchronously as soon as any Boo-
gie process terminates.

AutoProof’s UIs use the simpler bulk mode by de-
fault, but offer an option to switch to the forked mode
when responsiveness and a fast turnaround are deemed
important.

6 Evaluation

The proof of AutoProof is in the pudding. To demon-
strate its flexibility in supporting verification challenges,

14 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

we report the results of a three-part evaluation. In Sect. 6.1,
we use a collection of 30 benchmark verification problems
to demonstrate AutoProof’s capabilities on challenges
that are recognized as the yardstick to evaluate full func-
tional verification outside of the laboratory. In Sect. 6.2,
we summarize our recent effort of verifying the full func-
tional correctness of a container library with realistic
implementations; its size and complexity substantiate
the claim that AutoProof can deal with realistic general-
purpose code beyond isolated exercises. In Sect. 6.3, we
discuss the performance of master’s students using Auto-
Proof in developing a project for a software verification
course; the usability by serious non-expert users gives
some evidence to the claim that auto-active verifiers pro-
vide incrementality and identifies hurdles to improving
usability.

6.1 Benchmarks

We give capsule descriptions of benchmark problems that
we verified using the latest version of AutoProof; the
complete solutions are available at

http://tiny.cc/autoproof-repo

through AutoProof’s Web interface.

6.1.1 Benchmarks description

Our selection of problems is largely based on the veri-
fication challenges put forward during several scientific
forums, namely the SAVCBS workshops [43], and vari-
ous verification competitions [28,6,18,22,23] and bench-
marks [51]. These challenges have recently emerged as
the customary yardstick against which to measure progress
and open challenges in verification of full functional cor-
rectness.

Tab. 1 presents a short description of verified prob-
lems. For complete descriptions see the references (and
[42] for our solutions to problems 13–20). The table is
partitioned into three groups: the first group (1–11) in-
cludes mainly algorithmic problems; the second group
(13–20) includes object-oriented design challenges that
require complex invariant and framing methodologies;
the third group (21–30) targets data-structure related
problems that combine algorithmic and invariant-based
reasoning. The second and third group include cutting-
edge challenges of reasoning about functional properties
of objects in the heap; for example, pip describes a data
structure whose node invariant depends on objects not
directly accessible from the node in the physical heap.

6.1.2 Verified solutions with AutoProof

Tab. 2 displays data about the verified solutions to the
problems of Sect. 6.1; for each problem: the number of
Eiffel classes (#C) and routines (#R), the latter split
into ghost functions and lemma procedures and concrete

(non-ghost) routines; the lines of executable Eiffel code
and of Eiffel specification (a total of T specification
lines, split into preconditions P , postconditions Q, frame
specifications F , loop invariants L and variants V , aux-
iliary annotations including ghost code A, and class in-
variants C); the s/c specification to code ratio (mea-
sured in tokens)10; the lines of Boogie input (where tr
is the problem-specific translation code and bg are the
included background theory necessary for verification);
the overall verification time (in bulk mode). AutoProof
ran on a single core of a Windows 7 machine with a
3.5 GHz Intel i7-core CPU and 16 GB of memory, using
Boogie v. 2.2.30705.1126 and Z3 v. 4.3.2 as backends.

Given that we target full functional verification, our
specification to code ratios are small to moderate, which
demonstrates that AutoProof’s notation and methodol-
ogy support concise and effective annotations for ver-
ification. Verification times also tend to be moderate,
which demonstrates that AutoProof’s translation to Boo-
gie is effective.

To get an idea of the kinds of annotations required,
we computed the ratio A/T of auxiliary to total annota-
tions. On average, 2.8 out of 10 lines of specification are
auxiliary annotations; the distribution is quite symmet-
ric around its mean; auxiliary annotations are less than
58% of the specification lines in all problems. Auxiliary
annotations tend to be of lower level, since they out-
line intermediate proof goals which are somewhat spe-
cific to the way in which the proof is carried out. Thus,
the observed range of A/T ratios seems to confirm how
AutoProof supports incrementality: complex proofs are
possible but require more, lower level annotations.

6.1.3 Discussion

The collection of benchmark problems discussed in the
previous sections shows, by and large, that AutoProof is
a state-of-the-art auto-active tool for the functional ver-
ification of object-oriented programs. To our knowledge,
no other auto-active verifier fully supports the complex
reasoning about class invariants that is crucial to ver-
ify object-oriented pattern implementation such as s/o
and pip. It is important to remark that we are describ-
ing practical capabilities of tools: other auto-active ver-
ifiers may support logics sufficiently rich to express the
semantics of object-oriented benchmarks, but this is a
far cry from automated verification that is approachable
idiomatically at the level of a real object-oriented lan-
guage. Also, AutoProof’s performance is incomparable
against that of interactive tools, which may still offer
some automation, but always have the option of falling
back to asking users when verification gets stuck.

