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Abstract—Metric LTL formulas rely on the next operator to
encode time distances, whereas qualitative LTL formulas use
only the until operator. This paper shows how to transform any
metric LTL formula M into a qualitative formula Q, such that
Q is satisfiable if and only if M is satisfiable over words with
variability bounded with respect to the largest distances used in
M (i.e., occurrences of next), but the size of Q is independent of
such distances. Besides the theoretical interest, this result can
help simplify the verification of systems with time-granularity
heterogeneity, where large distances are required to express
the coarse-grain dynamics in terms of fine-grain time units.

Keywords-linear temporal logic; quantitative time; bounded
variability; satisfiability

I. INTRODUCTION AND MOTIVATION

Linear temporal logic (LTL) supports a simple model of
metric time through the next operator X . Under the assump-
tion of a one-to-one correspondence between consecutive
states and discrete instants of time, nested occurrences of
X “count” instants to express time distances. LTL formulas
without X — using only the until operator — are instead
purely qualitative: they constrain the ordering of events, not
their absolute distance. Therefore, qualitative LTL formulas
express models that are insensitive to additions or removals
of stuttering steps: consecutive repetitions of the same
state. The fundamental properties of LTL with respect to
its qualitative subset are well known from classic work:
quantitative (metric) LTL is strictly more expressive [1], [2],
[3], [4], but reasoning has the same worst-case complexity
[5], [6].

The present paper investigates when the metric informa-
tion, encoded by nested occurrences of X , is redundant
and can be relaxed. The relaxation transforms a quantita-
tive formula into an equi-satisfiable qualitative one that is
independent of the number of X in the original formula;
reasoning on the transformed formula is thus simpler by
a factor proportional to the amount of metric information
stripped.

The motivation behind this study refers to an informal
notion of redundancy, which stuttering steps seem to en-
code. Consider a metric LTL formula φ describing models
characterized by many stuttering steps distributed over large
time distances; for example, the formalization of an event
for elections that occur every four years in November, in
a variable day of the month, with the day as time unit.

Formula φ is large because it encodes large time distances
in unary form with many occurrences of the X operator;
for example, a four-year distance requires at least 1460
“next”, one for each day. However, the information carried
by φ is prominently redundant as every stuttering step is
a duplication that only pads uneventful time instants. Is it
possible, under a rigorous assumption of “sparse events”, to
simplify φ into an equi-satisfiable formula φ′ which does
not encode explicitly the redundant information?

The notion of bounded variability, adapted from dense-
time models, provides a suitable formalization of the in-
tuitive notion of “sparse events”: models with bounded
variability have, over every interval of fixed length, only
a limited number v of steps that are not stuttering (i.e.,
redundant repetitions). The main result of the paper (in
Section V) shows how to transform efficiently any LTL

formula φ into a qualitative formula φ′ such that φ is
satisfiable over models with bounded variability iff φ′ is
satisfiable over models of any variability. The size of φ′

does not depend on the distances (i.e., the number of nested
occurrences of X ) in φ but only on the maximum number
of non-stuttering steps v. In other words, φ′ drops some
information encoded in φ; this information is not needed to
decide satisfiability over models with bounded variability.

On the technical level, the construction that eliminates
metric information relies on a normal form for LTL formulas
and on discrete-time generalized versions of the dense-time
Pnueli operators [7]. The correctness proof follows the
idea of adding and removing stuttering steps to re-introduce
the metric information dropped in models satisfying only
qualitative constraints; it is reminiscent of the notion of
stretching, also originally introduced for dense-time models
[8], [9].

Besides the theoretical interest, the results of the present
paper may be practically useful to simplify the temporal-
logic analysis of systems characterized by heterogeneous
components evolving over wildly different time scales, such
as minutes, weeks, and years. Assuming incommensurable
distances are not a concern, such heterogeneity of time
granularities [10] can, in principle, be modeled in terms
of the finest-grain time units; but this solution comes with
a significant price to pay to accommodate the largest time
units in terms of the smallest, resulting in huge formulas. If,
however, the dynamics of the components with faster time



scales are “sparse” enough, there is a redundancy in the
global behavior of the system that the notion of bounded
variability captures. Hence, the analysis can be carried out
more efficiently by leveraging the results presented.

