
Automated Compositional Proofs

for Real-Time Systems∗

Carlo A. Furia, Matteo Rossi,

Dino Mandrioli, and Angelo Morzenti

Abstract

We present a framework for formally proving that the composition of
the behaviors of the different parts of a complex, real-time system ensures
a desired global specification of the overall system. The framework is
based on a simple compositional rely/guarantee circular inference rule,
plus a methodology concerning the integration of the different parts into
a whole system. The reference specification language is the TRIO metric
linear temporal logic.

The novelty of our approach with respect to existing compositional
frameworks — most of which do not deal explicitly with real-time re-
quirements — consists mainly in its generality and abstraction from any
assumptions about the underlying computational model and from any
semantic characterizations of the temporal logic language used in the
specification. Moreover, the framework deals equally well with contin-
uous and discrete time. It is supported by a tool, implemented on top of
the proof-checker PVS, to perform deduction-based verification through
theorem-proving of modular real-time axiom systems.

As an example of application, we show the verification of a real-time
version of the old-fashioned but still relevant “benchmark” of the dining
philosophers problem.

1 Introduction

Formal methods are increasingly recognized to be a useful tool for the develop-
ment of applications, as they allow their users to precisely verify the correctness
of systems in their early development phases, before uncaught mistakes become
overly costly to fix. One drawback often attributed to formal methods, however,
is that they do not “scale up”, i.e., when the system grows in complexity, they
are too cumbersome and unwieldy to be used effectively. A natural solution
to this problem is to apply well-known software engineering principles such as

∗A preliminary version of this paper appeared in the Proceedings of the 8th International

Conference on Fundamental Approaches to Software Engineering (FASE’05), Lecture Notes
in Computer Science, vol. 3442, pp. 326–340, Springer-Verlag, 2005.

1

modularity and separation of concerns not only to design, but also to the veri-
fication of formal models. A compositional framework can help in this regard,
in that it allows one to focus on the single parts of the system at first, and then
analyze their mutual interactions at a later moment with a smaller effort than
would be required if all aspects (local and global) of the application were taken
into account at once.

This paper presents a compositional inference rule and methodology for the
TRIO language [5] that is suitable to formally prove the correctness of the
behavior of a modular system from the behavior of its components. TRIO is a
metric temporal logic for modeling and analyzing time-critical systems, and has
been used in a number of industrial projects. Its advanced modular features are
useful in writing specifications of complex systems. Our framework combines
these features with a compositional inference rule through a methodology that
facilitates its practical use in structured specifications.

Our approach belongs to the general framework of descriptive formalisms,
where a specification consists of a set of logic formulas and the verification
consists of formally demonstrating that certain desired properties follow deduc-
tively from the specification formulas. This framework is indeed very general
and abstract, as it does not rely on any specific semantic assumption and is
independent of any notion of underlying computational model (to be considered
only later, when moving from specification towards implementation). In fact,
proofs in our framework should be intended as in classic logic deduction [22],
and are supported and semi-automated by the theorem proving tool PVS [28].
Also, even if the reference language is TRIO, the results can be easily extended
to any logic formalisms for the description of real-time axiom systems.

The paper is structured as follows: Section 2 briefly introduces the TRIO lan-
guage; Section 3 presents a proof-oriented compositional framework for TRIO;
Section 4 applies the framework to a timed version of Dijkstra’s dining philoso-
phers problem [10]; Section 5 reviews the most important compositional rules
and frameworks in the literature, and points out where our approach differs
from previous works on this subject; Section 6 draws conclusions and outlines
future research.

2 TRIO

TRIO [5, 17, 25] is a general-purpose specification language suitable for describ-
ing real-time systems. It is a first-order linear temporal logic that supports a
metric on time. TRIO formulas are built out of the usual first-order connectives,
operators and quantifiers, as well as a single basic modal operator, called Dist,
that relates the current time, which is left implicit in the formula, to another
time instant: given a time-dependent formula F (i.e., a term representing a
mapping from the time domain to truth values) and a term t indicating a time
distance, the formula Dist(F, t) specifies that F holds at a time instant whose
distance is exactly t time units from the current instant. Dist(F, t) is in turn also
a time-dependent formula, as its truth value can be evaluated for any current

2

time instant, so that temporal formulas can be nested as usual.
In this paper, we do not formally specify a semantics for the interpretation of

TRIO formulas (the interested reader can refer to [17, 24]), limiting ourselves to
the informal intuitive description of the Dist operator given above. In fact, one
of the distinguishing features of our compositional framework — presented in
the following sections — is its being syntactic, that is based on an inference rule
which is proved, and can be applied, by exploiting only syntactic manipulations
of formulas, with minimal assumptions on how the syntactic items are actually
interpreted. Therefore, the following discussion is almost totally independent of
how the modal operator Dist is interpreted, and of which computational model
is chosen. In particular, TRIO formulas can be interpreted over both dense and
discrete time models, and the results of this paper hold regardless of the chosen
time model. The only assumptions we make on the time model is that it is a
metric, totally ordered set. In practice, one usually chooses the sets of naturals�

and integers � for discrete-time models, and the rationals � and reals � for
dense-time models.

For convenience in the writing of specification formulas, it is customary to
define a number of derived temporal operators from the basic Dist, through
propositional composition and first-order logic quantification. Table 1 shows
those used in this paper.

Operator Definition

Past(F, t) t ≥ 0 ∧ Dist(F,−t)

Futr(F, t) t ≥ 0 ∧ Dist(F, t)

Som(F) ∃d : Dist(F, d)

Alw(F) ∀d : Dist(F, d)

AlwP(F) ∀d > 0 : Past(F, d)

AlwF(F) ∀d > 0 : Futr(F, d)

Lasted(F, t) ∀d ∈ (0, t) : Past(F, d)

Lasts(F, t) ∀d ∈ (0, t) : Futr(F, d)

Within(F, t) ∃d ∈ (0, t) : Past(F, d) ∨ Futr(F, d) ∨ F

WithinP(F, t) ∃d ∈ (0, t) : Past(F, d)

WithinF(F, t) ∃d ∈ (0, t) : Futr(F, d)

Since(F, G) ∃d > 0 : Lasted(F, d) ∧ Past(G, d)

Until(F, G) ∃d > 0 : Lasts(F, d) ∧ Futr(G, d)

UpToNow(F)

(

∃d > 0 : Lasted(F, d) if time is dense

Past(F, 1) if time is discrete

NowOn(F)

(

∃d > 0 : Lasts(F, d) if time is dense

Futr(F, 1) if time is discrete

Becomes(F) UpToNow(¬F) ∧ (F ∨ NowOn(F))

Table 1: TRIO derived temporal operators

Notice that TRIO operators predicating on intervals do not include the inter-
val endpoints by default. We define variations that may or may not include such
endpoints by using the subscripts i (included) or e (excluded). Thus, we have
the following definitions (that will be used in what follows): AlwPi(F) ≡ ∀d ≥
0 : Past(F, d), AlwPe(F) ≡ AlwP(F), WithinFei(F, t) ≡ ∃d ∈ (0, t] : Futr(F, d),
WithinFii(F, t) ≡ ∃d ∈ [0, t] : Futr(F, d), etc. Also notice that any free variable

3

is implicitly universally quantified at the outermost level, and so is any TRIO
formula with respect to time (with the Alw operator).

The TRIO specification of a system consists of a set of basic items, which are
primitive elements, such as predicates, time-dependent values, functions, etc.,
representing the elementary model of some aspects of the system. It is often
convenient and natural, especially when dealing with continuous time, to use
constrained time-dependent items with a particular temporal behavior, such as
states and events. Events are predicates that are true only at isolated time in-
stants; states are predicates which are true on non-empty time intervals (see [16]
for a more precise definition and for motivations on their use). After declaring
the basic items, the behavior of a system over time is formally described by
introducing a set of TRIO formulas, which state how the items are constrained
and how they vary, in a purely descriptive (or declarative) fashion.

To specify large and complex systems, and to support encapsulation, reuse
and information hiding at the specification level, TRIO has the usual object-
oriented constructs such as classes, inheritance and genericity (see e.g. [23]).1

The basic encapsulation unit is the class. Classes can be simple or structured.
Simple classes are collections of parameters, basic items, and formulas. Struc-
tured classes, in addition, contain instances of other classes, called modules. An
instance of a simple class is, in logical terms, a model of the class’ formulas (i.e.,
an interpretation satisfying the conjunction of all formulas). An instance of a
structured class recursively contains instances of its composing modules. Items
of different modules can be connected : whenever two items are connected, they
are implicitly defined as logically equivalent. If a more complicated semantics to
represent connections in a system is needed, one may represent all the relevant
information in an ad hoc class. For more details on the object-oriented features
of TRIO we refer the reader to [25].

Each TRIO class also has an interface, defined as the set of items and for-
mulas that are externally visible. The user can declare each item to be visible or
non-visible; henceforth all formulas predicating on visible items only are consid-
ered as visible, while all other formulas are considered as non-visible outside the
class. Classes and their interfaces are synthetically represented with a graphi-
cal notation, where classes are pictured as boxes, visible items are denoted by
lines crossing the class box, whereas non-externally visible items stay entirely
within the box boundaries. For example, Figure 1 represents a simple class,
while Figure 2 represents a structured class and the connections among items
of its modules.