The flip side of AutoProof’s focus on supporting a
real object-oriented language is that it may not be the

10 In accordance with common practices in verification compe-
titions, we count tokens for the s/c ratio; but we provide other
measures in lines, which are more naturally understandable.

http://tiny.cc/autoproof-repo

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 15

name description from
1 Arithmetic (arith) Build arithmetic operations based on the increment operation [51]
2 Binary search (bins) Binary search on a sorted array (iterative and recursive version) [51]
3 Sum & max (s&m) Sum and maximum of an integer array [28]
4 Search a list (search) Find the index of the first zero element in a linked list of integers [28]
5 Two-way max (2-max) Find the maximum element in an array by searching at both ends [6]
6 Two-way sort (2-sort) Sort a Boolean array in linear time using swaps at both ends [18]
7 Relaxed prefix (rpre) Determine if one sequence is a prefix of another possibly modulo an extra character [23]
8 Dutch flag (dutch) Partition an array in three different regions (specific and general verions) [13]
9 LCP (lcp) Longest common prefix starting at given positions x and y in an array [22]
10 Rotation (rot) Circularly shift a list by k positions (multiple algorithms) [19]
11 Sorting (sort) Sorting of integer arrays (multiple algorithms)
12 Concurrent GCD (gcd) Nondeterministic Euclid’s algorithm with termination guarantees [23]
13 Iterator (iter) Multiple iterators over a collection are invalidated when the content changes [43, ’06]
14 Subject/observer (s/o) Design pattern: multiple observers cache the content of a subject object [43, ’07]
15 Composite (cmp) Design pattern: a tree with consistency between parent and children nodes [43, ’08]
16 Master clock (mc) A number of slave clocks are loosely synchronized to a master [3]
17 Marriage (mar) Person and spouse objects with co-dependent invariants [35]
18 Doubly-linked list (dll) Linked list whose nodes have links to left and right neighbors [35]
19 Dancing links (dance) Doubly-linked list where nodes can be un-removed [23]
20 PIP (pip) Graph structure with cycles where each node links to at most one parent [44]
21 Closures (close) Various applications of function objects [30]
22 Strategy (strat) Design pattern: a program’s behavior is selected at runtime [30]
23 Command (cmd) Design pattern: encapsulate complete information to execute a command [30]
24 Map ADT (map) Generic map ADT with layered data [51]
25 Linked queue (queue) Queue implemented using a linked list [51]
26 Tree maximum (tmax) Find the maximum value in nodes of a binary tree [6]
27 Ring buffer (buff) A bounded queue implemented using a circular array [18]
28 Hash set (hset) A hash set with mutable elements
29 Board game 1 (game1) A simple board game application: players throw dice and move on a board
30 Board game 2 (game2) A more complex board game application: different board-square types

Table 1. Descriptions of benchmark problems.

