
Automatic C to O-O Translation with C2Eiffel
Marco Trudel · Carlo A. Furia · Martin Nordio

Chair of Software Engineering, ETH Zurich, Switzerland
Email: firstname.lastname@inf.ethz.ch

Abstract—C2Eiffel is a fully automatic source-to-source trans-
lator of C applications into the Eiffel object-oriented program-
ming language. C2Eiffel supports the complete C language,
including function pointers, unrestricted pointer arithmetic and
jumps, arbitrary native libraries, and inlined assembly code.
It produces readable Eiffel code that behaves as the source C
application; it takes advantage of some of Eiffel’s object-oriented
features to produce translations that are easy to maintain and
debug, and often even safer than their sources thanks to stricter
correctness checks introduced automatically. Experiments show
that C2Eiffel handles C applications of significant size (such as
vim and libgsl); it is a fully automatic tool suitable to reuse C
code within a high-level object-oriented programming language.

I. REUSING C CODE WITH A CLICK

This paper presents C2Eiffel (C2Eif for short), a completely
automatic tool that translates C source code into the Eiffel
object-oriented programming language. With C2Eif, you can
reuse C applications in a modern environment, where they
can be seamlessly integrated with other native Eiffel code
that fully takes advantage of the object-oriented paradigm
and of other high-level language features such as contracts
and static type safety. Since C2Eif translates source-to-source,
the translated C code is not merely made available within
a host environment—as is the case with integration solu-
tions based on foreign language interfaces—but becomes a
native Eiffel implementation, which developers can refactor
and extend as the overall application evolves and undergoes
maintenance. The translation provided by C2Eif may even
single-handedly improve the safety and debuggability of the
C implementation, because it automatically introduces safety
checks for issues such as out-of-bound array access and null-
pointer dereferencing. The checks make understanding and
debugging translated applications considerably easier, because
faults manifest themselves closer to their source location, and
because certain buffer overflow errors are harder to replicate
and exploit within the tight Eiffel runtime.

Even if you are not developing applications in Eiffel, the
same ideas used in C2Eif underlie the development of fully
automatic translators of C into other full-fledged modern
object-oriented programming languages such as Java and C#.
In fact, the chasm existing between the C and Eiffel languages
ensures that the translation of one into the other is not a simple
transliteration (as it would have been possible, for example,
with C++) but has to provide output that is germane to the
object-oriented paradigm.

C2Eif is open-source and available for download at
http://se.inf.ethz.ch/research/c2eif

This tool demo paper describes the overall architecture of

C2Eif (Section II), presents the main results of an extensive
experimental evaluation (Section III), and compares C2Eif
against other similar tools (Section IV). This short paper
only describes the tool architecture and usage; a detailed
presentation of the translation scheme including examples is
available in a companion paper [1].

II. OVERVIEW AND ARCHITECTURE

C2Eif is a compiler with a graphical user interface and a
command-line interface that translates C programs to Eiffel.
The translation produces a complete Eiffel application that is
functionally equivalent to the C source application. C2Eif is
implemented in Eiffel, and it is available as a standalone tool.

Input and output. Figure 1 shows the overall workflow
of using C2Eif. It inputs C projects (applications or libraries)
preprocessed with the C Intermediate Language (CIL) frame-
work [2]. CIL simplifies programs written in C into a subset
of C amenable to program transformation. Using CIL input
ensures complete support of the whole set of C statements,
without polluting the translation with variants and special
cases only to deal with syntactic sugar. C2Eif translates CIL
programs to Eiffel projects consisting of collections of classes.

C application
or library CIL C file

Eiffel
application or

library
Binary

Helper
Classes

CIL C2Eif Eiffel
Compiler

Fig. 1. Overview of how C2Eif works.

