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Abstract. The simple and often imprecise specifications that program-
mers may write are a significant limit to a wider application of rigorous
program verification techniques. Part of the reason why non-specialists
find writing good specification hard is that, when verification fails, they
receive little guidance as to what the causes might be, such as implemen-
tation errors or inaccurate specifications. To address these limitations,
this paper presents two-step verification, a technique that combines im-
plicit specifications, inlining, and loop unrolling to provide improved user
feedback when verification fails. Two-step verification performs two inde-
pendent verification attempts for each program element: one using stan-
dard modular reasoning, and another one after inlining and unrolling;
comparing the outcomes of the two steps suggests which elements should
be improved. Two-step verification is implemented in AutoProof, our
static verifier for Eiffel programs integrated in EVE (the Eiffel Verifica-
tion Environment) and available online.

1 The Trouble with Specs

There was a time when formal verification required heroic efforts and was the
exclusive domain of a small group of visionaries. That time is now over; but
formal techniques still seem a long way from becoming commonplace. If formal
verification techniques are to become a standard part of the software develop-
ment process—and they are—we have to understand and remove the obstacles
that still prevent non-specialists from using them.

A crucial issue is specification. Program correctness is a relative notion, in
that a program is correct not in absolute terms but only relative to a given
specification of its expected behavior; in other words, verified programs are only
as good as their specification. Unfortunately, many programmers are averse to
writing specifications, especially formal ones, for a variety of reasons that mostly
boil down a benefit-to-effort ratio perceived as too low. Writing formal specifica-
tions may require specialized skills and experience; and the concrete benefits are
dubious in environments that value productivity, assessed through simple quanti-
tative measures, more than quality. Why should programmers subject themselves
to the taxing exercise of writing specifications in addition to implementations,
if there is not much in it for them other than duplicated work?



There are, however, ways to overcome these obstacles. First, not all program
verification requires providing a specification because specifications can some-
times be inferred from the program text [8,24,18] or from observing common
usage patterns [14,37,36]. In particular, some useful specifications are implicit in
the programming language semantics: types must be compatible; array accesses
must be within bound; dereferenced pointers must be non-null; arithmetic oper-
ations must not overflow; and so on. Second, programmers are not incorrigibly
disinclined to write specifications [7,15,31], provided it does not require sub-
verting their standard programming practices, produces valuable feedback, and
brings tangible benefits. Interesting challenges lie in reducing the remaining gap
between the user experience most programmer are expecting and the state-of-
the-art of formal verification techniques and tools.

In this paper, we combine a series of techniques to improve the applicability
and usability of static program checkers such as Spec# [2], Dafny [27], or one
of the incarnations of ESC/Java [17,11,20], which verify functional properties of
sequential programs specified using contracts (preconditions, postconditions, and
class invariants). To enable verification of code with little or no specification, we
deploy implicit contracts, routine inlining, and loop unrolling. Implicit contracts
(described in Section 3) are simple contracts that follow from the application
of certain programming constructs; for example, every array access implicitly
requires that the index be within bounds. Routine inlining (Section 4) replaces
calls to routines with the routines’ bodies, to obviate the need for a sufficiently
expressive callee’s specification when reasoning in the caller’s context. Similarly,
loop unrolling makes it possible to reason about loops with incomplete or missing
invariants by directly considering the concrete loop bodies.

Implicit contracts, inlining, and unrolling—besides being directly useful to
improve reasoning with scarce specification—are the ingredients of two-step ver-
ification (Section 5), a technique to improve the usability and effectiveness of
static checking. Two-step verification performs two verification attempts for ev-
ery routine: the first one is a standard static checking, using modular reason-
ing based on programmer-written contracts (whatever they are) plus possibly
implicit contracts; the second one uses inlining and unrolling. Comparing the
outcomes of the two verification steps provides valuable information about the
state of the program and its specification, which is then used to improve the
feedback given to users. Bugs violating implicit contracts make for early error
detection, and may convince users to add some explicit contracts that avoid
them. Discrepancies between the verification of calls with and without inlining
may help understand whether failed verification attempts are due to errors in the
implementation or in the specification, or simply a more accurate specification is
required. For example, a call to some routine r that may violate r’s user-written
precondition but verifies correctly after inlining r’s body signals that r’s precon-
dition may be unnecessarily strong. Two-step verification is applied completely
automatically: users get the most complete feedback based on the integration
of the results of the various verification steps—with and without inlining and
similar techniques.
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We implemented our techniques in AutoProof [34,35], a static verifier for
Eiffel programs using Boogie [26] as back-end, and we used it to verify all the
examples discussed in the paper. AutoProof is integrated in EVE [33], the re-
search branch of the EiffelStudio development environment, and is freely avail-
able online:

http://se.inf.ethz.ch/research/eve/

The rest of the paper presents the verification techniques in detail, and illus-
trates them on non-trivial example programs taken from the VSTTE 2012 verifi-
cation competition [16] and other software verification benchmarks [1]. Section 6
discusses other programs verified using our approach. We show how the basic
techniques and their integration into two-step verification make for better feed-
back, early error detection, and successful verification even when very limited
amounts of specification are available.

