Electronic Notes in Theoretical Computer Science 82 No. 6 (2004)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 12 pages

A Compositional Framework
for Formally Verifying Modular Systems !

Carlo A. Furia and Matteo Rossi 2

Dipartimento di Elettronica e Informazione, Politecnico di Milano
32, Piazza Leonardo da Vinci, 20133 Milano, Italy

Abstract

We present a tool-supported framework for proving that the composition of the behaviors
of the separate parts of a complex system ensures a desired global property of the overall
system. A compositional inference rule is formally introduced and encoded in the logic of
the PVS theorem prover. Methodological considerations on the usage of the inference rule
are presented, and the framework is then used to prove a meaningful property of a simple,
but significant, control system.

Key words: Formal verification, modular systems, real-time,
compositionality.

1 Introduction

As systems grow in size, being able to subdivide them in components is of crucial
importance to keep their complexity under control. In particular, one would like to
specify and design single components separately, and then be able to guarantee that
they also behave correctly when they interact with each other. In fact, parts that
operate properly under some assumptions on the behavior of the external world
might misbehave when interacting with other elements of the overall system that
do not satisfy those assumptions (for example, a data analyzer that accepts inputs
with frequency r might work improperly when connected to a sensor that sends
data with frequency 2r).

Formal methods are more and more recognized to be a useful tool for the devel-
opment of applications, especially critical ones, as they allow to precisely verify the
correctness of systems in their early development phases, before uncaught mistakes
become overly costly to fix, or even catastrophic. One problem often attributed to

1 'Work supported by the MIUR project: “QUACK: Piattaforma per la qualita di sistemi embedded
integrati di nuova generazione”
2 Email: rossi@elet.polimi.it

(©2004 Published by Elsevier Science B. V.

formal methods, however, is that they do not “scale up”, i.e. when the system grows
in complexity, they are too cumbersome and unwieldy to be used effectively.

A compositional framework can help in this regard, in that it would allow one to
focus on the single parts of the system at first, and analyze their mutual interactions
at a later moment, with a smaller effort than it would be required if all aspects (local
and global) of the application were taken into account at once at integration time. A
good, proof-oriented compositional framework must be based on sound inference
rules that allow one to deduce global properties of the system from the behavior
of its single parts. In addition, for the framework to be actually usable, it should
be supported by (semi)automatic tools that facilitate the analysis of the modeled
systems.

Rules for composing single specifications into complex systems have been stud-
ied in the past [2], also, but not only, with reference to temporal logics [1]3. This
paper presents a valid inference rule for the TRIO specification language [5,6] that
is suitable to formally prove the correctness of the behavior of a modular system
from the behavior of its components. The rule has been encoded in the logic of the
PVS theorem prover [7], and support strategies have been developed.

The paper is structured as follows: Section 2 shortly introduces the TRIO lan-
guage, using the specification of the application analyzed in Section 5 as an exam-
ple; Section 3 presents the inference rule on which our compositional framework
for TRIO is based; Section 4 describes the PVS-based tool that supports the frame-
work; Section 5 introduces some methodological considerations on the use of the
compositional framework and shows how it can be applied to a simple, but mean-
ingful, control system; Section 6 draws some conclusions and outlines future work
in this line of research.

2 TRIO

TRIO [5,6] is a typed linear metric temporal logic enriched with object-oriented
and modular features for writing specifications of complex systems. Each TRIO
formula is evaluated with respect to the current time instant, which is left implicit.
The basic temporal operator is called Dist and relates other instants of time with
the current one: Dist(F,t) is true of a time-dependent formula F' if and only if F’
holds at a time instant which is ¢ time units apart from the current one. Combining
the Dist operator with all common propositional operators and quantifiers of first-
order logic, we define a number of derived temporal operators, some of which are
shown in Table 1.

