A Theory of Sampling for
Continuous-Time Metric Temporal Logic

Carlo A. Furia
ETH Zurich
and

Matteo Rossi
Politecnico di Milano

This article revisits the classical notion of sampling in the setting of real-time temporal logics
for the modeling and analysis of systems. The relationship between the satisfiability of Metric
Temporal Logic (MTL) formulas over continuous-time models and over discrete-time models is
studied. It is shown to what extent discrete-time sequences obtained by sampling continuous-time
signals capture the semantics of MTL formulas over the two time domains. The main results
apply to “flat” formulas that do not nest temporal operators and can be applied to the problem
of reducing the verification problem for MTL over continuous-time models to the same problem
over discrete-time, resulting in an automated partial practically-efficient discretization technique.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.1 [Logics and Meanings of Programs]|: Specifying and Verifying and Reasoning
about Programs; F.4.3 [Mathematical Logic and Formal Languages|: Formal Languages

General Terms: Theory, Verification

Additional Key Words and Phrases: Real-time, metric temporal logic, hybrid systems

1. INTRODUCTION

Computer programs are inherently discrete items, and they are typically modeled
through techniques from the discrete mathematics domain. If, however, one shifts
from a computer-centric to a system-centric view [Furia et al. 2010], physical ele-
ments, which are best described through continuous signals, enter the picture and
must be taken into account throughout the system development process. This is
the challenge that is at the core of the research on real-time and hybrid systems
[Henzinger and Sifakis 2006]. The challenge has two facets: modeling systems that
integrate continuous and discrete components and analyzing properties of the inte-
grated systems.

Author’s address: carlo.furia@inf.ethz.ch.

A preliminary version of this work appeared in [Furia and Rossi 2006; Furia et al. 2008a].

This work has been partially supported by the Italian Government under the project ArtDeco
(FIRB RBNEO5C3AH) and by the European Commission, Programme IDEAS-ERC, Project
227977-SMScom.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 20YY ACM 1529-3785/20YY /0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1-39.

2 . C. A. Furia and M. Rossi

In this article we develop some techniques for the modeling and analysis of real-
time systems with mixed continuous- and discrete-time components. Our approach
targets the well-known Metric Temporal Logic (MTL [Koymans 1990; Alur and
Henzinger 1993]) as formal notation, and it is is based on the classical notion of
sampling.

Sampling is a widely-used technique in the engineering domain, in particular in
signal processing and automatic control, whereby continuous-time signals are trans-
formed in discrete-time counterparts that are more amenable to digital processing
[Benedetto and Ferreira 2001]. In systems where continuous- and discrete-time com-
ponents interact, a sampler constitutes the interface between these two classes of
components, as it retains some partial information of the continuous-time processes
and passes it to the discrete-time parts (see Figure 1). The classical sampling theory

LN s

sampler

Fig. 1. A system with a sampler.

determines qualitatively how much information is preserved in this discretization
process, and when the continuous-time signal can be perfectly reconstructed solely
from its discrete-time samplings.

The sampling approach described in this article borrows from these well-known
ideas, but revisits them in the very different setting of formal modeling and analysis
of systems with real-time temporal logics.!

In our approach, the behavior of components is modeled by means of MTL for-
mulas. MTL formulas can be given a continuous-time or discrete-time semantics
by interpreting them over sets of continuous- or discrete-time behaviors? respec-
tively (see Section 2 for formal definitions). Accordingly, MTL formulas can model
either continuous- or discrete-time components. The problem of providing a uni-
fied semantics is then solved by introducing simple syntactic transformations to be
applied to MTL formulas when moving their interpretation from continuous to dis-
crete time, or vice versa. These transformations take into account the information
that is preserved under sampling. That is, given a continuous-time formula ¢, its
(transformed) discrete-time counterpart ¢y is satisfied precisely by all discrete-time
behaviors that are obtained by sampling the continuous-time behaviors satisfying
¢r- Information preservation requires however an additional requirement — called
non-Berkeleyness — on the sampled continuous-time behaviors to ensure that they
are sufficiently “slow” with respect to the speed of the sampling process.

In summary, the contribution of this article is twofold. First, it introduces con-
ditions that allow us to precisely relate the satisfiability of continuous-time MTL
formulas to that of some suitable, “sampled”, discrete-time counterparts. Second, it

1Section 5.3 discusses in some detail how the classical notion of sampling and the one presented
here are related, though different.
2Also called (Boolean) signals [Maler et al. 2006; Hirshfeld and Rabinovich 2004].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 3

exploits this relation to define an effective, albeit partial, automated analysis tech-
nique that can be used to prove (or disprove) properties of systems with continuous-
time components by reduction to the (usually simpler) discrete-time case. In this
paper we do not deal with aspects regarding its implementation and performance
in practice, which have been dealt with in related work [Furia et al. 2008a; 2008b;
Bersani et al. 2009]. Rather, we focus on the mathematical concepts underlying
the relation between continuous- and discrete-time semantics of MTL.

This article is structured as follows. Section 2 introduces the MTL notation
and its formal semantics, and discusses the expressiveness of some of its significant
subsets. Section 3 presents the notions of sampling and sampling invariance for
MTL, and proves some fundamental results about significant subsets of the MTL
language that are amenable to the sampling technique introduced beforehand, and
hence are suitable to define a unified semantics. Section 4 shows how the results of
Section 3 can be applied to the problem of automated verification of continuous-
time systems described with MTL. Finally, Section 5 provides an overview of related
work, focusing on a few well-known approaches that are similar to ours; Section 6
briefly concludes.

Let us remark that the mathematical distinction between continuous and merely
dense time models does not impact the results of this paper. Accordingly, we will
essentially use the two terms as synonyms.

2. METRIC TEMPORAL LOGIC(S)

The symbols Z, @, and R denote the sets of integer, rational, and real numbers,
respectively. For a set $, S, with ~ one of <, <, > > and ¢ € $ denotes the subset
{s €S |s~c} CS; for instance Z>o = IN denotes the set of nonnegative integers
(i.e., naturals).

An interval I of a set $ is a convex subset (I,u) of $ with [,u € $, (one of
(,[, and) one of),]. An interval is empty iff it contains no points; an interval is
punctual (or singular) iff [= u and the interval is closed (i.e., it contains exactly
one point). The length of an interval is given by |I| = max(u—1,0). —I denotes the
interval (—u, —1), and I &t = ¢ @ I denotes the interval (¢t +1,¢+ u), for any ¢t € $.
For any numbers z,y with y > 0, + 0co/y is defined to be +oco. We occasionally
represent intervals by pseudo-arithmetic expressions such as > z, > z, < z, < x,
and = z for (z,00), [x,00), [0,2), [0,z] and [z, z], respectively. For simplicity,
we sometimes relax the notation for unbounded intervals and represent them with
square — rather than round — closing brackets.

2.1 Behaviors

In this paper, T denotes any of the two time domains R and Z. It is not difficult
to adapt most notions and results to their mono-infinite counterparts R>o and N,
and possibly to other dense and discrete sets suitable to represent time domains
[Koymans 1992]. Also, let P be a set of propositional letters.

DEFINITION 1 BEHAVIORS. A (timed) behavior over time domain T and alpha-
bet P is a function b : T — 2F which maps every time instant t € T to the set of
propositions b(t) € 27 that hold at t. The set of all behaviors over time domain T
and alphabet P is denoted by BPT.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 . C. A. Furia and M. Rossi

b|p is a behavior over alphabet P C P, denoting the projection of b over P. For
a behavior b over some dense time domain T, let 7(b) denote the ordered (multi)set
of its discontinuity points, that is 7(b) = {& € T | b(x) # lim;_,,- b(t), or b(z) #
lim;_, .+ b(t), or any of the two limits does not exist}, where each point that is both
a right- and a left-discontinuity appears twice in 7(b). When T is a discrete set,
7(b) is defined to be the time domain T itself. If 7(b) is discrete, we can represent
it as an ordered sequence (possibly unbounded to +00) of elements 7; for i € I it
will be clear from the context whether we are treating 7(b) as a sequence or as a
set. Elements in 7(b) are called the change (or transition) instants of b. 7(b) can
be unbounded to +oo only if T has the same property.

2.1.0.1 Non-Zenoness. Since one is typically interested only in behaviors that
represent physically meaningful behaviors, it is common to assume some regularity
requirements. In particular, it is customary to assume mon-Zenoness, also called
finite variability [Hirshfeld and Rabinovich 2004].

DEFINITION 2 NON-ZENONESS. A behavior b € BPT is non-Zeno iff 7(b) has no
accumulation points. The set of all non-Zeno behaviors is denoted by BPI .

Notice that discrete-time behaviors are trivially non-Zeno. Also, it should be clear
that every non-Zeno behavior can be represented through a canonical countable
sequence of adjacent intervals of T such that b is constant on every such interval.
Namely, for b € BPT, «(b) is an ordered sequence of intervals ¢(b) = {I; = (*l;,u;)*}
for i € I such that:

(1) (cardinality of 1(b)) Iis an interval of Z with cardinality |7(b)|+1 (in particular,
T is finite iff 7(b) is finite, otherwise I is denumerable);

(2) (partitioning of T) the intervals in ¢(b) form a partition of T;

(3) (intervals change at transition points) for all i € T we have 7; = u; = l;11;

(4) (b constant over intervals) for all ¢ € I, for all ¢1,t2 € I; we have b(t1) = b(t2).

Note that ¢(b) is unique for any fixed set 7(b) or, in other words, is unique up to

translations of interval indices. Transitions at instants 7; corresponding to singular
intervals I; are called pointwise (or punctual) transitions.

2.1.0.2 Non-Berkeleyness. Some of the results of this paper will require a stronger
regularity requirement than non-Zenoness, named “non-Berkeleyness” [Furia et al.
2008a).

DEFINITION 3 NON-BERKELEYNESS. A behavior b € BPT is non-Berkeley for
0 € Rsg iff every maximal constancy interval contains a closed interval of size §.
The set of all behaviors in BPT that are non-Berkeley for § is denoted by BPTs;
with the notation introduced above, it is BPTs = {b € BPT | VI € «(b) : It € I :
[t,t 4+ 8] C I}. A behavior that is not non-Berkeley for every positive § is called
Berkeley.

Any behavior where some proposition holds at an isolated point t is Berkeley:
any 6 > 0 is such that [¢,¢+ 6] Z [t,t].

2.2 MTL: Syntax and Semantics
This section defines formally the syntax and semantics of MTL.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 5

2.2.1 MTL Syntazx. In this paper only propositional temporal logics are consid-
ered; correspondingly, the elementary building block of temporal logic formulas is
defined.

DEFINITION 4 PROPOSITIONAL FORMULAS. Propositional formulas m € PL are
defined by the grammar m :=p | —p | 7 Amy | T V7o — for p € P — as Boolean
combinations of propositional letters.

MTL formulas are obtained by combining propositional formulas with the bounded
until U; metric modality, as well as its past counterpart bounded since S;. We as-
sume a negation normal form (NNF) syntax, where negations are pushed down to
atomic propositions, as this will simplify the presentation of the results. Corre-
spondingly, bounded release R; and bounded trigger T; operators — duals to the
until and since operators, respectively — are introduced as primitive modalities.

DEFINITION 5 MTL FORMULAS. MTL formulas for a time domain T are de-
fined by the grammar:

=T p1 N2 | 1 Vo | Up(dr,d2) | Sp(d1,02) | Rp(d1,02) | Tr(d1,¢2)

where m € PL ranges over propositional formulas and I ranges over (possibly un-
bounded) intervals of the time domain T with endpoints in T NQ U {£oo} (notice
that negative endpoints are allowed).

Henceforth, we will drop interval I in modalities when it is [0, +00).
The results of this paper are focused on the flat subset bMTL of MTL, whose
formulas do not nest temporal operators.?

DEFINITION 6 FLAT MTL FORMULAS. bMTL formulas for a time domain T are
defined by the grammar:

Gu=m| P Ao | $1V ¢ | Up(mi, m2) | Sp(my, m2) | Ry(mr,ma) | Ty(m, m2)

where w, w1, 72 € PL range over propositional formulas and I ranges over (possibly
unbounded) intervals of the time domain T with endpoints in T N QU {xoo}.

In the remainder of the paper, the following other MTL subsets will be needed.

—LTL is the MTL subset where all intervals I are [0, +00) (i.e., all operators are
qualitative).

—Y-bMTL, with T any given set of MTL formulas, is the MTL subset defined by
the same grammar as bMTL, except that 7 is allowed to range over PLU T.

—An MTL formula is discrete-endpoint if all its intervals have endpoints in Z U
{zo0}.

—An MTL formula is dense-endpoint if all its intervals have endpoints in RU{+o00}.
It is clear that any MTL formula is dense-endpoint; we will use this redundant
terminology whenever useful to characterize formulas to be interpreted over a
dense time domain, as opposed to a discrete one.

3Different notions of flatness for (metric) temporal logic have been introduced in the literature
[Dams 1999; Comon and Cortier 2000; Bouyer et al. 2007].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 . C. A. Furia and M. Rossi

2.2.2 MTL Semantics. We define MTL semantics parametrically with respect
to the time domain T.

DEFINITION 7 MTL SEMANTICS. Let b € BPI be a behavior over P and time
domain T. Fort € T, MTL semantics is defined recursively as follows.*
b(t) Fr p iff peb(t)
b(t) Fr —p if p&o(t)
t) Fr o1 A b2 iff () Fr é1 and b(t) =t d2
t) Fr ¢1V $2 iff b(t) Fr 1 or b(t) Fr @2
t) ':"JF U1(¢1,¢2) fo dd el s.t.:t+deT, b(t+d)):']1“ o2, and
V' € [0,d) ¢t NT it is b(t') =1 ¢1
b(t) =1 S; (1, ¢2) iff 3delst:t—deT, b(t—d)FEr o2, and
V' e —[0,d) @t N'T it is b(t') =1 ¢1
b(t) |:']r R[(¢1a¢2) Zﬁ Vdel st. t+deT itis: b(t + d) ':"JI‘ oo or
' el0,d) @tNT s.t. b(t') =1 1
b(t) =1 T,(¢P1, P2) iff VvYdelst t—deTitis: b(t—d) 1 ¢2 or
e —0,d)@tNT s.t. b(t') Er é1
If b(t) =1 ¢ holds for allt € T we write b =1 ¢.

