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Abstract

Real-time systems usually encompass parts that are best described
by a continuous-time model, such as physical processes under control,
together with other components that are more naturally formalized by a
discrete-time model, such as digital computing modules. Describing such
systems in a unified framework based on metric temporal logic requires
to integrate formulas which are interpreted over discrete and continuous
time.

In this paper, we tackle this problem with reference to the metric tem-
poral logic TRIO, that admits both a discrete-time and a continuous-time
semantics. We identify sufficient conditions for a TRIO specification to be
invariant under change of time model from discrete to continuous and vice
versa. These conditions basically involve the restriction to a proper subset
of the TRIO language (which we call TRIOsi) and a requirement on the
finite variability over time of the values of the basic items that constitute
the formulas of the specification. A specification which is invariant can
then be verified entirely under the simpler discrete-time model, with the
results of the verification holding for the continuous-time model as well.

We believe that this approach is general enough to be easily extendible
to other temporal logics of comparable expressive power.

Keywords: Formal methods, real-time, integration, metric temporal logic,
discrete time, continuous time
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1 Introduction and Motivation

The application of formal methods to the description and analysis of really large
systems inevitably requires being able to model different parts of the system
using disparate notations and languages. In fact, it is usually the case that
different modules are naturally described using diverse formal techniques, each
one tailored to the specific nature of that component. Indeed, the past decades
have seen the birth and proliferation of a plethora of different formal languages
and techniques, each one usually focused on the description of a certain kind
of systems and hinged on a specific approach. This proliferation is a good
thing, as it permits the user to choose the notation and methodology that is
best suited for his/her needs and that matches his/her intuition. However, this
is also inevitably a hurdle to the true scalability in the application of formal
techniques, since we end up having heterogeneous descriptions of large systems,
where different modules, described using distinct notations, have no definite
global semantics when put together. Therefore, we need to find ways to integrate
dissimilar models into a global description which can then be analyzed, so that
heterogeneity of notation is no more a limit but only a tool to enforce the
principles of modularization and separation of concerns.

A particularly relevant instance of the above general problem is encountered
when describing real-time systems, which require a quantitative modeling of
time. Commonly, such systems are hybrid, that is composed of some parts
representing physical environmental processes and some others being digital
computing modules. The former ones have to model physical quantities that
vary continuously over time, whereas the latter ones are digital components that
are updated periodically at every (discrete) clock tick. Hence, a natural way to
model the physical processes is by assuming a continuous-time model, and using
a formalism with a compliant semantics, whereas digital components would
be best described using a discrete-time model, and by adopting a formalism
in accordance. Thus, the need to integrate continuous-time formalisms with
discrete-time formalisms, which is the object of the present paper.

In particular, let us consider the framework of descriptive (a.k.a. declarative)
specifications based on (metric) temporal logic. Some temporal logic languages
have semantics for both a continuous-time model and a discrete-time one: each
formula of the language can be interpreted in one of the two classes of models.
TRIO is an example of these logics [7, 12, 13, 4], the one we are considering
in this paper; MTL [11] is another well-known instance. So, apparently, it is
possible to pass from a discrete-time to a continuous-time interpretation of a
formula in these logics, achieving integration. The discrete-time semantics and
the continuous-time one, however, are unrelated in general, in that the same
formula changes completely its models when passing from one semantics to
another. On the contrary, integration requires different formulas to describe
parts of the same system, thus referring to unique underlying models.

To this end, we introduce the notion of sampling invariance of a specification
formula. Informally, we say that a temporal logic formula is sampling invariant
when its discrete-time models coincide with the samplings of all its continuous-
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time models (modulo some additional technical requirements). The sampling
of a continuous-time model is a discrete-time model obtained by observing the
continuous-time model at periodic instants of time. We claim that this no-
tion mirrors effectively the condition required for a specification formula to be
equivalently interpreted over a continuous-time or a discrete-time model: thus
by building specifications made of sampling invariant formulas, we can integrate
different time models, as their global meaning is consistent. The justification
for the notion of sampling invariance stems from how real systems are made.
In fact, in a typical hybrid system the discrete-time part (e.g. a controller)
is connected to the (probed) environment by a sampler, which communicates
measurements of some physical quantities to the controller at some periodic
time rate (see Figure 1). The discrete-time behaviors that the controller sees
are samplings of the continuous-time behaviors that occur in the system un-
der control. Our notion of sampling invariance captures this fact in relating a
continuous-time formula to a discrete-time one, thus mirroring what happens in
a real system.

SAMPLER

CONTINUOUS
TIME

DISCRETE
TIME

Figure 1: A hybrid system with a sampler.

Once we have a sampling invariant specification, we can integrate discrete-
time and continuous-time parts, thus being able, among other things, to resort to
verification in a discrete-time model, which can typically benefit from simpler
and more automated approaches, while still being able to describe naturally
physical processes in a continuous-time model.

Under this respect, Section 2 introduces TRIOsi, a suitable subset of TRIO
for which sampling invariance can be achieved, and formally defines the sam-
pling invariance requirement. Then, Section 3 proves that the above require-
ment is met with TRIOsi, according to some additional constraints. Finally,
Section 4 compares our approach with related works, and Section 5 draws some
conclusions.

2 Problem Statement and Definitions

In order to define precisely the sampling invariance condition, we have to in-
troduce a metric temporal logic as well as its interpretations with continuous-
and with discrete-time models. To this extent, Section 2.1 introduces TRIOsi, a
subset of the TRIO language, as well as its discrete and continuous semantics.
Then, Section 2.2 defines formally the concept of sampling invariance of a TRIO
formula (Definition 1).
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2.1 TRIOsi: A Simple Metric Temporal Logic

The temporal logic language we are considering is TRIO. Full-fledged TRIO is
a rich language with full first-order quantifications and arithmetic, augmented
with modular constructs to build complex specifications [7, 13, 4]. However, for
the purposes of the present work, we consider only a proper subset of it, which
is strictly less expressive and which we call TRIOsi (for sampling invariant).

2.1.1 Syntax.

TRIO is based on a single modal operator named Dist. For a time-dependent
formula A and a time distance t, Dist(A, t) is true iff A holds at a time which
is t time instants apart from the current (implicit) one. TRIOsi is instead
based on the two primitive temporal operators Until and Since, as well as the
usual propositional connectives. For simplicity, we introduce TRIOsi as a purely
propositional language, while leaving the discussion on how to extend it to be
predicative to future work.

Let us define formally the syntax of TRIOsi. Let Ξ be a set of time-dependent
conditions. These are basically Boolean expressions obtained by functional com-
bination of basic time-dependent items with constants. We are going to define
them precisely later on (in Section 3), for now let us just assume that they are
time-dependent formulas whose truth value is defined at any given time. Let
us consider a set

�
of constants symbols. We denote intervals by expressions of

the form 〈l, u〉, with l, u constants from
�
, 〈 a left parenthesis from {(, [}, and

〉 a right parenthesis from {), ]}; let I be the set of all such intervals. Then, if
ξ, ξ1, ξ2 ∈ Ξ, I ∈ I, 〈∈ {(, [}, and 〉 ∈ {), ]}, well-formed formulas φ are defined
recursively as follows.

φ ::= ξ | UntilI〉(φ1, φ2) | SinceI〈(φ1, φ2) | ¬φ | φ1 ∧ φ2

From these basic operators, it is customary to define a number of derived
operators: in Table 1 we define the most common ones.1

In the remainder, we will also need a notion of size of an interval, for both
time models. To this end, we introduce here the | · | � operator, which is defined
as follows, according to the time model. If the time domain is dense, then:

|〈l, u〉| � =

{
u− l if u ≥ l

0 if u < l

1Implication ⇒, disjunction ∨ and double implication ⇔ are defined as usual. Moreover δ

is a positive real constant that will be defined shortly. Finally, for simplicity we assume that
I = 〈l, u〉 is such that l, u ≥ 0 or l, u ≤ 0 in the definition of the ∃t ∈ I and ∀t ∈ I operators.
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Operator Definition
ReleasesI〉(φ1, φ2) ¬UntilI〉(¬φ1,¬φ2)
ReleasedI〈(φ1, φ2) ¬SinceI〈(¬φ1,¬φ2)

∃t ∈ I = 〈l, u〉 : Dist(φ, t)

{
Until〈l,u〉〉(true, φ) if u ≥ l ≥ 0
Since〈−l,−u〉〉(true, φ) if u ≤ l ≤ 0

∀t ∈ I = 〈l, u〉 : Dist(φ, t)

{
Releases〈l,u〉〉(false, φ) if u ≥ l ≥ 0
Released〈−l,−u〉〉(false, φ) if u ≤ l ≤ 0

Dist(φ, d) ∀t ∈ [d, d] : Dist(φ, t)
Futr(φ, d) d ≥ 0 ∧ Dist(φ, d)
Past(φ, d) d ≥ 0 ∧ Dist(φ,−d)
SomF(φ) ∃t ∈ (0,+∞) : Dist(φ, t)
SomP(φ) ∃t ∈ (−∞, 0) : Dist(φ, t)
Som(φ) SomF(φ) ∨ φ ∨ SomP(φ)
AlwF(φ) ∀t ∈ (0,+∞) : Dist(φ, t)
AlwP(φ) ∀t ∈ (−∞, 0) : Dist(φ, t)
Alw(φ) AlwF(φ) ∧ φ ∧ AlwP(φ)

WithinF(φ, τ) ∃t ∈ (0, τ) : Dist(φ, t)
WithinP(φ, τ) ∃t ∈ (−τ, 0) : Dist(φ, t)
Within(φ, τ) WithinF(φ, τ) ∨ φ ∨ WithinP(φ, τ)
Lasts(φ, τ) ∀t ∈ (0, τ) : Dist(φ, t)
Lasted(φ, τ) ∀t ∈ (−τ, 0) : Dist(φ, t)
Until(φ1, φ2) Until(0,+∞))(φ1, φ2)
Since(φ1, φ2) Since(0,+∞)((φ1, φ2)

NowOn(φ)

{
Lasts(φ, δ) if the time domain is �
Futr(φ, 1) if the time domain is �

UpToNow(φ)

{
Lasted(φ, δ) if the time domain is �
Past(φ, 1) if the time domain is �

Becomes(φ) UpToNow(¬φ) ∧ NowOn(φ)

Table 1: TRIO derived temporal operators

If the time domain in instead discrete, we have the following definitions:

|(l, u〉| � = |[l + 1, u〉| �
|〈l, u)| � = |〈l, u− 1]| �

|[l, u]| � =

{
u− l + 1 if u ≥ l

0 if u < l

2.1.2 Semantics.

In defining TRIOsi semantics we assume that constants symbols in
�

are inter-
preted naturally as numbers from the time domain � plus the symbols ±∞,
which are treated as usual. Correspondingly, intervals I are interpreted as in-
tervals of � which are closed/open to the left/right (as usual square brackets
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denote an included endpoint, and round brackets denote an excluded one).
Then, we define the semantics of a TRIOsi formula using as interpretations

mappings from the time domain � to the domain D the basic items map their
values to. Let B � be the set of all such mappings, which we call behaviors, and
let b ∈ B � be any element from that set. If we denote by ξ|b(t) the truth value
of the condition ξ at time t ∈ � according to behavior b, we can define the
semantics of TRIOsi formulas as follows. We write b |= � φ to indicate that the
behavior b is a model for formula φ under the time model � . Thus, let us define
the semantics for the generic time model � .
b(t) |= � ξ iff ξ|b(t)
b(t) |= � UntilI〉(φ1, φ2) iff there exists d ∈ I such that b(t+ d) |= � φ2

and, for all u ∈ [0, d〉 it is b(t+ u) |= � φ1

b(t) |= � SinceI〈(φ1, φ2) iff there exists d ∈ I such that b(t− d) |= � φ2

and, for all u ∈ 〈−d, 0] it is b(t+ u) |= � φ1

b(t) |= � ¬φ iff b(t) 2 � φ
b(t) |= � φ1 ∧ φ2 iff b(t) |= � φ1 and b(t) |= � φ2

b |= � φ iff for all t ∈ � : b(t) |= � φ
Thus, a TRIOsi formula φ constitutes the specification of a system, represent-

ing exactly all behaviors that are models of the formula. We denote by [[φ]] � the
set of all models of formula φ with time domain � , i.e. [[φ]] � ≡ {b ∈ B � |b |= � φ}.