The paper is organized as follows. The rest of the present
section recalls related work. Section II introduces notation
and basic definitions. Section III presents normal forms for
LTL formulas. Section IV discusses the equi-satisfiability
of LTL and its qualitative subset. Section V shows how
the metric information can be relaxed while preserving
satisfiability, for models with bounded variability. Section VI
outlines future work. For lack of space, the present version
of the paper omits some details and several proofs: the
presentation favors examples that elucidate the intuition
behind the technicalities; a technical report [11] provides
a complete presentation for reference.

Related work: The expressiveness and complexity of
LTL and of its qualitative subset have been thoroughly
investigated in the classic framework of temporal logic
[12], [13], [14]. With respect to expressiveness, Lamport
introduced the notion of stuttering to characterize qualitative
LTL [1]; the characterization was completed by Peled and
Wilke [2], perfected by Etessami and others [15], [3],
[16], [17], and generalized by Kučera and Strejček [4].
With respect to complexity, the seminal work of Sistla and
Clarke established the PSPACE-completeness of both LTL

and qualitative LTL [5], and other authors have generalized
or specialized the result [6], [18], [19].

To our knowledge, the present paper is the first investigat-
ing satisfiability-preserving relaxations of metric information
in temporal logic formulas. More generally, the problem of
formalizing systems with heterogeneous time granularities
using temporal logic [10] has been studied by only a few
authors [20], [21], [22], [23]; [22], in particular, presents an
encoding of temporal granularities in LTL, but it does not
discuss efficiency of the encoding.

Some of the techniques used in the the paper borrow from
existing approaches in the literature. The normal forms for
LTL introduced in Section III are related to a construction
used in temporal testers [24]. The definition of bounded
variability in Section II translates to discrete time a notion
introduced for dense (or continuous) time models [25], [26],
[27], [28].

Hirshfeld and Rabinovich studied the expressiveness and
decidability of Pnueli operators over dense time [7]; the
operators themselves were first mentioned in a conjecture
attributed to Pnueli [29], [25]. Section V introduces discrete-
time qualitative variants of such operators. Counting op-
erators [30] are somehow similar to discrete-time Pnueli
operators in that they both facilitate the expression of concise
counting requirements; both extensions do not increase the
expressive power of LTL, nor its complexity under a unary
encoding. [31] introduce a much more expressive counting
extension of LTL, which is decidable only in special cases.

II. DEFINITIONS

LTL syntax: LTL formulas are defined by:

LTL 3 φ ::= x | ¬φ | φ1 ∧ φ2 | φ1 Uφ2 | Xφ

where x ranges over a set P of propositional letters. Assume
the standard abbreviations for >,⊥,∨,⇒,⇔ and for the
derived temporal operators: eventually Fφ , >Uφ; always:
Gφ , ¬F¬φ; release: φ1 Rφ2 , ¬(¬φ1 U¬φ2); distance
X kφ = XX · · ·X︸ ︷︷ ︸

k

φ for k ≥ 0.

Size and height: Let φ be an LTL formula. P(φ) ⊆ P
denotes the (finite) set of propositional letters occurring in
φ. |φ| denotes the size of φ. Three features determine the
size of φ: the size |φ|p of its propositional structure; the size
|φ|U of its until subformulas; and the size |φ|X of its next
subformulas; they are defined inductively as follows.

|φ|p =



1 φ = x

1 + |φ′|p φ = ¬φ′

1 + |φ1|p + |φ2|p φ = φ1 ∧ φ2

|φ1|p + |φ2|p φ = φ1 Uφ2

|φ′|p φ = Xφ′

|φ|U =



0 φ = x

|φ′|U φ = ¬φ′

|φ1|U + |φ2|U φ = φ1 ∧ φ2

1 + |φ1|U + |φ2|U φ = φ1 Uφ2

|φ′|U φ = Xφ′

|φ|X =



0 φ = x

|φ′|X φ = ¬φ′

|φ1|X + |φ2|X φ = φ1 ∧ φ2

|φ1|X + |φ2|X φ = φ1 Uφ2

1 + |φ′|X φ = Xφ′

Correspondingly, |φ| is |φ|p + |φ|U + |φ|X.
For a temporal operator H ∈ {U,X}, the temporal height