(
b(
b(
b(

We denote by [¢]r (respectively [¢]3) the set of all non-Zeno (respectively non-
Berkeley for §) models of formula ¢ over T, ie., [¢]r = {b € BPT | b =1 ¢}
(respectively [¢] = {b € BPTs | b =1 ¢}). If [¢]r is empty, ¢ is called T-
unsatisfiable, and T-satisfiable otherwise. If [¢]r coincides with BPT, ¢ is called
T-valid. Similar definitions are assumed for T°-satisfiability and T°-validity, with
respect to [[qb]]%. For b € BPT, we define the derived behavior b4 that represents the
truth value of ¢ over b as:

by (t) = {b(t) {0} ifb(t) fr

b(t) otherwise.

For propositional letters a, b, b2\ denotes the behavior obtained from b by renaming
a into b.

Notice that MTL is closed under complement, even if this is not apparent in the
definition of its syntax. More precisely, one can check that b(t) fer U (¢1, ¢2) holds
if and only if b(t) 1 R;(—¢1, 7¢2) does, thus providing an indirect definition of
negation. A similar relation holds for since with respect to trigger.

Definition 7 considers the basic modalities in their non-strict versions as, for
instance, U(¢1,d2) requires ¢1 to hold at the current instant; i.e., it constrains
the present as well as the strict future. Also, a global satisfiability semantics is
assumed, where b =1 ¢ entails that ¢ holds at all time instants ¢ € T. This is
different than the more common initial satisfiability semantics =t where b ERIt ¢
is defined as simply b(0) =1 ¢. Section 2.3 discusses the impact of these choices on
expressiveness.

2.2.3 Derived Operators and Variants. Standard abbreviations are assumed,
such as for T, L, =, and <.

4In this paper, the notation b(t) =T ¢ replaces the more common b,t =1 .

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL . 7

It is also customary to introduce a number of derived temporal operators; those
used in this paper are listed in Table I. Let us remark that the definitions of Table I
do not nest temporal operators, hence they define bMTL formulas if their arguments
are propositional formulas.

The first set of derived operators are the quantitative versions of the well-known
eventually < and globally O modalities of classic (qualitative) linear temporal logic.
On the other hand, Alw(¢) declares ¢ to hold always, i.e., at all time instants in
the future and in the past, whereas Som(¢) declares ¢ to hold sometimes.

The second set of derived operators are the nowon () modality and its variant
A\, with their past counterparts uptonow and A. Over dense-time non-Zeno
behaviors, (O(¢) holds at ¢ whenever there is a non-empty open interval E = (0, €)
(with € > 0) such that ¢ holds continuously over ¢t ® E. On the other hand, A(¢)
holds at t whenever ¢ holds nowon or ¢ holds precisely at t. These operators are
useful only over dense time, as they can be seen to be trivially equivalent to their
arguments over discrete time.

Finally, the last set of derived operators introduce so-called matching variants
[Furia and Rossi 2007] of the basic until and release modalities. For instance
matching until U¥(¢1, ¢2) requires both arguments ¢; and ¢, to hold together at
some future instant, whereas U(¢1,¢2) demands only ¢ to hold at some future
instant. The next section discusses the impact of these variants on expressiveness.

OPERATOR Y DEFINITION
O(p) = U, (T, 9)
(¢) = S/ (T.9)
O;(¢) =2 R;(L,)
Te) = T,(L,)
Alw(¢) 2 T(¢) A D(9)
Som(¢) £ T(¢) V(o)
O@) 2 Uog(d T)V (¢ AR o(¢, 1))
(d)) £ S>0(¢’ T) \ (_‘QSAT>0(¢7 J~))
M) 2 oV O(9)
O sV O(9)
Ul(p1,¢2) 2 U, (61,62 A 1)
Sy(p1,¢2) = S;(¢1,¢2 A1)
Ri(¢1,42) 2 R (¢1,62 V 1)
Ti(¢1,¢2) 2 T, (¢1,02 V 61)

Table I. MTL derived temporal operators

The value of propositional formulas change at most every d time units over non-
Berkeley behaviors BPR;; more precisely the following holds.

LEMMA 8. Let b € BPRs, t € R, and m € PL, such that b(t) =g 7. There exist
Cny¢p € R with ¢, — ¢, > 6 and ¢, < t < ¢, such that: (1) b(t') Er 7 for all
t € (cpren)i (2) blen) Fr O) (=m) VO(w); and (3) b(ey) Er T g5 (-m) v O ().
If in particular ¢,, — c¢p = § then also b(c,) =r ™ and b(cy) =R 7.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 . C. A. Furia and M. Rossi

PrOOF. The proof follows easily from Definition 3, which entails that non-
Berkeley behaviors b € BPRs are piecewise-constant functions of time whose dis-
continuities are at least § time units apart. [

2.3 Relations with Other Metric Temporal Logics

This section discusses expressiveness, decidability, and complexity results about
MTTL as has been introduced above.

2.3.1 Expressiveness. When defining the semantics of MTL formulas, several
different choices are possible.

2.3.1.1 Global vs. initial satisfiability. First of all, notice that initial satisfiability
is unambiguous only for mono-infinite time domains [Perrin and Pin 2004]. For such
domains, it is clear that the global satisfiability semantics can be reduced to local
satisfiability, as b 1 ¢ holds if and only if b(0) Er Alw(¢) does. Conversely,
local satisfiability is also reducible to global satisfiability, as for instance b =g.,
T_o(L) = ¢ is equivalent to b(0) Fg., ¢ for the mono-infinite time domain R,
where ﬁ>0(L) holds only at time 0. Therefore the two definitions of satisfiability
are essentially equivalent for generic MTL formulas.

However, global satisfiability is significantly more expressive than initial satisfia-
bility for flat PMTL formulas [Furia and Rossi 2007]. In particular, the expressive-
ness of the flat fragment is non-trivial under such global semantics as it corresponds
to an implicit nesting of a qualitative temporal operator over the simpler initial sat-
isfiability semantics. This entails that most common (real-time) properties — such
as (bounded) response and (bounded) invariance [Koymans 1990] — can be easily
expressed with flat formulas under the global satisfiability semantics. This is the
main reason for adopting such a semantics in this paper whose results are focused
on the flat fragment of MTL.

2.3.1.2 Flat vs. nesting. The syntactic restriction of flatness is also a semantic
restriction, i.e., PMTL is strictly less expressive than full MTL. This is the case not
only for dense time (which has been proved in [Furia and Rossi 2007]) but also for
discrete time (which has been proved in [Etessami and Wilke 1996; Thérien and
Wilke 2004; Kucera and Strejéek 2005; Demri and Schnoebelen 2002] already for
qualitative temporal logic), and regardless of whether a global or initial satisfiability
semantics is assumed.

On the other hand, if we consider the weaker requirement of inter-reducibility
of the satisfiability problems over global satisfiability, P MTL is as powerful as full
MTL. In other words, given any MTL formula ¢, it is possible to build a flat formula
¢’ € DMTL which is globally satisfiable if and only if ¢ is. In general, ¢’ “flattens”
¢ by introducing additional propositional letters that are equivalent to matching
nested sub-formulas in ¢, as shown in the following.

EXAMPLE 9. Let ¢ = p = O _5(O(0_4(q))). Let us introduce the auziliary
propositions a1 and as defined as equivalent to O_,(q) and O(a1) respectively.
Hence, the derived flat formula

¢ = (p=0(22) A (a1 05(q) A (a2 Ofar))
is equi-satisfiable to ¢ under the global satisfiability semantics.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 9

Details of this straightforward idea are shown in [Furia 2007; D’Souza et al. 2007]
for dense time models, but it should be clear that a similar result can be proved
for discrete time as well.

Let us finally consider dense-time behaviors that are non-Berkeley. In this case,
the expressiveness gap between flat and nesting formulas still exists [Furia and
Rossi 2007]. On the other hand, “flattening” is more intricate and cannot be
done as with generic behaviors without breaking non-Berkeleyness as shown in the
following example and discussed at greater length in Section 3.4.

ExaMPLE 10. MTL formula 1y = Som (6(—@) A O(p)) describes behaviors where

there exists a transition of proposition p from false to true. 1 is satisfiable over
non-Berkeley behaviors BPRs for any positive §. However, consider the flattening

1 of 1 built according to the procedure described above.
v = Som() A (aeOp)A0M)

Any behavior b € BPR. such that b =R v requires a to hold at some instant t. How-
ever, sub-formula a < 6(—\p) A QO(p) forces a to hold only exactly at the transition
points of p, pointwisely: any such b is Berkeley because S(ﬂp) AQ(p) holds only at
isolated points. Hence, 1 and v are not equi-satisfiable over non-Berkeley behaviors
for any 6 > 0.

2.3.1.3 Strictness and matchingness. The semantics of an until formula with
arguments ¢1, ¢2 requires the first argument ¢ to hold over an interval J = (0, d) Dt
from current instant ¢t. J can be taken to be open, half-open (with the left or right
end-point included), or closed. Correspondingly four variants of until are possible.
Each of them is labeled strict if J is open to the left and non-strict otherwise; and
matching if J is closed to the right and non-matching otherwise [Furia and Rossi
2007]. The most common variant of the until operator is strict and non-matching,
as it is simple to see that the three other variants are reducible to it. On the
contrary, this paper adopts a non-strict non-matching until as basic operator, as
the presentation of the results is more natural with non-strict operators.

In related work [Furia and Rossi 2007], we proved that all variants carry the same
expressive power for MTL over dense- and discrete-time behaviors. On the contrary,
strict until is more expressive than non-strict until for flat bMTL formulas.®

2.3.2 Decidability and Complezity. It is well-known that full MTL is undecid-
able over (non-Zeno) dense-time behaviors [Alur and Henzinger 1993]. The same
holds for flat PMTL as its satisfiability problem is inter-reducible to the same prob-
lem for full MTL.

On the contrary, MTL becomes fully decidable over discrete time, with EXPSPACE-
complete complexity [Alur and Henzinger 1993]. MTL is also fully decidable over
non-Berkeley dense-time behaviors BPT's for any fixed J, with the same complexity
as over discrete time [Furia and Rossi 2008].

5[Furia and Rossi 2007] proves this for dense-time behaviors, but the same can be seen to hold
over discrete-time behaviors as well.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 . C. A. Furia and M. Rossi

3. SAMPLING INVARIANCE

Throughout this section we assume R as dense (and continuous) time domain, and
7, as discrete time domain. It should be noted, however, that nearly all definitions
and results can be adapted with little effort to work with different pairs of dense
and discrete time domains as well, most notably the nonnegative reals and the
naturals.

3.1 Definitions

3.1.1 Sampling Functions. A sampling function is a mapping between dense-
time behaviors and discrete-time behaviors such that the latter are obtained by
“sampling” — in some sense — the values of the former. We use ¢, 5 to denote a
generic sampling function that is parametric with respect to a sampling period ¢
and an origin z.

The canonical sampling is a particular sampling function that models an idealized
sampling process where a discrete-time behavior is obtained from a dense-time
behavior by observing it at all instants corresponding to integer multiples of a
chosen period §.

DEFINITION 11 CANONICAL SAMPLING OF A BEHAVIOR. Letb € BPR be a dense-
time behavior, 6 € R~q a positive real, and z € R a basic offset. The canonical
sampling o [b] of b is the discrete-time behavior in BPZ defined by:

VkeZ: o5,b](k) = b(z+ ko)

We call § the sampling period and z the origin of the sampling. Note that 05, 1S
onto and total,’ for any 6, z.

Conversely, given a discrete-time behavior d € BPZ, 06_,; [2] is the set of all dense-
time behaviors such that their sampling is d.

o521d] = {b€BPR|d=0s_[b]}

3.1.2 On Dense- vs. Discrete-Time Semantics. Consider some MTL formula ¢
that can be interpreted over both dense- and discrete-time behaviors. Its semantics
is characterized by its dense-time models [¢]r on the one hand, and by its discrete-
time models [¢]z on the other hand. These two sets correspond to two different
semantics for the same formula. The fact that the discrete time domain is a subset of
the dense time domain prompts us to investigate the existence of a general relation
linking the two sets [¢]r and [¢]z. More precisely, we seek simple conditions
under which elements in [¢]z are precisely those obtained from elements in [¢]r
by applying the sampling function o5 _, for some 9, 2.

This ideal requirement must be relaxed to some extent to be achievable in prac-
tice, for a number of reasons that are outlined informally in the following example.

EXAMPLE 12. There are three fundamental discrepancies between discrete- and
dense-time semantics that must be accommodated to reconcile them according to the
notion of sampling.

The first has to do with differences in terms of time units. Consider for instance
formula O _,(p); when interpreted over dense time, it states that p holds for 2 time

6That is, it is defined for every b € BPR.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL . 11

units. If we switch to a discrete-time interpretation and consider a sampling period
of, say, 0 = 3/10, we would like the formula to refer to the same “sampled” interval.
Hence, it should be changed to Dgzo/g(p) because the dense-time interval of length
2 becomes a discrete-time interval containing 2/(3/10) sampling instants.

However, DSQO/S(p) cannot yet be interpreted over discrete time, as 20/3 is not an
integer; this shows a discrepancy in terms of granularity between dense and discrete
sets. Of course, this problem can be solved by rounding the rational value to the
nearest integer value, by taking its floor 6 or its ceiling 7. More precisely, whether
to round up or down is decided in order to have a conservative approximation of
the semantics. Intuitively, this means that intervals in “universal” formulas such
as O;(p) are rounded down — thus shrinking the interval into a smaller one —,
whereas intervals in “existential” formulas such as < ;(p) are rounded up — thus
expanding the interval into a larger one.

A similar granularity problem arises when interpreting a discrete-endpoint for-
mula over dense time. Consider the example of formula 0[1’2](p) that requires p to
hold one or two (discrete) time units in the future. In terms of dense-time units,
p must occur over the interval [0,25] = [3/10,3/5]. However, the formula must
hold also in between sampling instants when interpreted over dense-time behaviors.
We will show that this feature of the dense-time semantics can be accommodated by
expanding symmetrically the scaled interval into [(1 —1)4, (2 + 1)d] = [0,9/10].

The last subtlety has to do with the change speed of dense-time behaviors with
respect to the sampling period. Consider behavior b over proposition p such that p
holds for less than § time units, say over [6/4,0/2]. Formula Som(p) is clearly
satisfied by b over discrete time. However, any sampling oz [b], for any z €
(—6/2,6/4) U (§/2,00), does not have any sampling instant within [6/4,5/2], and
formula Som(p) is not satisfied by any such o4 [b]. This shows that only dense-time
behaviors where state changes are sufficiently sparse can guarantee that formula sat-
isfaction is preserved while moving to a sampled discrete-time semantics.

The discrepancies outlined above are bridged by introducing suitable notions.
The concept of slowly-changing behavior is captured by the non-Berkeleyness con-
straint, introduced in Section 2.1. The following notion of adaptation function
formalizes instead changes to intervals in MTL formulas, which take discrepancies
between time units and granularities into account.