2.2 Sampled Behaviors and Sampling Invariance

We want to relate the models of a formula with a continuous-time domain to
those of the same formula with a discrete-time domain. To do that, we intro-
duce the notion of sampling of a continuous-time behavior. Basically, given a
continuous-time behavior b ∈ B � , we define its sampling as the discrete-time
behavior σδ,z [b] ∈ B � that agrees with b at all integer time instants correspond-
ing to multiples of a constant δ ∈ � >0

2 from a basic offset z ∈ � . We call δ the
sampling period and z the origin of the sampling. More precisely, we have the
following definition:

∀k ∈ � : σδ,z [b] (k) ≡ b(z + kδ)

2.2.1 Sampling Invariance.

Now, given a TRIOsi formula φ we want to relate the set [[φ]] � of its discrete-
time models to the set of behaviors obtained by sampling its continuous-time
models [[φ]] � . Ideally, we would like that, for some sampling period δ and origin
z, the following holds.

• For any continuous-time behavior b ∈ B � which is a model for φ, the
sampling of b is a model for φ in discrete time, that is:

b ∈ [[φ]] � ⇒ σδ,z [b] ∈ [[φ]] �
2We use the symbol � >c, for some c ∈ � , to denote the set {x ∈ � | x > c}, and similar

ones for integer numbers.
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When this holds, we say that φ is closed under sampling.

• For any discrete-time behavior b ∈ B � which is a model for φ, any
continuous-time behavior, whose sampling coincides with b, is a model
for φ in continuous time, that is:

b ∈ [[φ]] � ⇒ ∀b′ : (σδ,z [b′] = b ⇒ b′ ∈ [[φ]] � )

When this holds, we say that φ is closed under inverse sampling.

When all the formulas of a language are closed both under sampling and
under inverse sampling we say that the language is sampling invariant. We
briefly note that it is possible to explore variations of the above definitions, for
example by allowing to pick a sampling period and/or an origin which depend
on the particular behavior being considered. We leave the discussion of the
impact of these variations to future work.

2.2.2 On Continuous versus Discrete Semantics.

Actually, the above requirement is a too demanding one, as there are a number of
facts indicating that it is not possible, in general, to achieve it, unless we adopt
a logic language with such a limited expressiveness that it is of no practical
use. In this subsection we briefly hint at some of these facts: notice that the
exposition is deliberately loose, as we only want to motivate the developments
that will follow.

Cardinality. The first fact is a simple cardinality argument, that reminds us
that the mappings from � are “many more” than the mappings from � . In
fact, for any domain D of size d = |D|, the cardinality of the set of all mappings

� → D is dℵ0 , whereas the set of all mappings � → D has the much larger

cardinality dC = d2ℵ0

.

Time Units and Sampling Period. Another issue that needs to be dealt
with is the problem of time units. In fact, when passing from a dense (and con-
tinuous) interpretation to a discrete one, we are implicitly assigning a different
meaning to time units with respect to the sampling period. Consider, for in-
stance, the TRIOsi formula Lasts(A, 1/2)), where A is a primitive condition. In
a discrete-time setting, we would like the formula to mean: for all (integer) time
distances that fall in an interval between the two time instants corresponding
to the sampling instants closer to 0 and 1/2, etc. Hence, we should actually
adopt the formula Lasts(A, 1/2δ) as discrete-time counterpart, dividing every
time constant by the sampling period.

Items Velocity and Change Detection. A basic intuition that should be
developed about the above idea of sampling is that, whenever the values of
the basic items of our specification — whose evolution over time is described
by behaviors — change “too fast” with respect to the chosen sampling period
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δ, it is impossible to guarantee that those changes are “detected” at sampling
instants, so that the properties of the behavior are preserved in the discrete-time
setting.

Consider, for instance, the example of Figure 2. There, a Boolean-valued

δ

false

true

t = z + k δ t +   = z + (k+1) δ

Figure 2: Change detection failure.

item changes its values twice (from true to false and then back to true) within
the interval, of length δ, between two adjacent sampling instants. Therefore,
any continuous-time formula predicating about the value of the item within
those instants may be true in continuous time and false for the sampling of the
behavior, which only “sees” two consecutive true values. Instead, we would like
that the “rate of change” of the items values is slow-paced enough that every
change in the value of an item is detected at some sampling instant, before it
changes again.

2.2.3 Constrained Behaviors and Adaptation.

Under the above respect, we introduce three orders of mechanisms in order to
obtain a sampling invariant language.

Normal syntactic form. We introduce a subset of TRIOsi in which sampling
invariant formulas must be expressed. This means that we assume that
every formula is in a suitable normal form. We will show that every TRIOsi

formula can be put in normal form, but this may require to introduce
auxiliary basic items.

Semantic constraint. We restrict the dynamics of the basic items in the spec-
ification to ensure that it is sufficiently “slow”, with respect to the chosen
sampling period, so that no change of the truth value of a formula can
happen between two sampling instants without being “detected” at the
next (or previous) sampling instant.

Adaptation function. We define an adaptation function which defines how
the time bounds used in the formulas must be changed (by dividing or
multiplying them by the sampling period, and by choosing suitable in-
teger approximations) in order to pass from the interpretation under a
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time domain to another time domain while achieving sampling invariance.
The adaptation function is in practice a simple translation function that
implements the changes required to have compliant formulas.

In the remainder of this section, we are going to define precisely the above
mechanisms.

Normal Form. TRIOsi formulas in normal form are written according to the
following grammar.

φ ::= ξ | φ1 ∨ φ2 | φ1 ∧ φ2 | UntilI〉(ξ1, ξ2) | SinceI〈(ξ1, ξ2)

ReleasesI〉(ξ1, ξ2) | ReleasedI〈(ξ1, ξ2)

Notice that the normal form prohibits nesting of temporal operators and nega-
tions of formulas. Moreover, we have an additional syntactic restriction which
applies to discrete-time formulas only (that is, to formulas that are meant to
be interpreted in discrete time): we require that the Until and Since operators
always use an included boundary, while the Releases and Released operators al-
ways use an excluded boundary. In other words, we consider only discrete-time
formulas using the temporal operators UntilI](·), SinceI[(·), ReleasesI)(·), and
ReleasedI((·).

Despite the above restrictions, any TRIOsi formula can be expressed with
this TRIOsi language fragment, with the additional requirement that we are
allowed to introduce new auxiliary basic items in the specification, as we are
going to show shortly. First, for the ease of exposition of the following proofs,
let us introduce explicitly the semantics for the operators of the normal form
which are not basic TRIOsi operators, namely Releases, Released, and ∨.
b(t) |= � ReleasesI〉(ξ1, ξ2) iff for all d ∈ I it is either b(t+ d) |= � ξ2

or there exists u ∈ [0, d〉 such that b(t+ u) |= � ξ1
b(t) |= � ReleasedI〈(ξ1, ξ2) iff for all d ∈ I it is either b(t− d) |= � ξ2

or there exists u ∈ 〈−d, 0] such that b(t+ u) |= � ξ1
b(t) |= � φ1 ∨ φ2 iff b(t) |= � φ1 or b(t) |= � φ2

Now we show how any TRIOsi formula can be expressed using just the above
operators.

Elimination of negations. In order to eliminate negations in a formula,
we just push them inward to boolean conditions. Since conditions are closed
under complement (as it will be clear in their definition, see Section 3), and we
have the dual of each basic operator, we can always eliminate negations from
formulas. More explicitly, we perform the substitutions:

¬ (¬φ) −→ φ
¬ (φ1 ∧ φ2) −→ ¬φ1 ∨ ¬φ2

¬UntilI〉(φ1, φ2) −→ ReleasesI〉(¬φ1,¬φ2)
¬SinceI〈(φ1, φ2) −→ ReleasedI〈(¬φ1,¬φ2)

recursively, until all negations are eliminated or on conditions.
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Elimination of nesting. Nesting can be eliminated from TRIOsi by intro-
ducing auxiliary basic items (which are primitive conditions). More explicitly, if
ξ is a primitive condition, ξ′ is an auxiliary item (not used anywhere else in the
specification), φ is a generic formula, and TempOper is any temporal operator
(i.e., Until, Since, Releases, or Released), we perform the substitutions:

TempOperI〉(φ, ξ) −→ (ξ′ ⇔ φ) ∧ TempOperI〉(ξ
′, ξ)

TempOperI〉(ξ, φ) −→ (ξ′ ⇔ φ) ∧ TempOperI〉(ξ, ξ
′)

recursively, until nestings of temporal operators are eliminated. It is simple to
check, by direct application of the definition of the operators, that the above
substitutions preserve the semantics of the formula. Exactly, one can check that
if ξ′ ⇔ φ then TempOperI〉(φ, ξ) ≡ TempOperI〉(ξ

′, ξ) and TempOperI〉(ξ, φ) ≡
TempOperI〉(ξ, ξ

′).
Finally, one has obviously to eliminate the double implications by introduc-

ing the corresponding definitions: ξ′ ⇔ φ ≡ (ξ′ ∧ φ) ∨ (¬ξ′ ∧ ¬φ); the negations
which are introduced in the process are then eliminated as explained in the
above step.

Elimination of Until) and Releases] in discrete time. Let us first note
the following equivalences. If ξ1, ξ2 are any conditions, and ξ′ is an auxiliary
item (not used anywhere else in the specification), then:

(ξ′ ⇔ NowOn(ξ2)) ⇒
(
Until〈l,u〉)(ξ1, ξ2) ≡ Until〈l−1,u−1〉](ξ1, ξ

′)
)

(ξ′ ⇔ UpToNow(ξ2)) ⇒
(
Since〈l,u〉((ξ1, ξ2) ≡ Since〈l−1,u−1〉[(ξ1, ξ

′)
)

(ξ′ ⇔ UpToNow(ξ2)) ⇒
(
Releases〈l,u〉](ξ1, ξ2) ≡ Releases〈l+1,u+1〉)(ξ1, ξ

′)
)

(ξ′ ⇔ NowOn(ξ2)) ⇒
(
Released〈l,u〈[(ξ1, ξ2) ≡ Released〈l+1,u+1〈((ξ1, ξ

′)
)

Let us sketch the proof of the above equivalences, for a generic discrete-time
behavior b ∈ B � .

