
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Applying Bayesian Analysis Guidelines to Empirical Software
Engineering Data
The Case of Programming Languages and CodeQuality

CARLO A. FURIA, Software Institute, USI Università della Svizzera italiana, Switzerland
RICHARD TORKAR, University of Gothenburg, Sweden and Stellenbosch Institute for Advanced
Study (STIAS), South Africa
ROBERT FELDT, Chalmers and University of Gothenburg, Sweden

Statistical analysis is the tool of choice to turn data into information, and then information into
empirical knowledge. The process that goes from data to knowledge is, however, long, uncertain, and
riddled with pitfalls. To be valid, it should be supported by detailed, rigorous guidelines, which help
ferret out issues with the data or model, and lead to qualified results that strike a reasonable balance
between generality and practical relevance. Such guidelines are being developed by statisticians to
support the latest techniques for Bayesian data analysis. In this article, we frame these guidelines in a
way that is apt to empirical research in software engineering.

To demonstrate the guidelines in practice, we apply them to reanalyze a GitHub dataset about code
quality in different programming languages. The dataset’s original analysis (Ray et al., 2014) and a
critical reanalysis (Berger et al., 2019) have attracted considerable attention—in no small part because
they target a topic (the impact of different programming languages) on which strong opinions abound.
The goals of our reanalysis are largely orthogonal to this previous work, as we are concerned with
demonstrating, on data in an interesting domain, how to build a principled Bayesian data analysis
and to showcase its benefits. In the process, we will also shed light on some critical aspects of the
analyzed data and of the relationship between programming languages and code quality—such as
the impact of project-specific characteristics other than the used programming language.

The high-level conclusions of our exercise will be that Bayesian statistical techniques can be applied
to analyze software engineering data in a way that is principled, flexible, and leads to convincing
results that inform the state of the art while highlighting the boundaries of its validity. The guidelines
can support building solid statistical analyses and connecting their results, and hence help buttress
continued progress in empirical software engineering research.

CCS Concepts: • Mathematics of computing → Bayesian computation; • Software and its engineer-
ing → Empirical software validation.

Additional Key Words and Phrases: Bayesian data analysis, statistical analysis, guidelines, empirical
software engineering, programming languages

ACM Reference Format:
Carlo A. Furia, Richard Torkar, and Robert Feldt. 2022. Applying Bayesian Analysis Guidelines to
Empirical Software Engineering Data: The Case of Programming Languages and Code Quality. ACM
Trans. Softw. Eng. Methodol. 1, 1 (January 2022), 40 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Empirical disciplines, including a substantial part of software engineering research, mine
data for information, and then use the information as evidence to build, extend, and
refine empirical knowledge. Statistical analysis is key to implementing this process; but
statistical techniques are just tools, which need detailed guidelines to be applied properly

© 2022
1049-331X/2022/1-ART
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Carlo A. Furia, Richard Torkar, and Robert Feldt

and consistently. It is only through the combination of powerful statistical techniques and
rigorous guidelines to apply them that we can distill empirical knowledge following a
process that is consistent, rests on solid principles, and ultimately is more likely to lead to
valid results with a higher degree of confidence.

Whereas frequentist statistical techniques have been commonplace in science for over a
century—since the influential work of the likes of Pearson [68] and Fisher [20]—the state
of the art in applied statistics is moving towards using Bayesian analysis techniques. As
we discussed in previous work [21], recent developments in Bayesian analysis techniques
(such as using Hamiltonian Monte Carlo fitting algorithms [11]) coupled with an increasing
availability of the computing power needed to run them on large datasets have convincingly
demonstrated the advantages of using Bayesian statistics and the flexibility and rigor of
the analysis they support. More recently, applied statisticians have also been working
out practical guidelines that can boost usability and impact of Bayesian statistical data
analysis [1, 23, 31, 57]. In this paper, we present some of these guidelines and frame them
in a way that is suitable for empirical research in the software engineering domain—with
the goal of demonstrating how they can support a principled way of building statistical
analyses of software engineering data.

To demonstrate the guidelines in practice, we follow them to analyze a large dataset
about the code quality of projects written in disparate programming languages and hosted
on GitHub [55]. The empirical study that curated this dataset and performed the original
analysis [55] was followed by a critical reanalysis by a different group of researchers [6]; as
we recall in Section 1.1, the topic has received much attention and stirred some controversy.
This visibility makes the dataset an attractive target for our own purposes.

In the paper, we go through various aspects of the data analysis performed in the previous
studies [6, 55], illustrating the versatile features of Bayesian statistical models in practice.
We demonstrate how the guidelines support an incremental and iterative analysis process,
where several key features of a statistical model can be validated; this, in turn, encourages
trying out different models and comparing them in a rigorous way—as opposed to blindly
relying on one-size-fits-all rules of thumb. Following this process, we demonstrate that
some issues of the original analysis [55] or criticized by the follow-up reanalysis [6] could
have been identified more easily. Furthermore, the limitations and actual impact of previous
studies could have been framed more straightforwardly and more transparently. The
conclusion of our exercise will be that flexible statistical techniques coupled with principled
and structured guidelines can help address empirical research questions directly and
transparently. This can lead to explanations that are nuanced and detailed, and hence,
ultimately, that can become convincing foundations for building shared knowledge.

1.1 Dataset and previous studies
In this paper, we reuse the dataset collected and analyzed by Ray et al. in a paper published
at the FSE1 conference [55]. A critical reproduction [6] of the original study, written by
Berger et al. and published in the TOPLAS2 journal, triggered a prolonged controversy that
reverberated on social media.

1The ACM SIGSOFT International Symposium on Foundations of Software Engineering.
2The ACM Transactions on Programming Languages and Systems.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 3

Here is the story so far, in the shortest terms possible:3 based on their analysis of projects
hosted by GitHub, the original study [55] (henceforth, “FSE”) claimed to have found an
association between certain programming languages and the bug proneness of code written
in them. The reproduction study [6] (henceforth, “TOPLAS”) criticized several aspects of
FSE—most prominently, its data collection and classification practices—and questioned the
soundness of some of its results. In a rebuttal, the authors of FSE defended their results;4

and in a rebuttal of the rebuttal the authors of TOPLAS maintained their criticism.5

Our paper is emphatically not our attempt to jump into the fray: we do not have much to
add to the subject matter of the controversy. However, we appreciate the interest that the
controversial topic received, and see it as an opportunity to present our views on a different,
but related, aspect: practices in statistical analysis. Both FSE and TOPLAS primarily use
frequentist statistical techniques. Even in the best conditions, these techniques’ flexibility is
limited in comparison to the Bayesian statistical techniques we have been advocating [21, 65].

Overall, our contributions fall largely outside the focus of FSE and TOPLAS—except to
the extent that they target the same domain and the same data. The core of both papers
revolves around GitHub data, how it was collected and processed, and how the variables of
interest have been operationalized. TOPLAS’s main goal was to attempt to reproduce FSE’s
results, and hence it deliberately makes mostly limited changes to the statistical models.
Our analysis takes the data as it was collected and made available by FSE’s original study,
and tries to make the most out of it following rigorous guidelines to apply flexible statistical
practices—Bayesian statistics, that is.

1.2 Overview
The overall goal of this paper is demonstrating how Bayesian statistical techniques can
be applied in a principled way to build suitable statistical models. These models can then
be used to answer research questions in a flexible6 way, and to quantify limitations and
uncertainties about what one can reliably infer from the models.

This complements our earlier work on Bayesian data analysis for empirical software
engineering [21, 65], which:

• Argued for using Bayesian over frequentist statistics and showcased the former’s
flexibility on software engineering data [21].

• Suggested to analyze practical significance using a combination of Bayesian statistics
and cumulative prospect theory, which helps stakeholders evaluate the impact of a
technique or a practice in a way that takes into account their constraints, available
resources, and intuitive reasoning [65].

1.2.1 Key benefits of Bayesian statistics. Before we go into the novel contributions of the
present paper, let us briefly summarize the benefits of Bayesian statistical techniques—which
we presented in detail in our previous work [21, 65]. Section 4 will further demonstrate
several of these benefits on the programming language case study.

There is a growing awareness in several empirical scientific disciplines that “classical
[frequentist] statistical tools are not diverse enough to handle many common research

3Hillel Wayne provides a much more detailed account https://www.hillelwayne.com/post/this-is-how-

science-happens/.
4https://arxiv.org/abs/1911.07393
5http://janvitek.org/var/rebuttal-rebuttal.pdf
6Here, “flexible” means that it can be adapted to different kinds of scientific questions and analysis domains

while remaining effective.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://www.hillelwayne.com/post/this-is-how-science-happens/
https://www.hillelwayne.com/post/this-is-how-science-happens/
https://arxiv.org/abs/1911.07393
http://janvitek.org/var/rebuttal-rebuttal.pdf

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Carlo A. Furia, Richard Torkar, and Robert Feldt

questions” [42]. Bayesian statistics, in contrast, are much more flexible, as they provide
general methods to connect data, models, and research questions [27]. Bayesian statistics
are more flexible because they are centered around modeling: how we fit a Bayesian model
is largely independent of the details of how the model was built. In contrast, different
frequentist models often require widely different analysis procedures: if we need to tweak
the model or its underlying assumptions even slightly, the frequentist analysis results may
become unreliable.

The main output of a Bayesian data analysis is a distribution of model parameters fitted
on the data. This includes rich quantitative information, in contrast to the point estimates
that are the usual outcome of applying frequentist statistics. Providing distributional infor-
mation is a key strength of Bayesian statistics. First, it supports quantitative and nuanced
analyses instead of a purely dichotomous (yes/no) view—which is prevalent with sta-
tistical hypothesis testing (a core technique of frequentist statistics that has been under
intense scrutiny [2, 70]). Second, distributional information is easier to understand, since
it measures quantities of interest in the specific domain. Contrast this to purely statistical
metrics such as p-values or confidence intervals, which are notoriously hard to interpret
correctly [34, 35]. Third, the quantitative distributional information that is provided by a
fitted Bayesian model supports simulating the derived distributions of a variety of quantities
of interest, such as outcomes in a specific scenario—which is especially useful to analyze
practical significance [65].

The current paper focuses on how to apply Bayesian data analysis in a principled way:
following detailed guidelines and a structured workflow. Demonstrating the guidelines on
FSE’s dataset, our contributions address four aspects that are relevant to every study that
involves statistical data analysis.

1.2.2 How to design a statistical model? Modeling requires to exercise judgement—something
that can be based on practices, customs, and heuristics, but is not completely reducible to a
fixed set of rigid rules. Bayesian statistics emphasizes the modeling aspect of data analysis,
and provides quantitative techniques to help ground heuristics and practices onto a robust
and sound statistical framework.

Section 2 presents guidelines to build a Bayesian statistical model incrementally (adding
features as needed), iteratively (improving a model based on the shortcomings of the
previous ones), and rigorously (with quantitative criteria to assess a model’s suitability).
Our guidelines customize general guidelines developed by the Bayesian data analysis
community to the scenarios that are common in empirical software engineering. Section 3
demonstrates, on the FSE dataset, that our guidelines provide principled ways of assessing
the strengths and weaknesses of any statistical model for the analysis at hand.

1.2.3 How to spot data problems? TOPLAS’s criticism of FSE’s analysis questions the accuracy
of some of the data that was collected and how it was processed. For example, it says that
“project size, computed in the FSE paper as the sum of inserted lines, is not accurate—
as it does not take deletions into account” [6, §3.2]. Can Bayesian statistical techniques
help discover problems with the data—such as inconsistencies, sparseness, and lack of
homogeneity—that limit the validity and generalizability of the statistical analysis’s results?

Naturally, no statistical technique (no matter how powerful) can supersede a careful
analysis of construct validity [19, 53], which should precede the statistical analysis and lay
the foundations for it. Still, applying the Bayesian guidelines that we present can ferret out
issues with the data and highlight where uncertainty is more or less pronounced, so that
we can heed any limitations when drawing conclusions. For example, Section 4.2 finds that

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 5

the number of inserted lines performs poorly as a predictor, echoing TOPLAS’s observation
that it may not be a suitable measure of size.

1.2.4 How to assess significant results? In previous work [21], we demonstrated that Bayesian
statistical techniques can help move away from a dichotomous (significant/not significant)
framing of research questions—which comes typically with frequentist null hypothesis
testing and is often artificially restrictive—and instead focus on practical significance [65].

The gap between statistical significance and practical significance is more likely to be
wide when studying complex domains with plenty of confounding factors. The analysis of
programming language data is a clear example of such complex domains. In this paper, we
show how the Bayesian statistics guidelines support a nuanced analysis of complex models,
and help keep the focus on concrete scenarios and practically relevant measures. Concretely,
we show that Bayesian data analysis provides a flexible model of data distributions, which
can be used to predict outcomes in different scenarios directly in terms of statistics that are
based on variables in the problem domain.

Our analysis’s conclusion will be that the key question “which programming languages
are more fault prone” does not admit a simple straightforward answer—not with the ana-
lyzed data at least. Nevertheless, as we argued in [21] and now demonstrate in Section 4.3,
practitioners can ask specific questions and answer them by running simulations on the
Bayesian model, rather than having to rely on general results that may not be meaningful
in their context.

1.2.5 How to build knowledge incrementally? Every empirical study has limitations; lifting
them requires to perform new experiments. Another advantage of Bayesian statistical
models built using an incremental process is that they can be refined as we collect more data.
This way, our models become better over time since they accurately reflect the evolving
scientific knowledge in a certain area.

Section 4.4 discusses how applying Bayesian analysis guidelines helps plan for additional
data collection based on the limitations of the analyzed data. Different experiments are no
longer merely a loose collection around the same themes, but can be planned back-to-back
in a way that progressively reduces the uncertainty in knowledge.

1.3 Contributions
This paper makes the following contributions:

• It presents guidelines to apply Bayesian statistics following a systematic process that
goes from building and validating the model to fitting and analyzing it.

• It demonstrates the guidelines by showing how to incrementally build a suitable
statistical model to capture FSE’s language quality data.

• It analyzes the fitted model to investigate the original questions of the effect of
programming languages on fault proneness with a focus on practical scenarios.