For each TRIO class, formulas are divided into three categories: axioms,
assumptions and theorems. When necessary, we will refer to these formulas as
(TRIO) “axiom, assumption, theorem formulas”, respectively. From a method-
ological point of view, axioms postulate the basic behavior of the system, as-
sumptions express constraints we must prove by means of other parts of the
system (external to the current class) and theorems describe properties that
are derived from other formulas. Therefore, the verification of a specification

1In this paper, however, we are not using TRIO’s inheritance mechanisms.

4

would basically consist in proving theorems from axioms and assumptions, after
proving the latter. In Section 3 we illustrate the compositional methodology
that exploits these language features.

We now illustrate TRIO’s features by introducing the specification of the
dining philosophers problem [10]. In a nutshell, the problem considers a set of
philosophers sitting around a table, competing for the acquisition of some shared
resources, namely one fork for each pair of philosophers. When one succeeds in
acquiring the forks on both sides, he/she can eat for some time, after which the
forks are released for others to use. The non-eating activity is usually referred to
as “thinking”. In the traditional formulation of the problem, the goal is to prove
the absence of deadlocks, which may arise in acquiring the shared forks. In our
specification, instead, the goal is to prove a real-time, global, non-starvation
property for all the philosophers, i.e., the fact that, under suitable assumptions,
every philosopher eats within a given time.

Our solution is based on a philosopher class and assumes a continuous
time model. Continuous time introduces some peculiar difficulties in the spec-
ification and verification phases, which we will handle by exploiting an ax-
iomatic/deductive approach. For reference, we give the full specification of
the example in the Appendix; the interested reader can also find the complete
TRIO/PVS [16, 12] proofs in [15].

The basic items of the class are the event item start for system initializa-
tion, and the events take(s) and release(s), with s ∈ {l, r}, indicating, for each
philosopher, the action of taking or releasing the left or right fork. Other items
are the state eating, which is true exactly when the philosopher is eating, and
the states holding(s) and available(s), meaning that the philosopher is holding
a given fork or that the fork is available (i.e., not held by the adjacent philoso-
pher). For notational convenience, we also introduce the states thinking and
hungry, representing the philosopher not eating, and being ready to eat again
(after a sufficiently long thinking period), respectively. The philosopher class
is parametric with respect to three constants te,Te,Tt. They denote, respec-
tively, the minimum eating time, the maximum eating time and the thinking
time after an eating session, before becoming hungry again. Obviously, we as-
sume Te > te > 0.

In pursuing a fully modular approach to the specification of the problem, one
should also introduce a dedicated class to model the forks in the system. We
notice, however, that such a class would simply be a connector class, that is, it
would not possess any internal dynamics but would just “pass the information”
about the forks’ state between two adjacent philosophers. Therefore, as the
main purpose of the example is to illustrate the composition of rely/guarantee
specifications to deduce global properties, we prefer not to introduce a class to
model forks: all the relevant information about the shared items is represented
by items of the philosopher class, and by connections among its instances.

We then formalize the basic behavior of a philosopher through axiom formu-
las of the philosopher class. We postulate that each philosopher always takes
and releases both forks simultaneously (axiom holding synch); consequently,
if only one fork is available, the philosopher waits till the other fork becomes

5

available as well.2

Axiom 1 (philosopher.holding synch). holding(l) ⇔ holding(r)

A philosopher is “hungry” when he/she has not eaten for a period of at least
Tt, as in the following axiom.

Axiom 2 (philosopher.hungry). Lasted(¬eating,Tt) ⇔ hungry

If the philosopher is hungry and if the forks are available, two situations are
possible: either he/she takes both forks, or nondeterministically one of his/her
neighbors takes a fork at that very time, so that the fork is not available anymore
and the philosopher “loses his/her turn”. This is formalized by axiom acquire.

Axiom 3 (philosopher.acquire).
hungry ∧ UpToNow(available(l) ∧ available(r))
⇒ (take(l) ∧ take(r)) ∨ NowOn(¬available(l) ∨ ¬available(r))

Axioms eat till release and eating duration state that, when a philoso-
pher succeeds in acquiring both forks, he/she eats for a time duration of more
than te and less than Te time units, after which he/she releases both forks.

Axiom 4 (philosopher.eat till release).
Becomes(holding(l) ∧ holding(r))
⇒ (∃t > te : Lasts(eating, t) ∧ Futr(release(l) ∧ release(r) , t))

Axiom 5 (philosopher.eating duration). 3 Lasted(eating, t) ⇒ t < Te

Whenever a philosopher holds both forks we consider him/her eating. This
corresponds to predicate eating being true, and is formalized by axiom eat-
ing def.

Axiom 6 (philosopher.eating def). holding(l) ∧ holding(r) ⇔ eating

The state eating is false whenever the philosopher is “thinking”.

Axiom 7 (philosopher.thinking def). thinking ⇔ ¬eating

A thinking session (i.e., one in which the philosopher does not hold both
forks) which has just begun lasts at least Tt time units (axiom thinking duration).

Axiom 8 (philosopher.thinking duration).
Becomes(thinking) ⇒ Lasts(thinking,Tt)

2We adopted this simplification because we are not interested here in deadlock analysis, as
discussed above. If needed, a conceptually similar but longer treatment could be applied, by
allowing a philosopher to take one fork at a time, and imposing suitable fairness rules (such
as timeouts) on the time he/she can hold it without acquiring the other one.

3Recall that free variables (i.e., t) are implicitly universally quantified at the outermost
level.

6

Axioms taking and putting describe the consequences of a take and release

action, respectively. More precisely, a fork s can be taken when (up to now)
it is available and not already held; in this case, the state holding(s) stays true
until a release for the same fork is issued. On the other hand, a fork s can be
released when (up to now) it is held; in this case, the state holding(s) stays false
until a take for the same fork is issued.

Axiom 9 (philosopher.taking).
take(s) ∧ UpToNow(¬holding(s)) ∧ UpToNow(available(s))
⇒ Until(holding(s) , release(s))

Axiom 10 (philosopher.putting).
release(s) ∧ UpToNow(holding(s)) ⇒ Until(¬holding(s) , take(s))

Figure 1 illustrates the items and interface of the philosopher class. Thus,
for instance, holding(s) and eating are both visible items; therefore axiom eat-
ing def is also visible. eating has to be declared as visible because, even if it
is not used directly in the connections between philosophers, the global non-
starvation property that we are going to state predicates on it. The same holds
for the start event, whereas the thinking state is visible since a theorem predi-
cating on it will be used in proving the assumptions of other classes.

start

philosopher

take(s)

release(s)
available(s)

holding(s)

eating

thinking

hungry

Figure 1: Interface of the philosopher class

We compose N ≥ 2 instances of the philosopher class into the new compos-
ite class dining N. The N modules of the philosopher class are instantiated
in an array Philosophers indexed by the range [0..N − 1]. The modules are
connected so that the available item of each philosopher corresponds to the
negation of the holding item of the philosopher on his/her left/right, as pic-
tured in Figure 2.

In Section 4, a global property of this set of philosophers will be proved,
namely that each philosopher eats regularly for a certain amount of time. Note
that all the instances in the array have the same values for the parameters
te,Te,Tt. This ensures that the timed behavior of the various philosophers is
the same, thus permitting to prove the global property. We leave the analysis
of the impact of relaxing such constraint to future work.

7

dininig N

. . .

. . .

Philosophers
[(i − 1) mod N]

¬holding(r)

available(r)

Philosophers Philosophers
[i] [(i + 1) mod N]

¬holding(l)

available(l)

¬holding(r)

¬holding(l)available(r)

available(l)

Figure 2: Interface of the dining N class

3 A Compositional Framework in TRIO

In this section, we introduce a compositional framework for descriptive logic lan-
guages based on axiomatic/deductive techniques, and for the TRIO language
in particular. The framework consists essentially of a methodology to specify
and verify modular systems. On the one hand, the methodology exploits some
TRIO language features to allow for an effective and natural way of structuring
a large specification into classes. On the other hand, some specific composi-
tional requirements are satisfied by introducing an ad hoc operator (to express
temporal formulas where the behavior of a module depends on some properties
of its actual environment), and by providing an inference rule to handle spec-
ifications written using this operator when integrating modules into an overall
system.

Let us briefly sketch the rationale behind the compositional framework. The
specification of a large system is structured into classes. The fundamental be-
havior of the items of each class is captured by axiom formulas. The derived
behavior of each class, which is to be verified, can be expressed by theorem
formulas. In general, according to the rely/guarantee paradigm, we may need
to relate the derived behavior of a class with certain properties of the (external)
environment of that class. This can be achieved in essentially two ways. If
the assumptions on the environment are temporally closed formulas (i.e., they
express time-invariant properties), one may use TRIO assumption formulas to
represent them. If, on the other hand, one has to express assumptions on the
environment that are not invariant but temporally depend on the derived be-
havior they guarantee,4 an ad hoc operator is provided: the � operator (called
time progression) for the TRIO language, introduced in Section 3.2. Then, the
specification is completed by composing some classes together, as modules of
the overall (global) system.

The verification burden for the global system consists essentially of two tasks.
First, the assumptions that have been introduced according to the rely/guar-
antee paradigm have to be proved. For the sake of methodological distinction,
we will generally use — whenever the object is an assumption (rather than a
theorem) — the verb “discharge” to mean “prove” (e.g., [30]). Assumptions ex-

4This is likely to happen when specifying real-time systems.