2 Overview and Illustrative Examples

Binary search is a widely-known algorithm and is considered a standard bench-
mark for software verification [1]. Most programmers have implemented it at
least once in their life. According to Knuth [23, Vol. 3, Sec. 6.2.1], their imple-
mentations were often “wrong the first few times they tried”.

1 binary search (a: ARRAY [INTEGER]; x: INTEGER): INTEGER
2 require a 6=Void
3 local middle: INTEGER
4 do
5 if a.count = 0 then
6 Result := −1
7 else
8 middle := (1 + a.count) / 2
9 if a[middle] = x then

10 Result := middle
11 elseif a[middle] >x then
12 Result := binary search (a[1:middle − 1], x)
13 else
14 assert a[middle] <x end
15 Result := binary search (a[middle + 1:a.count]), x)
16 if Result 6=−1 then Result := Result + middle end
17 end
18 end
19 ensure Result = −1 or (1≤Result and Result≤a.count)

Fig. 1. An implementation of binary search.
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To demonstrate, consider the binary search implementation in Figure 1,3

which takes an integer array a and an integer value x and returns an integer
index (the value assigned to Result) pointing to an occurrence of x in a. Since we
assume arrays numbered from one, if x is not found in a the routine by convention
returns −1. The implementation in Figure 1 is indicative of what programmers
typically write[30,15] when using a language supporting specifications in the form
of contracts (pre- and postconditions, and intermediate assertions such as loop
invariants and assert instructions): the implementation is “almost” correct (if
you do not immediately see the error, read on), and the specification is obviously
incomplete.

Part of the missing specification is implicit in the semantics of the program-
ming language, which is probably why the programmer did not bother writing it
down explicitly. In particular, arithmetic operations should not overflow for the
program to have a well-defined semantics. The midpoint calculation on line 8
overflows when the array size a.count has value equal to the largest representable
machine integer, even if the value of middle is within the bounds; this is indeed
a common error in real implementations of binary search [4].

If we try to verify the program in Figure 1 using static verifiers such as Dafny,
we do not find any error because integer variables are modeled using mathemat-
ical integers which do not overflow. In Section 3 we discuss our approach which
automatically instantiates implicit specification elements that represent tacit as-
sumptions about the programming language semantics. Such implicit contracts
help early error detection of subtle errors not explicitly specified, such as the po-
tential overflow just discussed. In addition, they are made available within a more
general static verification mechanism, where they can complement programmer-
written contracts to improve the efficiency of the overall verification process
without sacrificing precision.

Not only do incomplete specifications limit the kinds of error that can be
detected automatically during verification; they may also prevent verifying per-
fectly correct programs as we now illustrate with the example of Figure 2, taken
from the VSTTE 2012 verification competition. Routine two way sort sorts an
array a of Boolean values in linear time with a technique similar to the parti-
tioning algorithm used in Quick Sort. Two pointers i and j scan the array from
its opposite ends; whenever they point to an inversion (that is, a False in the
right-hand side and a True in the left-hand side) they remove it by swapping
the elements pointed. When the whole array is scanned, it is sorted.

The sorting algorithm calls an auxiliary routine swap that exchanges ele-
ments; swap does not have any specification—again, a situation representative
of how programmers typically specify their programs. This is a problem because
static verification uses specifications to reason modularly about routine calls: the
effects of the call to swap on line 14 are limited to swap’s postcondition. Since it
does not have any, the proof of two way sort does not go through; in particular,
it cannot establish that the loop invariant at line 7 is inductive, which would

3 All code examples are in Eiffel, with few occasional notational simplifications; even
readers not familiar with the language should find the code easy to understand.
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1 two way sort (a: ARRAY [BOOLEAN])
2 require a.count >0
3 local i , j : INTEGER
4 do
5 i := 1 ; j := a.count
6 until i ≥ j
7 invariant 1≤ i and i≤ j + 1 and j≤a.count
8 loop
9 if not a[i ] then

10 i := i + 1
11 elseif a[ j ] then
12 j := j − 1
13 else
14 swap (a, i , j)
15 i := i + 1
16 j := j − 1
17 end
18 variant j − i + 1 end
19 end
20
21 swap (b: ARRAY [BOOLEAN]; x, y: INTEGER)
22 local t : BOOLEAN
23 do t := b[x] ; b[x] := b[y] ; b[y] := t end

Fig. 2. An implementation of two-way sort of Boolean arrays.

then be the basis to establish the variant as well as any programmer-written
postcondition.

In our approach, when modular verification fails the verifier makes another
attempt after inlining routine bodies at their call sites. As we describe in Sec-
tion 4, the application uses simple heuristics to avoid combinatorial explosion
(for example, in the case of recursive calls). With inlining, we can prove that the
invariant at line 7 is inductive without need for more specification.

Using inlining, we can also check interesting properties about clients of
two way sort. For example, when calling the routine on an empty array, we
compare a failed modular verification attempt (which reports a violation of
two way sort’s precondition) to a successful verification with inlining (which
only evaluates the routine’s body); the discrepancy suggests that two way sort’s
precondition is unnecessarily strong and can be relaxed to a 6=Void without
affecting the rest of the verification process. This kind of improved feedback,
concocted from two different verification attempts, is the two-step verification
we present in detail in Section 5.
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3 Implicit Contracts

The first ingredients of our two-step verification approach are implicit contracts:
simple specification elements that are implicit in the semantics of the program-
ming language—Eiffel in our examples. Since they are implicit, programmers
tend to reason informally about the program without writing them down as as-
sertions. This limits the kinds of properties that can be proved automatically
with a static verifier. With implicit contracts, the verifier transparently annotates
the program under verification so that the feedback to users is more accurate and
goes deeper than what would have been possible based on the explicitly written
contract only. We currently support the following classes of implicit contracts.