Incremental translation. C2Eif builds an initial AST by
parsing the input C program, and transforms it into a target
AST that can be pretty-printed as Eiffel code. Following a
modular design that improves maintainability, C2Eif imple-
ments the translation from C to Eiffel as a series of successive
incremental transformations on the AST. Every transformation
targets exactly one language aspect (for example, loops or
inlined assembly code) and produces an AST that combines C
features with Eiffel extensions: the code progressively morphs
from C to Eiffel. C2Eif can output the AST in text form
after any of the intermediate transformations; the output is a
mixture of C and Eiffel code that is readily understandable
by programmers familiar with both languages. The current
implementation uses about 40 transformations.

http://se.inf.ethz.ch/research/c2eif


SIZE (LOCS) #EIFFEL TRANSLA- BINARY
CIL EIFFEL CLASSES TION (S) SIZE (MB)

hello world 8 15 1 1 1.3
micro httpd 565 1,934 16 1 1.5
xeyes 1,463 10,661 78 1 1.8
less 16,955 22,545 75 5 2.6
wget 46,528 57,702 183 25 4.5
links 70,980 100,815 211 33 13.9
vim 276,635 395,094 663 144 24.2
libcurl 37,836 65,070 289 18 –
libgmp 61,442 79,971 370 21 –
libgsl 238,080 344,115 978 85 –
gcc (torture) 147,545 256,246 2,569 79 1,576
TOTAL 898,037 1,334,168 5,433 413 1,626

TABLE I
AUTOMATED TRANSLATION OF OPEN-SOURCE PROGRAMS.

III. EVALUATION

Table I shows data about 10 open-source C programs and
one testsuite (for gcc) translated to Eiffel with C2Eif. The
10 programs include 7 applications and 3 libraries; all of
them are widely-used in Linux and other *nixes. For each
entry Table I reports: the size (in lines of code) of the CIL
version of the C code and of the translated Eiffel code; the
number of Eiffel classes created; the time (in seconds) spent
by C2Eif to perform the source-to-source translation (not
including compilation from Eiffel source to binary); the size
of the binaries (in MBytes) generated by EiffelStudio1.

We ran extensive trials on the translated programs to verify
that they behave as in their original C version. In addition to
informal usage, we ran standard testsuites on the 3 libraries
totalling over 770 tests. All tests execute and pass on both the
C and the translated Eiffel versions of the libraries, with the
same logged output. The gcc torture testsuite includes 1002
tests that pass after being processed by CIL; C2Eif (which
depends on CIL) passes 989 (nearly 99%) and fails 13 of these
tests (see [1] for a detailed discussion of the reasons for the 13
failures). Given the variety of the programs considered (and the
challenging nature of the torture testsuite), the experiments are
strong evidence that C2Eif handles the complete C language
used in practice, and produces correct translations.

Performance. We performed systematic performance tests
for some of the applications; the results of the tests are
described in detail in [1]. In summary, the performance over-
head in switching from C to Eiffel significantly varies—from
negligible to noticeable—with the program type. Even in the
cases where the slowdown is noticeable, it does not preclude
the usability of the translated application or library in normal
conditions.

Safety. While running the Eiffel translation of libgmp we
detected 3 bugs (1 in the library itself and 2 in the accom-
panying testsuite) thanks to the dynamic checks introduced
automatically by C2Eif. More generally, C2Eif translations
are often more robust and easier to debug than the original
C versions thanks to the contracts introduced by C2Eif and
by the tighter Eiffel runtime.

1We do not give a binary size for libraries, because EiffelStudio cannot
compile them without a client.

ta
rg

et
la

ng
ua

ge

co
m

pl
et

el
y

au
to

m
at

ic

av
ai

la
bl

e

re
ad

ab
ili

ty

ex
te

rn
al

lib
ra

ri
es

po
in

te
r

ar
ith

m
et

ic

go
to

s

in
lin

ed
as

se
m

bl
y

C2Eif Eiffel yes yes + yes yes yes yes
Ephedra [3] Java no no + no no no no
C2J++ [4] Java no no + no no no no
C2J [5] Java no yes − no yes no no
C++2Java [6] Java no yes + no no no no
C++2C# [6] C# no yes + no no no no

TABLE II
TOOLS TRANSLATING C TO O-O LANGUAGES.