• Until and Since. Assume that b |= � ξ′ ⇔ NowOn(ξ2). Then, if b(k) |= �
Until〈l,u〉)(ξ1, ξ2) for some instant k, then there exists a d ∈ 〈l, u〉 such that
ξ2 is true at k+ d and ξ1 is true in the whole interval [0, d) from k, which
in discrete time is equivalent to [0, d − 1]. Thus, for d′ = d − 1, we have
that ξ′ is true at k+ d′, since ξ2 is true at k+ d = k+ d′ + 1. Notice that
d′ ∈ 〈l − 1, u− 1〉. All in all we have that b(k) |= � Until〈l−1,u−1〉](ξ1, ξ

′).
For the converse, assume that b(k) |= � Until〈l−1,u−1〉](ξ1, ξ

′). So, there
exists a d ∈ 〈l − 1, u − 1〉 such that ξ′ holds at k + d and ξ1 holds in
the whole interval [0, d] from k. Therefore, ξ2 holds at k + d + 1, and
d + 1 ∈ 〈l, u〉. Hence, for d′ = d + 1 we have that b(k) |= � UntilI)(ξ1, ξ2)
holds.

The proof for the Since is all similar, but for the past direction of time.

• Releases and Released. The equivalences follow from the above equiva-
lence about the Until operator, exploiting the fact that the Releases is
its dual, as well as the easily verifiable equivalences of ¬NowOn(ξ) with
NowOn(¬ξ), and of ξ′ ⇔ NowOn(ξ′′) with ξ′′ ⇔ UpToNow(ξ′).
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All similarly for the Released, but derived from the property of the Since.

Therefore, we perform the following substitutions to put a formula into nor-
mal form.

Until〈l,u〉)(ξ1, ξ2) −→ (ξ′ ⇔ NowOn(ξ2)) ∧ Until〈l−1,u−1〉](ξ1, ξ
′)

Since〈l,u〉((ξ1, ξ2) −→ (ξ′ ⇔ UpToNow(ξ2)) ∧ Since〈l−1,u−1〉[(ξ1, ξ
′)

Releases〈l,u〉](ξ1, ξ2) −→ (ξ′ ⇔ UpToNow(ξ2)) ∧ Releases〈l+1,u+1〉)(ξ1, ξ
′)

Released〈l,u〉[(ξ1, ξ2) −→ (ξ′ ⇔ NowOn(ξ2)) ∧ Releases〈l+1,u+1〉((ξ1, ξ
′)

Semantic Constraint. The precise form of the semantic constraint to be
introduced depends on the kind of items we are dealing with in our specification,
and namely whether they take values to discrete or dense domains. We are going
to discuss separately the two cases in Section 3. In a nutshell, we constrain the
dynamics of the basic items and/or conditions of the specification by requiring
that at least δ time units (where δ is the chosen sampling period) elapse between
each pair of instants of time at which the items change their values. This
restriction — which mandates a “maximum rate of change” of the items’ values
— assures that every change in the truth value of a formula is propagated until
either the previous or the next sampling instant, before being possibly reversed
by another change. Therefore, there is no information loss by observing the
system just at the sampling instants, where by information we (informally)
mean the truth value of a specification formula (which is the only description
of the system that we consider).

In practice, the semantic constraint is expressed by an additional TRIOsi

formula χ, which in general depends on the particular specification we have
written. Thus, whenever we write a specification φ, we are actually considering
the (more restrictive) specification φ∧χ, which only has models with the desired
qualities. We can see the semantic constraint χ as a price that we have to
pay in order to have a sampling invariant specification. Clearly, whenever the
specification already entails the semantic constraint, sampling invariance comes
simply at no price. In future work, we will discuss how the semantic constraint
impacts on the description of real systems, as well as on the limitations it
imposes on the properties that a system can have.

Adaptation Function. We define an adaptation function η
�
δ {·} which trans-

lates formulas by scaling the time constants, appearing as endpoints of the in-
tervals, to their values divided by the sampling period δ. We also define its “in-
verse” η

�
δ {·}, which translates valid discrete-time formulas to valid continuous-

time ones, by scaling back the endpoints. Notice that, in discrete time, it suffices
to define the adaptation rule for closed intervals. Thus, for any formula respect-
ing the all of the above syntactic restrictions, adaptation is defined formally
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inductively on the structure of the formulas of TRIOsi as follows.

η
�
δ {ξ} ≡ ξ
η

�
δ

{
Until〈l,u〉〉(φ1, φ2)

}
≡ Until[bl/δc,du/δe])

(
η

�
δ {φ1} , η

�
δ {φ2}

)

η
�
δ

{
Since〈l,u〉〈(φ1, φ2)

}
≡ Since[bl/δc,du/δe](

(
η

�
δ {φ1} , η

�
δ {φ2}

)

η
�
δ

{
Releases〈l,u〉〉(φ1, φ2)

}
≡ Releases〈l′,u′〉]

(
η

�
δ {φ1} , η

�
δ {φ2}

)

where l′ =

{
bl/δc if 〈 is (

dl/δe if 〈 is [

and u′ =

{
du/δe if 〉 is )

bu/δc if 〉 is ]

η
�
δ

{
Released〈l,u〉〈(φ1, φ2)

}
≡ Released〈l′,u′〉[

(
η

�
δ {φ1} , η

�
δ {φ2}

)

where l′ =

{
bl/δc if 〈 is (

dl/δe if 〈 is [

and u′ =

{
du/δe if 〉 is )

bu/δc if 〉 is ]

η
�
δ {φ1 ∧ φ2} ≡ η

�
δ {φ1} ∧ η

�
δ {φ2}

η
�
δ {φ1 ∨ φ2} ≡ η

�
δ {φ1} ∨ η

�
δ {φ2}

Notice that in the discrete-to-continuous adaptation of the Until and Since
operators, the adapted interval 〈(l− 1)δ, (u− 1)δ〉 can indifferently be taken to
include or exclude its endpoints.

η
�
δ {ξ} ≡ ξ
η

�
δ

{
Until[l,u]](φ1, φ2)

}
≡ Until〈(l−1)δ,(u+1)δ〉]

(
η

�
δ {φ1} , η

�
δ {φ2}

)

η
�
δ

{
Since[l,u][(φ1, φ2)

}
≡ Since〈(l−1)δ,(u+1)δ〉[

(
η

�
δ {φ1} , η

�
δ {φ2}

)

η
�
δ

{
Releases[l,u])(φ1, φ2)

}
≡ Releases[(l+1)δ,(u−1)δ])

(
η

�
δ {φ1} , η

�
δ {φ2}

)

η
�
δ

{
Released[l,u]((φ1, φ2)

}
≡ Released[(l+1)δ,(u−1)δ](

(
η

�
δ {φ1} , η

�
δ {φ2}

)

η
�
δ {φ1 ∧ φ2} ≡ η

�
δ {φ1} ∧ η

�
δ {φ2}

η
�
δ {φ1 ∨ φ2} ≡ η

�
δ {φ1} ∨ η

�
δ {φ2}

2.2.4 Sampling Invariance: A Definition.

Finally, according to the above ideas, we can formulate a definition of sampling
invariance which is the one we are actually going to use in the remainder.

Definition 1 (Sampling Invariance). Given a formula φ, a behavior con-
straint formula χ, two adaptation functions η

�
δ {·} and η

�
δ {·}, a sampling period

δ, and an origin z, we say that:

• φ is closed under sampling iff for any continuous-time behavior b ∈ B � :

b ∈ [[φ ∧ χ]] � ⇒ σδ,z [b] ∈ [[η
�
δ {φ}]] �

• φ is closed under inverse sampling iff for any discrete-time behavior b ∈
B � :

b ∈ [[φ]] � ⇒ ∀b′ ∈ [[χ]] � :
(
σδ,z [b′] = b ⇒ b′ ∈ [[η

�
δ {φ} ∧ χ]] �

)

13



• A language is sampling invariant iff all the formulas of the language are
closed under sampling (when interpreted in the continuous-time domain)
and are closed under inverse sampling (when interpreted in the discrete-
time domain).

3 Sampling Invariant Specifications

In this section we formulate a sufficient condition for the sampling invariance
of a TRIOsi specification formula φ. This condition involves the definition of
a suitable constraint formula χ on the continuous-time behaviors, as well as a
definition of the forms of the conditions ξ that can appear in TRIOsi formulas.
More precisely, we distinguish two cases, whether we are dealing with time-
dependent items which take values onto a discrete set, or with time-dependent
items which take values onto a dense set.

Let us introduce this idea with more precision. We assume that every speci-
fication is built out of primitive time-dependent items from a (finite) set Ψ. For
example one such item may represent — by a Boolean value — the state of a
light bulb (on or off), another one may instead represent — by a real value —
the measure of the temperature in a room, etc. So, every time-dependent item
ψi in Ψ is a mapping from time � to a suitable domain Di, for i = 1, . . . , n,
where n is the number of primitive time-dependent items. Therefore, every be-
havior b ∈ B � represents the evolution over time of the values of all primitive
items; in other words, every behavior b ∈ B � is a mapping from time � to the
domain D ≡ D1×· · ·×Dn. Note that we do not consider the definition of more
complicated time-dependent items, such as time-dependent functions, which are
part of standard TRIO. These would not be difficult to introduce, but we leave
them out of the present work, in favor of a simpler exposition. The next two
subsections will draw sufficient conditions for sampling invariance in the two
cases of when every Di is a discrete set (Section 3.1) and when some Di is a
dense set (Section 3.2).

3.1 Discrete-valued Items

Let us consider the case in which all time-dependent items in Ψ have discrete
codomains, i.e. ψi is a time-dependent item taking values to the discrete set
Di, for all i = 1, . . . , n. Thus, behaviors are mappings � → D where D ≡
D1×· · ·×Dn. We also assume that a total order is defined on eachDi. Although
this assumption could be avoided, we introduce it for uniformity of presentation;
still, one can easily extend the present exposition to unordered sets as well.

Conditions. Let Λ be a set of constants from the sets Di’s, and Γ be a set of
functions3 having domains in subsets of D and codomains in some Di’s. Then,
if λ ∈ Λ, f, f1, f2 ∈ Γ, and ./ ∈ {=, <,≤, >,≥}, conditions ξ can be defined
recursively as follows, assuming type compatibility is respected:

3These are of course time-independent functions, in TRIO terms.

14



ξ ::= f(ψ1, . . . , ψn) ./ λ | f1(ψ1, . . . , ψn) ./ f2(ψ1, . . . , ψn) | ¬ξ | ξ1 ∧ ξ2

Abbreviations and notational conventions are introduced in the obvious ways.

Constraint on Behaviors. The constraint on behaviors is expressed by For-
mula χ◦ and basically requires that the values of the items in Ψ vary over time
in such a way that changes happen at most every δ time units, i.e. the value
of each item is held for δ, at least. This can be expressed formally with the
following TRIOsi

4 formula.5

χ◦ , ∀v ∈ D : (〈ψ1, . . . , ψn〉 = v ⇒ WithinPii(Lastsii(〈ψ1, . . . , ψn〉 = v, δ) , δ))

We notice that, in particular, χ◦ rules out any Zeno behavior [6] of the basic
items of a specification. More precisely, we notice the following fact that we will
use in the following.

