Bounded Variability of Metric Temporal Logic

Carlo A. Furia

Department of Computer Science, ETH Zurich, Switzerland

caf @inf.ethz.ch

Abstract—Previous work has shown that reasoning with real-
time temporal logics is often simpler when restricted to models
with bounded variability—where no more than v events may
occur every V' time units, for given v, V. When reasoning about
formulas with intrinsic bounded variability, one can employ the
simpler techniques that rely on bounded variability, without any
loss of generality. What is then the complexity of algorithmically
deciding which formulas have intrinsic bounded variability?

In this paper, we study the problem with reference to Met-
ric Temporal Logic (MTL). We prove that deciding bounded
variability of MTL formulas is undecidable over dense-time
models, but with a undecidability degree lower than generic
dense-time MTL satisfiability. Over discrete-time models, instead,
deciding MTL bounded variability has the same exponential-
space complexity as satisfiability. To complement these negative
results, we also briefly discuss small fragments of MTL that are
more amenable to reasoning about bounded variability.

I. THE BENEFITS OF BOUNDING VARIABILITY

In yet another instance of the principle that “there ain’t
no such thing as a free lunch”, expressiveness of formal
languages comes with a significant cost to pay in terms
of complexity—and possibly undecidability—of algorithmic
analysis. The trade-off between expressiveness and complexity
is particularly critical for the real-time temporal logics, which
dwell on the border of intractability. A chief research challenge
is, therefore, identifying expressive temporal logic fragments
without letting the “dark side” of undecidability [6] prevail
and abate practical usability.

Previous work by us [12], [14] and others [28], [[LO] has
shown that the notion of bounded variability can help tame the
complexity of real-time logics while still retaining a reasonable
expressive power. A model has variability bounded by v/V if
there are at most v events every V time units. Consider a
temporal logic formula ¢: deciding whether ¢ has a model
with variability bounded by some v/V is typically simpler
than the more general problem of deciding whether ¢ has a
model of any (possibly unbounded) variability (see Section [
for examples). To close the gap between decidability over
bounded variably models and general models, we should
be able to determine if ¢ only has models with bounded
variability. When this is the case, we lift the notion of bounded
variability from models to formulas and say that ¢ has
bounded variability. For formulas with bounded variability, we
can apply the simpler algorithms that only consider bounded
variably models, without losing generality in the analysis.

As a simple concrete example, if ¢ is the specifica-
tion of a square wave of period 10 and duty cycle 30%

Paola Spoletini
Universita degli Studi dell’Insubria, Italy
paola.spoletini @uninsubria.it

("ge—=j0 —), there are at most three transition events
every 10 time units. Thus, all models of ¢ have variability
bounded by 3/10, and we can leverage this fact to simplify
the algorithmic analysis of ¢.

This paper targets the bounded variability of formulas
written in Metric Temporal Logic (MTL) [18]], a popular
linear-time temporal logic which extends LTL [9] with metric
constraints and can be interpreted over both dense and discrete
time domains. We study the complexity of the problem of de-
termining if a generic MTL formula ¢ has bounded variability.

The bulk of the results is bad news: over dense-time models,
deciding whether an MTL formula has bounded variability is
undecidable; over discrete-time models, it is decidable, but
with the same complexity as deciding validityﬂ in general.
These results are major hurdles to pursuing the idea of
identifying formulas with bounded variability and then using
the simpler algorithms for satisfiability on them: the complex-
ity of the first step dominates, and nullifies the benefits of
using the simplified algorithms for satisfiability under bounded
variability.

As we show in Section [V-A] using reductions from unde-
cidable problems of nondeterministic counter machines, the
undecidability degree of deciding bounded variability over
dense time is still lower than that of deciding validity: the
former occupies the first two levels of the arithmetical hi-
erarchy, whereas the latter belongs to 2%, the second level
of the analytical hierarchy. In contrast, deciding bounded
variability over discrete time is EXPSPACE-complete (see
Section [V-B)), the very same complexity as deciding validity;
but the discreteness of the time domain entails that every
formula has bounded variability for v = V.

While these results imply strong limits to reasoning about
bounded variability in general, Section suggests simpler
cases where this may still be possible. If we identify MTL
fragments that are sufficiently expressive to encode the re-
quirement of bounded variability, yet have low complexity,
we can try to establish bounded variability in special cases by
considering subformulas of generic MTL formulas. We briefly
illustrate two fragments, one for discrete- and one for dense-
time models, that meet these requirements.

Related Work. Originally introduced by Koymans [18] as a
first-order real-time logic, MTL has become widespread in the

Since MTL formulas are obviously closed under negation, validity and
satisfiability are dual problems with the same complexity. Therefore, we
indifferently use either term with reference to complexity.

caf@inf.ethz.ch
paola.spoletini@uninsubria.it

propositional version popularized by Alur and Henzinger [2].
Their seminal work has also studied its complexity over dense
and discrete time [2], [3], as well as interesting decidable
fragments for dense time [1]. While their work basically
settled the problems for discrete time, follow-up work by
other authors has extended and refined the picture for dense
time, such as by studying expressive completeness [16]], [L7],
simplifying decision procedures [20]], or identifying expressive
decidable fragments [J5]], [23], [24].

Bounded variability is a natural semantic restriction over
dense time, which has been applied to various formalisms
including timed automata [28]], duration calculus [10]], and,
in our previous work, MTL [12]. Recently, we also applied
it to LTL over discrete time; while it is obvious that every
discrete-time model has bounded variability (given by the fixed
duration associated with one discrete time unit), in [[14], [15]
we showed how the LTL validity problem can be simplified
under the assumption that only v < V' change events happen
every V discrete time steps. Therefore, bounded variability
can be a simplifying assumption also for discrete time.

The undecidability results of Section use reductions
from undecidable problems of nondeterministic n-counter ma-
chines, which we introduce in Section These are a kind of
Minsky’s counter machines [21]; their connection with MTL
was first exploited by Alur and Henzinger [2].