• For reproducibility, all analysis scripts are available online together with additional
results and detailed data visualization:

REPLICATION PACKAGE: https://doi.org/10.5281/zenodo.4472963 [22].

1.3.1 Scope. To a large degree, the guidelines we present are not specific to certain classes
of statistical models or analysis domains. The case study we detail in this paper is about
programming language quality, which we model using several generalized linear models
of different complexity—a broad class of statistical models widely used for their flexibility.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.5281/zenodo.4472963

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Carlo A. Furia, Richard Torkar, and Robert Feldt

This does not mean that the guidelines are only applicable to programming language data,
nor that they only work for generalized linear models.

Since the guidelines are largely independent of the specific features of the chosen sta-
tistical model, the domain-specific details of how to operationalize a certain data analysis
problem and how to build a valid “construct” (a statistical model) are largely outside the
scope of the present paper. As we remarked above, we selected the programming language
data as case study because it has been already thoroughly analyzed and scrutinized (albeit
in a frequentist setting); thus, we can build on FSE’s and TOPLAS’s work to demonstrate the
additional steps to be taken to bolster the validity of a statistical data analysis. This leaves
room for different analyses of the same research questions but using different data collection
processes or different statistical models. Our guidelines remain valid as a safeguard against
modeling mistakes or shortcomings; since they promote an iterative approach, they can also
suggest what to change when they fail to validate a candidate model.

1.3.2 Organization. The rest of the paper is organized as follows. Section 2 illustrates
Bayesian data analysis guidelines with an angle that is relevant for empirical software
engineering. Section 3 follows the guidelines to incrementally build a model that is suitable
to capture FSE’s programming language data. Various models are rigorously evaluated and
compared, so that the final model is arguably the “best” among them according to certain
quantitative criteria. Section 4 analyzes the fitted model to study the original questions
of which programming languages are associated with more or fewer faults. The results
look at different scenarios and outline how further custom analyses could be built atop the
same model. Finally, Section 5 discusses related work and Section 6 concludes with a brief
summary and closing discussion.

2 BAYESIAN DATA ANALYSIS GUIDELINES
In the last decade, powerful Bayesian statistical analysis tools and languages have become
widely available together with computational resources adequate to run them [13, 25, 50].
More recently, statisticians have also been introducing and refining guidelines on how to use
these tools in a systematic way to perform principled Bayesian data modeling [1, 23, 31, 57].
In this section, we summarize these state-of-the-art guidelines while recasting them in a
form suitable for empirical software engineering research.

A Bayesian model defines a statistical data-generating process in terms of a prior distri-
bution of parameters θ and a likelihood that certain data is observed for each value of the
parameters. Fitting such a model on some empirical data D then gives a posterior distribution
of the same parameters that follows Bayes’ theorem:

P(θ | D)︸ ︷︷ ︸
posterior

∝ P(D | θ)︸ ︷︷ ︸
likelihood

× P(θ)︸ ︷︷ ︸
prior

. (1)

The posterior can then be used to compute the probability of other observations of interest in
a predictive fashion. Our previous work [21] presented more details about Bayes’ theorem
and the roles of prior, likelihood, and posterior. In this paper, we focus on how to build a
Bayesian model in practice: Bayesian modeling involves choosing components in a way
that is sound and principled, and that works for the data and domain that we are targeting.

Figure 1 illustrates a key idea of the guidelines for Bayesian analysis presented here:
developing a statistical model is a process of iterative refinement, which starts from a very
simple (possibly simplistic) initial model that is gradually refined. Each iteration goes through
a series of steps that assess the model’s suitability in terms of the following characteristics:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 7

initial
model

PLAUSIBLE? WORKABLE? ADEQUATE?

REFINE

ANALYZE

analysis
results

Ë Ë Ë

é éé

refined
model

EXTEND

COMPARE

extended
model

“best”Ë
Ë

Ë

Fig. 1. Process for Bayesian data analysis: starting from an initial model, assess whether it is plausible,
workable, and adequate. If it lacks any of these characteristics, refine the model by adding detail and features.

Models that pass all checks can be fitted and used to answer the analysis’s specific questions. Different

models that pass all checks can be rigorously compared to select those that perform “best” according to

suitable criteria. The outer loop (dashed arrows) indicates that an analysis’s results may also suggest to extend
an adequate model so that it can answer more precise, or just different, questions; this outer loop is another

source of multiple models that can be compared.

Plausibility: Is the model consistent with (expert) knowledge about the data domain?
Workability: Can the model effectively and accurately be fitted using the available
numerical algorithms?
Adequacy: Can the model capture the characteristics of the empirical data?
These steps help assess the utility (or suitability) of a model and its trade-offs. As we

illustrate in Tables 1 and 2, each step puts additional requirements on a model, and checks
whether the model is well-equipped to faithfully capture the observed data and to analyze
it. Table 1 shows how each step broadens the scope of what model components are checked;
in particular, the actual empirical data is only used in the adequate step, whereas the pre-
vious steps generate simulated data using priors and likelihood. Table 2 details how each
step has a possible outcome (what it establishes about the model), which is supported by
analysis artifacts that document the step. The following sections describe the steps, artifacts,
and outcomes in some detail. Section 3 will apply the steps on the main case study of
programming language data.

2.1 Modeling
To make the description concrete, and thus easier to follow, we illustrate what the steps
compute on a toy problem: predicting an adult person’s height h in centimeters. To this end,
we build this statistical model:

h ∼ Normal(µ, σ) (2)

µ ∼ Normal(170, 50) (3)

σ ∼ HalfCauchy(0, 1) (4)

The following paragraphs introduce its components one by one.
Parameters. A Bayesian statistical model consists of three components: parameters to

estimate, likelihood, and priors. In our example, the model’s parameters θ are the mean µ
and standard deviation σ of a person’s height. The data D records the value of outcome

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Carlo A. Furia, Richard Torkar, and Robert Feldt

variable h for several persons, which we can use to estimate µ and σ. There are no predictor
variables in this simplistic model, but otherwise these would also be recorded in the data
for every person.

Likelihood. The likelihood is a probability distribution of the data h given parameters µ
and σ. The simplest (yet extremely common) choice is a normal distribution, which encodes
no additional information about the data other than that it has a mean µ and a standard
deviation σ. This likelihood is defined by (2), which is in fact a probability distribution of h
given µ and σ.

Priors. Finally, we need priors for µ and σ. Specifying a prior means defining an initial
probability distribution for a parameter of the model—a probability distribution without
any dependency on the data.

The least informative priors are completely flat distributions, which assign the same
infinitesimal probability to any value of the parameter; this is the default behavior in
frequentist statistics. A flat prior for µ, for example, would be a uniform distribution with
support from −∞ to +∞. Flat priors are usually a poor choice: first, since they stretch a
probability distribution over an infinitely large support, they tend to generate infinitesimal
probabilities that may cause numerical rounding errors; second, a prior with no information
whatsoever about the realistic parameter domain is prone to overfitting the data. We can
see it clearly even in the simple example of estimating heights: a flat prior would give the
same a priori probability to height values −10, 170, and 109, but only the second value is a
plausible human height!

A better choice are weakly informative priors, which still carry very little specific informa-
tion but perform much better than flat priors computationally and protect against overfitting
the data. As prior for µ, we select the normal distribution (3), with mean 170 and standard
deviation 50; this means that we expect most heights to be between 20 = 170 − 3 · 50 and
320 = 170 + 3 · 50 centimeters. This is still an extremely broad range of values, but it favors
values that are in the ballpark of realistic human heights. By the way, there is nothing special
about the values 170 and 50: the priors are only a starting point, which should just identify
a plausible range of heights without being unnecessarily constraining. Different, reasonable
choices for the priors would still lead to very similar outcomes.

A prior for σ should rule out negative values (that is, assign zero probability to them),
since a standard deviation must be a nonnegative number. A common choice for priors of
standard deviations is a so-called half-Cauchy distribution, which is a truncated Cauchy.
Precisely, we set the first (location) parameter of the prior (4) for σ to zero, so that the
distribution’s support is restricted to the nonnegative reals. We set the second (scale)
parameter to one, which spreads out the probabilities smoothly while still preferring
moderate values of σ.

Bayesian data analysis tools can often suggest default weakly informative priors that may
work well in many cases. In the analysis of Section 3, we will define our priors—following
standard recommendations [42]—but very often using default priors would have lead to
overall similar results. In any case, the plausibility checks described next will validate our
choice of priors.

2.2 Plausible model
Once we have chosen parameters, likelihood, and priors our model definition includes
all required parts. Then, we can “run” the model—that is, sample from it—and analyze
how likelihood, data, and priors constrain the model parameters of interest [30]. The first

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 9

STEP PRIOR LIKELIHOOD
ALTERNATIVE EMPIRICAL NEW DATA

MODELS DATA FOR PREDICTION

plausible? ✓
workable? ✓ ✓
adequate? ✓ ✓ ✓
compare ✓

analyze ✓ ✓ ✓ ✓

Table 1. For each step of a Bayesian statistical analysis (checks of plausibility, workability, adequacy, model

comparison, and analysis), the model components (prior and likelihood), competing alternative models,

and kinds of data (empirical and new for prediction) that the step primarily tests.

STEP ARTIFACTS OUTCOME

plausible? (1) Prior predictive simulation plots; (2) Justifi-
cation for priors if they disallow certain values.

The priors allow a broad range of possible val-
ues and give low probability to values that are
unlikely to occur in the domain.

workable? (1) Simulation-based calibration of z score and
shrinkage; (2) Fitting diagnostic metrics.

Fitting the model works computationally and
does not exhibit pathological behavior.

adequate? Posterior predictive checks plots. The model can generate data similar to the em-
pirical observations.

compare Information-criteria ranking and scores of com-
peting alternative models.

The chosen model achieves a bias-variance
trade-off better than the alternative models.

analyze (1) Posterior plots based on the empirical data;
(2) Distribution plots and summary statistics of
any domain-specific variables of interest.

Quantitative answers to the analysis’s specific
questions.

Table 2. The artifacts that are typically produced, and the outcome that follows from each step of a Bayesian

statistical analysis (when the step succeeds).

step of this analysis focuses on the priors, which should be neither too constraining nor
unreasonably permissive. This step is typically called prior predictive simulations or prior
predictive checks [42, 57] and works as follows: sample the priors broadly; using the sampled
distribution (ignoring the actual empirical data, which are not used in this step), run the
model to get a distribution of the model variables of interests (typically, the outcome
variable); check that this distribution is plausible for the variables that it measures.

The key principle is that, if the priors are properly chosen, this process should determine
a distribution that allows all plausible values for the variables but gives vanishing small
probability to values that are practically impossible or contradict established scientific
knowledge. In summary, prior predictive checks answer the question: Does sampling from
the priors lead to a plausible range of parameter values?

Here is how prior predictive simulation would work on our toy example. First, we
sample random values for parameters µ and σ from their prior distributions (3),(4). We then
plug each sampled pair of values µ, σ into the likelihood (2) and sample values of h from
Normal(µ, σ). Since the outcome variable h measures an adult person’s height, the priors
should be such that this sampled distribution of h freely allows heights between, say, 0

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Carlo A. Furia, Richard Torkar, and Robert Feldt

and 300 cm, whereas it disallows negative heights and assigns very small probabilities to
heights above 300 cm—since no human on record has ever been that tall.

Prior predictive simulation is not cheating [42]. As long as we do not set priors based
on the actual empirical data that we are going to analyze, but only through what we
know about the data domain independent of how we measured it, it is sensible to use our
existing knowledge to rule out priors that would lead to impossible or clearly implausible
results. Seen in this light, the possibility of choosing priors is a big advantage of Bayesian
analysis that is highly valuable for any empirical science. Using existing knowledge to
guide new analyses, we can develop sequences of studies that, taken together, progressively
sharpen knowledge in a specific area. The alternative is that every software engineering
research contribution remains an “island unto itself” without clear connections to the related
literature and the field as a whole [21].

The reasons for choosing certain priors that make the model plausible should be explicitly
justified. In practice, and to the extent that it is possible, empirical software engineering
studies should explicitly state which published results, common sense, or “folk knowledge”
justify the choice of priors and their plausibility behavior. Section 3.3 demonstrates how to
do that for the paper’s case study.

Selecting informative priors gives Bayesian statistics more flexibility, but does not limit
its applicability. When very little is known about the problem domain—for example, in
an exploratory first study about a certain practice—one can always fall back to using
completely uninformative priors, which require no specific knowledge, and hence are
vacuously plausible. When prior knowledge exists, however, defining more selective priors
can help sharpen the model and specialize it to the characteristics of the analysis domain.

2.3 Workable model
Once we have ascertained that the chosen priors are consistent with plausible parameter
values, the second step checks whether our model works computationally—that is, fitting
the model does not incur divergence or other numerical problems, and the fitting process
eventually reaches a stationary state that properly identifies a posterior distribution.

An emerging technique to do so is simulation-based calibration [57, 62], which relies on a
consistency property of Bayesian models: first, simulate parameter and data values from the
priors and likelihood as done in prior predictive simulations; then, using Bayes’ theorem,
combine the simulated parameter and data samples to get a posterior distribution of the
model’s parameter; if the model is consistent, the posterior distribution obtained in this
way should resemble the prior distribution. To perform simulation-based calibration on
our toy example, we would (i) sample parameter values from the priors; (ii) use those to
build samples of the outcome variable h; (iii) use these outcome samples as data (instead of
the actual empirical data) and combine them again with priors and likelihood using Bayes’
theorem (1). These steps give a new sampled distribution of the parameters µ and σ, which
we compare with that obtained by sampling the priors directly in the first step.

While promising, simulation-based calibration is a cutting-edge technique that is still
undergoing major developments; none of the statistical analysis tools that are more widely
used for Bayesian analysis support it out-of-the-box. Instead, these tools offer other metrics
to assess workability that are specific to the fitting algorithms based on dynamic Hamilton-
ian Monte Carlo which they implement. Here are the metrics that are usually available, and
how they help us assess workability:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 11

• A divergent transition in the sequences of samples indicates a possible numerical
error; workable models should have few divergent transitions—ideally none.

• The sampling process is repeated a few (usually 2–4) times independently; each se-
quence of sampling is called a chain. In a workable model, different chains should be
statistically similar: the ratio R̂ of within-to-between chain variance should converge
to 1 as the number of samples grows. A common rule of thumb for finite sampling
is that R̂ < 1.01, which indicates a stationary posterior distribution.