DEFINITION 13 ADAPTATION. A R-to-Z adaptation is a mapping from dense-
endpoint to discrete-endpoint MTL formulas; a Z-to-R adaptation is a mapping
from discrete-endpoint to dense-endpoint MTL formulas.

3.1.3 Sampling Invariance. We can finally introduce the definition of sampling
invariance over non-Berkeley behaviors, which captures appropriately a notion of
equivalence under sampling of models of MTL formulas.

DEFINITION 14 SAMPLING INVARIANCE. Let ¢ be an MTL formula over alpha-
bet P; v® 0% a R-to-Z and Z-to-R adaptation, respectively; & a sampling period;
and S5, a sampling function.

—¢ is closed under sampling (c.u.s.) iff for any non-Berkeley behavior b € BPR;

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 . C. A. Furia and M. Rossi

and any origin z:
beloln implies <.[b] € [WR[g]]z

—¢ is closed under inverse sampling (c.u.i.s.) iff for any discrete-time behavior
b € BPZ and any origin z:

b [d]z implies Wb’ € ;! [)] N BPR it is b € [v”[¢]]%

—¢ is sampling invariant (s.i.) iff it is c.u.s. if it is a dense-endpoint formula and
it is c.u.i.S. if it is a discrete-endpoint formula.

Definition 14 depends on several parameters: R-to-Z and Z-tolR adaptations, a
sampling period 6, and a sampling function ¢5 .. In the following we will use the
expression “sampling invariance (c.u.s. or c.u.i.s) with respect to” to highlight a
particular choice for the parameters (when they are not obvious from the context).

3.2 lllustrative Examples

Before delving into the technical details of sampling invariance for generic MTL
formulas, this sub-section illustrates the fundamental ideas that underlie the re-
sults of the paper. The presentation is deliberately partly informal and based on
examples, with the goal of stimulating the intuition that substantiates the choice of
adaptations (in Section 3.3.1) and the rationale of the technical proofs (in Section
15). In all the examples of this sub-section, we assume a sampling period 6 = 1.

The first example demonstrates the need for non-Berkeley behaviors with the
same 4 as the chosen sampling period. Consider formula <, (p) and the behavior
for p in Figure 2(a). <>[2)5 (p) holds everywhere in dense time, but p keeps on
switching truth value in such a way that it is false at every sampled instant. If the
sampling period is not commensurate to the “speed” of the dense-time behavior
there is always the possibility of similarly twisted behaviors which prevent achieving
c.u.s. even for very simple formulas. This justifies using the same ¢ for the non-
Berkeley behaviors BPR;s and the sampling function s .

If we assume such a constraint on the behaviors considered, c.u.s. is straightfor-
ward for “existential” — that is “eventually” — formulas. Consider again formula
Ol (p) and the behavior for p in Figure 2(b). It should be clear that co = O (p)
because p holds at least once in any closed interval of length 3. It follows that the
same holds for the discrete-time sampling ds of ¢o. In fact, consider any interval
I of size 3 with integer endpoints and an instant within I where p holds. Non-
Berkeleyness entails that p holds until the next sampling instant, since the previous
sampling instant, or both. Hence, it reaches a sampling instant that fits the interval
I over discrete time, which satisfies formula 0[275](p) over discrete time. This can
be generalized to show that no change in the time interval is required for existen-
tial formulas when passing from dense- to discrete-time interpretations — except
for scaling the units according to the sampling period. As a concrete example in
Figure 2(b), evaluate O (p) at —1, which references the dense-time interval [1,4].
Consider the instant between 1 and 2 marked with a cross where p holds; p also
holds since 1, which is a sampling instant that belongs to the discrete-time interval
[1,4].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 13

iy R | 0 T) 3 1 5
(a) Behaviors c¢1,dy
— & & — . ————— &
) E— 0 T D 3 7l 5 "
(b) Behaviors ca,d2
O------- o)
———————————————— @ - @@ @ @f @
——e—o e
By R | 0 T D 3 1 5
(c) Behaviors c3,ds
—_———————— o9 -
) B 0 T D 3 7l 5 "
(d) Behaviors c4,dy
O------- O------- Q------- Q------- Q------- @------- o-----
o e o o
,,,,,,,, O
—_—————o———— o
By . | 0 T D 3 1 5
(e) Behaviors cs,ds
———————— - LR R - R
—e o e e
O------- @------- @------- o-----
— o ¢ o o

—2 -1 0 1z 2 3 4)
(f) Behaviors cg,ds

Fig. 2. In all the pictures, the behavior of p is pictured by solid lines (in dense time) and discs (in
sampled discrete time); the behavior of q is pictured by dotted lines (in dense time) and circles
(in sampled discrete time); the higher value in any behavior corresponds to a T truth value; for
i=1,...,6, ¢; denotes the dense-time behavior and d; its discrete-time sampling.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 . C. A. Furia and M. Rossi

A similar reasoning works for “universal” — that is “always” — formulas, such
as q = O, 5(p). Behavior c3 in Figure 2(c) is such that ¢z = q = Ola,5 (P);
in particular p has to hold over the dense-time interval [1,4]. Over discrete-time,
sampled values of p have to hold over the discrete-time interval with the same
endpoints, which is obviously the case. Again, this generalizes to universal formulas,
which do not require changes in the time intervals when adapting them from dense-
to discrete-time interpretations.

Things are more convoluted for c.u.i.s., which mandates changing the size of
the intervals according to the type of formula — existential or universal. Let us
consider again the existential formula 0[2’5] (p); it holds everywhere in the discrete-
time behavior d4 in Figure 2(d). If, however, the same formula is interpreted over
the dense-time behavior ¢4, of which dy is a sampling, it does not hold everywhere.
In particular, it holds at —2 and —1 but it does not hold in the open interval
(=2,—1): see the cross mark and the corresponding interval of size 3 starting
between 0 and 1. The problem here is that non-Berkeleyness is a constraint on
speed, not synchronization: the two samplings of p at 0 and 4 record the value of
the dense-time behavior ¢4 respectively right before 0 and right after 4, hence leaving
it unconstrained in the open interval (0,4) of size larger than 3. The “interval of
uncertainty” is never larger than one sampling period on each side, hence we suggest
to introduce an Z-to-R adaptation that grows intervals in existential formulas by
this amount, thus accommodating the uncertainty in the worst case. In the example,
the adapted formula is 0[1’6} (p) which clearly holds everywhere over cy.

The dual reasoning suggests the adaptation for universal formulas such as q =
D[275](p). In Figure 2(e), the formula holds everywhere over discrete time. Over
dense time, however, q holds shortly before —1 (see cross mark) but p does not
hold everywhere in the corresponding interval of size 3 starting shortly before 1.
Again, a weaker formula holds over dense time, obtained by shrinking intervals in
universal formulas by one sampling period on each side; the Z-to-R adaptation
has to implement such a modification. In the example, the adapted formula is
q= D[37 4](p) which clearly holds everywhere over cs.

In order to rigorously extend the informal reasoning so far to arbitrary flat MTL
formulas, we have to combine “eventually” and “always” formulas with the binary
until and release modalities. Let us demonstrate the intuition behind handling the
former which turns out to be more intricate. Consider a qualitative formula U(q, p)
and the behavior in Figure 2(f); let # denote the time instant between 1 and 2
marked with a cross and assume that p holds, in particular, precisely at x. Then,
the until formula U(q, p) holds continuously over the interval (—oo, 1] in dense time
(and beyond up to z). Correspondingly, the same formula holds over the discrete
interval (—oo,1] in discrete time. This suggests that wuntil formulas are c.u.s., as
we will demonstrate formally in the rest of the paper.

Closure under inverse sampling is, again, more problematic. Consider the same
formula U(q, p) and the same discrete-time behavior dg; we have seen that the until
formula holds over the discrete interval (—oo, 1] in discrete time. Take a slightly
different dense-time behavior, one where p is false and ¢ is true at « and everything
else is as in ¢g; let us name ¢ this modified behavior. Obviously, dg is a sampling
of ¢ as well as ¢g. However, U(q, p) does not hold anywhere in (—oo, 1] over cj

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 15

because p becomes true left-continuously at x, which is incompatible with the dense-
time semantics of until. In this case, the Z-to-R adaptation will have to replace
the second argument p of the until formula with the weaker A(p) which holds at
x in cf (as well as in ¢g). Alternatively, no adaptation is needed if we consider
the stronger matching variant of until U%(q, p), where p and q would have to hold
together at 1 or 2 in discrete time.

The following sub-sections present rigorous proofs of s.i. of MTL formulas that
build upon the intuition behind the examples in the present sub-section.

3.3 Sampling Invariance for MTL

This section provides a proof of the following fundamental result: there exist two

suitable regular adaptations n5, n% such that bMTL is s.i. for the canonical sampling
. In addition, the adaptations can be proved to introduce minimal changes in

the mtervals of the adapted formulas, in the sense of Theorems 17 and 18 below.

3.3.1 Canonical Adaptations. Consider R-to-Z adaptation n¥, parametric with
respect to positive real parameter §, defined inductively as follows.

77?[77] i

15| Uty (61, 62) Utli/s).fuysn) (15 [01] 15t [62])

5 Sy (01,02)| £ S8y ruyen (05 101] 15t [d2])
3 Rty (#1:62)| = Ry (03[0 15 [02])

D RULI I

where [{fl/(ﬂ i (s |

il — {Wﬂ if) is)

> 1>

(1>

is (

lu/d] if) is |
5 T<l,u>(¢1,¢2)} = L (77(]5 1], R [o2]

)
I (LN
here ! {w/aw £ s |

ond 1 = {(u/cﬂ if) s)
|u/o| if) is]

5 (61] A g]

1 (o) v o)

> >

Consider Z-to-R adaptation 775Z, parametric with respect to positive real param-
eter §, defined inductively as follows.”

"The restriction to closed intervals is clearly without loss of generality over discrete time.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 . C. A. Furia and M. Rossi

nx] 2 g

Ty Uppu (01, 02) = Uta—2)5.(ut1)) (% [61], A(nF [¢2]))
my S (01, 92) < S((1-2)6,(ut1)9) (W%[@]vx(%z[‘b?]))
Ty | R (01:62) | = Rigiys umnyg (75 [01],n5 [02])

M | T (@1:02)| = Ty nys (15 (011,05 [02])

z
5

nZ(p1 A d2) £ nZ(p1] AnZ(pa)

nZ(p1 V ¢2] £ nZp1] V nZ(pa)

The proof of Theorem 15 will show that the asymmetry in the adaptation for
until (and since) operators is needed to reconcile the non-matching semantics over
discrete and dense time. Alternatively, one can assume discrete-endpoint until
(and since) operators in their matching variant (see Table I) which preserves the
symmetry in the adaptations. We include them explicitly in the treatment also
because they will be useful for the results of Section 4.

77§Z U[iz’u] (¢1,02)| £ U%(171)5,(u+1)5) (775Z[¢1] a77§Z[¢2])
ny S[il,u] (61, 2) S(l(l—1)5,(u+1)5) (n%1¢1] ,n¥(2])

We name 7% and nZ canonical adaptations.

(1>

3.3.2 Flat MTL is Sampling Invariant. The main result of the paper is now
proved.

THEOREM 15 SAMPLING INVARIANCE OF bMTL. Let § > 0 be any sampling pe-
riod and z be any origin. All flat MTL formulas are sampling invariant with respect
to the canonical adaptations 77(]%{,775Z and the canonical sampling function Oz

PROOF. The proof is split into two parts: first we show that any dense-endpoint
flat formula ¢ is c.u.s.; then we show that any discrete-endpoint flat formula ¢ is
cais.®

Let us introduce the following abbreviations: for a dense-time instant r, let £2(r)
denote the sampling instant z+ | (r —z) /44, which is immediately before or exactly
at r, and let O(r) denote the sampling instant z+ [(r—z)/d19, which is immediately
after or exactly at r. Also, w(r) and o(r) denote the distances between r and its
previous and next sampling instant, respectively; that is w(r) = r — Q(r) and

o(r) = O(r) — r. Obviously w(r),o(r) > 0.°

(Closure under sampling). Let ¢ be a generic dense-endpoint flat MTL formula,
b a dense-time non-Berkeley behavior in [¢]%, and ¢’ = n&[#]. Then, let b’ be the
sampling o . [b] of b with the given origin and sampling period.

8For brevity we omit dealing with past operators, as it can be done from the corresponding future
operators with little effort.

9This proof exploits some properties of the floor and ceiling functions. We refer the reader to
[Graham et al. 1994] for a thorough treatment of these functions.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL . 17

For a generic sampling instant t = z + kd, we show that b(t) FEr ¢ implies
b (k) =z ¢', by induction on the structure of ¢. This proves that if b =g ¢ then
05,10 Fz nR[¢], for any b € BPRs; hence any bMTL dense-endpoint formula is
C.U.S.

—¢p=m, = ¢1 A ¢a, and ¢ = @1 V ¢ are straightforward from the definitions.
—¢=U (1, m2). ¢"is Uy, (1, m2), with I = |1/6] and v’ = [u/d].
Let d be a real in (l,u) such that b(t + d) R 72 and, for all e € [0,d), it is
b(t + e) ERr 7. Since b in non-Berkeley, there exists a p € [0, §] such that for all
f € [—p, —p+d]itis b(t+d+f) ERr ma; i.e., mo holds over I = [t+d—p, t+d—p+9].
Some sampling instant must fall within I, as I has size J.
In particular, it is either p > w(t + d) or —p + & > o(t + d): otherwise it would
bed=p+(—p+9) <w(lt+d) +o(t+d) =0t+d) —Qt+d) =d(t+d—
2)/0] — |[(t +d— 2)/§]) <6, a contradiction (where we exploited the property:
[r] —|r] <1 for any real r). So, let t’ be the sampling instant:

;) Qt+d) ifp>w(t4d)
O(t+d) otherwise

It is not difficult to check that (t' —¢)/d € [I,]. In fact:

—ifp > w(t+d), then t' —t = Q(t+d)—t = §(|(kd+d)/6| —k) = §|d/J]. Recall
that d € (I,u), and then a fortiori d € [l,u] 2 (l,u). So d/é € [I/d,u/d], and
(' —1)/6 = |d/6] € [11/5], [u/6]] C [V],

—ifp < w(t+d), thent/ —t = Ot +d) —t = §([(kd + d)/0] — k) = §[d/d].
Recall that d € (I, u), and then a fortiori d € [l,u] 2 (I,u). Sod/é € [1/d,u/d],
and (' —t)/6 = [4/8] € [[1/6], [u/3]] C [,

In all, b(t') =R m2. By inductive hypothesis, it follows that for d’ = (¢’ —t)/4 it

isb/(k+d)Ezm, and d' € [I',u].