3.1 Targets Non-Void

A qualified call t.r1(a1). . . . .rn(an), with n ≥ 0, is non-Void if t 6=Void and,
for 1 ≤ k < n, t.r1(a1). . . . .rk(ak) returns a non-Void reference. For every
such qualified call appearing as instructions or in expressions, we introduce the
corresponding implicit contract that asserts that the call is non-Void.

For example, two way sort’s precondition (Figure 2) is augmented with the
implicit contract that a 6=Void following from the qualified call a.count.

3.2 Routine Calls in Contracts

In programming languages supporting contracts there need not be a sharp dis-
tinction between functions used in the implementation and functions used in the
specification. Routine two way sort, for example, uses the function call a.count—
returning the length of array a—in its precondition and loop invariant, but also
in the assignment instruction on line 5. Functions used in contracts may have
preconditions too; programmers should make them explicit by replicating them
whenever the function is mentioned, but they often neglect doing so because it is
something that is implicit when those functions are used in normal instructions,
whereas it is not checked when the same functions are used in contracts.

Consider, for instance, a function is sorted with the obvious semantics, and
suppose that its precondition requires that it is applied to non-empty lists. If
is sorted is called anywhere in the implementation, then it is the caller’s re-
sponsibility to establish its precondition; the caller is aware of the obligation
explicit in is sorted ’s contract. But if is sorted is called, say, as precondition
of binary search, establishing is sorted ’s precondition is now the responsibil-
ity of callers to binary search, who are, however, unaware of the non-emptiness
requirement implicit in binary search’s precondition. In fact, the requirement
should explicitly feature as one of binary search’s preconditions.

To handle such scenarios automatically, for every call to any function f ap-
pearing in contracts, we introduce the corresponding implicit contract that as-
serts that f’s precondition holds right before f is evaluated in the contract. If f’s
precondition includes calls to other functions, we follow the transitive closure of
the preconditions, also checking well-formedness (that is, no circularity occurs).
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3.3 Array Accesses

For every array access of the form a[exp] appearing in instructions or in expres-
sions, we introduce the implicit contract a.lower≤ exp and exp≤a.upper which
asserts that the expression used as index is within the array’s bounds.

In binary search, for example, the accesses a[middle] determine the implicit
contract that middle is between 1 and a.count.

3.4 Arithmetic Expressions

The subexpressions sub(e) of an integer expression e are defined in the obvious
way: if e is an integer constant or an integer variable then sub(e) = {e}; if e is
the application of a unary operator ∼, that is e =∼d, then sub(e) = {e}∪sub(d);
if e is the application of a binary operator ⊕, that is e = c ⊕ d, then sub(e) =
{e}∪ sub(c)∪ sub(d). For every integer expression e appearing in instructions or
expressions, we introduce the implicit contract that asserts that no subexpression
of e’s may overflow:∧

x∈sub(e)

{INTEGER}.min value≤ x and x≤{INTEGER}.max value

For every subexpression of the form c � d, where � is some form of integer
division, we also introduce the implicit contract d 6=0, which forbids division by
zero.

The integer expression at line 8 in Figure 1, for example, determines the
implicit contract 1 + a.count≤ {INTEGER}.max value, which may not hold.

4 Inlining and Unrolling

Inlining and unrolling are routinely used by compilers to optimize the generated
code for speed; they are also occasionally used for program checking, as we
discuss in Section 7. The novelty of our approach is the automatic combination,
in two-step verification, of inlining and unrolling with modular “specification-
based” verification. Inlining and unrolling may succeed in situations where little
programmer-written specification is available; in such cases, users get a summary
feedback that combines the output of each individual technique and is aware of
the potential unsoundness of inlining and unrolling. The combined feedback gives
specific suggestions as to what should be improved. This section presents the
definitions of inlining and unrolling; Section 5 discusses how they are combined
in two-step verification.

4.1 Inlining

The standard approach to reasoning about routine calls is modular based on
specifications: the effects of a call to some routine r within the callee are pos-
tulated to coincide with whatever r’s specification is. More precisely, the callee
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should establish that r’s precondition holds in the calling context; and can con-
sequently assume that r’s postcondition holds and that the call does not modify
anything outside of r’s declared frame.

The modular approach is necessary to scale verification to large pieces of
code. At the same time, it places a considerable burden on programmers, since
every shortcoming in the specifications they provide may seriously hinder what
can be proved about their programs. This is a practical issue especially for
helper functions that are not part of the public API: programmers may not feel
compelled to provide accurate specifications—postconditions, in particular—for
them because they need not be documented to clients; but they would still
like to benefit from automated program checking. This is the case of routine
swap in Figure 2, which is not specified but whose semantics is obvious to every
competent programmer.

