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Statistical analysis is the tool of choice to turn data into information, and then information into
empirical knowledge. The process that goes from data to knowledge is, however, long, uncertain, and
riddled with pitfalls. To be valid, it should be supported by detailed, rigorous guidelines, which help
ferret out issues with the data or model, and lead to qualified results that strike a reasonable balance
between generality and practical relevance. Such guidelines are being developed by statisticians to
support the latest techniques for Bayesian data analysis. In this article, we frame these guidelines in a
way that is apt to empirical research in software engineering.

To demonstrate the guidelines in practice, we apply them to reanalyze a GitHub dataset about code
quality in different programming languages. The dataset’s original analysis (Ray et al., 2014) and a
critical reanalysis (Berger et al., 2019) have attracted considerable attention—in no small part because
they target a topic (the impact of different programming languages) on which strong opinions abound.
The goals of our reanalysis are largely orthogonal to this previous work, as we are concerned with
demonstrating, on data in an interesting domain, how to build a principled Bayesian data analysis
and to showcase its benefits. In the process, we will also shed light on some critical aspects of the
analyzed data and of the relationship between programming languages and code quality—such as
the impact of project-specific characteristics other than the used programming language.

The high-level conclusions of our exercise will be that Bayesian statistical techniques can be applied
to analyze software engineering data in a way that is principled, flexible, and leads to convincing
results that inform the state of the art while highlighting the boundaries of its validity. The guidelines
can support building solid statistical analyses and connecting their results, and hence help buttress
continued progress in empirical software engineering research.

CCS Concepts: • Mathematics of computing → Bayesian computation; • Software and its engineer-
ing → Empirical software validation.

Additional Key Words and Phrases: Bayesian data analysis, statistical analysis, guidelines, empirical
software engineering, programming languages
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1 INTRODUCTION
Empirical disciplines, including a substantial part of software engineering research, mine
data for information, and then use the information as evidence to build, extend, and
refine empirical knowledge. Statistical analysis is key to implementing this process; but
statistical techniques are just tools, which need detailed guidelines to be applied properly
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2 Carlo A. Furia, Richard Torkar, and Robert Feldt

and consistently. It is only through the combination of powerful statistical techniques and
rigorous guidelines to apply them that we can distill empirical knowledge following a
process that is consistent, rests on solid principles, and ultimately is more likely to lead to
valid results with a higher degree of confidence.

Whereas frequentist statistical techniques have been commonplace in science for over a
century—since the influential work of the likes of Pearson [68] and Fisher [20]—the state
of the art in applied statistics is moving towards using Bayesian analysis techniques. As
we discussed in previous work [21], recent developments in Bayesian analysis techniques
(such as using Hamiltonian Monte Carlo fitting algorithms [11]) coupled with an increasing
availability of the computing power needed to run them on large datasets have convincingly
demonstrated the advantages of using Bayesian statistics and the flexibility and rigor of
the analysis they support. More recently, applied statisticians have also been working
out practical guidelines that can boost usability and impact of Bayesian statistical data
analysis [1, 23, 31, 57]. In this paper, we present some of these guidelines and frame them
in a way that is suitable for empirical research in the software engineering domain—with
the goal of demonstrating how they can support a principled way of building statistical
analyses of software engineering data.

To demonstrate the guidelines in practice, we follow them to analyze a large dataset
about the code quality of projects written in disparate programming languages and hosted
on GitHub [55]. The empirical study that curated this dataset and performed the original
analysis [55] was followed by a critical reanalysis by a different group of researchers [6]; as
we recall in Section 1.1, the topic has received much attention and stirred some controversy.
This visibility makes the dataset an attractive target for our own purposes.

In the paper, we go through various aspects of the data analysis performed in the previous
studies [6, 55], illustrating the versatile features of Bayesian statistical models in practice.
We demonstrate how the guidelines support an incremental and iterative analysis process,
where several key features of a statistical model can be validated; this, in turn, encourages
trying out different models and comparing them in a rigorous way—as opposed to blindly
relying on one-size-fits-all rules of thumb. Following this process, we demonstrate that
some issues of the original analysis [55] or criticized by the follow-up reanalysis [6] could
have been identified more easily. Furthermore, the limitations and actual impact of previous
studies could have been framed more straightforwardly and more transparently. The
conclusion of our exercise will be that flexible statistical techniques coupled with principled
and structured guidelines can help address empirical research questions directly and
transparently. This can lead to explanations that are nuanced and detailed, and hence,
ultimately, that can become convincing foundations for building shared knowledge.

1.1 Dataset and previous studies
In this paper, we reuse the dataset collected and analyzed by Ray et al. in a paper published
at the FSE1 conference [55]. A critical reproduction [6] of the original study, written by
Berger et al. and published in the TOPLAS2 journal, triggered a prolonged controversy that
reverberated on social media.

1The ACM SIGSOFT International Symposium on Foundations of Software Engineering.
2The ACM Transactions on Programming Languages and Systems.
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Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 3

Here is the story so far, in the shortest terms possible:3 based on their analysis of projects
hosted by GitHub, the original study [55] (henceforth, “FSE”) claimed to have found an
association between certain programming languages and the bug proneness of code written
in them. The reproduction study [6] (henceforth, “TOPLAS”) criticized several aspects of
FSE—most prominently, its data collection and classification practices—and questioned the
soundness of some of its results. In a rebuttal, the authors of FSE defended their results;4

and in a rebuttal of the rebuttal the authors of TOPLAS maintained their criticism.5

Our paper is emphatically not our attempt to jump into the fray: we do not have much to
add to the subject matter of the controversy. However, we appreciate the interest that the
controversial topic received, and see it as an opportunity to present our views on a different,
but related, aspect: practices in statistical analysis. Both FSE and TOPLAS primarily use
frequentist statistical techniques. Even in the best conditions, these techniques’ flexibility is
limited in comparison to the Bayesian statistical techniques we have been advocating [21, 65].

Overall, our contributions fall largely outside the focus of FSE and TOPLAS—except to
the extent that they target the same domain and the same data. The core of both papers
revolves around GitHub data, how it was collected and processed, and how the variables of
interest have been operationalized. TOPLAS’s main goal was to attempt to reproduce FSE’s
results, and hence it deliberately makes mostly limited changes to the statistical models.
Our analysis takes the data as it was collected and made available by FSE’s original study,
and tries to make the most out of it following rigorous guidelines to apply flexible statistical
practices—Bayesian statistics, that is.

1.2 Overview
The overall goal of this paper is demonstrating how Bayesian statistical techniques can
be applied in a principled way to build suitable statistical models. These models can then
be used to answer research questions in a flexible6 way, and to quantify limitations and
uncertainties about what one can reliably infer from the models.

This complements our earlier work on Bayesian data analysis for empirical software
engineering [21, 65], which:

• Argued for using Bayesian over frequentist statistics and showcased the former’s
flexibility on software engineering data [21].

• Suggested to analyze practical significance using a combination of Bayesian statistics
and cumulative prospect theory, which helps stakeholders evaluate the impact of a
technique or a practice in a way that takes into account their constraints, available
resources, and intuitive reasoning [65].

1.2.1 Key benefits of Bayesian statistics. Before we go into the novel contributions of the
present paper, let us briefly summarize the benefits of Bayesian statistical techniques—which
we presented in detail in our previous work [21, 65]. Section 4 will further demonstrate
several of these benefits on the programming language case study.

There is a growing awareness in several empirical scientific disciplines that “classical
[frequentist] statistical tools are not diverse enough to handle many common research

3Hillel Wayne provides a much more detailed account https://www.hillelwayne.com/post/this-is-how-

science-happens/.
4https://arxiv.org/abs/1911.07393
5http://janvitek.org/var/rebuttal-rebuttal.pdf
6Here, “flexible” means that it can be adapted to different kinds of scientific questions and analysis domains

while remaining effective.
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questions” [42]. Bayesian statistics, in contrast, are much more flexible, as they provide
general methods to connect data, models, and research questions [27]. Bayesian statistics
are more flexible because they are centered around modeling: how we fit a Bayesian model
is largely independent of the details of how the model was built. In contrast, different
frequentist models often require widely different analysis procedures: if we need to tweak
the model or its underlying assumptions even slightly, the frequentist analysis results may
become unreliable.

The main output of a Bayesian data analysis is a distribution of model parameters fitted
on the data. This includes rich quantitative information, in contrast to the point estimates
that are the usual outcome of applying frequentist statistics. Providing distributional infor-
mation is a key strength of Bayesian statistics. First, it supports quantitative and nuanced
analyses instead of a purely dichotomous (yes/no) view—which is prevalent with sta-
tistical hypothesis testing (a core technique of frequentist statistics that has been under
intense scrutiny [2, 70]). Second, distributional information is easier to understand, since
it measures quantities of interest in the specific domain. Contrast this to purely statistical
metrics such as p-values or confidence intervals, which are notoriously hard to interpret
correctly [34, 35]. Third, the quantitative distributional information that is provided by a
fitted Bayesian model supports simulating the derived distributions of a variety of quantities
of interest, such as outcomes in a specific scenario—which is especially useful to analyze
practical significance [65].

The current paper focuses on how to apply Bayesian data analysis in a principled way:
following detailed guidelines and a structured workflow. Demonstrating the guidelines on
FSE’s dataset, our contributions address four aspects that are relevant to every study that
involves statistical data analysis.

1.2.2 How to design a statistical model? Modeling requires to exercise judgement—something
that can be based on practices, customs, and heuristics, but is not completely reducible to a
fixed set of rigid rules. Bayesian statistics emphasizes the modeling aspect of data analysis,
and provides quantitative techniques to help ground heuristics and practices onto a robust
and sound statistical framework.

Section 2 presents guidelines to build a Bayesian statistical model incrementally (adding
features as needed), iteratively (improving a model based on the shortcomings of the
previous ones), and rigorously (with quantitative criteria to assess a model’s suitability).
Our guidelines customize general guidelines developed by the Bayesian data analysis
community to the scenarios that are common in empirical software engineering. Section 3
demonstrates, on the FSE dataset, that our guidelines provide principled ways of assessing
the strengths and weaknesses of any statistical model for the analysis at hand.

1.2.3 How to spot data problems? TOPLAS’s criticism of FSE’s analysis questions the accuracy
of some of the data that was collected and how it was processed. For example, it says that
“project size, computed in the FSE paper as the sum of inserted lines, is not accurate—
as it does not take deletions into account” [6, §3.2]. Can Bayesian statistical techniques
help discover problems with the data—such as inconsistencies, sparseness, and lack of
homogeneity—that limit the validity and generalizability of the statistical analysis’s results?

