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Abstract

In industrial applications, the number of final products endowed with
real-time automatic control systems that manage critical situations as far
as human safety is concerned has dramatically increased. Thus, it is of
growing importance that the control system design flow encompasses also
its translation into software code and its embedding into a hardware and
software network. In this paper, a tool-supported approach to the formal
analysis of real-time aspects in controller implementation is proposed. The
analysis can ensure that some desired properties of the control loop are
preserved in its implementation on a distributed architecture. Moreover,
the information extracted automatically from the model can also be used
to approach straightforwardly some design problems, such as the hardware
sizing in the final implementation.
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1 Introduction and Motivation

In industrial applications, the number of final products endowed with real-time
automatic control systems has dramatically increased in the last few years. Most
of such systems, moreover, are responsible of managing critical situations as far
as human safety is concerned, see e.g., the aeronautical and the automotive in-
dustries. Thus, besides guaranteeing model-based structural stability properties
of the closed-loop system proved and proving to meet the desired performance
specifications by means of Control Theory methodologies, it is of growing im-
portance to complete the control system design flow taking care also of formally
tackling its translation into software code and its embedding in a larger hard-
ware and software network. Doing this becomes harder when the embedded
system behavior needs to be analyzed considering both functional and timing
properties, as it is the case for real-time controllers. As such, it seems particu-
larly useful and promising to try and bridge the gap between system-theoretic
and information-theoretic skills, devising new tools which allow to carry out
the whole design flow and provide new information to optimize the final system
both in the controller design phase and in its code and hardware realization.
Recently, in the control community, some preliminary considerations about the
possible role for formal methods to tackle control software dependability proper-
ties have started to appear, see e.g., [14], [12]. In [14], the authors discuss how
probabilistic model checking can be used to analyze dependability properties
of controller-based systems, concentrating on its use for analyzing fault detec-
tion schemes. [12], instead, offers a wide discussion on how formal methods in
general may help to develop dependable manufacturing control systems. Note
that, in these works, the focus in mainly on PLC program verification, rather
than on safety-critical real time applications. Another work in this direction
is [16], where algebraic equivalence is used to verify the correct operation of
control systems. Here, real-time systems are modeled using Timed Transition
Model, and the final outcome is a technique to formally verify the behavioral
correctness of a control system.

In the formal methods community, a vast gamut of techniques, methods, and
tools has been studied by computer scientists for over two decades [5]. In partic-
ular, since the early 1990’s, several techniques have been developed to analyze
real-time systems with respect to both behavioral and timing properties [8].
Once a formal model of the system—including exact timing information—has
been built, it can be analyzed with various degrees of exhaustiveness, rang-
ing from simple partial simulation up to exhaustive automated verification. In
particular, model-checking techniques for real-time systems [9, 30, 15] have be-
come a very popular solution to the system verification problem. In the model-
checking framework, a system model—consisting of some form of timed autom-
aton—is checked against some required properties—formalized through metric
temporal logic formulas. A great strength of the model-checking approach is
that it is a fully automated and exhaustive technique: once the system has been
built and its requirements have been formalized, a software tool decides whether
the requirements hold for the system. However, besides the well-known intrinsic
scalability problems of such techniques, full automation must always be heav-
ily traded-off with expressiveness. Consequently, the temporal logic language
in which the desired properties can be formalized, and fed to a model-checker,
is usually of rather limited expressive power. In particular, it is impossible to
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formalize complex properties that have to be analyzed in the design flow of
embedded systems towards their implementation. In the same vein, but more
generally, formal techniques are usually mostly focused on a posteriori analysis,
and provide instead little or no support to design [18, 10, 13]. There has been
some recent work addressing this problem, see e.g., [20], for instance by devis-
ing suitable mathematical models to embedded software design, which allow to
incorporate constraints and specifications at a high level of abstraction and to
formally derive semantics-preserving software implementations.

In this paper, we propose a tool-supported approach to the formal analysis
of real-time aspects in controller implementation. Our methodology builds upon
an automated algorithmic enumeration technique of system behavior to pursue a
guided examination of such real-time aspects. The analysis can ensure that some
desired properties of the control loop are preserved in their implementation on
a distributed architecture. Moreover, the information extracted automatically
from the model can also be used to approach straightforwardly some design
problems, such as the hardware sizing in the final implementation.

Our technique uses timed Petri nets as abstract system modeling paradigm.
Petri nets are formal real-time models which are especially suitable to capture
rather intuitively aspects such as asynchronous data transmission, which are fun-
damental in physical implementation architectures. For illustration purposes,
however, we will present the aforementioned algorithms for behavior enumera-
tion using the more abstract, and essential, model of state/transition systems
(STSs). Roughly, a STS behavior is simply an alternation between residences in
states, when time elapses, and instantaneous occurrences of transitions, which
trigger the system to a new state. We introduce an analysis technique to enu-
merate all possible timed behaviors of some considered STS, by presenting them
succinctly grouped into equivalent classes, which share the same behavior. Af-
terward, we will see how to extend the analysis technique for STS to timed Petri
nets, and then how the results of such analyses can be used proficiently in the
iterative development of controller implementations.

The structure of the paper is as follows. Section 2 introduces the notion
of state/transition system (STS) and describes a technique to represent and
analyze the behavior of a given STS. Section 3 demonstrates the usefulness
of such formalism to analyze real-time control systems, considering—as case
study—an active braking controller. In particular, after a brief description
of the control system, we explicitly consider the final hardware lay-out—i.e.,
sensors, actuators and data transmission—and we apply the proposed formal
analysis technique the given model. The paper ends with a discussion of the
most important “lessons” learned in developing the case study (Section 4) and
with concluding remarks and an outlook to future work (Section 5).

2 State/Transition Systems

This section introduces the notion of state/transition system (STS), and de-
scribes a technique to represent and analyze the behavior of a given STS. More
precisely, the following Subsection 2.1 provides an informal overview to the
whole section. Then, Subsection 2.2 defines formally transition systems (TSs),
a simpler model which is the basis for full STSs, and Subsection 2.3 describes an
analysis technique for such systems. Finally, Subsection 2.5 introduces full STSs
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and timed Petri nets as an extension of TSs, and it shows how the technique of
the previous sections can be adapted to these formalisms. Some of these results
have been presented in preliminary form in [21] and in [4] with focus on the
SDL formalism.

2.1 Informal Overview

STSs are an abstract modeling paradigm suitable for a large variety of timed
systems. As it is apparent from their name, they are based on the notions of
state and transition. Informally, the evolution of a STS is characterized by an
alternation between residences in states, where time elapses, and instantaneous
occurrences of transitions, which trigger the system to a new state. At any
instant of time, the current state of the system determines which transitions are
enabled, i.e., can fire; conversely, any fired transition triggers a change of state
in the system.

As a simple example, consider a producer and a consumer which communi-
cate through a (bounded) buffer, where the producer puts new items and the
consumer takes them away. A STS modeling such a system would introduce a
transition c which occurs whenever the consumer takes an item from the buffer.
Note that c would be enabled only when the system is in a state where at least
one item is in the buffer. Also, when c is taken and the buffer has some n > 0
items in it, the state of the buffer changes to represent the fact that n− 1 items
are now stored in the buffer. This example sketch will be developed in Section
2.5, by means of a Petri net model (Figure 3).

When modeling real-time systems as STSs, the notion of state must include
a timing information about when the current state has been entered. Conse-
quently, the triggering of transitions depends also on the time elapsed in the
current state. Therefore, transitions are decorated with a lower bound and
an upper bound denoting, respectively, the minimum and maximum time that
should be consumed in a state enabling the transition before the transition is
taken.

STSs are a useful abstraction of timed systems, in that they have a sufficient
expressive power to model the essential features of the real-time behavior of such
systems. All the more, such essential features can be often further abstracted by
representing explicitly only transitions, and by leaving the notion of state only
implicit: such models are called transition systems (TSs). Nonetheless, both TSs
and STSs are usually considered a bit too abstract for practical modeling pur-
poses, because they represent only indirectly the features of the actual systems
under modeling. Hence, more standardized and user-friendly notations—such
as (timed) Petri nets [7, 3] or SDL [27, 6]—-are usually preferred to model real-
time systems. Let us remark, however, that it is straightforward to represent a
Petri net, or an SDL diagram, as a STS, and to extend to a STS the same tech-
niques used for TSs. Thus, it is advisable to present our results and techniques
on the neater and more abstract model of TSs first. Afterward, we will show
the minimal adaptations required to apply the method first on full STSs, and
then directly on our formalism of choice (i.e., timed Petri nets).