• The effective sample size is the fraction of all samples that are independent, that is
not autocorrelated. We typically want it to be at least 10% for each parameter we
estimate (and that the absolute number of independent samples be a few hundreds);
lower values may indicate that sampling is ineffective.

• Finally, we can also visually inspect the plots that trace the samples in every chain.
When the different lines look mixed up (like a “hairy caterpillar” [42]), it is one more
sign that the fitting process works well.

Section 3.4 uses these metrics to analyze the workability of our models.
When a workability check fails, it suggests that there is a mismatch between the model

and the algorithm used to fit it. Sometimes, this is due to the data—for instance it is too
sparse to effectively sample from it. More commonly, it indicates that the model itself is
unsuitable for the analysis at hand. A clear example is the problem of multicollinearity:
when two variables are strongly correlated, their exact contribution to the outcome is
undetermined; thus, the model may not be workable because it cannot be used to discover
a definite value for each variable independent of the other.

2.4 Adequate model
If the previous analysis steps were successful, we determined that the priors are sensible
(plausibility) and that fitting the model is a converging process (workability); it remains to
check whether the model adequately captures reality. The third step thus fits the model
using the actual empirical data (which was not used in the previous two steps) and performs
posterior predictive checks: using the posterior distribution of parameters fitted on the actual
empirical data, simulate new observations and compare them to the data. If the two are
consistent, it means that the model can generate data similar to the observed data, and
hence it captures the empirical observations adequately.

Here is how posterior predictive checks would work on our toy example. Similarly as in
simulation-based calibration, we combine data and prior samples using Bayes’ theorem (1);
the key difference is that we now use the actual observed data (the height of real people)
instead of simulated data. This gives a posterior predictive distribution of parameters µ
and σ, which, in turn, we sample; then, we plug the sampled parameter values into the
likelihood to get a distribution of h—the so-called posterior predictive distribution, since it
expresses the information about the posterior indirectly in terms of prediction of model
(outcome) variables. In an adequate model, the posterior predictive distribution generates
data somewhat similar to the actual observed data.

Section 3.5 discusses the results of posterior predictive checks on the programming
language case study.

2.5 Model comparison
Information criteria such as WAIC (Widely Applicable Information Criterion, also known as
Watanabe-Akaike Information Criterion) [71] and PSIS-LOO (Pareto-Smoothed Importance

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Carlo A. Furia, Richard Torkar, and Robert Feldt

Sampling Leave One Out validation) [67] assess a kind of relative adequacy by measuring
deviance or other information-theoretic metrics between a model’s predictions and the data.
In a nutshell, these metrics assess how well each model performs out-of-sample predictions
compared to other competing models. Thus, information criteria measures are relative:
they are useful to compare the adequacy of a model relative to another but cannot gauge
a model’s adequacy in absolute terms. Section 3.6 uses information criteria to compare
different models for the programming language data analysis.

2.6 Iterative refinement
After a candidate model goes through the steps described above, we have a clear under-
standing of its strengths and weaknesses. When the model fails specific steps, we also learn
what aspects we have to change to refine it: the priors of an implausible model need chang-
ing; an unworkable model needs to be refactored in a way that works computationally;
an inadequate model may require more information (typically in the form of additional
variables or parameters) for it to be consistent with the data (for example, to properly
capture inter-group variability).

Model design is an iterative process which gradually refines an initial model to improve
it. Usually, we start from a deliberately very simple model and make it more complex as
needed [57]. However, we can also do the opposite: start from a so-called maximal model,
and then simplify it as long as it retains the characteristics of plausibility, workability, and
adequacy [49]. In practice, we may even alternate simplification and refinement (detail-
adding) steps starting from a canonical model [47, pp. 103–104] until we are satisfied with
the results.

The presentation of the results of a Bayesian data analysis need not discuss the models in
the same order in which they were designed and evaluated; it does not even need to present
all models, but can simply present the final model as long as its choice can be soundly
justified a posteriori (and, preferably, a reproducibility package exists). Regardless of how
we choose to present the overall outcome of an analysis, considering different models
expands the flexibility of the modeling process, supports making informed choices about
each aspect of a model, and helps focus on and quantify the relative benefits of each model
in terms of the trade-offs that matter for the ongoing analysis.

2.6.1 Uniqueness and optimality of models. When should we stop refining our model? Para-
phrasing George Box’s famous aphorism [9, 10], we could say that the goal of statistical
modeling is building a useful model, not a correct one. In other words, we cannot expect
that following our guidelines leads to designing a unique or optimal model.

Model comparison can identify which models perform better predictions than other
models, but it cannot assess a model’s absolute predictive capabilities. The steps in Figure 1
make up a validation process, which can identify a model’s shortcomings or confirm that it
is of suitable quality; they cannot say anything about the infinitely many other models that
were not considered. Building useful models still requires human intuition, knowledge,
and ingenuity—skills that no supporting process can completely replace.

2.7 Tools for Bayesian data analysis
Let us briefly mention which tools are available to support the kind of Bayesian data
analysis process that we discuss in this paper. Stan [13] and JAGS [51] are state-of-the-art
frameworks that offer a probabilistic language to express Bayesian models and implement
very efficient algorithms to fit such models on data. Commonly, one uses these frameworks

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 13

through a front-end library in a high-level programming language suitable for data analysis.
Libraries such as brms for R [12], Stan.jl for Julia [39], and PyStan for Python [52] provide
a rich interface to Stan, including support for the main steps of our guidelines (for example,
prior predictive simulations). Turing.jl for Julia [25] also provides a high-level interface to
perform Bayesian data analysis, but includes its own implementation of Bayesian sampling
instead of relying on Stan’s (which may offer some advantages in terms of flexibility and
generality for the most advanced applications).

3 BAYESIAN DATA ANALYSIS OF PROGRAMMING LANGUAGE DATA
Equipped with a high-level understanding of the modeling guidelines that we outlined in
Section 2, we apply them to perform the analysis of the FSE data. The overall outcome of
the work described in this section will be a carefully designed, suitable statistical model of
this data. In Section 4, we will analyze this model to understand what it tells us about the
original questions on programming languages and code quality.

To mitigate the risk of mono-operational bias, the first author prepared the data for
analysis in R, and the second author developed the first complete analysis, which then the
first and third author revised. Finally, all three authors validated the final revised analysis,
which is presented here. In addition, the second author did not read the publication that
originated the dataset [55] or its reanalysis [6] until after completing the first complete
analysis. This reduced the chance that the others’ design decisions, or some characteristics
of the data they highlighted, biased our application of the modeling guidelines.7

3.1 Data
FSE’s authors released the original dataset—obtained by mining information from GitHub
repositories—upon request from TOPLAS’s authors. TOPLAS performed first a repetition
of FSE’s analysis on the same dataset, and then a reanalysis on a revised dataset obtained
by “alternative data processing and statistical analysis to address what [they] identified as
methodological weaknesses of the original work” [6, Sec. 4]. The main difference between
FSE’s original dataset and TOPLAS’s revised dataset is that the latter removes some dupli-
cated data, TypeScript projects (which often do not include much actual TypeScript code),
and the V8 project (whose JavaScript code in the dataset is mostly tests). Finally, TOPLAS’s
replication package includes FSE’s original dataset alongside TOPLAS’s revised dataset.

In our analysis, we focus on the original FSE dataset,8 because we would like to see
whether a Bayesian data analysis can help spot issues and inconsistencies in the data that
may hinder replication attempts—and, conversely, that may make replication run-of-the-
mill if addressed early on. Our replication package includes all analysis details, including
the results of fitting the same models on TOPLAS’s revised dataset (which we do not discuss
here for brevity).

FSE’s dataset includes information about 1 578 165 commits, which we group by project
and language giving 1 127 datapoints. The attributes that are relevant for our analysis are:

project : the project’s name
language : the used programming language
commits : the total number of commits in the project
insertions : the total number of inserted lines in all commits

7We used Stan through its brms R front-end to perform the analysis described in the rest of the paper.
8Which we obtained from TOPLAS’s public replication package (available at https://github.com/PRL-PRG/

TOPLAS19_Artifact).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://github.com/PRL-PRG/TOPLAS19_Artifact
https://github.com/PRL-PRG/TOPLAS19_Artifact

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Carlo A. Furia, Richard Torkar, and Robert Feldt

10

1000

100000

C++
Sca

la C#
Php

Has
ke

ll

Erla
ng C

Pyth
on

Rub
y

Ja
va

Cloj
ur

e

Obje
cti

ve
−C

Cof
fee

sc
rip

t
Go

Ja
va

sc
rip

t
Per

l

Ty
pe

sc
rip

t

Fig. 2. Violin plots of the distributions of number of bugs per project for each programming language in the

original FSE dataset. Languages are sorted, left-to-right, by decreasing values of the distributions’ medians.

The vertical axis’s scale is logarithmic in base 10. An horizontal line marks the median number of bugs per

project across all languages.

age : the time passed since the oldest recorded commit in the project
devs : the total number of users committing code to the project
bugs : the number of commits classified as “bugs”

The values of attributes commits , insertions , age , and devs vary greatly between projects.
When this happens, it is customary to transform the data using a logarithmic function, so
that the variability is over a smaller range whose unit corresponds to an order of magnitude.
Both FSE’s and TOPLAS’s analyses log-transformed these attributes; we do the same:
henceforth, commits , insertions , age , and devs represent the natural logarithm of the total
number of commits, inserted lines, and so on.

Figure 2 provides an overview of the FSE dataset, showing the distribution of bugs per
project grouped by programming language. Visualizing the raw data can be useful to get
a broad idea of what is in the dataset; however, the information that such visualizations
provide is mostly qualitative and we should be aware of its limitations. If one includes all
data, any outliers may skew the picture at extreme values; conversely, if one excludes some
data, deciding which data to exclude is itself a source of possible bias, and discards poten-
tially useful information thus increasing uncertainty. In this dataset specifically, projects
vary broadly in terms of size and other characteristics. Figure 2 conflates these differences,
and hence a comparison of different languages based on it may be misleading. We could
display a subset of the data that only includes projects with homogeneous characteristics;
however, doing so would drop significant amounts of information, introduce a somewhat

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 15

STEP M1 M2 M3

plausible? Ë Ë Ë
workable? Ë Ë Ë
adequate? é Ë Ë
compare – é Ë

Table 3. Plausibility, workability, adequacy, and comparison of models M1, M2, M3. All three models

are plausible and workable, but model M1 is not adequate because it cannot accurately capture the regular

features of the dataset. Model comparison between M2 and M3 shows that the latter performs much better

concerning out-of-sample predictions, and hence we will use M3 for the rest of the analysis.

arbitrary partitioning (what projects are “similar”?), and increase the risk of overfitting
other accidental characteristics of the data. By abstracting the information in the raw data
and combining it with expert knowledge, a suitable statistical model can lessen several of
these problems, thus supporting more robust and general inferences about the impact of
programming languages.

3.2 Modeling
We build three models—M1, M2, and M3—of increasing complexity.9 Table 3 summarizes
the outcome of the steps in Figure 1 for the three models. Mirroring Table 2’s structure,
Table 4 outlines the artifacts produced in each step, and the conclusions that the analysis
draws about each model’s suitability. The rest of this section details the models and the
outcome of the guidelines’ suitability checks presented in Section 2. This section presents
the models and the outcome of their suitability analysis in detail; later, Section 4.1 will
discuss, at a higher level, what this analysis reveals about the relations between model
features and data.

As we remarked in Section 1.3.1, our guidelines can be used to validate different kinds of
models. We consider these three models because they belong to a widely used family of
statistical models, and for their similarity with the models of FSE and TOPLAS. An analysis
with different goals or done by analysts with different expertise could end up building very
different kinds of models—but they should still undergo the same validation steps.

3.2.1 Likelihood (and parameters). Generalized linear models are a broad category of statistical
models that are so flexible that they can be “applied to just about any problem” [28] when
modeling empirical data. The likelihood of a generalized linear model is a probability
distribution over certain parameters, which are generalized linear functions of the variables
chosen as predictors. The values drawn from the distribution correspond to the outcome
that we are modeling.

Distribution family. In our case, the outcome variable is bugs , which always is a nonneg-
ative integer. Therefore, we should select a likelihood distribution suitable for “counting”—
that is, one in the Poisson family. The single-parameter Poisson is the distribution in this
family with the highest information entropy [37], and hence it should be the customary
initial choice.

Nevertheless, building a model using the single-parameter Poisson quickly reveals that it
cannot account for the fact that the distribution of bugs in the data is overdispersed: its mean

9As discussed in Section 2.6, for clarity we present the three models at once but we actually designed them
over several iterated applications of the guidelines.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Carlo A. Furia, Richard Torkar, and Robert Feldt

STEP ARTIFACTS OUTCOME

plausible? (1) Prior predictive simulation plots in Fig-
ure 5; (2) Justification for priors: typical re-
lations between project size and number of
known bugs [58].

The priors of all three models allow a very
broad range of possible values for the number
of bugs that may exist; extremely high numbers
are still possible but with low probability.

workable? Fitting diagnostic metrics reported in Sec-
tion 3.4: R̂, effective sample size, no divergent
transitions, trace plots (details in the replication
package).

Fitting all three models works computationally
and reaches convergence.

adequate? Posterior predictive checks plots in Figure 7. Model M1 cannot generate a distribution sim-
ilar to that observed in the data (top plot in
Figure 7), whereas models M2 and M3 can.

compare Information-criteria scores of competing mod-
els in Table 5.

Model M3 clearly outperforms M2 in how it
can predict data out of the sample used for fit-
ting.

analyze (1) Posterior plots based on the empirical data
in Figures 11 and 13; (2) Distribution plots and
summary statistics of domain-specific variables
of interest in Figures 8 and 12.

Quantitative answers to the analysis’s specific
questions in Section 4.

Table 4. A summary of the artifacts produced by the analysis of the three models, and the outcome of

each step of the analysis in terms model suitability. This summary instantiates Table 2 for the programming

language data analysis.