Notice that TRIO is well suited to deal with both continuous and discrete time;
if the temporal domain is discrete, the definition of some temporal operators changes
slightly with respect to the one shown in Table 1. The basic elements of a TRIO
specification (predicates, functions, etc.) are called items. Events and states are

3 For the sake of space limit, we do not present extensively the literature related to this research.
The interested reader can refer to [3] for a comparison with relevant related works.

2

Operator TRIO Definition

Past(A,d) d > 0A Dist(A,—d)
Futr(A,d) d > 0A Dist(A,d)
Som/(F) 3d Dist(F,d)
Alw(F) Vd Dist(F,d)
AlwP(F) Vd (d > 0 = Past(F,d))
AlwP;(F) AlwP(F)V F

Lasts(F,t) | Vd(0<d<t= Futr(F,d))
Lasted(F,t) | Vd (0 <d<t= Past(F,d))
UpToNow(F) | 3d(d > 0A Lasted(F,d))

NowOn(F) 3d (d > 0 A Lasts(F,d))

Table 1
Derived Temporal Operators

items with a particular temporal behavior (e.g. events are predicates that are true
only in isolated instants).

Let us illustrate the features of TRIO by means of a simple, but meaningful
example (which will also be used in Section 5 to show an application of our com-
positional framework). The case study consists of a reservoir and a controller.
Whenever the level of liquid in the reservoir is below a certain threshold, the con-
troller opens a valve to fill it. Moreover, the reservoir can nondeterministically
leak.

Example 2.1 [Items of the reservoir] The reservoir being filled/leaking is modeled
by the TRIO states filling and leaking, respectively. Conversely, the current level of
fluid in the reservoir is modeled by a time-dependent item named level.

There are three categories of TRIO formulae: axioms, assumptions and theo-
rems. Axioms and assumptions postulate the basic behavior of the system, while
theorems describe properties that can be derived from them.

Example 2.2 [Axioms of the reservoir] The temporal evolution of the level of lig-
uid in the reservoir is modeled by means of four axioms (named level_behav-
ior_1/2/3/4), which take into account all the possible configurations the reservoir
can be in: filling and leaking, just filling, just leaking, neither filling nor leaking.
If fr and [r are the filling and leaking rate, respectively, axiom level_ behavior_1,
that corresponds to the situation in which the reservoir is both being filled and leak-
ing, is the following *:

4 TRIO formulae are implicitly temporally closed with the Alw operator.

3

axiom 1 (level_behavior_1)
Lasted(filling A leaking, t) A Past(level = [,t) = level =+ (fr —Ir) -t

TRIO is enriched with object-oriented constructs to support inheritance, gener-
icity and modularization. The basic encapsulation unit is the class, a collection of
items, formulae and modules ° . The semantics of a composite class is given by the
logical conjunction of all the axioms of all the modules.

Example 2.3 [Reservoir and controller parameters] The controller class is para-
metric with respect to the lower and upper bounds L; and L, between which the
liquid level must stay. The reservoir class is also parametric with respect to the
filling and leaking rates fr and [r. Parameter A of the controller class, in addition,
defines a delay in the control action: whenever the level of fluid stays below the
upper bound L,, for more than A time units, the controller issues a filling action till
the level grows back to L,,. This is formalized by axiom filling_def of the controller
class shown below.

axiom 2 (filling_def) filling < Lasted(level < L,, A)

Example 2.4 [The reservoir system] The reservoir system analyzed in Section 5 is
modeled by the class reservoir_system represented in Figure 1: it is built by com-
posing an instance of a reservoir class, describing a reservoir containing liquid,
and a controller class, describing its controller.

reservoir_system

reservoir controller
filling filling
leyel leyel
leaking

Fig. 1. The reservoir system

The ultimate goal of the analysis performed on the system is to prove that the
level of the liquid in the reservoir always stays between the upper and lower bounds
L, and L;. This is formalized by the following theorem of class reservoir_system:

theorem 3 (level_stays_between_bounds) [; < reservoir.level < L,

3 A Compositional Inference Rule

This section presents a compositional inference rule for the TRIO language. More
precisely, we are considering compositional specifications written in the rely/guar-
antee paradigm [2,1]. This rule will be used in Section 5 to derive formal properties

5 in TRIO terms, a module is an instance of a class.