Analyzing the behavior of STSs. A fully formalized STS can be seen as
an implicit, complete description of a set of timed behaviors, namely all those
which are compatible with all the constraints included in the STS. For several
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analysis purposes, it would be extremely useful to have a characterization of the
same behaviors which is explicit, rather than implicit. In other words, we would
like to possess a representation which allows answering rather directly questions
about the overall behavior of the system.

For instance, going back to the example of the producer and consumer, one
may consider questions such as:

• given certain producing and consuming rates, is it true that the buffer
never overflows?

• is it true that every item stays in the buffer for at least 10 time units
before it is consumed?

• if we double the consuming rate, can we halve the buffer size without
risking overflow?

Simulation techniques are a way to answer such questions. However, simula-
tion techniques give necessarily incomplete answers, because they consider only
a subset of all possible behaviors of the system. In this paper, on the contrary,
we focus on exhaustive techniques which guarantee that no behavior, however
unlikely, is neglected. So, we develop like a technique to extract and represent
all possible behaviors of a given STS.

More precisely, we describe an algorithm which, given a STS, extracts all
timed behaviors the system can exhibit. Such behaviors can then be analyzed
directly to answer some of the questions about the system. Notice that, if time
is modeled with a dense domain (such as the real numbers), we have an infinite
number of different behaviors even if we limit the total number of transitions
that the system can take. Consequently, an enumeration of such behaviors
would be extremely impractical and possibly totally useless. Still, an explicit
enumeration is still feasible if we group behaviors into equivalence classes and
represent compactly every class. We consider two behaviors equivalent when
they comprise the same sequence of transitions, in the same order; in other
words, equivalent behaviors differ only by exact timing information, not by
the ordering of transitions. Each class is represented as a sequence of taken
transitions, together with the intervals of time in which each of them can occur.
As we will demonstrate, such a representation is finite, given an upper bound
on the total number of taken transitions, and practically useful.

2.2 Definition of Transition Systems

As the name suggests, transition systems are based on the notion of transition.
Transitions are defined as follows.

Definition 1. A transition τ is a triple 〈[α, β], E,D〉 where:

• [α, β] is an interval of time called static firing interval, where α and β are
named respectively (static) earliest firing time and (static) latest firing
time. They denote the lower and upper bound on the transition firing
time, after it has become enabled.

• E (resp. D) is the set of transitions which become enabled (resp. disabled)
when τ fires.
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Note that, at a given time, more than one occurrence of the same transition
can be enabled, each with its own enabling time. To represent this fact we
introduce the following.

Definition 2. An occurrence or instance of a transition τ is a triple 〈id, x, [α̂, β̂]〉
where:

• id is a unique identifier, to distinguish different instances of the same
transition τ ;1

• the (absolute) enabling time x;

• the dynamic firing interval [α̂, β̂], with α̂ = x + α and β̂ = x + β, within
which the transition must fire if it is not disabled.

In the following, we will freely use the term “transition” to denote indif-
ferently a transition or an instance thereof, whenever the actual meaning will
be clear from the context. Also, we will distinguish relative firing times from
absolute ones by putting a hat over the latter.

Finally, we introduce the notion of TS.

Definition 3. A transition system S is a pair 〈T, T0〉 where:

• T is a set of transitions;

• T0 ⊆ T is the set of transitions which are enabled initially.

Any TS is an implicit representation of a set of behaviors, namely all those
which respect the enabling/disabling relations and the firing time intervals.
More precisely, we introduce the following.

Definition 4. An evolution e (or trace) of a TS S = 〈T, T0〉 is given by two
finite sequences:

• the sequence 〈τ1, τ2, . . . , τk〉 of instances of fired transitions; and

• the sequence 〈τ̂1, τ̂2, . . . , τ̂k〉 of firing times of the transitions.

The two sequence must respect the following constraints: for all i = 1, . . . , k,
there exists a 0 ≤ j < i such that:

• (enabling/disabling) either j > 0, τi ∈ Eτj
, and for all j < k < i it is

τi 6∈ Dτk
; or j = 0, τi ∈ T0, and for all 1 ≤ k < i it is τi 6∈ Dτk

;

• (enabling times) either j > 0 and xτi
= τ̂j ; or j = 0 and xτi

= 0;

• (firing interval) τ̂i ∈ [ατi
+ xτi

, βτi
+ xτi

].

If we want to stress the fact that the number of taken transitions in e is
bounded by some natural k > 0, we call e an NT-evolution (i.e., “Number of
Transitions”). Conversely, if we want to stress the fact that the time at which
any transition in e is taken is bounded by some positive time τ̂k, we call e a
MET-evolution (i.e., “Maximum Execution Time”).

In the following we will focus solely on NT-evolutions, although extending
the results to MET-evolutions is routine.

1For simplicity, in this paper we distinguish among different instances of the same transition
by priming the transition name.
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Equivalence classes of evolutions. From the definitions above, it should
be clear that the number of NT-evolutions of a TS are, in general, infinite, when
the time domain is a dense set. In practice, this is the case whenever there is
at least one enabled transition whose firing time is non-deterministic, that is
whose firing interval is not a singleton.

In order to overcome this unpleasantness, we introduce a notion of equiva-
lence between evolutions: two evolutions are equivalent if they have the same
sequence of fired transitions, in the same order. Consequently, we introduce a
notion of equivalence class as follows.

Definition 5. For a natural k > 0, a k-NT-class is an equivalence class over
the set of all NT-evolutions of length k.

A k-NT-class can be represented as a tuple 〈τ1, . . . , τk〉 of the ordered se-
quence of transitions.

It is not difficult to show that, regardless of the nature of the time domain,
and in particular even if it is dense, the quotient set of the NT-evolutions of a
TS by the equivalence relation is finite.

Theorem 6. Given a transition system S, for each integer k > 0, the number
of k-NT-classes is finite.

Proof. Let S = 〈T, T0〉, with |T | = n, and let D be the set of all k-permutations
with repetitions of the set T :

D = {〈τ1, . . . , τk〉| τ1, . . . , τk ∈ T}

It is immediate that |D| = nk is finite. The set E of all k-NT-classes is a subset
of D, so also of finite size.

In the rest of the paper, we will assume the time domain to be the nonneg-
ative rational numbers Q≥0. Intuitively, this restriction is necessary to ensure
that all different time bounds have a common multiple, or, in other words, that
a notion of “minimum time granularity” is definable. This would not be possible
over the whole real domain, where rational and irrational numbers are incom-
mensurate. For all practical purposes, however, it is clear that the restriction
to rational numbers is irrelevant, as any irrational number can be approximated
by rational numbers with arbitrary precision.

2.3 Exhaustive Enumeration of TSs Behavior

Theorem 6 suggests that an exhaustive enumeration of NT-classes may be fea-
sible. This subsection presents an algorithm to build such an enumeration. The
algorithm is based on similar techniques introduced by Berthomieu, Diaz, and
Menasce for timed Petri nets [2, 1]. It has been implemented in a very prototypal
tool which has been used in analyzing the case study of Section 3.

Let us consider a TS S = 〈T, T0〉. It is convenient to represent the NT-classes
of S as a tree, named relative tree. Roughly, nodes represent states of the system
evolutions, and every node is connected to all its children, which correspond to
states that are reachable from the parent state by firing an enabled transition.

More precisely, every node in the tree hosts a triple of the form:

〈ET ji , D
j
i ,mM

j
i 〉

where:
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• the subscript i denotes the depth of the node within the tree;

• the superscript j denotes that the node has been reached by firing transi-
tion τj ;2

• ET ji is the set of the transitions that are currently enabled;

• Dj
i is the set of firing constraints of transitions in ET ji , described as a set

of inequalities in these forms:{
αx ≤ τx ≤ βx with τx ∈ ET ji , αx ∈ Q≥0, βx ∈ Q≥0, αx ≤ βx
τy − τz ≤ γyz with τy, τz ∈ ET ji , γyz ∈ Q, τy 6= τz

.

Note that the generic symbol τw also denotes the generic instant at which
transition τw fires, relative to the firing of the previous transition τj ; i.e.,
τ̂w = τ̂j + τw;

• mM j
i is the least upper bounds among the transition times of transitions

enabled in the current node, i.e., mM j
i = min

{
βx|(αx ≤ τx ≤ βx) ∈ Dj

i

}
.

Let us now show how to build the relative tree, starting from the root node.

2.3.1 The Root Node

The root of the relative tree hosts the triple 〈T0, D0,mM0〉, where:

• {τ1, . . . , τm} = T0 ⊆ T is the set of the transitions that are enabled initially
(i.e., at absolute time 0, when the system starts)

• D0 is the firing range of the transitions in T0, described by the following
set of inequalities:

D0 =


α1 ≤ τ1 ≤ β1

...
αm ≤ τm ≤ βm

where [αi, βi] is the static firing interval of transition τi, for all i =
1, . . . ,m.