Let us now show that for all integers e’ € [0,d’ — 1] it is b'(k + €’) =z m1. Recall

that d’ < [d/d] < d/é + 1, since [r] < r + 1 for any real number r; hence

0(d' —1) < 6(d/d) = d. Since for all e € [0,d) we have b(t + e) Egr 71, and since

[0,6(d" — 1)] € [0,d), a fortiori for all e € [0,6(d" —1)] it is b(t + €) Er m1. By

inductive hypothesis, it follows that for all integers ¢’ € [0,d’ — 1] = [0,d’) it is

b'(k+¢€') =z m1. We conclude that o' (k) =z ¢’
—0 =Ry, (my,mg). ¢ is R<l,7u,>(7r1,7r2), where I’ u’ depend on whether I = (I, u)
is closed, open, or half-open.

Let d’ be a generic integer in (I’, u'); we show that V' (k+d') =z 7 or there exists

a ¢’ €[0,d') such that V/(k + €') =z m1. First we show that (I’,u’) C (1/d,u/9).

In fact, consider the four possible cases for interval I' = (I, u').

—I = [l,u], so I' = [I',u'], where I’ = [l1/d§] and ' = |u/d§]. Thus, [I',u] C
[1/6,u/d], as |r| <7 and [r] > r for any real r.

—I = [l,u), so I' = [I',u), where I' = [I/§] and «' = [u/d]. Thus, [I',u) C
[1/6,u/d), as [I',u') = [[1/d], [u/d] — 1] C [I/6,u/d), noting that [r] > r, and
that [r] —1 < r, for any real r.

—I = (Lu], so I' = (I',u/], where I = |1/0] and ' = |u/d|. Thus, (I',u'] C
(1/6,u/d], as (I',u'] = [[I/6] + 1, |u/d]] C (1/d,u/d], noting that |r] < r, and
that |r| + 1> r, for any real r.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 . C. A. Furia and M. Rossi

—I = (lu), so I' = (I';«), where I’ = [I/§] and «' = [u/§]. Thus, (I';u’) C
(1/6,u/d),as (I',u) = [[I/6]+1, [u/d]—1] C (I/6,u/d), noting that [r|+1 > r,
and that [r] — 1 < r, for any real r.

In all, b(t + 0d’) =R w2 or there exists a e € [0,dd) such that b(t + e) =g 7.

If the former is the case, b’ (k+d') =7z m holds by inductive hypothesis, which ful-

fills the goal. If the latter is the case, we have b(t) =g < (0,6d") (m) = Ujo,sar) (T,m)

which entails b'(k) =z (o 4)(m1). Therefore, there exists a e’ € [0, d’) such that

b'(k+¢€) =z m, as requlred

(Closure under inverse sampling). Let us first introduce the following terminol-
ogy; for any dense-endpoint formula :

—if b(t) Er O s(¢¥) (resp. b(t) Fr ﬁ<6(¢)), ¥ “shifts to the right (s.t.r.) at ¢”
(resp. “shifts to the left (s.t.l.) at t”);

—iE b(t) e U_, (4, A=) (resp. b(t) =g S_, (1/1, Z(w))) for some c € (0,8), or

b(t) Er ¥ A O(—) (resp. b(t) F=r ¥ A 6(—@/1)) and ¢ = 0, ¢ “turns false in the
future (t.££) at t 5 ¢ (resp. “turned false in the past (t.f.p.) at t = ¢”).

Let ¢ be a generic discrete-endpoint flat MTL formula, b a discrete-time behavior
in [¢]z, and ¢’ = n%[¢]. Then, let b’ be a dense-time non-Berkeley behavior in BPRs
such that o, _[b'] = b with the given origin and sampling period.

For a generic sampling instant ¢ = z + kJ, in the remainder we show that: (1)
b(t) Er ¢'; (2) ¢ s.tr. at t, or there exist ¢ € [0,0) and w € PL such that ¢’ and

@ both t.L.f at t 5 ¢, or ¢/ is false at ¢ + d; and (3) either ¢’ s.t.l. at ¢ or there

exist ¢ € [0,6) and w € PL such that ¢’ and w both t.f.p. at t — ¢.

From these three facts we can prove that ¢ is c.u.i.s. by showing that b'(¢) Egr ¢’
for all ¢t € R. First, (1) shows this fact for all ¢t = z + k¢ for some integer k. Then,
let t, =t + ¢ and show that ¢’ holds over the generic d-length closed real interval
[t,tn]. If ¢’ s.tur. at t or it s.t.1. at ¢, we are done. If ¢’ is false at t+6 = 2+ (k+1)d
we have a contradiction which also closes the proof. Otherwise, from (2) and (3)

we assume that: (a) ¢/ t.£f at t = ¢p for some ¢, € [0,6) with some w, € PL;

and (b) ¢ t.f.p. at ¢, — ¢, for some ¢, € —[0,d) with some w, € PL. Note that
|(tn + ¢n) — (t+¢cp)| = |0 + ¢n — ¢p| < J; non-Berkeleyness of o’ € BPRs entails that
either the two change points ¢ 4 ¢, and ¢, + ¢, coincide or ¢, = ¢, = 0. In both
cases Lemma 8 implies a contradiction which closes the whole proof. We remark
that the proofs go through also for intervals of temporal operators with negative
endpoints, possibly with minimal adjustments that we do not discuss explicitly for
the sake of brevity.
Finally, we prove (1), (2), and (3) by induction on the structure of ¢.

—¢ =m. (1) From the definition of o5 _, it follows that b'(t) = b(k).

(2) Consider Lemma 8 at ¢: there exist ¢, > t such that 7 t.f.f. at ¢ X ¢, or it
holds indefinitely in the future. If the latter is the case, m obviously s.t.r. (3) is
proved similarly as (2), with respect to the past.

—¢ = ¢1 A ¢p2 and ¢ = ¢y V @9 are straightforward from the definitions.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 19

—¢=Up (m1,m2). ¢"is Uy (1, A(m2)), with I = (I = 2)6 and v’ = (u + 1)d.
(1) Let us start by proving V' (t) =g ¢ with ¢ = U= 1)8,us] (71, m2). This implies
b(t) Er ¢, as [(I — 1)d,ud] C (I',u') hence @ is stronger than ¢’. Proving a
stronger formula will be necessary in steps (2) and (3).

Let d € [I,u] be the integer time instant such that b(k + d) =z w2, which exists
by hypothesis. The case d = 0 is trivial, hence let us consider d > 0. Still
by hypothesis, for all integers e € [0,d) = [0,d — 1] it is b(k + ¢€) Ez m. By
inductive hypothesis, for all real §-multiples ¢’ € [0,dd) it is b'(t + ¢') ERr 7.
If b/ (t + db) =g m as well, let d’ = db; otherwise 7 t.£.f. at some ¢’ = 0 with
t+(d—1)0 <t <t+dbandlet d =t —1t>0. Notice that d’ € [(I — 1)J, ud].
Correspondingly, m; holds over [0,d') & t. In addition, a little reasoning should
convince us that Lemma 8 for 75 at t+dd — also considering the fact that mq t.f.f.

at ¢ = 0 unless it holds at ¢ + d§ — implies that 7 must hold over (d’,ds] @ ¢;

hence V' (t + d') Er A(m2).

(2) Let s be any value in (0,0). Let ¢ = d’ — s: notice that ¢ € (I, u") because

c>d —-6>(1-1)d—6=0Uandc<d <ud <u'. Sincet+s+c=t+d we

have already shown that V'(t + s + ¢) Fr A(m2). Moreover, [s,s + ¢) C [0,d)

thus b’ (t 4+ s+ f) Er m holds a fortiori for all f € [0,c¢). All this proves ¢’ s.t.r.

(3) Let f be any value in —(0,9). For d” = d' — f we have d” € [(I—1)d, (u+1)J)

and b'(t + f +d’") Er A(m2). Also, by inductive hypothesis either m; t.f.p. at

t — ¢ for some ¢ € [0,0) or 71 s.t.l. In the latter case, ¢’ s.t.l. as well; in the

former case, ¢’ t.f.p. at t — c as well.

—0 =Ry, (my,m2). ¢ is NI (m1,m2), with I/ = (I 4+ 1) and v’ = (u — 1)4.

(1) Let us start by proving b'(t) Fr ¥ with ¢ = Ry; 5 (m1,m2). This implies

b'(t) Er ¢/, as [I6,ud] D [I',u'] hence v is stronger than ¢’. Proving a stronger

formula will be necessary in steps (2) and (3).

Let d’' be any real value in [I4, ud]; we prove that b/ (t+d’) Er 72 or b/ (t+€') Fr m

for some e’ € [0,d"). We discuss two cases.

—If t + d’ is a sampling instant, d = d’/§ is an integer, and d € [l,u]. Also, by
hypothesis, b(k + d) =z 72 or b(k + ¢) =z m for some integer e € [0,d —1]. In
the former case, b'(t + d') |Er 2 follows by inductive hypothesis. Otherwise,
b(t+e) Er m for ¢ =ed and ¢ € [0,d —§] C [0,d'), also by inductive
hypothesis.

—If t+d’ is not a sampling instant, let p’ = d' —w(t+d") and n’ = d' +o(t +d');
these are both integer multiples of §. Notice that p’ > d' —d > 16— = (I—1)4,
and n’ <d' + 3§ <ud+ 0= (u+1)J. Therefore, the two integers p = p’/J and
n = n'/§ are such that p,n € [l,u]. Hence, from the hypothesis b(k) Er ¢,
one of the following two cases holds.

—b(k+p) £z 7 and b(k+n) =z 7, with n = p+1. By inductive hypothesis,
V(t+p) Er m and b'(t +n') Er m follow. Since ' € BPRs is non-
Berkeley by hypothesis, 2 holds over the whole real interval [t+p’, t+n'] =
[t+p',t+p +] as well. In particular, b/ (t + d') Egr 72 for d' € [p/,p’ + 0].

—b(k + e) =z m for some integer e € [0,p — 1] or e € [0,n — 1]. From
p—1)0 < (n—1)5 < (d +9) - = d, it follows that ¢’ = de € [0,d').
b'(t + ¢') Er 71 holds by inductive hypothesis.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

20 . C. A. Furia and M. Rossi

In all, b'(t) ERr ¢ is established.

(2) Let f be any value in (0,0) and d” be any real value in [I’,u]. Since d’ + f €
(16, ud], we already proved that b'(t + d” + f) =g m2 or V' (t + ¢) =g m1 for some
ce0,d” + f).

If, for all d”, the stronger fact that b'((t + f) +d"”) =g m2 or V' (t + ¢) =r m for
some ¢ € [f,d” + f) C [0,d” + f) holds, then we have proved that ¢’ s.t.r. at t
— because t+c=t+ f+ (c— f) and c— f € [0,d").

Otherwise, there is some d” such that: (a) b'((¢+ f)+d") Er —me; (b) ' (t+) =
V(t+f)+ (= f)) Er—m forall ¢ €[f,d + f); and (c) b'(t + ¢) Er m for
some ¢ € [0, f). Let v be the smallest instant in [0, f) such that A(—m) holds
at t + v; this exists because b’ is non-Zeno. Lemma 8 entails that m; holds over

interval [0,v) @ ¢, and 7 t.f.f. at ¢ £ v. Hence, it can be seen that ¢’ t.f.f. at

t 4 v as well.

(3) Let s be any value in —(0,0) and d be any real value in [I',u/]. Since s+ d €
[16, ud], we have already shown that b'(t + (s + d)) |Er w2 or V/(t + €') Er m for
some e’ € [0,s 4 d). In both cases it follows that ¢’ s.t.1. at ¢, in particular as
e =¢ —swithe’ € [—s,d) C[0,d) and t+ ¢ = (t+s)+ €.

—¢ = U[Ll,u} (71, 72).
Proof is all similar to the case of the “standard” wuntil with the simplification
that matchingness allows us to establish the stronger ¥'(t) =g U[ll 8,uf] (71, m2) in

part (1). O

3.3.3 Canonical Adaptations are Optimal. Let us provide some justification for
the particular choice of canonical adaptations. In principle, more complex transfor-
mations could be devised such that Theorem 3.3 still holds. However, we aimed at
introducing adaptations that change the structure of the formulas as little as pos-
sible, such that the transformed formulas are “essentially the same” as the original
formulas, except for some adjustments required to bridge the gaps in terms of time
units and granularity (see Example 12).

In a nutshell, adaptations should preserve the propositional and modal structure
of a formula as much as possible. To formalize this intuition we introduce the notion
of regularity.

DEFINITION 16 REGULARITY OF ADAPTATIONS.. Let ¢1,¢2 any pair of MTL
formulas and O a modality. An adaptation v is:

—Compositional if it satisfies v[d1 2 P2] = v[d1] Lv[pa] for any L € {A,V}.
—Propositional-preserving if v[p] = p for any p € P.
—O-modality-preserving if, for any interval I, v[O;(¢1, ¢2)] = Op (v[d1], v]g2]).

An adaptation is O-regular if it is compositional, propositional-preserving, and O-

modality-preserving. An adaptation is regular when it is O-regular for every modal-
ity O € {U,S,R, T}.

Canonical adaptations n,n% are regular for all modalities, with the exception
of n% which is not U-modality-preserving for the non-matching variant of the until
modality. A U-modality-preserving Z-to-IR adaptation, however, would not achieve
sampling invariance: as noted in Section 3.3.1, the matching semantics is the most

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL . 21

natural choice to bridge the discrete- and dense-time semantics. Furthermore,
canonical adaptations are the “best” among all possible regular sampling-invariant
adaptations, in the sense that the adapted intervals are as constraining as possible.
This should be intuitively understandable already from the proof of Theorem 15,
which would not stand if we introduced any relaxation in adapted interval bounds.
More formally we have the following.

THEOREM 17 OPTIMALITY OF 77?. Let v® be a reqular R-to-Z adaptation such
that any flat dense-endpoint ¢ € bMTL is c.u.s. with respect to it and 0s.,- Then,

d =z n2(¢] implies d =z v®[¢] for any behavior d € BPZ.

PrROOF PROOF. The proof relies on techniques very similar to those of Theorem
15, hence only a proof sketch is provided.