Naturally, no statistical technique (no matter how powerful) can supersede a careful
analysis of construct validity [19, 53], which should precede the statistical analysis and lay
the foundations for it. Still, applying the Bayesian guidelines that we present can ferret out
issues with the data and highlight where uncertainty is more or less pronounced, so that
we can heed any limitations when drawing conclusions. For example, Section 4.2 finds that

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 5

the number of inserted lines performs poorly as a predictor, echoing TOPLAS’s observation
that it may not be a suitable measure of size.

1.2.4 How to assess significant results? In previous work [21], we demonstrated that Bayesian
statistical techniques can help move away from a dichotomous (significant/not significant)
framing of research questions—which comes typically with frequentist null hypothesis
testing and is often artificially restrictive—and instead focus on practical significance [65].

The gap between statistical significance and practical significance is more likely to be
wide when studying complex domains with plenty of confounding factors. The analysis of
programming language data is a clear example of such complex domains. In this paper, we
show how the Bayesian statistics guidelines support a nuanced analysis of complex models,
and help keep the focus on concrete scenarios and practically relevant measures. Concretely,
we show that Bayesian data analysis provides a flexible model of data distributions, which
can be used to predict outcomes in different scenarios directly in terms of statistics that are
based on variables in the problem domain.

Our analysis’s conclusion will be that the key question “which programming languages
are more fault prone” does not admit a simple straightforward answer—not with the ana-
lyzed data at least. Nevertheless, as we argued in [21] and now demonstrate in Section 4.3,
practitioners can ask specific questions and answer them by running simulations on the
Bayesian model, rather than having to rely on general results that may not be meaningful
in their context.

1.2.5 How to build knowledge incrementally? Every empirical study has limitations; lifting
them requires to perform new experiments. Another advantage of Bayesian statistical
models built using an incremental process is that they can be refined as we collect more data.
This way, our models become better over time since they accurately reflect the evolving
scientific knowledge in a certain area.

Section 4.4 discusses how applying Bayesian analysis guidelines helps plan for additional
data collection based on the limitations of the analyzed data. Different experiments are no
longer merely a loose collection around the same themes, but can be planned back-to-back
in a way that progressively reduces the uncertainty in knowledge.

1.3 Contributions
This paper makes the following contributions:

• It presents guidelines to apply Bayesian statistics following a systematic process that
goes from building and validating the model to fitting and analyzing it.

• It demonstrates the guidelines by showing how to incrementally build a suitable
statistical model to capture FSE’s language quality data.

• It analyzes the fitted model to investigate the original questions of the effect of
programming languages on fault proneness with a focus on practical scenarios.

• For reproducibility, all analysis scripts are available online together with additional
results and detailed data visualization:

REPLICATION PACKAGE: https://doi.org/10.5281/zenodo.4472963 [22].

1.3.1 Scope. To a large degree, the guidelines we present are not specific to certain classes
of statistical models or analysis domains. The case study we detail in this paper is about
programming language quality, which we model using several generalized linear models
of different complexity—a broad class of statistical models widely used for their flexibility.
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This does not mean that the guidelines are only applicable to programming language data,
nor that they only work for generalized linear models.

Since the guidelines are largely independent of the specific features of the chosen sta-
tistical model, the domain-specific details of how to operationalize a certain data analysis
problem and how to build a valid “construct” (a statistical model) are largely outside the
scope of the present paper. As we remarked above, we selected the programming language
data as case study because it has been already thoroughly analyzed and scrutinized (albeit
in a frequentist setting); thus, we can build on FSE’s and TOPLAS’s work to demonstrate the
additional steps to be taken to bolster the validity of a statistical data analysis. This leaves
room for different analyses of the same research questions but using different data collection
processes or different statistical models. Our guidelines remain valid as a safeguard against
modeling mistakes or shortcomings; since they promote an iterative approach, they can also
suggest what to change when they fail to validate a candidate model.

1.3.2 Organization. The rest of the paper is organized as follows. Section 2 illustrates
Bayesian data analysis guidelines with an angle that is relevant for empirical software
engineering. Section 3 follows the guidelines to incrementally build a model that is suitable
to capture FSE’s programming language data. Various models are rigorously evaluated and
compared, so that the final model is arguably the “best” among them according to certain
quantitative criteria. Section 4 analyzes the fitted model to study the original questions
of which programming languages are associated with more or fewer faults. The results
look at different scenarios and outline how further custom analyses could be built atop the
same model. Finally, Section 5 discusses related work and Section 6 concludes with a brief
summary and closing discussion.

2 BAYESIAN DATA ANALYSIS GUIDELINES
In the last decade, powerful Bayesian statistical analysis tools and languages have become
widely available together with computational resources adequate to run them [13, 25, 50].
More recently, statisticians have also been introducing and refining guidelines on how to use
these tools in a systematic way to perform principled Bayesian data modeling [1, 23, 31, 57].
In this section, we summarize these state-of-the-art guidelines while recasting them in a
form suitable for empirical software engineering research.

A Bayesian model defines a statistical data-generating process in terms of a prior distri-
bution of parameters θ and a likelihood that certain data is observed for each value of the
parameters. Fitting such a model on some empirical data D then gives a posterior distribution
of the same parameters that follows Bayes’ theorem:

P(θ | D)︸       ︷︷       ︸
posterior

∝ P(D | θ)︸       ︷︷       ︸
likelihood

× P(θ)︸ ︷︷ ︸
prior

. (1)

The posterior can then be used to compute the probability of other observations of interest in
a predictive fashion. Our previous work [21] presented more details about Bayes’ theorem
and the roles of prior, likelihood, and posterior. In this paper, we focus on how to build a
Bayesian model in practice: Bayesian modeling involves choosing components in a way
that is sound and principled, and that works for the data and domain that we are targeting.

Figure 1 illustrates a key idea of the guidelines for Bayesian analysis presented here:
developing a statistical model is a process of iterative refinement, which starts from a very
simple (possibly simplistic) initial model that is gradually refined. Each iteration goes through
a series of steps that assess the model’s suitability in terms of the following characteristics:
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initial
model

PLAUSIBLE? WORKABLE? ADEQUATE?

REFINE

ANALYZE

analysis
results

Ë Ë Ë

é éé

refined
model

EXTEND

COMPARE

extended
model

“best”Ë
Ë

Ë

Fig. 1. Process for Bayesian data analysis: starting from an initial model, assess whether it is plausible,
workable, and adequate. If it lacks any of these characteristics, refine the model by adding detail and features.

Models that pass all checks can be fitted and used to answer the analysis’s specific questions. Different

models that pass all checks can be rigorously compared to select those that perform “best” according to

suitable criteria. The outer loop (dashed arrows) indicates that an analysis’s results may also suggest to extend
an adequate model so that it can answer more precise, or just different, questions; this outer loop is another

source of multiple models that can be compared.

Plausibility: Is the model consistent with (expert) knowledge about the data domain?
Workability: Can the model effectively and accurately be fitted using the available
numerical algorithms?
Adequacy: Can the model capture the characteristics of the empirical data?
These steps help assess the utility (or suitability) of a model and its trade-offs. As we

illustrate in Tables 1 and 2, each step puts additional requirements on a model, and checks
whether the model is well-equipped to faithfully capture the observed data and to analyze
it. Table 1 shows how each step broadens the scope of what model components are checked;
in particular, the actual empirical data is only used in the adequate step, whereas the pre-
vious steps generate simulated data using priors and likelihood. Table 2 details how each
step has a possible outcome (what it establishes about the model), which is supported by
analysis artifacts that document the step. The following sections describe the steps, artifacts,
and outcomes in some detail. Section 3 will apply the steps on the main case study of
programming language data.

2.1 Modeling
To make the description concrete, and thus easier to follow, we illustrate what the steps
compute on a toy problem: predicting an adult person’s height h in centimeters. To this end,
we build this statistical model:

h ∼ Normal(µ, σ) (2)

µ ∼ Normal(170, 50) (3)

σ ∼ HalfCauchy(0, 1) (4)

The following paragraphs introduce its components one by one.
Parameters. A Bayesian statistical model consists of three components: parameters to

estimate, likelihood, and priors. In our example, the model’s parameters θ are the mean µ
and standard deviation σ of a person’s height. The data D records the value of outcome
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variable h for several persons, which we can use to estimate µ and σ. There are no predictor
variables in this simplistic model, but otherwise these would also be recorded in the data
for every person.

Likelihood. The likelihood is a probability distribution of the data h given parameters µ
and σ. The simplest (yet extremely common) choice is a normal distribution, which encodes
no additional information about the data other than that it has a mean µ and a standard
deviation σ. This likelihood is defined by (2), which is in fact a probability distribution of h
given µ and σ.

Priors. Finally, we need priors for µ and σ. Specifying a prior means defining an initial
probability distribution for a parameter of the model—a probability distribution without
any dependency on the data.

The least informative priors are completely flat distributions, which assign the same
infinitesimal probability to any value of the parameter; this is the default behavior in
frequentist statistics. A flat prior for µ, for example, would be a uniform distribution with
support from −∞ to +∞. Flat priors are usually a poor choice: first, since they stretch a
probability distribution over an infinitely large support, they tend to generate infinitesimal
probabilities that may cause numerical rounding errors; second, a prior with no information
whatsoever about the realistic parameter domain is prone to overfitting the data. We can
see it clearly even in the simple example of estimating heights: a flat prior would give the
same a priori probability to height values −10, 170, and 109, but only the second value is a
plausible human height!

A better choice are weakly informative priors, which still carry very little specific informa-
tion but perform much better than flat priors computationally and protect against overfitting
the data. As prior for µ, we select the normal distribution (3), with mean 170 and standard
deviation 50; this means that we expect most heights to be between 20 = 170 − 3 · 50 and
320 = 170 + 3 · 50 centimeters. This is still an extremely broad range of values, but it favors
values that are in the ballpark of realistic human heights. By the way, there is nothing special
about the values 170 and 50: the priors are only a starting point, which should just identify
a plausible range of heights without being unnecessarily constraining. Different, reasonable
choices for the priors would still lead to very similar outcomes.

A prior for σ should rule out negative values (that is, assign zero probability to them),
since a standard deviation must be a nonnegative number. A common choice for priors of
standard deviations is a so-called half-Cauchy distribution, which is a truncated Cauchy.
Precisely, we set the first (location) parameter of the prior (4) for σ to zero, so that the
distribution’s support is restricted to the nonnegative reals. We set the second (scale)
parameter to one, which spreads out the probabilities smoothly while still preferring
moderate values of σ.

Bayesian data analysis tools can often suggest default weakly informative priors that may
work well in many cases. In the analysis of Section 3, we will define our priors—following
standard recommendations [42]—but very often using default priors would have lead to
overall similar results. In any case, the plausibility checks described next will validate our
choice of priors.