Note that, in the root node, inequalities in the other form τi − τj ≤ γ are
redundant.

• mM0 = min {βi|(αi ≤ τi ≤ βi) ∈ D0} = min {βi|τi ∈ T0}.

2.3.2 Generic Nodes

Let us consider a generic node 〈ETw, Dw,mMw〉 at depth w. A transition
τf ∈ ETw can fire if and only if the following set of inequalities admits a solution: αx ≤ τx ≤ βx for all (αx ≤ τx ≤ βx) ∈ Dw

τy − τz ≤ γyz for all (τy − τz ≤ γyz) ∈ Dw

τ ≤ τe for all τe ∈ ETw \ {τf}

Such a solution exists if and only if:
2This information will be omitted whenever unnecessary.
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1. (αf ≤ τf ≤ βf ) ∈ ETw; and

2. αf ≤ mMw; and

3. there is no transition τe ∈ ETw such that τe − τf ≤ γef for some γef < 0.

In particular, 3 is necessary as if τe − τf ≤ γef < 0 for some τe, then τe < τf ,
that is τe must fire before τf . Hence, the latter cannot fire in the current node.

Assume that transition τf can indeed fire from the current node at depth
w. Then, we build a child node 〈ET fw+1, D

f
w+1,mM

f
w+1〉 at depth w + 1, as

follows.3

• ET fw+1 = (ETw \ Dτf
) ∪ Eτf

, that is we update ETw by deleting all
occurrences of disabled transitions and by adding all enabled transitions4

• Df
w+1 is obtained by updating Dw according to the following procedure:

1. Inequalities corresponding to transitions in (ETw \ {τf}) are all tem-
porarily added to Df

w+1 with the following modifications:

α̃i = max {0, αi −mMw,−γfi}
β̃i = min {βi − αf , γif}
γ̃jk = min {βj − αk, γjk} .

2. Inequalities corresponding to transitions disabled by the firing of τf ,
i.e., transitions in (ETw \ET fw+1−{τf}), are removed in Df

w+1. For
each disabling of a transition τe the remaining inequalities in Df

w+1

are changed as follows:

α̃i = max {α̃i, α̃e − γ̃ei}

β̃i = min
{
β̃i, β̃e + γ̃ie

}
γ̃jk = min {γ̃jk, γ̃je + γ̃ek} .

3. Inequalities corresponding to transitions enabled by the firing of τf ,
i.e., transitions in (ET fw+1 \ ETw), are added to Df

w+1. For each
enabling of a transition τa, the following inequalities are added:

αa ≤ τa ≤ βa
τa − τk ≤ γak = βa − α̃k for all τk ∈ (ETw ∩ ET fw+1)
τk − τa ≤ γka = β̃k − αa for all τk ∈ (ETw ∩ ET fw+1).

The following inequalities are also added to Df
w+1, for all pair of

transitions τa1 , τa2 ∈ Eτf
with τa1 6= τa2 :{

τa1 − τa2 ≤ γa1a2 = βa1 − αa2

τa2 − τa1 ≤ γa2a1 = βa2 − αa1 .

• mMw+1 = min
{
β̃i|(α̃i ≤ τi ≤ β̃i) ∈ Df

w+1

}
.

3For clarity, we decorate interval bounds α, β in the child node with a tilde.
4Note that a transition which is both in Dτf and in Eτf and is enabled in the parent node

becomes disabled, and a new instance of the same transition is enabled in the child node.
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2.3.3 Properties of the Relative Tree

The following theorems, whose proof can be obtained similarly as in [1], establish
the fundamental properties of the relative tree construction.

Theorem 7. Let T be the relative tree of a TS S; all paths of length k from
the root of T represent all and only k-NT-classes of S.

Theorem 8. Let T be the relative tree of a TS S, and let 〈τ1, . . . , τi, . . . , τn, . . . , τk〉
be the path in T corresponding to some k-NT-class of S, for some i < n ≤ k,
such that τi ∈ ETi−1 and τn ∈ ETi. Then, every evolution in the same k-NT-
class respects the constraint:

τ̂i + αn ≤ τ̂n ≤ τ̂i + βn.

In addition, if n = i+ 1 ( i.e., τn fires immediately after τi), every evolution in
the same k-NT-class respects the stronger constraint:

τ̂i + αn ≤ τ̂n ≤ τ̂i +mMi.

Theorem 9. Let T be the relative tree of a TS S, and let 〈τ1, . . . , τk−1, τk〉 be
the path in T corresponding to some k-NT-class of S, for some k > 1, such that
τk−1 ∈ ETk−2 and τk ∈ ETk−1. Then, for all (real) times:

t ∈ [τ̂k−1 + αk, τ̂k−1 +mMk−1]

there exists some NT-evolution in the chosen k-NT-class where τk fires at t.

2.3.4 Complexity of the Algorithm

Let us briefly evaluate the time complexity of the algorithm for the construction
of the relative tree. The relevant section is the one in 3, where an inequality
τx − τy ≤ γxy is added for every ordered pair 〈τx, τy〉 of enabled transitions;
there are O(n2) such ordered pairs, if n is the number of enabled transitions.
Then, the worst case occurs when in every node all enabled transitions can fire.
Let n = max{|ET ji |} be the maximum number of enabled transitions in a node
of the tree; then the total number of nodes in a tree of height k5 is bounded
by:

∑
i=0,...,k−1 n

i = (nk − 1)/(n− 1) = O(nk−1). Overall, building the relative
tree has complexity O(n2nk−1) = O(nk+1), exponential in k.

2.4 Real-Time Profiling of TS Behavior

In the previous subsection we introduced an algorithm which builds all k-NT-
classes of a given TS. In this subsection we build upon that algorithm to design
a technique to create the real-time profile of any NT-class. In other words, we
show how to construct an interval—of absolute time—for every transition in
an NT-class, which describes the minimum and maximum absolute firing times
that every evolution in the chosen NT-class may have.

Once the relative tree has been built, real-time profiling is a two-phase pro-
cess. First, the absolute tree for the TS is built; then the actual profiling is
performed for a chosen NT-class of the TS. These two phases are described in
the rest of this subsection.

5As it is customary, the root node has height 1.
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2.4.1 Absolute Tree

For any TS S, the absolute tree is a tree isomorphic to the relative tree, but
where every node hosts information about the absolute—rather than relative—
firing times of transitions. In order to avoid ambiguities between the relative and
absolute trees, and in accordance with the notation introduced in Subsection
2.2, we are going to decorate every symbol appearing in the absolute tree with
a hat sign.

As in the relative tree, every node in the absolute tree hosts a triple 〈ÊT
j

i , D̂
j
i , m̂M

j

i 〉,
where:

• ÊT
j

i is the same as ET ji in the relative tree;

• D̂j
i is a set of absolute time constraints for the transitions in ÊT

j

i , in the
form:

α̂x ≤ τ̂x ≤ β̂x with τ̂x ∈ ÊT
j

i

. Note that inequalities in the other form τj − τk ≤ γjk are not included
in the absolute tree;

• m̂M
j

i = min
{
β̂k|(α̂i ≤ τ̂i ≤ β̂i) ∈ D̂j

i

}
.

Similarly as for the relative tree, the absolute tree is built starting from the
root node, by adding subsequent nodes recursively. Every edge connecting a
parent node at depth i to one of its children is conventionally labeled with the
inequality corresponding to the fired transition τ̂f ∈ ÊT

j

i , e.g., α̂f ≤ τ̂f ≤ m̂M
j

i .

Root node. In the root node, D̂0 is the same as D0 in the relative tree,
because the base time is 0 and thus relative and absolute times coincide at the
beginning.

Generic nodes. Let us consider a generic node 〈ÊTw, D̂w, m̂Mw〉 at depth
w. Let τf ∈ ÊTw be a transition which can fire. Then, we build a child node

〈ÊT
f

w+1, D̂
f
w+1, m̂M

f

w+1〉 at depth w + 1, as follows.

• ÊT
f

w+1 and m̂M
f

w+1 are the same as ET fw+1 and mMf
w+1 in the relative

tree;

• D̂f
w+1 contains the following inequalities

ˆ̃αa ≤ τ̂a ≤ ˆ̃
βa with ˆ̃αa = αa + α̂f ,

ˆ̃
βa = βa + m̂Mw

for all τa ∈ (ET fw+1 \ ETw)
ˆ̃αi ≤ τ̂i ≤ ˆ̃

βi with ˆ̃αi = max {α̂i, α̂f} , ˆ̃
βi = β̂i

for all τi ∈ (ETw ∩ ET fw+1).