The proof goes by contradiction: let v® be a R-to-Z regular adaptation such
that there exist ¢ € bMTL and d € BPZ with d =7 n%[¢] but d [z v®[#]. Then,
we build ¢ € BPRs and ¢ € dMTL such that ¢ [=r ¢, 05.[¢] Fz n5[¢], but
05.1c'l Fz vR[¢]; hence is not c.u.s. with respect to v® and o, .

Let k € Z be such that d(k) £z v®[¢], while recall that d(k) [z n&[¢]. The
propositional structure of 758 [¢] and vR[¢] is the same, since both adaptations are
regular. Then, by induction on the same propositional structure of n%[¢] and v®[¢],
one can show that there exists a modality O € {U,R,S, T} such that d(k) =z
N[0, (m1,m2)] and d(k) [z V™[O, (m1,72)] for some my,m € PL. Let us write
0,(B1,B2) for n&[0;(m1,m2)], and O (y1,72) for v®[O;(my,m2)]. The proof goes
on by case discussion on the modality O; for brevity we just show the case O = U,
but the remaining cases can be handled all similarly.

Let i be one of 1,2. From the definition of ¥ and the regularity of v®, it is
Bi = v = m;. In all, there exists a u € J s.t. d(k + u) Ez 7 and d(h) Ez ™
for all h € [0,u) @ k. Since we are assuming that d(k) FEz Uy (71,72), it must be
u ¢ K, so either K C (—oo,u — 1] or K C [u+ 1,400). The remainder assumes
K C (—oo,u — 1] and u > 1; the other cases can be handled along the same lines
and are omitted for brevity.

The next step builds a new formula ¢ £ U ;(y, z) with fresh propositional letters
y,z; and a new discrete-time behavior e over {y,z} defined as follows: z € e(j)
iff j > k+wu, and y € e(j) for all j € Z. It follows that e(k) =z U;(y,z) but
e(k) ¥z Ug(y,z) because max K < u. Also notice that ni[¢] = U,(y,z) and
vBR[p] = Ug(y,z). Take a ¢ built as follows: z € c(t) iff t > z + (k+u — 1)§
and y € c(t) for all t € R. It should be clear that ¢ € BPRs, ¢ € 0;21 [e], and
c(z + ké) Er U;(y,z) = ¢, because z holds to the right of z + (k +u — 1)d but is
false before and at it (over z + §(k @ K)). In addition, one can see that ¢(t) Er ¢
holds for all t > z + kd.

The last step is as follows: let us build a new non-Berkeley dense-time behavior
¢ € BPRs over propositions in {y,z} U {x}, i.e., the same propositions as ¢ plus
a fresh one denoted by x. ¢|p is identical to ¢, whereas x € ¢/(t) iff ¢(t) FEr ¢;
hence in particular ¢/(z + kd) Er ¢ A —x. Notice that such ¢’ is non-Berkeley
for 6. Finally, consider formula ¢ € bMTL defined as x V . Clearly, ¢’ =R ¢ is
the case by construction; hence o _['] =z n5t[¢] follows from Theorem 15. Also,
05[] (k) Fz vR[p] as the truth of ¢ does not depend on x; and 05[] (k) Fz

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

22 . C. A. Furia and M. Rossi
vR[x] as the regularity of v® implies v®[x] = x and ¢/(z + k) Fr x. In all we
have ¢ =g ¢, 05.[¢] Fz 15(¢], and o, [c'] ¥z vR[(]. Hence, c.us. does not
hold for formula ¢ with respect to adaptation v and 05, which is the desired
contradiction. [

With a very similar approach the following theorem about n(;Z adaptation can be
proved.

THEOREM 18 OPTIMALITY OF REGULAR nZ. Let v% be a reqular Z-to-R adap-
tation for all modalities U¥,S* R, T such that any discrete-endpoint ¢ € bMTL
using only modalities in {U*, S R, T} is c.u.i.s. with respect to it and 0s,- Then,
¢ Er n%[¢] implies ¢ Er vZ[¢] for any behavior ¢ € BPRs.

3.4 Generalizations

Theorem 15 proved that bMTL is sampling invariant. We claimed previously that
bMTL is an MTL fragment of significant expressiveness; the specification examples
in [Furia et al. 2008a; 2008b] demonstrate this in practice. Nevertheless, we are still
interested in investigating to what extent Theorem 15 can be generalized to larger
classes of MTL formulas. More precisely, given that Theorems 17 and 18 showed
that canonical adaptations are optimal, we look for larger MTL fragments that
are still sampling invariant with respect to nst and 7752. Thus, henceforth sampling
invariance will always implicitly refer to sampling invariance with respect to n& and
s -

Let us start by illustrating the rather apparent fact that, for any sampling period
0, there exist MTL formulas that are not s.i. with respect to 9.

EXAMPLE 19 A FORMULA NOT C.U.S.. For an arbitrary sampling period 9§, let
us consider formula Vs = Som(D<§(p)) and show that it is not c.u.s. with respect to
0. Consider any ¢ € BPRs such that p € c(t) iff t € V for some interval V such that
§ < |V| < 26; clearly, ¢ Er 5. However, for any z such that § + z 4+ 6[(inf V —
z)/8] > supV, p holds at one unique sampling instant over o5 _[c| (see Figure
3). Hence, oy [c] ez 5 [s), where n3[s] corresponds to Som (O, (p)), because
O.,(p) requires p to hold over two adjacent time instants. From the fact that the
choice of origin z is arbitrary in the definition of sampling invariance (Definition
14), it follows that s is not c.u.s.

»
>
z

76+Z+6|'inf;/—z‘| Z+6|’inf§/—z‘| 5+Z+Minf\6/7 1

Fig. 3. Behavior ¢ and its sampling o [c].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 23

3.4.1 Shiftable Formulas. Examples 19 and 10 suggest a straightforward crite-
rion to identify non-flat MTL formulas that are c.u.s.: if non-Berkeleyness can be
“lifted” from propositional letters to the truth value of some nested sub-formula A,
then the nesting formula containing A as a sub-formula can be flattened to one that
is equi-satisfiable over non-Berkeley behaviors and does not introduce additional
constraints. To formalize this notion, we introduce the following.'°

DEFINITION 20 e-SHIFTABILITY. Formula ¢ is e-shiftable, for some positive real
€, iff by € BPRc holds for all b € BPR.. If ¢ is e-shiftable for any e, it is called
shiftable.

Shiftability provides a straightforward condition to determine larger MTL subsets
that are c.u.s. and c.u.i.s., as the following theorem shows.!!

THEOREM 21. Let v be a shiftable formula.

(1) {¢}-bPMTL and bMTL are equi-satisfiable over BPRs for any ¢.

(2) If ¥ and —¢ are c.u.s., and R[] = nR[p] for all §, then all {p}->MTL
formulas are c.u.s.

(3) If, for all ' € n?71[¢} (where 775Z71 is the preimage of n%), ¢' and —)' are
c.u.i.s., and —nZ[Y'] = nE[—'] for all &, then all n(;Zfl[w]-bMTL formulas are
C.U.1.8.

ProorF. (1). Every {¢}-bMTL formula ¢ can be flattened into a bMTL formula
¢ by introducing an auxiliary propositional letter a that replaces every occurrence
of ¥ and is declared to be logically equivalent to 1 itself. Since 1 is shiftable,
b € BPRs implies bi\a € BPRs; also, bﬁ\a € BPR; implies b € BPRs because b has
by

no more transition points than . Hence ¢ and ¢ are equi-satisfiable.

(2). Let ¢ be any formula in {1}-bMTL, and consider a behavior b € BPTIs
such that b =g #. Let ¢ denote the bMTL formula obtained by replacing every
occurrence of ¢ in ¢ by a fresh proposition a € P, and let ¢° be ¢ A (a & ¥).
Clearly, bi\a Er ¢°, and bﬁ\a € BPTs as we showed in (1). Since ¢ is flat, it

is cus. from Theorem 15; hence b =z 75 [¢] where V' = o5, [bﬁ\a}. Notice

that: n&[a &] = nk[a AV —a A =] can be written as a A nX[¢] V —a A [y
From the c.u.s. of both ¢ and —¢ and the fact that -n®[y] = n¥[-] we have
nila e ¢] =a < ni[Y] and V' =z a < ni[Y]. Let ¢ be obtained from 7} [¢] by
substituting every occurrence of a with nf[t)]. Hence, ' 7z ¢/, which proves that
¢ is c.u.s.

(3). All similar to (2), by noticing that nZ[y'] = + for all ¢’ € n?il[w] by
definition of preimage. O

3.4.2 LTL is Nestable. Theorem 21 is applicable to a significant class of MTL
formulas, namely qualitative formulas. Indeed, LTL formulas are shiftable.!?

LEMMA 22. All LTL formulas are shiftable.

10This notion is very similar to the notion of stability introduced in [Rabinovich 2003].
1 Recall the definition of T-bMTL at the end of Section 2.2.1.
12Note that non-strictness of LTL operators is necessary to have shiftability.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

24 . C. A. Furia and M. Rossi

PROOF. Let us consider any non-Berkeley behavior b € BPIs and any LTL
formula ¢. By induction, we prove that 7(bg) C 7(b) which subsumes the lemma.

The base case ¢ = p is trivial. The case ¢ = —¢; follows from the inductive
hypothesis 7(bg,) C 7(b) because T(bg,) = T(b=¢,)-

Let us consider ¢ = U(¢1, ¢2); we consider b’ = by|s and prove that 7(b') C 7(b).
To this end, let us first take any ¢ such that &' (t) Er ¢; hence b(d) =R @2 for some
d > t, and b(u) Er ¢1 for all u € [t,d). The semantics of the qualitative until
entails that b'(t') Er ¢ holds for all ¢ < ¢’ < d. Then, ¢ cannot become false after
d until ¢9 or ¢ becomes false; similarly, ¢ cannot become false before ¢ unless ¢
becomes false. A dual argument shows that the same holds for —¢. This establishes
that 7(b") C 7(b).

The last case that has to be considered is ¢ = ¢1 A ¢o. This is straightforward
from the inductive hypothesis on ¢1 and ¢o: 7(bs,) € 7(b) and 7(bg,) T 7(b).
In addition, 7(bg, ag,) C T(bg,) U T(be,) from the semantics of conjunction, hence
T(by) C 7(b). It is simple to check that by € BPIs as well, because no left- and
right- discontinuity can occur in by as a result of applying conjunction. [

Based on the previous lemma, the following corollary of Theorem 21 shows that
any LTL qualitative formula can be nested within bMTL formulas without losing
c.u.s.

COROLLARY 23. All LTL-OMTL formulas are c.u.s.

PRrOOF. The proof goes by induction on the nesting depth (i.e., the maximum
number of nested modalities) of LTL formulas. For any integer & > 0, let LTL*
denote the set of all LTL formulas of nesting depth k.

The base case is for any flat LTL formula ¢; € LTL!. 4 is shiftable from Lemma
22; 11 and —); are both c.u.s. from Theorem 15 (because —; can also be written
as a flat formula); one can check that —mi[i1] = n¥[-¢1] by pushing negations
down to propositional letters. So all LTL!-bMTL formulas are c.u.s. from Theorem
21.

Let now 1 € LTL* be any LTL formula of nesting depth & > 1. 1y, is shiftable
from Lemma 22; ¢, and — are both c.u.s., because they can both be written as
LTLF~'-pMTL formulas, all of which are c.u.s. by inductive hypothesis; one can
also check that _‘77?[1/%] = 77?[_‘1%] by pushing negations down to propositional
letters and using the inductive hypothesis again. So all LTL*-bMTL formulas are
c.u.s. from Theorem 21. [J

A similar corollary for c.u.i.s. cannot be obtained along the same lines, due to
the transformation of until and its dual release under the canonical adaptation nZ.

4. VERIFICATION VIA SAMPLING

The notion of sampling invariance defines rigorously the connection between the
non-Berkeley dense-time semantics and the discrete-time semantics of MTL, under
the sampling relationship. On the one hand, this allows the formal description — by
means of temporal logic formulas — of systems where dense-time and discrete-time
components evolve in parallel, and communicate through a sampler. In addition,
the theory of the previous sections can spawn several derived results that facilitate
the analysis of real-time systems at the interface between discrete and dense time.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 25

For instance, the notion of sampling can be used to describe system refinements
from a “physical” dense-time model — close to a “real-world” physical description
— to a more abstract discrete-time model — which is implementable on digital
hardware.

This section investigates another significant application of the notion of sampling
and sampling invariance. Namely, it builds a verification technique for dense-time
MTL based on discretization. The intuition is that, in order to analyze the be-
haviors induced by a set of dense-endpoint bMTL formulas, their discrete-time
samplings are analyzed instead. The results about sampling invariance allow us to
move the results of the discrete-time analysis back to the dense-time domain, under
some restrictions.

The following Section 4.1 shows how to build discrete-time under- and over-ap-
proximations of any bMTL formula. The over-approximation embodies discrete-
time behaviors that are preserved into dense time, whereas the under-approxima-
tion represents discrete-time counter-examples that are preserved into dense time.
Together, they allow a partial reduction of dense-time satisfiability for bMTL over
non-Berkeley behaviors to dense-time MTL satisfiability. In order to perform sys-
tem verification — i.e., checking if a given system satisfies certain putative proper-
ties — the under- and over-approximations of formulas can be combined to build
two instances of the verification problem in the form of two validity checking prob-
lems for discrete-endpoint MTL formulas. This procedure is shown in Section 4.2.
Finally, Section 4.3 comments on a few key issues of this verification procedure, in
particular its strengths and weaknesses from a mostly practical viewpoint.

4.1 Under- and Over- Approximations

The over- and under-approximation functions {25, O; are mappings from dense-
endpoint bMTL formulas to discrete-endpoint bMTL formulas, parametric with
respect to a sampling period 6. Given a PMTL formula ¢, Q5[¢] and O4l¢] re-
tain some properties of the discrete-time samplings of the dense-time behaviors in
BPRs satisfying ¢. Correspondingly, it is possible to infer the validity of ¢ over
dense time from the validity of its approximations. For reasons that will become
apparent shortly, Q;[¢] is named under-approzimation of ¢ and Og¢] over-approz-
tmation. Unsurprisingly, 25, O, are closely related to canonical adaptations 7][1})‘, %ZQ
in particular the over-approximation is a sort of inverse of the mapping 77?. Their
precise definition requires the introduction of the notion of granularity.