µbugs = 501 is much smaller than its variance σ2
bugs = 15 031 006. This justifies selecting

the slightly more complex negative binomial distribution NegativeBinomial(λ, ϕ). The two
parameters λ and ϕ represent10 rates that together determine the distribution’s mean λ and
variance λ + λ2/ϕ, which can take different values to accurately capture overdispersion.
This is in contrast to the Poisson distribution whose mean and variance coincide. The
negative binomial distribution is also the same distribution selected, for the same reason,
by both FSE’s original analysis and TOPLAS’s reanalysis.

Model M1. The first model we consider, called M1, is very simple: it assumes that
the rate λ is a function of two terms only. The first term Π is a constant intercept α; the
symbol Π highlights that it is a population-level term. The second term L is an additional
intercept αlanguage that depends only on the language used in each observation; the symbol L
highlights that it is a language-level term. Figure 3a shows M1’s overall likelihood, where
the logarithm function links11 the linear function of the parameters and λ so that the latter
is always a nonnegative number—as it should be in a “counting” distribution.

Model M1 is obviously too simple to capture the variability in the data with high accuracy.
Nonetheless, it is a useful starting point to understand the key relations between variables
and to bootstrap the process that leads to incrementally more refined and precise models.
In its simplicity, it highlights that the key predictor (the “treatment”) is the programming
language used in each project, whose relation with the number of bugs we would like to
capture. Finally, even a simplistic model serves as a useful baseline to compare to more

10https://mc-stan.org/docs/2_20/functions-reference/nbalt.html
11In other words, the link function converts measures from the probability space to the outcome space.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://mc-stan.org/docs/2_20/functions-reference/nbalt.html

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 17

bugs i ∼ NegativeBinomial(λi, ϕ)

log(λi) = Πi + Li

Πi = α

Li = αlanguage i

(a) Model M1

bugs i ∼ NegativeBinomial(λi, ϕ)

log(λi) = Πi + Li

Πi = α + βC · commits i + βI · insertions i

+ βA · age i + βD · devs i

Li = αlanguage i

(b) Model M2

bugs i ∼ NegativeBinomial(λi, ϕ)

log(λi) = Πi + Li + Pi

Πi = α + βC · commits i + βI · insertions i

+ βA · age i + βD · devs i

Li = αlanguage i
+ βC

language i
· commits i

+ βI
language i

· insertions i + βA
language i

· age i

+ βD
language i

· devs i

Pi = αproject i

(c) Model M3

Fig. 3. The likelihoods of statistical models M1, M2, and M3. Colors highlight the terms that are added to

each model compared to the previous ones.

complex models—as a sanity check that the additional complexity that we are going to add
to the models brings measurable improvements over the baseline.

Model M2. The second model we consider, called M2, is a standard linear-regressive
model with negative binomial likelihood. Model M2’s population-level term Π is a linear
function with intercept α and a slope β for each predictor variable commits , insertions , age ,
and devs . In addition, like model M1, M2 includes a language-level term L that consists
of an intercept that depends on the language used in each observation (a so-called “varying
intercept” model [29]). Figure 3b shows M2’s overall likelihood.

Model M2 is the closest to the regressive models used in FSE and TOPLAS. The only
difference is how each model accounts for the dependence on the programming language:
FSE and TOPLAS use different kinds of contrasts [6, 55], whereas we simply add an intercept
language-level term—thus making our models multilevel [28]. Multilevel modeling comes
natural with Bayesian statistics, both because we do not have to worry too much about
adding layers to the model (unlike with frequentist techniques, changing such characteristics
of the model does not require changing the fitting algorithm) and because we can just model
the quantities of interest directly and compute any derived quantity after we fit the model’s
posterior distribution (unlike with frequentist techniques, which mostly provide only point
estimates without distributional information).

Model M3. The third model we consider, called M3, is a multilevel model that tries to
capture the effect of the programming language with greater detail. Model M3’s population-
level term Π is identical to M2’s. Its language-level term L is considerably more complex,
since it introduces a linear model with different intercepts αlanguage and slopes βlanguage for
each programming language (a so-called “varying intercepts and varying slopes” model,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Carlo A. Furia, Richard Torkar, and Robert Feldt

also commonly known as “varying effects” model [29]). Unlike the population-level term Π,
the language-level term L pools the information about each data cluster—where clusters are
identified by the used programming language. Since it clusters by programming language,
this partial pooling may help capture more accurately the effects of choosing a programming
language instead of another; at the same time, it also shares information among clusters
so that some information from larger clusters (languages with many projects) can sharpen
the information from smaller clusters (languages with fewer projects). This also means that
partial pooling helps protect from overfitting, as learning takes place first separately on each
cluster, and then is “regularized” by sharing its results among different clusters.

The three models’ focus on the programming language reflects our intuitive expectation
that the relation between programming languages and proneness to bugs is an important
one—regardless of whether it turns out to be significant or negligible in the end. At the same
time, adding predictors other than the programming language accounts for confounding
factors that may have a stronger correlation with the number of bugs. But what if the
intrinsic differences between projects turn out to dominate the discrepancies in code quality?
For instance, different projects may have wildly different protocols to report, triage, and fix
bugs, which might have an effect on the observed number of bugs.

In order to hedge against this possible confounding factor, model M3 also includes a
term P: an additional intercept αproject that depends only on each observation’s project;
the symbol P highlights that it is a project-level term, which will help in quantifying the
intrinsic variability across projects. Figure 3c shows M3’s overall likelihood.

3.2.2 Priors. As we demonstrated in the previous section, choosing the likelihood typically
requires making justified modeling choices, which depend on the kind of analysis we would
like to carry out.

When choosing the priors, in contrast, we can often rely on standard recommendations
that primarily depend on the domain of each variable. This does not mean that priors (or
likelihoods, for that matter) can be always chosen blindly using a fixed table of recommen-
dations. In the following sections, as we go through the various steps of the Bayesian data
analysis workflow, we will validate our choices of priors and likelihood. If validation fails,
we have to go back and revise the model: priors, likelihoods, or both.

Model M1. As shown in Figure 4a, we use weakly informative priors for model M1
that are based on the normal distribution. As we will see during the plausibility analysis
(Section 3.3), model M1 is so simplistic that its performance is not affected much by the
choice of priors; nonetheless, we discuss its priors in some detail because we will build on
them to choose priors for the more complex models.

The intercept α’s prior has mean 0 (that is, we do not know a priori whether the intercept
is positive or negative) and standard deviation 5. Remember that the estimated parameter
λ is log-transformed (see Figure 3b); therefore, we can appreciate how weakly constraining
this prior is: two standard deviations on each side of zero span the interval from e−10 ≃ 0 to
e10 ≃ 22 000 on the bug counting scale; that is, the prior only assumes that a project’s bugs
are up to 22 000 with 95% probability—which is not a strong assumption at all [58]. Besides,
a normal distribution has infinite support, and hence it does not rule out any count of bugs
if the data provides evidence for it. The prior for the language-level intercept αlanguage is
also a normal distribution with mean 0; however, choosing the same standard deviation σα

for every language would defeat the purpose of having language-level intercepts. Instead,
we let σα be a random variable, and assign a prior to it. Distributions with support limited
to positive values are suitable priors for standard deviations—which must be nonnegative

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 19

α ∼ Normal(0, 5)

αlanguage ∼ Normal(0, σα)

σα ∼ Weibull(2, 1)

ϕ ∼ gamma(0.01, 0.01)

(a) Priors of model M1

α ∼ Normal(0, 5)

β ∼ Normal(0, 0.5)

αlanguage ∼ Normal(0, σα)

σα ∼ Weibull(2, 1)

ϕ ∼ gamma(0.01, 0.01)

(b) Priors of model M2

α ∼ Normal(0, 5)

β ∼ Normal(0, 0.5)

αlanguage ∼ Normal(0, σα)

βlanguage ∼ Normal(0, σβ)

αproject ∼ Normal(0, σγ)

σα, σβ, σγ ∼ Weibull(2, 1)

L ∼ LKJ(2)

ϕ ∼ gamma(0.01, 0.01)

(c) Priors of model M3

Fig. 4. The priors of statistical models M1, M2, and M3. Colors highlight the terms that are added to each

model compared to the previous ones.

values. In this case, we use a Weibull for σα and the default Gamma for the dispersion
parameter ϕ of the negative binomial.

Model M2. In addition to M1’s weakly informative priors for α, αlanguage , and ϕ, M2
needs a prior for the slope parameter vector β. Here too we use a simple normal distribution
with mean 0 (so that there is no bias in the possible direction of each predictor’s effect)
and standard deviation 0.5 (which still allows for a broad variability on the logarithmic
scale). The β’s prior standard deviations are smaller than the α’s because α determines the
population average, and then β moves this average according to each predictor’s effect
(which needs only introduce a smaller variation relative to the average). Figure 4b shows
the overall priors for M2.

Model M3. We choose the prior for the new part of M3—the language-level slopes
βlanguage —similarly to how we chose the language-level intercepts αlanguage : a normal with
mean 0 and a random variable σβ for standard deviation. However, there is an additional
technicality that we need to handle: vectors αlanguage and βlanguage are not independent but
are components of a single multivariate normal distribution with a variance matrix S. Vari-
ance matrix S combines diagonal matrices with the components of αlanguage and βlanguage
and a covariance matrix L. The customary prior for covariance matrices is a multivariate
Lewandowski-Kurowicka-Joe distribution; LKJ(2) is a weakly informative prior using this
distribution, which assigns low probabilities to extreme correlations. Finally, the project-
level intercept αproject ’s prior is also a normal with mean 0 and a random variable σγ for
standard deviation. Just like for the other standard deviations, we choose a a Weibull as prior
distribution of σγ—a weakly informative distribution that constrains αproject ’s standard
deviation to be a non-negative value. Figure 4c shows the overall priors for M3.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Carlo A. Furia, Richard Torkar, and Robert Feldt

100 102 104 106

Number of bugs

D
en

si
ty

y
y rep

(a) Prior predictive simulation for M2.

100 1010 1020 1030

Number of bugs

D
en

si
ty

y
y rep

(b) Prior predictive simulation for M3.

Fig. 5. Prior predictive simulation plots for models M2 and M3: each thin light blue line pictures one

simulated distribution of the number of bugs in a project drawn from the priors. For comparison, the thick

dark blue line pictures the distribution of the number of bugs in the measured data. The horizontal scale is

logarithmic in base 10.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 21

3.3 Plausibility
The prior predictive checks are straightforward for all three models, confirming that our
choice of priors—based on standard recommendations for these kinds of models—leads to
plausible outcomes. As an example, Figure 5a shows several distributions of the outcome
variable bugs obtained with prior predictive simulations of M2. These span a very wide
support that goes from zero12 up to over a million bugs per project. While there are no
theoretical limits on the number of bugs in a project independent of its size, it is realistic
that most projects have less than one million known bugs, and the majority of projects have
less than a few thousands—simply because not many projects have more than one known
bug for each line of code [58], and hence a project’s size in lines of code is a workable
upper bound on the number of distinct bugs. Anyway, the priors still allow even larger bug
counts, but assign to them increasingly smaller probabilities. Figure 5a also displays the
empirical distribution of bug counts in FSE’s dataset (thick dark blue line); this visually
confirms that the priors are not too restrictive and reflect reasonable expectations. The
prior predictive checks of model M3 is shown in Figure 5b, and leads to qualitatively
similar conclusions—in fact even stronger, given that the priors stretch past an astronomical
number of bugs—about the model’s plausibility. So do the prior predictive checks of model
M1, which we do not show for brevity.

3.4 Workability
Section 2.3 outlined simulation-based calibration and Hamiltonian Monte Carlo validation
metrics to assess a model’s workability. We use the latter, which are extensively supported
by Stan, to determine whether the sampling process for each of the three models reached a
stable state.

R̂—the ratio of within-to-between chain variance—is < 1.01 for all three models; this indi-
cates that the chains have converged towards a stationary posterior probability distribution.
The effective sample size is at least 0.11, 0.17, 0.13 for all parameters in each of the three models,
and confirms that sampling effectively converged. Fitting all three models does not run
into any divergent transitions, and the trace plots of the models (included in the replication
package) look well-mixed. In summary, all three models work well computationally.

3.5 Adequacy
Let us first study the adequacy of our models with posterior predictive simulations: we
visually compare the distribution of number of bugs per project in our dataset to several
simulated distributions using the fitted models. The top plot in Figure 7 indicates that M1
is not adequate: it is too simplistic to capture the data’s features; in particular, the means
of the simulated distributions are more than ten times larger than the mean of the data
(thick dark blue line). In contrast, M2 passes this adequacy test: the middle plot in Figure 7
shows that the model’s predictions look similar to the data. Model M3 also passes the
visual adequacy test based on the posterior predictive simulations, as shown by the bottom
plot in Figure 7. In Section 4.1, we will discuss what these adequacy results tell us about the
interplay between model features and data.

3.6 Model comparison
It is now clear that M1 is too simplistic, but how to choose between M2 and M3? In-
formation criteria, which measure the relative adequacy of different models fitted on the

12The logarithmic link function guarantees a lower bound of zero.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Carlo A. Furia, Richard Torkar, and Robert Feldt

100 101 102 103 104 105

M1

100 101 102 103 104 105

M2

100 101 102 103 104 105

Number of bugs

y
y rep

M3

Fig. 6. Posterior predictive checks for M2.

Fig. 7. Posterior predictive checks plots for models M1, M2, and M3: each thin light blue line pictures

one simulated distribution of the number of bugs in a project drawn from the posterior. For comparison,

the thick dark blue line pictures the distribution of the number of bugs in the measured data. Model M1
fails the check because the simulated distributions deviate substantially from the data’s; in contrast, M2
and M3 pass the check because the simulated distributions are similar to the data’s. The horizontal scale is

logarithmic in base 10.

same data, can help answer this question. We use the increasingly popular PSIS-LOO in-
formation criterion [67], which works well with models fitted using dynamic Hamiltonian
Monte Carlo.13 In a nutshell, the criterion ranks the three models according to their relative
adequacy. It also gives a difference score that measures how well each model performs
out-of-sample predictions relative to the next one in the ranking, and a standard error of

13Compared to more traditional information criteria—such as AIC, BIC, and WAIC—PSIS-LOO can handle
non-Gaussian likelihoods (as can WAIC) and also provides diagnostics useful for further analyzing whether a
model’s posterior behaves well numerically.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 23

MODEL RANK DIFFERENCE STANDARD ERROR

M3 1 – –
M2 2 −172.0 23.6
M1 3 −1963.0 57.0

Table 5. Ranking of models (from better to worse) according to the PSIS-LOO information criterion. Each

model is ranked (from better to worse) according to the PSIS-LOO information criterion. The score difference

between each model and the immediately better one in the ranking, as well as the standard error of such

difference, quantify the difference in adequacy between models.

the difference, which quantifies how much more adequate a model is compared to another.
Table 5 displays the scores for the three models. Model M3 is ranked first; M2 comes second
but its score is a whopping 7 standard errors worse than M3’s; and M1 is, unsurprisingly,
a distant last.