name #C #R code specification s/c Boogie time [s]
co gh T P Q F L V A C tr bg

1 arith 1 6 0 99 44 11 12 0 12 9 0 0 0.4 927 579 3.1
2 bins 1 4 1 62 48 11 12 0 6 3 16 0 1.6 965 1355 3.7
3 s&m 1 1 0 23 12 3 2 1 4 0 2 0 1.0 638 1355 3.9
4 search 2 5 1 57 62 2 12 2 6 2 27 11 2.3 931 1355 4.1
5 2-max 1 1 0 23 12 2 4 0 4 2 0 0 2.3 583 1355 3.0
6 2-sort 1 2 0 35 28 5 7 2 6 2 6 0 1.8 683 1355 3.2
7 rpre 1 1 0 39 25 0 11 0 12 2 0 0 2.9 547 1355 2.8
8 dutch 1 4 1 72 75 13 22 4 21 0 15 0 2.6 1447 1355 4.1
9 lcp 2 2 0 40 28 4 7 0 6 2 9 0 1.0 1359 1355 4.2
10 rot 1 3 3 51 74 14 10 3 17 2 28 0 2.6 1138 1355 4.1
11 sort 1 9 6 177 219 31 38 9 56 5 80 0 2.6 2302 1355 5.8
12 gcd 1 1 2 31 33 3 2 0 4 1 23 0 2.9 495 1355 3.3
13 iter 3 8 0 88 69 15 26 6 0 0 11 11 1.4 1461 1355 8.9
14 s/o 3 6 0 71 56 10 14 4 3 0 15 10 1.4 1156 1355 4.4
15 cmp 2 5 3 54 125 19 18 5 0 2 72 9 4.3 1327 1355 7.5
16 mc 3 7 0 63 61 9 14 5 0 0 26 7 1.8 956 579 3.7
17 mar 2 5 0 45 50 12 11 3 0 0 19 5 2.3 755 579 3.3
18 dll 2 8 0 69 76 12 14 4 0 0 39 7 2.0 891 579 4.4
19 dance 2 9 2 98 137 22 24 11 0 0 73 7 3.0 1272 579 4.9
20 pip 2 5 1 54 111 23 18 6 0 1 56 7 3.9 988 1355 5.8
21 close 9 18 0 145 106 40 31 8 0 0 22 5 0.8 2418 688 5.7
22 strat 4 4 0 43 5 0 4 0 0 0 1 0 0.2 868 579 3.3
23 cmd 6 8 0 77 32 4 14 2 0 0 10 5 0.7 1334 579 3.3
24 map 1 8 0 78 67 6 29 2 6 4 15 5 2.3 1259 1355 4.1
25 queue 4 13 1 121 101 11 26 1 0 0 48 15 1.5 2360 1355 7.4
26 tmax 1 3 0 31 43 3 12 2 0 2 19 5 2.1 460 1355 3.2
27 buff 1 9 0 66 54 8 19 4 0 0 12 11 1.1 1256 1355 4.4
28 hset 5 14 5 146 341 45 39 10 20 2 197 28 3.7 3546 1355 13.7
29 game1 4 8 0 165 93 16 13 4 31 3 10 16 1.2 4044 1355 26.6
30 game2 8 18 0 307 173 25 27 11 48 3 29 30 1.4 7037 1355 54.2

total 76 195 26 2430 2360 379 492 109 262 47 880 191 1.9 45403 1355 212.6

Table 2. Verification of benchmark problems with AutoProof.

16 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

most powerful tool to verify purely algorithmic prob-
lems. The benchmarks have shown that AutoProof still
works quite well in that domain, and there are no intrin-
sic limitations that prevent from applying it to the most
complex examples. However, algorithmic verification is
often best approached at a level that abstracts from im-
plementation details (such as pointers and objects) and
can freely use high-level constructs such as infinite maps
and nondeterminism. Verifiers such as Dafny [32] and
Why3 [17], whose input languages have been explicitly
designed to match such abstraction level, are thus best
suited for algorithmic verification, which is instead not
the primary focus of AutoProof.

Another aspect of the complexity vs. expressivity
trade-off emerges when verifying realistic data structure
implementations (or, more generally, object-oriented code
as written in real-life projects). Tools such as Dafny of-
fer a bare-bones framing methodology that is simple to
learn (and to teach) and potentially very expressive; but
it becomes unwieldy to reason about complicated imple-
mentations, which require to deal with an abundance of
special cases by specifying each of them at a low level of
detail—and annotational complexity easily leads to un-
feasible verification. AutoProof’s methodology is richer,
which implies a steeper learning curve (see Sect. 6.3), but
also a variety of constructs and defaults that can signifi-
cantly reduce the annotational overhead and whose cus-
tom Boogie translation offers competitive performance
in many practical cases.

Given AutoProof’s goal of targeting a real program-
ming language, there are only few domain-specific fea-
tures of the Eiffel language that are not fully supported,
but are used in practice in a variety of programs: reason-
ing in AutoProof about strings and floating-point num-
bers is limited by the imprecision of the verification mod-
els of such features. For instance (see Sect. 4.1), floating
point numbers are translated as infinite-precision reals;
precise reasoning requires manually specifying proper-
ties of floating point operations, which is impractical in
all but the simplest cases. Another domain deliberately
excluded from AutoProof so far is concurrent program-
ming. As a long-term plan, we envision extending Auto-
Proof to cover these domains to the extent possible: pre-
cise functional verification of such features is still largely
an open challenge for automated verification tools.

6.2 Full verification of a container library

One of the original goals of AutoProof’s research—and
a driving force behind designing its features—was ver-
ifying a fully specified realistic data structure library.
We achieved the goal with the complete verification of
full functional correctness of the container library Eif-
felBase2. The library and the verification effort are de-
scribed in detail in our previous work [41]. In this sec-
tion, we give an idea of the challenges of the process and
a summary how AutoProof supported it.