2.4.2 Properties of the Absolute Tree

The following theorems establish the fundamental properties of the absolute
tree construction.
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Theorem 10. Let 〈τ1, . . . , τk〉 be any k-NT-class of some TS S, whose absolute
tree T hosts the inequality α̂ ≤ τ̂k ≤ β̂ for τk in D̂k−1. Then, for all (real) times
t, there exists some NT-evolution in the chosen NT-class where τk fires at t if
and only if:

t ∈
[
α̂f , m̂Mk−1

]
.

Proof. The proof goes by induction on the length k of the chosen NT-class.

Base case. Let k = 1; then the NT-class is just 〈τ〉, and D̂0 contains the
inequality α̂ ≤ τ̂ ≤ β̂ with α̂ ≤ m̂M0. Any transition τx ∈ ÊT 0 such that
α̂x ≤ τ̂x ≤ β̂x = m̂M0 is in D̂0 must fire within m̂M0. The same holds for
any transition that fires before τx. Hence, τ can fire anywhere in the interval
[α̂f , m̂M0], which proves the base case.

Inductive step. Assume that the theorem holds for all NT-classes of length
n. Let us consider a generic NT-class 〈τ1, . . . , τlast, τn+1〉 of length n+ 1. Since
〈τ1, . . . , τlast〉 is a valid NT-class of length n, for every instant u ∈ [α̂last, m̂Mn−1]
there exists a valid evolution in the class such that τlast fires at u, as (α̂last ≤
τ̂last ≤ β̂last) ∈ Dn−1.

Now, we consider two cases for τn+1 = τf .

1. τf has been enabled by the firing of τlast, i.e., τf ∈ ÊTn \ ÊTn−1. Then,
its absolute firing interval is [α̂last+αf , m̂Mn−1+βf ]. However, the actual
firing interval of τf is also bounded above by the firing time bounds of the
other enabled transitions, so it is actually [α̂last + αf , m̂MN ]. Recall that
(α̂f ≤ τ̂f ≤ β̂f ) ∈ D̂n and α̂f = α̂last +αf by construction; this closes the
current case.

2. τf was already enabled when τlast fired, i.e., τf ∈ (ÊTn−1 ∩ ÊTn). Now,
the firing interval of τf is bounded from below by the firing interval of
τlast—which fires immediately before τf—and from above by the firing
time bounds of the other enabled transitions. Hence, the firing interval
of τf is [max {α̂last, α̂f} , m̂Mn]. Recall that ˆ̃αf = max {α̂last, α̂f} by
construction, which concludes this case as well.

Corollary 11. Let 〈τ1, . . . , τi, . . . , τk〉 be any k-NT-class of some TS S, with
i < k, whose absolute tree T hosts the inequality α̂i ≤ τ̂i ≤ β̂i for τi in D̂i−1.
Then, there exist two real numbers m,M such that α̂i ≤ m ≤ M ≤ m̂M i−1

and, for all NT-evolutions in the chosen NT-class, τi fires within the interval
[m,M ].

2.4.3 Combining the Relative and Absolute Tree

Let us now show how to combine the information hosted by the relative and
absolute trees to build a complete temporal profiling for NT-evolutions in an
NT-class. The procedure can be repeated for all k-NT-classes to have a complete
profiling of all NT-evolutions.

For clarity, we introduce the additional notational convention of superscript-
ing bounds of the relative tree with a w, such as in αw ≤ τ ≤ βw, whereas the
corresponding bounds in the absolute tree are hatted. Also, we introduce the
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operator ] such that ](τ) = i iff τ is the i-th transition firing in the considered
NT-class.

The class list. Let us consider some TS S, its relative and absolute trees
T r, T a, and some k-NT-class 〈τ1, . . . , τk〉. We introduce a new data structure,
called class list. See Figure 1 for reference.

....

............

....

....

....

....

....

....

〈ET0, D0, mM0〉

〈ET a
1 , Da

1 , mMa
1 〉

〈ET b
2 , D

b
2, mM b

2〉

〈ET c
3 , D

c
3, mM c

3〉 〈ÊT
c

3, D̂
c
3, m̂M

c

3〉

〈ÊT
b

2, D̂
b
2, m̂M

b

2〉

〈ÊT
a

1, D̂
a
1 , m̂M

a

1〉

〈ÊT 0, D̂0, m̂M 0〉
τa

τb

τc

τd

〈τa, DF a
1 , DV a

1 〉
�(τa) = 1

〈τb, DF b
2 , DV b

2 〉
�(τb) = 2

〈τc, DF c
3 , DV c

3 〉
�(τc) = 3

〈τd, DF d
4 , DV d

4 〉
�(τd) = 4

α̂0
a ≤ τ̂a ≤ m̂M0

α̂1
b ≤ τ̂b ≤ m̂M1

α̂2
c ≤ τ̂c ≤ m̂M2

α̂3
d ≤ τ̂d ≤ m̂M3

Class list:Relative tree: Absolute tree:

Figure 1: Portions of the relative and absolute tree, and of the class list for the
NT-class 〈τa, τb, τc, τd〉.

The list has size k, and every element is a triple:

〈τf , DF fi , DV
f
i 〉

with i = ](τf ), where:

• τf is the i-th transition in the NT-class;

• DF fi is a set of constraints on the absolute firing time of τf , in the form:

mi
f ≤ τ̂f ≤M i

f

with mi
f and M i

f rational constant. Note that, since all inequalities in
DF fi are in the only variable τ̂f , we can actually consider DF fi as a unique
inequality;

• DV fi is a set of constraints on the absolute firing times of pairs of transi-
tions, in the form:

τ̂x +mi
x ≤ τ̂f ≤ τ̂x +M i

x

with mi
x and M i

x rational constants, and τx such that ](τx) < ](τf ). Sim-
ilarly as for DF fi , we can regard DV fi as a unique inequality.
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Building the class list. First, all k elements in the class list are initialized
as follows. For every triple τf , DF

f
i , DV

f
i :

• τf is such that ](τf ) = i;

• DF fi =
{
α̂i−1
f ≤ τ̂f ≤ m̂M i−1

}
;

• DV fi = ∅.

Then, there are k − 1 iterations of the following procedure, starting respec-
tively from the last element in the list, from the second-to-last element, and so
on down to the second one.

For the n-th element, let τf denote the corresponding transition such that
](τf ) = n. The procedure performs the following steps:

1. To update DV fn , we walk backward on the path in the relative tree which
starts from the node of depth n− 1, until we reach some node at depth h
such that τf 6∈ ETh. Then, for every node on the walked path (excluding
possibly the root node) which hosts some inequality αx̄f ≤ τf ≤ βx̄f in Dx̄,
where x̄ = ](τx), we add the following inequality to DV fN :

τ̂x + αx̄f ≤ τ̂f ≤ τ̂x + β̆x̄f where β̆x̄f =

{
mMx̄ if x̄ = N − 1
βx̄f if x̄ < N − 1.

2. For each pair of inequalities in DV fn of the form:{
τ̂x +mn

x ≤ τ̂f ≤ τ̂x +Mn
x

τ̂y +mn
y ≤ τ̂f ≤ τ̂y +Mn

y

with ](τy) > ](τx) and ȳ = ](τy), the following inequality is added to
DV yȳ :

τ̂x + max
{

0,mn
x −Mn

y

}
≤ τ̂y ≤ τ̂x + (Mn

x −mn
y ).

3. For each transition τx appearing in an inequality of DV fn of the form
τ̂x + mn

x ≤ τ̂f ≤ τ̂x + Mn
x with DF fn = {mf ≤ τ̂f ≤Mf}, the following

inequality is added to DF xx̄ :

mf −Mn
x ≤ τ̂x ≤Mf −mn

x .

Building an NT-evolution. Let us now briefly discuss how a particular
NT-evolution can be built relying on the information the class list provides. We
start from the first element in the list, where τ̂f1 is the only free variable in
the inequalities in DF 1

1 , and we pick a firing time τ̂f1 which respects all such
inequalities. Then, we replace any occurrence of τ̂f1 in all inequalities in all DV
sets in the class list with the chosen value, and we move the resulting inequality
in the corresponding DF sets. Next, we move to the second element of the
class list, and so on until we have built a complete set of firing times for our
NT-evolution.
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2.4.4 Properties of the Class List

The correctness of the class list construction is proved by the following lemmas.

Lemma 12. Let L be the class list for a k-NT-class of a TS S. All NT-
evolutions of the class respect the constraints of L.

Proof. From the properties of the relative and absolute trees, the inequalities in
the class list are necessary conditions for every NT-evolutions. More precisely,
at the initialization of the list the necessary constraints from Corollary 11 are
added to the DF , while in step 1 of the algorithm for building the list the
necessary constraints from Theorem 8 are added to DV .