We conclude that M3 is the “best” model among the three according to a variety of
criteria. Our analysis will thus use M3—starting with a discussion of its features from the
point of view of the analysis’s goals in Section 4.1.

At some point, one has to stop adding model features and finalize a model for the current
analysis. Nevertheless, as we discussed in Section 2.6.1, statistical modeling is never really
done: as more insights, more data, or new techniques become available, we could go back
to the drawing board and refine the latest model to better capture all available information.

4 BAYESIAN STATISTICAL ANALYSIS: RESULTS
When applied following a structured process—like the one we described in Section 2—
Bayesian statistics does not simply produce dichotomous answers to research questions.
The outcome of a Bayesian data analysis is a posterior probability distribution, which we
can probe from different angles to get nuanced answers that apply to specific scenarios. In
this section we are going to do this for our case study.

Section 4.1 discusses how the Bayesian data analysis process guided our choice of models:
modeling is a looping process, whose feedback also informs us about key characteristics of
the data we are analyzing. Not all data features have the same influence on the statistics.
Section 4.2 illustrates how Bayesian analysis can point to variables with brittle or negligible
predictive power that may indicate problems in how certain measures were operationalized.
After understanding the features and limitations of the fitted model, Section 4.3 addresses
the original study’s research questions in practical settings; and Section 4.4 outlines follow-
up studies that could address some of the outstanding limitations.

4.1 Modeling
When following the Bayesian data analysis process in Figure 1, statistical modeling is
based on principles and on checks that the models are suitable. This is in contrast to most
frequentist statistical practices, which are primarily based on rules of thumb, conventions
(“recipes”), and generic results, but may lack operational model-checking processes that
can assess how much confidence we can put in a certain modeling choice.

Section 3 described such a principled Bayesian modeling process applied to the pro-
gramming language data. The first outcome was ruling out M1 as inadequate, which was
unsurprising given that M1 ignores most of the information that could explain the dataset’s
variability. Still, even checks with predictable outcomes are useful: if they fail, they confirm

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Carlo A. Furia, Richard Torkar, and Robert Feldt

that a more realistic model is needed and provide a minimal effectiveness yardstick; if they
succeed, they avoid an overly complicated model. This can be especially important in the
context of the software engineering industry, where a complex model can be more costly to
understand, collect data for, and maintain.

The second outcome of Section 3’s analysis was indicating that, while both M2 and
M3 are adequate, M3 clearly outperforms M2 in out-of-sample predictive capabilities.
Informally, this means that M3 fits the data well, while still avoiding overfitting. In other
words, M3’s additional complexity over M2 is justified by its much better effectiveness.
This outcome is specific to the data that we are analyzing, and is not something that can be
determined a priori for all models. Iteratively creating multiple models and then comparing
them is thus an important part of any analysis.

If we compare the definitions of M2 and M3—in particular, their model specifications in
Figure 3b and Figure 3c—we can attribute M3’s superior performance to its unique features.
Unlike M2, which only includes population-level effects that control for project charac-
teristics other than the programming language, M3 includes a project-specific intercept
and controls for the same characteristics with language-specific slopes. Thus, we see that
clustering per project and per language captures the dataset’s characteristics much better: if
we do not do that, we may lose some of the “signal” in the data, or conflate different effects
and associate them with a single generic predictor.

An indirect advantage of Bayesian data analysis comes from the techniques that are
commonly used to fit Bayesian models: flexible algorithmic techniques such as dynamic
Hamiltonian Monte Carlo that can fit, in principle, models of arbitrary complexity—in
contrast to ad hoc frequentist techniques that only work for specific, and often limited,
distributional families. On the other hand, Bayesian models are often more effective not
simply because they can be more complex. More complex models invariably fit better, but
unwarranted complexity leads to overfitting: a model fits the data perfectly but fails to
generalize. Bayesian analysis techniques include several features that specifically limit the
risk of overfitting when exploring more expressive models:

• Multi-level models, such as M3, introduce partial pooling, which smoothens dif-
ferences between groups of different size. In our case study, the data about some
programming languages is more scarce than the data about others. For example,
only 25 projects use Perl, whereas more than 200 use JavaScript; thus, overfitting
Perl’s data is a more serious risk than overfitting JavaScript’s. Partial pooling works
by transfering some of the information learned by fitting the larger groups to tune
the fitting of the smaller groups, thus reducing the risk of overfitting the latter (and
the whole dataset as a result).

• Prior predictive simulations—discussed in Section 3.5—check that the priors we
have chosen are regularizing: they are not so constraining that they prevent learning
from the data, but they are also not so weak that they cannot prevent overfitting
the data. Being able to choose priors, to select different priors, and to quantitatively
compare their effectiveness is a distinct advantage of Bayesian statistics. Frequentist
statistics usually have flat priors, which are the most prone to overfitting.

• The information criteria that we used to select M3 measure the out-of-sample predic-
tion performance of one model relative to the others. Models that are unnecessarily
complex will overfit the data, and hence perform worse predictions for new data
(different from the sample that has been used for fitting).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 25

70

90

110

5.0 7.5 10.0 12.5 15.0 17.5
log(insertions)

N
um

be
r

of
 b

ug
s

Fig. 8. Conditional effects of variable insertions (the logarithm of the total number of lines added to a

project) on the outcome variable bugs (the number of bugs in a project), corresponding to the marginal

distribution derived from the posterior of model M3.

4.2 Spotting data problems
The rich information provided by a Bayesian data analysis may also highlight issues with
the quality of (parts of) the data that is analyzed, and suggest which measures need to be
cleaned up or improved.

Measuring size. Code size is a basic yet essential measure of complexity, which correlates
with lots of other useful metrics of quality [32]. Therefore, controlling for project size is
essential when analyzing heterogeneous projects. To this effect, the FSE study included a
variable size in their regressive model, which measures the total number of inserted lines
in all project commits—and which we called insertions in our models to make its actual
meaning more transparent. The TOPLAS analysis criticized this choice of size metric—which
does not take deletions and merges into account—and reported discrepancies between the
raw commit data and the totals in FSE’s dataset. Does our Bayesian analysis offer any hints
about the reliability of insertions as a measure of size?

A few results actually single out insertions as a poor predictor compared to the others:
• The 95% probability estimate of its population-level effect includes zero (namely,

the (credibility) interval is [−0.01, 0.06]), which indicates some uncertainty about
whether more inserted lines are associated with more or fewer bugs on average.
Variable insertions’s mean estimated effect is still positive, but other predictors have
more clearly defined effects.

• The plot of insertions’s conditional effect on the number of bugs in Figure 8 visually
confirms a large uncertainty (again, compared with the other predictors’), which
also increases with larger values of insertions.

• The varying effect of insertions tend to have larger variance than other predictors—
for every language.

• If we remove insertions from M3, the resulting model’s predictive performance is
practically indistinguishable from M3’s.14

14Variable selection [18]—an analysis technique that we do not describe in the paper for brevity—also suggests
to drop variable insertions . See the paper’s replication package for details about this additional analysis of
suitability.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Carlo A. Furia, Richard Torkar, and Robert Feldt

Weibull(2,1)

Posterior

0

10

20

0 1 2 3
σ

de
ns

ity

Fig. 9. Comparison of prior Weibull(2, 1) and posterior for project-level intercept αproject ’s standard deviation

σγ in model M3. The drastic restriction in uncertainty indicates that the data swamps the priors.

100 101 102 103 104

Number of bugs

Fig. 10. Posterior predictions of the bug distributions of 10 projects drawn randomly from the posterior of

M3. The horizontal axis is logarithmic in base 10. The marked differences in shape and location among the

distributions indicate that projects are heterogeneous.

All in all, our analysis indicates that insertions does not appear to be a particularly useful
predictor, and hence it may not be a reliable measure of code size.

Inter-project variability. Section 4.1 showed that a project-specific intercept—which we
introduced in M3—provides better out-of-sample prediction capabilities. The flip side is
that several features of the data vary considerably from project to project.

The 1 127 data rows are somewhat sparse among the 729 projects: 64% of all projects
appear in a single row; another 26% in two rows. Despite these characteristics, the data
swamps the priors: it determines a very precise (that is, narrow) posterior distribution of the
project-specific intercept αproject ’s standard deviation σγ—shown in Figure 9. In other words,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 27

the uncertainty about the contribution of each project to the overall number of bugs is quite
limited: the data characterizes each project’s contribution precisely. This does not mean that
the projects’ number of bugs is similar; on the contrary, the bug distributions of randomly
drawn projects that we get by simulating from M3’s fitted posterior differ considerably
in shape, support, and mean (see Figure 10). In all, project-specific characteristics are an
important and well-defined source of information in the data, which other control variables
cannot fully capture.

4.3 Practical significance
Let us now address the original study’s research questions. For brevity, our analysis won’t
consider criteria to classify languages (“language classes” such as procedural, functional,
scripting, and so on), projects (“application domains” such as application, database, frame-
work, and so on), or bugs (“bug types” such as algorithm, concurrency, performance, and
so on). These are largely orthogonal to the main focus of the present paper. Instead, we
focus on the key first research question:

RQ. Are some languages more defect-prone than others?
Our analysis’s information is condensed in the fitted model M3, which we can use to

generate a distribution of bugs for every language. In order to do this, we have to pick the
other inputs of the model: the number of commits, insertions, age, and developers of the
hypothetical projects whose number of bugs we are estimating. While, in principle, these
inputs could be any situation or scenario that we want to investigate, it is sensible to start
exploring values that are close to those observed in the data used to fit the model (following
the usual assumption that the sample is representative of the entire population).

4.3.1 Ranking all languages. Figure 11 displays the distributions as violin plots for five
combinations of input values: the dataset’s minimum, 25th percentile, median (50th percentile),
75th percentile, and maximum number of commits, insertions, age, and developers.15 Each
plot lists the languages in decreasing order of median predicted number of bugs per project:
from most error prone (left) to least (right).

The plots indicate that the relative ordering of languages can change conspicuously
according to the conditions. For example, C#’s defect proneness is average for projects
with large or median size and age; but it becomes better than average for smaller, younger
projects. In contrast, C++ is less defect prone only in the largest projects, whereas it is the
most or second most defect prone languages for projects of non-maximal size. Similarly, the
relative rank of some language pairs varies considerably: for example, Erlang is less error
prone than Go in the largest projects; the opposite is true in projects of smaller size.

A few languages’ ranks fluctuate wildly: Objective-C is among the most defect prone
languages except in small projects, when it is among the least; TypeScript even goes from
least defect prone on large and median projects to most defect prone on the smallest projects.
These jumps are so extreme that they may indicate that the data about these languages is
somewhat inconsistent or at least patchwork. Indeed, TOPLAS’s reanalysis reported that
only about a third of the commits classified as TypeScript in FSE’s data actually included
TypeScript code; and Ray et al.’s extended version [54] of their original FSE study dropped
several projects classified as TypeScript. We did not further look into Objective-C’s data,
despite its high rank fluctuations, because we wanted to use the original data without

15Unlike Figure 2, which plots the raw data, Figure 11’s simulated projects are directly comparable in terms of
defect proneness, as they only differ in the used programming language.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Carlo A. Furia, Richard Torkar, and Robert Feldt

1e+04

3e+04

1e+05

3e+05

1e+06

Obje
cti

ve
−C

Ja
va

sc
rip

t
C++

Pyth
on Per

l
Ja

va C
Php C#

Cof
fee

sc
rip

t

Sca
la Go

Erla
ng

Cloj
ur

e
Rub

y

Has
ke

ll

Ty
pe

sc
rip

t

Max (developers = 1383, max commit age = 16090, commits = 305361, insertions = 263641)

30

100

300

1000

Obje
cti

ve
−C C++ C

Php

Pyth
on

Cof
fee

sc
rip

t

Ja
va

sc
rip

t
Ja

va C#
Per

l

Erla
ng

Rub
y

Go
Sca

la

Has
ke

ll

Cloj
ur

e

Ty
pe

sc
rip

t

75th percentile (developers = 1038, max commit age = 12068, commits = 229021, insertions = 20292514)

10

20

40

80

160

320

Obje
cti

ve
−C C++ C

Php

Cof
fee

sc
rip

t

Pyth
on

Ja
va

sc
rip

t

Erla
ng C#

Ja
va

Rub
y

Per
l

Go

Has
ke

ll

Sca
la

Cloj
ur

e

Ty
pe

sc
rip

t

Median (developers = 15, max commit age = 1029, commits = 248, insertions = 263641)

1

10

100

C++ C

Obje
cti

ve
−C

Cof
fee

sc
rip

t
Php

Pyth
on

Erla
ng

Ja
va

sc
rip

t
Rub

y

Ty
pe

sc
rip

t
Ja

va C# Go
Per

l

Has
ke

ll

Sca
la

Cloj
ur

e

25th percentile (developers = 346, max commit age = 4023, commits = 76340, insertions = 6764171)

1

3

10

30

Ty
pe

sc
rip

t
C++

Cof
fee

sc
rip

t C
Php

Ja
va

sc
rip

t
Ja

va

Pyth
on

Erla
ng Go

Has
ke

ll

Rub
y

Obje
cti

ve
−C

Sca
la C#

Per
l

Cloj
ur

e

Min (developers = 1, max commit age = 12, commits = 28, insertions = 263641)

Fig. 11. Violin plots of the distributions of number of bugs per project per language, obtained from the

posterior of M3 for five simulated scenarios. The plot in each row corresponds to a different scenario: from

top to bottom plot, the input variables other than language are set to the empirical dataset’s maximum,

75h percentile (3rd quartile), median, 25th quartile (1st quartile), and minimum values. Languages are sorted,

left-to-right in each plot, by decreasing values of the distributions’ medians. The vertical axes’ scales are

logarithmic in base 10. The horizontal line in each plot marks the median number of bugs per project across

all languages.

changes. Nevertheless, this is one clear example of how Bayesian analysis can help spot
data problems, and hence bolster better substantiated analyses. This observation about the
fickle influence of some languages also corroborates the evidence that other project-specific
characteristics might weigh comparatively more than the used programming language.

