
Automata-based Verification of
Linear Temporal Logic Models with Bounded Variability

Carlo A. Furia
ETH Zurich, Switzerland

caf@inf.ethz.ch

Paola Spoletini
Università degli Studi dell’Insubria, Italy

paola.spoletini@uninsubria.it

Abstract—A model has variability bounded by v/k when
the state changes at most v times over any linear interval
containing k time instants. When interpreted over models
with bounded variability, specification formulae that contain
redundant metric information—through the usage of next
operators—can be simplified without affecting their validity.
This paper shows how to harness this simplification in practice:
we present a translation of LTL into Büchi automata that
removes redundant metric information, hence makes for more
efficient verification over models with bounded variability. To
show the feasibility of the approach, we also implement a proof-
of-concept translation in ProMeLa and verify it using the Spin
off-the-shelf model checker.

I. INTRODUCTION AND OVERVIEW

Linear temporal logic (LTL) formulae model linear se-
quences of discrete states that evolve “one step at a time”.
The state may change between some pairs of adjacent steps
and not change between others; we say that a linear model
has variability bounded by v/k (read “v over k”) when the
state changes at most v times over any interval containing
exactly k steps.

Bounded variability limits the amount of information
necessary to define a model: characterizing the state over v
time instants is sufficient to completely describe the temporal
behavior over a window of length k. Consider now an LTL

formula φ that describes distances among states by means of
the next operator X : for example, XXX p says that p holds
in the future, at a distance of 3 steps. If φ describes distances
as large as k (i.e., k nested occurrences of X) but we are
interested only in its models with variability bounded by v/k
for v < k, φ contains metric information that is redundant,
as all the “action” occurs only over up to v steps.

In previous work [1], we showed how to remove the
redundant information and produce a smaller formula φ′

whose validity is equivalent to φ’s validity over models with
variability bounded by v/k; the size of φ′ depends on v but
not on k, hence the size of φ′ is significantly smaller than
the size of φ when v � k. Unfortunately, this result turns
out to have mostly theoretical interest: the transformation
from φ to φ′ reduces the size due to k but also introduces a
polynomial blow-up that, while it does not affect the worst-
case complexity of the validity problem, is too conspicuous

in practice: φ′ is often still too large to be verified with
standard tools for LTL.

The present papers shows how to get around this prac-
tical shortcoming. The solution has two elements. First,
Section III presents a different transformation of φ into a
formula Φ that is equivalent for models with variability
bounded by v/k. The size of Φ also does not depend on k
but, surprisingly, is otherwise exponential in another of φ’s
size parameters! This exponential blow-up is, however, com-
pletely immaterial: Section IV describes a direct translation
of Φ into equivalent Büchi automata that can be analyzed
efficiently in practice.

More precisely, some components of the translation use
alternating Büchi automata extended with finite-domain
counters; these make for a direct implementation of them
into the ProMeLa language input to the Spin model checker.
Section V presents a few details of the ProMeLa imple-
mentation and describes experiments where we used the
technique presented in the rest of the paper to check
for satisfiability—over models with bounded variability—an
LTL example specification of a simple “elections” scenario.
The large distances used in the specification, required to
describe time units at different levels of granularity, make
its verification unfeasible for standard LTL techniques that
do not exploit the bounded variability assumption.

Related work: One of the original motivations to study
models with bounded variability comes from the desire to
reason about systems with heterogeneous time granulari-
ties [2], where large and small distances coexist. A few
authors have discussed the modeling challenges brought by
such systems [3], [4], [5], [6], [7], [8], and have demon-
strated their relevance in some application domains such as
medical data.

Model checking and verification using LTL and automata
is a subject extensively studied for over three decades. The
complexity of checking the validity of LTL formulae [9],
[10] and the relations between LTL and Büchi automata [11],
[12] are well-known; Section II recalls some of the main
results, which are used in the rest of the paper. The
automata-theoretic approach [11], [12] to LTL has produced
not only a comprehensive theoretical framework, but also
practical scalable implementations such as the Spin model

checker [13], which we used in the experiments discussed
in Section V. The characterization of repeated “stuttering”
steps in LTL models has been studied by Lamport [14] and
others [15], [16], [17].

In spite of the extensive work on LTL, to our knowledge
the present paper and our previous work [1] are the first
approaches that target LTL verification for models with
bounded variability. Some of the ideas used in our work
are inspired—and named after—similar notions introduced
for dense time models; in particular, Pnueli operators [18]
and bounded variability itself [19], [20].

As we explain in Section III, our previous work [1]
represents a theoretical counterpart to the present paper; in
particular, we re-use some techniques of [1] to establish the
correctness of a similar transformation. While the presenta-
tion of the present paper is entirely self-contained, we warn
readers already familiar with [1] that we have occasionally
changed the notation and the details of some definitions to
better focus the presentation on the novel contributions.