2.2 Plausible model
Once we have chosen parameters, likelihood, and priors our model definition includes
all required parts. Then, we can “run” the model—that is, sample from it—and analyze
how likelihood, data, and priors constrain the model parameters of interest [30]. The first
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STEP PRIOR LIKELIHOOD
ALTERNATIVE EMPIRICAL NEW DATA

MODELS DATA FOR PREDICTION

plausible? ✓
workable? ✓ ✓
adequate? ✓ ✓ ✓
compare ✓

analyze ✓ ✓ ✓ ✓

Table 1. For each step of a Bayesian statistical analysis (checks of plausibility, workability, adequacy, model

comparison, and analysis), the model components (prior and likelihood), competing alternative models,

and kinds of data (empirical and new for prediction) that the step primarily tests.

STEP ARTIFACTS OUTCOME

plausible? (1) Prior predictive simulation plots; (2) Justifi-
cation for priors if they disallow certain values.

The priors allow a broad range of possible val-
ues and give low probability to values that are
unlikely to occur in the domain.

workable? (1) Simulation-based calibration of z score and
shrinkage; (2) Fitting diagnostic metrics.

Fitting the model works computationally and
does not exhibit pathological behavior.

adequate? Posterior predictive checks plots. The model can generate data similar to the em-
pirical observations.

compare Information-criteria ranking and scores of com-
peting alternative models.

The chosen model achieves a bias-variance
trade-off better than the alternative models.

analyze (1) Posterior plots based on the empirical data;
(2) Distribution plots and summary statistics of
any domain-specific variables of interest.

Quantitative answers to the analysis’s specific
questions.

Table 2. The artifacts that are typically produced, and the outcome that follows from each step of a Bayesian

statistical analysis (when the step succeeds).

step of this analysis focuses on the priors, which should be neither too constraining nor
unreasonably permissive. This step is typically called prior predictive simulations or prior
predictive checks [42, 57] and works as follows: sample the priors broadly; using the sampled
distribution (ignoring the actual empirical data, which are not used in this step), run the
model to get a distribution of the model variables of interests (typically, the outcome
variable); check that this distribution is plausible for the variables that it measures.

The key principle is that, if the priors are properly chosen, this process should determine
a distribution that allows all plausible values for the variables but gives vanishing small
probability to values that are practically impossible or contradict established scientific
knowledge. In summary, prior predictive checks answer the question: Does sampling from
the priors lead to a plausible range of parameter values?

Here is how prior predictive simulation would work on our toy example. First, we
sample random values for parameters µ and σ from their prior distributions (3),(4). We then
plug each sampled pair of values µ, σ into the likelihood (2) and sample values of h from
Normal(µ, σ). Since the outcome variable h measures an adult person’s height, the priors
should be such that this sampled distribution of h freely allows heights between, say, 0
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and 300 cm, whereas it disallows negative heights and assigns very small probabilities to
heights above 300 cm—since no human on record has ever been that tall.

Prior predictive simulation is not cheating [42]. As long as we do not set priors based
on the actual empirical data that we are going to analyze, but only through what we
know about the data domain independent of how we measured it, it is sensible to use our
existing knowledge to rule out priors that would lead to impossible or clearly implausible
results. Seen in this light, the possibility of choosing priors is a big advantage of Bayesian
analysis that is highly valuable for any empirical science. Using existing knowledge to
guide new analyses, we can develop sequences of studies that, taken together, progressively
sharpen knowledge in a specific area. The alternative is that every software engineering
research contribution remains an “island unto itself” without clear connections to the related
literature and the field as a whole [21].

The reasons for choosing certain priors that make the model plausible should be explicitly
justified. In practice, and to the extent that it is possible, empirical software engineering
studies should explicitly state which published results, common sense, or “folk knowledge”
justify the choice of priors and their plausibility behavior. Section 3.3 demonstrates how to
do that for the paper’s case study.

Selecting informative priors gives Bayesian statistics more flexibility, but does not limit
its applicability. When very little is known about the problem domain—for example, in
an exploratory first study about a certain practice—one can always fall back to using
completely uninformative priors, which require no specific knowledge, and hence are
vacuously plausible. When prior knowledge exists, however, defining more selective priors
can help sharpen the model and specialize it to the characteristics of the analysis domain.

2.3 Workable model
Once we have ascertained that the chosen priors are consistent with plausible parameter
values, the second step checks whether our model works computationally—that is, fitting
the model does not incur divergence or other numerical problems, and the fitting process
eventually reaches a stationary state that properly identifies a posterior distribution.

An emerging technique to do so is simulation-based calibration [57, 62], which relies on a
consistency property of Bayesian models: first, simulate parameter and data values from the
priors and likelihood as done in prior predictive simulations; then, using Bayes’ theorem,
combine the simulated parameter and data samples to get a posterior distribution of the
model’s parameter; if the model is consistent, the posterior distribution obtained in this
way should resemble the prior distribution. To perform simulation-based calibration on
our toy example, we would (i) sample parameter values from the priors; (ii) use those to
build samples of the outcome variable h; (iii) use these outcome samples as data (instead of
the actual empirical data) and combine them again with priors and likelihood using Bayes’
theorem (1). These steps give a new sampled distribution of the parameters µ and σ, which
we compare with that obtained by sampling the priors directly in the first step.

While promising, simulation-based calibration is a cutting-edge technique that is still
undergoing major developments; none of the statistical analysis tools that are more widely
used for Bayesian analysis support it out-of-the-box. Instead, these tools offer other metrics
to assess workability that are specific to the fitting algorithms based on dynamic Hamilton-
ian Monte Carlo which they implement. Here are the metrics that are usually available, and
how they help us assess workability:
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• A divergent transition in the sequences of samples indicates a possible numerical
error; workable models should have few divergent transitions—ideally none.

• The sampling process is repeated a few (usually 2–4) times independently; each se-
quence of sampling is called a chain. In a workable model, different chains should be
statistically similar: the ratio R̂ of within-to-between chain variance should converge
to 1 as the number of samples grows. A common rule of thumb for finite sampling
is that R̂ < 1.01, which indicates a stationary posterior distribution.

• The effective sample size is the fraction of all samples that are independent, that is
not autocorrelated. We typically want it to be at least 10% for each parameter we
estimate (and that the absolute number of independent samples be a few hundreds);
lower values may indicate that sampling is ineffective.

• Finally, we can also visually inspect the plots that trace the samples in every chain.
When the different lines look mixed up (like a “hairy caterpillar” [42]), it is one more
sign that the fitting process works well.

Section 3.4 uses these metrics to analyze the workability of our models.
When a workability check fails, it suggests that there is a mismatch between the model

and the algorithm used to fit it. Sometimes, this is due to the data—for instance it is too
sparse to effectively sample from it. More commonly, it indicates that the model itself is
unsuitable for the analysis at hand. A clear example is the problem of multicollinearity:
when two variables are strongly correlated, their exact contribution to the outcome is
undetermined; thus, the model may not be workable because it cannot be used to discover
a definite value for each variable independent of the other.

2.4 Adequate model
If the previous analysis steps were successful, we determined that the priors are sensible
(plausibility) and that fitting the model is a converging process (workability); it remains to
check whether the model adequately captures reality. The third step thus fits the model
using the actual empirical data (which was not used in the previous two steps) and performs
posterior predictive checks: using the posterior distribution of parameters fitted on the actual
empirical data, simulate new observations and compare them to the data. If the two are
consistent, it means that the model can generate data similar to the observed data, and
hence it captures the empirical observations adequately.

Here is how posterior predictive checks would work on our toy example. Similarly as in
simulation-based calibration, we combine data and prior samples using Bayes’ theorem (1);
the key difference is that we now use the actual observed data (the height of real people)
instead of simulated data. This gives a posterior predictive distribution of parameters µ
and σ, which, in turn, we sample; then, we plug the sampled parameter values into the
likelihood to get a distribution of h—the so-called posterior predictive distribution, since it
expresses the information about the posterior indirectly in terms of prediction of model
(outcome) variables. In an adequate model, the posterior predictive distribution generates
data somewhat similar to the actual observed data.

Section 3.5 discusses the results of posterior predictive checks on the programming
language case study.

2.5 Model comparison
Information criteria such as WAIC (Widely Applicable Information Criterion, also known as
Watanabe-Akaike Information Criterion) [71] and PSIS-LOO (Pareto-Smoothed Importance
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Sampling Leave One Out validation) [67] assess a kind of relative adequacy by measuring
deviance or other information-theoretic metrics between a model’s predictions and the data.
In a nutshell, these metrics assess how well each model performs out-of-sample predictions
compared to other competing models. Thus, information criteria measures are relative:
they are useful to compare the adequacy of a model relative to another but cannot gauge
a model’s adequacy in absolute terms. Section 3.6 uses information criteria to compare
different models for the programming language data analysis.

2.6 Iterative refinement
After a candidate model goes through the steps described above, we have a clear under-
standing of its strengths and weaknesses. When the model fails specific steps, we also learn
what aspects we have to change to refine it: the priors of an implausible model need chang-
ing; an unworkable model needs to be refactored in a way that works computationally;
an inadequate model may require more information (typically in the form of additional
variables or parameters) for it to be consistent with the data (for example, to properly
capture inter-group variability).

Model design is an iterative process which gradually refines an initial model to improve
it. Usually, we start from a deliberately very simple model and make it more complex as
needed [57]. However, we can also do the opposite: start from a so-called maximal model,
and then simplify it as long as it retains the characteristics of plausibility, workability, and
adequacy [49]. In practice, we may even alternate simplification and refinement (detail-
adding) steps starting from a canonical model [47, pp. 103–104] until we are satisfied with
the results.

The presentation of the results of a Bayesian data analysis need not discuss the models in
the same order in which they were designed and evaluated; it does not even need to present
all models, but can simply present the final model as long as its choice can be soundly
justified a posteriori (and, preferably, a reproducibility package exists). Regardless of how
we choose to present the overall outcome of an analysis, considering different models
expands the flexibility of the modeling process, supports making informed choices about
each aspect of a model, and helps focus on and quantify the relative benefits of each model
in terms of the trade-offs that matter for the ongoing analysis.

2.6.1 Uniqueness and optimality of models. When should we stop refining our model? Para-
phrasing George Box’s famous aphorism [9, 10], we could say that the goal of statistical
modeling is building a useful model, not a correct one. In other words, we cannot expect
that following our guidelines leads to designing a unique or optimal model.

Model comparison can identify which models perform better predictions than other
models, but it cannot assess a model’s absolute predictive capabilities. The steps in Figure 1
make up a validation process, which can identify a model’s shortcomings or confirm that it
is of suitable quality; they cannot say anything about the infinitely many other models that
were not considered. Building useful models still requires human intuition, knowledge,
and ingenuity—skills that no supporting process can completely replace.