Figure 11 also shows that the bug distributions per language are spread out widely—
especially for some languages and especially for projects that are large and long-running—
and their ranges extensively overlap. The heterogeneity of project-specific characteristics
may also contribute to these features; for example, if projects written in language X tend
to be on the large side compared to projects written in language Y, the uncertainty in Y’s

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 29

Fig. 12. Violin plots of the bug distributions of Python and Ruby obtained from the posterior of M3. The

input variables other than language capture a hypothetical project with 30 developers, an age of 2 years, 1

commit per developer every day, and 10 lines added by each developer every day.

error proneness when used for large projects would dominate the comparison with X. This
suggests that the data we analyzed does not warrant summarizing the language differences
using a single ranking of defect-proneness.

4.3.2 Custom scenarios. While a single ranking of languages according to their absolute
defect-proneness would have little practical meaning, we can still zoom in on specific
conditions that are relevant in practice for a specific project and see what the fitted model
can tell us concerning those conditions.

Imagine, for example, we are planning a project that involves around 30 developers
who can code in Python or Ruby; we estimate the project will run over 2 years, generating
an average of 1 commit and 10 lines inserted per programmer per day. Plugging these
numbers (developers = 30, age = 2 × 365, commits = 30 × 1 × 2 × 365, and insertions =
30 × 10 × 2 × 365) into the fitted model M3, we get the estimated bug distributions for
Python and Ruby shown in Figure 12. In this scenario, Python tends to be worse (more
bugs) than Ruby, since the latter’s distribution has a lower mean, a shorter tail towards
high number of bugs, and more mass around lower values.

Whether this evidence is sufficiently strong to decide to choose one language over
another depends on myriad other factors that are incidental, such as the availability of
programmers familiar with one language, the cost of training new ones, the usability of the
programming language for the project at hand, and so on. Whatever the practical constraints
and requirements may be, the fitted model can help us meet them by providing estimates
complete with a quantification of their uncertainty. Realistically, any estimate about the size
and development time of a project is also likely to be somewhat uncertain; therefore, we

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Carlo A. Furia, Richard Torkar, and Robert Feldt

would run multiple simulations and weigh the evidence summarized by each one against
the confidence we have in the corresponding scenario occurring.

More generally, the results of a principled Bayesian analysis facilitate a quantitatively
accurate transfer of knowledge to practitioners and other researchers. Rather than relying
only on overly broad conclusions about the impact of different programming languages,
using simulations of custom scenarios drives follow-up work more precisely: a practitioner
can judge whether the uncertainty in a specific comparison is too large to base a decision on
it; a researcher can decide whether more data is needed to claim more general conclusions.

4.3.3 Statistical significance. Our analysis so far has focused on concrete scenarios defined
in terms of tangible measures in the data domain—such as number of bugs and project
age. In contrast, widespread statistical practices (mostly of a frequentist flavor) try to
answer research questions by analyzing statistical significance, which measures generic
characteristics of a statistical model.

In a standard regression analysis, one usually assesses the statistical significance of each
coefficient in the model (also called “effect”) by checking whether it differs from zero with
a certain probability. For example, we could compute the distribution of the estimate of
coefficient αlanguage for every language. If αX is negative with, say, 95% probability, we
would conclude that language X is associated with fewer bugs than average with that
probability; in other words, X is “statistically significantly” less error prone than other
languages.

FSE and TOPLAS both proceed in such a way, but using frequentist coefficient estimates
instead of a posterior probability distribution on their models—which are similar to our
M2—leading to their findings about which languages are more error prone than others.16

What about model M3 fitted on the same data? The 95% probability intervals of αlanguage
include the origin for every language, except TypeScript whose αlanguage is strictly positive—
but, as we have commented above, the uncertainty about TypeScript’s data puts any
results about this language on shaky grounds. Overall, the canonical analysis of statistical
significance is just inconclusive on our model.

To some extent, this outcome is a side effect of M3’s greater complexity over simpler
models. There is a trade-off between the complexity of a model (which brings greater
expressiveness and better predictive performance) and its interpretability. The criteria we
used to choose M3 over the simpler M2 ensure that the former’s additional complexity
is justified by its much better effectiveness. However, a simple interpretation is no longer
feasible: M3 includes slope coefficients that also vary with each language, as well as a
project-level contribution; how each language-specific term interacts with the others is
not something that can be simply estimated with a single coefficient independent of the
predictors’ values.

We should appreciate that this is more a feature than it is a limitation. While mathemati-
cally simple models are nice to have, not all data analysis problems can be addressed with
a basic model. Bayesian analysis techniques do not just support fitting complex models but
provide the means to handle their complexity and to perform a convincing analysis without
resorting to formulaic measures of “significance”. The individual model characteristics are
not easy to interpret in isolation, so that we are forced to interpret the model by providing
concrete conditions—the number of commits, age, and so on—which ground our generic
research question onto scenarios that are realistic and meaningful for our purposes. In other

16This is explained in detail in TOPLAS’s repetition [6, § 2.2.3], which uses FSE’s model; TOPLAS’s reanalysis [6,
§ 4.2.1] suggests a different statistical measure.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 31

words, it may be cumbersome to reason about statistical significance in a Bayesian model
but it is always natural to reason about practical significance—which is what matters most in
the end to answer our research questions.17

Model interpretability. The focus on practical significance follows from the specific
research problem we considered: answering the question of whether some programming
languages are more prone to defects requires precise predictions about the defect-proneness
of projects written in different programming languages. On the other hand, the inter-
pretability of a statistical model may become crucial when targeting other kinds of research
questions. In these scenarios, Bayesian models can still be practically effective. A relatively
complex model like M3 is not easy to interpret directly; that is, we cannot easily and unam-
biguously assign a direct interpretation to each individual fitted parameter. However, it is
amenable to interpret indirectly: we formulate some scenarios in terms of model variables,
and then we simulate those scenarios on the fitted model. Interpreting the simulation’s
results is how we indirectly interpret the model’s characteristics. Ultimately, a key feature of
Bayesian data analysis techniques is what makes these analyses so flexible: we can combine
(indirect) interpretability and predictive capabilities because the outcome of an analysis is a
(sampled) posterior probability distribution—a rich and actionable source of information.

4.3.4 Effect sizes. Section 4.3.1 demonstrated that the fault proneness of a language over
another strongly depends on the conditions in which the languages are to be used. If we
have specific scenarios in mind, we can just simulate those as discussed in Section 4.3.2.

Another approach is to compare languages pairwise by simulating their performance on
a population that resembles the observed data. Since the comparisons are quantitative—in
the form of derived distributions—they can be seen as an effect size, but relative to each
language pair instead of absolute for all languages at once.

As usual, simulations are derived from the posterior, which entails that there is no
multiple comparisons problem [45]: all information is encoded jointly by the posterior; the
pairwise comparisons are just projections of some of that information. For the same reason,
we do not have to commit to a certain way of comparing languages when we build the
model (for example, by choosing how to encode contrasts): we just select the “best” model
according to its performance, and then derive all the information we are interested in from
the model fitted on the data.

Concretely, take two languages ℓ1 and ℓ2 that we want to compare for bug proneness. For
every data point d in the empirical data, we set, in the posterior, all predictors except the
language to their values in d. Then, we simulate the distribution of the expected difference
bugsℓ1

− bugsℓ2
in bugs produced when using one language over the other.18

Figure 13 plots the distributions comparing two pairs of languages, which we selected
to demonstrate qualitatively different outcomes of the pairwise comparisons. The distri-
bution of bugsC# − bugsC in Figure 13a covers only nonnegative values, which means C#
was consistently more fault prone than C. The distribution of bugsCoffeeScript − bugsGo in
Figure 13b covers negative values more often than positive ones, denoting that Go tended
to be more fault prone. Precisely, we can compute that CoffeeScript was more error prone
than Go only around 8.5% of the times.

17In related work, we discuss in greater detail methods to analyze practical significance based on Bayesian data
analysis [65].

18We can compute the absolute difference in number of bugs because the difference is between samples where
the language is the only project characteristic that changes.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Carlo A. Furia, Richard Torkar, and Robert Feldt

(a) Posterior distribution of the difference bugs
C#

− bugs
C
when predictors are set to the same values as in

the empirical data. This indicates that C# is consistently more fault-prone than C, since it leads to more bugs.

(b) Posterior distribution of the difference bugs
CoffeeScript

− bugs
Go

when predictors are set to the same

values as in the empirical data. This indicates that Coffeescript is somewhat less fault-prone than Go.

Fig. 13. Probability distributions of the difference in bug proneness between pairs of languages according to

the posterior distribution with population data.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 33

In the end, we did not really answer the original research question—not with a definitive,
straightforward answer at least. Instead, our analysis identified sources of uncertainty in the
data, provided means of simulating custom scenarios, and compared pairs of languages in
conditions similar to the collected data’s. This is a solid basis to understand what questions
can and cannot be answered by the data, and to plan follow-up data collections and analyses
that zero in on understanding specific outcomes.

4.4 Planning the next study
Our analysis shed light on the relationship between programming languages and fault
proneness, but also discovered restrictions on how general the findings can be and which
factors should be considered. How can we make further progress in this line of research—
beyond the limitations of what is available in FSE’s dataset?

The outcome of our analysis—in particular, the issues discussed in Section 4.2—help to
plan follow-up studies too. A recurring issue was the clear impact of project-specific charac-
teristics, which sometimes dominate over language-specific features. There are at least two
ways of better accounting for project features. One is collecting more data that characterize
projects along more dimensions; for example, a project’s domain, the development process
it uses, the expertise of its developers, and so on. The other way is to give up generality
and focus on analyzing a specific, homogeneous set of projects: the more characteristics are
similar among projects the more accurately the impact of programming languages can be
singled out.

When we simulated different scenarios in Section 4.3, we found that the uncertainty
in the outcome is more pronounced for certain languages than others. For example, the
uncertainty about Objective-C’s and Perl’s fault proneness is very pronounced on large
projects (see the vertical spread in their violin plots of Figure 11). To reduce this uncertainty,
we should collect more data on large Objective-C and Perl projects, focus on smaller projects,
or a combination of both.

More generally, Bayesian models and techniques help zoom out of each individual study
to considering a line of studies in the same subject area. Each study collects additional data,
refines the knowledge that we have of the area, and identifies further aspects that can be
improved—something follow-up studies will do. In a way, this realizes a sort of optimization
process whose goal is maximizing knowledge over time. Bayesian optimization algorithms
exist that carry out this process automatically on a large dataset that can be analyzed
incrementally [56]; scientific research deploys processes that do something similar on a
much longer time scale and with key contributions from human intuition. The benefits
we highlight are not only conceptual; the posteriors from previous studies can be directly
used when creating priors for follow-up studies. This can thus enable a more direct and
precise way for research studies to build on each other and gradually refine the scientific
knowledge.

5 RELATEDWORK
We discuss related work in three areas, broadly connected to the paper’s contributions: Sec-
tion 5.1 briefly reviews some widely-used statistical models other than those we deployed
in this paper; Section 5.2 summarizes other work about statistical analysis guidelines (for
frequentist and for Bayesian techniques); and Section 5.3 outlines the state of replication
studies in empirical software engineering research.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Carlo A. Furia, Richard Torkar, and Robert Feldt

5.1 Statistical data modeling and analysis
As we remarked in Section 1.3.1, this paper’s guidelines are largely independent of the
specific features of the chosen statistical models. All our examples used (generalized/hier-
archical) linear regressive models—the workhorse of statistical analysis [29]. Besides their
great flexibility, another practical advantage is that they have been widely used also with
frequentist statistics; therefore, they offer a convenient bridge for a gradual transition to
Bayesian statistics.

Nevertheless, other classes of statistical models can be used for similar analyses. One
alternative, broad class of statistical models are so-called graphical models [38], which use
graphs to encode the probabilistic relations between variables. Bayesian networks [59] are
arguably the best-known kind of graphical models, which can be used both directly as
probabilistic classifiers [17, 40] but have also become the basis to encode causal relations
that go beyond mere correlations [48]. The expressive power of Bayesian networks and
hierarchical regressive models significantly overlap: among other things, one can encode
a regressive model as a Bayesian network, and then use network’s fitting techniques to
analyze it [36]; conversely, one can encode a Bayesian network as a hierarchical regressive
model [59, Ch. 5], and then apply similar analysis techniques as those we demonstrated in
the paper.

Machine learning toolkits such as Weka [72] provide a convenient way of experimenting
with a wide variety of classical statistical analysis models, which have been frequently used
in the analysis of software engineering empirical data [43, 73] and provide additional ser-
viceable classes of statistical models. While our paper’s guidelines would remain applicable,
at least at a high level, to compare other, widely different statistical models, doing so in
practice may require developing new analysis techniques or extending existing ones. In
particular, some information criteria—which are used for Bayesian model comparison as
discussed in Section 2.5—are only applicable to statistical models that can provide multiple
samples from a posterior when the fitted model is used for prediction [67]. Obviously,
generalizing the model comparison criteria (and the other techniques for model analysis)
so that they are applicable to all inductive machine learning approaches falls outside this
paper’s scope.

It is interesting that several modern machine learning algorithms, such as deep neural
networks and active learning, are applicable both in a frequentist [74] and in a Bayesian [24,
46, 69] context. Our paper’s guidelines could remain broadly useful for frequentist models,
but they do not cover online approaches (for example, active learning), where each iteration
of a statistical analysis influences which additional data is collected. Extending some of our
guidelines to online approaches is an interesting direction for future work. At the same time,
the increasingly recognized value of practices such as pre-registered studies [14] suggests
that the offline analysis of fixed, previously collected, datasets will remain an important and
common approach in software engineering empirical research.