Inlining can help in these situations by replacing abstract reasoning based
on specifications with concrete reasoning based on implementations whenever
the former are insufficient or unsatisfactory. In particular, inlining is likely to be
useful whenever the inlined routine has no postcondition, and hence its effects
within the callee are undefined under modular reasoning. Of course, inlining has
scalability limits; that is why we apply it in limited contexts and combine it with
standard modular verification as we discuss in Section 5.

Definition of inlining. Consider a routine r of class C with arguments a,
which we represent as:

r (t : C ; a) require Pr modify Fr do Br ensure Qr end

For n ≥ 0, the n-inlining inline(A,n) of calls to r in a piece of code A is defined as
A with every call u.r(b) on target u (possibly Current) with actual arguments
b modified as follows:

inline(u.r(b), n)=

{
assert Pr[u, b] ; havoc Fr[u, b] ; assumeQr[u, b] if n = 0

inline(Br[u, b], n− 1) if n > 0

Inlining works recursively on calls to routines other than r and recursive calls to
r in Br; non-call instructions are instead unchanged. 0-inlining coincides with
the usual modular semantics of calls based on specifications. Otherwise, inlining
replaces calls to r with Br[u, b] (r’s body applied to the actual target u and
arguments b of the calls), recursively for as many times as the recursion depth n.

Since inlining discards the inlined routine’s precondition, it may produce
under- or over-approximations of the calls under modular semantics, respec-
tively if the declared precondition is weaker or stronger than the body’s weakest
precondition.

For any n > 0, the n-inlining of swap in two way sort’s body (Figure 2)
consists of replacing the call to swap at line 14 with swap’s body instantiated in
the correct context, that is t := a[ i ] ; a[ i ] := a[ j ] ; a[ j ] := t with t a fresh
local variable declared inside two way sort.

Inlining and dynamic dispatching. In programming languages with dy-
namic dispatching, the binding of routine bodies to routine calls occurs at run-
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time, based on the dynamic type of the call targets. This is not a problem for
modular reasoning because it can rely on behavioral subtyping and the rule that
routine redefinitions in descendants (overriding) may only weaken preconditions
and strengthen postconditions. Inlining, instead, has to deal with dynamic dis-
patching explicitly: in general, verification using inlining of a routine r of class
C is repeated for every overriding of r in C’s descendants. This also requires to
re-verify the system whenever new descendants of C are added, unless overriding
r is eventually forbidden (frozen in Eiffel, final or private in Java, or sealed
in C#). These limitations are, however, not a problem in practice when we ap-
ply inlining not indiscriminately but only in limited contexts for small helper
routines, and we combine its results with classic modular reasoning as we do in
two-step verification.

4.2 Unrolling

The standard approach to modular reasoning also applies to loops based on their
loop invariants: the effects of executing a loop on the state of the program after
it are postulated to coincide with the loop invariant. The inductiveness of the
invariant is established separately for a generic iteration of the loop, and so is
the requirement that the invariant hold upon loop entry.

This reliance on expressive loop invariants is at odds with the aversion pro-
grammer typically have at writing them. This is not only a matter of habits,
but also derives from the fact that loop invariants are often complex specifica-
tion elements compared to pre- and postconditions [18]; and, unlike pre- and
postconditions which constitute useful documentation for clients of the routine,
loop invariants are considered merely a means to the end of proving a program
correct. The loop of two way sort in Figure 2, for example, has a simple loop in-
variant that only bounds the values of the indexes i and j; this prevents proving
any complex postcondition.

Unrolling can help in these situations by evaluating the effects of a loop in
terms of its concrete body rather than its invariant. This may help prove the
postcondition when the invariant is too weak, showing that a certain number
of repetitions of the body are sufficient to establish the postcondition. Further-
more, in the cases where we have a way to establish a bound on the number
of loop iterations, unrolling precisely renders the implementation semantics. We
will generalize these observations when discussing how unrolling is applied au-
tomatically in the context of two-step verification (Section 5).

Definition of unrolling. Consider a generic annotated loop L:

until exit invariant I loop B variant V end

which repeats the body B until the exit condition exit holds, and is annotated
with invariant I and variant V. For n ≥ 0, the n-unrolling unroll(L, n) of L is
defined as:

unroll(L, n) = ( if not exit then B end)n

where the nth exponent denotes n repetitions. Since unrolling ignores the loop
invariant, it may produce under- or over-approximations of the loop’s modular
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semantics, respectively if the declared loop invariant is weaker or stronger than
the body’s weakest precondition.

5 Two-step Verification

We have introduced all the elements used in two-step verification; we can finally
show how they are combined to produce improved user feedback.

Implicit contracts are simply added whenever appropriate and used to have
early detection of errors violating them. In AutoProof, which translates Eiffel to
Boogie to perform static proofs, implicit contracts are not added to the Eiffel
code but are silently injected into the Boogie translation, so that the input code
does not become polluted by many small assertions; users familiar with Eiffel’s
semantics are aware of them without explicitly writing them down. Errors con-
sisting of violations to implicit contracts reference back the original statements in
Eiffel code from which they originated, so that the error report is understandable
without looking at the Boogie translation.