II. PRELIMINARIES

A. Words and Variability

Words and trees: An ω-word (or simply word) w over
a set S of propositional letters is a mapping w : N → 2S

that associates to every discrete instant i (also called step)
the subset w(i) ⊆ S of propositions that hold at i. W(S)
denotes the set of all words over S.

A tree is a set T ⊆ N∗ of sequences of natural numbers
that is prefix-closed, that is, if x·c ∈ T—for x ∈ N∗ and c ∈
N—then x ∈ T as well. The elements of T are called nodes;
the empty sequence ε denotes T ’s root; and if x · c ∈ T we
say that x · c is a successor of x. A node without successors
is called leaf. A path of T is a sequence π0, π1, . . . of nodes
of T such that π0 = ε and, for every j ≥ 0, either πj is a
leaf or πj+1 is a successor of πj . A S-labeled tree is a pair
〈T, λ〉 where T is a tree and λ : T → S assigns an element
of S to each node of T .

Stuttering: A step i ∈ N is stuttering in a word w if
w(i + 1) = w(i) and there exists a later step j > i such
that w(j) 6= w(i). Conversely, a non-stuttering step (nss for
short) i is such that either w(i+ 1) 6= w(i) or, for all j > i,
w(j) = w(i). Intuitively, a stuttering step is redundant:
it records information that is repeated identically in the
next step, hence it only carries information about distance
between states. A word is stutter-free if it has no stuttering
steps. Two words are stutter-equivalent if removing all their
stuttering steps reduces both to the same stutter-free word.

Bounded variability: Given two positive integers v, k,
a word w has variability bounded by v/k (or simply is v/k
bounded) if, for all i ∈ N, at most v steps among i, i +
1, . . . , i+ k − 1 are non-stuttering in w. A set W of words
has variability bounded by v/k if every word w ∈ W is
v/k bounded. W(S, v/k) denotes the set of all words over
S with variability bounded by v/k.

B. Linear Temporal Logic

LTL syntax: LTL formulae are defined by:

LTL 3 φ ::= > | p | ¬φ | φ1 ∧ φ2 | φ1 Uφ2 | Xφ

where p ranges over a set P of propositional letters; we
use the standard abbreviation for ⊥ (false), ∨ (or), ⇒
(implies),⇔ (iff); and for the derived temporal operators Fφ
(eventually: >Uφ), Gφ (always: ¬F¬φ), and X kφ (distance:
XX · · ·X︸ ︷︷ ︸

k

φ), where k ≥ 0. The size |φ| of an LTL formula

φ is the size of its encoding as a string.
Qualitative and propositional LTL: L(U) denotes the

qualitative subset of LTL, which does not use the X operator.
P(P) denotes the purely propositional subset of LTL over P ,
which does not use any temporal operator. A formula π ∈
P(P) unambiguously identifies a subset of 2P ; for example,
¬p corresponds to all subsets X of P such that p 6∈ X .
Based on this correspondence, we will use the two notations
equivalently when convenient. P+(P) denotes the positive
subset of P(P) which only uses ∧ and ∨.

LTL semantics: The satisfaction relation |= defines the
semantics of a generic LTL formula φ, interpreted at position
i ∈ N over a word w.
w, i |= >
w, i |= p iff p ∈ w(i)
w, i |= ¬φ iff w, i 6|= φ
w, i |= φ1 ∧ φ2 iff w, i |= φ1 and w, i |= φ2
w, i |= φ1 Uφ2 iff for some j ≥ i, w, j |= φ2

and for all i ≤ k < j, w, k |= φ1
w, i |= Xφ iff w, i+ 1 |= φ
w |= φ iff w, 0 |= φ

[[φ]] denotes the set {w ∈ W(P) | w |= φ} of all models
of φ. φ is satisfiable if [[φ]] 6= ∅ and is valid if [[φ]] =W(P).
Two formulae φ1, φ2 are equivalent if [[φ1]] = [[φ2]]; they
are equi-satisfiable if they are either both satisfiable or both
unsatisfiable.

Proposition 1. • [9] The satisfiability problems for LTL

and for L(U) are PSPACE-complete.
• [14] The set [[ψ]] of all models of any qualitative

formula ψ ∈ L(U) is closed under stutter-equivalence.

Pnueli operators: The qualitative extended Pnueli op-
erators (or simply Pnueli operators) are defined by:

P
n;〈n1,...,nk〉
k (ψ1, . . . , ψk)

for k, n ∈ N, n1, . . . , nk ∈ N ∪ {∞}, and ψ1, . . . , ψk ∈
L(U). L(U,Pn) denotes LTL extended with the Pnueli op-
erators. The size |φ| of a L(U,Pn) formula φ is the size
of its encoding as a string, assuming a unary encoding for
k, n, n1, . . . , nk.