5.2 Guidelines about statistical analysis
Bayesian data analysis guidelines. The last decade’s progress in algorithms and tools for
Bayesian data analysis has been impressive [13, 25, 41, 50] but, without practical support,
it is not sufficient to promote widespread usage in the empirical sciences. Recent work
about developing guidelines to apply Bayesian data analysis techniques [23, 31, 57], which
Section 2 summarized in a form amenable to software engineering empirical research, has
been trying to close this gap. While these proposals differ in their intended audience and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 35

level of detail, they all build on the basic view [26] that an analysis should go through
multiple models, refine them in several iterations, and compare them. Then, Gabry et al. [23]
focus on visualization and how to use it throughout a workflow; Schad et al. [57], instead,
introduce quantitative checks and illustrate them for a specific scientific area (the cognitive
sciences). Our guidelines combine elements from both [23, 57] but illustrate them in a way
that is amenable to empirical software engineering research practices. Very recently, Gelman
et al. [31] presented an early draft of a book that will further refine some of these Bayesian
analysis workflows and guidelines. Also very recently, van de Schoot et al. [66] published
an accessible primer on Bayesian statistics and modeling for scientists.

Guidelines on using statistics in empirical software engineering. Over the years, several
guidelines for using statistics in empirical software engineering have been proposed—all
of them focusing on frequentist statistics, which remain the norm in empirical software
engineering [16]. Arcuri and Briand [3] focus on analyzing experiments with randomized
algorithms, and highlight the importance of checking the assumptions of each statistical
significance test. They also advocate for extensively using non-parametric statistical tests
and effect size measures. Menzies and Shepperd [44] catalog “bad smells” in data analytics
studies and discuss remedies to excise them. Among the techniques they recommend are
up-front power analysis, reporting effect sizes and confidence limits, and using robust
statistics and sensitivity analysis. A recent literature review of ours [16] found evidence
of a positive impact of such empirical guidelines on the maturity of statistical practice in
empirical software engineering research: statistical testing, non-parametric tests, and effect
sizes have all been increasingly used in the field over the last 5–10 years.

5.3 Replication in software engineering research
Recent years have finally seen replication studies become more popular in software en-
gineering research. Nevertheless, Da Silva et al.’s systematic literature review found that
internal replications (done by the same authors as the original study) are still much more
common than external replications (done by an independent group of authors) [15]. Un-
surprisingly, Bezerra et al.’s related literature review found that internal replications are
much more likely to confirm the results of the replicated study than external replications [7],
and used this result to question the value of replications compared to meta-analyses. Both
literature reviews found hardly any examples of reanalyses (replications limited to data
analysis); similarly, a taxonomy for replications in software engineering does not explicitly
mention reanalysis [4].

In fact, we tried searching for “reanalysis + software engineering” in publication databases
and found very few relevant hits—mostly papers revisiting qualitative data such as in-
terview transcripts, and reanalyzing them to address new questions or theories. As one
example, Bjarnason et al. [8] developed a new theory by reanalyzing interview transcripts
from an earlier study of theirs. In contrast, Tantithamthavorn et al. [63] revised a meta-
analysis of machine learning in software defect prediction [60] and found that several
predictor variables of the original study where co-linear. Based on a reanalysis of a subset
of the same data, they also questioned some of the original results and implications. This
criticism was later disputed, on statistical grounds, by the original study’s authors [61].
Our previous work about using Bayesian analysis in empirical software engineering also
performed reanalyses of previous studies using Bayesian techniques [21, 65].19 Another

19Our previous work targets various applications of Bayesian statistics such as analyzing practical signifi-
cance [65] and dealing with missing data [64]; the case studied developed there also follow some of the guidelines

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Carlo A. Furia, Richard Torkar, and Robert Feldt

noticeable external reanalysis is of course Berger et al. [6]’s of Ray et al. [55], which we
summarized in Section 1.

Overall, reanalyses of software engineering data remain uncommon—especially com-
pared to other scientific areas where they are widespread forms of publication, including
those using Bayesian statistics (for example, in astronomy [33] and medicine [5]).

6 CONCLUSIONS
Reaping the benefits of Bayesian statistics requires more than powerful analysis techniques
and tools. In this paper, we presented practical guidelines to build, check, and analyze a
Bayesian statistical model that summarize recently developed suggestions brought forward
by prominent statisticians and cast them in a format that is amenable to empirical software
engineering research.

We then applied the guidelines to analyze a large dataset of GitHub projects that was
previously used to study the impact of programming languages on code quality [55].
This study was later criticized by a reproduction attempt that failed to confirm some
of the originally claimed results [6]. Our reanalysis using Bayesian statistics identified
some shortcomings of the data that also emerged in the reproduction attempt (such as the
large uncertainty associated with data for programming languages such as TypeScript)
and pointed to other possible effects that were not fully accounted for by the frequentist
models of the previous studies [6, 55] (such as the disproportionate differences that are
project-specific rather than language-specific). Moving on to the previous studies’ main
research question (“Are some languages more defect-prone than others?”), our Bayesian
model lent itself to evaluating the effect of programming languages in different concrete
scenarios rather than in terms of generic “statistical significance”. We found that the impact
of programming languages can vary considerably with other contextual conditions, and
hence the original research question does not admit a simple, generally valid answer—at
least not with the analyzed data.

Throughout our reanalysis, a key advantage of Bayesian techniques was that they can be
used to quantify any derived measures of interest, as well as the uncertainty that comes with
each measure. Such capabilities are useful not only to infer results in each study, but also to
present and share them in a robust way with other researchers and practitioners. A Bayesian
quantitative framework focused on practical significance can also help plan the next studies
in a research area—thus steadying the long-term progress of software engineering empirical
research and enhancing its broader impact.

7 ACKNOWLEDGEMENTS
The computations were enabled by resources provided by the Swedish National Infrastruc-
ture for Computing (SNIC), partially funded by the Swedish Research Council through
grant agreement no. 2018–05973. We thank Jonah Gabry for reading an earlier draft of this
paper and providing helpful comments.

REFERENCES
[1] Balazs Aczel, Rink Hoekstra, Andrew Gelman, Eric-Jan Wagenmakers, Irene G. Klugkist, Jeffrey N. Rouder,

Joachim Vandekerckhove, Michael D. Lee, Richard D. Morey, Wolf Vanpaemel, Zoltan Dienes, and Don van

that we explicitly and specifically present in the present paper. Therefore, they provide further examples of
applications of the guidelines to analyze software engineering empirical data—especially in their replication
packages, since the papers’ presentations have a different focus.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 37

Ravenzwaaij. 2020. Discussion points for Bayesian inference. Nature Human Behaviour 4, 6 (2020), 561–563.
https://doi.org/10.1038/s41562-019-0807-z

[2] Valentin Amrhein, Sander Greenland, and Blake McShane. 2019. Scientists rise up against statistical signifi-
cance. Nature 567 (2019), 305–307.

[3] Andrea Arcuri and Lionel Briand. 2011. A practical guide for using statistical tests to assess randomized
algorithms in software engineering. In 2011 33rd International Conference on Software Engineering (ICSE). IEEE
Computer Society, Hawaii, USA, 1–10. https://doi.org/10.1145/1985793.1985795

[4] Maria Teresa Baldassarre, Jeffrey C. Carver, Oscar Dieste, and Natalia Juristo Juzgado. 2014. Replication
types: Towards a shared taxonomy. In 18th International Conference on Evaluation and Assessment in Software
Engineering, EASE ’14, Martin J. Shepperd, Tracy Hall, and Ingunn Myrtveit (Eds.). ACM, London, UK,
18:1–18:4. https://doi.org/10.1145/2601248.2601299

[5] Philip M. W. Bath. 2007. Can we improve the statistical analysis of stroke trials? Statistical re-analysis of
functional outcomes in stroke trials. Stroke 38, 6 (2007), 1911–1915. https://doi.org/10.1161/STROKEAHA.106.

474080

[6] Emery D. Berger, Celeste Hollenbeck, Petr Maj, Olga Vitek, and Jan Vitek. 2019. On the Impact of Programming
Languages on Code Quality: A Reproduction Study. ACM Transactions on Programming Languages and Systems
41, 4 (2019), 21:1–21:24. https://doi.org/10.1145/3340571

[7] Roberta M. M. Bezerra, Fabio Q. B. da Silva, Anderson M. Santana, Cleyton V. C. de Magalhães, and
Ronnie E. S. Santos. 2015. Replication of Empirical Studies in Software Engineering: An Update of a
Systematic Mapping Study. In 2015 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, ESEM 2015, Beijing, China, October 22-23, 2015. IEEE Computer Society, Beijing, China, 132–135.
https://doi.org/10.1109/ESEM.2015.7321213

[8] Elizabeth Bjarnason, Kari Smolander, Emelie Engström, and Per Runeson. 2016. A theory of distances in
software engineering. Information and Software Technology 70 (2016), 204–219. https://doi.org/10.1016/j.

infsof.2015.05.004

[9] George E. P. Box. 1976. Science and Statistics. J. Amer. Statist. Assoc. 71, 356 (1976), 791–799. https:

//doi.org/10.1080/01621459.1976.10480949

[10] George E. P. Box. 1979. Robustness in the Strategy of Scientific Model Building. In Robustness in Statistics.
Academic Press, 201–236. https://doi.org/10.1016/B978-0-12-438150-6.50018-2

[11] Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. 2011. Handbook of Markov Chain Monte Carlo.
CRC press, Florida, USA.

[12] P. C. Bürkner. 2017. brms: An R Package for Bayesian Multilevel Models using Stan. Journal of Statistical
Software 80, 1 (2017), 1–28. https://doi.org/doi.org/10.18637/jss.v080.i01

[13] Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. 2017. Stan: A probabilistic programming language.
Journal of statistical software 76, 1 (2017), 1–32.

[14] Christopher D Chambers, Zoltan Dienes, Robert D McIntosh, Pia Rotshtein, and Klaus Willmes. 2015.
Registered reports: realigning incentives in scientific publishing. Cortex 66 (2015), A1–A2.

[15] Fabio QB Da Silva, Marcos Suassuna, A César C França, Alicia M Grubb, Tatiana B Gouveia, Cleviton VF
Monteiro, and Igor Ebrahim dos Santos. 2014. Replication of empirical studies in software engineering
research: A systematic mapping study. Empirical Software Engineering 19, 3 (2014), 501–557. https://doi.org/

10.1007/s10664-012-9227-7

[16] Francisco Gomes de Oliveira Neto, Richard Torkar, Robert Feldt, Lucas Gren, Carlo A. Furia, and Ziwei Huang.
2019. Evolution of statistical analysis in empirical software engineering research: Current state and steps
forward. Journal of Systems and Software 156 (2019), 246–267. https://doi.org/10.1016/j.jss.2019.07.002

[17] Tapajit Dey and Audris Mockus. 2020. Deriving a usage-independent software quality metric. Empir. Software
Eng. 25 (2020), 1596–1641. https://doi.org/10.1007/s10664-019-09791-w

[18] Michaela Dvorzak and Helga Wagner. 2016. Sparse Bayesian modelling of underreported count data.
Statistical Modelling 16, 1 (2016), 24–46. https://doi.org/10.1177/1471082X15588398

[19] Robert Feldt and Ana Magazinius. 2010. Validity threats in empirical software engineering research-an initial
survey. In International Conference on Software Engineering and Knowledge Engineering. 374–379.

[20] R. A. Fisher. 1925. Statistical Methods for Research Workers (1 ed.). Oliver and Boyd.
[21] Carlo A. Furia, Robert Feldt, and Richard Torkar. 2019. Bayesian data analysis in empirical software

engineering research. IEEE Transactions on Software Engineering -, - (2019), 1–1. https://doi.org/10.1109/

TSE.2019.2935974

[22] Carlo A. Furia, Richard Torkar, and Robert Feldt. 2021. Replication Package. https://doi.org/10.5281/zenodo.

4472963

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1038/s41562-019-0807-z
https://doi.org/10.1145/1985793.1985795
https://doi.org/10.1145/2601248.2601299
https://doi.org/10.1161/STROKEAHA.106.474080
https://doi.org/10.1161/STROKEAHA.106.474080
https://doi.org/10.1145/3340571
https://doi.org/10.1109/ESEM.2015.7321213
https://doi.org/10.1016/j.infsof.2015.05.004
https://doi.org/10.1016/j.infsof.2015.05.004
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1080/01621459.1976.10480949
https://doi.org/10.1016/B978-0-12-438150-6.50018-2
https://doi.org/doi.org/10.18637/jss.v080.i01
https://doi.org/10.1007/s10664-012-9227-7
https://doi.org/10.1007/s10664-012-9227-7
https://doi.org/10.1016/j.jss.2019.07.002
https://doi.org/10.1007/s10664-019-09791-w
https://doi.org/10.1177/1471082X15588398
https://doi.org/10.1109/TSE.2019.2935974
https://doi.org/10.1109/TSE.2019.2935974
https://doi.org/10.5281/zenodo.4472963
https://doi.org/10.5281/zenodo.4472963

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Carlo A. Furia, Richard Torkar, and Robert Feldt

[23] Jonah Gabry, Daniel Simpson, Aki Vehtari, Michael Betancourt, and Andrew Gelman. 2019. Visualization in
Bayesian workflow. Journal of the Royal Statistical Society: Series A (Statistics in Society) 182, 2 (2019), 389–402.
https://doi.org/10.1111/rssa.12378

[24] Yarin Gal, Riashat Islam, and Zoubin Ghahramani. 2017. Deep Bayesian Active Learning with Image Data. In
Proceedings of the 34th International Conference on Machine Learning (ICML). JMLR.org, 1183–1192.

[25] Hong Ge, Kai Xu, and Zoubin Ghahramani. 2018. Turing: a language for flexible probabilistic inference. In
International Conference on Artificial Intelligence and Statistics (AISTATS). 1682–1690. http://proceedings.mlr.

press/v84/ge18b.html

[26] Andrew Gelman. 2004. Exploratory data analysis for complex models. Journal of Computational and Graphical
Statistics 13, 4 (2004), 755–779.

[27] Andrew Gelman. 2016. Bayesian statistics: What’s it all about? https://statmodeling.stat.columbia.edu/

2016/12/13/bayesian-statistics-whats/.
[28] Andrew Gelman and Jennifer Hill. 2007. Data analysis using regression and multilevel/hierarchical models.