EiffelBase2 is a realistic implementation of generic
reusable data-structure components. The codbase has
substantial size: verified EiffelBase2 consists of 46 classes
offering an API with 135 public routines; its implemen-
tation has over 8000 lines of code and annotations in 79
abstract and 378 concrete routines. The object-oriented
design and realistic implementation compound the com-
plexity of verification: the API is rich in features, as
one would expect from similar libraries such as Java’s
java.util containers, yet abstract; (multiple) inheritance
is used extensively to relate abstractions and concrete
implementations; and the algorithmic implementations
do not trade off efficiency for verifiability.

EiffelBase2’s overall annotation overhead is 1.4 lines
of annotations per line of executable code, or 2.7 tokens
of annotation per token of executable code. The overhead
is not uniform across classes: abstract classes (such as
those defining the common interface of lists) tend to in-
clude a lot of annotations which are then amortized over
multiple implementations of the same abstract specifica-
tion. This overhead compares favorably to the state of
the art in full functional verification of heap-based data
structure implementations (see [41] for details).

On the same hardware used in the benchmark prob-
lems (Sect. 6.1), AutoProof takes under 8 minutes to
verify the whole EiffelBase2. The distribution of times
per routine shows that AutoProof’s performance is sta-
ble and predictable: over 99% of the routines verify in
under 10 seconds; over 89% in under 1 second; the most
complex routine verifies in under 12 seconds. These uni-
form, short verification times are a direct result of Auto-
Proof’s flexible approach to verification, and specifically
of our effort to provide an effective Boogie encoding.

6.3 AutoProof in the classroom

Using AutoProof to verify benchmarks and a full-fledged
container library demonstrate its flexibility and perfor-
mance when used by experts—in particular, by its own
developers—but fails to account for its usability by se-
rious non-experts [33]. To draw an all-around picture
of how AutoProof supports incremental usage by non-
experts, we give an account of our experience in using it
to support teaching of a master’s level course on software
verification that we organized at ETH Zurich during the
fall semester 2014.11 In a related publication [20], we
reflect in greater detail on AutoProof’s usability in the
classroom and to verify pre-existing code.

Our “Software Verification” course introduced stu-
dents to a variety of verification techniques (from ab-
stract interpretation to model checking, from program
logics to testing), while emphasizing their unifying traits
based on the foundational concepts provided by axiomatic
semantics. The course combined lectures, which illus-

11 See the course’s homepage at http://se.inf.ethz.ch/courses/

2014b_fall/sv/.

http://se.inf.ethz.ch/courses/2014b_fall/sv/
http://se.inf.ethz.ch/courses/2014b_fall/sv/

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 17

trate theory, and exercise sessions and project work,
which demonstrate verification in practice.

After a one-hour tutorial introduction to AutoProof,
students tackled exercises—during the exercise sessions,
tutored by the course’s TA—and a project—to be devel-
oped off-line in groups of up to three students.

Exercises. Students used the Web interface of Auto-
Proof (Sect. 3.1) to carry out guided tasks of increasing
difficulty:

Counter : given an implementation of a wrap-around
counter, provide precondition and postcondition of
its increment routine, so that the whole class veri-
fies.

Hoare triples: encode each of six Hoare triples as a rou-
tines of a given stub class and use AutoProof to verify
them.

Maximum: given an implementation of two-way array
maximum (problem 2-max in Tab. 1), provide pre-
condition and quantified loop invariant, so that its
given postcondition verifies.

Sum & max : given an implementation of sum & maxi-
mum of an array (problem s&m in Tab. 1), provide
loop invariant and postcondition that verify and are
as detailed as possible.

LCP : given an implementation of the least common pre-
fix routine (problem lcp in Tab. 1) and a series of
test cases that call the routine on concrete inputs and
check the output, provide pre- and postcondition of
the routine so that the test cases verify.

Project. The project consisted in implementing and ver-
ifying a simple array-based list data structure class,
equipped with basic features to manipulate the list and
with a routine to sort the list’s content. The students
received a skeleton Eiffel class with the signatures of the
routines they were required to implement, annotate, and
verify; for simplicity, the list was limited to storing inte-
ger values. Routine sort was implemented as a wrapper
that calls two sorting algorithms according to how many
and what kinds of elements are in the list: if the list con-
tains “many” elements (more than a given constant N)
ranging over values between −V and +V , sort calls a
bucket sort implementation; otherwise, it calls a quick
sort implementation.