8

pressed as closed TRIO formulas are discharged by means of formulas of other
classes. When doing this, it is important to avoid circularities, in order to guar-
antee the soundness of the whole deductive process. Conversely, assumptions
expressed by means of the time progression operator are discharged using an ad
hoc inference rule which handles circularities, according to the semantics of the
operator. Thus, discharging these assumptions amounts to proving the truth of
the premises of the inference rule, which can still be done by means of ordinary
(temporal) deductive techniques. After discharging all the assumptions, the
second stage of the global verification process consists in proving the theorems
from axioms, assumptions, and already proved theorems. This is done first for
theorems that are local (i.e., they can be proved within a single class), and
then for global theorems (i.e., involving properties emerging from the combined
behavior of some modules). This meets the overall verification goal.

3.1 Rely/Guarantee Specifications

Let us consider how to write the specification of a TRIO class C. The basic be-
havior of C is defined in terms of axioms over both visible and non-visible items,
which rely on no assumptions, since they just state the very basic behavior of the
class. Then, we state a number of derived properties of the class as theorems,
that are going to be proved in the verification process. Since in general a class
describes an open component, it often happens that the truth of some theorem
depends on assumptions about how the actual class environment behaves. In
other words, some properties hold only if the modules that will constitute the ex-
ternal environment of the class satisfy some requirements. Therefore, according
to the rely/guarantee paradigm, we make these assumptions explicit in writ-
ing the specification of a TRIO class, which becomes therefore a rely/guarantee
specification.

Now, we distinguish between two different kinds of assumptions that one
may need to express. The first (and simplest) case is that of assumptions which
can be expressed as temporally closed formulas, that is formulas whose truth
is invariant over the whole temporal axis. In such cases, the assumptions can
be stated using the TRIO language construct of the assumption formula. The
other case, namely when the assumption is not expressed as a temporally closed
formula, will be handled by using an ad hoc operator, discussed in Section 3.2.

Let us now introduce some notation that will help us describe these ideas
more precisely. Let AXC , ASC and T HC denote the disjoint sets of axioms,
assumptions and theorems of class C, respectively, and let FC = AXC ∪ASC ∪
T HC be the set of all formulas of C. Furthermore, for each set of formulas
FC , we define FY

C ⊆ FC as the set of visible formulas in FC , i.e., the formulas
predicating over visible items only (see Section 2). Therefore, the complete
specification of C is represented by the formula AXC ∪ ASC ` T HC , which
expresses the fact that the truth of the theorems of class C follows deductively
from its axioms and assumptions.

Let us map these ideas to the philosophers example. Section 2 showed the
axioms of the philosopher class, formalizing its basic postulated behavior. A

9

derived property of the class is that there is always a time interval in which both
forks are available to the philosopher. This is the first step in ensuring that the
philosopher will eventually be able to acquire both forks and eat. In particular,
the axioms allow us to prove this availability property for a time interval which
occurs no later than Tt + 2Te time units from the current instant. This bound
is sufficient to prove all of the following derived properties. The above property
is expressed by the following TRIO theorem formula.

Theorem 11 (philosopher.fork availability).
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)

Clearly, the validity of this theorem cannot be guaranteed regardless of the
behavior of the environment of this class. Therefore, we introduce three assump-
tion formulas that suffice to deduce theorem fork availability. First of all, we
assume that, at any given time, each fork becomes available within Tt +Te time
units or is already available and remains so for a sufficiently long (i.e., ≥ Tt)
amount of time.

Assumption 12 (philosopher.availability).
(∃t ≥ Tt : Lasts(available(s) , t)) ∨ WithinFei(Becomes(available(s)) ,Tt + Te)

Second, we assume that each fork is available, for a non-empty time inter-
val, within Te time units. This is basically like assuming that the adjacent
philosophers eat for no longer than Te time units.

Assumption 13 (philosopher.availability 2).
WithinF(UpToNow(available(s)) ,Te)

Finally, when a fork becomes available, we assume it to stay so for (at
least) Tt time units; this corresponds to assuming that the thinking time of the
neighbor philosophers is not shorter than Tt.

Assumption 14 (philosopher.lasting availability).
Becomes(available(s)) ⇒ Lasts(available(s) ,Tt)

Notice that each of these formulas expresses a temporally-closed property
(for instance, considering assumption availability 2, at any given time each
fork is available within Te time units).

Finally, let us introduce another theorem of the philosopher class which will
be used in its verification. The truth of this theorem is a direct consequence of
the axioms of the class, requiring no assumptions. It states that any philosopher
is always in one of two situations: either he/she is hungry (i.e., Tt time units
without eating have passed), or no more than Tt + Te time units have elapsed
since the last time he/she ate or he/she began eating.

Theorem 15 (philosopher.always eating or not). hungry ∨
WithinPii((∃t > te : Lasted(eating, t)) ∨ Becomes(eating) ,Tt + Te)

10

3.2 A Rely/Guarantee Operator and Inference Rule

To formalize rely/guarantee specifications where the assumption is not a tempo-
rally closed formula, it is convenient to introduce an ad hoc temporal operator
which we call time progression operator.

Let P and Q be any two time-dependent formulas. We define the time
progression operator � as follows:

P � Q ,

{

AlwPe(P) ⇒ AlwPi(Q) ∧ NowOn(Q) if time is dense

AlwPe(P) ⇒ AlwPi(Q) if time is discrete

Informally, P � Q means that Q lasts at least as long as P does and even “a
bit longer”. The NowOn conjunct is not needed in the discrete-time definition,
as the inclusion of the current instant in the right-hand side of AlwPi operator
suffices to ensure that Q lasts one (discrete) time step longer than P .

Now, we consider rely/guarantee specifications expressed in terms of the
� operator. Therefore, if E is the environment assumption and M is the
guarantee, the rely/guarantee specification is written as E �M . This specifies
that, whenever the assumption E is true up to some time t, the guarantee M

is true up to time t + ε, where ε > 0. We note explicitly that we now admit
temporally open formulas as assumptions and guarantees.

In the remainder of this subsection we prove some relevant properties of the
� operator, and in particular an inference rule to deduce the validity of formulas
from a set of rely/guarantee specifications written using the time progression
operator. This inference rule handles a sound discharging of the assumptions in
a set of � formulas, and will be used in Section 3.3 to verify the composition
of a set of modules containing rely/guarantee specifications written using the
time progression operator.

Let us first state the following property of the� operator, which states some
conditions under which it is possible to “prolong” the truth of some item in the
future, from its truth in a base interval in the past, by successive applications
of a time progression operator and of logical implication.

Lemma 1. For any time-dependent formulas P , Q, and R, if:

1. Som(AlwPe(P))

2. Alw(Q ∧ R ⇒ P)

3. Alw(P � Q)

then: Alw(R� Q).

Proof. We split the proof into two parts, for dense and discrete time models,
respectively.

11

Proof for dense time models. Let us assume Alw(P � Q) and, by the
definition of the � operator, AlwPe(R) true at a generic time instant t. We
prove that AlwPi(Q) ∧ NowOn(Q) is true at t. See Figure 3 for an informal
graphical representation of the proof.

Since Som(AlwPe(P)), let u0 be the time instant at which AlwPe(P) holds.
If u0 ≥ t, by considering Alw(P � Q) we deduce that AlwPi(Q) ∧ NowOn(Q)
is true for all time instants less than or equal to u0. This simply concludes this
branch of the proof.

Let us now assume u0 < t. We know that P is true for all instants less than
u0. Moreover, since Alw(P � Q), there exists some quantity ε0 > 0 such that
Q is true for all instants less than u1 = u0 + ε0. Now, it is either u1 > t or
u1 ≤ t. In the first case the proof is concluded, since we have shown that Q

lasts longer than R does. Instead, if u1 ≤ t, we can iterate the reasoning to
new instants u2 = u1 + ε1, u3, . . . until we obtain a un > t. Notice, in fact, that
both hypotheses (2–3) of the lemma hold on the whole temporal axis, because
of the Alw operator. Therefore, for any ui ≤ t such that Q holds up to ui, we
are able to find another ui+1 > ui such that Q holds up to ui+1 as well. In fact,
R holds up to ui as well, since it holds up to t ≥ ui. Thus, by hypothesis (3)
we deduce that P holds up to ui. Next, we consider hypothesis (2) at ui: since
AlwPe(P) at ui, then Q and NowOn(Q) at the same instant. Therefore, by the
definition of the NowOn operator, there exists a εi > 0 such that Q holds up to
ui + εi = ui+1 > ui.

We now prove that the sequence of points ui cannot accumulate before time t,
but it must eventually grow beyond t. We show this by contradiction: assume
that Q holds up to time δ < t only (note that the following reasoning holds
regardless of whether Q holds exactly at δ or not, i.e., whether the interval
of validity of Q is open or closed to the right). Surely R also holds up to the
absolute instant δ, since it holds until time t. Now, by hypothesis (2), we realize
that P is also true for all time instants less than δ. Since Alw(P � Q), Q lasts
until beyond P , contradicting the hypothesis that Q holds up to δ only.

Since Q lasts for all instants less than un > t, the proof is concluded, since
it is demonstrated that AlwPi(Q) ∧ NowOn(Q) holds at t.

R[by: Som(AlwPe(R))]

[assume:] P

[by: P � Q] Q

[by: Q ∧ R ⇒ P] P

. . . iterate (no accumulation) . . .

Q[guarantee:]

time u0 u1 = u0 + ε0 unt

Figure 3: A graphical representation of Lemma 1.