2.7 Tools for Bayesian data analysis
Let us briefly mention which tools are available to support the kind of Bayesian data
analysis process that we discuss in this paper. Stan [13] and JAGS [51] are state-of-the-art
frameworks that offer a probabilistic language to express Bayesian models and implement
very efficient algorithms to fit such models on data. Commonly, one uses these frameworks
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through a front-end library in a high-level programming language suitable for data analysis.
Libraries such as brms for R [12], Stan.jl for Julia [39], and PyStan for Python [52] provide
a rich interface to Stan, including support for the main steps of our guidelines (for example,
prior predictive simulations). Turing.jl for Julia [25] also provides a high-level interface to
perform Bayesian data analysis, but includes its own implementation of Bayesian sampling
instead of relying on Stan’s (which may offer some advantages in terms of flexibility and
generality for the most advanced applications).

3 BAYESIAN DATA ANALYSIS OF PROGRAMMING LANGUAGE DATA
Equipped with a high-level understanding of the modeling guidelines that we outlined in
Section 2, we apply them to perform the analysis of the FSE data. The overall outcome of
the work described in this section will be a carefully designed, suitable statistical model of
this data. In Section 4, we will analyze this model to understand what it tells us about the
original questions on programming languages and code quality.

To mitigate the risk of mono-operational bias, the first author prepared the data for
analysis in R, and the second author developed the first complete analysis, which then the
first and third author revised. Finally, all three authors validated the final revised analysis,
which is presented here. In addition, the second author did not read the publication that
originated the dataset [55] or its reanalysis [6] until after completing the first complete
analysis. This reduced the chance that the others’ design decisions, or some characteristics
of the data they highlighted, biased our application of the modeling guidelines.7

3.1 Data
FSE’s authors released the original dataset—obtained by mining information from GitHub
repositories—upon request from TOPLAS’s authors. TOPLAS performed first a repetition
of FSE’s analysis on the same dataset, and then a reanalysis on a revised dataset obtained
by “alternative data processing and statistical analysis to address what [they] identified as
methodological weaknesses of the original work” [6, Sec. 4]. The main difference between
FSE’s original dataset and TOPLAS’s revised dataset is that the latter removes some dupli-
cated data, TypeScript projects (which often do not include much actual TypeScript code),
and the V8 project (whose JavaScript code in the dataset is mostly tests). Finally, TOPLAS’s
replication package includes FSE’s original dataset alongside TOPLAS’s revised dataset.

In our analysis, we focus on the original FSE dataset,8 because we would like to see
whether a Bayesian data analysis can help spot issues and inconsistencies in the data that
may hinder replication attempts—and, conversely, that may make replication run-of-the-
mill if addressed early on. Our replication package includes all analysis details, including
the results of fitting the same models on TOPLAS’s revised dataset (which we do not discuss
here for brevity).

FSE’s dataset includes information about 1 578 165 commits, which we group by project
and language giving 1 127 datapoints. The attributes that are relevant for our analysis are:

project : the project’s name
language : the used programming language
commits : the total number of commits in the project
insertions : the total number of inserted lines in all commits

7We used Stan through its brms R front-end to perform the analysis described in the rest of the paper.
8Which we obtained from TOPLAS’s public replication package (available at https://github.com/PRL-PRG/

TOPLAS19_Artifact).
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Fig. 2. Violin plots of the distributions of number of bugs per project for each programming language in the

original FSE dataset. Languages are sorted, left-to-right, by decreasing values of the distributions’ medians.

The vertical axis’s scale is logarithmic in base 10. An horizontal line marks the median number of bugs per

project across all languages.

age : the time passed since the oldest recorded commit in the project
devs : the total number of users committing code to the project
bugs : the number of commits classified as “bugs”

The values of attributes commits , insertions , age , and devs vary greatly between projects.
When this happens, it is customary to transform the data using a logarithmic function, so
that the variability is over a smaller range whose unit corresponds to an order of magnitude.
Both FSE’s and TOPLAS’s analyses log-transformed these attributes; we do the same:
henceforth, commits , insertions , age , and devs represent the natural logarithm of the total
number of commits, inserted lines, and so on.

Figure 2 provides an overview of the FSE dataset, showing the distribution of bugs per
project grouped by programming language. Visualizing the raw data can be useful to get
a broad idea of what is in the dataset; however, the information that such visualizations
provide is mostly qualitative and we should be aware of its limitations. If one includes all
data, any outliers may skew the picture at extreme values; conversely, if one excludes some
data, deciding which data to exclude is itself a source of possible bias, and discards poten-
tially useful information thus increasing uncertainty. In this dataset specifically, projects
vary broadly in terms of size and other characteristics. Figure 2 conflates these differences,
and hence a comparison of different languages based on it may be misleading. We could
display a subset of the data that only includes projects with homogeneous characteristics;
however, doing so would drop significant amounts of information, introduce a somewhat
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STEP M1 M2 M3

plausible? Ë Ë Ë
workable? Ë Ë Ë
adequate? é Ë Ë
compare – é Ë

Table 3. Plausibility, workability, adequacy, and comparison of models M1, M2, M3. All three models

are plausible and workable, but model M1 is not adequate because it cannot accurately capture the regular

features of the dataset. Model comparison between M2 and M3 shows that the latter performs much better

concerning out-of-sample predictions, and hence we will use M3 for the rest of the analysis.

arbitrary partitioning (what projects are “similar”?), and increase the risk of overfitting
other accidental characteristics of the data. By abstracting the information in the raw data
and combining it with expert knowledge, a suitable statistical model can lessen several of
these problems, thus supporting more robust and general inferences about the impact of
programming languages.

3.2 Modeling
We build three models—M1, M2, and M3—of increasing complexity.9 Table 3 summarizes
the outcome of the steps in Figure 1 for the three models. Mirroring Table 2’s structure,
Table 4 outlines the artifacts produced in each step, and the conclusions that the analysis
draws about each model’s suitability. The rest of this section details the models and the
outcome of the guidelines’ suitability checks presented in Section 2. This section presents
the models and the outcome of their suitability analysis in detail; later, Section 4.1 will
discuss, at a higher level, what this analysis reveals about the relations between model
features and data.

As we remarked in Section 1.3.1, our guidelines can be used to validate different kinds of
models. We consider these three models because they belong to a widely used family of
statistical models, and for their similarity with the models of FSE and TOPLAS. An analysis
with different goals or done by analysts with different expertise could end up building very
different kinds of models—but they should still undergo the same validation steps.

3.2.1 Likelihood (and parameters). Generalized linear models are a broad category of statistical
models that are so flexible that they can be “applied to just about any problem” [28] when
modeling empirical data. The likelihood of a generalized linear model is a probability
distribution over certain parameters, which are generalized linear functions of the variables
chosen as predictors. The values drawn from the distribution correspond to the outcome
that we are modeling.

Distribution family. In our case, the outcome variable is bugs , which always is a nonneg-
ative integer. Therefore, we should select a likelihood distribution suitable for “counting”—
that is, one in the Poisson family. The single-parameter Poisson is the distribution in this
family with the highest information entropy [37], and hence it should be the customary
initial choice.

Nevertheless, building a model using the single-parameter Poisson quickly reveals that it
cannot account for the fact that the distribution of bugs in the data is overdispersed: its mean

9As discussed in Section 2.6, for clarity we present the three models at once but we actually designed them
over several iterated applications of the guidelines.
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STEP ARTIFACTS OUTCOME

plausible? (1) Prior predictive simulation plots in Fig-
ure 5; (2) Justification for priors: typical re-
lations between project size and number of
known bugs [58].

The priors of all three models allow a very
broad range of possible values for the number
of bugs that may exist; extremely high numbers
are still possible but with low probability.

workable? Fitting diagnostic metrics reported in Sec-
tion 3.4: R̂, effective sample size, no divergent
transitions, trace plots (details in the replication
package).

Fitting all three models works computationally
and reaches convergence.

adequate? Posterior predictive checks plots in Figure 7. Model M1 cannot generate a distribution sim-
ilar to that observed in the data (top plot in
Figure 7), whereas models M2 and M3 can.

compare Information-criteria scores of competing mod-
els in Table 5.

Model M3 clearly outperforms M2 in how it
can predict data out of the sample used for fit-
ting.

analyze (1) Posterior plots based on the empirical data
in Figures 11 and 13; (2) Distribution plots and
summary statistics of domain-specific variables
of interest in Figures 8 and 12.

Quantitative answers to the analysis’s specific
questions in Section 4.

Table 4. A summary of the artifacts produced by the analysis of the three models, and the outcome of

each step of the analysis in terms model suitability. This summary instantiates Table 2 for the programming

language data analysis.

µbugs = 501 is much smaller than its variance σ2
bugs = 15 031 006. This justifies selecting

the slightly more complex negative binomial distribution NegativeBinomial(λ, ϕ). The two
parameters λ and ϕ represent10 rates that together determine the distribution’s mean λ and
variance λ + λ2/ϕ, which can take different values to accurately capture overdispersion.
This is in contrast to the Poisson distribution whose mean and variance coincide. The
negative binomial distribution is also the same distribution selected, for the same reason,
by both FSE’s original analysis and TOPLAS’s reanalysis.

Model M1. The first model we consider, called M1, is very simple: it assumes that
the rate λ is a function of two terms only. The first term Π is a constant intercept α; the
symbol Π highlights that it is a population-level term. The second term L is an additional
intercept αlanguage that depends only on the language used in each observation; the symbol L
highlights that it is a language-level term. Figure 3a shows M1’s overall likelihood, where
the logarithm function links11 the linear function of the parameters and λ so that the latter
is always a nonnegative number—as it should be in a “counting” distribution.

Model M1 is obviously too simple to capture the variability in the data with high accuracy.
Nonetheless, it is a useful starting point to understand the key relations between variables
and to bootstrap the process that leads to incrementally more refined and precise models.
In its simplicity, it highlights that the key predictor (the “treatment”) is the programming
language used in each project, whose relation with the number of bugs we would like to
capture. Finally, even a simplistic model serves as a useful baseline to compare to more

10https://mc-stan.org/docs/2_20/functions-reference/nbalt.html
11In other words, the link function converts measures from the probability space to the outcome space.
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bugs i ∼ NegativeBinomial(λi, ϕ)

log(λi) = Πi + Li

Πi = α

Li = αlanguage i

(a) Model M1

bugs i ∼ NegativeBinomial(λi, ϕ)

log(λi) = Πi + Li

Πi = α + βC · commits i + βI · insertions i

+ βA · age i + βD · devs i

Li = αlanguage i

(b) Model M2

bugs i ∼ NegativeBinomial(λi, ϕ)

log(λi) = Πi + Li + Pi

Πi = α + βC · commits i + βI · insertions i

+ βA · age i + βD · devs i

Li = αlanguage i
+ βC

language i
· commits i

+ βI
language i

· insertions i + βA
language i

· age i

+ βD
language i

· devs i

Pi = αproject i

(c) Model M3

Fig. 3. The likelihoods of statistical models M1, M2, and M3. Colors highlight the terms that are added to

each model compared to the previous ones.

complex models—as a sanity check that the additional complexity that we are going to add
to the models brings measurable improvements over the baseline.