The students developed the project in groups of 1–
3 persons over a period of 6 weeks, during which they
could get the help of the TA and of the last author of
this paper to clarify the behavior and functionality of
AutoProof. Since the project involved developing imple-
mentation and specification given informal descriptions,
the students had a chance to target different trade-offs
between sophistication of their implementations, com-
pleteness of their specifications, and difficulty of verifi-
cation.

Results. The exercises gradually introduced the students
to the features of AutoProof. In particular, they made
them familiar with the way modular verifiers reason about
program correctness: the notion that the effects of a call
to a routine r are given solely by r’s specification inde-
pendent of its implementation—and, consequently, if r
has a weak specification it becomes practically impossi-
ble to prove anything about its effects even if its imple-
mentation is correct.

All students were able to follow through the exercises,
learning the ropes of auto-active verification. Nonethe-
less, things proved more challenging when they switched
over to developing the project. All of the 9 student groups
managed to fully implement, specify, and verify the list’s
basic API features; 6 groups managed to fully and cor-
rectly specify the sorting routines, while 3 groups inad-
vertently introduced inconsistencies in the specifications;
and only 5 groups managed to complete a proof of the
full specification of the sorting routines including, cru-
cially, the property that the output is a permutation of
the input.

These results are a somewhat mixed bag. On the
one hand, it is encouraging that students without any
previous experience of using AutoProof or similar auto-
active tools were able to carry out significant verification
tasks including, in the majority of cases, full functional
correctness proofs. On the other hand, there remains a
chasm in the learning curve of AutoProof, which our
students encountered as they progressed toward proving
the more complex properties of the sorting algorithms.
Initially, they could continue using AutoProof as a black
box (as they used it in the exercises); but, at some point,
they had to come to terms with the fact that AutoProof
may require redundant information, in the form of inter-
mediate annotations and lemmas, to get to a successful
proof. Understanding when and how this extra informa-
tion is required is something that can only be learned by
trial and error, developing an intuition of how AutoProof
works internally.

A related issue is what happened with the 3 groups
who had inconsistent specifications and, consequently,
could vacuously verify properties with little apparent ef-
fort. We, the experts, have learned to be suspicious of
complex proofs that go through with little effort and
have developed a few simple practices to check for possi-
ble inconsistencies (adding check False statements, re-
moving key specification elements to ascertain whether
they are indeed used in a proof, and so on). Users with
less experience would greatly benefit from tool support
to detect possible inconsistencies and to track them back
to specific annotations that ought to be rectified.12

Improving the documentation and learning material
is another way of improving the usability of AutoProof
for non-experts. We created AutoProof’s tutorial with

12 A simple way to implement support of this kind could build
atop Boogie’s smoke testing functionality.

18 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

an eye on the major difficulties the students encountered
while working on their projects. Future iterations of the
course will help us assess to what extent learning Auto-
Proof has become easier for beginners.

7 Discussion

How do AutoProof’s techniques and implementation gen-
eralize to other domains? While Eiffel has its own pecu-
liarities, it is clear that AutoProof’s techniques are ap-
plicable with little changes to other mainstream object-
oriented languages such as Java and C#; and that Au-
toProof’s architecture uses patterns that lead to proper
designs in other object-oriented languages too.

A practically important issue is the input language,
namely how to reconcile the conflicting requirements of
supporting Eiffel as completely as possible and of hav-
ing a convenient notation for expressing annotations nec-
essary for auto-active verification. While Eiffel natively
supports fundamental specification elements (pre- and
postconditions and invariants), we had to introduce ad
hoc notations, using naming conventions and dummy
features, to express modifies clauses, ghost code, and
other verification-specific directives in a way that is back-
ward compatible with Eiffel syntax. We considered dif-
ferent implementation strategies, such as using a pre-
processor or extending Eiffel’s parser, but we concluded
that being able to reuse standard Eiffel tools without
modifying them is a better option in terms of reusabil-
ity and compatibility (as the language and its tools may
evolve), albeit it sacrifices a bit of notational simplicity.
This trade-off is reasonable whenever the goal is verify-
ing programs in a real language used in practice; verifiers
focused on algorithmic challenges would normally prefer
ad hoc notations with an abstraction level germane to
the tackled problems.

In future work, AutoProof’s architecture could inte-
grate translations to back-end verifiers other than Boo-
gie. To this end, we could leverage verification systems
such as Why3 [17], which generates verification condi-
tions and discharges them using a variety of SMT solvers
or other provers.