Let us now consider a generic triple 〈τf , DF fi , DV
f
i 〉 in the class list. For

every pair of constraints in DV fi of the form:{
τ̂x +mx ≤ τ̂f ≤ τ̂x +Mx

τ̂y +my ≤ τ̂f ≤ τ̂y +My
(1)

such that ](τy) > ](τx), we immediately realize that:{
τ̂x +mx ≤ τ̂y +My

τ̂y +my ≤ τ̂x +Mx.

Moreover, from τ̂y > τ̂x, we get the constraint corresponding to step 2 of the
algorithm:

τ̂x + max {0,mx −My} ≤ τ̂y ≤ τ̂x + (Mx −my). (2)

Thus, if an NT-evolution does not respect (2) it would not respect (1) either.
The latter contradicts Theorem 8, hence every valid NT-evolution respects the
constraints introduced by step 2. Finally, let DF fi = {mf ≤ τ̂f ≤Mf}, and let
us consider the constraints introduced in step 3 of the algorithm for building
the class list. For every τe such that (τ̂e + me ≤ τ̂f ≤ τ̂e + Me) ∈ DV fi , the
constraints are built as follows:{

mf ≤ τ̂f ≤Mf

τ̂e +me ≤ τ̂f ≤ τ̂e +Me
⇒
{
mf ≤ τ̂e +Me

τ̂e +me ≤Mf
⇒ mf−Me ≤ τ̂e ≤Mf−me.

(3)
Hence, if an NT-evolution does not respect (3) it would not respect the con-
straints in DF fi either, and correspondingly the initialization constraints as well.
The latter contradicts Corollary 11, hence every valid NT-evolution respects the
constraints introduced by step 3 of the algorithm building the class list.

Lemma 13. Let L be the class list for a k-NT-class of a TS S. All NT-
evolutions respecting the constraints of L are valid NT-evolutions of the chosen
class.

Proof sketch. The proof is straightforward from the proof of Lemma 12.
In particular, the iterations of the algorithm for building the class list start

from the last element of the list, corresponding to the last transition. From
Theorem 10 there exists a valid NT-evolution in the chosen class for every instant
of the interval defined by the inequality for τfk

in DV fk

k , where ](τfk
) = k. Also,

Theorem 9 entails that there exists some valid NT-evolution for the chosen class
for every firing time of τfk

satisfying the inequality which links it to the firing
time of τfk−1 , with ](τfk−1) = k − 1.
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Let us still focus on the first iteration of the algorithm. Step 1 adds to DV fk

k

all constraints from Theorem 8, which are necessary for every NT-evolution.
Step 2 combines these constraints in all possible ways to obtain constraints for
transitions firing before τfk

. Step 3 combines the constraints generated in step 1
with the absolute firing time τfk

suggested by Theorem 10, so that the absolute
firing interval of transitions firing before τfk

is suitably restricted.
Then, let us move to the iteration of the algorithm corresponding to the

firing of τfi
, with ](τfi

) = i < k. As above, step 1 adds all constraints from
Theorem 8. Also, in any i-NT-evolution of the chosen class (restricted to the
first i steps) τfi can fire at any instant of the interval given by the corresponding
inequality in DF fi

i , and also at any instant satisfying the inequality added in
step 1 which links it to the firing time of τfi−1 . As a result of the previous itera-
tions, every k-NT-evolution where τfi

has a firing time satisfying the constraints
in DV fi

i is a valid NT-evolution for the chosen class. Otherwise, τfi
could not

fire at any instant of time satisfying the constraints in both DV fk

k and DF fk

k ,
in contradiction with Theorems 9 and 10.

Finally, the two lemmas can be collected in the following.

Theorem 14. Let L be the class list for a k-NT-class of a TS S. Any NT-
evolution is valid for the chosen NT-class if and only if it respects all constraints
in L.

2.4.5 Complexity of Real-Time Profiling

Let us quickly sketch a time complexity analysis for the class list building al-
gorithm. The worst-case scenario is when all transitions are initially enabled.
Then, every iteration of step 1 walks from the current node to the root node,
hence overall step 1 takes a time proportional to

∑
i=1,...,k i = O(k2). Step 2

combines all pairs of inequalities in DV ; in the worst case the i-th element in
the list has exactly i− 1 inequalities in DV . Hence overall step 2 takes a time
proportional to

∑
i=1,...,k(i−1)2 = O(k3). In step 3 every iteration takes a time

proportional to the number of inequalities in DV , hence overall it takes time∑
i=1,...,k(i− 1) = O(k2).
All in all, building the class list for a single k-NT-class takes time O(k3),

while building the class list for all possible k-NT-classes of a TS S takes time
O(nkk3).

2.5 Timed Petri Nets

Timed Petri Nets (TPNs) [22] are a popular real-time extension of the classical
Petri Nets [24], introduced by C. A. Petri in 1962 as a modeling tool for discrete
event systems. TPNs are devoted to deal with real time systems and they can
be seen as a form of STSs. In the following, we describe first how to generalize
TSs to STSs, and then how to describe TPNs as STSs.

2.5.1 From TSs, to STSs, to TPNs

In TSs, each transition, when it fires, disables all the occurrences of some transi-
tions and enables a certain number of other occurrences. Such a firing semantics
can be extended by introducing explicitly the concept of state.
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Definition 15. A state/transition system (STS) S is a quadruple 〈T,Q, q0, δ〉,
where:

• T is the set of transitions of the system;

• Q is the set of states of the system (possibly infinite);

• q0 ∈ Q is the initial state of the system, i.e., the state of the system at
time t = 0;

• δ : Q × T × Q≥0 → Q is the (partial) transition function; δ(q, τ, t) = q′

denotes that the system in state q, with transition τ firing at time t moves
instantaneously to state q′.

The state of a system is defined as follows.

Definition 16. A state q ∈ Q of a STS S = 〈T,Q, q0〉 is a pair 〈id, {〈τi, xi〉}i〉
where:

• id is a unique identifier;

• {〈τi, xi〉}i a set of couples 〈τi, xi〉, where:

– τi is an occurrence of a transition in T , which is enabled in q;

– xi is the absolute enabling time of τi.6

The system evolves from a current state qn to the next state qn+1 as a result
of the firing of some transition τf , enabled in qn. The firing time must be
feasible, i.e., it must be included in the dynamic firing interval of τf and it
must be less than or equal to the minimum of the maximum firing times of the
transitions enabled in qn. The firing will disable τf , and possibly some other
transitions enabled in qn, and it will enable some new transitions.

We remark that STSs are a generalization of TSs. In fact, according to the
above definition, two different states may have the very same set of transitions
and enabling time instants, and differ only by their identifiers. This was not
possible with TSs where an implicit “state” was simply identified by a set of
enabled transitions and enabling times. Another difference of STSs with respect
to TSs is that in the former the effect of a firing (that is the choice of the next
state) depends in general on the current state, the fired transition, and its firing
time, rather than just on the firing transition as it was the case with TSs.

Now, we introduce timed Petri nets and show how to describe them as STSs.7

Definition 17. A timed Petri net is a tuple 〈P, T,B, F,M0,SIM〉, where,

• P is a finite non-empty set of places (a.k.a. locations);

• T is a finite non-empty set of transitions;

• B : P × T → N is the backward incidence function (BIF);

6Correspondingly, the dynamic firing interval of τi is [xi + αi, xi + βi].
7The terminology used in the real-time modeling literature sometimes distinguished be-

tween timed Petri nets and time Petri nets. Both are real-time extensions of standard Petri
nets, but with different semantics. For uniformity, in this paper we call our model timed Petri,
and we refer to [3] for a discussion of the subtle differences between model variants.
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• F : T × P → N is the forward incidence function (FIF);

• M0 : P → N is the initial marking;

• SIM : T → Q≥0 ×Q≥0 ∪ {∞} is the static interval function.

Figure 2 provides some intuition about the graphical representation of a
TPN. Places are pictured as discs and labeled P1, P2, . . .; a shaded box repre-
sents transition T . Arrows link transition to places (according to the forward
incidence function), and places to transitions (according to the backward inci-
dence function). The initial marking is represented by tokens filling some places,
according to the mapping M . Finally, the static firing interval is depicted nexto
to each transition, in accordance with the function SIM.

P1

T

P2

P3

M(P1)=1

B(P2, T)=1

F(T, P3)=1

[Ti,Tf]

Figure 2: A timed Petri net fragment

Let us now describe how to formalize a TPN by means of a STS. Basically,
for each transition τi ∈ T , the static interval function gives the static firing
interval, i.e., SIM(τi) = [α, β]. If xi is the enabling instant of a transition τi,
the dynamic firing interval is [α+xi, β+xi]. Correspondingly, we can associate
introduce a notion of state to describe the evolution of TPNs.