4

of the composite system introduced in Section 2. For the sake of brevity, we do not
demonstrate the soundness of the inference rule (see [3] for further details).

Let us consider a system composed by n modules C1, . .., C,,. To each module
t = 1,...,n we associate an assumption £; about the behavior of its environment
and a behavioral property M; of the module itself. Therefore, each module : =
1,...,n has a rely/guarantee specification of the form: assuming the environment

of C; behaves as in F;, we can guarantee that the module behaves as in M;. Let
C be the system obtained by composing the n modules together. In general, C' has
its own environment it interacts with. Let £ be the assumption we make on C’s
environment and)M the global property we want to prove of C. Therefore, C' is
characterized by a global rely/guarantee specification of the form: assuming the
environment of C' behaves as in £/, we can guarantee that the composite module
behaves as in M. The compositional inference rule lets us derive the validity of the
global rely/guarantee specification of C' from the validity of the local rely/guarantee
specifications of the C;s.

Now, we need to introduce some formal semantics for rely/guarantee specifi-
cations; in other words, we have to define formally what is the link between the
assumption formula of one module (e.g. F) and its guarantee formula (e.g. M).
In order to do this, we introduce a new temporal operator, represented by the ~>
symbol ®. Let P and @ be two time-dependent TRIO formulae. We define P “> Q
to be a shorthand for the formula:

AlwP(P) = AlwP;(Q) AN NowOn(Q) if Time is dense
AlwP(P) = AlwP;(Q) if Time is discrete

PHQ £

where two definitions are given, depending on whether the temporal model we use
is dense or discrete. The informal meaning of the operator is simple: P >
means that () lasts at least as long as P does, and even a bit longer.

The semantics of the link between the assumption formula and the correspond-
ing guarantee formula of one module is given by the operator ~>: for example, the
global rely/guarantee specification for the module C' can be written as £ > M.
Basically, this formula states that when a failure of the environment occurs (i.e. £
becomes false) for the first time, the module may stop respecting its specification
M only “a bit later” than the occurrence of the aforementioned failure.

Now, we can formulate the compositional inference rule, which is founded on
theorem 3.1 given below.

Theorem 3.1 (rely/guarantee inference rule) If, for i = 1,... n (finite) the fol-
lowing conditions hold:

(i) Som(AlwP(E;))

6 The %> symbol appears also in [1], among other works, but with different semantics.

5

Alw < N (B % Mj)> = Alw(E > M)

Jj=1,...,n

The inference rule works as follows: if we are able to prove the hypotheses of
theorem 3.1, and if, for all = = 1, ..., n, the module C}; respects the local rely/guar-
antee specification E; “> M;, then we can soundly infer that the composite system
C satisfies the global rely/guarantee specification £ ‘> M.

4 The PVS Encoding of Modular TRIO

For a verification framework to be usable, supporting tools are of crucial impor-
tance. This section presents the PVS-based tool built around the inference rule
defined in Section 3. In particular, this section describes an encoding in the logic
of the PVS theorem prover [7] of the modular features of TRIO 7. The encoding is
composed of two parts: a mapping of the modular features of TRIO onto the PVS
language (Section 4.1), and a set of strategies that automate the conduction of PVS
proofs of TRIO specifications (Section 4.2).

4.1 The Mapping of Modular TRIO onto PVS

Each TRIO class is mapped onto a PVS theory, the basic PVS encapsulation mech-
anism. Genericity is also translated naturally from TRIO to PVS: in fact, both
TRIO classes and PVS theories can be generic with respect to a number of param-
eters. Therefore, each TRIO class parameter maps onto a PVS theory parameter;
for example, TRIO constants are mapped onto PVS constants and TRIO domains
are mapped onto PVS types.