Whenever the verifier checks a routine that contains routine calls, two-step
verification applies inlining as described in Section 5.1. Whenever it checks a
routine that contains loops, two-step verification applies unrolling as described
in Section 5.2. The application of the two steps is completely automatic, and
is combined for routines that includes both calls and loops; users only get a
final improved error report in the form of suggestions that narrow down the
possible causes of failed verification more precisely than in standard approaches.
Section 5.4 briefly illustrates two-step verification on the running example of
Section 2.

5.1 With Inlining

Consider a generic routine r with precondition Pr and postcondition Qr, whose
body Br contains a call t .s(a) to another routine s with precondition Ps, post-
condition Qs and body Bs (as shown in Figure 3). Two-step verification runs
two verification attempts on r:

1. Modular verification: The first step of two-step verification for r follows
the standard modular verification approach: it tries to verify that r is cor-
rect with respect to its specification, using s’s specification only to reason
about the call to s; and then it separately tries to verify s against its own
specification.

2. Inlined verification: The second step of two-step verification for r replaces
the call to s in r with inline(t.s(a), n), for some n > 0 picked as explained in
Section 5.3, and then verifies r with this inlining.

Each of the two steps may fail or succeed. According to the combined out-
come, we report a different suggestion to users, as summarized in Table 1.

Precondition fails. If modular verification (first step) fails to establish that
s’s precondition Ps holds right before the call, but both modular verification of

10



r
require Pr

do

Br


...

t.s(a)
...

ensure Qr

s
require Ps

do
Bs

ensure Qs

q
require Pq

do

...

L


until e
invariant I
loop B
variant V end

...
ensure Qq

Fig. 3. A routine r calling another routine s; and a routine q with a loop.

step 1: modular step 2: inlined
verify r verify s verify r suggestion

Ps fails success success weaken Ps or use inlined s
Qr fails success success strengthen Qs or use inlined s
success Qs fails success strengthen Ps or weaken Qs

Table 1. Two-step verification with inlining: summary of suggestions.

s and inlined verification (second step) of r succeed, it means that s’s precondi-
tion may be inadequate4 while its implementation is correct with respect to its
specification and to the usage made within r. In this case, there are two options:
if s is a helper function used only in r or anyway in limited contexts, we may as
well drop s’s specification and just use it inlined wherever needed during verifi-
cation. In more general cases, we should try to weaken Ps in a way that better
characterizes the actual requirements of how s is used.

Postcondition fails. If modular verification fails to establish that r’s post-
condition Qr holds when Br terminates, but both modular verification of s and
inlined verification of r succeed, it means that s’s postcondition fails to char-
acterize r’s requirements while s’s implementation is correct with respect to its
specification. As in the previous case, there are two options: we may drop s’s
specification and just use it inlined; or we should try to strengthen Qs in a way
that better characterizes the actual expectations of r on s. A similar scheme
applies not just to failed postconditions Qr but whenever modular verification
fails to verify intermediate assertions occurring on paths after the call to s in r.

Local proof fails. If modular verification fails to establish that s’s post-
condition Qs holds when Bs terminates, but both modular verification of r and
inlined verification of r succeed, it means that s’s specification cannot be proved

4 As with all failed static verification attempts, we cannot exclude that failure is simply
due to limitations of the theorem prover.
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consistent with its implementation, while the latter is correct with respect to
the usage made within r. The suggestion is to change s specification in a way
that still accommodates its usage within r and can be verified: strengthen the
precondition Ps, weaken the postcondition Ps, or both. With this information,
there is no way to decide if the problem is with the pre- or postcondition, but
we can always try to modify either one and run verification again to see if the
suggestion changes.

In the remaining cases, two-step verification is inconclusive in the sense that
it gives the same feedback as modular verification alone. In particular, when the
second step fails it is of no help to determine whether the problem is in the
specification or the implementation. If, for example, both modular and inlined
verification of r fail to establish the postcondition Qr, but modular verification
of s succeeds, we cannot conclude that s’s implementation is wrong because it
does not achieve Qr: it may as well be that r’s implementation is wrong, or
r’s postcondition is unreasonable; which is exactly the information carried by a
failed modular verification attempt.

Also notice that inlined verification cannot fail when modular verification
fully succeeds: if s’s implementation satisfies its specification, and that specifica-
tion is sufficient to prove r correct, then the semantics of s within r is sufficient
to prove the latter correct. Therefore, we need not run the second step when the
first one is successful.5

5.2 With Unrolling

Consider a generic routine q with precondition Pq and postcondition Qq, whose
body Bq contains a loop L with exit condition e, invariant I, variant V , and body
B (as shown in Figure 3). Two-step verification runs two verification attempts
on r:

1. Modular verification: The first step of two-step verification for r follows
the standard modular verification approach: it tries to verify that r is correct
with respect to its specification, using the loop invariant I only to reason
about the effect of L within r; and then it separately tries to verify that I is a
correct inductive loop invariant (that is, it holds on entry and is maintained
by iterations of the loop).

2. Unrolled verification: The second step of two-step verification for r re-
places the loop L in r with unroll(L, n), for some n > 0 picked as explained
in Section 5.3, and then verifies r with this unrolling and the additional as-
sertion assert V≤n, evaluated upon loop entry, that the loop executes at
most n times.6

5 Again, exceptions might occur due to shortcomings of the theorem prover used by
the modular verifier, which might be able to prove a set of verification conditions
but fail on a syntactically different but semantically equivalent set due to heuristics
or limitations of the implementation. These are, however, orthogonal concerns.