Model M2. The second model we consider, called M2, is a standard linear-regressive
model with negative binomial likelihood. Model M2’s population-level term Π is a linear
function with intercept α and a slope β for each predictor variable commits , insertions , age ,
and devs . In addition, like model M1, M2 includes a language-level term L that consists
of an intercept that depends on the language used in each observation (a so-called “varying
intercept” model [29]). Figure 3b shows M2’s overall likelihood.

Model M2 is the closest to the regressive models used in FSE and TOPLAS. The only
difference is how each model accounts for the dependence on the programming language:
FSE and TOPLAS use different kinds of contrasts [6, 55], whereas we simply add an intercept
language-level term—thus making our models multilevel [28]. Multilevel modeling comes
natural with Bayesian statistics, both because we do not have to worry too much about
adding layers to the model (unlike with frequentist techniques, changing such characteristics
of the model does not require changing the fitting algorithm) and because we can just model
the quantities of interest directly and compute any derived quantity after we fit the model’s
posterior distribution (unlike with frequentist techniques, which mostly provide only point
estimates without distributional information).

Model M3. The third model we consider, called M3, is a multilevel model that tries to
capture the effect of the programming language with greater detail. Model M3’s population-
level term Π is identical to M2’s. Its language-level term L is considerably more complex,
since it introduces a linear model with different intercepts αlanguage and slopes βlanguage for
each programming language (a so-called “varying intercepts and varying slopes” model,
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also commonly known as “varying effects” model [29]). Unlike the population-level term Π,
the language-level term L pools the information about each data cluster—where clusters are
identified by the used programming language. Since it clusters by programming language,
this partial pooling may help capture more accurately the effects of choosing a programming
language instead of another; at the same time, it also shares information among clusters
so that some information from larger clusters (languages with many projects) can sharpen
the information from smaller clusters (languages with fewer projects). This also means that
partial pooling helps protect from overfitting, as learning takes place first separately on each
cluster, and then is “regularized” by sharing its results among different clusters.

The three models’ focus on the programming language reflects our intuitive expectation
that the relation between programming languages and proneness to bugs is an important
one—regardless of whether it turns out to be significant or negligible in the end. At the same
time, adding predictors other than the programming language accounts for confounding
factors that may have a stronger correlation with the number of bugs. But what if the
intrinsic differences between projects turn out to dominate the discrepancies in code quality?
For instance, different projects may have wildly different protocols to report, triage, and fix
bugs, which might have an effect on the observed number of bugs.

In order to hedge against this possible confounding factor, model M3 also includes a
term P: an additional intercept αproject that depends only on each observation’s project;
the symbol P highlights that it is a project-level term, which will help in quantifying the
intrinsic variability across projects. Figure 3c shows M3’s overall likelihood.

3.2.2 Priors. As we demonstrated in the previous section, choosing the likelihood typically
requires making justified modeling choices, which depend on the kind of analysis we would
like to carry out.

When choosing the priors, in contrast, we can often rely on standard recommendations
that primarily depend on the domain of each variable. This does not mean that priors (or
likelihoods, for that matter) can be always chosen blindly using a fixed table of recommen-
dations. In the following sections, as we go through the various steps of the Bayesian data
analysis workflow, we will validate our choices of priors and likelihood. If validation fails,
we have to go back and revise the model: priors, likelihoods, or both.

Model M1. As shown in Figure 4a, we use weakly informative priors for model M1
that are based on the normal distribution. As we will see during the plausibility analysis
(Section 3.3), model M1 is so simplistic that its performance is not affected much by the
choice of priors; nonetheless, we discuss its priors in some detail because we will build on
them to choose priors for the more complex models.

The intercept α’s prior has mean 0 (that is, we do not know a priori whether the intercept
is positive or negative) and standard deviation 5. Remember that the estimated parameter
λ is log-transformed (see Figure 3b); therefore, we can appreciate how weakly constraining
this prior is: two standard deviations on each side of zero span the interval from e−10 ≃ 0 to
e10 ≃ 22 000 on the bug counting scale; that is, the prior only assumes that a project’s bugs
are up to 22 000 with 95% probability—which is not a strong assumption at all [58]. Besides,
a normal distribution has infinite support, and hence it does not rule out any count of bugs
if the data provides evidence for it. The prior for the language-level intercept αlanguage is
also a normal distribution with mean 0; however, choosing the same standard deviation σα

for every language would defeat the purpose of having language-level intercepts. Instead,
we let σα be a random variable, and assign a prior to it. Distributions with support limited
to positive values are suitable priors for standard deviations—which must be nonnegative
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α ∼ Normal(0, 5)

αlanguage ∼ Normal(0, σα)

σα ∼ Weibull(2, 1)

ϕ ∼ gamma(0.01, 0.01)

(a) Priors of model M1

α ∼ Normal(0, 5)

β ∼ Normal(0, 0.5)

αlanguage ∼ Normal(0, σα)

σα ∼ Weibull(2, 1)

ϕ ∼ gamma(0.01, 0.01)

(b) Priors of model M2

α ∼ Normal(0, 5)

β ∼ Normal(0, 0.5)

αlanguage ∼ Normal(0, σα)

βlanguage ∼ Normal(0, σβ)

αproject ∼ Normal(0, σγ)

σα, σβ, σγ ∼ Weibull(2, 1)

L ∼ LKJ(2)

ϕ ∼ gamma(0.01, 0.01)

(c) Priors of model M3

Fig. 4. The priors of statistical models M1, M2, and M3. Colors highlight the terms that are added to each

model compared to the previous ones.

values. In this case, we use a Weibull for σα and the default Gamma for the dispersion
parameter ϕ of the negative binomial.

Model M2. In addition to M1’s weakly informative priors for α, αlanguage , and ϕ, M2
needs a prior for the slope parameter vector β. Here too we use a simple normal distribution
with mean 0 (so that there is no bias in the possible direction of each predictor’s effect)
and standard deviation 0.5 (which still allows for a broad variability on the logarithmic
scale). The β’s prior standard deviations are smaller than the α’s because α determines the
population average, and then β moves this average according to each predictor’s effect
(which needs only introduce a smaller variation relative to the average). Figure 4b shows
the overall priors for M2.

Model M3. We choose the prior for the new part of M3—the language-level slopes
βlanguage —similarly to how we chose the language-level intercepts αlanguage : a normal with
mean 0 and a random variable σβ for standard deviation. However, there is an additional
technicality that we need to handle: vectors αlanguage and βlanguage are not independent but
are components of a single multivariate normal distribution with a variance matrix S. Vari-
ance matrix S combines diagonal matrices with the components of αlanguage and βlanguage
and a covariance matrix L. The customary prior for covariance matrices is a multivariate
Lewandowski-Kurowicka-Joe distribution; LKJ(2) is a weakly informative prior using this
distribution, which assigns low probabilities to extreme correlations. Finally, the project-
level intercept αproject ’s prior is also a normal with mean 0 and a random variable σγ for
standard deviation. Just like for the other standard deviations, we choose a a Weibull as prior
distribution of σγ—a weakly informative distribution that constrains αproject ’s standard
deviation to be a non-negative value. Figure 4c shows the overall priors for M3.
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(a) Prior predictive simulation for M2.
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(b) Prior predictive simulation for M3.

Fig. 5. Prior predictive simulation plots for models M2 and M3: each thin light blue line pictures one

simulated distribution of the number of bugs in a project drawn from the priors. For comparison, the thick

dark blue line pictures the distribution of the number of bugs in the measured data. The horizontal scale is

logarithmic in base 10.
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3.3 Plausibility
The prior predictive checks are straightforward for all three models, confirming that our
choice of priors—based on standard recommendations for these kinds of models—leads to
plausible outcomes. As an example, Figure 5a shows several distributions of the outcome
variable bugs obtained with prior predictive simulations of M2. These span a very wide
support that goes from zero12 up to over a million bugs per project. While there are no
theoretical limits on the number of bugs in a project independent of its size, it is realistic
that most projects have less than one million known bugs, and the majority of projects have
less than a few thousands—simply because not many projects have more than one known
bug for each line of code [58], and hence a project’s size in lines of code is a workable
upper bound on the number of distinct bugs. Anyway, the priors still allow even larger bug
counts, but assign to them increasingly smaller probabilities. Figure 5a also displays the
empirical distribution of bug counts in FSE’s dataset (thick dark blue line); this visually
confirms that the priors are not too restrictive and reflect reasonable expectations. The
prior predictive checks of model M3 is shown in Figure 5b, and leads to qualitatively
similar conclusions—in fact even stronger, given that the priors stretch past an astronomical
number of bugs—about the model’s plausibility. So do the prior predictive checks of model
M1, which we do not show for brevity.

3.4 Workability
Section 2.3 outlined simulation-based calibration and Hamiltonian Monte Carlo validation
metrics to assess a model’s workability. We use the latter, which are extensively supported
by Stan, to determine whether the sampling process for each of the three models reached a
stable state.

R̂—the ratio of within-to-between chain variance—is < 1.01 for all three models; this indi-
cates that the chains have converged towards a stationary posterior probability distribution.
The effective sample size is at least 0.11, 0.17, 0.13 for all parameters in each of the three models,
and confirms that sampling effectively converged. Fitting all three models does not run
into any divergent transitions, and the trace plots of the models (included in the replication
package) look well-mixed. In summary, all three models work well computationally.

3.5 Adequacy
Let us first study the adequacy of our models with posterior predictive simulations: we
visually compare the distribution of number of bugs per project in our dataset to several
simulated distributions using the fitted models. The top plot in Figure 7 indicates that M1
is not adequate: it is too simplistic to capture the data’s features; in particular, the means
of the simulated distributions are more than ten times larger than the mean of the data
(thick dark blue line). In contrast, M2 passes this adequacy test: the middle plot in Figure 7
shows that the model’s predictions look similar to the data. Model M3 also passes the
visual adequacy test based on the posterior predictive simulations, as shown by the bottom
plot in Figure 7. In Section 4.1, we will discuss what these adequacy results tell us about the
interplay between model features and data.

3.6 Model comparison
It is now clear that M1 is too simplistic, but how to choose between M2 and M3? In-
formation criteria, which measure the relative adequacy of different models fitted on the

12The logarithmic link function guarantees a lower bound of zero.
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Fig. 6. Posterior predictive checks for M2.