Lemma 2 (Items Change Points). For any behavior obeying the constraint
χ◦, if for some time t ∈ � it is b(t) |= � 〈ψ1, . . . , ψn〉 = v for some v, then there
exists cn ≥ t and cp ≤ t such that:

• b(cn) |= � Becomes(〈ψ1, . . . , ψn〉 6= v) or b(t) |= � AlwF(〈ψ1, . . . , ψn〉 = v);

• b(cp) |= � Becomes(〈ψ1, . . . , ψn〉 = v) or b(t) |= � AlwP(〈ψ1, . . . , ψn〉 = v)

• for all t′ ∈ (cp, cn) it is b(t′) |= � 〈ψ1, . . . , ψn〉 = v;

• cn − cp ≥ δ.

Moreover, the same property holds for any condition ξ.

Proof. Since χ◦ holds for b, then there exists a p ∈ [0, δ] such that for all
u ∈ [−p,−p+δ] it is b(t+u) |= � 〈ψ1, . . . , ψn〉 = v. In particular, it is b(t−p) |= �
〈ψ1, . . . , ψn〉 = v and b(t − p + δ) |= � 〈ψ1, . . . , ψn〉 = v. Since χ◦ implies the
non-Zenoness of the items values, then [6] there exist a dp, dn ≥ 0 such that:

• either for all u′ ∈ [0, dn) it is b(t−p+δ+u′) |= � 〈ψ1, . . . , ψn〉 = v, and there
exists an εn > 0 such that for all u′′ ∈ (0, εn) it is b(t−p+δ+dn +u′′) |= �
〈ψ1, . . . , ψn〉 6= v, or 〈ψ1, . . . , ψn〉 = v always in the future;

• either for all u′ ∈ [0, dp) it is b(t− p− u′) |= � 〈ψ1, . . . , ψn〉 = v, and there
exists an εp > 0 such that for all u′′ ∈ (0, εn) it is b(t − p − dn − u′′) |= �
〈ψ1, . . . , ψn〉 6= v, or 〈ψ1, . . . , ψn〉 = v always in the past.

4Actually, TRIOsi as we defined it above is purely propositional, while χ◦ uses a universal
quantification on non-temporal variables. However, later it will be shown why this modifica-
tion is a natural and acceptable generalization which is orthogonal to sampling invariance.

5WithinPii(φ, τ) , ∃u ∈ [−τ, 0] : Dist(φ, u), and Lastsii(φ, τ) , ∀u ∈ [0, τ ] : Dist(φ, u).
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In other words, either there is a point where the items change (some of) their
values, or they keep their current value indefinitely.

If the latter is the case, then the lemma follows immediately. Otherwise,
notice that (−p+δ+dn)−(−p) = δ+dn ≥ δ, therefore we have b(t−p+δ+dn) |= �
UpToNow(〈ψ1, . . . , ψn〉 = v). Similarly, notice that −((−p− dp) − (−p+ δ)) =
dp + δ ≥ δ, therefore b(t− p− dp) |= � NowOn(〈ψ1, . . . , ψn〉 = v).

Finally, by considering condition χ◦ again for the instants t− p+ δ+ dn + ε′

and t − p − dp − ε′ “to the limit” as ε goes to 0, then we realize that it must
also be b(t − p + δ + dn) |= � NowOn(〈ψ1, . . . , ψn〉 6= v) and b(t − p − dp) |= �
UpToNow(〈ψ1, . . . , ψn〉 6= v).

Therefore, for cn = t− p+ δ + dn and cp = t− p− dp the lemma holds.
Finally, since the value of a condition changes only if some values change

their values, the lemma holds immediately for conditions as well.

A Sufficient Condition for Sampling Invariance. We finally prove a suf-
ficient condition for sampling invariance of TRIOsi formulas in the following.

Theorem 3 (Sampling Invariance for Discrete-valued Items). Normal-
form TRIOsi is sampling invariant, for items mapping to a discrete set D, with
respect to the behavior constraint χ◦, the adaptation functions η

�
δ {·} and η

�
δ {·},

for any sampling period δ and origin z.

Proof. The proof is split into two main parts: first we show that any TRIOsi

formula φ, interpreted in the continuous-time domain, is closed under sampling;
then we show that any formula φ, interpreted in the discrete-time domain, is
closed under inverse sampling. We assume formulas written in the normal form
presented above.

For ease of exposition, let us also introduce the following abbreviations: for
a real number r, let us denote by Ω(r) the sampling instant z + b(r − z)/δcδ,
which is immediately before r, and by O(r) the sampling instant z+d(r−z)/δeδ
which is immediately after r. Moreover, we also denote by ω(r) and o(r) the
distances between r and its previous and next sampling instant, respectively,
that is ω(r) = r − Ω(r) and o(r) = O(r) − r. Obviously ω(r), o(r) ≥ 0.

(Closure under sampling).6 Let b be a continuous-time behavior in [[χ◦]] �
and let φ′ = η

�
δ {φ}. Then, let b′ be the sampling σδ,z [b] of behavior b with the

given origin and sampling period.
Now, for a generic sampling instant t = z + kδ, we show that b(t) |= � φ

implies b′(k) |= � φ′, by induction on the structure of φ.

• φ = ξ.
By definition of sampling of a behavior, the truth value of ξ at t and k is
the same, i.e. ξ|b(t) = ξ|b(z+kδ) = ξ|b′(k).

6This proof exploits some properties of the floor and ceiling functions. We refer the reader
to [8] for a thorough treatment of these functions.
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• φ = Until〈l,u〉〉(ξ1, ξ2).
Notice that φ′ is Until[l′,u′])(ξ1, ξ2), with l′ = bl/δc and u′ = du/δe.

Let d be a time instant in 〈l, u〉 such that b(t + d) |= � ξ2 and, for all
time instants e ∈ [0, d〉 it is b(t + e) |= � ξ1. Condition χ◦ at time t + d
implies that there exists a p ∈ [0, δ] such that for all f ∈ [−p,−p + δ] it
is b(t+ d+ f) |= � ξ2. In other words, ξ2 holds on the closed real interval
I = [t + d − p, t + d − p + δ]. Since I has size δ, its intersection with the
sampling points (which are δ time units apart) must be non-empty. In
particular, it is either p ≥ ω(t + d) or −p + δ ≥ o(t + d): otherwise it
would be δ = p+ (−p+ δ) < ω(t+ d) + o(t+ d) = O(t+ d) − Ω(t+ d) =
δ(d(t+d−z)/δe−b(t+d−z)/δc) ≤ δ, a contradiction (where we exploited
the property: dre − brc ≤ 1 for any real r).

So, let t′ be the sampling instant:

t′ =

{
Ω(t+ d) if p ≥ ω(t+ d)

O(t+ d) otherwise

It is not difficult to check that (t′ − t)/δ ∈ [l′, u′]. In fact:

– if p ≥ ω(t+d), then t′−t = Ω(t+d)−t = δ(b(kδ+d)/δc−k) = δbd/δc.
Recall that d ∈ 〈l, u〉, and then a fortiori d ∈ [l, u] ⊇ 〈l, u〉. So
d/δ ∈ [l/δ, u/δ], and (t′ − t)/δ = bd/δc ∈ [bl/δc, bu/δc] ⊆ [l′, u′].

– if p < ω(t+d), then t′−t = O(t+d)−t = δ(d(kδ+d)/δe−k) = δdd/δe.
Recall that d ∈ 〈l, u〉, and then a fortiori d ∈ [l, u] ⊇ 〈l, u〉. So
d/δ ∈ [l/δ, u/δ], and (t′ − t)/δ = dd/δe ∈ [dl/δe, du/δe] ⊆ [l′, u′].

So far, we have shown that b(t′) |= � ξ2. By inductive hypothesis, it follows
that for d′ = (t′− t)/δ it is b′(k+d′) |= � ξ2. Since d′ ∈ [l′, u′], to conclude
this branch of the proof we have to show that for all e′ ∈ [0, d′ − 1] it is
b′(k + e′) |= � ξ1. To this end, we just have to realize that δ(d′ − 1) < d.
In fact, we have shown above that d′ ≤ dd/δe < d/δ+ 1, since dre < r+ 1
for any real number r. So obviously δ(d′ − 1) < δ(d/δ) = d. Since for all
e ∈ [0, d〉 we have b(t + e) |= � ξ1, and since [0, δ(d′ − 1)] ⊂ [0, d〉, then a
fortiori for all e ∈ [0, δ(d′ − 1)] it is b(t+ e) |= � ξ1. Finally, by inductive
hypothesis, it follows that for all integers e′ ∈ [0, d′ − 1] = [0, d′) it is
b′(k + e′) |= � ξ1, which lets us conclude that b′(k) |= � φ′.

• φ = Since〈l,u〉〈(ξ1, ξ2).
Notice that φ′ is Since[l′,u′]((ξ1, ξ2), with l′ = bl/δc and u′ = du/δe.

Let d be a time instant in 〈l, u〉 such that b(t − d) |= � ξ2 and, for all
time instants e ∈ 〈−d, 0] it is b(t + e) |= � ξ1. Condition χ◦ at time t − d
implies that there exists a p ∈ [0, δ] such that for all f ∈ [−p,−p + δ] it
is b(t− d+ f) |= � ξ2. In other words, ξ2 holds on the closed real interval
I = [t − d − p, t − d − p + δ]. Since I has size δ, its intersection with the
sampling points (which are δ time units apart) must be non-empty. In
particular, it is either p ≥ ω(t − d) or −p + δ ≥ o(t − d): otherwise it
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would be δ = p+ (−p+ δ) < ω(t− d) + o(t− d) = O(t− d) − Ω(t− d) =
δ(d(t−d−z)/δe−b(t−d−z)/δc) ≤ δ, a contradiction (where we exploited
the property: dre − brc ≤ 1 for any real r).

So, let t′ be the sampling instant:

t′ =

{
Ω(t− d) if p ≥ ω(t− d)

O(t− d) otherwise

It is not difficult to check that (t− t′)/δ ∈ [l′, u′]. In fact:

– if p ≥ ω(t − d), then t − t′ = t − Ω(t − d) = δ(k − b(kδ − d)/δc) =
δ(−b−d/δc) = δdd/δe, since b−rc = −dre for any real r. Recall that
d ∈ 〈l, u〉, and then a fortiori d ∈ [l, u] ⊇ 〈l, u〉. So d/δ ∈ [l/δ, u/δ],
and (t− t′)/δ = dd/δe ∈ [dl/δe, du/δe] ⊆ [l′, u′].

– if p < ω(t + s), then t − t′ = t − O(t − d) = δ(k − d(kδ − d)/δe) =
δ(−d−d/δe) = δbd/δc, since d−re = −brc for any real r. Recall that
d ∈ 〈l, u〉, and then a fortiori d ∈ [l, u] ⊇ 〈l, u〉. So d/δ ∈ [l/δ, u/δ],
and (t− t′)/δ = bd/δc ∈ [bl/δc, bu/δc] ⊆ [l′, u′].

So far, we have shown that b(t′) |= � ξ2. By inductive hypothesis, it follows
that for d′ = (t− t′)/δ it is b′(k−d′) |= � ξ2. Since d′ ∈ [l′, u′], to conclude
this branch of the proof we have to show that for all e′ ∈ [−(d′ − 1), 0] it
is b′(k+ e′) |= � ξ1. To this end, we just have to realize that δ(d′ − 1) < d.
In fact, we have shown above that d′ ≤ dd/δe < d/δ+ 1, since dre < r+ 1
for any real number r. So obviously δ(d′ − 1) < δ(d/δ) = d. Since for all
e ∈ 〈−d, 0] we have b(t+e) |= � ξ1, and since [−δ(d′−1), 0] ⊂ 〈−d, 0], then
a fortiori for all e ∈ [−δ(d′−1), 0] it is b(t+e) |= � ξ1. Finally, by inductive
hypothesis, it follows that for all integers e′ ∈ [−(d′ − 1), 0] = (−d′, 0] it is
b′(k + e′) |= � ξ1, which lets us conclude that b′(k) |= � φ′.