The satisfaction relation for Pnueli operators

w, i |= P
n;〈n1,...,nk〉
k (ψ1, . . . , ψk)

2

holds if there exist k positions i = i0 ≤ i1 ≤ · · · ≤ ik such
that, for all 1 ≤ j ≤ k, the following hold: (1) w, ij + 1 |=
ψj ; (2) if nj 6= ∞ then there are no more than nj nss in
[ij−1, ij − 1]; (3) there are no more than n nss in [i, ik].

Proposition 2 ([1]). The satisfiability problem for L(U,Pn)
is PSPACE-complete.

Example 3. Consider the word w:

1 2 3 4 5 6 7 8 9
a a a a a a a a a

b b b b b b b b b

where nss are in bold and underlined, and x denotes ¬x. For
the positions 1, 2, 6, 6, w, 1 |= P

5;〈3,2,∞,3〉
4 (a,¬b, a ∧ b, b)

holds. On the contrary, w, 1 6|= P
3;〈3,2,2,1〉
4 (a,¬b, a ∧ b, b): if

i1, . . . , i4 are the positions that match the semantics of the
operator, it must be i3 ≥ 6, but there are 4 > 3 nss in the
interval [1, 6].

C. Alternating Büchi Automata

An alternating (Büchi) automaton A is a tuple
〈Σ, Q, q0, δ, F 〉, where Σ is the finite input alphabet, Q
is the finite set of states, q0 ∈ Q is the initial state,
δ : Q × Σ → P+(Q) is the transition function, and F ⊆ Q
is the set of final states. If δ(q, σ) is purely disjunctive
when it is defined, A is an ordinary nondeterministic (Büchi)
automaton. The size |A| of an alternating automaton A is
|Q|+ |δ|, where |δ| is the sum of the formula sizes |δ(q, σ)|
for all q, σ where δ is defined.

A run r of an alternating automaton over a word w over
Σ is a Q-labeled tree 〈Tr, λr〉 such that: (1) the root ε ∈ Tr
has label λr(ε) = q0; (2) if x ∈ Tr is a node in the tree
with label λr(x) = q and the transition function defines
δ(q, w(|x|)) = θ, then there is a set Π = {q1, . . . , qk} ⊆ Q
such that π |= θ—where we define π(0) = Π—and, for all
1 ≤ j ≤ k, x · j ∈ Tr is a node of Tr with λr(x · j) = qj .

A path π of a run r is any path in Tr, hence an infinite
sequence q0, q1, . . . of states; it is accepting if qi ∈ F for
infinitely many i’s. A run r is accepting if all its infinite
paths are accepting. A word w is accepted if there exists an
accepting run on it. [[A]] denotes the set of all words accepted
by A (also called the language of A).

Proposition 4 ([12]). • The emptiness problem for lan-
guages defined by nondeterministic Büchi automata is
NLOGSPACE-complete.

• For any alternating automaton of size n there exists an
equivalent nondeterministic automaton of size 2O(n).

• For any LTL formula φ there exists an equivalent
alternating automaton of size O(|φ|).

Automata with counters: Consider n integer counters,
each with finite domain [0, Ci] for i = 1, . . . , n. An alternat-
ing automaton A with n counters has the same components
as a regular alternating automaton, but its transition function
has signature δ : Q × Σ × C → P+(Q × C) where C =

[0, C1]×· · ·×[0, Cn] is the Cartesian product of the counters’
domains. We define the semantics of an alternating automa-
ton A with counters as a regular alternating automaton A
with: states Q = Q × C; initial state q0 = 〈q0, 0, . . . , 0〉;
and transition function δ such that δ(〈q, c1, . . . , cn〉, σ) = θ
if and only if δ(q, σ, c1, . . . , cn) = θ. The size of A also
defines the size of A.

Example 5. The following alternating automaton with one
counter c over [0, 2] accepts the language [[G(X b ∨ X 2b)]].

q0q1

>

⊥

•
>, c = 0/c← 0

¬b, c < 2/c← c+ 1

b, c < 2/c← 0

>, c = 2/c← 0

In the figure, a bullet marks pair of edges corresponding
to conjunctive transitions, and the outgoing edges to the
symbols > and ⊥ denote transitions equal to the logic
values > and ⊥. The automaton spawns a separate parallel
computation at every step (corresponding to the G); the
computation counts up to two time steps and terminates
successfully only if a b is encountered before the counter
reaches 2.