Section[VI|discusses MTL fragments with lower complexity.
Over discrete time, these fragments can be derived from
similarly low-complexity fragment of LTL [9]], which have
been extensively studied by several authors [27], [7], [[19].

II. TIMED WORDS AND VARIABILITY

We denote a generic time domain by T. In the paper, T is
either the discrete set of the nonnegative integers IN, or the
dense (and continuous) set of the nonnegative reals Rx>o.

An interval is a convex subset of the time domain, repre-
sented by a pair (a,b), where (and) are square or round
brackets to respectively denote inclusion or exclusion of the
endpoint. We use the pseudo-arithmetic expressions > s, > s,
< s, < s, and = s as abbreviations for the intervals (s, c0),
[s,00), [0,), [0, s) and [s, s]. We assume a binary encoding of
constants in the time domain unless explicitly stated otherwise.

Given a time domain T and a finite alphabet set P of atomic
propositions, a timed word over T is a countably infinite
sequence of pairs w = (oq,tg) (01,t1)(02,t2) - -+ such that:

1) Each integer £ > 0 denotes a position in a timed word,

2) For each k, o is a (nonempty, w.l.o.g.) subset of P
denoting the propositions holding at position k; and
tr € T is a timestamp denoting the time of the occurrence
at position k;

3) The timestamps are strictly monotonic, that is ¢y, > ¢, iff
h > k, and diverging, that is for all t € T there exists k
such that ¢, > t (divergence is subsumed by monotonicity
in discrete time).

We also conventionally assume that o = 0. The set of all
timed words over T is denoted by BT.

A timed word w has variability bounded by v/V, for V € T
and v € NN, iff it has no more than v positions within any
closed time interval of length V: forall k € IN, tj 4, —tx > V.
The set of all timed words over T with variability bounded
by v/V is denoted by BT[v/V].

III. MTL: METRIC TEMPORAL LOGIC

We present the syntax and semantics of propositional MTL
and recall some fundamental facts about its complexity.

Syntax. MTL formulas are defined by the grammar
¢ u= T |p|-¢1|d1Aga | Us(d,e2),

where p ranges over the alphabet P, and J is an interval
of the time domain with integer endpoints. We assume the
standard definitions for false: L, and for the derived Boolean
connectives: V, =, and <. The symbol a abbreviates the
formula \/pE'P p, which holds iff some proposition holds. We
introduce the derived temporal operators eventually: ¢ ;(¢) =
U, (T, ¢); globally (also, always): U ;(¢) = —0 ;(—¢); action
until: U;(¢1,¢2) = Uj(a = ¢1,¢2); and next: O,(¢) =
U; (L, ¢). Operator precedence is: — has the highest prece-
dence, then A, then V, then =, then all temporal operators,
and finally <. We may omit the parentheses around arguments
when unambiguous, and drop intervals [0, co).

Semantics. Given a timed word w = (og,to) (01,¢1) - -
and a position k € IN, the pointwise satisfaction relation):p
for an MTL formula ¢ is inductively defined as follows:

w, k ':D T’

wkEpp iff
w, k E=p ¢ iff
w,k E=p ¢1 A do iff
w,k ':p UJ((Z)l? ¢2) iff

P EoE ;

w, k Fp d1;

w,k =p ¢1 and w, k =p do;

there exists h > k such that:

th —tr € J, w, h |=p ¢2, and,

forall k <z < h, w,x =p ¢1;
w f=p ¢ iff w,0=p ¢.

The semantics of U and U coincide under the pointwise

semantics, since formulas are only evaluated at positions,

where « invariably holds. The (derived) semantics of next is:

w,k Ep Oy(o1) iff iy —tp € J and w, k + 1 =p ¢1; that

is, the next position has timestamp in .J relative to the current

one, and ¢; holds there.

Given a timed word w as above and a time instant ¢ € T,
the continuous satisfaction relation |=¢ for an MTL formula ¢
is inductively defined as follows (we only list the cases that
differ from the pointwise semantics):

w,t Fep iff there exists k£ € IN such that:
t, =t and p € oy;
there exists u > t such that:
u—teJ,w,ulc ¢, and,
forall t < v < u, w,v ¢ ¢1.
Over dense time, the continuous semantics generalizes the
pointwise semantics in the sense that the former is strictly
more expressive [8]], [S]. The semantics of next under continu-
ous semantics is, however, analogogs to that over the pointwise
semantics, thanks to the usage of U in its definition.

w,t ':C UJ(¢1, d)g) iff

Remark 1. In the following, we assume the pointwise se-
mantics over discrete time IN, and the continuous semantics
over dense time R>g. Our results for dense time are also
transferable to the pointwise semantics mutatis mutandis,
provided past operators are available (see Section [VII).

Complexity: general models. Satisfiability of MTL for-
mulas is highly undecidable over dense time, where it is Y1-
hard [2]. It is instead decidable over discrete time, with an
EXPSPACE-complete decidability problem [2] (which trans-
lates to doubly-exponential deterministic time). Over discrete
time, the high complexity is essentially due to the succinctness
of the binary encoding (the expressiveness is the same as LTL).

Complexity: bounded models. Bounded variability is a
semantic restriction that reduces the complexity of MTL. In
fact, we proved that satisfiability of MTL over dense-time
models with variability bounded by v/V/, for any given v/V, is
EXPSPACE-complete [12], matching the complexity of MTL
over discrete time, as well as that of other decidable dense-time
logics [1l], [[16]]. The following is a corollary of our previous
results, which we use in this paper.

Corollary 2. For any v, v/, and V, it is decidable whether
an MTL formula has some model over R>q with variability
bounded by v'/V but not by v/V.