• φ = Releases〈l,u〉〉(ξ1, ξ2).
Notice that φ′ is Releases〈l′,u′〉](ξ1, ξ2), where l′, u′ depend on the kind of
interval I = 〈l, u〉 is.

Let d′ be a generic integer in 〈l′, u′〉. We have to show that either b′(k +
d′) |= � ξ2 or there exists a e′ ∈ [0, d′] such that b′(k + e′) |= � ξ1.

Now, we claim that 〈l′, u′〉 ⊆ 〈l/δ, u/δ〉. To show this we discuss the four
possible cases for the interval I ′ = 〈l′, u′〉.

– I = [l, u], so I ′ = [l′, u′], where l′ = dl/δe and u′ = bu/δc.
Thus, [l′, u′] ⊆ [l/δ, u/δ], since brc ≤ r and dre ≥ r for any real
number r.

– I = [l, u), so I ′ = [l′, u′), where l′ = dl/δe and u′ = du/δe.
Thus, [l′, u′) ⊆ [l/δ, u/δ), since [l′, u′) = [dl/δe, du/δe−1] ⊆ [l/δ, u/δ),
noting that dre ≥ r, and that dre − 1 < r, for any real r.
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– I = (l, u], so I ′ = (l′, u′], where l′ = bl/δc and u′ = bu/δc.
Thus, (l′, u′] ⊆ (l/δ, u/δ], since (l′, u′] = [bl/δc+1, bu/δc] ⊆ (l/δ, u/δ],
noting that brc ≤ r, and that brc + 1 > r, for any real r.

– I = (l, u), so I ′ = (l′, u′), where l′ = bl/δc and u′ = du/δe.
Thus, (l′, u′) ⊆ (l/δ, u/δ), since (l′, u′) = [bl/δc + 1, du/δe − 1] ⊂
(l/δ, u/δ), noting that brc+ 1 > r, and that dre − 1 < r, for any real
r.

All in all, by hypothesis it is either b(t + δd′) |= � ξ2 or there exists a
e ∈ [0, δd′〉 such that b(t+ e) |= � ξ1.

In the former case, by inductive hypothesis we have that b′(k+ d′) |= � ξ2,
which fulfills the goal. In the latter case, we can write that b(t) |= �
Until[0,δd′〉〉(true, ξ1). Thus, by inductive hypothesis, we infer that b′(k) |= �
Until[0,d′〉)(true, ξ1). Therefore, from the definition of the Until operator,
we have that there exists a e′ ∈ [0, d′〉 ⊆ [0, d′] such that b′(k + e′) |= � ξ1,
as required.

• φ = Released〈l,u〉〈(ξ1, ξ2).
Notice that φ′ is Released〈l′,u′〉[(ξ1, ξ2), where l′, u′ depend on the kind of
interval I = 〈l, u〉 is.

Let d′ be a generic integer in 〈l′, u′〉. We have to show that either b′(k −
d′) |= � ξ2 or there exists a e′ ∈ [−d′, 0] such that b′(k + e′) |= � ξ1.

Now, we claim that 〈l′, u′〉 ⊆ 〈l/δ, u/δ〉. In fact, we showed this fact in
the above proof for the Releases operator (notice that the bounds l′, u′

are the same for the Releases and Released operators).

All in all, by hypothesis it is either b(t − δd′) |= � ξ2 or there exists a
e ∈ 〈−δd′, 0] such that b(t+ e) |= � ξ1.

In the former case, by inductive hypothesis we have that b′(k− d′) |= � ξ2,
which fulfills the goal. In the latter case, we can write that b(t) |= �
Since[0,δd′〉〈(true, ξ1). Thus, by inductive hypothesis, we infer that b′(k) |= �
Since[0,d′〉((true, ξ1). Therefore, from the definition of the Since operator,
we have that there exists a e′′ ∈ [0, d′〉 ⊆ [0, d′] such that b′(k−e′′) |= � ξ1,
or equivalently, by substituting e′ for −e′′, there exists a e′ ∈ [−d′, 0] such
that b(k + e′) |= � ξ1, as required.

• φ = φ1 ∧ φ2.
Since b(t) |= � φi implies b′(k) |= � φ′i for i = 1, 2, then also b(t) |= � φ1∧φ2

implies b′(k) |= � φ′1 ∧ φ
′
2.

• φ = φ1 ∨ φ2.
Since b(t) |= � φi implies b′(k) |= � φ′i for i = 1 or i = 2, then also
b(t) |= � φ1 ∨ φ2 implies b′(k) |= � φ′1 ∨ φ

′
2.

Since the above holds for a generic sampling instant t, we have shown that if
b |= � φ then σδ,z [b] |= � η

�
δ {φ} for any behavior b ∈ [[χ◦]] � . Therefore, we have

shown that any TRIOsi formula φ, interpreted in the continuous-time domain,
is closed under sampling
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(Closure under inverse sampling.) Let b be a discrete-time behavior, and
let φ′ = η

�
δ {φ}. Then, let b′ be a continuous-time behavior such that b′ ∈ [[χ◦]] �

and b = σδ,z [b′] for the given sampling period δ and origin z. In the remainder,
for a generic sampling instant t = z + kδ, we first show that if b(k) |= � φ then
b′(t) |= � φ′.

Let us also introduce the following terminology. For any formula φ′ = η
�
δ {φ}

which holds at a sampling point t = z + kδ:

• if for all s ∈ (−δ, 0) it is b′(t+s) |= � φ′, we say that φ′ “shifts to the left”;

• if for all s ∈ (0, δ) it is b′(t+ s) |= � φ′, we say that φ′ “shifts to the right”;

• if there exists a c ∈ (0, δ) such that for all t′ ∈ [t, t + c) it is b′(t′) |= � φ′

and for all t′′ ∈ (t+ c, t+ c+ ε) it is b′(t′′) |= � ¬φ′, we say that φ′ “turns
false at c”.

• if there exists a c ∈ (−δ, 0) such that for all t′ ∈ (t+ c, t] it is b′(t′) |= � φ′

and for all t′′ ∈ (t+ c− ε, t+ c) it is b′(t′′) |= � ¬φ′, we say that φ′ “turned
false at c”.

In the following proof, we will also show that, for any φ′ = η
�
δ {φ}:

• either φ′ shifts to the right, or there exists a c ∈ (0, δ) and a condition ξ
such that φ′ and ξ turn false at c;

• either φ′ shifts to the left, or there exists a c ∈ (−δ, 0) such that φ′ and ξ
turned false at c.

We call the point c the “change point” of φ′. Notice that, whenever the above
properties hold, φ′ becomes false together with some condition ξ becoming false,
at any change point. Therefore, in such cases, φ′ becoming false is ultimately a
consequence of some basic item changing its value.

Let us now proceed by induction on the structure of the formula φ.

• φ = ξ.
By definition of sampling of a behavior, the truth value of ξ at k and t is
the same, i.e. ξ|b(k) = ξ|b′(z+kδ) = ξ|b′(t).

By Lemma 2, there exist cn, cp such that the condition ξ changes its value
at these points, or ξ is indefinitely true in the past and/or future. If the
latter is the case, then ξ obviously shifts to the left/right respectively.
Thus, let us assume that the former is the case.

Let us consider cp first, and show that either ξ shifts to the left, or there
exists a c ∈ (−δ, 0) such that ξ turned false at c. Indeed, if cp−t ∈ (−δ, 0),
then ξ is true for all t′ ∈ (cp, t] = (t+ c, t], and for ε = δ, we have that for
all t′′ ∈ (cp − ε, cp) it is b′(t′′) |= � ¬ξ, therefore ξ turned false at t − cp.
Otherwise, ξ shifts to the left.
Similarly, by considering cn, we show that either ξ shifts to the right, or
there exists a c ∈ (0, δ) such that ξ turns false at c. Indeed, if cn−t ∈ (0, δ),
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then ξ is true for all t′ ∈ [t, cn) = [t, t + c), and for ε = δ, we have that
for all t′′ ∈ (cn, cn + ε) it is b′(t′′) |= � ¬ξ, therefore ξ turns false at cn − t.
Otherwise, ξ shifts to the right.

• φ = Until[l,u]](ξ1, ξ2).
Notice that φ′ = Until[l′,u′]](ξ1, ξ2), with l′ = (l − 1)δ and u′ = (u+ 1)δ.

First, let us show that b′(t) |= � Until[lδ,uδ](ξ1, ξ2). Notice that this implies
b′(t) |= � φ′, as [lδ, uδ] ⊂ [(l − 1)δ, (u+ 1)δ].
Let d ∈ [l, u] be the integer time instant such that b(k + d) |= � ξ2, which
exists by hypothesis. Let d′ = dδ, and notice that d′ ∈ [lδ, uδ]. Then, by
inductive hypothesis, it is b′(t+ d′) |= � ξ2.
By hypothesis we also know that for all integers e ∈ [0, d] it is b(k +
e) |= � ξ1. Thus, by inductive hypothesis, we have that for all δ-multiples
e′ ∈ [0, d′] it is b′(t + e′) |= � ξ1. Finally, because of the condition χ◦, it
must also be that, for all real values e′′ ∈ [0, d′], it is b′(t + e′′) |= � ξ1.
Therefore, we have shown that b′(t) |= � Until[lδ,uδ]](ξ1, ξ2).

Now, let us show that Until shifts to the right, that is for all s ∈ (0, δ) it
is b′(t+ s) |= � φ′.
Let s be a generic time instant in (0, δ). Let us consider c = d′ − s, and
notice that c > d′ − δ ≥ lδ − δ = l′, and c < d′ ≤ uδ < u′, thus c ∈ [l′, u′].
Since t + s + c = t + d′, we have shown above that b′((t + s) + c) =
b′(t+ d′) |= � ξ2.
Moreover, [s, s+c] ⊂ [0, d′], thus a fortiori for all f ∈ [0, c] it is b′((t+s)+
f) |= � ξ1, from what we have shown above. This shows that b′(t+s) |= � φ′

for any s ∈ (0, δ).

Finally, let us show that either φ′ also shifts to the left, or there exist a
c ∈ (−δ, 0) and a condition ξ such that φ′ and ξ turned false at c.
To this end, take any f ∈ (−δ, 0), and let ξ = ξ1. For d′′ = d′ − f we have
that d′′ ∈ [lδ, (u+ 1)δ] ⊂ [(l − 1)δ, (u+ 1)δ] and b′(t+ f + d′′) |= � ξ2.
Now, let us consider ξ1. By inductive hypothesis, either there exists a
c ∈ (−δ, 0) such that ξ1 turned false at c, or ξ1 shifts to the left. In the
latter case, φ′ shifts to the left as well. In the former case, it is easy to
realize that for all t′ ∈ (t + c, t] we have b′(t′) |= � φ′ ∧ ξ1 and φ′ turned
false at c, since “right before” t+c the Until must be false, since ξ1 is false
there.