IV. RELATED WORK

A number of tools are available that translate C to object-
oriented languages. Table II shows a summary feature com-
parison among the currently available tools. For each tool,
Table II reports:
• The target language: Eiffel, Java, or C#.
• Whether the tool is completely automatic, that is whether

it generates translations that are ready for compilation
without need for any manual rewrite or adaptation.

• Whether the tool is available for download and usable.
In a couple of cases we could only find papers describing
the tool but not a version of the implementation working
on standard machines.

• An assessment of the readability of the code produced.
The evaluation of this aspect—subjective to a certain
extent—is based on the analysis of sample programs
translated using the various tools; when the tool was not
available, we analyzed translation examples discussed in
the tool documentation. In each case, we tried to evaluate
if the translated code is sufficiently similar to the C source
to be readily understandable by a programmer familiar
with the latter.

• Whether the tool supports unrestricted calls to exter-
nal libraries, unrestricted pointer arithmetic, unrestricted
gotos, and inlined assembly code.

See [1] for a discussion of other work related to C2Eif; and
[3] for a comparison among Ephedra, C2J++ and C2J.

Acknowledgements. This work was partially supported by
ETH grant “Object-oriented reengineering environment”.

REFERENCES

[1] M. Trudel, C. A. Furia, M. Nordio, B. Meyer, and M. Oriol, “C to O-O
Translation: Beyond the Easy Stuff,” in WCRE, 2012.

[2] G. C. Necula, S. McPeak, S. Rahul, and W. Weimer, “CIL: Intermediate
Language and Tools for Analysis and Transformation of C Programs,” in
Conference on Compilier Construction, 2002, pp. 213–228.

[3] J. Martin and H. A. Müller, “Strategies for migration from C to Java,” in
CSMR. IEEE Computer Society, 2001, pp. 200–210.

[4] E. Tilevich, “Translating C++ to Java,” in First German Java Developers’
Conference Journal, Sun Microsystems Press. IEEE Computer Society,
1997.

[5] Novosoft, “C2J: a C to Java translator,” http://www.novosoft-us.com/
solutions/product c2j.shtml, 2001.

[6] Tangible Software Solutions, “C++ to C# and C++ to Java,” http://www.
tangiblesoftwaresolutions.com/.

2

http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.novosoft-us.com/solutions/product_c2j.shtml
http://www.tangiblesoftwaresolutions.com/
http://www.tangiblesoftwaresolutions.com/


V. APPENDIX

A. Using C2Eif with an Example

This section demonstrates the most significant steps of using
C2Eif to translate a simple C program into Eiffel, from the
perspective of a user called Bill. Bill has come across the C
implementation of a function index of that takes an integer
array list of length len and an integer elem, and returns the
position of the first occurrence of elem in list, or −1 if elem
is not found in list.

1 int index of(int *list, int len, int elem) {
2 int i = 0;
3 while(i≤len) {
4 if(list[i] == elem) {
5 printf(”Found at %d\n”, i);
6 return i;
7 }
8 i++;
9 }

10 printf(”Not found\n”);
11 return −1;
12 }

Even if the program is simple, it includes some features
typical of C and with no direct Eiffel counterpart: arrays as
pointers, control-flow breaking instructions (i.e., return inside
the while loop), and calls to printf from the C native I/O
library. Observant readers will also notice an “off-by-one”
error in the loop condition on line 3—it should be i <len—that
may produce a segmentation fault.

Bill, however, does not pay attention to this bug and just
wants to translate index of into Eiffel. He first transforms the C
snippet using CIL; the result is a slightly less readable version
of the snippet with a few (unnecessary) explicit casts (e.g., to
char const * for constant strings), and the access list[i] to
the i-th element of list expressed with pointer arithmetic as
*(list + i). The CIL version of the input is ready for C2Eif;
Bill just specifies the input file and the output location (with
more complex examples, he might have had to specify which
system libraries to link) and launches the translation.