Proof: We showed that the MTL satisfiability problem
over BR>o[v/V] is decidable for generic v/V [12| Corol-
lary 1]; and that we can encode in MTL the bounded variability
constrain as well as its complement [12 Section 4.3]. [|

In recent work [14], [15], we showed how the notion of
bounded variability can reduce the complexity of MTL over
discrete time as well. While bounded variability does not affect
the exponential-space worst-case complexity, since discrete-
time models have inherently bounded variability, it can re-
duce the complexity in practice. Precisely, when studying the
variability of an arbitrary LTL formula ¢ over behaviors with
variability bounded by any given v/V, with v < V, we can
consider a simplified ¢’ whose size depends on v but not on
the distances encoded in ¢ through next operators. While the
results of [14], [[15] target LTL, it is clear that they carry over
to MTL over discrete time.

IV. COUNTER MACHINES

Counter machines [21] are powerful computational devices,
widely used in formal language theory. We use a nondetermin-
istic version of counter machines, and derive some complexity
results which we use in the remainder.

Definition 3. An n-counter machine executes programs con-
sisting of a finite list of instructions with labels ¢y, /1, ...
and operating on n integer counter variables v, ..., v,—1. An
instruction is one of the following:

halt terminate computation
if v, > 0 goto ¢;, {; conditional branch
inc vy increment counter

dec v, decrement counter

where the conditional branch consists in jumping to ¢; or ¢;
nondeterministically if counter vy, is non-zero; and decrement-
ing a counter with zero value is undefined. Computations start
at location ¢y with all counters equal to zero and proceed
according to the obvious semantics of instructions. Without
loss of generality, assume that instruction halt occurs exactly
once and that the last instruction in the list is either halt or a
branch.

For n-counter machines, with n > 2, the halting problem
(deciding whether the location with halt is visited in some
computation) is ¥9-complete (RE-complete: undecidable but
semidecidable); the non-halting problem (deciding whether
some computation does not halt) is ¥9-complete; the recurring
computation problem (deciding whether location g is visited
infinitely often in some computation) is 31 -hard [3]E]

A. Bounded and Unbounded Counters

Consider the following decision problems for n-counter
machines:

bounded counter: given an integer 3, decide whether vy
overflows [in some computation;
decide whether there exists [such

that vg < B in all computations;

finite counter:

Theorem 4. The bounded counter problem is 3-complete;
the finite counter problem is $3-complete.

Proof: We prove hardness by reduction from, respectively,
the halting and non-halting problems of n-counter machines.
We then report the simpler corresponding completeness proofs.

Hardness of the bounded counter problem. Given a
generic n-counter machine M, we reduce halting to bounded
counter for 3 = 0 by modifying M into M’ as follows.
Add one counter and injectively rename all counters in the
instruction list so that the new counter is called vg; thus, vg is
not mentioned in the renamed instructions. Then, replace the
unique halting instruction appearing at some ¢;, in M by two
instructions: £ inc vy followed by EZ: halt.

Since we only added deterministic instructions, there is a
one-to-one correspondence between computations of M and
computations of M’. A generic nondeterministic computation
x of M reaches location ¢}, iff the unique corresponding com-
putation x’ of M’ also reaches £;,. In such computations x’,
vy overflows (8 before halting at E;. In all, some computation
of M halts iff vg overflows in some computation of M’. Thus,
the bounded counter problem is ¥9-hard.

Hardness of the finite counter problem. Given a generic
n-counter machine M, we reduce from the non-halting prob-
lem. Create another counter machine M’ with a fresh counter
vg, which works as follows. M’ simulates all computations
of M deterministically: as soon as a specific computation
terminates, M’ backtracks the simulation and makes a different
nondeterministic choice. (We omit the details of the simu-
lation, which are straightforward.) Whenever the simulation

2These complexities easily follow from reduction of the same problems for
Turing machines.

completes a halting computation of M, it increments v
before continuing with the next computation. If the simulation
ever comes to an end (that is, if M has only finitely many
computations, all halting), M’ enters an infinite loop that
makes vg diverge. Therefore, M’ has only one non-halting
(because either M’ enters the infinite loop or M has infinitely
many computations) deterministic execution.

Consider now the finite counter problem for M’. If it has
answer YES, it means that the simulation eventually executes
a non-halting computation of M; from that point on, vy is
never incremented. If it has answer NO, it means that the
simulation consists of infinitely many halting computations of
M, or that it reached the divergent loop and hence M had
only finitely many halting computations. The answer to the
non-halting problem for M is therefore the same in either
case. This shows that we reduced the non-halting problem to
the finite counter problem, and both are Zg—hard.

Completeness of the bounded counter problem. We
reduce the bounded counter problem (for any) to halting,
thus showing that the former is in 39 (and hence, by com-
bining it with the hardness result, Z?-complete). The idea
is to guard every increment to vy with a conditional of the
form if vy > S goto ¢}, else inc vy, where ¢; is the halting
location. Conversely, computations that halt in the initial
programs are modified so that they run forever. Since vg is
initially zero, a computation halts iff it overflowed in the initial
program; hence, a semi-decision for halting produces a semi-
decision procedure for bounded counter. The details of how
to encode such modifications using standard instructions are
straightforward.

Completeness of the finite counter problem. We show that
the finite counter problem is in ¥ (and hence, by combining
it with the hardness result, ¥9-complete) according to the
definition of X3 in the arithmetical hierarchy [26]. Let Op
be the set of all counter machines where vy overflows 3 in
some computation. Previously, we have shown that O is ©Y;
hence its complement set Og—all counter machines where
vg < B in all computations—is H(l). The set F of all counter
machines for which the finite counter problem has answer YES
is defined by M € F <= 33 : Op, and hence it is ¥J. W

B. MTL and Counter Machines

Alur and Henzinger [2] pioneered the usage of counter
machines to analyze the complexity of real-time logics. Using
their techniques, we show the essentials of how to encode
computations of n-counter machines as MTL formulas over
R>(: computations are encoded as timed words; and, given a
machine M, we build an MTL formula I';; that is satisfied
precisely by the words encoding M’s computations.