4.1.1 Granularity. For an MTL formula ¢, let Z, = {r;/R;}; be the set of
all non-null, finite interval end-points appearing in ¢ and put in their irreducible
form.'® The granularity ps of ¢ is defined as the pair: py = (14, Rg) = (ged,; ri, lem; R;).
Correspondingly, let us consider the set Dy of rationals: 4

d
D¢ = {D’d|r¢ and R¢|D}

It can be shown that, for any positive rational 6 and ¢ € Zy, ¢/0 is an integer
iff § € Dy; i.e., Dy is the set of sampling periods § such that any interval bound

13Recall that all finite endpoints are rationals (Section 2.2.1).
MRecall that a|b denotes that b is an integer multiple of a.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

26 . C. A. Furia and M. Rossi

in ¢ is an integer when divided by 6. Notice that Dy has a maximum (given by
r¢/Rg) but no minimum. Finally, for a set of formulas ®, Dg is defined as D$

where ¢ £ Npea ©-

4.1.2 Under-Approzimation. The under-approximation function Q5 maps dense-
endpoint MTL formulas to discrete-endpoint MTL formulas such that the non-
validity of the latter implies the non-validity of the former, over behaviors in BPTs.
More precisely, 5[] is defined only for MTL formulas such that ¢ is in Dy, where
it coincides with 75 [¢].

Qa[ﬂ 2 o7

Qé (L) (¢1a¢2) £ U[l/57u/5] (Q [] [])
Q& (, u>(¢1,¢2) 2 S[l/gu/(s ([} [D
95 @ (01,82)| = Ryys s (Qsldn], Qsle2])
Qa_ <;7u>(¢>17¢2) 2 (l/6u/6>(Q [¢1] Qs[2])
Qs A ¢2] 2 Q4¢1] A Qs02]

Qs(01V 62 2 Q4en] V Qs02]

The following lemma justifies the name under-approximation.

LEMMA 24 UNDER-APPROXIMATION. For any dense-endpoint bDMTL formula ¢,
6 € Dy, and b € BPL: if b =z Q5[¢] then for allt' € BPRs such that o5 [b'] = b it
is b b&]R d)

PROOF. ¢ is a dense-endpoint PMTL formula, hence it is c.u.s. from Theorem 15:
for any b € BPRs, if b Fr ¢ then o, [0] Fz nR[¢]. By taking the contrapositive,

and by noticing that U(]sR' and)5 coincide when they are both defined, we have that
for any b € BPRs, if o5 _[b] Fz Q5(4] then b R ¢. O

4.1.3 Over-Approzimation. The over-approximation function Oy maps dense-
endpoint MTL formulas to discrete-endpoint MTL formulas such that the validity
of the latter implies the validity of the former, over behaviors in BPI's. More pre-
cisely, Oy[¢] is defined only for MTL formulas such that § is in Dy, where it is a
pseudo-inverse of nZ.

™
Ul o4 1.0y (Osl@1] Os[62]

S[z/5+1 w/5—11(O5l1], O5[02]
Ri/s—1u/5+11(O5l01], O5[02]

o

>
oA
[l> >

@)
o,
ZY)
£
—
S
=
<
[\
~—_ ~—

>

O5 | T 1y (01, 02 = Tysst,us5401)(Osl¢1], Ose2]
Osle1 A ¢2] 2 O4(p1] A Oyl62]
Osl¢1 V ¢2] 2 O4lp1] Vv O4(42]

The following lemma justifies the name over-approzimation.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL . 27

LEMMA 25 OVER-APPROXIMATION. For any dense-endpoint PMTL formula ¢,
6 € Dy, and b € BPZL: if b |z O4(@] then for allb' € BPRs such that o5 [V'] = b it
s b |:]R ¢)

PRrROOF. If ¢ is a dense-endpoint PMTL formula, then O4[¢] is a discrete-endpoint
bMTL formula. Hence the latter is c.u.i.s. from Theorem 15: for any b € BPZ, if
b =z O;(¢] then b {=g 1§ [O;[¢]] holds for all b’ € BPRs such that b= o [b'].

One can check that the dense-time validity of the formula nZ[O4[¢]] = ¢ is
guaranteed by the definitions of n? and O;. In particular, 175Z o Oy is an iden-
tity for release (and trigger) operators with closed intervals. On the other hand,
n% o Oy yields stronger formulas for release (and trigger) operators with open in-
tervals and for until (and since) operators. The latter holds also from the fact that

nZ U[il ul (71, 772)} is U%(l_l)é (u+1)5)(771’ ma). It is easy to check that these properties
of basic operators can be lifted to whole formulas by application of straightforward

propositional identities on the negation normal form in which MTL formulas are
expressed. In all, ¥’ =g 7%[0;[¢]] implies ' Er ¢. O

4.2 MTL Verification

In the formal timed setting, verification consists in checking whether all behaviors
generated by a system model (usually called specification) satisfy some given puta-
tive property (usually called requirements) [Heitmeier and Mandrioli 1996]. Assume
that both the specification and the requirements are formalized as MTL formulas
@sys and @prop, Tespectively. Verification of ¢s s against @prop is equivalent to checking
the validity of the dense-endpoint MTL formula ¢yerit = Alw(psys) = AlwW(Pprop)-
If ¢yerir is valid, any behavior of the system also respects the requirements; i.e.,
we have checked that [¢es]r € [dprop]r. On the contrary, if ¢yen¢ is not valid,
there exists at least one behavior of the system that violates the requirements; i.e.,
[[Qbsys]]]R N [[_‘¢prop]]]R is not empty so [[Qbsys]]]R Z [[(bprop]]]R-

In this section, we describe a verification algorithm that is applicable to specifi-
cations and requirements in bMTL over non-Berkeley dense-time behaviors.

The algorithm is based on the following.

PROPOSITION 26 MODEL APPROXIMATIONS. For anybMTL formulas ¢1, ¢2, and
for any 0 € Dyy, ¢,)°

(1) if Alw(Qs[¢1]) = Alw(Og4[p2]) is Z-valid, then Alw(¢1) = Alw(ps) is R®-valid;
(2) if Alw(O4(¢1]) = Alw(Q[p2]) is not Z-valid, then Alw(¢1) = Alw(¢p2) is not
R? -valid.

PROOF. (1). Let § € Dyy, 4,3. Assume that Alw(Qs[p1]) = Alw(Ogp2]) is Z-
valid. That is, for all b € BPZ it is b &z Qg[¢1] or b =7 O4[¢2]. From Lemmas 25
and 24, this implies that for all b € BPZ, for all b’ € BPRs such that o, [b'] = b, it
is either V' R ¢1 or V' =R ¢2. Since 5., is total, for any b’ € BPR;s there exists a
b € BPZ such that o [b'] = b. We conclude that for all b" € BPRs, either V' g ¢1
or b =R ¢o; i.e., Alw(¢) = Alw(¢g) is R%-valid.

Proof of (2) is obtainable from the proof of (1) by duality. [

4.2.1 Verification Algorithm. Proposition 26 suggests to introduce the following
notation. Given a set of formulas ®gs = {@L}: such that s = A, Alw (L)

sys

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

28 . C. A. Furia and M. Rossi

represents a formal model of the system, and a formula ¢pop that represents a
formal statement of the requirements, let us define the discrete-endpoint formulas:

¢° /\AIW(Qé[iys}) = Alw(O;[¢prop))

(1>

>

K3

¢Q /\AIW(Oé [Qs;ys]) = AIW(Q6[¢pr0p])
Let us call ¢© and ¢ over-model and under-model of the system, respectively, (in
analogy with Lemmas 25 and 24) because the former preserves validity and the
latter non-validity.

A verification algorithm for systems and properties specified as dense-endpoint
bPMTL formulas can be formalized as follows, where Z-VALID? is a validity-checking
procedure for discrete-endpoint MTL formulas.

PMTL-VERIFY (8 : Rso, Poys = {@Lys}i prop : PMTL) : {T, L, FAIL}

1 assume 0 € Dy, U{4,.,}

2 99« A, Alw(Qy [(b;ys]) = Alw(Og[dprop])

3 ¢Q A /\1 AIW(O(S [Qﬁys}) = AIW(Q(S [¢prop])

4 if Z-vAaLiD?(¢°) > ¢© valid over discrete time?

5 then return T > verification over BPT's successful

6 else if =Z-VALID?(¢%) > ¢ not valid over discrete time?

7 then return L > verification over BPI's not successful

8 else return FAIL > cannot conclude any verification result

The correctness of the algorithm follows directly from Proposition 26, keeping in
mind that b |=p Alw(1) A Alw(te) iff b =1 Alw()1) and b =p Alw(19).

4.2.2 Incompleteness. A verification algorithm is complete if, for any input, it
terminates with a conclusive result about whether the given requirements ¢prop are
indeed a property of the system ¢s,s or not.

The verification algorithm for PbMTL we provided above is incomplete, as it can
fail to provide a conclusive answer about whether ¢, is indeed a property of all
behaviors of the system ¢ss. The incompleteness is two-fold. First, the algorithm
does not consider all dense-time behaviors BPR, but only those in BPRg, i.e., “slow”
with respect to some chosen sampling period 6. Hence, it may be that ¢prp does not
hold for some “real” behavior of the system which is “fast”, i.e., for some behavior
in [Peys]r \ [sys]k- Second, the under- and over-model ¢, ¢© are in general non-
equivalent discrete-endpoint formulas. Hence, it is possible that ¢© is not valid and
¢ is valid; if this is the case no conclusion about the verification of the system can
be drawn.

Since the algorithm is parametric with respect to §, smaller values of § can be
tried in order to avoid the incompleteness hurdle. Changing the value of § affects
the verification problem in two ways: more (“faster”) behaviors are considered for
verification, and new under- and over-models are generated that represent a “finer-
grain” discretization of the original problem. These two aspects interact in subtle
ways because they change the verification problem from two opposite sides. By
combining them, one may expect to achieve at least the following partial notion of

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 29

completeness: if ¢prop is a property of ¢sys over behaviors in BPRs for some choice
of ¢, then there exists a suitable choice of ¢ such that DMTL-VERIFY (6, ¢sys, Pprop)
returns T; and conversely when ¢pop is not a property of ¢g. Unfortunately,
the following example shows that even this weaker notion of completeness is not
achieved by the algorithm.

EXAMPLE 27 INCOMPLETENESS OF THE ALGORITHM. Consider a simple set of
behaviors completely described by formulas in Table II. It should be clear that all
behaviors b € [Alw(slys) A Alw (fys)]]]R of the system are such that p holds on some
interval V. = (t,400) and —p holds on the complement interval R\ V' (which is
unbounded to the left). Hence, any such b satisfies property dpop and is in BPRs

for any 9.

¢51ys £ Som(p) A SOm(‘!p)
Pas = p=0(p)
bprop = p=<_y(p)

Table II. q)sys and ¢prop-

Table III shows the over- and under-models of this system for any § €
Do, {6} = {1/k | k € Nso}, after some simplifications (in particular Og[¢2]
=-pV D[71,+oo](p) 1s equivalent to the formula in Table III under the global satisfi-
ability semantics). It is simple to check that, for any value of &, the over-model ¢©
is not valid because Alw(Og[¢prop]) contradicts Alw(Qs[dL,]). Also for any value
of § the under-model ¢ is vacuously valid because Alw(05 [¢§ys}) is inconsistent
with Alw(05 [(bfys}). In all, we cannot verify our system with our algorithm, no
matter what value of sampling period we choose.

Q(; [d)s}ys] = Som(p) A Som(ﬂp) O(s [¢slys] = Som(p) A Som(ﬁp)
Qs(02s] =p=0(p) O;[¢3s] = Alw(p) v Alw(-p)
Q,;[¢pmp} =p= O:k(P) (OF [#prop] = —P

Table III. Under- and over-models of ®sys, pprop for 6 = 1/k.

In spite of its incompleteness, in the next section we discuss why the verification
algorithm can still provide practically very useful results.

4.3 Discussion

In related work, we proved that MTL is fully decidable over dense-time non-Berkeley
behaviors BPRs for any 0 [Furia and Rossi 2008], with the same worst-case com-
plexity as discrete-time MTL; hence an incomplete decision procedure may seem
impractical. In this section we demonstrate that this is not the case, and we discuss
how the impact of incompleteness can be limited in practice with the application
of a few good practices.

First of all, the decision procedure for MTL over BPRs — the only one currently
available [Furia and Rossi 2008] — relies on a rather exotic decision procedure,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

30 . C. A. Furia and M. Rossi

which translates MTL to a family of uncommon decidable real-time temporal log-
ics introduced by Hirshfeld and Rabinovich [Hirshfeld and Rabinovich 2004]. The
decision procedures for such logics have never been implemented, and seem quite
complex in practice. More generally, the practical high complexity of deciding
temporal logics over dense-time domains is witnessed not only by theoretical re-
sults, but also by the current scarcity of state-of-the-art tools that implement such
decision procedures. Even the well-known real-time temporal logic MITL, whose
decidability over dense time is known since the seminal work of Alur, Feder, and
Henzinger [Alur et al. 1996], still lacks an implementation, despite the recent efforts
towards simplifying its decision procedure [Hirshfeld and Rabinovich 2005; Maler
et al. 2006].

Compare this unsatisfactory picture to the vastly different scenario of (real-time)
temporal logics over discrete time, where a significant number of off-the-shelf effi-
cient verification tools are available (e.g., [Pradella et al. 2007; Bianculli et al. 2007;
Pradella et al. 2003; Cimatti et al. 2002; De Wulf et al. 2009] just to mention a
few for LTL/MTL). This suggests that a dense-time verification procedure based
on discretization is very appealing from a practical viewpoint, because it can be
implemented easily and it can rely on solid and scalable implementations. In fact,
in related work [Furia et al. 2008a; 2008b; Bersani et al. 2009] we presented the
straightforward implementation of the verification procedure described in this sec-
tion, and we demonstrated its practical efficiency with a few non-trivial verification
examples.

The same examples also show that the flat fragment of MTL retains (under the
global satisfiability semantics) a significant expressive power, suitable to formalize
typical behaviors of real-time systems. For example, it is possible to describe runs of
arbitrary timed automata or bounded time Petri nets over non-Berkeley behaviors.
The formalization in flat MTL of these complex abstract machines is far from
straightforward and requires a careful analysis to avoid inconsistencies. However,
the experience of [Furia et al. 2008a; 2008b; Bersani et al. 2009] can be leveraged
and extended to similar systems described by means of the notions of state and
transition.

Even the incompleteness of our verification algorithm turns out not to be too
large a handicap in practice. More precisely, the fact that equivalent dense-endpoint
formulas can yield nonequivalent discrete-time under- or over-approximations can
be turned into an advantage: with some additional effort in writing the dense-time
model of our system, we can often express it in a form whose over- and under-models
are unaffected by incompleteness. This effort can in general be non-trivial, but it
can give very good practical results nonetheless. The following example provides
a few in-the-small demonstrations of our claims, whereas more complex cases have
been introduced elsewhere [Furia et al. 2008b; Bersani et al. 2009)].