III. FROM LTL TO L(U,Pn)

Consider a generic LTL formula φ; without loss of gen-
erality, we can write φ in separated-next form with the
occurrences of X separated from the rest of the formula
as

φ ≡ ψU ∧ G

 ∧
1≤i≤M

(xi ⇔ X diπi)

 ,

where: ψU ∈ L(U) is the purely qualitative part of the for-
mula; for i = 1, . . . ,M , xi ∈ P is a propositional letter and
πi ∈ P(P) is a propositional formula; and 0 < d1 ≤ · · · ≤
dM are nonnegative distances. Also, m ≤ M denotes the
number of distinct distances d1 = D1 < · · · < Dm = dM
among d1, . . . , dM . Our ultimate goal is to determine if φ is
satisfiable over words inW(P, v/V) where v is any positive
integer and V = dM is the maximum distance appearing in
φ.

When V is large, |φ| is large as well; however, if v �
V , φ encodes information that is redundant to decide its
satisfiability over words with variability bounded by v/V .
In [1], we described a polynomial-time transformation of φ
into an equi-satisfiable formula φ′ ∈ L(U,Pn) whose size is
O(|P|2+vM2+v2M). Since the size of φ′ does not depend
on V , if v is significantly smaller than V—in particular,
exponentially smaller—then checking the satisfiability of φ′

is much easier than checking the original formula φ. The
transformation from φ to φ′ stands as a theoretical result
but is impractical because of the quadratic increase in size
it introduces, which even becomes O(v4) when we express

3

the Pnueli operators in plain L(U); this blow-up is normally
too conspicuous to handle with standard LTL tools.

To overcome these practical shortcomings, we follow the
same principles used for φ′ in [1] to build

Φ ≡ ψU ∧ ψs ∧ ψP ,

where ψU, ψs are qualitative formulae in L(U), and ψP ∈
L(U,Pn) uses Pnueli operators. ψU is the same in φ and Φ.
ψs marks the nss of propositions in P through a fresh letter
s 6∈ P that toggles precisely when some proposition in P
changes truth value. Namely, if no proposition ever changes
value then s holds, and any proposition changing triggers s
to do the same (see [1, Sec. IV] for a formal definition in
L(U), which is however straightforward).

To present ψP, we have to introduce some more notation.
Let B ∈ {0, 1}M denote a sequence of M Boolean values
b1, . . . , bM ; then, for i = 1, . . . ,M , [big] is g if bi = 1
and ¬g if bi = 0. ψP enumerates all possible 2M truth
assignments to x1, . . . , xM :

ψP ≡ G

 ∧
B∈{0,1}M

X1 ∧ · · · ∧XM ⇒ ψB

 ,

where, using the notation just introduced, Xi = [bixi] for
i = 1, . . . ,M . For each truth assignment B, ψP constrains
the truth value of π1, . . . , πM over the following v nss:

ψB ≡ Pv;〈δ1,...,δm〉m (Y1, . . . , Ym) ,

where Yj =
∧
dk=Dj

[bkπk] is the conjunction of all πk’s cor-
responding to the same distance Dj in φ, for j = 1, . . . ,m;
and, for j = 1, . . . ,m and D0 = 0, δj is

δj ≡

{
Dj −Dj−1 if Dj −Dj−1 ≤ v − j + 1 ,

∞ otherwise .

The intuition behind the transformation from φ to Φ is as
follows. At every step, φ constrains the future values of the
πi’s over a time window of length V = dM according to
the current value of the xi’s. If the variability is bounded by
v/V , however, no more than v changes of the proposition
in P—which determine the value of the πi’s—are possible.
Correspondingly, ψP converts the distance constraints in φ
into qualitative constraints over nss: rather than saying that
π1 must occur at distance d1, π2 at distance d2, and so on,
ψP only requires that π1 occurs first, followed by π2, and so
on. Since Φ is qualitative, we can transform one of its models
into a model for φ by adding stuttering steps so that the πi’s
follow the original metric constraints in φ. The additional
constraints introduced by the δi’s ensure that this “padding”
is always possible (since we cannot remove nss, we must
ensure that there are not “too many” of them between any
two consecutive distances). Using the same techniques used
in [1], it is not difficult to make this intuition rigorous and
prove the following.

Theorem 6. φ is satisfiable over words in W(P, v/V) if
and only if Φ is satisfiable over words in W(P ∪ {s}).

Section IV shows how to exploit automata-theoretic tech-
niques to check efficiently the satisfiability of Φ, hence,
thanks to Theorem 6, to decide the satisfiability of φ over
models with bounded variability. Section V demonstrates
that the automata-theoretic techniques are directly imple-
mentable using standard model-checking tools.

IV. FROM L(U,Pn) TO AUTOMATA

This section describes an efficient translation of the com-
ponents of Φ into automata. Each component ψk becomes an
automaton Ak = 〈Σ, Qk, qk0 , δk, F k〉 such that [[ψk]] = [[Ak]];
whenever clear from the context, we drop the superscript k
from the automaton components’ names. For simplicity of
presentation, we assume that the alphabet Σ of all automata
equals the set of all propositional letters used in any formula,
and omit the straightforward details of how to handle letters
appearing only in certain components.