12

Proof for discrete time models. Let us assume Alw(P � Q) and, by
the definition of the� operator, AlwPe(R) true at a generic time instant t. We
prove that AlwPi(Q) is true at t.

Since Som(AlwPe(P)), let u0 be the time instant at which AlwPe(P) holds.
Let us consider the sequence of points ui = u0 + i, for all i = 0, . . . , (t−u0). By
induction on i, we show that AlwPi(Q) holds at all time instants ui.

The base case i = 0 is subsumed by the hypotheses, since AlwPe(P) is true
at u0 and P � Q also holds at u0.

The inductive step requires us to prove that AlwPe(Q) holds at time ui+1,
by assuming that it holds a ui, for ui < t (otherwise ui+1 is undefined). Since
ui < t, it is also AlwPi(R) at ui by hypothesis. Then, by hypothesis (2),
AlwPi(P) holds at the same time ui. From the definition of the AlwPi operator,
and by the discreteness of time, this last fact can be rewritten equivalently as
AlwPe(P) at time ui + 1 = ui+1. Since Alw(P � Q), it follows immediately
that AlwPi(Q) also holds at time ui+1, thus proving the inductive step.

Finally, since ut−u0
= u0 +(t−u0) = t, we have shown that AlwPi(Q) holds

at t.

Now, by exploiting the above lemma, let us prove a useful inference rule for
rely/guarantee specifications written using the� operator. For i = 1, . . . ,m, let
Ei, Mi, E, and M be generic time-dependent formulas. The following inference
rule formulates conditions under which the formula E � M is true, assuming
that all the formulas Ei � Mi hold. In Section 3.3, we will show how to use
this rule to infer the validity of some global rely/guarantee specification (in the
form E � M) from the validity of a set of local rely/guarantee specifications
(in the form Ej �Mj).

Proposition 2 (Rely/Guarantee Compositional Inference Rule).
If, for i = 1, . . . ,m:

1. Som(AlwPe(Ei)) (that is, Ei is initialized)

2. E ∧
∧

j=1,...,m Mj ⇒ Ei

3.
∧

j=1,...,m Mj ⇒ M

4. Alw
(

∧

j=1,...,m(Ej �Mj)
)

then: Alw(E �M).

Proof. Assume Alw
(

∧

j=1,...,m(Ej �Mj)
)

. It is simple to realize, by consider-

ing the definition of the time progression operator, that this implies

Alw
((

∧

j=1,...,m Ej

)

�

(

∧

j=1,...,m Mj

))

. Moreover, hypothesis (2) implies that

Alw
(

E ∧
∧

j=1,...,m Mj ⇒
∧

j=1,...,m Ej

)

, since it holds for every i = 1, . . . ,m.

13

Finally, hypothesis (1) implies that Som
(

AlwPe

(

∧

=1,...,m Ei

))

, since there ex-

ists a base interval such that the conjunction of the Ei’s is true on it.5

Therefore, we can apply Lemma 1 by substituting
∧

j=1,...,m Ej for P ,
∧

j=1,...,m Mj for Q and E for R. We get:

Alw
((

∧

j=1,...,m Ej

)

�

(

∧

j=1,...,m Mj

))

⇒ Alw
(

E �
(

∧

j=1,...,m Mj

))

.

Finally, by combining it with hypothesis (3) and with the definition of the
time progression operator, we get the desired result.

3.2.1 (In)Completeness of the Inference Rule

An inference rule is defined by its hypotheses (also called premises) and by its
consequent (or conclusion). In the case of Proposition 2, the hypotheses are
the four formulas (1–4), while the consequent is the last formula, whose truth
is inferred from the hypotheses. An inference rule is complete if, for any system
(defined in TRIO by a set of axioms), any formula that holds for the system is
also a consequence of direct applications of the inference rule only.

In the literature, the completeness issue has been investigated for some
classes of compositional inference rules (see [26, 21]). It has been shown that,
as it is often the case with formal languages in general, there is some trade-off
between completeness and simplicity and ease of use, and that several widely
used compositional rules are indeed incomplete. Likewise the inference rule of
Proposition 2 is incomplete, as we prove next.

Proposition 3. The inference rule of Proposition 2 is incomplete.

Proof. Let m = 2. Let ε and µ be two primitive Boolean-valued time-dependent
items, and let us consider E = ε and M = µ as the two time-dependent formulas
that appear in the consequent of Proposition 2. We just have to show a system
for which E � M holds at every time, but such that it is not possible to find
any E1, E2,M1,M2 that make the premises of the rule true.

Let us consider the system in which µ is always false, while ε is true only at
some time u internal6 to the time domain. This could be defined in TRIO by the
two axioms Alw(¬µ) and Som(ε ∧ AlwP(¬ε) ∧ AlwF(¬ε)).7 Notice that E �M

(that is, equivalently, ε� µ) always holds in the system, as AlwPe(E) is always
false; it is also plain that this can be proved using standard deductive rules.
However, no application of the inference rule of Proposition 2 alone can prove
this fact, as we now show by contradiction. Assume that there exist E1, E2 such
that Som(AlwPe(E1 ∧ E2)) holds (an immediate consequence of hypothesis (1)
holding). Thus, there exists a time instant t at which AlwPe(E1 ∧ E2) holds.
Next, we consider hypothesis (4), for E1 and E2, at t. Because of the definition

5Consider the intersection of the intervals on which each of the Ei’s is individually true; this
intersection is non-empty, since all intersected intervals are unbounded on the left, because of
the AlwP operator.

6I.e., such that it is not on the boundaries, if they exist.
7For simplicity, assume a doubly infinite time domain such as � or � , so that there are no

(finite) boundaries.

14

of the � operator, we can infer, in particular, that M1 ∧ M2 holds at t (this
holds regardless of whether the time model is dense or discrete). But, in order
for hypothesis (3) to be true, it must be that M1∧M2 is always false (otherwise
the implication would be false, as M = µ is always false), which is clearly a
contradiction.

Let us analyze the features of our rule that caused incompleteness. Incom-
pleteness arose from two basic facts. First, the � operator encompasses an
AlwP operator in its premise, which is false whenever E is true on finite in-
tervals or isolated points, while hypotheses (2–3) introduce requirements that
involve point-wise “instantaneous” implication between formulas; thus it is pos-
sible to devise situations in which formulas with � hold, while formulas with
⇒ do not. Second, hypothesis (1) states an initialization condition which also
involves an interval which is unbounded on the left (as in the definition of the
AlwP operator). This, combined with hypothesis (4), determines that M1,M2

must be true somewhere; this rules out cases such as that considered in the in-
completeness proof. A modification of the inference rule to achieve completeness
should necessarily address these facts.

To conclude, let us briefly discuss the relevance of completeness of an in-
ference rule, within a certain compositional framework. This would put the
incompleteness of our inference rule into perspective, showing that it is proba-
bly not necessarily an undesirable shortcoming.

It is often held (see e.g., [9, 4]) that the completeness of an inference rule is
a particularly desirable feature, as an incomplete rule would make it impossible
to prove a correct statement. However, a complete rule is likely to be more
difficult to be applied in practice than an incomplete one. As also noted in
[21], such a difficulty is particularly undesirable when dealing with automated
verification techniques, where hypotheses which can be checked efficiently are
the most important requirement for an inference rule.

In addition, even when the focus is on human-assisted verification (as in
our case), completeness may not be an indispensable feature. More precisely,
we notice that in most compositional frameworks, the rely/guarantee inference
rule of the framework is the only inference rule to be applied to carry out
compositional reasoning. Hence, in such frameworks an incomplete rule does
indeed prevent to infer true facts about the composition of modules. On the
contrary, the compositional framework of the present paper is broader, and
the rule we introduced in Proposition 2 is not the only way to prove global
properties of a modular system. In particular, that rule is responsible only for
handling specific rely/guarantee constraints that employ the� operator, as will
be shown more explicitly in Section 3.3. So, the rest of the framework — which
relies on temporally-closed assumption formulas and usual TRIO techniques —
can be used to handle situations where the inference rule falls short due to
incompleteness. This can be achieved as TRIO admits a relatively complete [6]
set of inference rules, which can be exploited to prove any provable statement
(this straightforward result is presented in [29]).

Finally, complete compositional rules are inevitably trivially complete. This

15

means that there are cases where the inference rule is applied by picking one
of the “local” formulas Ei,Mi (for some i) to coincide with the “global” for-
mulas E,M . Such cases — where the system decomposition is a trivial one
— are unavoidable in all compositional rules, which cannot escape the worst-
case complexity inherent in modular reasoning [8, 9]. Hence, a compositional
method must be one which yields good results in practice for commonly en-
countered cases: its failure on some pathological instances is unavoidable, and
whether it is imputable to incompleteness or not is a matter which can be often
overlooked.

3.3 Composing TRIO Modules

This section completes the description of the compositional framework by for-
malizing the composition of TRIO classes which include both assumption for-
mulas and rely/guarantee formulas written using the time progression operator.
In a nutshell, we describe a method to prove that the assumptions of each class
are met by the classes that constitute its actual environment. This is done by
usual deductive techniques for temporally closed assumption formulas, while
resorting to the inference rule of Proposition 2 to handle rely/guarantee formu-
las. After discharging all the assumptions, it is possible to proceed on proving
the theorems that are global, that is are about the combined behavior of the
composed classes.