Consider an n-counter machine M with m + 1 instructions
Loy ..., L, such that (j is the location of the unique halt
instruction. We introduce the following propositions: py, for
0 < k < m, which holds when M is at location /j; and
zk, for 1 < k < n, which we use to represent the value
of counter vg: there are as many distinct occurrences of
proposition zj over a unit interval as the value of counter

vy in the corresponding configuration. A configuration is a
tuple (€, z1,...,2,) denoting that M is at location ¢ and
the counters store the values z, ..., z,. At each integer time
instant: all propositions z;’s are false; and exactly one of the
propositions pg’s holds, with pg holding initially. The py’s are
all false everywhere else:

/\1gk§mD(pk = Ni<jzr<m Pi N Ni<a<n ﬁZd) A
Ni<k<m D<pk = Vicj<m U= (/\1gigm ﬁpi’pJI))

With similar formulas, we constrain the z;’s to occur at distinct
instants: whenever zj, then —z;, also holds simultaneously, for
h # k.

Each time interval [¢,t+1), for ¢ € IN, encodes the (¢41)-th
configuration reached during a valid computation: p; holding
at t means that M is at location {; and, for 1 < j < n, z;
holds over [t,t+ 1) exactly as many times as the integer value
stored in counter v;. The initial configuration (£,0,...,0) is

encoded by
/\ D[o,u(ﬁzj)-

1<j<n

Do

The encoding of any instruction refers to a current time
t € IN and defines the state over [t+1,t+2) as a modification
of the state over [t,t + 1). The most significant operation is
the increment: /;: inc v., whose MTL encoding declares that
the state in the next interval has exactly one more occurrence
of z. than it has in the current interval:

01 Pt

A Ni<are<n Bo1)(2d & 0= 2a)

A Doy (ze = 021 2c)

<>:1 Ze = Zc,

“2e ANO_1%e N

Uso(m2e A O (m2e) , Prv)

O Pk =

AU 1)

In @’s consequent, the first conjunct states that {5 is the
next location visited (since this is not a branch instruction).
The second conjunct states that the values of all counters other
than v, are unchanged: for every occurrence of some z4 in the
current interval, there is an occurrence exactly one time unit
later in the next interval and vice versa; hence occurrences of
zq are “copied” from the current to the next interval. Similarly,
the third conjunct declares that v. does not decrease (z.’s
occurrences in the current interval are copied into the next
one). The fourth conjunct asserts that there exists an instant,
after the last occurrence of z. in the current interval and before
the next occurrence of pii; at the beginning of the next
interval, such that z. occurs exactly once at the corresponding
instant in the next interval. This new distinct occurrence of
z. 1s always possible thanks to the density of the temporal
domain; thus any value of counters can be stored in a unit time
interval. The encoding of other instructions is similar, with the
halting instruction determining an indefinite repetition of the
final configuration in the future.

Remark 5. Over pointwise semantics, we can express a
behavior analogous to (I) using past operators. The key

observation [23] is that the “copy” of a counter vy can be
expressed as [1y (24 = O—y 24) and Oy 5\ (24 = O _; 2a),

where O _;(¢) holds iff its arguments held one time unit in
the past.

V. THE COMPLEXITY OF BOUNDED VARIABILITY

Given a time domain T and a formula ¢, we define two
decision problems—the second is a generalization of the
first—that deal with ¢’s bounded variability. We write B(¢)
to denote the subset of a set B of timed words that satisfy ¢.

BVr(v,V): Determine whether every model of ¢ over
T has variability bounded by v/V: does
BT(6) C BT[v/V](9)?

Determine whether there exist v,V such
that the answer to BV (v, V) is YES: does
Fou,V : BT(¢) C BT[v/V](¢)?

A Dbar denotes the corresponding complement problems:
BVr(v,V) asks whether some model of ¢ has variability
not bounded by v/V (bounded by v'/V for some v > v,
or unbounded); BV asks whether, for every v, V, some
model of ¢ has variability not bounded by v/V. Notice that
the latter is not the same as asking if some model of ¢ has
unbounded variability: it may as well be that every model of
¢ has bounded variability, but no variability bounds all of the
models.

This section establishes the complexity of the decision prob-

lems for T = R>¢ (Section [V-A) and T = IN (Section [V-B).

A. Complexity of Bounded Variability over Continuous Time

BVTZ

Both variants of the bounded variability problems just
introduced are undecidable over continuous time, but with
different undecidability degrees in the arithmetical hierarchy;
in both cases, however, the undecidability degree is lesser than
MTL satisfiability, which is highly undecidable (E%-hard 2.

Theorem 6. BVg_,(v,V) is IIY = CORE-complete; BV g,
is ¥.9-complete.

Lemma 7. BVg_,(v,V) is in IIY = coRE.

Proof: We give a procedure to semi-decide
BVg.,(v,V); this establishes that BV . (v,V) € RE and
thus BVg.,(v,V) € coRE by complement.

Consider a generic MTL formula ¢. Some model of ¢ has
variability not bounded by v/V iff: (a) some model of ¢ has
variability bounded by v’ /V but not by v/V, for some v’ > v;
or (b) some model of ¢ has unbounded variability. Since we
are dealing with divergent models only (see Section [[I), (b)
can only occur with models where the variability is bounded
up to any finite time ¢, but the variability bound increases
indefinitely over timeE]

For any finite time 7', let ¢[T] denote the MTL formula
which restricts the evaluation of ¢ to the finite time interval
[0, T]. This can be constructed as follows: add a fresh propo-
sition e constrained by ¢. = U_r (e, e A Oy y—e). Rewrite ¢

3In related work, we called similar behaviors “Berkeley” [13], [L1].

in negation normal form, and replace every atom ¢ by e = q.
Postulate that, if e is false, all other propositions in P are false
as well: op = O(=e = A cp —p). Finally, [T is p. ApA¢p.
Since no event occurs after finite time 7', all models of @[T
have variability bounded by x/T, for some finite (possibly
very large) x. Therefore, some model of ¢[7T] has variability
not bounded by ¢/T" iff some model of ¢[T] has variability
bounded by ¢'/T but not by t/T, for some x >t > t.