Furthermore, an additional parameter must be added to each PVS translation
of a TRIO class. This parameter is named instances and is a non-empty type
(in PVS: TYPE+). Whenever we translate a TRIO item into PVS, we add an ar-
gument of type instances. For example, a TRIO time-dependent proposition
I, which for TRIO in-the-small would translate to a PVSitem I: TD_Fmla?,is
instead defined in PVS as I: [instances —-> TD_Fmla], thatis a function
from instances to TD_Fmla. This particular way of parameterizing theories is
needed to render in PVS the TRIO semantics of module importing. In fact, PVS
does not allow importing multiple instances of the same theory, while TRIO does.
This problem is solved by importing multiple instances of the same PVS theory
using different actuals for the instances parameter (one for each corresponding
TRIO module).

7 Our encoding is based on the results presented in [4], which deal with the in-the-small features
of TRIO.
8 TD_Fmla is the PVS representation of time-dependent formulae, as defined in [4].

6

Example 4.1 [The reservoir system in PVS] Let us consider the translation of the
reservoir system in PVS. First of all, the reservoir_system class is mapped onto
the following PVS theory (similarly for classes reservoir and controller):

reservoir_system [instances: TYPE+, fr: posreal, ...]
THEORY

Then, we declare two types that are used to identify the instances of the reservoir
and controller classes (i.e. PVS theories).

Res_type: TYPE = {n: nat | n
Ctl_type: TYPE = {n: nat | n

0} CONTAINING O
0} CONTAINING O

IMPORTING reservoir|[[instances, Res_typell],
controller([[instances, Ctl_type]]

Then, theorem level_stays_between_bounds of class reservoir_system (see
Example 2.4 in Section 2) is translated into the PVS formula shown below.

Res: VAR [[instances, Res_type]]

level_stays_between_bounds: THEOREM
Alw(reservoir.level (Res) >= L_1
AND reservoir.level (Res) <= L_u)

Two important features of the TRIO language, namely inheritance and visibility
management, cannot be translated properly into correspondent PVS constructs. In
fact, while PVS does have some mechanisms to support the reuse of code and to
perform a minimal information hiding, they simply are too weak and not flexible
enough to represent effectively the corresponding TRIO features. Therefore, in-
heritance and visibility management should be entirely realized by front-end tools
that would serve as interface between the user and the PVS engine. Basically, these
tools would ensure an automatic translation of TRIO code into PVS code, respect-
ing the TRIO semantics for these important object-oriented features. Such tools are
in fact currently under development. For the sake of brevity, we do not illustrate
with examples the limitations of the PVS constructs in translating TRIO inheritance
and visibility; the interested reader can find them in [3].

4.2 PVS Strategies for TRIO Proofs

A PVS proof strategy is a script that can automate frequently occurring passages
of proofs, aiding the management of PVS features and of low-level details of the
mapping from TRIO. This section briefly describes PVS strategies built to help
the conduction of PVS proofs of TRIO modular specifications, and particularly of
rely/guarantee specifications.

The first feature we have to manage effectively during PVS proofs is the use
of the instantiation parameters that separate distinct TRIO modules in PVS (see
Section 4.1). Since each item of a PVS theory corresponding to a TRIO class is

7

parametric with respect to a variable of instances type, whenever we manipu-
late formulae in PVS, either to prove them, or to use them to derive other properties,
we have to replace those generic variables with Skolem variables of the same type.
Doing this both for the antecedent and for the consequent formulae in a PVS se-
quent, the prover acknowledges we are referring to the same items, and can validate
the proof. Therefore, some strategies aim at reducing the user interaction needed to
handle these frequently occurring instantiations. Basically, when starting a proof
we immediately store the newly introduced Skolem variables into a persistent ta-
ble. Afterwards, whenever another formula is introduced in the PVS sequent, other
strategies reuse the values we have stored to perform the necessary instantiations
transparently. In particular, we can store multiple sets of instantiation values and
then decide which set to use to perform instantiations for a given new formula.
Combining these basic strategies with other strategies implementing heuristics for
instantiations of temporal values, we built commands that are often able to present
a formula in a conveniently usable form, without explicit user interaction.