Vol. Analytical methods for social research. Cambridge University Press, Cambridge, UK. xxii, 625 p pages.
[29] Andrew Gelman, Jennifer Hill, and Aki Vehtari. 2020. Regression and other stories. Cambridge University

Press, Cambridge, UK. https://books.google.se/books?id=SZFKzQEACAAJ

[30] Andrew Gelman, Daniel Simpson, and Michael Betancourt. 2017. The prior can often only be understood in
the context of the likelihood. Entropy 19, 10 (Oct 2017), 555. https://doi.org/10.3390/e19100555

[31] Andrew Gelman, Aki Vehtari, Daniel Simpson, Charles C. Margossian, Bob Carpenter, Yuling Yao, Lau-
ren Kennedy, Jonah Gabry, Paul-Christian Bürkner, and Martin Modrák. 2020. Bayesian workflow.
arXiv:2011.01808 [stat.ME]

[32] Yossi Gil and Gal Lalouche. 2017. On the correlation between size and metric validity. Empirical Software
Engineering 22, 5 (Oct. 2017), 2585–2611. https://doi.org/10.1007/s10664-017-9513-5

[33] Philip C Gregory. 2011. Bayesian re-analysis of the Gliese 581 exoplanet system. Monthly Notices of the Royal
Astronomical Society 415, 3 (2011), 2523–2545.

[34] Heiko Haller and Stefan Kraus. 2002. Misinterpretations of significance: A problem students share with their
teachers? Methods of Psychological Research 7, 1 (2002), 1–20.

[35] Rink Hoekstra, Richard D. Morey, Jeffrey N. Rouder, and Eric-Jan Wagenmakers. 2014. Robust misinterpreta-
tion of confidence intervals. Psychon. Bull. Rev. (2014), 1157–1164.

[36] C. H. Jackson, N. G. Best, and S. Richardson. 2008. Bayesian graphical models for regression on multiple data
sets with different variables. Biostatistics 10, 2 (11 2008), 335–351. https://doi.org/10.1093/biostatistics/

kxn041

[37] Edwin T. Jaynes. 2003. Probability theory: The logic of science. Cambridge University Press, Cambridge.
[38] Michael I. Jordan. 2004. Graphical Models. Statist. Sci. 19, 1 (2004), 140–155. https://doi.org/10.1214/

088342304000000026

[39] JuliaStan [n.d.]. Stan.jl. https://mc-stan.org/users/interfaces/julia-stan.
[40] Andrey Krutauz, Tapajit Dey, Peter C. Rigby, and Audris Mockus. 2020. Do code review measures explain the

incidence of post-release defects? Empir. Softw. Eng. 25, 5 (2020), 3323–3356. https://doi.org/10.1007/s10664-

020-09837-4

[41] David Lunn, David Spiegelhalter, Andrew Thomas, and Nicky Best. 2009. The BUGS project: Evolution,
critique and future directions. Statistics in medicine 28, 25 (2009), 3049–3067.

[42] Richard McElreath. 2020. Statistical rethinking: A Bayesian course with examples in R and Stan (2 ed.). CRC press,
Florida, USA.

[43] Tim Menzies, Jeremy Greenwald, and Art Frank. 2007. Data Mining Static Code Attributes to Learn Defect
Predictors. IEEE Trans. Software Eng. 33, 1 (2007), 2–13. https://doi.org/10.1109/TSE.2007.256941

[44] Tim Menzies and Martin Shepperd. 2019. “Bad smells” in software analytics papers. Information and Software
Technology 112 (2019), 35–47. https://doi.org/10.1016/j.infsof.2019.04.005

[45] Rupert G. Miller. 1981. Simultaneous statistical inference (2nd ed.). Springer-Verlag, Berlin, Heidelberg.
[46] Salman Mohamadi and Hamidreza Amindavar. 2020. Deep Bayesian Active Learning, A Brief Survey on

Recent Advances. arXiv:2012.08044 [cs.LG]
[47] Radford M. Neal. 1996. Bayesian Learning for Neural Networks. Springer-Verlag, Berlin, Heidelberg.
[48] Judea Pearl. 2009. Causality: Models, Reasoning and Inference (2nd ed.). Cambridge University Press, USA.
[49] Juho Piironen, Markus Paasiniemi, and Aki Vehtari. 2020. Projective inference in high-dimensional problems:

Prediction and feature selection. Electronic Journal of Statistics 14, 1 (2020), 2155–2197. https://doi.org/10.

1214/20-EJS1711

[50] Martin Plummer. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling.
In Proceedings of the 3rd International Workshop on Distributed Statistical Computing: Workshop on Distributed

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1111/rssa.12378
http://proceedings.mlr.press/v84/ge18b.html
http://proceedings.mlr.press/v84/ge18b.html
https://statmodeling.stat.columbia.edu/2016/12/13/bayesian-statistics-whats/
https://statmodeling.stat.columbia.edu/2016/12/13/bayesian-statistics-whats/
https://books.google.se/books?id=SZFKzQEACAAJ
https://doi.org/10.3390/e19100555
https://arxiv.org/abs/2011.01808
https://doi.org/10.1007/s10664-017-9513-5
https://doi.org/10.1093/biostatistics/kxn041
https://doi.org/10.1093/biostatistics/kxn041
https://doi.org/10.1214/088342304000000026
https://doi.org/10.1214/088342304000000026
https://mc-stan.org/users/interfaces/julia-stan
https://doi.org/10.1007/s10664-020-09837-4
https://doi.org/10.1007/s10664-020-09837-4
https://doi.org/10.1109/TSE.2007.256941
https://doi.org/10.1016/j.infsof.2019.04.005
https://arxiv.org/abs/2012.08044
https://doi.org/10.1214/20-EJS1711
https://doi.org/10.1214/20-EJS1711

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Applying Bayesian Analysis Guidelines to Empirical Software Engineering Data 39

Statistical Computing. Achim Zeileis, Vienna, Austria, 10 pages.
[51] Martyn Plummer. 2003. JAGS: A Program for Analysis of Bayesian Graphical Models Using Gibbs Sampling.

In Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC).
[52] PyStan [n.d.]. Stan.jl. https://pystan.readthedocs.io/en/latest/.
[53] Paul Ralph and Ewan Tempero. 2018. Construct Validity in Software Engineering Research and Software

Metrics. In Proceedings of the 22nd International Conference on Evaluation and Assessment in Software Engineering
2018 (Christchurch, New Zealand) (EASE’18). Association for Computing Machinery, New York, USA, 13–23.
https://doi.org/10.1145/3210459.3210461

[54] Baishakhi Ray, Daryl Posnett, Premkumar Devanbu, and Vladimir Filkov. 2017. A large-scale study of
programming languages and code quality in GitHub. Commun. ACM 60, 10 (Sept. 2017), 91–100. https:

//doi.org/10.1145/3126905

[55] Baishakhi Ray, Daryl Posnett, Vladimir Filkov, and Premkumar Devanbu. 2014. A large scale study of
programming languages and code quality in Github. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association for Computing
Machinery, New York, NY, USA, 155–165. https://doi.org/10.1145/2635868.2635922

[56] Bin Xin Ru, Mark McLeod, Diego Granziol, and Michael A. Osborne. 2018. Fast information-theoretic Bayesian
optimisation. In Proceedings of the 35th International Conference on Machine Learning, ICML 2018 (Proceedings of
Machine Learning Research, Vol. 80), Jennifer G. Dy and Andreas Krause (Eds.). PMLR, Stockholm, Sweden,
4381–4389. http://proceedings.mlr.press/v80/ru18a.html

[57] Daniel J. Schad, Michael Betancourt, and Shravan Vasishth. 2020. Toward a principled Bayesian workflow in
cognitive science. Psychological methods -, - (June 2020), –. https://doi.org/10.1037/met0000275

[58] Maximilian Scholz and Richard Torkar. 2020. An empirical study of Linespots: A novel past-fault algorithm.
arXiv e-prints -, -, Article arXiv:2007.09394 (July 2020), 19 pages. arXiv:2007.09394 [cs.SE]

[59] Marco Scutari and Jean-Baptiste Denis. 2021. Bayesian Networks (with Examples in R) (2 ed.). Chapman and
Hall/CRC.

[60] Martin Shepperd, David Bowes, and Tracy Hall. 2014. Researcher bias: The use of machine learning in
software defect prediction. IEEE Transactions on Software Engineering 40, 6 (2014), 603–616. https://doi.org/

10.1109/TSE.2014.2322358

[61] Martin Shepperd, Tracy Hall, and David Bowes. 2017. Authors’ Reply to “Comments on ‘Researcher Bias:
The Use of Machine Learning in Software Defect Prediction”’. IEEE Transactions on Software Engineering 44, 11
(2017), 1129–1131. https://doi.org/10.1109/TSE.2017.2731308

[62] Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. 2018. Validating Bayesian
inference algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788 (2018).

[63] Chakkrit Tantithamthavorn, Shane McIntosh, Ahmed E Hassan, and Kenichi Matsumoto. 2016. Comments
on “Researcher bias: the use of machine learning in software defect prediction”. IEEE Transactions on Software
Engineering 42, 11 (2016), 1092–1094. https://doi.org/10.1109/TSE.2016.2553030

[64] Richard Torkar, Robert Feldt, and Carlo A. Furia. 2020. Bayesian data analysis in empirical software
engineering—The case of missing data. In Contemporary Empirical Methods in Software Engineering, Michael
Felderer and Guilherme Horta Travassos (Eds.). Springer, Chapter 11.

[65] Richard Torkar, Carlo A. Furia, Robert Feldt, Francisco Gomes de Oliveira Neto, Lucas Gren, Per Lenberg,
and Neil A. Ernst. 2021. A method to assess and argue for practical significance in software engineering.
Transactions on Software Engineering -, - (2021), 13 pages. https://doi.org/10.1109/TSE.2020.3048991

[66] Rens van de Schoot, Sarah Depaoli, Ruth King, Bianca Kramer, Kaspar Märtens, Mahlet G. Tadesse, Marina
Vannucci, Andrew Gelman, Duco Veen, Joukje Willemsen, and Christopher Yau. 2021. Bayesian statistics
and modelling. Nature Reviews Methods Primers 1, 1 (14 Jan 2021), 1. https://doi.org/10.1038/s43586-020-

00001-2

[67] Aki Vehtari, Andrew Gelman, and Jonah Gabry. 2017. Practical Bayesian model evaluation using leave-one-
out cross-validation and WAIC. Statistics and Computing 27, 5 (2017), 1413–1432. https://doi.org/10.1007/

s11222-016-9696-4

[68] Helen M. Walker. 1958. The Contributions of Karl Pearson. J. Amer. Statist. Assoc. 53, 281 (1958), 11–22.
[69] Hao Wang and Dit-Yan Yeung. 2016. Towards Bayesian deep learning: A framework and some existing

methods. IEEE Transactions on Knowledge and Data Engineering 28, 12 (2016), 3395–3408.
[70] Ronald L. Wasserstein and Nicole A. Lazar. 2016. The ASA Statement on p-Values: Context, Process,

and Purpose. The American Statistician 70, 2 (2016), 129–133. https://www.amstat.org/asa/files/pdfs/P-

ValueStatement.pdf.
[71] Sumio Watanabe. 2010. Asymptotic equivalence of Bayes cross validation and widely applicable information

criterion in singular learning theory. Journal of Machine Learning Research 11 (Dec. 2010), 3571–3594.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://pystan.readthedocs.io/en/latest/
https://doi.org/10.1145/3210459.3210461
https://doi.org/10.1145/3126905
https://doi.org/10.1145/3126905
https://doi.org/10.1145/2635868.2635922
http://proceedings.mlr.press/v80/ru18a.html
https://doi.org/10.1037/met0000275
https://arxiv.org/abs/2007.09394
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/TSE.2014.2322358
https://doi.org/10.1109/TSE.2017.2731308
https://doi.org/10.1109/TSE.2016.2553030
https://doi.org/10.1109/TSE.2020.3048991
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1038/s43586-020-00001-2
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf
https://www.amstat.org/asa/files/pdfs/P-ValueStatement.pdf

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Carlo A. Furia, Richard Torkar, and Robert Feldt

[72] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal. 2016. Data Mining: Practical Machine Learning
Tools and Techniques (4 ed.). Morgan Kaufmann.

[73] Zhou Xu, Li Li, Meng Yan, Jin Liu, Xiapu Luo, John Grundy, Yifeng Zhang, and Xiaohong Zhang. 2021. A
comprehensive comparative study of clustering-based unsupervised defect prediction models. J. Syst. Softw.
172 (2021), 110862. https://doi.org/10.1016/j.jss.2020.110862

[74] Zhe Yu, Fahmid Morshed Fahid, Huy Tu, and Tim Menzies. 2021. Identifying Self-Admitted Technical
Debts with Jitterbug: A Two-Step Approach. IEEE Transactions on Software Engineering (2021). https:

//doi.org/10.1109/TSE.2020.3031401 Preprint: https://arxiv.org/abs/2002.11049.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: January 2022.

https://doi.org/10.1016/j.jss.2020.110862
https://doi.org/10.1109/TSE.2020.3031401
https://doi.org/10.1109/TSE.2020.3031401

	Abstract
	1 Introduction
	1.1 Dataset and previous studies
	1.2 Overview
	1.3 Contributions

	2 Bayesian data analysis guidelines
	2.1 Modeling
	2.2 Plausible model
	2.3 Workable model
	2.4 Adequate model
	2.5 Model comparison
	2.6 Iterative refinement
	2.7 Tools for Bayesian data analysis

	3 Bayesian data analysis of programming language data
	3.1 Data
	3.2 Modeling
	3.3 Plausibility
	3.4 Workability
	3.5 Adequacy
	3.6 Model comparison

	4 Bayesian statistical analysis: Results
	4.1 Modeling
	4.2 Spotting data problems
	4.3 Practical significance
	4.4 Planning the next study

	5 Related work
	5.1 Statistical data modeling and analysis
	5.2 Guidelines about statistical analysis
	5.3 Replication in software engineering research

	6 Conclusions
	7 Acknowledgements
	References