Fig. 7. Posterior predictive checks plots for models M1, M2, and M3: each thin light blue line pictures

one simulated distribution of the number of bugs in a project drawn from the posterior. For comparison,

the thick dark blue line pictures the distribution of the number of bugs in the measured data. Model M1
fails the check because the simulated distributions deviate substantially from the data’s; in contrast, M2
and M3 pass the check because the simulated distributions are similar to the data’s. The horizontal scale is

logarithmic in base 10.

same data, can help answer this question. We use the increasingly popular PSIS-LOO in-
formation criterion [67], which works well with models fitted using dynamic Hamiltonian
Monte Carlo.13 In a nutshell, the criterion ranks the three models according to their relative
adequacy. It also gives a difference score that measures how well each model performs
out-of-sample predictions relative to the next one in the ranking, and a standard error of

13Compared to more traditional information criteria—such as AIC, BIC, and WAIC—PSIS-LOO can handle
non-Gaussian likelihoods (as can WAIC) and also provides diagnostics useful for further analyzing whether a
model’s posterior behaves well numerically.
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MODEL RANK DIFFERENCE STANDARD ERROR

M3 1 – –
M2 2 −172.0 23.6
M1 3 −1963.0 57.0

Table 5. Ranking of models (from better to worse) according to the PSIS-LOO information criterion. Each

model is ranked (from better to worse) according to the PSIS-LOO information criterion. The score difference

between each model and the immediately better one in the ranking, as well as the standard error of such

difference, quantify the difference in adequacy between models.

the difference, which quantifies how much more adequate a model is compared to another.
Table 5 displays the scores for the three models. Model M3 is ranked first; M2 comes second
but its score is a whopping 7 standard errors worse than M3’s; and M1 is, unsurprisingly,
a distant last.

We conclude that M3 is the “best” model among the three according to a variety of
criteria. Our analysis will thus use M3—starting with a discussion of its features from the
point of view of the analysis’s goals in Section 4.1.

At some point, one has to stop adding model features and finalize a model for the current
analysis. Nevertheless, as we discussed in Section 2.6.1, statistical modeling is never really
done: as more insights, more data, or new techniques become available, we could go back
to the drawing board and refine the latest model to better capture all available information.

4 BAYESIAN STATISTICAL ANALYSIS: RESULTS
When applied following a structured process—like the one we described in Section 2—
Bayesian statistics does not simply produce dichotomous answers to research questions.
The outcome of a Bayesian data analysis is a posterior probability distribution, which we
can probe from different angles to get nuanced answers that apply to specific scenarios. In
this section we are going to do this for our case study.

Section 4.1 discusses how the Bayesian data analysis process guided our choice of models:
modeling is a looping process, whose feedback also informs us about key characteristics of
the data we are analyzing. Not all data features have the same influence on the statistics.
Section 4.2 illustrates how Bayesian analysis can point to variables with brittle or negligible
predictive power that may indicate problems in how certain measures were operationalized.
After understanding the features and limitations of the fitted model, Section 4.3 addresses
the original study’s research questions in practical settings; and Section 4.4 outlines follow-
up studies that could address some of the outstanding limitations.

4.1 Modeling
When following the Bayesian data analysis process in Figure 1, statistical modeling is
based on principles and on checks that the models are suitable. This is in contrast to most
frequentist statistical practices, which are primarily based on rules of thumb, conventions
(“recipes”), and generic results, but may lack operational model-checking processes that
can assess how much confidence we can put in a certain modeling choice.

Section 3 described such a principled Bayesian modeling process applied to the pro-
gramming language data. The first outcome was ruling out M1 as inadequate, which was
unsurprising given that M1 ignores most of the information that could explain the dataset’s
variability. Still, even checks with predictable outcomes are useful: if they fail, they confirm
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that a more realistic model is needed and provide a minimal effectiveness yardstick; if they
succeed, they avoid an overly complicated model. This can be especially important in the
context of the software engineering industry, where a complex model can be more costly to
understand, collect data for, and maintain.

The second outcome of Section 3’s analysis was indicating that, while both M2 and
M3 are adequate, M3 clearly outperforms M2 in out-of-sample predictive capabilities.
Informally, this means that M3 fits the data well, while still avoiding overfitting. In other
words, M3’s additional complexity over M2 is justified by its much better effectiveness.
This outcome is specific to the data that we are analyzing, and is not something that can be
determined a priori for all models. Iteratively creating multiple models and then comparing
them is thus an important part of any analysis.

If we compare the definitions of M2 and M3—in particular, their model specifications in
Figure 3b and Figure 3c—we can attribute M3’s superior performance to its unique features.
Unlike M2, which only includes population-level effects that control for project charac-
teristics other than the programming language, M3 includes a project-specific intercept
and controls for the same characteristics with language-specific slopes. Thus, we see that
clustering per project and per language captures the dataset’s characteristics much better: if
we do not do that, we may lose some of the “signal” in the data, or conflate different effects
and associate them with a single generic predictor.

An indirect advantage of Bayesian data analysis comes from the techniques that are
commonly used to fit Bayesian models: flexible algorithmic techniques such as dynamic
Hamiltonian Monte Carlo that can fit, in principle, models of arbitrary complexity—in
contrast to ad hoc frequentist techniques that only work for specific, and often limited,
distributional families. On the other hand, Bayesian models are often more effective not
simply because they can be more complex. More complex models invariably fit better, but
unwarranted complexity leads to overfitting: a model fits the data perfectly but fails to
generalize. Bayesian analysis techniques include several features that specifically limit the
risk of overfitting when exploring more expressive models:

• Multi-level models, such as M3, introduce partial pooling, which smoothens dif-
ferences between groups of different size. In our case study, the data about some
programming languages is more scarce than the data about others. For example,
only 25 projects use Perl, whereas more than 200 use JavaScript; thus, overfitting
Perl’s data is a more serious risk than overfitting JavaScript’s. Partial pooling works
by transfering some of the information learned by fitting the larger groups to tune
the fitting of the smaller groups, thus reducing the risk of overfitting the latter (and
the whole dataset as a result).

• Prior predictive simulations—discussed in Section 3.5—check that the priors we
have chosen are regularizing: they are not so constraining that they prevent learning
from the data, but they are also not so weak that they cannot prevent overfitting
the data. Being able to choose priors, to select different priors, and to quantitatively
compare their effectiveness is a distinct advantage of Bayesian statistics. Frequentist
statistics usually have flat priors, which are the most prone to overfitting.

• The information criteria that we used to select M3 measure the out-of-sample predic-
tion performance of one model relative to the others. Models that are unnecessarily
complex will overfit the data, and hence perform worse predictions for new data
(different from the sample that has been used for fitting).
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Fig. 8. Conditional effects of variable insertions (the logarithm of the total number of lines added to a

project) on the outcome variable bugs (the number of bugs in a project), corresponding to the marginal

distribution derived from the posterior of model M3.

4.2 Spotting data problems
The rich information provided by a Bayesian data analysis may also highlight issues with
the quality of (parts of) the data that is analyzed, and suggest which measures need to be
cleaned up or improved.

Measuring size. Code size is a basic yet essential measure of complexity, which correlates
with lots of other useful metrics of quality [32]. Therefore, controlling for project size is
essential when analyzing heterogeneous projects. To this effect, the FSE study included a
variable size in their regressive model, which measures the total number of inserted lines
in all project commits—and which we called insertions in our models to make its actual
meaning more transparent. The TOPLAS analysis criticized this choice of size metric—which
does not take deletions and merges into account—and reported discrepancies between the
raw commit data and the totals in FSE’s dataset. Does our Bayesian analysis offer any hints
about the reliability of insertions as a measure of size?

A few results actually single out insertions as a poor predictor compared to the others:
• The 95% probability estimate of its population-level effect includes zero (namely,

the (credibility) interval is [−0.01, 0.06]), which indicates some uncertainty about
whether more inserted lines are associated with more or fewer bugs on average.
Variable insertions’s mean estimated effect is still positive, but other predictors have
more clearly defined effects.

• The plot of insertions’s conditional effect on the number of bugs in Figure 8 visually
confirms a large uncertainty (again, compared with the other predictors’), which
also increases with larger values of insertions.

• The varying effect of insertions tend to have larger variance than other predictors—
for every language.

• If we remove insertions from M3, the resulting model’s predictive performance is
practically indistinguishable from M3’s.14

14Variable selection [18]—an analysis technique that we do not describe in the paper for brevity—also suggests
to drop variable insertions . See the paper’s replication package for details about this additional analysis of
suitability.
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Fig. 9. Comparison of prior Weibull(2, 1) and posterior for project-level intercept αproject ’s standard deviation

σγ in model M3. The drastic restriction in uncertainty indicates that the data swamps the priors.
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Fig. 10. Posterior predictions of the bug distributions of 10 projects drawn randomly from the posterior of

M3. The horizontal axis is logarithmic in base 10. The marked differences in shape and location among the

distributions indicate that projects are heterogeneous.

All in all, our analysis indicates that insertions does not appear to be a particularly useful
predictor, and hence it may not be a reliable measure of code size.

Inter-project variability. Section 4.1 showed that a project-specific intercept—which we
introduced in M3—provides better out-of-sample prediction capabilities. The flip side is
that several features of the data vary considerably from project to project.

The 1 127 data rows are somewhat sparse among the 729 projects: 64% of all projects
appear in a single row; another 26% in two rows. Despite these characteristics, the data
swamps the priors: it determines a very precise (that is, narrow) posterior distribution of the
project-specific intercept αproject ’s standard deviation σγ—shown in Figure 9. In other words,
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the uncertainty about the contribution of each project to the overall number of bugs is quite
limited: the data characterizes each project’s contribution precisely. This does not mean that
the projects’ number of bugs is similar; on the contrary, the bug distributions of randomly
drawn projects that we get by simulating from M3’s fitted posterior differ considerably
in shape, support, and mean (see Figure 10). In all, project-specific characteristics are an
important and well-defined source of information in the data, which other control variables
cannot fully capture.

4.3 Practical significance
Let us now address the original study’s research questions. For brevity, our analysis won’t
consider criteria to classify languages (“language classes” such as procedural, functional,
scripting, and so on), projects (“application domains” such as application, database, frame-
work, and so on), or bugs (“bug types” such as algorithm, concurrency, performance, and
so on). These are largely orthogonal to the main focus of the present paper. Instead, we
focus on the key first research question:

RQ. Are some languages more defect-prone than others?
Our analysis’s information is condensed in the fitted model M3, which we can use to

generate a distribution of bugs for every language. In order to do this, we have to pick the
other inputs of the model: the number of commits, insertions, age, and developers of the
hypothetical projects whose number of bugs we are estimating. While, in principle, these
inputs could be any situation or scenario that we want to investigate, it is sensible to start
exploring values that are close to those observed in the data used to fit the model (following
the usual assumption that the sample is representative of the entire population).