6 If a variant is not available or cannot be verified to be a valid variant, we proceed
as if the assertion did not hold.
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step 1: modular step 2: unrolled
verify r assert V≤ n verify r suggestion

Qq fails success success use inlined L
Qq fails fail success strengthen I to generalize

I fails inductiveness success success use inlined L
I fails inductiveness fail success change I to generalize

Table 2. Two-step verification with unrolling: summary of suggestions.

Each of the two steps may fail or succeed. According to the combined out-
come, we report a different suggestion to users, as summarized in Table 2.

Postcondition fails. Suppose that modular verification (first step) fails
to establish that r’s postcondition Qq holds when Bq terminates, but unrolled
verification (second step) of r succeeds. The suggestion in this case depends on
whether the prover can also establish the intermediate assertion assert V≤n.
If it does, n is a finite upper bound on the number of loop iterations in every
execution. Thus, the loop implementation is correct but the loop invariant I is
inadequate to prove the postcondition; we may as well drop the invariant I and
just use the exhaustively unrolled loop during verification. In the more general
case where the assertion V≤n fails, the successful unrolled proof shows that the
loop body works with a finite number of iterations, and hence it is likely correct;
we may then try to strengthen (or otherwise change) the invariant I in a way
that captures a generic number of loop iterations and is sufficiently strong to
establish Qq. A similar scheme applies not just to failed postconditions Qq but
whenever modular verification fails to verify intermediate assertions occurring
on paths after the loop L in q.

Invariant fails. Suppose that modular verification fails to establish that I
is inductive, but unrolled verification of r succeeds. The suggestion depends on
whether the prover can also establish the intermediate assertion assert V≤n. If
it does, the loop implementation is correct but the loop invariant I is inadequate;
we may as well drop the invariant I and just use the exhaustively unrolled loop
during verification. In the more general case where the assertion V≤n fails, the
successful unrolled proof shows that the loop body works with a finite number of
iterations, and hence it is likely correct; we may then try to change the invariant
I in a way that captures a generic number of loop iterations and is sufficiently
strong to establish Qq. With this information, there is no way to decide if the
invariant should be strengthened or weakened, but we can always try either one
and run verification again.

In the remaining cases, two-step verification gives the same feedback as mod-
ular verification alone. And, as for inlining, we need not run the second step
(unrolled verification) when modular verification is completely successful.

5.3 Bounds for Nesting and Loops

The application of inlining and unrolling requires a parameter n: the maximum
depth of nested calls in the former case; and the number of explicit iterations
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of the loop in the latter. The choice of n is more subtle for unrolling—where
it should represent a number of iterations sufficient to make the second step of
verification succeed—than for inlining—where it becomes relevant only in the
presence of nested calls or recursion.

In our implementation, we use simple heuristics to pick values for n that are
“feasible”, that is do not incur combinatorial explosion. In the case of inlining,
we get a crude estimate of the size of the inlined program as follows. For a routine
p, let πp denote the total number of simple paths in p from entry to exit. If p has
size |p| (measured in number of instructions) and includes m calls to routines
r1, . . . , rm, we recursively define ‖p‖n as: |p| if n = 0, |p| + πp(‖r1‖n−1 + · · · +
‖rm‖n−1) if n > 0. Inlining in p uses an n such that ‖p‖n ≤ 104.

In the case of unrolling a loop within routine q, our implementation does
some simple static analysis to determine if the calling context of q or q’s pre-
condition suggest a finite bound of the loop (in practice, this is restricted to
loops over arrays that are declared statically or with a constant upper bound in
the precondition). In such cases, n is simply the inferred bound. Otherwise, we
roughly estimate the size of an unrolled loop L as n|L|, where |L| is the size of
L in number of instructions; unrolling L uses an n such that n|L| ≤ 103.

In many practical cases (in the absence of recursion or deeply nested calls),
very small n’s (such as 1 ≤ n ≤ 5) are sufficient to produce a meaningful results
in two-step verification.

5.4 Examples

Let us demonstrate how two-step verification works on the running examples
introduced in Section 2. Figure 4 shows two clients of routine two way sort (Fig-
ure 2). Routine client 1 calls two way sort on an empty array, which is forbidden
by its precondition. Normally, this would be blamed on client 1 ; with two-step
verification, however, the second verification attempt inlines two way sort within
client 1 and successfully verifies it. This suggests that client 1 is not to blame,
because two way sort’s precondition is unnecessarily strong (first case in Ta-
ble 1), which is exactly what AutoProof will suggest in this case as shown in
Figure 5. In fact, the sorting implementation also works on empty arrays, where
it simply does not do anything.

1 client 1
2 local a: ARRAY [BOOLEAN]
3 do
4 a := [ ] −− empty array
5 two way sort (a)
6 end

7 client 2
8 local a: ARRAY [BOOLEAN]
9 do

10 a := [True, False, False, True]
11 two way sort (a)
12 assert a[1] = False
13 end

Fig. 4. Clients of two way sort.

14



Fig. 5. AutoProof showing feedback of two-step verification.