We can now describe a procedure P; that semi-decides
BVg.,(v,V); it consists of the following steps:

1) Initially, § ;== v+ 1 and A :=V +1;

2) Using Corollary [2| decide whether ¢[A] has some model

with variability bounded by ¢/V but not by v/V;

3) If it does, stop and return YES;

4) Otherwise 6 := 46 +1, A := A+ 1, and go to (2).

If the answer to BV ., (v,V) is YES, then either (a) or (b)
above holds; let us show that, in both cases, P; terminates
with the correct answer.

If (a) is the case, let w, be a model with variability bounded
by ©'/V but not by v/V for some v’ > v; that is, w, has T
events, for v < T < v/, over some time interval [z,2 + V.
In this case, P; terminates with YES as soon as § > 7T and
A>z+V.

If (b) is the case, let w, be a model with unbounded
variability; since variability is unbounded, there exists a time
T such that: wp has v > v events over some time window
[z,x+V], for 0 <2 < 2+V < T. In this case, P; terminates
with YES as soon as § > v’ and A > T. [|

Lemma 8. BVy_,(v,V) is cORE-hard.

Proof: We reduce the bounded counter problem (Sec-
tion i of 2-counter machines to BV g_ (v, V); the lemma
follows by Theorem] through complement problems.

Consider a generic 2-counter machine M with counters vy
and v;. We construct an MTL formula I'); that encodes the
computations of M along the lines of Section but with
some modifications. For ¢ € IN, the (¢ 4 1)-th configuration
(€, x0,x1) is encoded over the time interval [4¢,4t + 4) as
follows: py, holds at 4¢, zo holds x times over (4¢+1,4t+2),
z1 holds x; times over (4¢ + 3,4t 4 4), and no propositions
hold elsewhere over the whole [4t, 4¢ + 4). With this spacing
of counter events, we can see that the models of I'p; are
such that any interval of length 1 includes at most as many
events as the largest value held by a counter during some
computation. Thus, I'j; has some model with variability not
bounded by 3/1, which is an instance of BV ., (v, V), iff a
counter overflows 3 in some computation of M.

Now we have only established whether some counter over-
flows in M, whereas the bounded counter problem specifically
targets overflows of vy. To close the gap, we encode the
overflowing of vg in M as an MTL formula EZO:

B+1 nested diamonds

% \/ P | A <>(071) (ZO A 0(071)(20 ARE))

0<k<m

Thanks to the padding, the nested diamonds evaluate to true
iff there are at least 3+ 1 distinct occurrences of zg in the slot
corresponding to one configuration. Thus, vy overflows (in
M iff Ty /\Eg’ has some model with variability not bounded

by 3/1. m

Lemma 9. BV, is in X5.

Proof: Given the definition of XY in the arithmetical
hierarchy [26], it is sufficient to provide an enumeration of
all MTL formulas ¢ for which the answer to BV ., is YES,
relative to an oracle for BVg. (v, V), which is in II{ by
Lemma [7] To this end, we dovetail [25] Chap. 3] through all
pairs (v, ¢) of nonnegative integers v € IN and MTL formulas
¢. For each pair, if the answer to BV ., (v,1) is YES for ¢,
then the answer to BV ., also is YES for ¢. It is clear that
this enumeration eventually finds all formulas for which the
answer to BV R_, is YES. u

Lemma 10. BVg_, is 9-hard.

Proof: We reduce the finite counter problem (Sec-
tion of n-counter machines to BVR.,; the lemma
follows by Theorem

This reduction is the trickiest among those in this paper. The
difficulty lies in the fact that, while the finite counter problem
refers a specific counter vy, BVR., considers variability of
all propositions; while it is easy to reduce from general to
specific, here we need to build a reduction in the opposite
direction. The proof of LemmaB] involves a similar mismatch,
but things are simpler there, thanks to the existence of a known
bound [, which we can monitor explicitly; now, instead, the
bound is existentially quantified. An easy solution would be to
change the definition of BV g, to refer a specific proposition
that varies, but that would weaken the result proved. Instead,
we leverage nondeterminism to “guess” the bound.

Build a counter machine M, which simulates computations
of M as follows. Every computation of M, starts by nonde-
terministically storing a positive integer x in a fresh counter
v,. This is achieved by the instructions:

by : inc vy,

. 2)
by : ifv, >0 goto 60762

If ¢;’s nondeterministic branch eventually jumps to {5, the
rest of M,’s program simulates all computations of M by
dovetailing [25) Chap. 3], so that the simulation does not get
stuck in non-terminating computations of M. Additionally,
whenever vy overflows x — 1, the simulation halts; and if M
had only finitely many computations, the simulation concludes
with an infinite idle loop (unless it has previously halted upon
vy overflowing).

Consider now the MTL formula I' = I'j;, A O pp, where
I'pz, encodes M,’s computations as in Section and /¢,
is the unique halting location of M. Thus, the models of T"
describe all valid computations of M, that halt (and hence, in
particular, that do not get stuck forever in the initial loop (2)
that increments v,—something we get for free given that we
are reducing between undecidable problems).