(or nesting depth) H(φ,H) of H in φ is the maximum
number of nested occurrences of H in φ. For example,
H(φ,X ) = 0 iff X is not used in φ. d(φ) denotes instead the
maximum number of consecutive nested occurrences of the
next operator, that is the largest n such that X n occurs in
φ; clearly, d(φ) ≤ H(φ,X ). Finally, s(φ) is the number
of distinct subformulas of the form Xmφ with m ≥ 1.
Notice that |φ|X is bounded by d(φ) · s(φ), hence |φ| is
in O (|φ|p + |φ|U + d(φ) · s(φ)).
L
(
Uh1 ,Xh2

)
denotes the fragment of LTL whose formulas

ψ are such that H(ψ,U) ≤ h1 and H(ψ,X) ≤ h2. Omit
the superscript to mean that there is no bound on the
temporal height of an operator. Hence, L(U,X) is the same
as all LTL; L

(
U,X0

)
= L(U) denotes qualitative LTL, where

no next operator is used; and L
(
U0,X0

)
= P(P) denotes

propositional formulas without any temporal operator.
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ω-words: An ω-word (or simply word) over a set S of
propositional letters is a mapping w : N → 2S or, equiv-
alently, a denumerable sequence w(0)w(1) · · · of elements
w(i) ⊆ S. The set of all ω-words over S is denoted byW[S].
For T ⊆ S, w|T is the projection of w over T , defined as
w(0)|Tw(1)|T · · · , where w(i)|T = w(i) ∩ T for all i ∈ N.
The projection is extended to sets of words as expected.
For i, j ∈ N, wi denotes the suffix w(i)w(i + 1) · · · of w;
w(i, j) denotes the subword of w of length j starting at w(i)
(with w(i, 0) = ε for all i); and w(i:j) denotes the subword
w(i)w(i+ 1) · · ·w(j) (with w(i, j) = ε for all j < i).

LTL semantics: The satisfaction relation |= is defined
as usual, for an LTL formula φ, interpreted over an ω-word
w over P , at position i ∈ N.
w, i |= p iff p ∈ w(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2

w, i |= φ1 Uφ2 iff for some j ≥ i, w, j |= φ2

and for all i ≤ k < j, w, k |= φ1

w, i |= Xφ iff w, i+ 1 |= φ
w |= φ iff w, 0 |= φ
[[φ]] denotes the set {w ∈ W[P] | w |= φ} of all models

of φ. φ is satisfiable iff [[φ]] 6= ∅ and is valid iff [[φ]] =
W[P]. Two formulas φ1, φ2 are equivalent iff [[φ1]] = [[φ2]];
they are equi-satisfiable iff they are either both satisfiable
or both unsatisfiable. Satisfiability is PSPACE-complete for
LTL formulas and qualitative LTL formulas.

Stuttering: A position i ∈ N is redundant in a word
w iff w(i + 1) = w(i) and there exists a j > i such that
w(j) 6= w(i); a redundant position is also called stuttering
step. Conversely, a non-stuttering step (nss) is any position
i such that w(i + 1) 6= w(i) or w(i + j) = w(i) for
all j ∈ N. A stutter-free word is one without stuttering
steps. Two words w1, w2 are stutter-equivalent (or equivalent
under stuttering) iff they are reducible to the same stutter-
free word by removing an arbitrary number of stuttering
steps. A set of words W is closed under stuttering (or stutter-
invariant) iff for every word w ∈W , for all words w′ such
that w and w′ are stutter-equivalent, w′ ∈W too.

Proposition 1 (Stuttering and qualitative LTL [1], [2]). Clo-
sure under stutter equivalence is a necessary and sufficient
condition for qualitative LTL languages.

Variability: Let W be a set of words and v, k two
positive integers. A set of propositional letters P ⊆ P has
variability bounded by v/k in W iff: for every w ∈ W ,
the projection w(i, k)|P over P of every subword w(i, k) of
length k has at most v nss. var(P, v/k) denotes the set of
all words where P has variability bounded by v/k. Note that
var(P, v/k) is not closed under stuttering for any v < k.