Let us consider n ≥ 2 TRIO classes C1, . . . , Cn. For all i = 1, . . . , n, class Ci

has a rely/guarantee specification expressed synthetically by the formula AX i∪
ASi ` T Hi. Let Cglob be a class that encapsulates one instance for each of the
n classes Ci as modules of Cglob. The composition of the n modules is described
by the logical conjunction of all the local specification formulas. Therefore
TRIO modules are compositional, in that the semantics of the composition of
classes is given by the logical conjunction of the semantics of the classes which
are put together. In general, class Cglob adds its own axioms, assumptions and
theorems, to those of its enclosed modules (this also allows for the recursive
application of the method). Hence, Cglob is described by the formula AX glob ∪
ASglob ∪

⋃

j=1,...,n Fj ` T Hglob.
Our overall verification goal can be detailed as follows.

• Verify each local (i.e., within each class Ci) specification.

• Discharge the local assumptions, that is prove that the assumptions of
each class are satisfied by its actual environment (i.e., the other classes in
the system).

• Verify the global specification, that is prove the global theorems from the
local visible formulas, global axioms and assumptions.

It is simple to realize that the basic problem involved in the discharging of as-
sumptions is that such reasoning involves a circularity between assumptions and
other formulas of the modules. As circularity prevents the verification process

16

from being sound, these invalid deductions must be ruled out. To this end, we
introduce two “circularity-breaking” mechanisms, depending on what kind of
assumptions we are considering. For assumptions written as temporally closed
TRIO formulas, we require an explicit breaking of circularity: the verifier has
to organize the discharging of these assumptions in such a way that circular-
ity is simply avoided. Conversely, for assumptions appearing in rely/guarantee
specifications using the � operator, we can exploit the inference rule of Propo-
sition 2, which performs an implicit circularity breaking, thus ensuring that
circularities arising in the hypotheses of the inference rule do not compromise
the soundness of the final deduction. All this must be done while respecting the
requirements on the visibility of formulas.

In general, each of the n component classes may have one or more rely/guar-
antee formulas of the form E � M among its theorems. For each class Cj ,
j = 1, . . . , n, let T Hrg

j ⊆ T Hj be the set of theorems we consider in the form
E �M of class Cj , i.e., for each theorem formula F ∈ T Hj , F ∈ T Hrg

j if F can
be written as F ≡ E �M for some formulas E and M . Notice however that any
formula can be possibly written using the� operator, as any temporally closed
formula G is equivalent to Alw(true� G), so the choice of which formulas
to consider in T Hrg

j is partially up to the specifier.8 Let us define m to be
the number of rely/guarantee formulas over all classes: m =

∑

j=1,...,n |T Hrg
j |.

Moreover, T Hnrg
j is defined as the complement set T Hj \ T Hrg

j for all j =
1, . . . , n. The composite class Cglob also has its own rely/guarantee formula
Eglob �Mglob among its theorems T Hglob.

Next, let us define what is a dependency between two formulas. Let us
consider a formal proof π: it consists of a finite sequence of formulas, together
with their justifications (see, for example, [22]). We say that a formula χ directly
depends upon another formula φ in the proof π, and write φ π χ, if and only
if φ appears before χ in the proof and χ is the result of the application of an
inference rule which uses φ. The transitive closure + (“depends upon”) of the
 relation is defined as usual. The notion of dependency can be extended to
a set of proofs Π: for any two formulas φ, χ we say that φ + Π χ if and only
if there exists a proof π ∈ Π such that φ + π χ. Note that the we will require
the + Π relation to be irreflexive for the set Π of formal proofs constituting the
verification process; this requirement will be expressed a posteriori.

Finally, the verification of the composite specification proceeds according to
the following steps.

1. Verify each local specification, that is prove that for all k = 1, . . . , n:

AX k ∪ ASk ` T Hk

From our perspective, this step is considered to be atomic, but obviously
the compositional approach can be applied recursively to each module.

8Moreover, for the sake of simplicity, we do not address explicitly more convoluted cases
where rely/guarantee specifications in the form E � M appear as subformulas of larger
formulas.

17

2. Show that the local assumptions can be discharged by means of global
formulas, visible formulas of other classes, and local axioms and theorems.9

Formally, this corresponds to proving that for all k = 1, . . . , n:

AX k ∪ T Hk ∪ Fglob ∪
⋃

j=1,...,n
j 6=k

FY

j ` ASk

3. Prove that the global non-rely/guarantee theorems (i.e., not involving the
� operator) follow from the local visible formulas and from the global ax-
ioms, assumptions and other (i.e., rely/guarantee) theorems. In formulas,
this means proving:

AX glob ∪ ASglob ∪ T Hrg
glob ∪

⋃

j=1,...,n

FY

j ` T Hnrg
glob

4. Show that each local rely/guarantee formula has assumptions Ek which
satisfy the initialization condition (as in hypothesis (1) of Proposition 2).
In order to prove the initialization condition, we allow one to use global and
local formulas, plus any visible formula of any other class of the system.
This corresponds to proving that for all k = 1, . . . ,m: for all j = 1, . . . , n:
if (Ek �Mk) ∈ T Hrg

j then:

Fglob ∪ Fj ∪
⋃

i=1,...,n

FY

i ` Som(AlwPe(Ek))

5. Show that each local rely/guarantee formula has assumptions that can
be discharged by means of global and local formulas, or by the global as-
sumption, or by means of guarantees of other classes. This corresponds to
hypothesis (2) in Proposition 2. Formally, prove that for all k = 1, . . . ,m:
for all j = 1, . . . , n: if (Ek �Mk) ∈ T Hrg

j then:

Fglob ∪ Fj ∪
⋃

i=1,...,n

FY

i ` Alw



Eglob ∧
∧

i=1,...,m

Mi ⇒ Ek





6. Show that the global guarantee follows from the local guarantees of all
modules and from global formulas and local visible formulas of any class.
This corresponds to hypothesis (3) of Proposition 2, i.e., prove that:

Fglob ∪
⋃

j=1,...,n

FY

j ` Alw





∧

j=1,...,m

Mj ⇒ Mglob





9Of course, if an assumption can be proved just from local axioms and theorems it should
be a theorem, but it might happen that local formulas contribute, together with external ones,
to the proof of an assumption.

18

7. Be sure that in all the above proofs (i.e., steps (1–6)) there are no cir-
cular dependencies among any two closed formulas. This is the explicit
circularity-breaking requirement: formally, it corresponds to checking that
in the set Π of all the above proofs, for all formulas
φ ∈

⋃

k=1,...,n(ASk ∪ T Hk) ∪ T Hglob:

¬(φ + Π φ)

i.e., the relation + Π is irreflexive.

From the application of the above steps, thanks to the inference rule of
Proposition 2 and the absence of circularities, the global verification of the
composite specification is soundly completed. In fact, steps (1–3) achieve the
verification of the theorems in T Hnrg

glob: since + Π is irreflexive, it induces a
partial ordering on closed formulas. Thus, any global ordering of formulas com-
patible with the partial ordering defines a chain of proofs which all are sound,
since they rely on ordinary (sound) inference rules and have no circular de-
pendencies. Then, steps (4–6) apply the inference rule of Proposition 2 by
discharging its hypotheses by means of other formulas; since Proposition 2 is
also a sound inference rule, the theorem in T Hrg

glob is soundly proved as well,
completing the verification of the global class.

4 Compositional Dining Philosophers

This section illustrates the use of the rely/guarantee paradigm, by building
the compositional proofs of some relevant properties of the dining philosophers
problem. Even if the example does not constitute an “industrial-strength in-the-
large” case study, we believe that, after several decades of successful application,
it is still an insightful and thought-provoking example to assess the validity of
our compositional rule. Section 4.3 presents other considerations about the
significance of the example.

All details of the proofs have been checked with the encoding of the TRIO
language in the PVS proof checker [28] (see [16, 12] for some details of this
encoding), even if we present them succinctly and in human-readable form.
The interested reader can find some more details about the proofs, as well as
the full PVS encoding of them, in [14].

4.1 One Rely/Guarantee Philosopher

Formulas availability, availability 2 and lasting availability of Section 3.1
express the assumptions that each philosopher makes about the behavior of
his/her neighbors. In turn, the philosopher must guarantee to them that he/she
will not be unfair and will periodically release the forks. This requirement is ex-
pressed by the two theorems taking turns and taking turns 2, that are anal-
ogous to the assumptions availability and availability 2, while assumption
lasting availability corresponds to axiom thinking duration (see Section 2).

19

Theorem 16 (philosopher.taking turns).
(∃t ≥ Tt : Lasts(¬holding(s) , t)) ∨ WithinFei(Becomes(¬holding(s)) ,Tt + Te)

Theorem 17 (philosopher.taking turns 2).
WithinF(UpToNow(¬holding(s)) ,Te)

Up to this point, only assumptions expressed as temporally closed formu-
las (e.g., assumption availability) have been considered. Now, we have to
express a new fundamental local rely/guarantee property of each philosopher:
it is a non-starvation property requiring that, under the assumption of a reg-
ular availability of the forks, we can guarantee that, after the system starts,
the philosopher eats regularly. In such a case, it is convenient to express
the assumption as a time-dependent formula, and link it to the guarantee
using the � operator: we relate the availability of the forks in the past to
the occurrence of the eating sessions in the immediate future. Hence, let
us take Ek = WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te) and
Mk = SomPi(start) ⇒ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te)). Thus,
the following theorem expresses the local non-starvation property in rely/guar-
antee form: as long as both forks are available within a bounded time interval
(i.e., Tt + 2Te), the philosopher is able to eat for a sufficiently long (i.e., > te)
time, within the same bound, provided the system has started.