Consider now BV ., for I'. If its answer is YES, then there
must be only finitely many models that satisfy I'; otherwise,
they would include simulations for all values of x, which
would entail that, for every possible bound z, there exists a
model where vy overflows x, against the hypothesis that the
answer is YES (i.e., all models are bounded). Therefore, there
is a finite bound on vy in all computations of M, given by
one plus the maximum of values reached by v in all finitely
many models. Conversely, if the answer to BVR_, for I' is
NO, then there must be infinitely many models that satisfy T,
that is one for every value of x; in fact, all such models are
halting, and hence if they are finitely many the maximum of all
counters in all such models would be well defined and finite,
against the hypothesis that the answer is NO (i.e., there always
is an unbounded model). The existence of halting models for
all values of z entails that vy overflows any finite value in
some computation. In summary, the answer to BV R, for I'
is YES iff the answer to the finite counter problem for M is
YES. This concludes the reduction. []

B. Complexity of Bounded Variability over Discrete Time

The complexity of bounded variability over discrete time
paints a picture quite different from that over continuous
time. Lemmas prove that BV (v, V') is EXPSPACE-
complete, which is the same complexity as MTL satisfiability
over IN. On the other hand, it is clear that BV y is decidable
in constant time, since every discrete-time MTL formula has
variability bounded by x/x for any integer = > 0, precisely
because the time domain is discrete, and hence there is a hard
upper bound on the variability of events.

Lemma 11. BV (v,V) is EXPSPACE-hard.

Proof: We polynomial-time reduce MTL satisfiability to
BVn(v,V); the lemma follows since EXPSPACE is closed
under complement.

The decision procedure for discrete-time TPTL is based on
the following fundamental property [3, Lemma 5]: a TPTL
formula 1 is satisfiable iff it has a model where the difference
between any pair of consecutive timestamps is always less than
or equal to the product d,, of all constants appearing in 7). The
same property holds of MTL formulas over the integers [2].

Since we are considering timed w-words, which have in-
finitely many events, the property entails that an MTL formula
¢ is satisfiable iff there exists a timed word w such that: w
has at least one event with timestamp ¢ < §, and w = ¢.
Therefore, a generic MTL formula ¢ is satisfiable iff some of
its models have variability not bounded by 0/d, that is iff the
answer to BV(0,d,) is YES. Assuming a binary encoding
of constants, as it is customary, d4 is polynomial in the size
of ¢ (because the product of n constants has size O(n?) in
binary), thus the reduction is done in polynomial time. []

Lemma 12. BV (v,V) is in EXPSPACE.

Proof: We show how to encode the requirement that a
model has variability bounded by v/V as an MTL formula
B,v.

If v = 0, then B,y = 0OL. Otherwise, we can adapt
the techniques we introduced for LTL [14]. Consider v > 0
fresh propositions p;, for ¢ = 1,...,v. Proposition p; holds
initially, followed by ps,...,p, in sequence; the sequence
repeats indefinitely:

B, =piN /\

1<k<wv

O(p1 < Oprer) AO| o = /\
1<h#k<v

“Ph

where a @ b is a shorthand for 1 + ((a + b) mod v). Since
every py holds in a different position, we can express bounded
variability by requiring that the timestamp of the next (v+1)-
th position in the future be greater than V' with respect to the
current position’s (and note that k & v = k):

= ByA /\ O(pe = Usv (2pr, i) -

1<k<v

Bv,V

Thus, ¢ = B,y is valid iff the answer to BV (v,
is YES.

The only problem with this reduction is that B,y has size
exponential in the size of the instance of BV (v, V') assuming
a binary encoding of constants. Precisely, the blow-up occurs
because B, has size polynomial in v, which is exponential
in the size of a binary encoding of v. Encoding the modulo-
v counter in binary (using n = |log,v| + 1 propositions)
would not help: while updates to the counter itself can be
done with formulas of size polynomial in n, there is no easy
way to express in MTL the fact that the timestamp of the
“next” occurrence is greater than V' (with respect to the current
position’s) without enumerating all 2" = v values for the
counter.

The blow-up is, however, inessential and only due to the
fact that MTL operators do not include compact “counting”
modalities. We omit the details for brevity, but it is clear that
one can extend the standard decision procedures for MTL [2]]
to handle counting modalities without affecting the complexity
of the logic. Specifically, we could introduce an operator K'1)
with the semantics: w, k = K" iff t51,, —t, € J and w, l-c—i—
n | 9. B,y for v > 0 is then equivalent to D(K;VT);
assuming a binary encoding of constants, this has size linear
in the size of the encodings of v and V.]

V) for ¢

VI. BOUNDED VARIABILITY IN SIMPLE CASES

The complexity results of Section pose some major
limitations to deciding bounded variability for generic MTL
formulas. However, the outlook may be better if we target
fragments of MTL that are still sufficiently expressive but for
which reasoning about bounded variability is simpler than in
the general case. We call such fragments “bounded friendly”.
We give two examples of non-trivial bounded-friendly frag-
ments, one for discrete and one for dense time.

A. Simpler Bounded Variability over Discrete Time

Over discrete time, MTL essentially boils down to an
exponentially succinct version of LTL. Therefore, we can try
to lift some complexity results about simpler fragments of

LTL [27], [7], [4] to MTL over IN, and use them to identify
bounded-friendly fragments.

Con51der the two dual MTL fragments .7-"<> o and .FD O

<> o (respectively,) ~) denotes the MTL fragment using
only the ¢ ; (respectlvely, 0;) and (O ; modalities (which we
now regard as primitive), the propositional connectives A and
V, and where negations only appear on atomic propositions.
Satisfiability for these fragments is decidable in exponential
time.

Lemma 13. Satisfiability of .7-"<> o and of]:D o over N is
EXP-complete.

Proof: Consider the LTL fragment [,;rx which only uses
the eventually and next LTL modalities, the propositional
connectives A and V, and where negations only appear on
atomic propositions; [27, Th. 3.7] proves that satisfiability
for ﬁFX is NP-complete. We outline how to transform a
generic i € .7-" into a A\ € L7 Fx such that p and A are
equisatisfiable; the converse transformation is also derivable
along the same lines. In general, the size of A is exponential
in the size of p due to the fact that metric constraints are
encoded in binary in u. The lemma follows as a manifestation
of the “succinctness phenomenon” [25, Chap. 20].