Example 2 (The elections). Consider elections that occur
every four years, in one of two consecutive days. The
example is deliberately kept simple to be able to demonstrate

it with the various constructions of the paper. Proposition
q marks the first day of every quadrennial, hence it holds
initially and then precisely every d4 = 365 · 4 = 1460
days. The elections e occur once within every quadrennial;
precisely they occur d2 = 40 or d3 = 41 days before the
end of the quadrennial. Assuming models with variability
bounded by 5/1460, the behavior is completely described
by the following formula.

q (1)

∧ G
(
q ⇒ X (¬q ∧ ¬q U q) ∧ X d4q

)
(2)

∧ G (q ⇒ X¬ (¬e U q)) (3)
∧ G (e⇒ ¬q ∧ X (¬e U q)) (4)

∧ G
(
e⇒ X d2q ∨ X d3q

)
(5)

The proposition q marks the beginning of every quadrennial:
q holds initially (1) and then always at least every d4 steps
(2). The elections, marked by proposition e, must occur
once before the next quadrennial starts (3). They must also
occur not at the beginning of a new quadrennial and at most
once during the quadrennial (4); precisely, they occur d2 or
d3 days before the end of the current quadrennial (5). A
variability of 5/1460 makes such model tight, as it allows
at most 5 nss over a windows of length 1460: 2 of them
accounts for q becoming true and then false again once, and
the other 3 nss mark a similar double transition of e. ♦

III. SEPARATED-NEXT FORM FOR LTL
A formula in separated-next form (SNF) is written as:

κ ∧ G

 ∧
i=1,...,M

(xi ⇔ X D(i)πi)

 (6)

where κ ∈ L(U), xi ∈ P , πi ∈ P(P), and D is a
monotonically non-decreasing mapping [1..M ]→ N>0.

Lemma 3. For any φ ∈ LTL it is possible to build, in poly-
nomial time, an equi-satisfiable formula η in SNF (6) such
that |κ|, maxi |πi|, and |P(η)| are in O(|φ|p + |φ|U +s(φ)),
M = s(φ), and d(η) = maxi D(i) = D(M) = d(φ).

Example 4. The following formula Ω is the formula of
Example 2 in separated-next form, with d1 = d2 = 1,
d3 = 40, d4 = 41, d5 = 1460.

Ω ,

q ∧ G


(u⇔ ¬e U q)
∧ (v ⇔ ¬q ∧ ¬q U q)
∧ (q ⇒ x2 ∧ x5) ∧ (q ⇒ ¬x1)
∧ (e⇒ ¬q ∧ x1) ∧ (e⇒ x3 ∨ x4)




︸ ︷︷ ︸
κΩ

∧ G


(x1 ⇔ X d1u)
∧ (x2 ⇔ X d2v)
∧ (x3 ⇔ X d3q)
∧ (x4 ⇔ X d4q)
∧ (x5 ⇔ X d5q)

 (7)
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Notice that κΩ ∈ L(U) is the first conjunct, |P(Ω)| = 9,
MΩ = 5, d(Ω) = d5; the last one dominates over the other
size parameters. In any model of Ω corresponding to a model
of (1–5) with variability 5/1460 there are at most 6 nss over
[1..1460]: 1, 1419, 1420, 1421, 1459, 1460, corresponding to
a variability of 6/1460. ♦

IV. REDUCING LTL TO QUALITATIVE LTL
This section outlines a transformation of LTL formulas

into equi-satisfiable L(U) formulas of polynomially corre-
lated size. The feasibility of the construction is unsurprising
in hindsight, given the complexity results about qualitative
LTL [5] and Etessami’s construction [3]. However, it is
the necessary basis of the techniques used to derive the
main result for models with bounded variability, hence we
succinctly present it here.

Theorem 5. Given an LTL formula η, it is possible to build,
in polynomial time, a qualitative LTL formula ξ ∈ L(U)
such that η and ξ are equi-satisfiable and have polynomially
correlated size.

Informally, the construction from an LTL formula η into
an equi-satisfiable qualitative ξ works as follows. Introduce
a fresh propositional letter s. Constrain s to change truth
value with any propositional letter in P; in other words, any
nss coincides with a nss of s. Then, replace any occurrence
of a subformula X p with a suitable until formula that defines
the value of p at the next nss of s. In practice, this means
that a formula such as X p forces p to hold in the next state
(with a new state of s) only if this is necessary, i.e., if this
requires a nss. This changes the quantitative X p formula into
a qualitative formula where the precise metric information
is relaxed.