Some other strategies are specifically tailored at simplifying proofs of systems
specified with the rely/guarantee framework of Section 3. First of all, a PVS theory
declares what is needed to translate the ~> operator and the rely/guarantee inference
rule of Section 3 in a way that is conveniently usable during proofs. This theory
must be imported in every other theory performing rely/guarantee reasoning. In
order to translate the sets of formulae F;s and M;s into PVS, we declare items of
type [{i € N:1 <i <n} — TD_Fmla], and associate each value of ¢ with a mod-
ule of those we are composing. As a result of this practice, we often have to split
the proofs into n branches, one for each of the modules. Some strategies realize
this splitting in a convenient way, and, by combining the usual PVS simplification
heuristics with information about the indexing of the modules, can often close each
branch without requiring further user interaction.

5 Case Study

The case study we consider is a controlled reservoir system, introduced in Section
2. In this section, we briefly review some methodological aspects arisen from the
development of the specification of this case study (Section 5.1), including the
application of the rely/guarantee framework of Section 3. Moreover, we outline
the proof of the global correctness property level_stays_between_bounds (see
Section 2), which was demonstrated using the previously introduced compositional
inference rule (Section 5.2).

5.1 Methodological Considerations

The specification of the reservoir system has been the result of a two-step refine-
ment process, exploiting TRIO inheritance mechanisms. The first version of the
classes describes the basic behavior of the components, by means of axioms only.
No assumptions on the environment are made and no high-level properties are de-

8

rived, so that this basic kernel is as reusable as possible. The second version of the
classes specifies with more detail the behavior of the components, also assuming
certain constraints on the environment (i.e. the other components) interacting with
the module. Derived properties are stated, relying on the environment assumptions,
like rely/guarantee properties. We believe that this basic two-phase scheme to de-
velop a class can be fruitfully applied to the specification of components in general.
Obviously, while the first version of the specification is usually generic enough to
be unique, there may be several different second versions, according to different
operative scenarios. Moreover, multiple-step refinements are a natural extension of
this basic scheme, with each step adding as much detail as it is needed.

Among the derived properties of the system, an important role was played by
continuity and non-Zenoness [4]. In fact, thanks to the axioms describing the be-
havior of the level item, stated in Example 2.2, and by the characterization of a
state item, we can prove that level is piecewise affine ? as a function of time. This
result allowed us to guarantee the validity of a property “one time step longer” in
the future (as in the > operator).

The key step in the application of the compositional framework of Section 3 is
the choice of the formulae to serve as assumptions and guarantees of the modules.
A good choice is one that effectively distributes the burden of the verification of
the global properties among the classes of the composite system, while minimizing
the coupling among modules. Under this respect, the application of the framework
seems simpler and more “natural” whenever there is some sort of feedback relation
among items of the composed modules. In particular, the application of the “>
is simpler in these cases, because the feedback action ensures the validity of a
property in the future as a reaction to another property holding in the past. Notice
that most controlled systems exhibit this sort of relation, and the reservoir system
in our example is no exception.

Let us finally consider the role of TRIO assumptions (i.e. temporally closed
postulates) in a rely/guarantee specification. As discussed in Section 3, a rely/guar-
antee specification of a component is basically reducible to a single formula of the
kind £ > M where we name “assumption” the E formula and “guarantee” the
M formula. E and M can be arbitrarily complex formulae, possibly composed of
some temporally-closed sub-formulae as well. Whenever temporally-closed for-
mulae take part into a rely/guarantee specification, we can postulate them using the
TRIO keyword assumption. Then, when composing the class with other modules,
these TRIO assumptions must be discharged (i.e. proved) from the formulae of the
other components in the system. If we are able to discharge all the assumptions,
then all the derived properties of the system (and in particular the applications of
the rely/guarantee inference rule) are guaranteed to be sound. Methodologically
speaking, this way of proceeding can ameliorate the organization of the proofs and
of the specifications.