• φ = Since[l,u][(ξ1, ξ2).
Notice that φ′ = Since[l′,u′][(ξ1, ξ2), with l′ = (l − 1)δ and u′ = (u+ 1)δ.

First, let us show that b′(t) |= � Since[lδ,uδ][(ξ1, ξ2). Notice that this implies
b′(t) |= � φ′, as [lδ, uδ] ⊂ [(l − 1)δ, (u+ 1)δ].
Let d ∈ [l, u] be the integer time instant such that b(k − d) |= � ξ2, which
exists by hypothesis. Let d′ = dδ, and notice that d′ ∈ [lδ, uδ]. Then, by
inductive hypothesis, it is b′(t− d′) |= � ξ2.
By hypothesis we also know that for all integers e ∈ [−d, 0] it is b(k +
e) |= � ξ1. Thus, by inductive hypothesis, we have that for all δ-multiples
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e′ ∈ [−d′, 0] it is b′(t+ e′) |= � ξ1. Finally, because of the condition χ◦, it
must also be that, for all real values e′′ ∈ [−d′, 0], it is b′(t + e′′) |= � ξ1.
Therefore, we have shown that b′(t) |= � Since[lδ,uδ][(ξ1, ξ2).

Now, let us show that Since shifts to the left, that is for all s ∈ (−δ, 0) it
is b′(t+ s) |= � φ′.
Let s be a generic time instant in (−δ, 0). Let us consider c = d′ + s, and
notice that c > d′ − δ ≥ lδ − δ = l′, and c < d′ ≤ uδ < u′, thus c ∈ [l′, u′].
Since t − (c − s) = t − d′, we have shown above that b′((t + s) − c) =
b′(t− d′) |= � ξ2.
Moreover, [s − c, s] ⊂ [−d′, 0], thus a fortiori for all f ∈ [−c, 0] it is
b′((t + s) + f) |= � ξ1, from what we have shown above. This shows that
b′(t+ s) |= � φ′ for any s ∈ (−δ, 0).

Finally, let us show that either φ′ also shifts to the right, or there exist a
c ∈ (0, δ) and a condition ξ such that φ′ and ξ turn false at c.
To this end, take any f ∈ (0, δ), and let ξ = ξ1. For d′′ = d′ + f we
have that d′′ ∈ [lδ, (u + 1)δ] ⊂ [(l − 1)δ, (u + 1)δ] and b′((t + f) − d′′) =
b′(t− d′) |= � ξ2.
Now, let us consider ξ1. By inductive hypothesis, either there exists a
c ∈ (−δ, 0) such that ξ1 turns false at c, or ξ1 shifts to the right. In the
latter case, φ′ shifts to the right as well. In the former case, it is easy to
realize that for all t′ ∈ [t, t + c) we have b′(t′) |= � φ′ ∧ ξ1 and φ′ turns
false at c, since “right after” t+ c the Since must be false, since ξ1 is false
there.

• φ = Releases[l,u])(ξ1, ξ2).
Notice that φ′ = Releases[l′,u′])(ξ1, ξ2), with l′ = (l+1)δ and u′ = (u−1)δ.

First, let us show that b′(t) |= � Releases[lδ,uδ])(ξ1, ξ2). Notice that this
implies b′(t) |= � φ′, as [lδ, uδ] ⊃ [l′, u′].
Let d′ be a generic instant in [lδ, uδ]: we have to show that either b′(t +
d′) |= � ξ2 or there exists a e′ ∈ [0, d′) such that b′(t + e′) |= � ξ1. We
distinguish two cases, whether t+ d′ is a sampling instant or not.

– If t+d′ is a sampling instant, then d = d′/δ is an integer, and d ∈ [l, u]
by hypothesis.
Therefore, by hypothesis it is either b(k+d) |= � ξ2 or there exists an
integer e ∈ [0, d− 1] such that b(k + e) |= � ξ1.
In the former case, by inductive hypothesis we have that b′(t+d′) |= �
ξ2, which satisfies the definition of the Releases operator for d′.
Otherwise, by inductive hypothesis we have that b′(t+ e′) |= � ξ1, for
e′ = eδ. Since e′ ∈ [0, d′ − δ] ⊂ [0, d′), we have that the definition of
the Releases operator is satisfied for d′ in this case as well.

– If t+ d′ is not a sampling instant, let us consider the distances p′ =
d′−ω(t+d′) and n′ = d′+o(t+d′); these are δ-multiples by definition
of ω(·) and o(·). Notice that p′ > d′ − δ ≥ lδ − δ = (l − 1)δ, and
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n′ < d′ + δ ≤ uδ+ δ = (u+ 1)δ. Therefore, the two integers p = p′/δ
and n = n′/δ are ≥ l and ≤ u respectively, that is p, n ∈ [l, u].
Thus, by hypothesis we have that:

∗ b(k + p) |= � ξ2 or there exists a ep ∈ [0, p − 1] such that b(k +
ep) |= � ξ1; and that:

∗ b(k + n) |= � ξ2 or there exists a en ∈ [0, n − 1] such that b(k +
en) |= � ξ1.

Therefore, we distinguish the following three cases (covering all the
possibilities):

∗ b(k + p) |= � ξ2 and b(k + n) |= � ξ2;

∗ there exists a ep ∈ [0, p− 1] such that b(k + ep) |= � ξ1;

∗ there exists a en ∈ [0, n− 1] such that b(k + en) |= � ξ1.

Let us first consider the case: b(k + p) |= � ξ2 and b(k + n) |= � ξ2.
Notice that n = p + 1, so ξ2 is true on two adjacent time instants.
By inductive hypothesis, we have that b′(t + p′) |= � ξ2 and b′(t +
n′) |= � ξ2. Moreover, thanks to the constraint χ◦ which holds for b
by hypothesis, ξ2 must also be true for all time instants in the interval
[t+ p′, t+n′] = [t+ p′, t+ p′ + δ]. In particular, since d′ ∈ [p′, p′ + δ],
then b′(t + d′) |= � ξ2. That is, the definition of the Releases is
satisfied for d′.
Now, for the other two cases, notice that (p− 1)δ ≤ (n− 1)δ < (d′ +
δ)−δ = d′; hence ep, en ∈ [0, n−1] and δep, δen ∈ [0, (n−1)δ] ⊂ [0, d′).
Therefore, if there exists a ep ∈ [0, p−1] such that b(k+ep) |= � ξ1, or
if there exists a en ∈ [0, n− 1] such that b(k + en) |= � ξ1, then there
exists an e′ = δep or e′ = δen, respectively, such that e′ ∈ [0, d′) and
b′(t + e′) |= � ξ1. That is, the definition of the Releases is satisfied
for d′ in both these cases.

All in all, since d′ is generic, we have shown that b′(t) |= � Releases[lδ,uδ])(ξ1, ξ2),
and thus a fortiori b′(t) |= � φ′.

Now, let us show that Releases shifts to the left, that is for all s ∈ (−δ, 0)
it is b′(t+ s) |= � φ′.
Let s be any time instant in (−δ, 0), and consider a generic d ∈ [l′, u′].
Since s+d ∈ [lδ, uδ], we have shown above that it is either b′(t+(s+d)) |= �
ξ2 or there exists a e′ ∈ [0, s+ d) such that b′(t+ e′) |= � ξ1.
In the former case, we have shown that b′((t+ s) + d) |= � ξ2. Otherwise,
let e′′ = e′ − s; then e′′ ∈ [−s, d) ⊂ [0, d), as s < 0. Therefore, we have
that there exists a e′′ ∈ [0, d) such that b′(t+ e′) = b′((t+ s) + e′′) |= � ξ1.
All in all, we have shown that b′(t+ s) |= � φ′ for a generic s ∈ (−δ, 0).

Finally, let us show that either φ′ also shifts to the right, or there exist a
c ∈ (0, δ) and a condition ξ such that φ′ and ξ turn false at c.
To this end, take generic f ∈ (0, δ) and d′′ ∈ [(l + 1)δ, (u − 1)δ], and let
ξ = ξ1. Notice that d′′ + f ∈ [lδ, uδ], therefore by hypothesis it is either
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b′(t+d′′+f) |= � ξ2 or there exists a c ∈ [0, d′′+f) such that b′(t+c) |= � ξ1.
Now let us consider two cases:

– For all f and d′′ as above, it is either b′((t+ f) + d′′) |= � ξ2 or there
exists a c ∈ [f, d′′+f) such that b′(t+c) = b′((t+f)+(c−f)) |= � ξ1.
Since c − f ∈ [0, d′′), this shows that b′(t + f) |= � φ′, and thus φ′

shifts to the right since f is generic.

– Otherwise, assume that the previous case is false, that is there is
some f and d′′ as above such that b′((t+ f)+ d′′) |= � ¬ξ2 and for all
c′ ∈ [f, d′′+f) it is b′(t+c′) = b′((t+f)+(c′−f)) |= � ¬ξ1. Therefore,
it must be that there exists a c ∈ [0, f) such that b′(t+ c) |= � ξ1.
Now, if we consider Lemma 2, and because of the non-Zeno behavior
of the basic items values, a point t + v at which ξ1 becomes false
must exist for some v, that is for some v it must be b′(t + v) |= �
Becomes(¬ξ1). Then, ξ1 is true in the whole interval [t, t+ v), since
v = c < f < δ in this branch of the proof, and false afterwards, and
in particular in the interval (t+ v, t+ v+ δ). Consequently, φ′ is also
true in the whole interval [t, t+ v), and it becomes false “right after”
t+ v, as a consequence of ξ1 turning false.

A little reasoning should convince us that the two cases do indeed cover
all the possibilities. Then, since f is generic, we have shown that either
φ′ shifts to the right, or there exists a c ∈ (0, δ) such that φ′ and ξ1 turn
false at c.

• φ = Released[l,u]((ξ1, ξ2).
Notice that φ′ = Released[l′,u′]((ξ1, ξ2), with l′ = (l+1)δ and u′ = (u−1)δ.

First, let us show that b′(t) |= � Released[lδ,uδ]((ξ1, ξ2). Notice that this
implies b′(t) |= � φ′, as [lδ, uδ] ⊃ [l′, u′].
Let d′ be a generic instant in [lδ, uδ]: we have to show that either b′(t −
d′) |= � ξ2 or there exists a e′ ∈ (−d′, 0] such that b′(t + e′) |= � ξ1. We
distinguish two cases, whether t− d′ is a sampling instant or not.

– If t−d′ is a sampling instant, then d = d′/δ is an integer, and d ∈ [l, u]
by hypothesis.
Therefore, by hypothesis it is either b(k−d) |= � ξ2 or there exists an
integer e ∈ [−(d− 1), 0] such that b(k + e) |= � ξ1.
In the former case, by inductive hypothesis we have that b′(t−d′) |= �
ξ2, which satisfies the definition of the Released operator for d′.
Otherwise, by inductive hypothesis we have that b′(t + e′) |= � ξ1,
for e′ = eδ. Since e′ ∈ [−(d′ − δ), 0] ⊂ (−d′, 0], we have that the
definition of the Released operator is satisfied for d′ in this case as
well.