Supporting back-ends with different characteristics is
one of the many aspects that affect the flexibility of Au-
toProof and similar tools. Another crucial aspect is the
quality of feedback in case of failed verification attempts,
when users have to change the input to fix errors and in-
consistencies, work around limitations of the back-end,
or both. As mentioned in Sect. 3.2, AutoProof incorpo-
rates heuristics that improve feedback. Another compo-
nent of the EVE environment combines AutoProof with
automatic random testing and integrates the results of
applying both [47]. As future work we plan to further ex-
periment with integrating the feedback of diverse code
analysis tools (AutoProof being one of them) to improve
the usability of verification.

References

1. W. Ahrendt, B. Beckert, D. Bruns, R. Bubel, C. Glad-
isch, S. Grebing, R. Hähnle, M. Hentschel, M. Herda,
V. Klebanov, W. Mostowski, C. Scheben, P. H. Schmitt,
and M. Ulbrich. The KeY platform for verification and
analysis of Java programs. In Verified Software: The-
ories, Tools, and Experiments (VSTTE 2014), number
8471 in Lecture Notes in Computer Science, pages 1–17.
Springer-Verlag, 2014.

2. M. Barnett, M. Fähndrich, K. R. M. Leino, P. Müller,
W. Schulte, and H. Venter. Specification and verifica-
tion: the Spec# experience. Commun. ACM, 54(6):81–
91, 2011. http://specsharp.codeplex.com/.

3. M. Barnett and D. A. Naumann. Friends need a bit more:
Maintaining invariants over shared state. In MPC, pages
54–84, 2004.

4. B. Beckert, D. Bruns, V. Klebanov, C. Scheben, P. H.
Schmitt, and M. Ulbrich. Information flow in object-
oriented software. In Logic-Based Program Synthesis and
Transformation, 23rd International Symposium, LOP-
STR, volume 8901 of Lecture Notes in Computer Science,
pages 19–37. Springer, 2014.

5. B. Beckert, R. Hähnle, and P. H. Schmitt, editors. Verifi-
cation of Object-Oriented Software: The KeY Approach,
volume 4334 of LNCS. Springer, 2007.

6. T. Bormer et al. The COST IC0701 verification compe-
tition 2011. In FoVeOOS, volume 7421 of LNCS, pages
3–21. Springer, 2012. http://foveoos2011.cost-ic0701.

org/verification-competition.
7. P. Chalin, J. R. Kiniry, G. T. Leavens, and E. Poll. Be-

yond assertions: Advanced specification and verification
with JML and ESC/Java2. In FMCO, LNCS, pages 342–
363. Springer, 2006. http://kindsoftware.com/products/
opensource/ESCJava2/.

8. J. M. Chimento, W. Ahrendt, G. J. Pace, and G. Schnei-
der. StaRVOOrS: A tool for combined static and runtime
verification of Java. In E. Bartocci and R. Majumdar,
editors, Runtime Verification – 6th International Con-
ference, RV 2015, volume 9333 of Lecture Notes in Com-
puter Science, pages 297–305. Springer, 2015.

9. E. M. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded
model checking using satisfiability solving. Formal Meth-
ods in System Design, 19(1):7–34, 2001.

10. E. Cohen, M. Dahlweid, M. A. Hillebrand, D. Leinen-
bach, M. Moskal, T. Santen, W. Schulte, and S. Tobies.
VCC: a practical system for verifying concurrent C. In
TPHOLs, volume 5674 of LNCS, pages 23–42. Springer,
2009. http://vcc.codeplex.com/.

11. D. Cok. The OpenJML toolset. In NASA Formal Meth-
ods, volume 6617. 2011.

12. Á. Darvas and P. Müller. Faithful mapping of model
classes to mathematical structures. IET Software,
2(6):477–499, 2008.

13. E. W. Dijkstra. A Discipline of Programming. Prentice
Hall, 1976.

14. EiffelBase2: A fully verified container library. https://

github.com/nadia-polikarpova/eiffelbase2, 2015.
15. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and

W. Reif. KIV: overview and VerifyThis competition.
International Journal on Software Tools for Technology
Transfer, 17(6):677–694, 2015.

http://specsharp.codeplex.com/
http://foveoos2011.cost-ic0701.org/verification-competition
http://foveoos2011.cost-ic0701.org/verification-competition
http://kindsoftware.com/products/opensource/ESCJava2/
http://kindsoftware.com/products/opensource/ESCJava2/
http://vcc.codeplex.com/
https://github.com/nadia-polikarpova/eiffelbase2
https://github.com/nadia-polikarpova/eiffelbase2

C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs 19

16. J.-C. Filliâtre and C. Marché. The Why/Krakatoa/Ca-
duceus platform for deductive program verification. In
CAV, volume 4590 of LNCS, pages 173–177. Springer,
2007. http://krakatoa.lri.fr/.