Theorem 18 (philosopher.regular eating rg).
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)
� (SomPi(start) ⇒ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te)))

This theorem completes the specification of the philosopher class.
We can finally verify the whole specification, according to the method de-

scribed in Section 3.3. Let us start from step (1), which prescribes to prove each
local specification, i.e., each local theorem. Besides the lastly introduced theo-
rem regular eating rg, we have a total of four theorems in class philosopher.
Theorems taking turns[2] and always eating or not are proved directly from
the axioms of the class, while theorem fork availability relies on some of the
assumptions of the class. Moreover, in all proofs we assume that the thinking
time of each philosopher is larger than twice the eating time: Tt > 2Te.

10 This
condition allows one to avoid the race conditions, and is referred to as assump-
tion TCCs (for “Type Correctness Constraints”, à la PVS). Similarly to what
was discussed when presenting Theorem fork availability, one might try to
determine which are the “weakest” inequalities that have to be assumed for the
following proof to hold. A detailed discussion of these issues is out of the scope
of the present paper, and we leave it to future work.

In summary, the whole proof dependencies for the philosopher class are
displayed in Figure 4: whenever we use a formula α in deducing the validity
of another formula β, there is a proof dependency between the two formulas,
graphically represented by an arrow going from α to β. For simplicity, we did not

10After all, they are philosophers, not gourmands! (Unless they are Epicureans, one may
argue. . .).

20

represent the dependencies from axioms thinking def and hungry in Figure 4,
as they just define elementary equivalences. For the sake of brevity, we do not

start uniqueness init taking acquire

TCCs availability 2 lasting availability availability

always eating or not
regular eatings rg

ASSUMPTIONS

eating def holding synch putting eating duration

taking turns 2taking turns

AXIOMS

THEOREMS

fork availability

eat till release
AXIOMS

thinking duration

philosopher

hungry

thinking def

Figure 4: Proof dependencies in class philosopher

show the proof of any of these theorems, except for regular eating rg which
is proved below, and whose overall case structure is given in Figure 5. The
interested reader can find the proofs of the other theorems, in PVS format, in
[15].

Proof of philosopher.regular eating rg. By exploiting the definition of the�
operator, we assume AlwPe(WithinFei(UpToNow(available(l)∧available(r)),Tt+
2Te)) as hypothesis and set our goal to proving AlwPi(F) and NowOn(F)
separately, where F is F ≡ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te)) ∨
AlwPi(¬start), an equivalent statement of the implication. First of all, we notice
that, because of theorem fork availability (11), we can actually strengthen our
current hypothesis to be AlwPi(WithinFei(UpToNow(available(l) ∧ available(r)),
Tt + 2Te)), that is including the current instant. Now, let us first prove
AlwPi(F) from the hypothesis, the axioms and the other (already proved) the-
orems of the class. Let t be the generic time instant at which the hypoth-
esis holds. We have to prove that F holds for all time instants less than
or equal to t, so let u ≤ t a generic time instant before t. Let us consider
theorem always eating or not (15) at time u and perform a case analysis.
The proof is split into two branches whether hungry ≡ Lasted(¬eating,Tt) or
WithinPii(Becomes(eating) ∨ . . . ,Tt + Te) holds at u.

The first branch considers the hypothesis instantiated at time u, that is
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te) at u. Therefore, let
us make explicit the existentially quantified time variable of the WithinF op-
erator and name it f . Notice that 0 < f ≤ Tt + 2Te and we can write that

21

UpToNow(available(l) ∧ available(r)) at time u + f . Now, the proof is further
split into two branches whether or not the state eating never becomes true for all
time instants since u to u + f . In the first case Lastsie(¬Becomes(eating) , f) at
u. Therefore, we can deduce from basic properties of state items that eating is
always false from u to u+f . eating was also false for Tt time units in the past at
u in this branch of the proof. Therefore, a short time before u+f the philosopher
is hungry, and the forks are available in the immediate past and in the immedi-
ate future. Let u + f − ε be this time instant (where ε > 0 is sufficiently small)
and consider axiom acquire (3) at this time. We immediately conclude that
both forks are taken at u + f − ε and therefore Becomes(holding(l) ∧ holding(r))
is true at u + f − ε. Furthermore, we can consider axiom eat till release (4)
at time u + f − ε and deduce that there exists r > te such that Lasts(eating, r)
holds at u+f −ε. Since |f −ε| ≤ Tt +2Te this branch of the proof is concluded.

The other branch of the proof considers the case in which there is a time
instant g between u and u + f where Becomes(eating) is true. Since eating

becomes true at g, we can apply axiom eat till release (4) and deduce that
there exists r > te such that Lasts(eating, r) holds at g. Since u ≤ g < u + f ≤
u + (Tt + 2Te), this branch of the proof is also concluded.

Let us now consider the case in which WithinPii(Becomes(eating)∨(∃t > te :
Lasted(eating, t)),Tt + Te) holds at u. This means that there is a generic
time instant v : u − (Tt + Te) ≤ v ≤ u where Becomes(eating) or ∃t > te :
Lasted(eating, t) holds. In the first case, axiom eat till release (4) lets us con-
clude that eating lasts for a time at least as long as te starting from time instant
v. Since v ≥ u − (Tt + Te) ≥ u − (Tt + 2Te), this branch of the proof is con-
cluded. In the second case, eating was true for r > te time units, starting from
v in the past; hence the whole branch of the proof is concluded.

The case NowOn(F) is proved similarly to the first branch, but with different
base time instantiations and some technicalities that we do not discuss here.

assume: AlwPe(WithinFei(UpToNow(available(l) ∧ available(r)), Tt + 2Te))

prove: AlwPi(F) prove: NowOn(F)

case: hungry ≡ Lasted(¬eating, Tt)
case: WithinPii(Becomes(eating) ∨ . . . , Tt + Te)

case: Lastsie(¬Becomes(eating), f)

case: WithinFie(Becomes(eating), f)

case: Becomes(eating)

case: ∃t > te : Lasted(eating, t)

. . .

Figure 5: Proof structure for Theorem regular eating rg

This concludes the proof of AX phil ∪ ASphil ` T Hphil, i.e., step (1) of
Section 3.3.

22

4.2 A Table of Philosophers

Let us now complete the composite specification of the dining philosophers. More
precisely, we formulate the global property to be verified, which is expressed by
theorem liveness rg of the composite class dining N. It simply states that
each philosopher in the array eats regularly, unless he/she has not started yet.
Notice that in our example Eglob = Edining N = true since the composite system
is closed, and Mglob = Mdining N coincides with the following formula.

Theorem 19 (dining N.liveness rg).
∀k ∈ [0..N − 1] : (SomPi(Philosophers[k].start)
⇒ (∃t > te : Withinii(Lasts(Philosophers[k].eating, t) ,Tt + 2Te)))

This finally completes the global composite specification, so that we are now
able to consider step (2) of the verification process. Each local assumption is
discharged by a visible theorem or axiom of the modules adjacent to the current
philosopher, as shown in Figure 6. Therefore, step (2) is completed without cir-

TCCs

dining N

TCCs

availability

availability 2 taking turns 2

taking turns

taking turns 2

taking turns

lasting availability thinking durationthinking duration

Philosophers[(i − 1) mod N] Philosophers[(i + 1) mod N]Philosophers[i]

Figure 6: Discharging of assumptions in global class dining N

cularities involved, since thinking duration is an axiom and taking turns[2]
are both proved directly from axioms local to each class (i.e., they do not rely
circularly on other assumptions).

Step (3) is empty in our example, since the only global theorem we have to
prove is theorem liveness rg in T Hrg

dining N.
Let us consider step (4), where we have to prove that local rely/guarantee

assumption Ek is initialized, that is we have to show that hypothesis (1) of
Proposition 2 holds. Since the local theorems have already been proved without
circularities, we can use fork availability to complete this step. The theorem
simply states that the desired property Ek = WithinFei(UpToNow(available(l)∧
available(r)),Tt+2Te) always holds, which subsumes the initialization condition.

Step (5) requires to discharge the Ek’s by means of other formulas, in or-
der to fulfill hypothesis (2) of Proposition 2. In this case as well, theorem
fork availability for module k works correctly since it predicates the validity
of the Ek’s over the whole temporal axis.

Step (6) is also very simple, since Mglob = ∀k ∈ {1, . . . , n} : Mk in our case,
so that the implication of this step holds trivially. As a consequence, hypothesis
(3) of Proposition 2 is shown to hold.

23

As discussed above and shown in the proof dependencies pictures, no circu-
larities arise in proving the local formulas, so we conclude that theorem live-
ness rg soundly holds as a consequence of the inference rule of Proposition 2
and according to the steps in Section 3.3.

4.3 Discussion

As hinted above, the actual verification was carried out with PVS support:
this section aims at sketching an analysis of the complexity of the process.
First, however, let us notice that the bare number of proof commands is hardly
a complexity measure of some interest for comparing compositional rules and
methods, as it is often strongly influenced by factors which do not pertain to the
methodology, such as the encoding of the logic in the proof checker, the number
of additional auxiliary lemmas generated in building the proofs, etc. Conversely,
it would be meaningful to compare our proof with a non-compositional one,
carried out with the same basic TRIO/PVS prover, in order to understand
the benefits of a compositional methodology in building our verification, and
in order to assess the significance of the philosophers example as a benchmark
for compositional verification. Indeed, there are cases where non-compositional
methods may perform better in practice then compositional ones; in such cases
the additional verification burden required by a compositional framework is not
traded off by any benefit in proof simplification or reuse [9, 20].