Routine client 2 calls two way sort on a four-element array and checks that
its first element is False after the call. Modular verification cannot prove this as-
sertion: two way sort has no postcondition, and hence its effects within client 2
are undefined. The second verification attempt inlines two way sort and unrolls
the loop four times (since it notices that the call is on a four-element array); this
proves that the first array element is False after the call (first line in Table 2). In
all, two way sort is not to blame because its implementation works correctly for
client 2 . As summarized in the second line of Table 1, the user can either just
be happy with the result or endeavor to write down a suitable postcondition
for two way sort so that the correctness proof can be generalized to arrays of
arbitrary length.

Suppose we provide a postcondition that specifies sortedness: using Eif-
fel’s syntax, across 1..(a.count−1) as k all (a[k] = a[k+1]) or (a[k] 6=a[k+1]
and a[k] = False). Modular verification of two way sort fails to prove this post-
condition because the loop invariant at line 7 does not say anything about the
array content. Two-step verification makes a second attempt where it unrolls
the loop a finite number of times, say 5, and inlines swap. The situation is in
the second entry of Table 2: we cannot verify that the arbitrary bound of five
iterations generally holds (that is j − i + 1 ≤ 5 holds before the loop), but the
success of unrolling in this limited case suggests that two way sort’s implemen-
tation is correct. If we want to get to a general proof, we should improve the loop
invariant, and this is precisely the suggestion that two-step verification brings
forward.

6 Evaluation

The examples of the previous sections have demonstrated the kind of feedback
two-step verification provides. This section contains a preliminary evaluation of
the scalability of two-step verification.

Table 3 lists the example programs. The first labeled column after the pro-
gram name contains the size of the implementation (not counting specification
elements) in lines of code. The rest of the table is split in two parts: the first one
contains data about two-step verification; the second one the same data about
modular verification. The data reported includes: the amount of specification
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two-step modular
P Q I A P Q I A

code spec Boogie time spec Boogie time

1 3 0 0 1 3 4 0
1. Maximum 32 4 1541 2.06 8 712 1.05

3 1 0 0 3 1 5 0
2. Sum and Max 32 4 1619 2.18 9 720 1.04

2 1 0 0 2 1 5 0
3. Two-way Sort 44 3 1803 2.35 8 742 1.06

2 1 0 0 2 1 10 0
4. Dutch Flag 45 3 1955 2.94 13 786 1.14

3 4 0 0 3 4 7 0
5. Longest common prefix 30 7 1585 2.10 14 730 1.05

0 0 0 7 5 13 5 7
6. Priority queue 119 7 2896 3.35 30 1088 1.56

0 0 0 11 7 18 4 11
7. Deque 127 11 1856 2.51 40 1230 1.59

0 0 0 1 2 3 0 1
8. Binary Search 48 1 2479 3.21 6 672 0.99

11 10 0 19 25 44 40 19
Total 477 40 15734 20 .70 128 6680 9 .48

Table 3. Comparison of two-step and modular verification on selected examples.

necessary to successfully verify the example (number of annotations, split into
preconditions P , postconditions Q, invariants I (loop invariants in examples 1–
5; class invariants in examples 6–8), and intermediate assertions A); the size
(in lines) of the Boogie code generated by AutoProof; and the time in seconds.
Two-step verification includes modular verification as first step, but normally
requires less specification to be successful; correspondingly, the Boogie code and
the time in the first part of the table sum up both steps.

The examples include: (1) finding the maximum in an array, from the COST
2011 verification competition [6]; (2) computing maximum and sum of the ele-
ments in an array, from the VSTTE 2010 verification competition [22]; (3) the
two-way sort algorithm of Section 2, from the VSTTE 2012 verification compe-
tition [16]; (4) Dikstra’s Dutch national flag algorithm [13]; (5) computing the
longest common prefix of two sequences, from the FM 2012 verification com-
petition [19]; (6) a priority queue implementation, from Tinelli’s verification
course [32]; (7) a double-ended queue [23, Vol. 1, Sec. 2.2.1]; and (8) the binary
search algorithm of Section 2, from the software verification benchmarks [1].

In the experiments with the algorithms 1–5, two-step verification succeeds
with loop unrolling of depth n = 6, which corresponds to input arrays of the
same length. The outcome suggests either to use the unrolled loop, for inputs of
bounded length; or to write a suitable loop invariant. A correct loop invariant
is necessary for modular verification alone to succeed, in which case the proof
generalizes to arrays of arbitrary length. We prove the following postconditions:
(1) the output is the array maximum; (2) the output sum is less than or equal
to the output maximum times the array length; (3) sortedness of the output, as
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formalized in Section 5.4; (4) the output is partitioned in the three flag colors;
(5) the output is the longest common prefix of the input array.

In the experiments 6–8 we verify clients of the queue, double-ended queue,
and binary search, which call some routines and then formalize their expectations
on the result with asserts after the call. The called routines have no specification
(in particular, no postcondition); two-step verification verifies the clients using
inlining of the callee, and suggests to add postconditions to generalize the proofs.
The postconditions are necessary for modular verification alone to succeed.

The evaluation suggests that two-step verification can check the implemen-
tation even when little or no specification is given; its feedback may then help
write the necessary specifications to generalize proofs for modular verification.