The formal construction uses the following abbreviations,
also employed in Section V, for every propositional formula
π ∈ P(P), and every φ ∈ LTL:

f(π) , π ∧ F¬π ⇒



s U (¬π ∧ ¬s)
∨

¬s U (¬π ∧ s)
∨∨

q∈P\{π}(q ∧ π) U (¬q ∧ π)

∨∨
q∈P\{π}(¬q ∧ π) U (q ∧ π)


g(P) ,

∧
p∈P

Gp ∨ G¬p

⇒ Gs

U(φ) , s Uφ ∨ ¬s Uφ
R(φ) , (φ ∧ s ⇒ ¬s Rφ) ∧ (φ ∧ ¬s ⇒ s Rφ)

X (φ) , U(φ) ∧R(φ)

f(π) links any transition of the truth value of π to occur
simultaneously with a transition of s. g(P) deals with the
special case where no proposition ever changes truth value.

X (π) is instead essentially a qualitative relaxations of the
next operator: w, i |= X (p) holds iff the next nss of s is
j ≥ i and w, j + 1 |= p holds.

V. LTL WITH BOUNDED VARIABILITY

This section shows how to more succinctly encode the
redundancy of stuttering steps in words with bounded vari-
ability. The results require LTL(U, exqPn): an extension of
L(U) with a qualitative variant of the Pnueli operators.

A. Pnueli operators

The results of the present paper are based on a qualitative
discrete-time version of the Pnueli operators: the qualitative
extended Pnueli operators exqPn

n;〈n1,...,nk〉
k for k, n ∈ N

and n1, . . . , nk ∈ N ∪ {∗}. Their semantics is defined as
follows: w, i |= exqPn

n;〈n1,...,nk〉
k (φ1, . . . , φk) holds iff there

exist k positions i ≤ k1 < · · · < kk such that all the
following hold, for all 1 ≤ j ≤ k: (1) kj is a nss; (2)
w, kj + 1 |= φj ; (3) for j > 1, if nj 6= ∗ then there are no
more than nj nss between kj−1 and kj − 1 (both included);
(4) if n1 6= ∗ then there are no more than n1 nss between
i and k1 (both included); (5) there are no more than n nss
between i and kk (both included). For example, if n1 = 1,
φ1 must hold right after the first nss that follows or is at i,
independently of the other following k − 1 nss.

Example 6. Consider the word w:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
s s s s s s s s s s s s s s
v v v v v v v v v v v v v v
q q q q q q q q q q q q q q
e e e e e e e e e e e e e e

where nss are in bold and underlined, and x denotes ¬x. For
the positions 1, 6, 7, 13, w, 1 |= exqPn

6;〈3,2,∗,3〉
4 (v,¬q, e, q)

holds. On the contrary, w, 1 6|= exqPn
6;〈3,2,∗,1〉
4 (v,¬q, e, q);

in fact, let k1, . . . , k4 be the positions that match the seman-
tics of the operator. Then, k4 = 13 as q only holds at 14, so
that the last component of the constraint 〈3, 2, ∗, 1〉 forces k3

to be 12, the nss immediately before 13; but w, 12 + 1 6|= e.
♦

LTL(U, exqPn) is the extension of qualitative LTL with
qualitative extended Pnueli operators. Any LTL(U, exqPn)
formula has an equi-satisfiable L(U) formula of poly-
nomially correlated size that can be built in polynomial
time, when the integer constants used in the Pnueli oper-
ators use a unary encoding. Precisely, to encode a formula
exqPn

n;〈n1,...,nk〉
k (φ1, . . . , φk) introduce n2 letters {qji | 1 ≤

i, j ≤ n}. Every qji holds iff exqPn
j;〈n1,...,ni〉
i (φ1, . . . , φi)

does; then, a formula of size O(n ·maxi |φi|) defines each
qji .

The construction outlined is general, but the remainder
will use LTL(U, exqPn) formulas Λ over Q = P ∪ {s} in
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the form:

Λ , g(P) ∧
∧
p∈P

G

(
f(p)∧
f(¬p)

)
∧ κ ∧

∧
i=1,...,M

G
(
ξi ⇒ exqPn

J(i);〈K(i)〉
I(i)

(
ψi1, . . . , ψ

i
I(i)

))
(8)

where J, I are two mappings [1..M ]→ N>0; K is a mapping
[1..M ] → (N ∪ {∗})I(i); κ, ψi ∈ L(U) for all 1 ≤ i ≤ M ;
ξi ∈ P(P); and s does not occur in κ or ψji .

Lemma 7. [[Λ]] is closed under stuttering.

Lemma 8. It is possible to build, in polynomial time, a
formula Λ′ such that: (1) Λ′ ∈ L(U); (2) |Λ′| is polynomially
bounded by |Λ|; (3) Λ′ and Λ are equi-satisfiable.