The models of £ Fx are denumerable sequences w =
wo wy - - - such that wy is the set of propositions that hold at
step k;. We conventionally assume that a step in w corresponds
to one discrete time instant; thus, a generic IN-timed word
w = (o0,tp) (01,t1) - -+ uniquely corresponds to a sequence
w = wowy --- such that: for all £ € IN, w¢, = oy; and, for
all h’s that are not timestamps of w, w, = {€}, where € is a
special proposition denoting absence of a reading.

We define a translation 7 from]-'3'7 o to L;x inductively as
follows, for a,b € IN and ¢ € INU {o0}:

b—a nested Xs

——N—
X (mr VX(mr V--0))
XaF(ﬂ-T)

a—1 nested Xs

7 (Opam) = Xenxten—) ar(0,4(m)

where 7(m) = 7, and X, is a shorthand for k nested appli-
cations of X. 7 does not otherwise change the propositional
structure of formulas.

It should be clear that a generic p is satisfiable over timed
words over IN iff 7(u) is satisfiable: models of 7(u) are
obtained from models of g according to the mapping of
timed words described above. Furthermore, the size of 7(u) is
O(2|”|), since 7 “unrolls” the constants succinctly represented
in p, which results in a possible exponential blow-up. This
establishes the lemma for }'3' . The same complexity result
for 73 + follows by duality of (I and ¢. []

We can leverage Lemma |13[to show that]—"g O 1s bounded
friendly. Let v, V be any variability bounds, with v > 0 w.l.0.g.
First, note that the equivalent .F+ formulas 00, (L)
and OO, (T), for v = [V/v], hold only for models with

T O[a,b](ﬂ—)) =
™ (O (™) =

variability bounded by v/V (specifically, they are stricter than
the definition of bounded variability). Consider now a generic
MTL formula ¢ written as ¢’ A 1, where 9 €]-'g’ O The
implication ¢ = B,y = —¢ V B, v, where B,y is one
of the two just defined]-'E,“O formulas implying bounded
variability, is an]-'ﬂ formula: push in the outermost negation
—1p, and use the duality between ¢ and [J. The validity of
¥ = B,y can thus be decided in singly exponential time
(Lemma [13), as opposed to BV (v, V) or the validity of ¢
which are EXPSPACE-complete: solving them for a generic
¢ takes trime doubly exponential in |¢|. We can thus decide
whether ¢ = B, v is valid in singly exponential time; if it is,
¢ has bounded variability a fortiori, and hence we can study
its validity with the simplified algorithms [14], [L15].

We can show by duality that F, g o is also bounded friendly;
for example, instead of the validity of ©» = B,y, we
equivalently consider the unsatisfiability of ¥ A =B, v .

B. Simpler Bounded Variability over Continuous Time

While MTL is highly undecidable over dense time, a
number of expressive yet decidable fragments thereof have
been identified. MITL is the fragment of MTL where in-
tervals are non-punctual, that is non-singular; MITL is fully
decidable with EXPSPACE-complete complexity [1I], [16].
More recently, other decidable expressive fragments have been
identified that allow singular intervals [24]; BMTL and SMTL,
in particular, are interesting because their expressive power is
incomparable with MITL’s.

From the point of view of deciding bounded variability,
however, MITL remains the most suitable choice. SMTL
validity has a non-elementary decision problem; while this
is still better than the undecidable BV . (v, V), it makes it
intractable in practice. BMTL validity, in contrast, is decidable
in EXPSPACE; however, BMTL cannot express invariance
properties since only finite intervals are allowed, and it is clear
that bounded variability is a form of invariance property since
it involves whole timed words.

Let us show that MITL is bounded friendly. Let v,V be
any variability bounds, with v > 0 w.l.o.g. (the limit case
v = 0 can be handled separately). Note that the MITL formula
Byv = 00 (L), for v = [V/v], subsumes variability
bounded by v/V. Consider now a generic MTL formula ¢
written as ¢’ A1), where 1) is an MITL formula. The implication
¥ = B,y obviously also is an MITL formula. The validity
of ¥ = B, v is thus decidable; if v = B,y is valid, ¢
has bounded variability a fortiori, and hence its validity is
decidable [12].

As a final remark, notice how leveraging MITL’s bounded
friendliness can still be useful to determine the satisfiability of
MTL specifications not entirely expressed in MITL: as long as
the part 1) expressible in MITL entails bounded variability, the
rest ¢’ of the actual specification can use any MTL operator,
including singular intervals.

VII. DISCUSSION: OTHER MTL SEMANTICS

Remark |1| clarified that the results of this paper assume
infinite timed words, and the continuous semantics over dense
time. While these are perfectly common assumptions (and the
naturalness of the pointwise semantics over dense time has
been questioned [16]), it is still interesting to get an idea of
how our results would change under a different semantics.

Over discrete time, it is straightforward to notice that all
complexity results proved in carry over to the finite-word
semantics (where decidability also has the same EXPSPACE
complexity). Over dense time, it is possible to extend the
results of Section [V-A] to the signal semantics of [1I], [13]—
which can be seen as a variant of the continuous semantics—
by reusing some of the constructions and definitions of [12].

The situation over dense timed words (both finite and
infinite) under the pointwise semantics (and no past operators)
is different. For both finite and infinite words, BV g. (v, V)
is no more difficult than validity, because one can encode the
bounded variability requirement as in Lemma Therefore,
BVR.,(v,V) is decidable (nonprimitive recursive) over finite
words [23], and is RE over infinite words [22]. One can
prove matching lower bounds along the lines of the proof
of Lemma [T} the abstraction of clock valuations into clock
regions used in the construction of [23]] is such that the
time difference between any pair of consecutive timestamps
in any word that satisfies a formula ¢ is bounded above
by a finite constant J, that depends only on ¢. Therefore,
BVR.,(0,d,4) for ¢ reduces to non-satisfiability of ¢, giving
the matching lower bounds through complement. Finally,
BVR., is RE under the pointwise semantics: by definition
of RE as existential quantification over a recursive relation
(finite words); and by dovetailing through the possible values
v,V and enumerating BV . , (v, V') for them (infinite words).
Finding matching lower bounds belongs to future work, which
may exploit the connection between MTL over infinite words
under the pointwise semantics and channel machines with
insertion errors [22]].