We do not discuss the translation of ψU ∈ L(U) into AU,
because ψU can have any structure, hence we just rely on
standard translations of LTL into alternating automata.

A. Marking Non-stuttering Steps

The automaton As for ψs has 2 · 2|P| + 1 states {q0} ∪
{q+P , q

−
P | P ⊆ P}: two for each subset of P , and a distinct

initial state q0; all states other than q0 are accepting.
Computations start in the initial state q0. According to the

initial values of the propositions in P , the automaton goes
to a state in q+ (if s holds) or in q− (if s doesn’t):

δ(q0, P ∪ {s}) = q+P and δ(q0, P) = q−P ,

for P ∈ 2P .
The automaton leaves states of the form q+P only if

the values of the propositions change and s turns false;
otherwise, s must hold continuously:

δ(q+P , P ∪ {s}) = q+P and δ(q+P , P̂) = q−
P̂
,

where P̂ ranges over the complement set of propositions
2P \ P . Similarly, As leaves states of the form q−P only
if the values of the propositions change and s turns true;
otherwise, s must not hold:

δ(q−P , P) = q−P and δ(q−P , P̂ ∪ {s}) = q+
P̂
.

Figure 1 shows As for P = {a, b}, where every transitions
that enters a state q+P has label P ∪{s}, every transition that
enters a state q−P has label P , and the initial transitions are
dotted for readability.

4

q0

q−∅

q−{b}

q−{a}

q+{a,b}

q+{b}

q+{a}

q+∅

q−{a,b}

Figure 1. Automaton As for ψs, when P = {a, b}.

B. Translating Pnueli Operators

The automaton AB for ψB has 2m+ 2 states {q0, qF } ∪
{q+i , q

−
i | 1 ≤ i ≤ m} and two counters cG ∈ [0, v] and

cL ∈ [0, δ] where δ = maxi δi; cG is the “global” counter
that counts the following v nss, whereas cL is the “local”
counter that measures each of the δi’s. Computations start
in the initial state q0 and should end in the only accepting
state qF . At any point during a computation, AB is in state
q◦i when it is ready to read Yi, . . . , YM before cG reaches v,
with ◦ = + if s held in the latest step, and ◦ = − otherwise.
In the following, dG ranges over [0, v], eG over [0, v − 1],
diL over [0, δi] ∩ [0, v], and eiL over [0, δi − 1] ∩ [0, v − 1].

The automaton stays in q+i (resp. q−i) without changing
the counters if s holds (resp. does not hold) and Yi is false:

δ(q+i , s ∧ ¬Yi, dG, d
i
L) = 〈q+i , dG, d

i
L〉 ,

δ(q−i ,¬s ∧ ¬Yi, dG, d
i
L) = 〈q−i , dG, d

i
L〉 ,

When s toggles but Yi is false, AB rotates between q+i and
q−i while incrementing both counters by one:

δ(q+i ,¬s ∧ ¬Yi, eG, e
i
L) = 〈q−i , eG + 1, eiL + 1〉 ,

δ(q−i , s ∧ ¬Yi, eG, e
i
L) = 〈q+i , eG + 1, eiL + 1〉 ,

with i ≤ m. When Yi holds, if AB nondeterministically
guesses that this is the “right” occurrence of Yi it goes to
q±i+1 and resets the local counter; otherwise, it remains in
q±i . For i < m, define δ(q+i , s ∧ Yi, dG, diL) as

〈q+i+1, dG, 0〉 ∨ 〈q
+
i , dG, d

i
L〉 ,

and δ(q+i ,¬s ∧ Yi, eG, eiL) as

〈q−i+1, eG + 1, 1〉 ∨ 〈q−i , eG + 1, eiL + 1〉 .

The transitions outgoing q−i when Yi holds are obtained by
duality with the substitutions − ↔ + and ¬s ↔ s. From

now on, we omit from the presentation all transitions from
states of the form q−i that follow by duality.

The transition from q+i to q−i+1 is also possible when the
local counter equals δi: when s takes a new value we are
already past the nss that occurred in the previous step, and
the new nss is counted in the next round starting with cL =
1:

δ(q+i ,¬s ∧ Yi, eG, δi) = 〈q−i+1, eG + 1, 1〉 .

Notice that the value of eiL does not matter in transitions
corresponding to δi = ∞, hence we need not update the
local counter (we omit the straightforward details).

Now, we define the initial and final transitions. Initially,
AB goes to q+1 or q−1 according to the first value of s, e.g.:

δ(q0, s ∧ ¬Y1, 0, 0) = 〈q+1 , 0, 0〉 ,
δ(q0, s ∧ Y1, 0, 0) = 〈q+1 , 0, 0〉 ∨ 〈q

+
2 , 0, 0〉 .