Definition 18. A state s of a TPN is defined as a pair 〈M, I〉, where:

• M : P → N is the current marking function;

• I is the set of firing intervals of the transitions that are enabled in the
current state, described as α̂i ≤ τi ≤ β̂i. These intervals are relative to
the instant at which the TPN reached the current state; α̂i and β̂i are the
earliest and the latest firing time, respectively.

Given a current state s = 〈M, I〉 of a TPN, for all transitions τi ∈ T ,
the number n of instances of enabled transitions τi in s must be such that
M(pj)− nB(pj , τi) ≥ 0, for all places pj ∈ P . This gives a necessary condition
for a transition to fire. Then, unless no other transition firing modifies the
current state, a transition cannot fire before its earliest firing time and must fire
before the minimum latest firing time of the transitions enabled in s. If many
occurrences of the same transitions are enabled in a state, only one can fire in
s. This description is enough to formalize a TPN as a STS.
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2.5.2 Profiling Timed Petri Net Behavior

We have shown that TPNs fit the definition of STSs. As a consequence, let us
now show how to apply the analysis technique of Section 2.3 directly to TPNs.

All we need is a procedure to update the state of a TPN as a consequence
of a transition firing. So, let us consider a TPN in a state s = 〈M, I〉 at time
ts. Let us assume that some transition τx can fire at time ts + θ. The state
s′ = 〈M ′, I ′〉, reached as a consequence of τx firing at the relative time instant
θ, is computed as follows.

1. for all places pi ∈ P : M ′(pi) = M(pi)−B(pi, τx) + F (τx, pi);

2. I ′ is obtained from I as follows:

(a) remove from I all inequalities corresponding to the transitions dis-
abled by τx; such transitions are those enabled in M(·) but not in
M(·)−B(·, τx), including τx;

(b) translate the time bounds of every inequality by θ; that is every
inequality α ≤ τ ≤ β becomes:

α′ = max{0, α− θ}
β′ = β − θ

(c) add to I all inequalities corresponding to transitions enabled by τx;
such transitions are those not enabled in M(·)−B(·, τx) and enabled
in M ′(·) = M(·)−B(·, τx) + F (τx, ·).

An example of TPN modeling and (informal) analysis. Consider, as
example, the consumer/producer model presented in the introduction. It can
be modeled formally by the TPN of Figure 3. Such a TPN is defined by the
tuple 〈P, T,B, F,M0,SIM〉, where:

• P = {L0, L1};

• T = {p, c};

• B(L0, p) = 1, B(L0, c) = 0, B(L1, p) = 0, and B(L1, c) = 1;

• F (p, L0) = 1, F (p, L1) = 1, F (c, L0) = 0, and F (c, L1) = 0,

• M0(L0) = 1 and M0(L1) = 0;

• SIM(p) = [Ap, Bp] and SIM(c) = [Ac, Bc]

Let us assume initially Ap = Ac = Bp = Bc = 1. Then, no transition
is initially enabled, but after exactly 1 time unit, since L0 is initially marked,
p will become enabled. At that time instant, p has to fire because it is the
only enabled transition and its latest firing time equals its earliest firing time.
When p fires, the net goes to a new state where L0 and L1 are marked and no
transition is enabled. After 1 additional time unit, both p and c are enabled
and they both have to fire, again because their firing intervals are singletons.
Conceptually, they both fire at the same time, but technically one of the two
fires first, without consuming any time, and the systems goes in a new state
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L0

L1

p 
[Ap, Bp]

c 
[Ac, Bc]

Figure 3: Consumer/producer example modeled with a TPN

in which only the one that did not fire is still enabled. In this new state the
enabled transition has to fire immediately and the TPN goes back to the initial
marking.

This trivial behavior changes significantly if we enlarge the firing time inter-
vals. Take, as second example, Ap = 1, Bp = 2, Ac = 3 and Bc = 4. Transition
p is enabled after 1 time unit from the beginning and it can fire at any time
instant between 1 and 2. After it fires at some t0 ∈ [1, 2], both L0 and L1 are
marked, and consequently p can fire again between at any time between t0 + 1
and t0 + 2, while c will become enabled only at t0 + 3. This means that p will
have fired twice before c will have fired for the first time. This behavior accu-
mulates over time so that it is easy to see that the number of markings in L1

grows unbounded over time.

3 Case Study

In this section we employ the proposed technique to analyze the behavior of a
TPN, modeling the implementation of an active braking control system. Specif-
ically, we will show how the analysis tools presented in this work can provide
valuable information for the verification of several aspects of embedded safety-
critical control systems, such as a braking controller.

The idea is that, once the structural properties of the closed-loop system
have been formally proved via Control Theory methods, before moving to the
industrialization of such control system several other issues need to be taken
into account.

In our case, the control code would be sufficiently simple to guarantee that,
once the controller is turned into control code, no structural problems, such
as deadlocks, occur. In more complex cases this implementation step could be
validated through techniques such as Model Checking.

Then, it is necessary to fix the hardware lay-out of the Electronic Control
Unit (ECU) which hosts the control code, and to design the whole vehicle net-
work, i.e., the physical connection between the sensors, the ECU itself and the
actuators. Usually, in Automotive applications, a CAN bus is used for signal
transmission, [17]. Like many serial communications protocols, the CAN proto-
col transmits frames of data as a temporal sequence of bits, whereas information
is encoded by alternating the medium between two possible voltage levels.

21



In control networks, communication protocols can be divided according to
two fundamentally different principles of message transfer. These are syn-
chronous (time-triggered) and asynchronous (event-triggered) models. In an
event-triggered communication system, transactions are triggered by the occur-
rence of some external events, such as the pressing of a button or the firing of
a fuel injector. This type of communication is essentially sporadic in nature
where, for real-time operation, the message release period is quantified between
worst-case and best-case time scenarios.

In a time-triggered system, message transactions are initiated based on the
progression of time. Using such a principle each node member of the network is
assigned a time when it may transfer a message on the network. Such a model
is similar to a TDMA (Time Division Multiple Access) scheme with each node
respecting the sense of global time which exists in the network ensemble. Each
node possesses a local clock and a message transaction schedule which dictates
when it may transmit and when it may expect to receive a particular message.

Recently, the CAN buses devoted to safety-critical applications employ a
dedicated protocol, the Time Tiggered CAN (TTCAN), [19], which enforces
real-time synchrony among the signals. The TTCAN is a time-triggered pro-
tocol, where the exchange of messages is controlled essentially by the temporal
progression of time. The exchange of a specific message may only occur at a
predefined point in relative time during time-triggered operation of the protocol.
The static schedule sequence is based on a Time Division Access (TDA) scheme
whereby message exchanges may only occur during specific time slots or time
windows.

It is worth noting that, when a controller has been proved to provide sta-
bility and robustness properties of the closed-loop system in a control-theoretic
sense, these properties hold with the implicit assumption that the inputs and
outputs of the control system are available synchronously at predefined time in-
stants, and that the controller performs the needed computations in a nominal
predefined time interval. Clearly, when moving to the final hardware, the overall
embedded system must be proved to preserve such properties. So, as both sig-
nal transmission and ECU processing can only be in fact quantified to happen
within a certain time interval, modeled as a best-case/worst-case scenario, the
TPN-based formal verification can provide crucial information on all the possi-
ble system behaviors (note that, now, with system we indicate the control code
embedded in the vehicle network). First of all it provides the equivalence classes
to which the nominal behavior belongs. By looking at these classes in terms
of upper-bound on the time intervals, the designer is given a formal indication
which may guide hardware sizing; in fact, if cost-constraints are tight, as it is
usually the case in Automotive applications, the idea is to seek for the cheapest
hardware which is capable of guaranteeing the needed performance level.

Further, it is interesting to model and prove the fact that, when the control
code routine starts, all the data provided as inputs refer to the same measure-
ment interval (input consistency) and that the output sent to the actuators are
also read with correct timing (output consistency).

The section is now devoted to briefly illustrate the considered application,
which will be then formally described with a model suitable for the TPN anal-
ysis framework. Then, we explicitly consider the upper and lower bounds on
the various steps of the code execution—from sensor measurements to actua-
tors inputs—and we extract the NT-classes for the given model. Finally, we
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discuss how, thanks to these analysis tools, we can formally prove the semantic-
preservation properties of the overall control code and data flow and gain infor-
mation which can guide the hardware sizing for the final implementation.