– If t− d′ is not a sampling instant, let us consider the distances p′ =
d′−o(t−d′) and n′ = d′+ω(t−d′); these are δ-multiples by definition
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of ω() and o(). Notice that p′ > d′ − δ,≥ lδ − δ = (l − 1)δ, and
n′ < d′ + δ ≤ uδ+ δ = (u+ 1)δ. Therefore, the two integers p = p′/δ
and n = n′/δ are ≥ l and ≤ u respectively, that is p, n ∈ [l, u].
Thus, by hypothesis we have that:

∗ b(k − p) |= � ξ2 or there exists a ep ∈ [−(p − 1), 0] such that
b(k + ep) |= � ξ1; and that:

∗ b(k − n) |= � ξ2 or there exists a en ∈ [−(n − 1), 0] such that
b(k + en) |= � ξ1.

Therefore, we distinguish the following three cases (covering all the
possibilities):

∗ b(k − p) |= � ξ2 and b(k − n) |= � ξ2;

∗ there exists a ep ∈ [−(p− 1), 0] such that b(k + ep) |= � ξ1;

∗ there exists a en ∈ [−(n− 1), 0] such that b(k + en) |= � ξ1.

Let us first consider the case: b(k − p) |= � ξ2 and b(k − n) |= �
ξ2. Notice that −n = −p − 1, so ξ2 is true on two adjacent time
instants. By inductive hypothesis, we have that b′(t− p′) |= � ξ2 and
b′(t− n′) |= � ξ2. Moreover, thanks to the constraint χ◦ which holds
for b by hypothesis, ξ2 must also be true for all time instants in the
interval [t − n′, t − p′] = [t − n′, t − (n′ − δ)]. In particular, since
d′ ∈ [n′ − δ, n′], then b′(t − d′) |= � ξ2. That is, the definition of the
Released is satisfied for d′.
Now, for the other two cases, notice that −(p − 1)δ ≥ −(n − 1)δ >
−d′ + δ− δ = −d′; hence ep, en ∈ [−(n− 1), 0] and δep, δen ∈ [−(n−
1)δ, 0] ⊂ (−d′, 0]. Therefore, if there exists a ep ∈ [−(p − 1), 0] such
that b(k + ep) |= � ξ1, or if there exists a en ∈ [−(n − 1), 0] such
that b(k + en) |= � ξ1, then there exists an e′ = δep or e′ = δen,
respectively, such that e′ ∈ (−d′, 0] and b′(t+ e′) |= � ξ1. That is, the
definition of the Released is satisfied for d′ in both these cases.

All in all, since d′ is generic, we have shown that b′(t) |= � Released[lδ,uδ]((ξ1, ξ2),
and thus a fortiori b′(t) |= � φ′.

Now, let us show that Released shifts to the right, that is for all s ∈ (0, δ)
it is b′(t+ s) |= � φ′.
Let s be any time instant in (0, δ), and consider a generic d ∈ [l′, u′]. Since
d− s ∈ [lδ, uδ], we have shown above that it is either b′(t− (d− s)) |= � ξ2
or there exists a e′ ∈ (−(d− s), 0] such that b′(t+ e′) |= � ξ1.
In the former case, we have shown that b′((t+ s) − d) |= � ξ2. Otherwise,
let e′′ = e′ − s; then e′′ ∈ (−d,−s] ⊂ (−d, 0], as s > 0. Therefore, we have
that there exists a e′′ ∈ (−d, 0] such that b′(t+e′) = b′((t+s)+e′′) |= � ξ1.
All in all, we have shown that b′(t+ s) |= � φ′ for a generic s ∈ (0, δ).

Finally, let us show that either φ′ also shifts to the left, or there exist a
c ∈ (−δ, 0) and a condition ξ such that φ′ and ξ turned false at c.
To this end, take generic f ∈ (−δ, 0) and d′′ ∈ [(l + 1)δ, (u − 1)δ], and
let ξ = ξ1. Notice that d′′ − f ∈ [lδ, uδ], therefore by hypothesis it is
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either b′(t − (d′′ − f)) |= � ξ2 or there exists a c ∈ (d′′ + f, 0] such that
b′(t+ c) |= � ξ1.
Now let us consider two cases:

– For all f and d′′ as above, it is either b′((t+ f)− d′′) |= � ξ2 or there
exists a c ∈ (−(d′′−f), f ] such that b′(t+c) = b′((t+f)+(c−f)) |= �
ξ1.
Since c − f ∈ (−d′′, 0], this shows that b′(t + f) |= � φ′, and thus φ′

shifts to the left since f is generic.

– Otherwise, assume that the previous case is false, that is there is
some f and d′′ as above such that b′((t + f) − d′′) |= � ¬ξ2 and for
all c′ ∈ (−(d′′ − f), f ] it is b′(t + c′) |= � ¬ξ1. Therefore, it must be
that there exists a c ∈ (f, 0] such that b′(t+ c) |= � ξ1.
Now, if we consider Lemma 2, and because of the non-Zeno behavior
of the basic items values, a point t+v at which ξ1 becomes false must
exist for some v < 0, that is for some v < 0 it must be b′(t+ v) |= �
Becomes(ξ1). Then, ξ1 is true in the whole interval (t + v, t], since
−v = −c < −f < δ in this branch of the proof, and false beforehand,
and in particular in the interval (t + v, t + v − δ). Consequently, φ′

is also true in the whole interval (t+ v, t], and it became false “right
before” t+ v, as a consequence of ξ1 turned false.

A little reasoning should convince us that the two cases do indeed cover
all the possibilities. Then, since f is generic, we have shown that either φ′

shifts to the left, or there exists a c ∈ (−δ, 0) such that φ′ and ξ1 turned
false at c.

• φ = φ1 ∧ φ2.
Since b(k) |= � φi implies b′(t) |= � φ′i for i = 1, 2 by inductive hypothesis,
then also b(k) |= � φ1 ∧ φ2 implies b′(t) |= � φ′1 ∧ φ

′
2.

Now, by inductive hypothesis, for both i = 1, 2: either φ′
i shifts to the

right, or there exists a ci ∈ (0, δ) and some condition ξi such that φ′
i and

ξi turn to false at ci. Thus, if both φ′
1 and φ′2 shift to the right, then

φ′ = φ′1 ∧ φ
′
2 also shifts to the right; otherwise there exists a c ∈ (0, δ) =

mini=1,2 ci such that φ′
1 ∧ φ

′
2 turns to false at c.

Similarly, by inductive hypothesis for both i = 1, 2: either φ′
i shifts to

the left, or there exists a ci ∈ (−δ, 0) and some condition ξi such that
φ′i and ξi turned to false at ci. Thus, if both φ′

1 and φ′2 shift to the
left, then φ′ = φ′1 ∧ φ′2 also shifts to the left; otherwise there exists a
c ∈ (−δ, 0) = maxi=1,2 ci such that φ′

1 ∧ φ
′
2 turned false at c.

• φ = φ1 ∨ φ2.
Since b(k) |= � φi implies b′(t) |= � φ′i for i = 1 or i = 2 by inductive
hypothesis, then also b(k) |= � φ1 ∨ φ2 implies b′(t) |= � φ′1 ∨ φ

′
2.

Now, we realize that if b′(t) |= � φ′i for some i = 1 or i = 2, then by
inductive hypothesis either φ′

i shifts to the right or there exists a c ∈ (0, δ)
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and a condition ξi such that φ′
i and ξi turn false at c. Thus, a fortiori

either φ′ shifts to the right, or there exist a c ∈ (0, δ) and a condition
ξ = ξi such that φ′ and ξ turn false at c.
Similarly, by inductive hypothesis either φ′

i shifts to the left or there exists
a c ∈ (−δ, 0) and a condition ξi such that φ′

i and ξi turned false at c.
Thus, a fortiori either φ′ shifts to the left, or there exist a c ∈ (−δ, 0) and
a condition ξ such that φ′ and ξ = ξi turned false at c.

(Filling in the gaps between sampling points.) So far, we have proved
that, for any formula φ, if b |= � φ then for all t = z + kδ for integer k’s, it is
b′(t) |= � φ′. Moreover, we have proved some results about shifting of temporal
operators that we are going to use in the remainder.

Now, in order to finish the proof by showing that b′(t) |= � φ′ for all t ∈ � ,
that is b′ |= � φ′, we have to demonstrate that any formula φ′ which is true
at all sampling points cannot become false between any two of them. More
precisely, we prove that whenever φ′ = η

�
δ {φ} is true at two adjacent sampling

points tp = z + kδ and tn = tp + δ = z + (k + 1)δ, then for all t′ ∈ [tp, tn] it is
b′(t′) |= � φ′.

If φ′ at tp shifts to the right, or φ′ at tn shifts to the left, then the conclusion
follows trivially.

Thus, let us assume that φ′ does not shift to the right at tp and does not
shift to the left at tn. Therefore, we proved above that:

• there exist a cp ∈ (0, δ) and a condition ξp such that φ′ and ξp turn false
at cp; and

• there exist a cn ∈ (−δ, 0) and a condition ξn such that φ′ and ξn turned
false at cn.

Now notice that |(tn + cn)− (tp + cp)| = |δ+ cn − cp| < δ. Therefore, because of
condition χ◦, the two changing points must actually coincide, otherwise there
would be two changing points (corresponding to two changing points for the
value of the conditions ξp and ξn, and thus to the changing points of some basic
items) within δ time units. But the two formulas above contradict each other
if the two changing points coincide. Thus, this means that φ′ actually never
becomes false in the interval [tp, tn], which is what we had to prove.

Since tp, tn are actually generic, we have proved that b |= � φ′, that is any
TRIOsi formula φ is closed under inverse sampling.

Since any formula of the TRIOsi language is both closed under sampling and
closed under inverse sampling, then TRIOsi is sampling invariant.

3.2 Dense-valued Items

Let us now consider the case in which some time-dependent items in Ψ have
dense codomains, i.e. ψi has a dense codomain Di, for some i = 1, . . . , n.
Without loss of generality, we can even assume that all Di’s are dense sets,
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since we can handle separately the discrete sets as seen in the previous subsection
(we do not discuss the details of that as it is straightforward). Similarly as for
discrete-valued items, we assume that each Di is a totally ordered set, with no
practical loss of generality.

Conditions. Let Λ be a set of n-tuples of the form 〈〈1l1, u1〉
1, . . . , 〈nln, un〉

n〉,
with li, ui ∈ Di, li ≤ ui, 〈

i∈ {(, [}, and 〉i ∈ {), ]}, for all i = 1, . . . , n. Moreover,
for any λ ∈ Λ, we denote by λ|i its projection to the ith component, i.e. λ|i ≡
〈ili, ui〉

i. Then, if λ ∈ Λ, conditions ξ are defined simply as follows:

ξ ::= 〈ψ1, . . . , ψn〉 ∈ λ | ¬ξ | ξ1 ∧ ξ2

For a behavior b : � → D, we define 〈ψ1, . . . , ψn〉|b(t) ≡ ∀i = 1, . . . , n : ψi(t) ∈
〈ili, ui〉

i, i.e. all items are in their respective ranges at time t. Also in this case,
it is simple to introduce abbreviations and notational conventions.

Constraint on Behaviors. The constraint on behaviors is now dependent
on the actual conditions ξ that we have introduced in our specification formula
φ. This is different than the constraint χ◦ for discrete-valued items, which was
independent of φ. Now, if we let Ξ̃ be the set of conditions that appear in φ,
we have to require that the value of every item in Ψ is such that changes with
respect to the conditions in Ξ̃ happen at most every δ time units. In other
words, if any condition ξ̃ ∈ Ξ̃ is true (resp. false) at some time, then it stays
true (resp. false) in an interval of length δ (at least). This is expressed by
the following “pseudo”-TRIOsi formula, where the higher-order quantification
∀ξ̃ ∈ Ξ̃ is to be meant as a shorthand for the explicit enumeration of all the
conditions in (the finite set) Ξ̃.