B. Relaxing distance formulas

Consider a generic formula φ and let η be φ in SNF;
the following construction builds a φ′ ∈ LTL(U, exqPn)
from η such that Lemma 11 holds. Theorem 9 follows
after transforming φ′ into φ′′ by eliminating the qualitative
extended Pnueli operators according to Lemma 8.

Theorem 9. Given an LTL formula φ and an integer
parameter V > 0, it is possible to build, in polynomial
time, a qualitative LTL formula φ′′ such that: (1) |φ′′| is
polynomial in V, |φ|p, |φ|U, s(φ) but is independent of d(φ);
(2) φ is satisfiable over words in var(Q,V/d(φ)) iff φ′′ is
satisfiable over unconstrained words.

Informal presentation: The basic idea consists of relax-
ing every distance formula X da into a qualitative formula
X d′(a) with d′ ≤ V, so that consecutive nss take the role of
consecutive positions. The elimination or addition of stutter-
ing steps reconciles words in the quantitative and qualitative
transformed formulas. For example, w, 1 |= X 6(q) holds
because q holds at position 14; adding 41 − 14 = 27
repetitions of position 2 transforms w into a word w′ where
the quantitative requirement w′, 1 |= X 41q holds as well.

The transformation must also preserve the ordering among
events: if X da and X eb both hold for some d < e, then
X d′(a) and X e′(b) should hold for suitable d′ < e′. Another
constraint requires that e′ − d′ ≤ e − d; otherwise, the
transformed formula admits words with e′−d′ > e−d non-
stuttering steps between consecutive occurrences of a and b,
which may not be removable to put a and b at an absolute
distance of e− d. For example, X (s) ∧ X 2(q) is a suitable
relaxation of X 30s ∧ X 31q, whereas X (s) ∧ X 3(q) is not:
w, 10 |= X (s) ∧ X 3(q) but the nss 13 makes it impossible
to pad w with stuttering steps such that s and q hold at
positions 10 + 30 and 10 + 31.

Using these ideas, a formula η in SNF (6) is transformed
by replacing the distance formulas with qualitative “snap-
shots” using the qualitative extended Pnueli operators: the
predicates π1, π2, . . . , πM hold orderly over some of the

the following V nss, with the additional constraint that,
between any two consecutive πi, πi+1, no more nss than
the difference of the corresponding distances occur. For
example, if ¬x1∧x2∧¬x3∧¬x4∧x5 (corresponding to pred-
icates ¬u, v,¬q,¬q, q) then formula exqPn

6;〈1,∗,1,∗〉
4 (¬u ∧

v,¬q,¬q, q) must hold, where ¬u ∧ v occurs after the next
nss and ¬q,¬q occupy consecutive nss.

This approach can be made rigorous, but introduces an
exponential blow-up because it considers each of the 2M

subset of propositions x1, . . . , xM . The following construc-
tion avoids this blow-up by introducing auxiliary proposi-
tions yi’s and zji ’s that mark nss and decouple them from
the propositions that must hold therein.

Each yi holds precisely from the i-th nss until the next
1 + (i mod V) nss. Then, for each given h, the propositions
zh1 , z

h
2 , . . . , z

h
m (where m is the number of different distances

used in η) hold sequentially and cyclically from when yh

holds. Each zhk marks a position in the sequence that satisfies
the qualitative extended Pnueli operator under consideration;
correspondingly, for each index k′ corresponding to a dis-
tance with index k, πk′ holds with zhk iff xk′ holds with yh.
For example, if ¬x1∧x2∧¬x3∧¬x4∧x5 holds when some
yk holds, then the corresponding predicates ¬u∧v,¬q,¬q, q
hold orderly with the next occurrences of zk1 , z

k
2 , z

k
3 , z

k
4 .