The last successful transition from q+m may lead to qF :

δ(q+m,¬s ∧ Ym, eG, eiL)=〈qF , 0, 0〉∨〈q−m, eG+1, eiL+1〉,
δ(q+m, s ∧ Ym, dG, diL)=〈qF , 0, 0〉∨〈q+m, dG, diL〉.

The transition to qF is possible also when the local counter
equals δm, the global counter equals v, or both:

δ(q+m,¬s ∧ Ym, v, diL) = 〈qF , 0, 0〉 ,
δ(q+m,¬s ∧ Ym, dG, δm) = 〈qF , 0, 0〉 .

Finally, the accepting state is absorbing:

δ(qF ,>, 0, 0) = > .

The transitions introduced so far do not allow for some
of the following steps to coincide. To account for this case,
we introduce O(m2) transitions that “jump” multiple states

5

q0

q+1

q−1

q−2

q+2

q+3

q−3

q−4

q+4

qF >, 0, 0

s

¬s

¬s ∧ a

s ∧ a

s

¬s

¬s

s

s

¬s

¬s

s

¬s ∧ a

s ∧ a ¬s ∧ ¬b

s ∧ ¬b ¬s ∧ a ∧ b

s ∧ a ∧ b

b

b

¬ss ¬s s ¬ss ¬s s

s ∧
a

¬
s ∧
¬
b

s ∧
a ∧
b

¬s
∧
a

s
∧
¬b

¬s
∧
a
∧
b

¬s ∧ a ∧ ¬b

s ∧ a ∧ ¬b

¬s ∧ a
∧ ¬b

s ∧ a ∧
¬b

a
∧ b

a ∧
b

s ∧ a ∧ ¬b

¬s ∧ a ∧ ¬b

Figure 2. Automaton AB for ψB = P
6;〈3,2,∞,1〉
4 (a,¬b, a ∧ b, b).

while reading multiple Yi’s. For 1 ≤ i ≤ m, i < k < m, we
add the transitions:

δ(q+i ,¬s ∧ Yi ∧ · · · ∧ Yk, eG, d
i
L) = 〈q−k+1, eG + 1, 1〉 ,

δ(q+i , s ∧ Yi ∧ · · · ∧ Yk, dG, d
i
L) = 〈q+k+1, dG, 0〉 ,

δ(q+i , Yi ∧ · · · ∧ Ym, dG, dL) = 〈qF , 0, 0〉 ,
δ(q0, s ∧ Y1 ∧ · · · ∧ Yk, 0, 0) = 〈q+k+1, 0, 0〉 ,

δ(q0,¬s ∧ Y1 ∧ · · · ∧ Yk, 0, 0) = 〈q−k+1, 0, 0〉 ,
δ(q0, Y1 ∧ · · · ∧ Ym, 0, 0) = 〈qF , 0, 0〉 .

Figure 2 shows AB for P
6;〈3,2,∞,1〉
4 (a,¬b, a ∧ b, b); for

readability, the “jump” edges we described last are dotted,
and the update of the counters are omitted.

The automaton AP for ψP combines the various AB

through conjunctive alternation, as illustrated in Figure 3.
First, coalesce all their initial states into a single one, also
called q0, and all their final states into another one, also
called qF ; this gives an automaton with 2 +m2M+1 states.
Then, for each B ∈ {0, 1}M , replace each initial transition
of the component AB of the form δB(qB0 ,S, 0, 0) = θB ,
S ∈ P(P ∪ {s}), with:

δ(q0,S ∧X1 ∧ · · · ∧XM , 0, 0) = 〈q0, 0, 0〉 ∧ θB ;

that is, at any step, the value of the propositions x1, . . . , xM
activates a uniquely determined component AB , while a
parallel computation remains in q0 ready for the next step.

q0 AB1AB2 B1B2
•

•

Figure 3. Schema of automaton AP.

C. Overall Automaton

The automaton A for Φ is a nondeterministic Büchi
automaton, given by the intersection of 3 components:
AU is a standard encoding of LTL into nondeterministic

Büchi automata, of size 2O(|ψU|);
As is a nondeterministic Büchi automaton of size

O
(
2|P|

)
;

AP is an alternating automaton of size O
(
2Mm2v2

)
,

where the v2 factor accounts for counters.
The size of AU is fixed and reflects the fact that satisfiability
of LTL is PSPACE-complete; we need not worry about it.
AP is an alternating automaton; to compose it with

the others, we have to convert it into a nondeterministic
automaton, but this involves an additional exponential blow-
up in the worst-case. The usage of universal alternation is,
however, quite restricted in AP: at every step, AP activates
exactly one new component of size O(m2v2) in parallel
with the others, and each of these components is active for
no longer than v nss. Therefore, the exponential size of AP

is immaterial in practice: if we compute the intersection and

6

check for emptiness on the fly, we have to deal with an active
nondeterministic Büchi automaton of size O(2M + m2v3).
The “actual” size of A—given by the product of the size
of its components as Büchi automata—is then only singly
exponential in M , v, and |P|; this matches the theoretical
complexity of [1], and is manageable in practice as we
demonstrate in Section V.