χφ
• , ∀ξ̃ ∈ Ξ̃ : WithinPii

(
Lastsii

(
ξ̃, δ

)
, δ

)
∨ WithinPii

(
Lastsii

(
¬ξ̃, δ

)
, δ

)

Theorem 4 (Sampling Invariance for Dense-valued Items). Normal-
form TRIOsi is sampling invariant, for items mapping to a dense set D, with
respect to the behavior constraint χφ

• , the adaptation functions η
�
δ {·} and η

�
δ {·},

for any sampling period δ and origin z.

Proof. Similarly as in Theorem 3, for dense-valued items the truth value of
any condition ξ cannot change between any two consecutive sampling instants,
exactly because of the behavior constraint χφ

• . In fact, χφ
• requires that if the

value of any item ψi is in (resp. out of) an interval λ|i, it stays in (resp. out
of) λ|i until the next sampling instant. Therefore, thanks to this observation,
the proof is exactly as in Theorem 3.

3.3 How to Avoid Degenerate Intervals

So far, we made no assumptions on the size of the intervals involved in the
formulas. In particular, it may happen that the adaptation function changes
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an interval so that it becomes degenerate, that is empty. Although the above
proofs still hold, it may be objected that a degenerate formula makes little sense,
since it is either trivially true or trivially false. While leaving a full discussion
of the impact of this issue to future work, in this section we present sufficient
conditions on the size of the un-adapted intervals that guarantee that adaptation
gives non-degenerate adapted intervals.

Table 2 lists the requirements on unadapted intervals that guarantee that
the adapted intervals are non-empty (i.e., of size greater than 0, but allowing
the endpoints to coincide for intervals of � ).

Operator (in � ) Interval Requirement
UntilI〉(·, ·) I = 〈l, u〉 |I| � > 0
SinceI〈(·, ·) I = 〈l, u〉 |I| � > 0
ReleasesI〉(·, ·) I = 〈l, u〉 6= (l, u) |I| � ≥ δ
ReleasedI〈(·, ·) I = 〈l, u〉 6= (l, u) |I| � ≥ δ
ReleasesI〉(·, ·) I = (l, u) |I| � ≥ 2δ
ReleasedI〈(·, ·) I = (l, u) |I| � ≥ 2δ
Operator (in � ) Interval Requirement
UntilI〉(·, ·) I = [l, u] |I| � ≥ 1
SinceI〈(·, ·) I = [l, u] |I| � ≥ 1
ReleasesI〉(·, ·) I = [l, u] |I| � ≥ 3
ReleasedI〈(·, ·) I = [l, u] |I| � ≥ 3

Table 2: Requirements for non-degenerate adapted intervals

Now, we prove that those requirements do guarantee the non-emptiness of
adapted intervals.

Adapting from continuous time to discrete time.

• Until and Since. Let l′ = bl/δc and u′ = du/δe. Thus, u′ − l′ + 1 ≥
u/δ − l/δ + 1 ≥ 1 by definition of floor and ceilings, that is |[l′, u′]| � > 0.

• Releases and Released. Let I ′ = 〈l′, u′〉 be the adapted interval. We
distinguish the following four cases.

– I ′ = [l′, u′], with l′ = dl/δe and u′ = bu/δc. Thus, bu/δc−dl/δe+1 ≥
bu/δc − bl/δc − 1 + 1 = bu/δc − bl/δc ≥ bu/δ − l/δc ≥ 1, since
|[u, l]| � ≥ δ by hypothesis, and dre ≤ r+1 and br1c−br2c ≥ br1−r2c
for any real numbers r, r1 ≥ r2. That is, |[l′, u′]| � ≥ 1.

– I ′ = [l′, u′), with l′ = dl/δe and u′ = du/δe. Thus, |[l′, u′)| � =
|[l′, u′ − 1]| � = u′ − l′, and then du/δe − dl/δe ≥ u/δ − dl/δe >
u/δ − (l/δ + 1) ≥ 0, since |[l, u)| � ≥ δ by hypothesis, dre < r + 1
for any real r, and we are considering integer numbers (hence > 0
implies ≥ 1). That is, |[l′, u′)| � ≥ 1.
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– I ′ = (l′, u′], with l′ = bl/δc and u′ = bu/δc. Thus, |(l′, u′]| � =
|[l′ + 1, u′]| � = u′ − l′, and then bu/δc − bl/δc ≥ bu/δc − l/δ >
(u/δ − 1) − l/δ ≥ 0, since |(l, u]| � ≥ δ by hypothesis, brc > r − 1
for any real r, and we are considering integer numbers (hence > 0
implies ≥ 1). That is, |(l′, u′]| � ≥ 1.

– I ′ = (l′, u′), with l′ = bl/δc and u′ = du/δe. Thus, |(l′, u′)| � = |[l′ +
1, u′−1]| � = u′−l′−1, and then du/δe−bl/δc−1 ≥ u/δ−l/δ−1 ≥ 1,
since |(l, u)| � ≥ 2δ by hypothesis, and brc ≤ r and dre ≥ r for any
real number r. That is, |(l′, u′)| � ≥ 1.

Adapting from discrete time to continuous time.

• Until and Since. Let I ′ = [l′, u′], with l′ = (l−1)δ and u′ = (u+1)δ. Thus,
u′−l′ = δ(u−l+2) = δ((u−l+1)+1) ≥ 2δ > 0, since |[l, u]| � = u−l+1 ≥ 1
by hypothesis.

• Releases and Released. Let I ′ = [l′, u′], with l′ = (l+1)δ and u′ = (u−1)δ.
Thus, u′−l′ = δ(u−l−2) = δ((u−l+1)−3) ≥ 0, since |[l, u]| � = u−l+1 ≥ 3
by hypothesis.

4 Related Works

The problem of formally describing in a uniform manner large systems that
encompass both discrete-time and continuous-time modules is not a recent one,
but has been prominently brought up by the growing interest in hybrid systems.
Hybrid systems constitute a special class of systems that combine both digital
and analog components, whose mathematical models are especially focused on
problems of distributed embedded control [2].

Alur et al. present in [1] a particularly successful model of hybrid systems,
based on automata. In hybrid automata, phases of continuous-time evolution,
guided by simple differential constraints, alternate with phases of discrete-time
evolution, where switching within a discrete set of states occurs. Such models
are particularly effective for analysis based on automated techniques derived
from model checking [1]. Conversely, the approach presented in this paper is
different in several respects to that of hybrid automata. First of all, we do not
focus on analysis and synthesis of control problems, but on more general analy-
sis problems that are typically encountered in the earlier phases of development
of a system (esp. requirements and specification phases). In fact, we consider
descriptive models, i.e. entirely based on temporal logic formulas, which are
are well suited for very high-level descriptions of a system. Moreover, our idea
of integration stresses separation of concerns in the development of a specifica-
tion, as the modules describing different parts of the systems, that obey very
different models, can be developed independently and then joined together to
have a global description of the system. Thus, no ad hoc formalism has to be
introduced, since the analysis can exploit the ideas and formalisms of temporal
logics.
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A straightforward way to compose continuous-time and discrete-time mod-
els is to integrate discrete models into continuous ones, by introducing some
suitable conventions. This is the approach followed by Fidge in [5], with ref-
erence to timed refinement calculus. The overall simplicity of the approach is
probably its main strength; nonetheless we notice that integrating everything
into a continuous-time setting has some disadvantages in terms of verification
complexity, as continuous time usually introduces some peculiar difficulties that
render verification less automatizable. On the contrary, our approach wants to
achieve equivalence between discrete-time and continuous-time descriptions, so
that one can resort to the simpler discrete time when verifying properties, while
still being able to describe naturally physical systems using a full continuous-
time model.

The problem of integrating different temporal (and modal) logics is stud-
ied by Chen and Liu in [3] in a very abstract setting. Their solution is based
on the introduction of a very general semantic structure, called resource cu-
mulator, that can accommodate several concrete semantics and their respective
modalities. The framework is then based on refinement rules that permit to
translate from one logic language to another one, while mapping appropriately
the corresponding resource cumulators. The approach seems indeed general and
abstract, even if we believe that one may desire more intuitiveness and simplicity
of use from that. Moreover, it focuses on refinement among semantically differ-
ent temporal logic specifications, while our framework focuses on the different
problem of integrating different semantics at the same level of abstraction, thus
stressing modularity and reuse of specifications.

A framework which is instead less abstract and more similar, at least in
principle, to ours is the one presented by Hung and Giang in [10]. There, the
authors define a sampling semantics for Duration Calculus (DC), which is a
formal way to relate the models of a formula to its discrete observations, ap-
proximating DC’s integrals of state variables by sums. As expected, for general
DC formulas the standard semantics and the sampling semantics differ. Hence,
the authors derive some inference rules that outline what is the relation be-
tween the two semantic models under certain assumptions. In particular, the
main aim is to formulate sufficient conditions that guarantee the soundness of
refinement rules, that permit to move from a continuous-time description to a
sampled one, thus moving from specification to implementation. This is the
main overall difference with respect to the contribution of the present paper:
while we deal with integration of continuous and discrete, which then coexist
in the same formal model, [10] stresses refinement from continuous to discrete
towards implementation.

The paper by Henzinger et al. [9] is one of the first works studying explic-
itly the relations between discrete- and continuous-time models, with particular
reference to the verification problem. In particular, [9] introduces the idea of
digitizability which is a sufficient condition for the equivalence of the verification
problem of the same property under two different time models. Digitizability is
very close in meaning to sampling invariance when considering a fixed sampling
period of unit length: in other words a digitized behavior is one obtained by

31



observing a behavior at integer time instants only. However, notice that [9] only
considers discrete trace models, that is those where behaviors are modeled by
discrete sequences of observations. Then, it distinguishes between analog-clock
models, i.e. those where a real number is attached to every observation, rep-
resenting the time at which the observation is recorded, and digital-clock mod-
els, i.e. those where the observation time is represented by an integer value.
Analog-clock models do not describe truly continuous processes; as a conse-
quence, equivalence between analog- and digital-clock models requires weaker
conditions than those we introduced in the present paper. On the contrary,
the present work was motivated by the need to model truly continuous physical
processes that require a continuous time sort, and analyzed some consequences
of this more demanding assumption.

5 Conclusions

This paper introduced the idea of sampling invariance, which is a natural and
physically motivated way to relate the continuous-time and discrete-time be-
haviors of a modular system. Sampling invariance means that a temporal logic
formula can be interpreted with a continuous-time or discrete-time model consis-
tently and in a uniform manner. Therefore, writing sampling invariant formulas
permits to achieve integration of discrete-time and continuous-time formalisms
in the same specification, thus being able to verify the system in the simpler
discrete-time models, while still describing naturally physical processes with the
true continuity permitted by continuous-time models.

We demonstrated how to achieve sampling invariance with TRIOsi, a subset
of the TRIO language. The approach involved the introduction of some suitable
constraints on the possible behaviors of a system, which limit the dynamics in
an appropriate way, as well as simple translation rules that adapt the assumed
meaning of time units in the two time models. We believe that the approach
is general enough to permit its extension to other metric temporal logics of
comparable expressive power.
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