The runtime overhead of performing two verification steps instead of one is
roughly linear in all examples; in fact, unrolling and inlining blow up mainly
in the presence of recursion. To better assess how they scale, we have repeated
two-step verification of examples 3 (using unrolling) and 6 (using inlining in
the presence of recursion) for increasing value of the bound n. Table 4 shows the
results in terms of size of the generated Boogie code (in lines) and time necessary
to verify it (in seconds). Unrolling scales gracefully until about n = 10; afterward,
the time taken by Boogie to verify increases very quickly, even if the size of the
Boogie code does not blow up. Inlining is more sensitive to the bound, since the
size of the inlined code grows exponentially due to the conditional branch in
binary search’s body; the time is acceptable until about n = 7. Notice that the
heuristics for the choice of n discussed in Section 5.3 would generate running
times in the order of tens of seconds, thus enforcing a reasonable responsiveness.

unrolling inlining
inlining/unrolling depth n Boogie time Boogie time

3 864 1.07 1201 1.44
4 937 1.13 1822 2.26
5 1010 1.21 3054 4.23
6 1083 1.32 5518 10.93
7 1156 1.52 10446 30.64
8 1229 2.03 20302 112.32

10 1375 4.26 – –
13 1594 37.52 – –
15 1667 253.30 – –

Table 4. Scalability of unrolling and inlining on examples 3 and 6 from Table 3.

7 Related Work

The steadily growing interest for techniques and tools that make verification
more approachable indicates how some of the most glaring hurdles to the progress
of formal methods lie in their applicability. Tools such as Dafny [27], Spec# [2],
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VCC [10], ESC/Java2 [11,20], and Why3 [5] define the state of the art in static
program verification. Their approaches rely on accurate specifications, which are
not easy to write and get right.

One way to ameliorate this situation is inferring specifications automatically
using static [8,24,18] or dynamic [14,37,36] techniques. Specifications dynami-
cally inferred are based on a finite number of executions, and hence may be
unsound; this makes them unsuitable for use in the context of static verification.
Static techniques can infer sound specifications from the program text; these are
useful to document existing implementations, to discover auxiliary assertions
(such as loop invariants), or for comparison with specifications independently
written, but proving an implementation correct against a specification inferred
from it is mostly a vacuous exercise.

The simple implicit contracts that we use in our approach express well-
formedness properties of the input program, which are tacitly assumed by pro-
grammers reasoning informally about it; therefore, there is no risk of circularity.
Some static verifiers use mathematical integers or assume purity of specifica-
tion functions to have well-formedness by construction; a risk is that, when
they are applied to real programming languages, the corresponding semantic
gap may leave some errors go unnoticed. ESC/Java2, for example, does not
check for overflows [21], nor if specification expressions are executable (for ex-
ample, null-dereferencing could happen when evaluating a precondition). The
Dafny verifier [27] checks well-formedness of pre- and postconditions, and may
consequently require users to add explicit contracts to satisfy well-formedness.
Our implicit contracts are instead added and checked automatically, without
requiring users to explicitly write them. In this sense, they are similar to ap-
proaches such as VCC [10], which models the semantics of the C programming
language as precisely as possible.

Besides inferring specifications, another approach to facilitate formal ver-
ification is combining complementary verification techniques. CEGAR model-
checking [3], for example, uses model-checking exhaustive verification techniques
on approximate program models, combined with a form of symbolic execution
to determine whether the failed verification attempts are indicative of real im-
plementation errors or only a figment of an imprecise abstraction. Tools such as
DSD-Crasher [12] and our EVE [33] integrate testing and static checking to find
when the errors reported by the latter are spurious. Collaborative verification [9]
is also based on the combination of testing and static verification, and on the
explicit formalization of the restrictions of each tool used in the combination.
Two-step verification also integrates the results of different techniques, with the
main purpose of improving error reporting and reducing the number of annota-
tions needed, rather than complementing the limitations of specific techniques.

The Spec# system includes a verification debugger [25] to inspect error mod-
els when verification fails; more recently, an interpreter for Boogie programs [29]
can help find the sources of failed verification attempts. Debuggers for verifica-
tion can be quite useful in practice, but achieve a lesser degree of automation
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than two-step verification, since users need to manually inspect and understand
the error models using the debugger.

Inlining and unrolling are standard techniques in compiler construction. The
Boogie verifier [26] also supports inlining of procedures: through annotations,
one can require to inline a procedure to a given depth using different sound or
unsound definitions. Boogie also supports (unsound) loop unrolling on request.
AutoProof’s current implementation of inlining and unrolling works at source
code level, rather than using Boogie’s similar features, to have greater flexibility
in how inlining and unrolling are defined and used. Methods specified using the
Java Modeling Language (JML) with the “helper” modifier [11] are meant to
be used privately; ESC/Java inlines calls to such methods [17]. ESC/Java also
unrolls loops a fixed amount of times; users can choose between performing sound
or unsound variants of the unrolling. In previous work [28], we used unrolling
and inlining to check the type correctness of JavaScript programs. In two-step
verification, we use inlining and unrolling completely automatically: users need
not be aware of them to benefit from an improved feedback that narrows down
the sources of failed verification attempts.
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