4.3.1 Ranking all languages. Figure 11 displays the distributions as violin plots for five
combinations of input values: the dataset’s minimum, 25th percentile, median (50th percentile),
75th percentile, and maximum number of commits, insertions, age, and developers.15 Each
plot lists the languages in decreasing order of median predicted number of bugs per project:
from most error prone (left) to least (right).

The plots indicate that the relative ordering of languages can change conspicuously
according to the conditions. For example, C#’s defect proneness is average for projects
with large or median size and age; but it becomes better than average for smaller, younger
projects. In contrast, C++ is less defect prone only in the largest projects, whereas it is the
most or second most defect prone languages for projects of non-maximal size. Similarly, the
relative rank of some language pairs varies considerably: for example, Erlang is less error
prone than Go in the largest projects; the opposite is true in projects of smaller size.

A few languages’ ranks fluctuate wildly: Objective-C is among the most defect prone
languages except in small projects, when it is among the least; TypeScript even goes from
least defect prone on large and median projects to most defect prone on the smallest projects.
These jumps are so extreme that they may indicate that the data about these languages is
somewhat inconsistent or at least patchwork. Indeed, TOPLAS’s reanalysis reported that
only about a third of the commits classified as TypeScript in FSE’s data actually included
TypeScript code; and Ray et al.’s extended version [54] of their original FSE study dropped
several projects classified as TypeScript. We did not further look into Objective-C’s data,
despite its high rank fluctuations, because we wanted to use the original data without

15Unlike Figure 2, which plots the raw data, Figure 11’s simulated projects are directly comparable in terms of
defect proneness, as they only differ in the used programming language.
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Fig. 11. Violin plots of the distributions of number of bugs per project per language, obtained from the

posterior of M3 for five simulated scenarios. The plot in each row corresponds to a different scenario: from

top to bottom plot, the input variables other than language are set to the empirical dataset’s maximum,

75h percentile (3rd quartile), median, 25th quartile (1st quartile), and minimum values. Languages are sorted,

left-to-right in each plot, by decreasing values of the distributions’ medians. The vertical axes’ scales are

logarithmic in base 10. The horizontal line in each plot marks the median number of bugs per project across

all languages.

changes. Nevertheless, this is one clear example of how Bayesian analysis can help spot
data problems, and hence bolster better substantiated analyses. This observation about the
fickle influence of some languages also corroborates the evidence that other project-specific
characteristics might weigh comparatively more than the used programming language.

Figure 11 also shows that the bug distributions per language are spread out widely—
especially for some languages and especially for projects that are large and long-running—
and their ranges extensively overlap. The heterogeneity of project-specific characteristics
may also contribute to these features; for example, if projects written in language X tend
to be on the large side compared to projects written in language Y, the uncertainty in Y’s
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Fig. 12. Violin plots of the bug distributions of Python and Ruby obtained from the posterior of M3. The

input variables other than language capture a hypothetical project with 30 developers, an age of 2 years, 1

commit per developer every day, and 10 lines added by each developer every day.

error proneness when used for large projects would dominate the comparison with X. This
suggests that the data we analyzed does not warrant summarizing the language differences
using a single ranking of defect-proneness.

4.3.2 Custom scenarios. While a single ranking of languages according to their absolute
defect-proneness would have little practical meaning, we can still zoom in on specific
conditions that are relevant in practice for a specific project and see what the fitted model
can tell us concerning those conditions.

Imagine, for example, we are planning a project that involves around 30 developers
who can code in Python or Ruby; we estimate the project will run over 2 years, generating
an average of 1 commit and 10 lines inserted per programmer per day. Plugging these
numbers (developers = 30, age = 2 × 365, commits = 30 × 1 × 2 × 365, and insertions =
30 × 10 × 2 × 365) into the fitted model M3, we get the estimated bug distributions for
Python and Ruby shown in Figure 12. In this scenario, Python tends to be worse (more
bugs) than Ruby, since the latter’s distribution has a lower mean, a shorter tail towards
high number of bugs, and more mass around lower values.

Whether this evidence is sufficiently strong to decide to choose one language over
another depends on myriad other factors that are incidental, such as the availability of
programmers familiar with one language, the cost of training new ones, the usability of the
programming language for the project at hand, and so on. Whatever the practical constraints
and requirements may be, the fitted model can help us meet them by providing estimates
complete with a quantification of their uncertainty. Realistically, any estimate about the size
and development time of a project is also likely to be somewhat uncertain; therefore, we
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would run multiple simulations and weigh the evidence summarized by each one against
the confidence we have in the corresponding scenario occurring.

More generally, the results of a principled Bayesian analysis facilitate a quantitatively
accurate transfer of knowledge to practitioners and other researchers. Rather than relying
only on overly broad conclusions about the impact of different programming languages,
using simulations of custom scenarios drives follow-up work more precisely: a practitioner
can judge whether the uncertainty in a specific comparison is too large to base a decision on
it; a researcher can decide whether more data is needed to claim more general conclusions.

4.3.3 Statistical significance. Our analysis so far has focused on concrete scenarios defined
in terms of tangible measures in the data domain—such as number of bugs and project
age. In contrast, widespread statistical practices (mostly of a frequentist flavor) try to
answer research questions by analyzing statistical significance, which measures generic
characteristics of a statistical model.

In a standard regression analysis, one usually assesses the statistical significance of each
coefficient in the model (also called “effect”) by checking whether it differs from zero with
a certain probability. For example, we could compute the distribution of the estimate of
coefficient αlanguage for every language. If αX is negative with, say, 95% probability, we
would conclude that language X is associated with fewer bugs than average with that
probability; in other words, X is “statistically significantly” less error prone than other
languages.

FSE and TOPLAS both proceed in such a way, but using frequentist coefficient estimates
instead of a posterior probability distribution on their models—which are similar to our
M2—leading to their findings about which languages are more error prone than others.16

What about model M3 fitted on the same data? The 95% probability intervals of αlanguage
include the origin for every language, except TypeScript whose αlanguage is strictly positive—
but, as we have commented above, the uncertainty about TypeScript’s data puts any
results about this language on shaky grounds. Overall, the canonical analysis of statistical
significance is just inconclusive on our model.

To some extent, this outcome is a side effect of M3’s greater complexity over simpler
models. There is a trade-off between the complexity of a model (which brings greater
expressiveness and better predictive performance) and its interpretability. The criteria we
used to choose M3 over the simpler M2 ensure that the former’s additional complexity
is justified by its much better effectiveness. However, a simple interpretation is no longer
feasible: M3 includes slope coefficients that also vary with each language, as well as a
project-level contribution; how each language-specific term interacts with the others is
not something that can be simply estimated with a single coefficient independent of the
predictors’ values.

We should appreciate that this is more a feature than it is a limitation. While mathemati-
cally simple models are nice to have, not all data analysis problems can be addressed with
a basic model. Bayesian analysis techniques do not just support fitting complex models but
provide the means to handle their complexity and to perform a convincing analysis without
resorting to formulaic measures of “significance”. The individual model characteristics are
not easy to interpret in isolation, so that we are forced to interpret the model by providing
concrete conditions—the number of commits, age, and so on—which ground our generic
research question onto scenarios that are realistic and meaningful for our purposes. In other

16This is explained in detail in TOPLAS’s repetition [6, § 2.2.3], which uses FSE’s model; TOPLAS’s reanalysis [6,
§ 4.2.1] suggests a different statistical measure.
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words, it may be cumbersome to reason about statistical significance in a Bayesian model
but it is always natural to reason about practical significance—which is what matters most in
the end to answer our research questions.17

Model interpretability. The focus on practical significance follows from the specific
research problem we considered: answering the question of whether some programming
languages are more prone to defects requires precise predictions about the defect-proneness
of projects written in different programming languages. On the other hand, the inter-
pretability of a statistical model may become crucial when targeting other kinds of research
questions. In these scenarios, Bayesian models can still be practically effective. A relatively
complex model like M3 is not easy to interpret directly; that is, we cannot easily and unam-
biguously assign a direct interpretation to each individual fitted parameter. However, it is
amenable to interpret indirectly: we formulate some scenarios in terms of model variables,
and then we simulate those scenarios on the fitted model. Interpreting the simulation’s
results is how we indirectly interpret the model’s characteristics. Ultimately, a key feature of
Bayesian data analysis techniques is what makes these analyses so flexible: we can combine
(indirect) interpretability and predictive capabilities because the outcome of an analysis is a
(sampled) posterior probability distribution—a rich and actionable source of information.

4.3.4 Effect sizes. Section 4.3.1 demonstrated that the fault proneness of a language over
another strongly depends on the conditions in which the languages are to be used. If we
have specific scenarios in mind, we can just simulate those as discussed in Section 4.3.2.

Another approach is to compare languages pairwise by simulating their performance on
a population that resembles the observed data. Since the comparisons are quantitative—in
the form of derived distributions—they can be seen as an effect size, but relative to each
language pair instead of absolute for all languages at once.

As usual, simulations are derived from the posterior, which entails that there is no
multiple comparisons problem [45]: all information is encoded jointly by the posterior; the
pairwise comparisons are just projections of some of that information. For the same reason,
we do not have to commit to a certain way of comparing languages when we build the
model (for example, by choosing how to encode contrasts): we just select the “best” model
according to its performance, and then derive all the information we are interested in from
the model fitted on the data.

Concretely, take two languages ℓ1 and ℓ2 that we want to compare for bug proneness. For
every data point d in the empirical data, we set, in the posterior, all predictors except the
language to their values in d. Then, we simulate the distribution of the expected difference
bugsℓ1

− bugsℓ2
in bugs produced when using one language over the other.18

Figure 13 plots the distributions comparing two pairs of languages, which we selected
to demonstrate qualitatively different outcomes of the pairwise comparisons. The distri-
bution of bugsC# − bugsC in Figure 13a covers only nonnegative values, which means C#
was consistently more fault prone than C. The distribution of bugsCoffeeScript − bugsGo in
Figure 13b covers negative values more often than positive ones, denoting that Go tended
to be more fault prone. Precisely, we can compute that CoffeeScript was more error prone
than Go only around 8.5% of the times.

17In related work, we discuss in greater detail methods to analyze practical significance based on Bayesian data
analysis [65].

18We can compute the absolute difference in number of bugs because the difference is between samples where
the language is the only project characteristic that changes.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.



1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Carlo A. Furia, Richard Torkar, and Robert Feldt

(a) Posterior distribution of the difference bugs
C#

− bugs
C
when predictors are set to the same values as in

the empirical data. This indicates that C# is consistently more fault-prone than C, since it leads to more bugs.

(b) Posterior distribution of the difference bugs
CoffeeScript

− bugs
Go

when predictors are set to the same

values as in the empirical data. This indicates that Coffeescript is somewhat less fault-prone than Go.