9 An affine function f(¢) is such that 3k,c € R : f(t) =k -t +c.
9

5.2 The Application

This section outlines the application of the rely/guarantee framework of Section 3
and sketches the proofs of the most remarkable properties.

The reservoir class introduces an assumption on the behavior of the filling ac-
tion: if the reservoir is full, no filling action is issued (formula no_filling_when _full,
which is not shown here for the sake of brevity '*). The controller class, instead,
makes the following assumptions:

* level is a piecewise right-monotone function of time (level_ monotonicity);
« if a filling command is issued, the level of liquid increases (filling_raises_level);

« if the level is now greater than or equal to L,,, it will stay above L; for the next
A time units (delta_definition).

In addition, A satisfies the constraint A < (L, — L;)/lr. Let us now consider
the application of the rely/guarantee framework. The rely/guarantee behaviors of
the reservoir and controller classes are formalized by the following theorems.

theorem 4 (reservoir_behavior) level < L, %> level < L,
theorem 5 (controller_behavior) level > L; ™ level > L,

Let us sketch the proofs of these two theorems. The proof of reservoir_behavior
is split into the two branches Alw P (level < L,) = level < L, and AlwP;(level <
L,) = NowOn(level < L,), according to the definition of the <& operator.
The first branch is split into cases according to whether UpToNow(filling) or
UpToNow(—filling). Notice that there are no other cases to consider, because
filling is a state item. If UpToNow(—filling) the case is trivial, since the level
is surely not increasing. If instead UpToNow(filling) we rely on assumption
no_filling_when_full to deduce that in the immediate present the level cannot raise
above L, all of a sudden. Similarly, the other branch of the proof is split into cases
NowOn(filling) and NowOn(—filling). Again, the case NowOn(—filling) is sim-
ple since the level is not raising. The case NowOn(filling) can instead be closed by
contradiction, assuming = NowOn(level < L,) and combining it with assumption
no_filling_when_full.

The proof of controller_behavior is similarly split into the branches
AlwP(level > L;) = level > L; and AlwP;(level > L;) = NowOn(level >
L;). As it is always done in these proofs, we split the first branch into the cases
UpToNow(filling) and UpToNow(—filling). Now, the simpler case is
UpToNow(filling) since the level is definitely raising. Instead, if
UpToNow(—filling) we can exploit assumption delta_definition to deduce that
the leaking action is not instantaneous and we have a non-empty time interval
within which level stays above L;. The other branch of the proof is split on cases
NowOn(filling) and NowOn(—filling). If NowOn(filling) it is simple to de-
duce that the level is increasing, using assumption filling_raises_level. The case

10 Many formulae in this section are mentioned, but not actually shown, for the sake of brevity. The
interested reader can find the complete formalization of the case study in [3].

10

NowOn(—filling) requires instead another case discussion, whether filling holds
or not at the current time. If not, we just have to combine axiom filling_def (see
Section 2) and assumption delta_definition to get to the desired result. If instead
filling holds at the current time, we introduce assumption level_monotonicity and
discuss the three cases, whether NowOn(level § L;). In particular, the case
NowOn(level < L;) arises a contradiction if combined with axiom filling_def,
thus assuring the validity of the rely/guarantee local property.

Now, we apply the rely/guarantee inference rule of Section 3 to verify the global
correctness property stated by theorem level_stays_between_bounds (see Section
2). Let the reservoir module be module 1 and the controller module be mod-
ule 2. The assumptions and guarantees of the two modules are: £ = M; =
level < L,, Fy = My = level > L, M = Mi ANMy, = L; < level < L,
and E = true, being the reservoir system closed. Therefore, the proof of theorem
level_stays_between_bounds reduces to the steps:

(i) Som(AlwP(E; A Es))

(i1) is trivial because of the definitions of the F 5 and M 5. (iii) corresponds to
theorems reservoir_behavior and controller_behavior that we have just proved.
Finally, (i) is subsumed by an initialization axiom of class reservoir, which states
Som(AlwP(level = L,)), and by the constraint L,, > L.