3.1 Application Description

The considered application is an ABS controller based on a Hydraulic Braking
System (HAB) actuator, which is the standard braking system on most com-
mercial cars. Clearly, ABS controllers are indeed a safety critical application,
as they have to take care of managing panic-brakes which cannot be handled
by common drivers. The design of an appropriate controller which is capable of
inducing a stable limit cycle on the wheel slip, i.e., the difference between the
vehicle and wheel speed (which is the controlled variable in most ABS systems)
has been presented in [29] and [28]. In these works it has been shown that the
proposed controller can guarantee the desired stability properties of the closed
loop system based on system theoretic techniques. Here, we only briefly illus-
trate the controller structure, which is described by means of a Finite State
Machine (FSM), as it is the starting point for the following formal analysis of
its behavior when implemented on the vehicle ECU. In this respect, we will also
present the physical layout of the considered vehicle network, as it will serve as
a basis for the NT-classes derivation.

Figure 4: Schematic view of the single-corner model.

System and actuator model. The braking dynamics have been modeled
based on a quarter car model, [11], [26]. The model is given by the following
equations (see also Figure 4)

λ̇ = −1− λ
Jω

(Ψ(λ)− Tb) , (4)

with ω > 0 and

Ψ(λ) =
(
r +

J

rm
(1− λ)

)
Fzµ(λ). (5)

where λ is the longitudinal slip, which—during braking—is defined as λ =
(v− ωr)/v, λ ∈ [0, 1], ω [rad/s] is the angular speed of the wheel, v [m/s] is the
longitudinal speed of the vehicle body, the function µ(λ) describes the tire-road
friction conditions, Tb [Nm] is the braking torque, Fz [N ] is the vertical load,
J [kgm2], m [kg] and r [m] are the moment of inertia of the wheel, the quarter-
car mass, and the wheel radius, respectively.
As mentioned, the considered actuator is an HAB, [25] in which the pressure
exerted by the driver on the pedal is transmitted to the hydraulic system via a
Build Valve which communicates with the brake cylinder (see Figure 5). The
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hydraulic system has a second valve, the Dump Valve, which discharges the
pressure and which is connected to a low pressure accumulator. According to

Figure 5: Qualitative scheme of the considered braking system.

its physical characteristics, the HAB actuator is only capable of providing three
control actions. Increase the brake pressure: in this case the Build valve is open
and the Dump one closed; Hold the brake pressure: in this case both valves are
closed; Decrease the brake pressure: in this case the Build valve is closed and
the Dump one open. Finally, we assume a static brake-pads friction model, i.e.,
the braking torque Tb is computed from the measured brake pressure pb as Tb =
rd χApb, where rd is the brake disk radius; χ is the (constant) brake pad friction
coefficient; A is the brake piston area and pb is the measured brake pressure.
The increase and decrease pressure actions are physically limited by the actuator
rate limit, i.e., dTb

dt = k, where the rate limit k ∈ R+ is a known parameter.
Its nominal value in the following simulations will be set to 10 kNm/s, [23].
Accordingly, the controller design is based on the hybrid system made of the
connection between the wheel dynamics (4) and the hydraulic actuator, namely

λ̇ = −1− λ
Jω

(Ψ(λ)− Tb) ; Ṫb = u, (6)

where u = {−k, 0, k} and Ψ(λ) is as in (5). According to the value of the control
variable u we have three possible closed-loop dynamics, where u = −k corre-
sponds to the Decrease control action, u = 0 to the Hold control action and
u = k to the Increase control action.
As shown in [29], a controller which guarantees closed-loop stability of the brak-
ing system is that shown in Figure 6.

By analyzing Figure 6 one can see that we employ the braking torque Tb and
the wheel slip λ as switching variables and that the switching conditions change
according to the current discrete controller state q = {0, 1, 2, 3}. The thresholds
values TbMin, TbMax, λMin, and λMax which enable the transitions between the
different states are chosen by the designer to guarantee a good trade-off between
performance and safety in all driving conditions. Moreover note that, due to the
specific application, we can assume that (in normal operating conditions) the
controller—upon activation—enters the state q = 0 associated with the Increase

24



Figure 6: Finite State Machine description of the hybrid controller.

control action. In fact, when the braking maneuver begins, the controller is
usually activated when the wheel slip λ reaches a predefined threshold value
λInit < λMin. Finally, note that the hybrid controller is composed of four
discrete states q = {0, 1, 2, 3}, each of which has an associated control action,
that is uq=i = {k, 0,−k, 0}, i = 0, . . . , 3.

3.2 Formalization and Analysis

Before introducing the formalization of the considered controller, we briefly de-
scribe the hardware/software lay out in the final vehicle implementation, which
is shown in Figure 7. As can be seen, the vehicle is equipped with 5 sensors,
i.e., four encoders to measure the wheel speeds, by means of which the wheel
slip λ is obtained and a pressure sensor, which allows to compute the braking
torque Tb. By processing such sensor measurements, the control algorithm can
be executed to provide the control action. As far as computational resources
are concerned, the vehicle is equipped with an ECU which processes sensors
outputs and executes the controller routine. Finally, the controller output is
sent to the HAB which actuates it. The signal communication is managed by
the vehicle BUS, which is assumed to work according to the TTCAN proto-
col. As for nominal performances—stated in terms of timing of the different
actions—generally on car networks the CAN bus works with a nominal time
interval which is either of 5 or 10 ms (100-200 Hz of sampling frequency), and
the braking controller should guarantee to complete the computations accord-
ingly. Note that, usually, vehicle ECU possess very simple operating systems,
in which there are different time slices whose duration is an integer multiple of
the smallest (generally down to 1 ms), and each application is assigned one fixed
time slice according to the priority of the performed operation, which is related
to the associated safety level, e.g., air conditioning is computed every—say—1 s,
while the braking controller every 5 ms.
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Figure 7: Vehicle network lay-out.
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Figure 8: TPN modeling the case study.

3.2.1 TPN Model

Considering the description of the hardware/software lay out of the vehicle in
Figure 7 and of the controller, the introduced case study can be modeled using
the TPN shown in Figure 8.

The TPN is composed of 11 places and 7 transitions. Each place labeled
with Si represents a sensor devoted to measuring either the speed of a wheel
or the braking pressure. The marking in this kind of place means that the
correspondent sensor has just collected a datum. Each place Si is connected
with a transition ti that is enabled with a firing interval [Ati , Bti ]. A transition
ti models the transmission of the collected datum to the control system and,
once the datum is collected, it has to fire after Ati time units and within Bti
time units. When such a transition fires, a fresh token is placed both in the
place Si and in the place Vi. The token in Si means that the sensor collects
a new datum as soon as it has sent the old one, while the token that reaches
Vi represents the acquisition, made by the control system, of the last datum
provided by the sensor i. Notice that we do not distinguish among different
tokens. Thus, if a token is already present in Vi, once ti fires and a new token
reaches Vi, the two tokens in Vi are undistinguishable.
Transition c represents the computation of the value to be actuated and this is
why it needs a token in all the locations labeled with Vi to be enabled. Indeed,
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in order to perform this calculus the control system needs the data from all
the sensors. The firing of c generates a token in place AV , that means the
actuation value is ready to be applied and it will be actuated when transition
a fires. Currently we consider the static firing intervals as symbolic variables
where, for each transition k, Ak ≤ Bk, and henceforward we will assign to them
different values in order to show how they can influence the system behavior.

3.2.2 TPN Analysis

Since, as already noticed, we cannot distinguish among tokens in a place accord-
ing to their arrival time, in many parts of the net the values assigned to the firing
intervals are crucial. In other words, the temporal behavior of the components
of the braking system influence the correctness of its implementation. Let us
now carry on a guided analysis of such correctness features by discussing infor-
mally the results of various runs of our enumeration algorithm on the presented
TPN model. We will see how these results map directly back on features of the
controller implementation that should be assessed at design time. Throughout
this section, all time units are in milliseconds, unless otherwise specified.

Consider for example the following values for the marking function M(V1) =
M(V2) = M(V3) = 1, M(V4) = 1, M(V5) = 2 and M equal to 0 for all the
other places. This situation can be easily obtained from the initial marking
if the upper bound Bt5 of transition t5 is half of the lower bound Ati , with
i = 1, 2, 3, 4 of transitions t1, t2, t3 and t4. In this situation, when transition
c fires, it consumes the single tokens in V1, V2, V3 and V4, and one of the two
tokens in V5. However, these tokens correspond to two different acquisitions of
data by the corresponding sensor, whereas the calculation performed by c would
be coherent only if using the more recent one.

This example suggests the introduction of requirements on the firing intervals
such that the following properties are met by all evolutions:

• once a datum is collected, the control action is either performed or the
datum is discarded and the actuation is eventually performed within a
fixed amount of time;

• the calculation of the value to be actuated is performed on coherent data
(input consistency) and using the most recent ones.