A

EXAMPLE 28. Let us go back to Example 27 and change formula fys mnto Szys =

p = O.5(p), according to the chosen sampling period 6. A little reasoning should
convince us that Alw((bszys) is equivalent to Alw (wfys) over behaviors in BPRs: if p
holds at some time t as well as over the left-closed interval t ® [, +00), it cannot
be false anywhere in (t,t + §) because this would violate the hypothesis of non-
Berkeleyness for the given 6. Let us take our system model to be ®ss = {¢} 21,

sys? 'sys

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 31

Notice that 05[2] can be computed as p =

and let us build its over-model ®9 sys

sys*
O(p); unlike O [qus], this is an accurate discrete-time rendition of the dense-time
model. It is now possible to prove that ¢© is Zi-valid for any 6 = 1/k, which verifies
our system over dense time.

Let us now turn our attention to property ¢prop in Example 27. It should be
apparent that its over-approzimation Ogldpop] = —p is very unsatisfactory, and it
is unlikely to yield valuable results when used in an under-model. Consider however
formula ¢y, £ p = 0_(p); Porop 18 trivially equivalent to ¢pop. However, its
over-approzimation is the much more reasonable p = D[k_17k+1](p) which is non-
trivially satisfiable for any k > 1.

5. RELATED WORK

The relationship between dense and discrete real-time semantics has been investi-
gated by many authors. In this section we mention the approaches that are closest
to ours, and we detail the most significant differences and relative merits.

The seminal paper by Henzinger, Manna, and Pnueli [Henzinger et al. 1992] is
both the first and the best-known work dealing with the theme of dense vs. discrete
real-time through the notion of digitization. Given the significance of this notion,
Section 5.1 is devoted to a detailed summary of it, as well as to a comparison with
sampling invariance. Section 5.2 succinctly describes other related work about the
relation between dense and discrete time models for real-time formalisms. Finally,
briefly widening the scope beyond real-time notations, the results of this paper seem
to bear a connection with the classical theory of digital sampling (e.g., [Benedetto
and Ferreira 2001]). Section 5.3 sketches a partly formal analysis of this alleged
link.

5.1 Comparison with Digitization

Similarly to the notions of sampling and sampling invariance — introduced in
Section 3 — the notions of digitization and digitizability [Henzinger et al. 1992]
link dense- and discrete-time real-time semantics. The main purpose of digitization
is to provide a means to reduce the verification problem from the richer dense-
time semantics to the simpler discrete-time one. This section recalls the formal
definition of digitization and digitizability and compares them against the notions
of sampling, sampling invariance, and discrete-time approximations introduced in
this paper.

There are two fundamental high-level differences between the frameworks of digi-
tization and sampling; bridging them is necessary to carry out a formal comparison
of the notions. First, our framework considers dense- and discrete-time behaviors as
semantic structures, whereas digitization is defined for dense- and discrete-valued
timed words. A timed word is a discrete sequence of timestamped events, such that
every event is assumed to occur at the absolute time value of its timestamp. Sec-
ond, sampling invariance is a syntactic notion (i.e., it is a property that applies to
formulas), whereas digitizability is a semantic notion (i.e., it is a property that ap-
plies to sets of timed words). Let us introduce formally these ideas and the precise
notions of digitization and digitizability.

DEFINITION 29 MTL TIMED WORD SEMANTICS. An (infinite) timed word over

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

32 . C. A. Furia and M. Rossi

P is an w-sequence (0¢,to)(01,t1) -+ (04, t:) - -+ in (P xT)¥, such that the sequence
of timestamps t; is weakly monotonic and diverging. According to whether T is
a dense (typically R>o) or discrete (typically IN) set, the timed words are named
dense- or discrete-valued.

MTL semantics over timed words is defined as expected: given a timed word p, a
position i € N, and an MTL formula ¢, we write p,i |= ¢ iff p satisfies ¢ at position
i. The definition of the modalities is: p,i |= U (o1, ¢2) iff there exists j > i such
thatt; € t; &1, p,j |= ¢2, and p, k |= ¢1 for alli <k < j; and p,i = R;(¢1, ¢2) iff
for all j > i such thatt; € t; & 1, it is p,j = ¢2 or p,k = ¢1 for some i < k < j.
Then, p = ¢ iff p,i = ¢ for all i € N.*® Given a formula ¢, (#)T denotes the set
{plpE &} of T-valued timed words that satisfy ¢.

DEFINITION 30 DIGITIZATION AND DIGITIZABILITY. Given a timed word p =
{(04,t;) | ¢t € N} and a fractional value 0 < e < 1, the e-digitization of p is defined
as the discrete-valued timed word [ple = {(0y,[tile) | ¢ € N}, where [t]e is |t] if
t < |t] +¢€, and [t] otherwise. The digitization of a set of timed words I is the set
[II] of discrete-valued timed words defined as {[p]e | p € Il and 0 < e < 1}, i.e., the
set of all possible digitizations of words in II.

A set of timed words 11 is: (1) closed under digitization (c.u.d.) iff p € 11
implies [{p}] C II; (2) closed under inverse digitization (c.u.i.d.) iff [{p}] C II
implies p € I1; (3) digitizable iff it is c.u.d. and c.u.i.d. Correspondingly, an MTL
formula ¢ is c.u.d., c.u.i.d., or digitizable, iff (¢)r-, s

For digitizable properties, discrete-time verification completely captures dense-
time verification; more precisely, if a system specification is closed under digiti-
zation, and the requirements are closed under inverse digitization, the problem of
determining if the specification meets the requirements is perfectly reducible to the
discrete-time case. However, it is difficult to characterize a significant syntactic
subset of MTL formulas that are digitizable, and in fact only a few examples are
given in [Henzinger et al. 1992]. Moreover, digitization exploits weakly-monotonic
timed word to ensure that no dense-time event is lost when digitizing a dense-valued
timed word; this is why no notion similar to non-Berkeleyness is introduced.

The following example shows that digitizability and sampling invariance define
incomparable classes of MTL formulas, i.e., there exist sampling invariant non-
digitizable formulas, as well as digitizable non sampling-invariant formulas. This
demonstrates that the two notions have different angles, and it suggests that tech-
niques for discrete-time verification of dense-time MTL formulas based on these
two orthogonal notions may each have its own complementary strengths and weak-
nesses.

EXAMPLE 31. For h € Nxg, let ©;"¢ be the YMTL formula p = S p(q). The-
orem 15 proves that @fl"d is s.1. Let us show that GZ”d 18 instead not c.u.d., hence
neither digitizable. Take any timed word o = --- (p, k)(q, k+h—14p)(q, k+h+p) - - -
with k € N, 0 < p < 1, and such that p does not occur anywhere else. Any e-

15The digitization paper [Henzinger et al. 1992] assumed an initial satisfiability semantics, but
we adopt a global satisfiability semantics to allow a uniform comparison with sampling invariance
(see Section 2.2.2); it should be clear that this is without loss of generality.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 33

digitization of o for € < u has the form [o]c = -+ (p,k)(q,k+ h)(q,k+h+1)---.
Hence ©5™¢ is not c.u.d. because o = O3 but [o]. £ O™ for any such e.

For h € Nxg, let O™ be the MTL formula Som(p A O(=p)) A n, where vy,
has been defined in Example 19. It is not difficult to show that Som(p A O(-p)) is
unsatisfiable in the timed word semantics, hence O is trivially digitizable. Let
us show that 6;‘5"5 is instead not c.u.s., hence neither s.i. Take the same behavior
c € BPRy, of Example 19, where we further assume that V is a right-closed interval
(see Figure 3). ¢ =g O™ because Example 19 showed that ¢ =g ¥y, and pAO(-p)
holds at the right end-point of V.. However, Example 19 also proved that oy, ,[c] -z
N [Wn], so on 2l ez nik (O8] as well. Hence, O™ is not c.u.s.

5.2 Other Work on the Relations between Dense and Discrete Time

The introduction of the notion of digitization has spawned much derivative work,
where the notion is applied to various formalisms. Several authors considered digiti-
zation for automata-based real-time formalisms, especially timed automata [Boua-
jjani et al. 1994; Bosnacki 1999; Maler and Pnueli 1995; Bozga et al. 1999; Beyer
et al. 2003; Ouaknine and Worrell 2003; Clarke et al. 2007]. Others studied how the
decidability and complexity of standard verification problems for timed automata
(esp. reachability) change when moving from a dense- to a discrete-time semantics,
such as in [Golll et al. 1994; Krcal and Peldnek 2005]. Asarin, Maler, and Pnueli
[Asarin et al. 1998] investigated instead to what extent qualitative behavior of digital
circuits (which can in turn be modeled as timed automata [Maler and Pnueli 1995])
is preserved in a sampled discrete-time semantics. The focus of all these works is
to determine to what extent the computationally simpler discrete-time semantics
can be substituted for the dense-time semantics for automated verification.

The notion of digitization has been applied also to descriptive notations, such as
real-time temporal logics and process algebras. In the latter category, Ouaknine
studies digitization for timed CSP [Ouaknine 2002]; his main contribution is the
proof that all CSP are closed under inverse digitization, hence they can be model-
checked over dense time by considering just their discrete-time semantics.

Among temporal logics, the digitization of duration calculus (DC) and its variants
has been studied in several works. Van Hung and Giang consider standard duration
calculus and a slight generalization of digitization called sampling [Hung and Giang
1996]. Their work is focused on providing inference rules that allow one to infer the
validity of dense-time formulas from the validity of sampled discrete-time formulas
and wvice versa. Another similarity with our approach is that they consider o-
stability: a constraint similar to non-Berkeleyness that relates the “speed” of signals
and the sampling period d. Unlike non-Berkeleyness d-stability is asymmetric, in
that whenever a proposition switches to true it must hold its truth value for more
than ¢ time units, but it is not required to do so when it switches to false.

Pandya et al. also have applied the notion of digitization to DC, with the aim
of developing efficient dense-time verification techniques based on discretization.
Their overall approach consists of two parts, and it has been shown to be applica-
ble to MTL as well [Pandya 2008]. In the first part [Chakravorty and Pandya 2003],
the notion of digitization has been applied to IDL (Interval Duration Logic) a DC
variant whose formulas are interpreted over timed words. Given that a syntactic
characterization of closure under inverse digitization for IDL formulas is hard to

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

34 . C. A. Furia and M. Rossi

achieve, a new notion of strong closure under inverse digitization (SCID) is intro-
duced. SCID eases the problem because it is straightforward to determine if an
IDL formula is SCID, and SCID entails closure under inverse digitization in the
standard sense. For formulas that are not SCID, approximations of formulas are
introduced. In the second part [Pandya et al. 2007], the richer semantics of DC
(based on behaviors) is reduced to the timed word semantics of IDL through two
approximation mappings o™ and a~. o and o~ play a role similar to our over-
and under- approximations Oy, s, in that o™ preserves non-validity and o~ pre-
serves validity from the sampled to the dense-time semantics. Unsurprisingly, the
resulting verification technique is incomplete, as DC is undecidable over dense time.

De Alfaro and Manna considered the problem of discretization for the predicate
temporal logic TL [de Alfaro and Manna 1995]. Their results are based on the
semantic notion of finite variability: informally, a formula ¢ is finitely variable
if, for any timed word, one can find a refined “ground” timed word such that
any subformula of ¢ has a constant truth value within any interval of the refined
word. For finitely variable formulas over ground traces, the satisfaction relation of
a formula ¢ in the dense-time semantics corresponds to that of (¢) in the discrete-
time semantics (where € is a given translation function). Some sufficient syntactic
conditions for a formula to achieve the finite variability requirement are introduced;
based on these, a methodology for dense-time verification through refinement to
discrete time is proposed.

Fainekos and Pappas [Fainekos and Pappas 2007; 2009] present a technique for
testing specifications written in MITL (an MTL subset) against continuous-time
signals by analyzing only discrete samplings of the signals. Their technique shares
underlying motivations and ideas with ours, although the two approaches have
complementary scopes: our results bridge the gap between the dense-time non-
Berkeley semantics and the discrete-time semantics for MTL, whereas Fainekos
and Pappas discover concrete and practical conditions under which the continuous-
time behavior of a dynamical system can be analyzed by means of its discrete-time
observations.

5.3 The Sampling Theorem

The sampling theorem [Benedetto and Ferreira 2001] states sufficient conditions for
which no information loss occurs in the digital sampling of a continuous-time signal.
A continuous-time signal s is a mapping s : R — D where D is some — usually
dense — codomain. By denotes the bandwidth of s, that is its highest frequency in
5.16 Using the notation of Section 3, the sampling of s with sampling period & is the
discrete-time signal o50[s]. The sampling theorem states that s can be perfectly
reconstructed from o5 ¢[s] for any 6 < 1/(2B;).

A number of similarities between this fundamental theorem of signal theory
and the results of this paper are apparent. In particular, the requirement on
the relation between bandwidth and sampling period is reminiscent of the non-
Berkeleyness requirement, so that the results of this paper might seem a conse-
quence of the sampling theorem. Our dense-time behaviors BPR can indeed be

16The highest frequency is defined as the largest nonzero value for which the Fourier transform
F[s] of s is non-zero.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 35

modeled as continuous-time signals over range [0, 2‘7)‘]. However all of them have
infinite bandwidth because of the discontinuities corresponding to transition points,
regardless of whether they are non-Berkeley or not. Hence the sampling theorem
cannot strictly be applied to Boolean-valued signals. Nonetheless, a connection be-
tween the theory of sampling and the theory of this paper exists, as we demonstrate
in the following.

EXAMPLE 32. Consider a simple unary alphabet {p} and a single behavior b such
that p holds over Rsq and does not hold over R« (we disregard the value of p ex-
actly at 0). b corresponds to the signal s : R — [0, 1] defined as s(t) = H(t) where
H denotes the usual (Heaviside) unit step function (see Figure 4). b can also be

—30 =26 =6 0 o 20 38

Fig. 4. Signals s(t) (in gray) and 35(¢) (in black).

described perfectly by the MTL formula 8 = ﬁ>0(ﬁp) ANOso(p) evaluated at the ori-
gin. The discrete-time MTL formula 8/ = n2[] = T.,(-p) AO,(p) characterizes
discrete-time samplings of b according to our theory. B’ can be seen as describing
some dense-time behaviors in BPRs through their samplings: all behaviors such
that p holds over R>s and it does not hold over R<_s. Hence, the sampling has
introduced an information loss in the formula about where exactly p switches within
(=6,0). If we try to reconstruct s from its digital sampling according to the classi-
cal theory, we notice that we introduce a similar information loss. In fact, let s :
R — [0,1] be the continuous-time reconstruction of oso[s] built with the Whittaker-
Shannon interpolation formula, i.c., 3(t) = >,z 050[s](k)sinc((t — kd)/0). As
it can be seen in Figure 4, 5 coincides almost perfectly with s over R<_5 U R>;
(the residual errors are only due to numerical approximations), whereas it deviates
significantly within (—6,0) due to the information loss introduced with sampling (it
passes right through the origin only as a result of symmetry). In this sense infor-
mation loss for Boolean-valued signals are similar in our theory for MTL and in
classical sampling theory for signals.