Under this respect, let us compare the complexity of our verification with the
cost of a non-compositional one. The basic problem with a non-compositional
proof is that we cannot exploit encapsulation and reuse. Therefore, there is no
distinction between local and global items and everything is “flattened” at the
same level of visibility. In the case of the dining philosopher problem, we can
overcome this problem by “simulating” modularization at the global level. In
other words, we have to carefully parameterize each item with respect to an
index which separates different “instances” of the philosopher.

Moreover, and most importantly, we must devise a way to replace the use of
the � operator by temporally closed formulas only. As we pointed out above,
writing rely/guarantee formulas using the � operator permits to use an ad hoc
inference rule which can handle circularities between assumptions and guaran-
tees of the various local formulas without need for an explicit circularity breaking
to be provided by the verifier. Therefore, replacing specifications written using
the time progression operator is more difficult the tighter the circularity between
the local Ek’s and Mk’s is. This is usually the case when we compose modules
which are instances of the same class: having the same formulas by definition,
the circularity is likely to arise between connected classes for symmetry reasons.
This was the case in the philosopher example, albeit with a significant simplifi-
cation, namely the fact that the local assumptions Ek’s can be shown to hold
over the whole temporal axis, as discussed above. This simplification made it
possible to build a non-compositional solution, though still with considerable
effort. More generally, we point out that a system made of a (possibly large)
set of instances of the same class, connected with some circularities, is repre-

24

sentative of a vast category of real systems: in particular, those representing
communication protocols between a large number of hosts, such as peer-to-peer
protocols. Thus, we believe that the philosophers problem can be regarded as a
good abstraction of some of the core problems arising in verifying such systems.

We carried out the unstructured, non-compositional proof of the philoso-
phers problem;11 the result has been a proof of length roughly comparable to
— or even a bit shorter than — the compositional one, but fragmented into
more intermediate lemmas, with more assumptions and more intricate proof
dependencies. Another feature that distinguishes the compositional proof from
the non-compositional one is the fact that the former is repetitive while the
latter is intricate. In other words, the compositional proof has a transparent,
intelligible structure made of several similar parts, indicating that it is indeed
simpler to manage for the human user who can easily understand when previ-
ous proof patterns can be applied again with minor modifications. All in all,
even if the number of proof commands was not dramatically different in the two
proofs, the complexity of the non-compositional one, considering also the men-
tal effort and difficulty in managing the proof, was much greater. Furthermore,
our experience with the compositional proof of the same property has guided
and helped the building of the non-compositional one: we believe that doing the
non-compositional proof first would have been really hard and time-consuming.

5 Related Works

A compositional analysis technique applies some, possibly formal, method to
infer global properties of a large, complex system through a hierarchical and
iterative process that exploits the system’s modular structure. A general (and
historical) introduction to compositional methods can be found in [8, 9], while
the reader can refer to [13] for a comprehensive survey about compositionality for
temporal logics. Without aiming at exhaustiveness, this section briefly reviews
some of the most important contributions about compositional reasoning and
shows how the approach of this paper differs from them.

An issue still largely unexplored in the present literature on compositionality
is the consideration of hard real-time aspects, which require a metric modeling of
time. A noticeable exception is Ostroff in [27], where the metric temporal logic
RTTL is embedded in a compositional framework. Ostroff’s work is also valuable
in providing an overall framework, which includes an inference rule as well as
a usable methodology. Nonetheless, the approach is rather different from ours,
being focused on refinement aspects rather than on a posteriori composition
that exploits reuse. Furthermore, time is treated as a separate variable and is
discrete, while in our approach time is an implicit item of the language and can
be either continuous or discrete.

The need for compositionality has become indisputable in the formal meth-
ods community, so that almost every newly introduced formalism encompasses
some sort of compositional technique or permits compositional specifications.

11It is available in PVS form [15].

25

However, to the best of our knowledge, all proposed compositional frameworks
are deeply rooted on some particular, often restrictive, semantic assumptions,
and depend explicitly on the underlying computational model. In this regard,
formalisms typically assume either an interleaving semantics (e.g., [1, 11, 26]) or
a synchronous semantics (e.g., [3]) for the concurrent components of the system.

A rather different compositional framework to support the top-down devel-
opment of real-time systems based on logical formulas at the semantic level
is studied by Hooman [18]. In a sense, Hooman’s framework is independent
of semantic assumptions, even if its set-theoretic model of semantic primitives
naturally relates to interleaving semantics models. However, the framework is
focused on the refinement (i.e., decomposition) aspect and basically consists of
an inference rule that allows one to deduce that the decomposition of a module
into its refined parts correctly implements the original (unrefined) module. An-
other important difference between Hooman’s framework and ours is that the
former does not adopt the rely/guarantee paradigm, which is instead an often
convenient, natural, and widely used paradigm to write specifications of open
modules which rely on a constrained behavior of the environment to function
correctly.

More typical solutions to the problem of formulating a sound rely/guarantee
compositional rule involve the use of an ad hoc operator to write rely/guarantee
specifications so that they satisfy certain specific characterizations. This solu-
tion was pursued also in our framework, with the time progression � operator
and the related inference rule. However, the first main difference between our
compositional framework and other ones using also a rely/guarantee operator
is that most other frameworks consist just of one single inference rule. Often,
this is a consequence of them being tailored mostly to simple use by automated
techniques, especially model checking. On the contrary our approach provides
the user with complementary mechanisms to express rely/guarantee specifica-
tions, which are integrated with some of TRIO’s language features to support
encapsulation and reuse.

For example, an ad hoc operator is introduced by Abadi and Lamport [1],
who analyze the rely/guarantee compositional paradigm using TLA as the ref-
erence specification language. The authors use the TLA operator +−. to write
rely/guarantee specifications that can be soundly composed. A crucial differ-
ence between TLA’s +−. and TRIO’s � is that our time progression operator
is applied in inference rules independently of any assumption on the semantics
of processes and also of any semantic characterization of formulas (its appli-
cation does not need notions such as safety, closure, etc., which are instead
integral part of (among others) Abadi and Lamport’s framework). This renders
our framework purely syntactic (i.e., independent of any semantic assumptions)
and hence very general. In particular, even if the inference rule of [1] is usable
for general properties, the conditions of the rule are hard to prove if they are
not safety properties; such a distinction does not apply to a syntactic rule such
as ours.

Abadi and Merz [2] propose an abstract generalization of rely/guarantee
inference rules, in an attempt to treat compositionality syntactically. To this

26

extent, a modal operator to write rely/guarantee inference rules is introduced
with minimal semantic assumptions. However, the use of the operator in infer-
ence rules and the ensuing soundness proofs are possible only after the abstract
framework is specialized by choosing a semantic model and a computational
model. On the contrary, in our framework the soundness of the inference rule
is proved without assumptions of this kind.

An attempt to get rid of the difficulties inherent in applying rules which
follow the “semantic approach” (such as Abadi and Lamport’s, as well as several
others) is the work by Jonsson and Tsay [19], and Tsay [31]. Their approach
is based on plain LTL, and aims at introducing a syntactical characterization
of the semantic properties used to guarantee the soundness of compositional
reasoning. In particular, they handle safety requirements by imposing that the
assumptions and guarantees are written in a canonical form; when using this
form, it is possible to translate the semantic requirements of a compositional
inference rule into syntactic obligations, which can then be discharged using
usual deductive techniques. Our framework also pursues a “syntactic approach”
to compositionality. Contrarily to Jonsson and Tsay, however, we do not try to
“translate” semantic methods into syntactic ones; instead, we focus exclusively
on a simple syntactic approach which avoids intricacies. As a result our rule
does not use complex canonical forms, and is more general: in particular we do
not have to distinguish between safety and liveness properties, hence we do not
need to prescribe a different approach for them.

Amla et al. [4] present an abstract compositional framework which can be
considered as a generalization of several concrete compositional frameworks in
the literature. In particular, they succeed in formulating a simple inference rule
whose soundness does not rely on an ad hoc operator. However, their framework
still relies on certain semantic assumptions, such as downward closure, on the
set of behaviors describing a process. Therefore, our framework does not fit the
models in [4].

6 Conclusions

We presented a compositional framework for the TRIO specification language
that supports verification through automated theorem proving. The framework
is based on a formal notion of composition of TRIO modules, which is used to
prove that the mutual interactions between components of a complex system
guarantee some property for the global application, after the components are
integrated into the system. The compositional rule has been proved sound and
has been applied to the classic example of Dijkstra’s dining philosophers as a
simple, but not simplistic, benchmark. The compositional framework has been
encoded into the logic of the PVS theorem prover.

With respect to other approaches to compositionality in formal methods,
ours emerges as more suitable for real-time modeling, it encompasses both con-
tinuous and discrete time to better model physical processes, and it is conceived
for axiom systems and deductive verification. Therefore, the approach is very

27

general and abstracts away from specific assumptions about process semantics
and the underlying computational model. Moreover, it encompasses a useful
methodology to combine the inference rules with the specific modular features
of the TRIO language, resulting in a rich compositional framework.