A very simplified hypothesis that meets these requirements considers only
deterministic firing intervals. Determinism is obtained by defining, for each
interval, the lower bound equal to the upper bound. Moreover we impose all
sensors intervals to be equal8, Ac = Bc ≥ Aa = Ba, and Ati ≥ Ac + Aa. This
means that we are assuming a controller that computes the actuation value
more slowly than the actuator performs the control action, and sensors that
produce data more slowly than the whole sequential process of computing and
performing the actuation. In this case, one can check through the analysis tool
that the number of possible tokens in each place will be bounded by 1. This
means that, considering a place p with a token in it, the preceding transition
takes more time to produce a new token than the time needed by the following
transition to consume the one in p. Since by definition two transitions cannot

8Notice that this constraint is not necessary to guarantee the system requirements but it
is useful for illustration purposes.
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Figure 9: A part of the TPN modified to implement the bin technique.

fire simultaneously, working with these constraints, the number of obtained NT-
classes is (5!)n, where n is the number of times the control action is performed.
Indeed, the constraint Ati ≥ Ac + Aa guarantees that no datum is collected
before the actuation due to the previous data is performed. Hence the only
possible inversion among the firings of the transitions is due to the firing of the
transitions representing the transmission of the data collected by the sensors.
This means that practically there is only one equivalence class where all the
sensors fire at the same time instant. A run of our algorithm with the sample
values Ati = Bti = 10, Ac = Bc = 5 and Aa = Ba = 4 confirms the analysis
sketched above.

Let us now relax the hypothesis on the sensors and only require Ac =
Bc ≥ Aa = Ba, maxi∈{1,2,3,4,5}(Ati) ≥ Ac + Aa and maxi∈{1,2,3,4,5}(Ati) −
mini∈{1,2,3,4,5}(Ati) ≤ mini∈{1,2,3,4,5}(Ati). In this case, we cannot guarantee
the bound on the number of tokens in the places. The last constraint sug-
gests that the time taken by the sensors to collect data varies within a small
interval; however, since the sensors work in parallel, after a while the faster
sensor will collect data that it cannot consume. Let us notice, however, that
the hypothesis of having identical sensors is quite realistic, whereas the hypoth-
esis of determinism stated above is quite unrealistic, because it implies that all
the element of the system are flawless instruments that always perform with
exact timing. Hence, consider the case in which all the sensors are identical,
Ac ≥ Ba and Ati ≥ Bc + Ba, but the determinism constraint is relaxed. Now,
the number of tokens in each place is still bounded by 1, and furthermore we
can find interesting information about the NT-classes. Namely, even in this case
we have (5!)n NT-classes, but we notice that a complete control flow, from data
acquisition to actuation, can be performed by different control actions that are
significantly different in terms of execution time.

Even more significant are the cases in which we relax all the constraints and,
as a consequence, we cannot guarantee a bound on the number of tokens in the
places. Consider for example the case in which, all the sensors and actuators
behave equally with [8.5, 10] as firing interval (the CAN bus work nominally
at 100 Hz), and the computation (transition c) occurs within the time interval
[4, 5] (the control routine is assigned a nominal time slice of 5 ms by the oper-
ating system). We find NT-traces of length 8 such as 〈t1, t2, t3, t4, t5, c, t1, t2〉,
consuming from 17 to 18 time instants overall. The corresponding classes are
constrained by absolute intervals such that all traces within the interval are
equivalent. and these constraints guarantee all the firing time instant in the ob-
tained intervals are equivalent. The absolute firing intervals for these example
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traces are: [8.5, 9.5] (for t1), [8.5, 9.5] (for t2), [8.5, 10] (for t3), [8.5, 10] (for
t4), [9, 10] (for t5), [14, 15] (for c), [17, 18] (for the second occurrence of t1),
and [17, 18] (for the second occurrence of t2).

In these cases, we have to guarantee that the accumulated extra (old) tokens
are discarded. Consider for instance the previous numerical example, where
more than one token can accumulate in AV because the actuator is slower
than the computer. These situations are likely to occur in practice, where the
transmission delays from the controller out to the actuators are usually longer
than the time it takes to complete a control cycle.

In a proper implementation, only the most recent datum should be retained,
while the others have to be discarded. In an actual hardware implementation,
a straightforward solution to this problem would allocate a single memory slot
containing the latest provided datum. Then, when a new datum is computed it
simply overwrites the old one.

In terms of TPN, this solution can be modeled as shown in Figure 9. We
call this approach bin technique, since the stale data is discarded through a
new transition b which acts as a bin. This additional transition b is devoted
to consuming the extra tokens in AV : the idea is to leave a enabled by one
token in AV but, at the same time, additional tokens should be consumed by
b as soon as possible. In fact, whenever a new token is produced by transition
c, two copies of it simultaneously go in AV and bin. Then, the weight 2 on
the arc that connects bin with b means that transition bin is enabled by, and
consumes when it fires, exactly two tokens from bin. Since every token produced
by c is in both bin and AV , b is enabled if and only if there are (at least) two
tokens in both places bin and AV . When this is the case, b fires immediately,
consumes two tokens from bin and one from AV , and puts one new token in
bin. Overall, AV is left with one token and so is bin, so the two places always
have the same number of tokens, and always contain at most two tokens. Hence,
the bin technique guarantees a bound for the number of tokens in every place.
Also, the token in AV has enabled continuously transition a, which will fire
nondeterministically according to its firing interval. In other words, the token
discarding mechanism has been implemented in such a way that it does not
interfere with the regular functioning of the net.

Additional numeric experiments on the modified TPN show clearly that the
desired properties of a correct data collection and coherent control action are
guaranteed in a system where Bti = Btj = Ba > Ac for all i, j = 1, . . . , 5,
as long as we adopt the bin technique. This means that a realistic scenario,
where: (1) the times needed to read data from sensors are roughly the same
as those needed to transmit the control choices to the actuators, and (2) the
time to compute one cicle of control action is smaller than the latter times, is
compatible with a correct overall implementation of the control algorithm.

4 Lessons Learned

Now that the proposed methodology has been discussed with reference to a
realistic case study, some remarks in the form of a critical summary of the
overall analysis tools and of their expressiveness are in order.

First of all it is worth noticing that, to the best of our knowledge, this is one
of the first attempts to use formal methods (in the software-engineering sense [5])
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with the aim of supporting a real design step, rather than providing only yes/no
answers on some specific properties of a system, or about the satisfaction of some
requirements. As a matter of fact, using the proposed tool, the information it
provides may induce to reconsider the control design if certain timing constraints
are proved to be more or less severe than others or if they need higher priority
in the final system. These additional insights pay back the loss in terms of full
automation of the analysis phase. Moreover, the analysis also highlighted the
flexibility of the approach, as we showed how custom properties e.g., input and
output consistency, could be enforced by extending the base model.

Moreover, as it was shown by means of the case study analysis, it is rather
straightforward to exploit the information provided by the analysis tool as a
guide to hardware sizing. Section 3 revealed, in fact, that for the considered
application the nominal controller behavior can be guaranteed by choosing an
ECU which guarantees that the control routine executes in a shorter time with
respect to the sensor and actuators signal transmission. This suggests that
more resources should be devoted to the microprocessor selection, while a slower
(hence cheaper) bus can be selected. Also, by evaluating the upper and lower
bounds on the admissible transition firings, a certain degree of nondeterminism
in communication protocols can also be accepted.

Finally, note that the computational time needed to enumerate the NT-
classes can also be significantly reduced by clustering components which are
known to share the same behavior. Consider, as an example, the five sensors
of our case study. To evaluate possible differences in their timing behavior, two
instances of such sensors would in principle have been sufficient. In this way,
the number of NT-classes significantly reduces, without losing any significant
information.

Of course, the final goal is that such tools can find place in industrial prac-
tice. To this aim, the most crucial step would be to work on the development
of software interfaces which can provide the possibility of performing formal
analysis of the control code at a high level of abstraction, for example com-
municating directly with control software, such as Matlab/Simulink and the
like. For such purposes, specific wrapper tools should be developed, capable
of translating specific control architectures specified, for example, in terms of
finite state machines.

5 Concluding Remarks

This paper presented a tool-supported approach to the formal analysis of real-
time aspects in controller implementation. The analysis showed how to model
the overall embedded control architecture, considering sensors, actuators and
signal communications, and to prove that some desired properties of the control
loop are preserved in its implementation on a distributed architecture. Notably,
the information extracted automatically from the model can also be used to
approach some design problems, such as the hardware sizing in the final imple-
mentation. The effectiveness of the approach has been assessed on a realistic
case study describing an active braking controller.
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