The whole translation terminates in a few instants by writing
out the final output. Bill can also inspect the intermediate
results after applying only some of the incremental transfor-
mations (see Section II). For example, this is the state of the
program after applying the first 29 transformations:

1 int index of(int *list, int len, int elem)
2 {
3 int i;
4 [JUMP STATE] js;
5 i = 0;
6 while(!js.loop done && (i≤len)) {
7 if(list[i] == elem) {
8 Io.put string (”Found it at ” + (i).out + ”%N”);
9 Result = (i);

10 js.return;
11 }
12 if(!js.return called) {
13 i = i + 1;
14 }
15 }
16 if(!js.return called) {
17 Io.put string (”Not found.%N”);
18 Result = (−1);
19 }
20 }

At this point in the translation, C2Eif has recognized the
usages of printf and replaced them with calls to Eiffel’s native
put string (lines 8 and 17); this is a special optimization for
the most used C library functions that have counterparts in
Eiffel, but C2Eif can still generate custom wrappers in Eiffel
to handle calls to any native C library. It has used assignments
to the implicit return variable Result to implement returned
values in Eiffel (lines 9 and 18). It has also removed some
unnecessary casts introduced by CIL and modified the condi-
tion of the while loop on line 6 to render the semantics of
the control-flow breaking return inside the loop body. To this
end, the translation has introduced a local variable js (line 4)
of a helper class JUMP STATE that handles usages of return,
break, and continue. C2Eif uses a more complex translation
for generic unrestricted usages of gotos and even longjmp.
Finally, C2Eif has restored the more readable syntax list[i] for
accessing list as an array of integers on line 7, which will be
directly transliterated to Eiffel’s array selector operator with
the same syntax. The remaining steps of the translation mostly
have to deal with syntactic sugar; for example, the while loop
is converted into an Eiffel until loop, the assignment operator
becomes := instead of =, and some of Eiffel’s style rules are
enforced.

Bill opens the final output of C2Eif with the EiffelStudio
IDE and integrates it within an Eiffel application that calls
index of on a sample array my list: CE ARRAY [INTEGER]
of size 3 (initialized with all 1’s) and searches for an element
with value 5: p := index of (my list, 3, 5). The usage of the
translation of index of is very natural for Bill who can use
standard Eiffel syntax with minimal differences. When he
launches the compiled program, Bill immediately finds the
off-by-one error in the loop, because it triggers the violation
of a precondition checked (introduced in the translation and
checked at runtime) when accessing the array. As you can
see in the screenshot of Figure 2, the source of the error
is apparent in EiffelStudio’s debugger, which shows that the
value of a index is 3 but it should be strictly less than the
count (i.e., the array size). With this detailed information, Bill
easily fixes the translated program that can be used safely from
now on.

B. Demo Outline

C2Eif’s home-page at:
http://se.inf.ethz.ch/research/c2eif

includes the source code, different pre-compiled versions,
translations of various applications (including C source code,
Eiffel translations and binaries), various screenshots, and a
manual with step-by-step instructions on how to use C2Eif
on several examples.

The tool demonstration will be along the same lines as the
example in Section V-A, but will run interactively on a real-
world application and will include many more details. The
demo will consists of three parts:
• An overview of the tool, where we discuss its general

design principles and its overall usage workflow (as in
Figure 1).

3

http://se.inf.ethz.ch/research/c2eif


Fig. 2. Debugging a C function in EiffelStudio.

• A demonstration consisting of a step-by-step illustration
of using C2Eif to translate xeyes from C to Eiffel.2 We
will start the demo with C source code of the application
freshly downloaded from open-source repositories. We
will use the C2Eif GUI (shown in Figure 3) to translate
the C code, showing the overall translation but also dis-
cussing some of its intermediate results (see Section II).

• A concluding part where we open the translated Eiffel
version of xeyes with the EiffelStudio IDE, and illus-
trate the structure and readability of the generated code.
We will also show compilation of the code, run a brief
debugging session on it using Eiffel’s features introduced
by the translation, and modify and recompile the code on
the fly.

2C2Eif’s website also includes an outline of this example.

4



Fig. 3. Screenshot of C2Eif analyzing source code.

5


	Reusing C Code with a Click
	Overview and Architecture
	Evaluation
	Related Work
	References
	Appendix
	Using C2Eif with an Example
	Demo Outline