Detailed construction: Consider a generic LTL formula
η in the SNF of Formula (6). Introduce V letters {yi | 1 ≤
i ≤ V}. Formula κ〈y〉 constrains yi to occur synchronously
with every i-th nss:

κ〈y〉 , y1∧
∧

1≤i≤V
G

yi ⇒
 X (y1+(i mod V))∧

j 6=i ¬yj ∧
yi U y1+(i mod V)

 (9)

Let D1, D2, . . . , Dm be the sequence of sets that partition
[1..M ] in such a way that indices involving the same number
of consecutive nested X ’s are in the same set, and the sets
appear in the sequence in increasing order of nested X ’s;
formally: i, j ∈ Dk with k , D(i) = D(j) for some k iff
D(i) = D(j) , dk (and d0 is defined as 0); and i ∈ Dk1

and j ∈ Dk2 with k1 < k2 implies D(i) < D(j).
Then, introduce another m·V letters {zji | 1 ≤ i ≤ m, 1 ≤

j ≤ V}. At every i-th nss, marked by yi, the sequence
zj1, . . . , z

j
m must hold over m of the following V nss;

moreover, between each zij and its preceding zij−1 there must
be no more than di−di−1 nss, unless di−di−1 > V− i+1.
After defining, for 1 ≤ i ≤ m:

δi ,

{
di − di−1 if di − di−1 ≤ V− i+ 1

∗ otherwise

the qualitative extended Pnueli operators capture this behav-
ior of the zji ’s.

κ〈z,Pn〉 ,
∧

1≤i≤V
G
(
yi ⇒ exqPnV;〈δ1,...,δm〉

m

(
zi1, . . . , z

i
m

))
(10)
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Additionally, constrain the zji ’s to hold sequentially, accord-
ing to the following.

κ〈z,U〉 ,

 ∧
h,j 6=1

¬zjh

U z1
1 ∧

∧
1≤j≤V
1≤i≤m

G

(
zji ⇒

(
¬z1+(j mod V)

1+(i mod m)

∧
∧
h6=i ¬z

j
h

)
U zj1+(i mod m)

)
(11)

Once the zji ’s and the yi’s are constrained, link the xi’s
to the values of the πi’s in the distance formulas. If some xi
holds, after or at the j-th nss and before the j+1-th, then πi
has to hold at the k-th position in the sequence zj1, . . . , z

j
m,

with k = D(i).

κ〈x, π〉 ,

∧
1≤i≤M
1≤j≤V

G

 xi ∧ yj ⇒ ¬zjD(i) U z
j
D(i) ∧ πi

∧
¬xi ∧ yj ⇒ ¬zjD(i) U z

j
D(i) ∧ ¬πi

 (12)

Finally, combine the various κ formulas to transform η
into φ′:

φ′ , κ ∧g(Q) ∧
∧
p∈Q

G

(
f(p)∧
f(¬p)

)
∧ κ〈y〉 ∧

∧ κ〈z,Pn〉 ∧ κ〈z,U〉 ∧ κ〈x, π〉 (13)

Example 10. In the elections example, V = 6, m = 4
instantiate κ〈y〉, κ〈z,U〉, and κ〈x, π〉. Then, δ1 = δ3 = 1
and δ2 = δ4 = ∗ instantiate κ〈z,Pn〉. ♦

The correctness of the above construction and the proof
of Theorem 9 rely on the following two lemmas.

Lemma 11. η is satisfiable over words in var(Q,V/d(φ))
iff φ′ is satisfiable over unconstrained words.

Proof: Let D be d(η), which equals d(φ) by Lemma 3.
SAT(η) ⇒ SAT(φ′). Let w ∈ var(Q,V/D) such

that w |= η. w′ adds propositions s, yi, z
j
i , constrained as

follows. s switches its truth value at every nss, except for
possibly an infinite tail of constant values over w. Exactly
one of the yi’s holds at every instant, and they rotate at every
nss signaled by s. Whenever a given yj holds, a sequence of
zji ’s hold over the following V nss, in a sequential fashion.
Namely, let k be the first step where a certain yj holds, let
hi be the last non-stuttering before position k + di, and let
li be the δi-th nss after hi−1 (included, with h0 = k); then,
zji starts to hold at min(hi, li,V−k+1)+1, and holds until
the next zji+i.