17. J.-C. Filliâtre and A. Paskevich. Why3 – where programs
meet provers. In ESOP, volume 7792 of LNCS, pages
125–128. Springer, 2013. http://why3.lri.fr/.

18. J.-C. Filliâtre, A. Paskevich, and A. Stump. The 2nd
verified software competition: Experience report. In
COMPARE, volume 873 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2012. https://sites.google.com/

site/vstte2012/compet.
19. C. A. Furia. Rotation of sequences: Algorithms and

proofs. http://arxiv.org/abs/1406.5453, June 2014.
20. C. A. Furia, C. M. Poskitt, and J. Tschannen. The Au-

toProof verifier: Usability by non-experts and on stan-
dard code. In C. Dubois, P. Masci, and D. Mery, edi-
tors, Proceedings of the 2nd Workshop on Formal Inte-
grated Development Environment (F-IDE), volume 187
of Electronic Proceedings in Theoretical Computer Sci-
ence, pages 42–55. EPTCS, June 2015. Workshop co-
located with FM 2015.

21. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns. Addison-Wesley, 1995.

22. M. Huisman, V. Klebanov, and R. Monahan. Veri-
fyThis verification competition. http://verifythis2012.
cost-ic0701.org, 2012.

23. M. Huisman, V. Klebanov, and R. Monahan. VerifyThis
verification competition. http://etaps2015.verifythis.

org/, 2015.
24. B. Jacobs, J. Smans, and F. Piessens. A quick tour of

the VeriFast program verifier. In APLAS, volume 6461
of LNCS, pages 304–311. Springer, 2010. http://people.
cs.kuleuven.be/~bart.jacobs/verifast/.

25. B. Jacobs, J. Smans, and F. Piessens. VeriFast: Im-
perative programs as proofs. In VS-Tools workshop at
VSTTE, 2010.

26. I. T. Kassios. Dynamic frames: Support for framing,
dependencies and sharing without restrictions. In FM,
pages 268–283, 2006.

27. J. R. Kiniry, A. E. Morkan, D. Cochran, F. Fairmichael,
P. Chalin, M. Oostdijk, and E. Hubbers. The KOA re-
mote voting system: A summary of work to date. In
TGC, volume 4661 of LNCS, pages 244–262. Springer,
2007.

28. V. Klebanov et al. The 1st verified software competition:
Experience report. In FM, volume 6664 of LNCS, pages
154–168. Springer, 2011. https://sites.google.com/a/

vscomp.org/main/.
29. G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R.

Cok. How the design of JML accommodates both run-
time assertion checking and formal verification. Sci.
Comput. Program., 55(1-3):185–208, 2005.

30. G. T. Leavens, K. R. M. Leino, and P. Müller. Specifi-
cation and verification challenges for sequential object-
oriented programs. Formal Aspects of Computing,
19(2):159–189, 2007.

31. K. R. M. Leino. This is boogie 2. Technical re-
port, Microsoft Research, June 2008. http://research.

microsoft.com/apps/pubs/default.aspx?id=147643.
32. K. R. M. Leino. Dafny: An automatic program verifier

for functional correctness. In LPAR-16, volume 6355 of

LNCS, pages 348–370. Springer, 2010. http://research.
microsoft.com/en-us/projects/dafny/.

33. K. R. M. Leino and M. Moskal. Usable auto-active verifi-
cation. In Usable Verification Workshop. http://fm.csl.
sri.com/UV10/, November 2010.

34. K. R. M. Leino and P. Müller. Object invariants in
dynamic contexts. In ECOOP 2004 – Object-Oriented
Programming, 18th European Conference, Oslo, Norway,
June 14–18, 2004, Proceedings, volume 3086 of Lecture
Notes in Computer Science, pages 491–516. Springer,
2004.

35. K. R. M. Leino and P. Müller. Object invariants in dy-
namic contexts. In ECOOP, pages 491–516, 2004.

36. K. R. M. Leino, A. Poetzsch-Heffter, and Y. Zhou. Us-
ing data groups to specify and check side effects. In
Proceedings of the 2002 ACM SIGPLAN Conference
on Programming Language Design and Implementation
(PLDI), Berlin, Germany, June 17-19, 2002, pages 246–
257, 2002.