Finally, in order to soundly conclude Alw(M) = Alw(L; < level < L,) we
still have to discharge all the assumption formulae of the two composed modules.
More precisely, the assumption of the reservoir class is discharged by a theorem
of the controller class; conversely the assumptions of the controller class are dis-
charged by theorems of the reservoir class (see [3] for further details). Figure 2
shows the proof dependencies in the proof of the global correctness property (solid
lines) and in the discharging of assumptions (dashed lines).

6 Conclusions

This paper presented a compositional, tool-supported framework for the TRIO
specification language. The framework is based on an inference rule that can be
used to prove that the mutual interactions between components of a complex sys-
tem guarantee some property for the global application, after the components are
integrated into the system. The compositional inference rule has been encoded into
the logic of the PVS theorem prover and a set of supporting strategies has been de-
veloped. The PVS-based tool has been used to apply our compositional framework
to an example of control system, shown in Section 5.

Future work in this line of research will follow three main directions. First, the
efficacy of the compositional framework presented here will be evaluated on real-
life industrial case studies. Second, automated support for the framework will be
bettered and extended by improving the existing PVS strategies and creating new

11

reservoir_system

Reservoir
axioms Controller
level_behavior_1 .
level_behavior_2 init axioms
level_behavior_3 filling_behavior
level_behavior_4
filling_def
assumptions assumptions
no_filling_when_full TCCs =----]-7, . - — -+ level_monotonicity
[: | '~ filling_raises_level TCCs
theorems i ! ! | delta_definition < ----"A___
I ! i
lcvcl,bchav?orj i ! o theorems
level_behavior 6 1______________ L b~ -E 2 con_reservoir_aux
level_behavior 7---------------- S e 1 ! M
level_behavior_8 ! : ! controller_behavior }
reservoir_behavior 1 i
res_controller_aux ~—~-------7----- - :’ ”””” :
res_controller_aux_2 -~ -----9----- - :’ ””””
. I
assumptions 1 theorems
TCCs~ ===
|

—= level_stays_between_bounds

Fig. 2. Proof dependencies in the reservoir system

ones. Third, alternative, “weaker” inference rules will be investigated.

Acknowledgement

The authors would like to thank Dino Mandrioli and Angelo Morzenti for their help
and support during the development of this work, and Marco Lovera for his useful
suggestions and comments. We also thank the reviewers for their comments.

References
[1] Abadi, M. and L. Lamport, Conjoining specifications, ACM Transactions on
Programming Languages and Systems 17 (1995), pp. 507-535.

[2] de Roever, W.-P., The need for compositional proof systems: a survey, Lecture Notes in
Computer Science 1536 (1998), pp. 1-22.

[3] Furia, C. A., Compositional proofs for real-time modular systems,
Laurea degree thesis, Politecnico di ~ Milano (2003), online at
www.elet.polimi.it/upload/rossi/Furia_LDThesis.pdf.

[4] Gargantini, A. and A. Morzenti, Automated deductive requirement analysis of critical
systems, ACM TOSEM 10 (2001), pp. 255-307.

[5] Ghezzi, C., D. Mandrioli and A. Morzenti, TRIO: A logic language for executable
specifications of real-time systems, JSS 12 (1990), pp. 107-123.

[6] Morzenti, A. and P. San Pietro, Object-oriented logical specification of time-critical
systems, ACM TOSEM 3 (1994), pp. 56-98.

[7] Owre, S., J. M. Rushby and N. Shankar, PVS: A Prototype Verification System, in:
D. Kapur, editor, Proceedings of CADE-11, LNCS 607 (1992), pp. 748-752.

12

www.elet.polimi.it/upload/rossi/Furia_LDThesis.pdf

	Introduction
	TRIO
	A Compositional Inference Rule
	The PVS Encoding of Modular TRIO
	The Mapping of Modular TRIO onto PVS
	PVS Strategies for TRIO Proofs

	Case Study
	Methodological Considerations
	The Application

	Conclusions
	Acknowledgement
	References