Once w′ is built, the rest of the proof relies on some of
the notions introduced in Section IV. It is clear that w′ |=∧
p∈Qg(P) ∧ G(f(p) ∧ f(¬p)) and w′ |= κ. In addition,

w′ |= κ〈y〉 ∧ κ〈z,U〉 is a consequence of the set up of the

yj’s and the zji ’s. Then, let i be the current generic instant
and b ⊆ [1..M ] be a generic subset such that

∧
i∈b xi ∧∧

i 6∈b ¬xi holds at i. Hence, w, i |= X D(j)πj holds for all j ∈
b and w, i |= X D(k)¬πk holds for all k 6∈ b. The variability
of w — and that of w′ — is bounded by V/D; hence, there
are at most V nss of item s over positions i to i + D. Let
i ≤ t1 < · · · < tV ≤ i+D be these transition instants. There
are only stuttering steps between any such two consecutive
ti’s, hence there exists a subset u1 < · · · < um of the ti’s
such that zji holds at ui for all i’s and some unique j. Now,
for all g such that D(g) = i, πg holds at k + di and (at
least) since the previous and until the next nss. Because of
how each zji ’s mark the stuttering positions before k + di,
for every g such that D(g) = i, πi must in particular hold
where zji first holds; because i is generic, w′ |= κ〈x, π〉
holds. Also, if di − di−1 ≤ V − i + 1, there are no more
than di − di−1 nss between ui−1 and ui, for all 1 ≤ i ≤
m (and assuming u0 = d0 = 0); this establishes w′, i |=
exqPnV;〈δ1,...,δm〉

m

(
zj1, . . . , z

j
m

)
. In all, w′ |= φ′ holds.

SAT(φ′) ⇒ SAT(η). Let w′ be an unconstrained word
such that w′ |= φ′. Initially, let w be w′ with all stuttering
steps removed; w |= φ′ as well from Lemma 7. Modify w
as follows, until w |= η is the case.

Let i be the current generic instant and b ⊆ [1..M ] be a
generic subset such that

∧
i∈b xi ∧

∧
i6∈b ¬xi holds at i on

w. The rest of the proof works inductively on 1 ≤ h ≤M ;
let us focus on the more interesting inductive step.

Let i ≤ t1 < · · · < tV be the following V nss of s —
and hence of any proposition in Q as well, according to
g(Q)∧

∧
p∈Q G(f(p)∧f(¬p)). κ〈y〉 implies that a unique

yj holds at i; correspondingly, κ〈z,Pn〉 entails that there
exists a subset of the u1 < · · · < um of the sequence t1 <
· · · < tV such that zjk holds at uk + 1 for all 1 ≤ k ≤ m.
Assume xh holds at i (the case of ¬xh is clearly symmetrical
and is omitted), with g = D(h); then, κ〈x, π〉 requires that
πh holds with zjg at ug+1. The inductive hypothesis implies
that ug−1 + 1 ≤ i + dg−1 ≤ ug , and κ〈z,Pn〉 and the
definition of δg guarantee that ug < i+dg . Correspondingly,
add θ , i+dg−ug−1 stuttering steps at position ug in w.
This “shifts” the previous position ug+1 to the new position
i+dg; hence w, i+dg |= πh and i+dg ≤ dg+1 because we
added only stuttering steps. Also, w |= φ′ is still the case,
because Lemma 7 guarantees that the removal or addition
of stuttering steps to w do not affect the satisfiability of
φ′. Finally, observe that we introduced no more than m nss
over every subword of w of length V, and m ≤ M ≤ D
because of the pigeonhole principle, hence the variability of
propositions Q in w is bounded by V/D.

In all, induction proves that the finally modified w is such
that w |= η and w ∈ var(Q,V/D).

Example 12. Consider the running example and transform
Ω (Example 4) into Ω′ according to the above construction.
Table I shows a partial model for Ω′, where all propositions
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not appearing at some position are assumed to be false
there, nss are in bold and underlined, while a hat marks
successors of nss; also, x denotes ¬x for every proposition x.
It should be clear that the model can be transformed into one
satisfying Ω, such as the one in Example 4. For example, the
metric requirement that e occur once at 1460+1−40 = 1421
is accommodated by removing all the stuttering steps at
position 8 and by adding 1421 − 8 = 1413 additional
stuttering steps at position 2. ♦

VI. FUTURE WORK

Future work will investigate possible generalizations and
consider implementations. We will consider extensions of
the results of the present paper to: (a) subword stuttering [4],
where a subword is repeated multiple times, such as in the
word abc abc abc · · · ; (b) Büchi automata and the classical
linear-time model-checking problem. We also plan to: (a)
implement a translator from LTL to formulas equi-satisfiable
over words with bounded variability and combine it with
off-the-shelf LTL satisfiability checking tools; (b) formalize
systems characterized by time granularity heterogeneity, in
order to determine how often the assumption of “sparse”
events is compatible with accurate models thereof.
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