37. F. Logozzo. Our experience with the CodeContracts
static checker. In VSTTE, volume 7152 of LNCS, pages
241–242. Springer, 2012. http://msdn.microsoft.com/

en-us/devlabs/dd491992.aspx.
38. The OpenJML toolset. http://openjml.org/, 2013.
39. E. Pek, X. Qiu, and P. Madhusudan. Natural proofs

for data structure manipulation in C using separation
logic. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edin-
burgh, United Kingdom - June 09 - 11, 2014, page 46,
2014.

40. N. Polikarpova, C. A. Furia, and B. Meyer. Specifying
reusable components. In VSTTE, volume 6217 of LNCS,
pages 127–141. Springer, 2010.

41. N. Polikarpova, J. Tschannen, and C. A. Furia. A fully
verified container library. In FM, LNCS. Springer, 2015.

42. N. Polikarpova, J. Tschannen, C. A. Furia, and B. Meyer.
Flexible invariants through semantic collaboration. In
FM, volume 8442 of LNCS, pages 514–530. Springer,
2014.

43. SAVCBS workshop series. http://www.eecs.ucf.edu/

~leavens/SAVCBS/, 2010.
44. A. J. Summers, S. Drossopoulou, and P. Müller. The

need for flexible object invariants. In IWACO, pages 1–
9. ACM, 2009.

45. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiabil-
ity modulo recursive programs. In SAS, volume 6887
of LNCS, pages 298–315. Springer, 2011. http://leon.

epfl.ch/.
46. J. Tschannen, C. A. Furia, and M. Nordio. AutoProof

meets some verification challenges. International Journal
on Software Tools for Technology Transfer, 17(6):745–
755, 2015.

47. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer.
Usable verification of object-oriented programs by com-
bining static and dynamic techniques. In SEFM, volume
7041 of LNCS, pages 382–398. Springer, 2011.

48. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer.
Automatic verification of advanced object-oriented fea-
tures: The AutoProof approach. In Tools for Practical
Software Verification, volume 7682 of LNCS, pages 133–
155. Springer, 2012.

http://krakatoa.lri.fr/
http://why3.lri.fr/
https://sites.google.com/site/vstte2012/compet
https://sites.google.com/site/vstte2012/compet
http://arxiv.org/abs/1406.5453
http://verifythis2012.cost-ic0701.org
http://verifythis2012.cost-ic0701.org
http://etaps2015.verifythis.org/
http://etaps2015.verifythis.org/
http://people.cs.kuleuven.be/~bart.jacobs/verifast/
http://people.cs.kuleuven.be/~bart.jacobs/verifast/
https://sites.google.com/a/vscomp.org/main/
https://sites.google.com/a/vscomp.org/main/
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://research.microsoft.com/apps/pubs/default.aspx?id=147643
http://research.microsoft.com/en-us/projects/dafny/
http://research.microsoft.com/en-us/projects/dafny/
http://fm.csl.sri.com/UV10/
http://fm.csl.sri.com/UV10/
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx
http://openjml.org/
http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://www.eecs.ucf.edu/~leavens/SAVCBS/
http://leon.epfl.ch/
http://leon.epfl.ch/

20 C. A. Furia et al.: AutoProof: auto-active functional verification of object-oriented programs

49. J. Tschannen, C. A. Furia, M. Nordio, and B. Meyer.
Program checking with less hassle. In VSTTE 2013, vol-
ume 8164 of LNCS, pages 149–169. Springer, 2014.

50. J. Tschannen, C. A. Furia, M. Nordio, and N. Polikar-
pova. AutoProof: Auto-active functional verification of
object-oriented programs. In C. Baier and C. Tinelli, edi-
tors, Proceedings of the 21st International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), volume 9035 of Lecture Notes in
Computer Science, pages 566–580. Springer, April 2015.

51. B. W. Weide, M. Sitaraman, H. K. Harton, B. Adcock,
P. Bucci, D. Bronish, W. D. Heym, J. Kirschenbaum,
and D. Frazier. Incremental benchmarks for software
verification tools and techniques. In VSTTE, number
5295 in LNCS, pages 84–98. Springer, 2008.

52. S. West, S. Nanz, and B. Meyer. Efficient and reason-
able object-oriented concurrency. In Proceedings of the
10th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE ’15).
ACM, 2015.

	Auto-active functional verification of object-oriented programs
	Related work
	Using AutoProof
	The theory behind AutoProof: specification and verification methodology
	How AutoProof works: architecture and implementation
	Evaluation
	Discussion