V. EXAMPLE AND IMPLEMENTATION

The example used in our experiments is repeated from
[1], and it is representative of several similar examples in
the literature on time granularity.

The elections example: Consider elections that occur
every four years, in one of two consecutive days. Proposition
q marks the first day of every quadrennial, hence it holds
initially and then precisely every 365 · 4 = 1460 days. The
elections e occur once within every quadrennial; precisely
they occur 40 or 41 days before the end of the quadrennial.
Formula φ in SNF describes this behavior:

φ ≡ q∧G


(u⇔ ¬e U q)
∧ (v ⇔ ¬q ∧ ¬q U q)
∧ (q ⇒ x2 ∧ x5)
∧ (q ⇒ ¬x1)
∧ (e⇒ ¬q ∧ x1)
∧ (e⇒ x3 ∨ x4)


︸ ︷︷ ︸

ψU

∧G


(x1 ⇔ X d1u)
∧ (x2 ⇔ X d2v)
∧ (x3 ⇔ X d3q)
∧ (x4 ⇔ X d4q)
∧ (x5 ⇔ X d5q)



with d1 = d2 = 1, d3 = 40, d4 = 41, d5 = 1460, and
P = {q, e, u, v, x1, . . . , x5}. A variability of 6/1460 makes
such specification tight, as it allows at most 6 nss over a
windows of length 1460: 2 of them accounts for q becoming
true and then false again once, another 3 nss mark a similar
double transition of e, and one extra nss is required by the
auxiliary propositions u, v, x1, . . . , x5.

Implementation in ProMeLa: We transformed φ into Φ
for the elections example, according to Section III. Then,
we implemented the automaton A described in Section IV
for such Φ in the ProMeLa language [13]. ProMeLa is
an expressive process description language for the Spin
explicit-state model checker, suitable to describe finite-state
computations and their coordination. Our implementation of
A in ProMeLa has two main components, grouped in a
global environment that handles coordination between them.

The first component PsiUOpModel corresponds to
Büchi automaton AψU and is a fairly standard encoding of
the L(U) formula ψU; PsiUOpModel is a ProMeLa process
that acts as a (nondeterministic) generator of all models of
ψU. The other component Pnueli implements the alternat-
ing automaton AP; the expressiveness of ProMeLa makes
for a straightforward implementation of the counters, which
are just process integer variables. The code for Pnueli is
partitioned in four parts, corresponding to the pairs of states
q+i , q

−
i for i = 1, . . . , 4, plus a general coordination section

that activates new components at every time step according

to the semantics of conjunctive alternation (see Figure 3) and
re-uses processes that have terminated for new computations.
The process running Pnueli acts as an acceptor that
filters out the models generated by PsiUOpModel that also
satisfy ψP. Finally, the functionality corresponding to As,
which is independent of the particular form of φ, is directly
implemented in the global environment: at every new step,
the previous value of the propositions is compared with the
new value, and s is complemented whenever the two differ.

Experiments: We verified the ProMeLa model using
the Spin model checker. The verification consisted in check-
ing the absence of invalid end states; if successful, this
guarantees that Spin can expand the complete ProMeLa
model, hence it can perform emptiness check and exhaustive
checking of arbitrary LTL properties. The experiments ran
Spin 6.10 on a Ubuntu box (kernel 2.6.32) with Intel Quad-
Core2 CPU at 2.40 GhZ with 4 GB of RAM.

We ran verification on the model with a variability bound
v/V = v/1460, for values of v between 6 and 38; for all
such values, the results were the following in terms of total
running time (in seconds), memory used (in MB), number
of primitive states generated (in millions), and maximum
expansion depth reached (in thousands).

TIME (S) MEM. (MB) # S (106) D (103)
48 2012 41.8 569

Since v is merely a global upper bound on the relative
distance between events, not a distance that must be reached,
the performance is insensitive to changes in the value of v
as long as changing v does not change the values of the δj’s
(defined in Section III); this is the case for the chosen range
6 ≤ v ≤ 38, and allows for some scalability.

Even if this is only a proof-of-concept as the example is
not overly complicated, it is representative of a larger class
of systems, and it demonstrates that our approach is feasible
and scales. On the contrary, verifying the original formula φ
“as is” is unfeasible with state-of-the-art techniques because
of the sheer size of φ due to the V = 1460 nested
occurrences of X . For example, the tool LTL2BA [21]—
that translates LTL formulae into Büchi automata encoded
in ProMeLa—runs out of resources while generating the
automaton, and even an ad hoc implementation in ProMeLa
using features such as counters would become too large
for Spin to exhaustively analyze. Our encoding is instead
significantly more concise and requires a sustainable amount
of resources.