6. CONCLUSION

In this paper, we presented an approach to relate dense-time MTL formulas to some
discrete-time counterparts (and vice versa). We exploited the resulting relationship
to define a technique for the verification through discretization of systems described
as dense-time MTL formulas. The verification technique is inherently incomplete,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

36 . C. A. Furia and M. Rossi

though in practice it has yielded promising results [Furia et al. 2008a; 2008b; Bersani
et al. 2009].

In the future, we plan to apply the notion of sampling presented in this paper
to the synthesis of software components of real-time systems from continuous-time
specifications. We will also further investigate the properties of the verification
technique presented in Section 4, in particular to better characterize, and possibly
reduce, the scope of its incompleteness.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed comments.

REFERENCES

ALUR, R., FEDER, T., AND HENZINGER, T. A. 1996. The benefits of relaxing punctuality. Journal
of the ACM 43, 1, 116-146.

ALUR, R. AND HENZINGER, T. A. 1993. Real-time logics: Complexity and expressiveness. Infor-
mation and Computation 104, 1, 35-77.

ASARIN, E., MALER, O., AND PNUELI, A. 1998. On discretization of delays in timed automata and
digital circuits. In Proceedings of the 9th International Conference on Concurrency Theory
(CONCUR’98), D. Sangiorgi and R. de Simone, Eds. Lecture Notes in Computer Science, vol.
1466. Springer-Verlag, 470-484.

BENEDETTO, J. J. AND FERREIRA, P. J. S. G., Eds. 2001. Modern Sampling Theory. Birkduser
Boston.

BERsANI, M. M., Furia, C. A., PRADELLA, M., AND RossI, M. 2009. Integrated modeling and
verification of real-time systems through multiple paradigms. In Proceedings of the 7th IEEE
International Conference on Software Engineering and Formal Methods (SEFM’09). IEEE
Computer Society Press.

BEYER, D., LEWERENTZ, C.; AND NOACK, A. 2003. Rabbit: A tool for BDD-based verification
of real-time systems. In Proceedings of the 15th International Conference on Computer Aided
Verification (CAV’03), W. A. H. Jr. and F. Somenzi, Eds. Lecture Notes in Computer Science,
vol. 2725. Springer-Verlag, 122-125.

BiancurLl, D., MORZENTI, A., PRADELLA, M., SAN PIETRO, P., AND SPOLETINI, P. 2007.
Trio2Promela: A model checker for temporal metric specifications. In ICSE Companion. 61-62.

BoOSNACKI, D. 1999. Digitization of timed automata. In Proceedings of the 4th International
Workshop on Formal Methods for Industrial Critical Systems (FMICS’99). 283-302.

BouaJjani, A., ECHAHED, R., AND ROBBANA, R. 1994. Verifying invariance properties of timed
systems with duration variables. In Proceedings of the 3rd International Symposium on For-
mal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’9/). Lecture Notes in
Computer Science, vol. 863. Springer-Verlag, 193-210.

BOUYER, P., MARKEY, N., OUAKNINE, J., AND WORRELL, J. 2007. The cost of punctuality. In
Proceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS’07). IEEE
Computer Society.

Bozca, M., MALER, O., AND TRIPAKIS, S. 1999. Efficient verification of timed automata using
dense and discrete time semantics. In Proceedings of the 10th Correct Hardware Design and
Verification Methods Advanced Research Working Conference (CHARME’99), L. Pierre and
T. Kropf, Eds. Lecture Notes in Computer Science, vol. 1703. Springer-Verlag, 125-141.

CHAKRAVORTY, G. AND PANDYA, P. K. 2003. Digiziting interval duration logic. In Proceedings of
the 15th International Conference on Computer Aided Verification (CAV’03), W. A. Hunt, Jr.
and F. Somenzi, Eds. Lecture Notes in Computer Science, vol. 2725. Springer-Verlag, 167-179.

CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE, M., ROVERI, M.,
SEBASTIANI, R., AND TACCHELLA, A. 2002. NuSMYV 2: An opensource tool for symbolic model
checking. In Proceeding of the 14th International Conference on Computer-Aided Verification
(CAV’02). Lecture Notes in Computer Science, vol. 2404. Springer-Verlag, 359-364.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 37

CLARKE, E. M., LERDA, F., AND TALUPUR, M. 2007. An abstraction technique for real-time verifi-
cation. In Proceedings of the GM R€D Workshop on Next Generation Design and Verification
Methodologies for Distributed Embedded Control System.

CoMON, H. AND CORTIER, V. 2000. Flatness is not a weakness. In Proceedings of the 14th Annual
Conference of the EACSL on Computer Science Logic. Lecture Notes in Computer Science,
vol. 1862. Springer-Verlag, 262-276.

Dawms, D. 1999. Flat fragments of CTL and CTL*: Separating the expressive and distinguishing
powers. Logic Journal of the IGPL 7, 1, 55-78.

DE ALFARO, L. AND MANNA, Z. 1995. Verification in continuous time by discrete reasoning.
In Proceedings of the 4th International Conference on Algebraic Methodology and Software
Technology (AMAST’95), V. S. Alagar and M. Nivat, Eds. Lecture Notes in Computer Science,
vol. 936. Springer-Verlag, 292-306.

DE WuLF, M., DOYEN, L., MAQUET, N., AND RASKIN, J.-F. 2009. ALASKA: Antichains for Logic,
Automata and Symbolic Kripke structures Analysis. In Proceeding of the 6th International
Symposium on Automated Technology for Verification and Analysis (AT VA’08). Lecture Notes
in Computer Science, vol. 5311. Springer-Verlag, 240-245.

DEMRI, S. AND SCHNOEBELEN, P. 2002. The complexity of propositional linear temporal logics in
simple cases. Information and Computation 174, 1, 84—103.

D’Souza, D., MoHAN M., R., AND PRABHAKAR, P. 2007. Flattening metric temporal logic.
Manuscript.

ETeEssami, K. AND WILKE, T. 1996. An until hierarchy for temporal logic. In Proceedings of
the 11th Annual IEEE Symposium on Logic in Computer Science (LICS’96). IEEE Computer
Society Press, 108—-117.

FAINEKOS, G. E. AND PAapPAS, G. J. 2007. Robust sampling for MITL specifications. In Proceedings
of the 5th International Conference on Formal Modelling and Analysis of Timed Systems
(FORMATS’07). Lecture Notes in Computer Science, vol. 4763. Springer-Verlag, 147-162.

FAINEKOS, G. E. AND Pappas, G. J. 2009. Robustness of temporal logic specifications for
continuous-time signals. Theoretical Computer Science 410, 42, 4262-4291.

Furia, C. A. 2007. Scaling up the formal analysis of real-time systems. Ph.D. thesis, Dipartimento
di Elettronica e Informazione, Politecnico di Milano.

Furia, C. A., MANDRIOLI, D., MORZENTI, A., AND Ross1, M. 2010. Modeling time in computing: a
taxonomy and a comparative survey. ACM Computing Surveys 42, 2 (February), 1-59. Article
6. Also available as http://arxiv.org/abs/0807.4132.

Furia, C. A., PRADELLA, M., AND Ross1I, M. 2008a. Automated verification of dense-time MTL
specifications via discrete-time approximation. In Proceedings of the 15th International Sympo-
stum on Formal Methods (FM’08), J. Cuéllar and T. Maibaum, Eds. Lecture Notes in Computer
Science, vol. 5014. Springer-Verlag, 132-147.

Furia, C. A., PRADELLA, M., AND Rossi, M. 2008b. Practical automated partial verification
of multi-paradigm real-time models. In Proceedings of the 10th International Conference on
Formal Engineering Methods (ICFEM’08), S. Liu, T. Maibaum, and K. Araki, Eds. Lecture
Notes in Computer Science, vol. 5256. Springer-Verlag, 298-317.

Furia, C. A. AND Rossi, M. 2006. Integrating discrete- and continuous-time metric temporal
logics through sampling. In Proceedings of the jth International Conference on Formal Mod-
elling and Analysis of Timed Systems (FORMATS’06), E. Asarin and P. Bouyer, Eds. Lecture
Notes in Computer Science, vol. 4202. Springer-Verlag, 215-229.

Furia, C. A. AND Rossi, M. 2007. On the expressiveness of MTL variants over dense time. In
Proceedings of the 5th International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS’07), J.-F. Raskin and P. S. Thiagarajan, Eds. Lecture Notes in Computer
Science, vol. 4763. Springer-Verlag, 163—-178.

Furia, C. A. AND Rossi, M. 2008. MTL with bounded variability: Decidability and complexity.
In Proceedings of the 6th International Conference on Formal Modelling and Analysis of Timed
Systems (FORMATS’08), F. Cassez and C. Jard, Eds. Lecture Notes in Computer Science, vol.
5215. Springer-Verlag, 109-123.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

38 . C. A. Furia and M. Rossi

GOLLU, A., PURI, A., AND VARAIYA, P. 1994. Discretization of timed automata. In Proceedings
of the 33rd Conference on Decision and Control. 957-958.

GrAHAM, R. L., KnuTH, D. E., AND PATASHNIK, O. 1994. Concrete Mathematics: A foundation
for computer science, 2nd ed. Addison-Wesley.

HEITMEIER, C. AND MANDRIOLI, D., Eds. 1996. Formal Methods for Real-Time Computing. John
Wiley & Sons.

HENZINGER, T. A., MANNA, Z., AND PNUELI, A. 1992. What good are digital clocks? In Proceedings
of the 19th International Colloquium on Automata, Languages and Programming (ICALP’92),
W. Kuich, Ed. Lecture Notes in Computer Science, vol. 623. Springer-Verlag, 545-558.

HENZINGER, T. A. AND SIFAKIS, J. 2006. The embedded systems design challenge. In Proceedings
of the 14th International Symposium on Formal Methods (FM’06), J. Misra, T. Nipkow, and
E. Sekerinski, Eds. Lecture Notes in Computer Science, vol. 4085. Springer-Verlag, 1-15.

HIRSHFELD, Y. AND RABINOVICH, A. M. 2004. Logics for real time: Decidability and complexity.
Fundamenta Informaticae 62, 1, 1-28.

HIRSHFELD, Y. AND RABINOVICH, A. M. 2005. Timer formulas and decidable metric temporal
logic. Information and Computation 198, 2, 148-178.

HuNG, D. V. AND GIANG, P. H. 1996. Sampling semantics of duration calculus. In Proceedings
of the 4th International Symposium on Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’96), B. Jonsson and J. Parrow, Eds. Lecture Notes in Computer Science,
vol. 1135. Springer-Verlag, 188-207.

KoyMANsS, R. 1990. Specifying real-time properties with metric temporal logic. Real-Time Sys-
tems 2, 4, 255-299.

KovyMANS, R. 1992. (real) time: A philosophical perspective. In Proceedings of the REX Work-
shop: “Real-Time: Theory in Practice”, J. W. de Bakker, C. Huizing, W. P. de Roever, and
G. Rozenberg, Eds. Lecture Notes in Computer Science, vol. 600. Springer-Verlag, 353-370.

KRCAL, P. AND PELANEK, R. 2005. On sampled semantics of timed systems. In Proceedings
of the 25th International Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’05), R. Ramanujam and S. Sen, Eds. Lecture Notes in Computer
Science, vol. 3821. Springer-Verlag, 310-321.

KUCERA, A. AND STREJCEK, J. 2005. The stuttering principle revisited. Acta Informatica 41, 7/8,
415-434.

MALER, O., Nickovic, D., AND PNUELI, A. 2006. From MITL to timed automata. In Proceed-
ings of the 4th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS’06), E. Asarin and P. Bouyer, Eds. Lecture Notes in Computer Science, vol. 4202.
Springer-Verlag, 274—-289.

MALER, O. AND PNUELI, A. 1995. Timing analysis of asynchronous circuits using timed automata.
In Proceedings of the Advanced Research Working Conference on Correct Hardware Design and
Verification Methods, P. Camurati and H. Eveking, Eds. Lecture Notes in Computer Science,
vol. 987. Springer-Verlag, 189-205.

OUAKNINE, J. 2002. Digitisation and full abstraction for dense-time model checking. In Proceedings
of the 8th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS’02), J.-P. Katoen and P. Stevens, Eds. Lecture Notes in Computer Science,
vol. 2280. Springer-Verlag, 37-51.

OUAKNINE, J. AND WORRELL, J. 2003. Revisiting digitization, robustness, and decidability for
timed automata. In Proceedings of the 18th Annual IEEE Symposium on Logic in Computer
Science (LICS’03). IEEE Computer Society Press, 198—-207.

PanDyA, P. K. 2008. Personal communication.

Panpya, P. K., NARAYANAN KRISHNA, S., AND Lova, K. 2007. On sampling abstraction of
continuous time logic with durations. In Proceeding of the 13th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’07). Lecture
Notes in Computer Science, vol. 4424. Springer-Verlag, 246-260.

PERRIN, D. AND PIN, J.-E. 2004. Infinite Words. Pure and Applied Mathematics, vol. 141.
Elsevier.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

A Theory of Sampling for Continuous-Time MTL : 39

PRADELLA, M., MORZENTI, A., AND SAN PIETRO, P. 2007. The symmetry of the past and of
the future: Bi-infinite time in the verification of temporal properties. In Proceedings of The
6th joint meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering (ESEC/FSE 2007). 312-320.

PRADELLA, M., SAN PIETRO, P., SPOLETINI, P., AND MORZENTI, A. 2003. Practical model checking
of LTL with past. In Proceedings of 1st International Workshop on Automated Technology for
Verification and Analysis (ATVA’03), F. Wang and 1. Lee, Eds. Taipei, Taiwan, R.O.C., 135—
146.

RABINOVICH, A. M. 2003. Automata over continuous time. Theoretical Computer Science 300, 1—
3, 331-363.

THERIEN, D. AND WILKE, T. 2004. Nesting until and since in linear temporal logic. Theory of
Computing Systems 87, 1, 111-131.

Received December 2009; revised March 2010; accepted April 2010.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