Fig. 13. Probability distributions of the difference in bug proneness between pairs of languages according to

the posterior distribution with population data.
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In the end, we did not really answer the original research question—not with a definitive,
straightforward answer at least. Instead, our analysis identified sources of uncertainty in the
data, provided means of simulating custom scenarios, and compared pairs of languages in
conditions similar to the collected data’s. This is a solid basis to understand what questions
can and cannot be answered by the data, and to plan follow-up data collections and analyses
that zero in on understanding specific outcomes.

4.4 Planning the next study
Our analysis shed light on the relationship between programming languages and fault
proneness, but also discovered restrictions on how general the findings can be and which
factors should be considered. How can we make further progress in this line of research—
beyond the limitations of what is available in FSE’s dataset?

The outcome of our analysis—in particular, the issues discussed in Section 4.2—help to
plan follow-up studies too. A recurring issue was the clear impact of project-specific charac-
teristics, which sometimes dominate over language-specific features. There are at least two
ways of better accounting for project features. One is collecting more data that characterize
projects along more dimensions; for example, a project’s domain, the development process
it uses, the expertise of its developers, and so on. The other way is to give up generality
and focus on analyzing a specific, homogeneous set of projects: the more characteristics are
similar among projects the more accurately the impact of programming languages can be
singled out.

When we simulated different scenarios in Section 4.3, we found that the uncertainty
in the outcome is more pronounced for certain languages than others. For example, the
uncertainty about Objective-C’s and Perl’s fault proneness is very pronounced on large
projects (see the vertical spread in their violin plots of Figure 11). To reduce this uncertainty,
we should collect more data on large Objective-C and Perl projects, focus on smaller projects,
or a combination of both.

More generally, Bayesian models and techniques help zoom out of each individual study
to considering a line of studies in the same subject area. Each study collects additional data,
refines the knowledge that we have of the area, and identifies further aspects that can be
improved—something follow-up studies will do. In a way, this realizes a sort of optimization
process whose goal is maximizing knowledge over time. Bayesian optimization algorithms
exist that carry out this process automatically on a large dataset that can be analyzed
incrementally [56]; scientific research deploys processes that do something similar on a
much longer time scale and with key contributions from human intuition. The benefits
we highlight are not only conceptual; the posteriors from previous studies can be directly
used when creating priors for follow-up studies. This can thus enable a more direct and
precise way for research studies to build on each other and gradually refine the scientific
knowledge.

5 RELATEDWORK
We discuss related work in three areas, broadly connected to the paper’s contributions: Sec-
tion 5.1 briefly reviews some widely-used statistical models other than those we deployed
in this paper; Section 5.2 summarizes other work about statistical analysis guidelines (for
frequentist and for Bayesian techniques); and Section 5.3 outlines the state of replication
studies in empirical software engineering research.
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5.1 Statistical data modeling and analysis
As we remarked in Section 1.3.1, this paper’s guidelines are largely independent of the
specific features of the chosen statistical models. All our examples used (generalized/hier-
archical) linear regressive models—the workhorse of statistical analysis [29]. Besides their
great flexibility, another practical advantage is that they have been widely used also with
frequentist statistics; therefore, they offer a convenient bridge for a gradual transition to
Bayesian statistics.

Nevertheless, other classes of statistical models can be used for similar analyses. One
alternative, broad class of statistical models are so-called graphical models [38], which use
graphs to encode the probabilistic relations between variables. Bayesian networks [59] are
arguably the best-known kind of graphical models, which can be used both directly as
probabilistic classifiers [17, 40] but have also become the basis to encode causal relations
that go beyond mere correlations [48]. The expressive power of Bayesian networks and
hierarchical regressive models significantly overlap: among other things, one can encode
a regressive model as a Bayesian network, and then use network’s fitting techniques to
analyze it [36]; conversely, one can encode a Bayesian network as a hierarchical regressive
model [59, Ch. 5], and then apply similar analysis techniques as those we demonstrated in
the paper.

Machine learning toolkits such as Weka [72] provide a convenient way of experimenting
with a wide variety of classical statistical analysis models, which have been frequently used
in the analysis of software engineering empirical data [43, 73] and provide additional ser-
viceable classes of statistical models. While our paper’s guidelines would remain applicable,
at least at a high level, to compare other, widely different statistical models, doing so in
practice may require developing new analysis techniques or extending existing ones. In
particular, some information criteria—which are used for Bayesian model comparison as
discussed in Section 2.5—are only applicable to statistical models that can provide multiple
samples from a posterior when the fitted model is used for prediction [67]. Obviously,
generalizing the model comparison criteria (and the other techniques for model analysis)
so that they are applicable to all inductive machine learning approaches falls outside this
paper’s scope.

It is interesting that several modern machine learning algorithms, such as deep neural
networks and active learning, are applicable both in a frequentist [74] and in a Bayesian [24,
46, 69] context. Our paper’s guidelines could remain broadly useful for frequentist models,
but they do not cover online approaches (for example, active learning), where each iteration
of a statistical analysis influences which additional data is collected. Extending some of our
guidelines to online approaches is an interesting direction for future work. At the same time,
the increasingly recognized value of practices such as pre-registered studies [14] suggests
that the offline analysis of fixed, previously collected, datasets will remain an important and
common approach in software engineering empirical research.

5.2 Guidelines about statistical analysis
Bayesian data analysis guidelines. The last decade’s progress in algorithms and tools for
Bayesian data analysis has been impressive [13, 25, 41, 50] but, without practical support,
it is not sufficient to promote widespread usage in the empirical sciences. Recent work
about developing guidelines to apply Bayesian data analysis techniques [23, 31, 57], which
Section 2 summarized in a form amenable to software engineering empirical research, has
been trying to close this gap. While these proposals differ in their intended audience and
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level of detail, they all build on the basic view [26] that an analysis should go through
multiple models, refine them in several iterations, and compare them. Then, Gabry et al. [23]
focus on visualization and how to use it throughout a workflow; Schad et al. [57], instead,
introduce quantitative checks and illustrate them for a specific scientific area (the cognitive
sciences). Our guidelines combine elements from both [23, 57] but illustrate them in a way
that is amenable to empirical software engineering research practices. Very recently, Gelman
et al. [31] presented an early draft of a book that will further refine some of these Bayesian
analysis workflows and guidelines. Also very recently, van de Schoot et al. [66] published
an accessible primer on Bayesian statistics and modeling for scientists.

Guidelines on using statistics in empirical software engineering. Over the years, several
guidelines for using statistics in empirical software engineering have been proposed—all
of them focusing on frequentist statistics, which remain the norm in empirical software
engineering [16]. Arcuri and Briand [3] focus on analyzing experiments with randomized
algorithms, and highlight the importance of checking the assumptions of each statistical
significance test. They also advocate for extensively using non-parametric statistical tests
and effect size measures. Menzies and Shepperd [44] catalog “bad smells” in data analytics
studies and discuss remedies to excise them. Among the techniques they recommend are
up-front power analysis, reporting effect sizes and confidence limits, and using robust
statistics and sensitivity analysis. A recent literature review of ours [16] found evidence
of a positive impact of such empirical guidelines on the maturity of statistical practice in
empirical software engineering research: statistical testing, non-parametric tests, and effect
sizes have all been increasingly used in the field over the last 5–10 years.

5.3 Replication in software engineering research
Recent years have finally seen replication studies become more popular in software en-
gineering research. Nevertheless, Da Silva et al.’s systematic literature review found that
internal replications (done by the same authors as the original study) are still much more
common than external replications (done by an independent group of authors) [15]. Un-
surprisingly, Bezerra et al.’s related literature review found that internal replications are
much more likely to confirm the results of the replicated study than external replications [7],
and used this result to question the value of replications compared to meta-analyses. Both
literature reviews found hardly any examples of reanalyses (replications limited to data
analysis); similarly, a taxonomy for replications in software engineering does not explicitly
mention reanalysis [4].

In fact, we tried searching for “reanalysis + software engineering” in publication databases
and found very few relevant hits—mostly papers revisiting qualitative data such as in-
terview transcripts, and reanalyzing them to address new questions or theories. As one
example, Bjarnason et al. [8] developed a new theory by reanalyzing interview transcripts
from an earlier study of theirs. In contrast, Tantithamthavorn et al. [63] revised a meta-
analysis of machine learning in software defect prediction [60] and found that several
predictor variables of the original study where co-linear. Based on a reanalysis of a subset
of the same data, they also questioned some of the original results and implications. This
criticism was later disputed, on statistical grounds, by the original study’s authors [61].
Our previous work about using Bayesian analysis in empirical software engineering also
performed reanalyses of previous studies using Bayesian techniques [21, 65].19 Another

19Our previous work targets various applications of Bayesian statistics such as analyzing practical signifi-
cance [65] and dealing with missing data [64]; the case studied developed there also follow some of the guidelines
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noticeable external reanalysis is of course Berger et al. [6]’s of Ray et al. [55], which we
summarized in Section 1.

Overall, reanalyses of software engineering data remain uncommon—especially com-
pared to other scientific areas where they are widespread forms of publication, including
those using Bayesian statistics (for example, in astronomy [33] and medicine [5]).

6 CONCLUSIONS
Reaping the benefits of Bayesian statistics requires more than powerful analysis techniques
and tools. In this paper, we presented practical guidelines to build, check, and analyze a
Bayesian statistical model that summarize recently developed suggestions brought forward
by prominent statisticians and cast them in a format that is amenable to empirical software
engineering research.

We then applied the guidelines to analyze a large dataset of GitHub projects that was
previously used to study the impact of programming languages on code quality [55].
This study was later criticized by a reproduction attempt that failed to confirm some
of the originally claimed results [6]. Our reanalysis using Bayesian statistics identified
some shortcomings of the data that also emerged in the reproduction attempt (such as the
large uncertainty associated with data for programming languages such as TypeScript)
and pointed to other possible effects that were not fully accounted for by the frequentist
models of the previous studies [6, 55] (such as the disproportionate differences that are
project-specific rather than language-specific). Moving on to the previous studies’ main
research question (“Are some languages more defect-prone than others?”), our Bayesian
model lent itself to evaluating the effect of programming languages in different concrete
scenarios rather than in terms of generic “statistical significance”. We found that the impact
of programming languages can vary considerably with other contextual conditions, and
hence the original research question does not admit a simple, generally valid answer—at
least not with the analyzed data.

Throughout our reanalysis, a key advantage of Bayesian techniques was that they can be
used to quantify any derived measures of interest, as well as the uncertainty that comes with
each measure. Such capabilities are useful not only to infer results in each study, but also to
present and share them in a robust way with other researchers and practitioners. A Bayesian
quantitative framework focused on practical significance can also help plan the next studies
in a research area—thus steadying the long-term progress of software engineering empirical
research and enhancing its broader impact.
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