VIII. CONCLUSIONS

The strong negative results of the paper need not be the
deathblow to leveraging bounded variability to simplify tem-
poral reasoning. From a broader perspective, we can still look
at the glass as half-full: while deciding bounded variability is
intractable in general, there are situations where the physical
requirements of a system include a notion of finite speed,
which bounded variability naturally embodies. For such sys-
tems, there is still hope of using the expressiveness of MTL
without succumbing to the dark side of intractability.

Acknowledgements. Thanks to the anonymous reviewers of
TIME 2014 for useful comments; in particular, reviewer 4’s
insightful observations helped simplify some of the proofs.

REFERENCES

[1] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” JACM, vol. 43, no. 1, pp. 116-146, 1996.

[7]

[8]
[9]
[10]

(1]

[12]

[13]

[14]

R. Alur and T. A. Henzinger, “Real-time logics: Complexity and
expressiveness,” Inf. Comp., vol. 104, no. 1, pp. 35-77, 1993.

——, “A really temporal logic,” JACM, vol. 41, no. 1, pp. 181-204,
1994.

M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer,
“The complexity of generalized satisfiability for linear temporal logic,”
Logical Methods in Computer Science, vol. 5, no. 1, 2009.

P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell, “The cost of
punctuality,” in LICS, 2007, pp. 109-120.

D. Bresolin, D. Della Monica, V. Goranko, A. Montanari, and G. Sci-
avicco, “The dark side of interval temporal logic: Sharpening the
undecidability border,” in TIME. IEEE, 2011, pp. 131-138.

S. Demri and P. Schnoebelen, “The complexity of propositional linear
temporal logics in simple cases,” Inf. Comput., vol. 174, no. 1, pp. 84—
103, 2002.

D. D’Souza and P. Prabhakar, “On the expressiveness of MTL in the
pointwise and continuous semantics,” STTT, vol. 9, no. 1, pp. 1-4, 2007.
E. A. Emerson, “Temporal and modal logic,” in Handbook of Theoretical
Computer Science. Elsevier, 1990, pp. 996-1072.

M. Frinzle, “Model-checking dense-time duration calculus,” Formal
Asp. Comput., vol. 16, no. 2, pp. 121-139, 2004.

C. A. Furia, D. Mandrioli, A. Morzenti, and M. Rossi, Modeling Time
in Computing, ser. Monographs in Theoretical Computer Science. An
EATCS series. Springer, 2012.

C. A. Furia and M. Rossi, “MTL with bounded variability: Decidability
and complexity,” in FORMATS, ser. LNCS, vol. 5215. Springer, 2008,
pp. 109-123.

——, “A theory of sampling for continuous-time metric temporal logic,”
ACM Transactions on Computational Logic, vol. 12, no. 1, pp. 1-40,
2010, article 8.

C. A. Furia and P. Spoletini, “On relaxing metric information in linear
temporal logic,” in TIME. 1EEE, 2011, pp. 72-79.

[15]
[16]
[17]
(18]

(19]

[20]

[21]

[22]

[23]
[24]

[25]
[26]

[27]

(28]

——, “Automata-based verification of linear temporal logic models with
bounded variability,” in TIME. IEEE, 2012, pp. 89-96.

Y. Hirshfeld and A. M. Rabinovich, “Logics for real time: Decidability
and complexity,” Fundam. Inform., vol. 62, no. 1, pp. 1-28, 2004.

P. Hunter, J. Ouaknine, and J. Worrell, “Expressive completeness for
metric temporal logic,” in LICS. 1EEE, 2013, pp. 349-357.

R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255-299, 1990.

C. Lutz, D. Walther, and F. Wolter, “Quantitative temporal logics over
the reals: PSPACE and below,” Inf. Comput., vol. 205, no. 1, pp. 99-123,
2007.

0. Maler, D. Nickovic, and A. Pnueli, “Real time temporal logic: Past,
present, future,” in FORMATS, ser. LNCS, vol. 3829. Springer, 2005,
pp. 2-16.

M. L. Minsky, Computation: Finite and Infinite Machines.
Hall, 1967.

J. Ouaknine and J. Worrell, “On metric temporal logic and faulty Turing
machines,” in FoSSaCS$, ser. LNCS, vol. 3921. Springer, 2006, pp. 217-
230.

——, “On the decidability and complexity of metric temporal logic over
finite words,” Logical Methods in Computer Science, vol. 3, no. 1, 2007.
——, “Some recent results in metric temporal logic,” in FORMATS, ser.
LNCS, vol. 5215. Springer, 2008, pp. 1-13.

C. Papadimitriou, Computational Complexity. ~Addison-Wesley, 1994.
H. Rogers, Jr., Theory of Recursive Functions and Effective Computabil-
ity. MIT Press, 1987.

A. P. Sistla and E. M. Clarke, “The complexity of propositional linear
temporal logics,” JACM, vol. 32, no. 3, pp. 733-749, 1985.

T. Wilke, “Specifying timed state sequences in powerful decidable logics
and timed automata,” in FTRTFT, ser. LNCS, vol. 863. Springer, 1994,

Prentice

pp. 694-715.

	The Benefits of Bounding Variability
	Timed Words and Variability
	MTL: Metric Temporal Logic
	Counter Machines
	Bounded and Unbounded Counters
	MTL and Counter Machines

	The Complexity of Bounded Variability
	Complexity of Bounded Variability over Continuous Time
	Complexity of Bounded Variability over Discrete Time

	Bounded Variability in Simple Cases
	Simpler Bounded Variability over Discrete Time
	Simpler Bounded Variability over Continuous Time

	Discussion: Other MTL Semantics
	Conclusions
	References