VI. FUTURE WORK

In future work, we plan to build an automated translator
of LTL into ProMeLa implementing the construction for
bounded variability introduced in the paper. With the transla-
tor, we will be able to perform more experiments with some
of the domain-specific examples available in the literature
(see the related work in Section I). In addition, we will

7

try to construct simplifications similar to those discussed in
the paper that are directly applicable to automata model (as
opposed to LTL formulae), with the ultimate goal of applying
the model-checking paradigm—based on the combination of
automata and logic—under the bounded variability assump-
tion.

Acknowledgements: Thanks to the anonymous review-
ers for useful comments.

REFERENCES

[1] C. A. Furia and P. Spoletini, “On relaxing metric information
in linear temporal logic,” in TIME. IEEE, 2011, pp. 72–79.

[2] C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi,
“Modeling time in computing: a taxonomy and a comparative
survey,” ACM Computing Surveys, vol. 42, no. 2, pp. 1–59,
2010.

[3] A. Belussi, C. Combi, and G. Pozzani, “Formal and con-
ceptual modeling of spatio-temporal granularities,” in IDEAS.
ACM, 2009, pp. 275–283.

[4] C. Combi and S. Degani, “Building logical specifications of
temporal granularities through algebraic operators,” in TIME.
IEEE Computer Society, 2009, pp. 107–114.

[5] M. Franceschet and A. Montanari, “Temporalized logics and
automata for time granularity,” TPLP, vol. 4, no. 5-6, pp.
621–658, 2004.

[6] C. Combi, A. Montanari, and P. Sala, “A uniform framework
for temporal functional dependencies with multiple granular-
ities,” in SSTD, ser. LNCS, vol. 6849. Springer, 2011, pp.
404–421.

[7] A. Burns and I. J. Hayes, “A timeband framework for mod-
elling real-time systems,” Real-Time Systems, vol. 45, no. 1–2,
pp. 106–142, 2010.

[8] E. Corsetti, E. Crivelli, D. Mandrioli, A. Morzenti, A. Monta-
nari, P. San Pietro, and E. Ratto, “Dealing with different time
scales in formal specifications,” in Int. Workshop on Software
Specification and Design, 1991, pp. 92–101.

[9] A. P. Sistla and E. M. Clarke, “The complexity of propo-
sitional linear temporal logics,” JACM, vol. 32, no. 3, pp.
733–749, 1985.

[10] E. A. Emerson, “Temporal and modal logic,” in Handbook of
Theoretical Computer Science, 1990, pp. 996–1072.

[11] M. Y. Vardi and P. Wolper, “An automata-theoretic approach
to automatic program verification,” in LICS. IEEE, 1986,
pp. 332–344.

[12] J. Esparza, O. Kupferman, and M. Vardi, “Verification,” in
Handbook on Automata Theory, 2012.

[13] G. J. Holzmann, The SPIN Model Checker: Primer and
Reference Manual. Addison-Wesley, 2003.

[14] L. Lamport, “What good is temporal logic?” in IFIP
Congress. North Holland/IFIP, 1983, pp. 657–668.

[15] D. Peled and T. Wilke, “Stutter-invariant temporal properties
are expressible without the next-time operator,” IPL, vol. 63,
no. 5, pp. 243–246, 1997.

[16] K. Etessami, “A note on a question of Peled and Wilke
regarding stutter-invariant LTL,” IPL, vol. 75, no. 6, pp. 261–
263, 2000.

[17] A. Kučera and J. Strejček, “The stuttering principle revisited,”
Acta Informatica, vol. 41, no. 7/8, pp. 415–434, 2005.

[18] Y. Hirshfeld and A. M. Rabinovich, “Logics for real time: De-
cidability and complexity,” Fundamenta Informaticae, vol. 62,
no. 1, pp. 1–28, 2004.

[19] T. Wilke, “Specifying timed state sequences in powerful
decidable logics and timed automata,” in FTRTFT, ser. LNCS,
vol. 863. Springer, 1994, pp. 694–715.

[20] C. A. Furia and M. Rossi, “MTL with bounded variability:
Decidability and complexity,” in FORMATS, ser. LNCS, vol.
5215. Springer, 2008, pp. 109–123.

[21] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata
translation,” in CAV, ser. LNCS, vol. 2102, 2001, pp. 53–65.

8

	Introduction and Overview
	Preliminaries
	Words and Variability
	Linear Temporal Logic
	Alternating Büchi Automata

	From LTL to L(U, Pn)
	From L(U, Pn) to Automata
	Marking Non-stuttering Steps
	Translating Pnueli Operators
	Overall Automaton

	Example and Implementation
	Future Work
	References