Future work in this line of research will follow three main directions. First,
the framework presented here is being applied to several real-life industrial case
studies to experimentally evaluate its effectiveness. Second, alternative weaker
— or stronger — inference rules will be investigated. In particular, we are
exploring variations and generalizations of the � operator, better suited to be
applied on certain classes of systems, different inference rules which do not use
a time progression operator at all, and complete inference rules (which may
sacrifice some simplicity). Third, the automated support for the framework will
be improved and extended.

Acknowledgements

The authors would like to thank the anonymous referees for their detailed sug-
gestions, and the guest editors for their efforts in promoting and managing the
realization of this special issue.

References

[1] M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions
on Programming Languages and Systems, 17(3):507–535, 1995.

[2] M. Abadi and S. Merz. An abstract account of composition. In Proceedings
of MFCS’95, volume 969 of Lecture Notes in Computer Science, pages 499–
508, 1995.

[3] R. Alur and T. A. Henzinger. Reactive modules. Formal Methods in System
Design, 15(1):7–48, 1999.

[4] N. Amla, E. A. Emerson, K. S. Namjoshi, and R. J. Trefler. Abstract pat-
terns of compositional reasoning. In Proceedings of CONCUR’03, volume
2761 of Lecture Notes in Computer Science, pages 431–445, 2003.

[5] E. Ciapessoni, A. Coen-Porisini, E. Crivelli, D. Mandrioli, P. Mirandola,
and A. Morzenti. From formal models to formally-based methods: an
industrial experience. ACM Transactions on Software Engineering and
Methodology, 8(1):79–113, 1999.

[6] S. A. Cook. Soundness and completeness of an axiom system for program
verification. SIAM Journal on Computing, 7(1):70–90, 1978. Corrigendum
in [7].

[7] S. A. Cook. Corrigendum: Soundness and completeness of an axiom system
for program verification. SIAM Journal on Computing, 10(3):612, 1981.

28

[8] W.-P. de Roever. The need for compositional proof systems: a survey. In
Proceedings of COMPOS’97, volume 1536 of Lecture Notes in Computer
Science, pages 1–22, 1998.

[9] W.-P. de Roever, F. de Boer, U. Hannemann, J. Hooman, Y. Lakhnech,
M. Poel, and J. Zwiers. Concurrency Verification: Introduction to Com-
positional and Noncompositional Methods. Cambridge University Press,
2001.

[10] E. W. Dijkstra. Hierarchical ordering of sequential processes. Acta Infor-
matica, 1(2):115–138, 1971.

[11] B. Finkbeiner, Z. Manna, and H. B. Sipma. Deductive verification of mod-
ular systems. In Proceedings of COMPOS’97, volume 1536 of Lecture Notes
in Computer Science, pages 239–275, 1998.

[12] C. A. Furia. Compositional proofs for real-time modular systems. Laurea
degree thesis, Politecnico di Milano, 2003.

[13] C. A. Furia. A compositional world: a survey of recent works on compo-
sitionality in formal methods. Technical Report 2005.22, Dipartimento di
Elettronica e Informazione, Politecnico di Milano, 2005.

[14] C. A. Furia, M. Rossi, D. Mandrioli, and A. Morzenti. Automated compo-
sitional proofs for real-time systems. FASE’05 full version with appendices
available online from http://www.elet.polimi.it/upload/furia, 2005.

[15] C. A. Furia, M. Rossi, D. Mandrioli, and A. Morzenti. TRIO/PVS
proofs of the dining philosophers example. Available online from
http://www.elet.polimi.it/upload/furia (publications section), 2005.

[16] A. Gargantini and A. Morzenti. Automated deductive requirement anal-
ysis of critical systems. ACM Transactions on Software Engineering and
Methodology, 10(3):255–307, 2001.

[17] C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic language for
executable specifications of real-time systems. The Journal of Systems and
Software, 12(2):107–123, 1990.

[18] J. Hooman. Compositional verification of real-time applications. In Pro-
ceedings of COMPOS’97, volume 1536 of Lecture Notes in Computer Sci-
ence, pages 276–300, 1998.

[19] B. Jonsson and Y.-K. Tsay. Assumption/guarantee specifications in linear-
time temporal logic. Theoretical Computer Science, 167(1–2):47–72, 1996.

[20] L. Lamport. Composition: A way to make proofs harder. In Proceedings
of COMPOS’97, volume 1536 of Lecture Notes in Computer Science, pages
402–423, 1998.

29

[21] P. Maier. Compositional circular assume-guarantee rules cannot be sound
and complete. In Proceedings of FOSSACS’03, volume 2620 of Lecture
Notes in Computer Science, pages 343–357, 2003.

[22] E. Mendelson. Introduction to Mathematical Logic. Chapman & Hall, 1997.

[23] B. Meyer. Object-Oriented Software Construction. Prentice Hall, 2nd edi-
tion, 1997.

[24] A. Morzenti, D. Mandrioli, and C. Ghezzi. A model parametric real-
time logic. ACM Transactions on Programming Languages and Systems,
14(4):521–573, 1992.

[25] A. Morzenti and P. San Pietro. Object-oriented logical specification of time-
critical systems. ACM Transactions on Software Engineering and Method-
ology, 3(1):56–98, 1994.

[26] K. S. Namjoshi and R. J. Trefler. On the completeness of compositional
reasoning. In Proceedings of CAV’00, volume 1855 of Lecture Notes in
Computer Science, pages 139–153, 2000.

[27] J. S. Ostroff. Composition and refinement of discrete real-time systems.
ACM Transactions on Software Engineering and Methodology, 8(1):1–48,
1999.

[28] S. Owre, J. M. Rushby, and N. Shankar. PVS: A Prototype Verification
System. In Proceedings of CADE-11, volume 607 of Lecture Notes in Com-
puter Science, pages 748–752, 1992.

[29] P. San Pietro. Completezza di un sistema di assiomi per TRIO. Unpub-
lished manuscript (in Italian), 1992.

[30] N. Shankar. Lazy compositional verification. In Proceedings of COM-
POS’97, volume 1536 of Lecture Notes in Computer Science, pages 541–564,
1998.

[31] Y.-K. Tsay. Compositional verification in linear-time temporal logic. In
Proceedings of FOSSACS’00, volume 1784 of Lecture Notes in Computer
Science, pages 344–358, 2000.

30

A TRIO Specification of the philosopher Class

class philosopher (const te, const Te, const Tt)
signature:

visible: start, eating, holding, available, thinking;
temporal domain: � ;
domains: S : {l, r};
items:
event start, take(S), release(S);
state eating, holding(S), available(S), thinking, hungry;

formulae:
vars: s : S, t : � ;
axioms:

holding synch: holding(l) ⇔ holding(r);
hungry: Lasted(¬eating,Tt) ⇔ hungry;
acquire: hungry ∧ UpToNow(available(l) ∧ available(r))

⇒ (take(l) ∧ take(r))∨NowOn(¬available(l) ∨ ¬available(r));
eat till release: Becomes(holding(l) ∧ holding(r))

⇒ (∃t > te : Lasts(eating, t) ∧ Futr(release(l) ∧ release(r) , t));
eating duration: Lasted(eating, t) ⇒ t < Te;
eating def: holding(l) ∧ holding(r) ⇔ eating;
thinking def: thinking ⇔ ¬eating;
thinking duration: Becomes(thinking) ⇒ Lasts(thinking,Tt);
taking: take(s) ∧ UpToNow(¬holding(s)) ∧ UpToNow(available(s))

⇒ Until(holding(s) , release(s));
putting: release(s)∧UpToNow(holding(s)) ⇒ Until(¬holding(s) , take(s));

assumptions:
TCCs: Te > te > 0 ∧ Tt > 2Te;
availability: (∃t ≥ Tt : Lasts(available(s) , t))

∨ WithinFei(Becomes(available(s)) ,Tt + Te);
availability 2: WithinF(UpToNow(available(s)) ,Te);
lasting availability: Becomes(available(s)) ⇒ Lasts(available(s) ,Tt);

theorems:
taking turns: (∃t ≥ Tt : Lasts(¬holding(s) , t))

∨ WithinFei(Becomes(¬holding(s)) ,Tt + Te);
taking turns 2: WithinF(UpToNow(¬holding(s)) ,Te);
fork availability:

WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te);
always eating or not: hungry

∨ WithinPii((∃t > te : Lasted(eating, t))
∨Becomes(eating) ,Tt+Te);

regular eating rg:
WithinFei(UpToNow(available(l) ∧ available(r)) ,Tt + 2Te)
� (SomPi(start) ⇒ (∃t > te : Withinii(Lasts(eating, t) ,Tt + 2Te)));

end

31

B TRIO Specification of the dining N Class

class dining N (const te, const Te, const Tt, const N)
import: philosopher;
signature:

visible: start;
temporal domain: � ;
items: event start;
modules:
Philosophers: array [0..N − 1] of philosopher

[te is const te, Te is const Te, Tt is const Tt];
connections:
vars: i : [0..N − 1];
(direct Philosophers[i].available(l) ,

¬Philosophers[(i − 1) mod N].holding(r)),
(direct Philosophers[i].available(r) ,

¬Philosophers[(i + 1) mod N].holding(l)),
(broadcast start,Philosophers.start);

formulae:
vars: k : [0..N − 1], t : � ;
assumptions:

TCCs: Te > te > 0 ∧ Tt > 2Te ∧ N ≥ 2;
theorems:

liveness rg: ∀k ∈ [0..N − 1] : (SomPi(Philosophers[k].start)
⇒ (∃t > te : Withinii(Lasts(Philosophers[k].eating, t) ,Tt + 2Te)));

end

32

