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Abstract. One of the obstacles in automatic program proving is to ob-
tain suitable loop invariants. The invariant of a loop is a weakened form
of its postcondition (the loop’s goal, also known as its contract); the
present work takes advantage of this observation by using the postcondi-
tion as the basis for invariant inference, using various heuristics such as
“uncoupling” which prove useful in many important algorithms. Thanks
to these heuristics, the technique is able to infer invariants for a large
variety of loop examples. We present the theory behind the technique,
its implementation (freely available for download and currently relying
on Microsoft Research’s Boogie tool), and the results obtained.
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1 Overview

Many of the important contributions to the advancement of program proving
have been, rather than grand new concepts, specific developments and simplifi-
cations; they have removed one obstacle after another preventing the large-scale
application of proof techniques to realistic programs built by ordinary program-
mers in ordinary projects. The work described here seeks to achieve such a
practical advance by automatically generating an essential ingredient of proof
techniques: loop invariants. The key idea is that invariant generation should use
not just the text of a loop but its postcondition. Using this insight, the gin-pink
tool can infer loop invariants for non-trivial algorithms including array parti-
tioning (for Quicksort), sequential search, coincidence count, and many others.
The tool is available for free download[]
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1.1 Taking Advantage of Postconditions

In the standard Floyd-Hoare approach to program proving, loop invariants are
arguably the biggest practical obstacle to full automation of the proof process.
Given a routine’s specification (contract), in particular its postcondition, the
proof process consists of deriving intermediate properties, or wverification con-
ditions, at every point in the program text. Straightforward techniques yield
verification conditions for basic instructions, such as assignment, and basic con-
trol structures, such as sequence and conditional. The main difficulty is the loop
control structure, where the needed verification condition is a loop invariant,
which unlike the other cases cannot be computed through simple rules; finding
the appropriate loop invariant usually requires human invention.

Experience shows, however, that many programmers find it hard to come up
with invariants. This raises the question of devising automatic techniques to infer
invariants from the loop’s text, in effect extending to loops the mechanisms that
successfully compute verification conditions for other constructs. Loops, however,
are intrinsically more difficult constructs than (for example) assignments and
conditionals, so that in the current state of the art we can only hope for heuristics
applicable to specific cases, rather than general algorithms guaranteed to yield
a correct result in all cases.

While there has been considerable research on loop invariant generation and
many interesting results (reviewed in the literature survey of Section @7 most
existing approaches are constrained by a fundamental limitation: to obtain the
invariant they only consider the implementation of a loop. In addition to raising
epistemological problems explained next, such techniques can only try to dis-
cover relationships between successive loop iterations; this prevents them from
discovering many important classes of invariants.

The distinctive feature of the present work is that it uses postconditions of a
routine for inferring the invariants of its loops. The postcondition is a higher-level
view of the routine, describing its goal, and hence allows inferring the correct
invariants in many more cases. As will be explained in Section [{1] this result
follows from the observation that a loop invariant is always a weakened form of
the loop’s postcondition. Invariant inference as achieved in the present work then
relies on implementing a number of heuristics for mutating postconditions into
candidate invariants; Section [2] presents four such heuristics, such as uncoupling
and constant relaxation, which turn out to cover many practical cases.

1.2 Inferring Assertions: the Assertion Inference Paradox

Any program-proving technique that attempts to infer specification elements
(such as loop invariants) from program texts faces a serious epistemological
objection, which we may call the Assertion Inference Paradox.

The Assertion Inference Paradox is a risk of vicious circle. The goal of pro-
gram proving is to establish program correctness. A program is correct if its
implementation satisfies its specification; for example a square root routine im-
plements a certain algorithm, intended to reach a final state satisfying the spec-
ification that the square of the result is, within numerical tolerance, equal to



the input. To talk about correctness requires having both elements, the imple-
mentation and the specification, and assessing one against the other. But if we
infer the specification from the implementation, does the exercise not become
vacuous? Surely, the proof will succeed, but it will not teach us anything since
it loses the fundamental property of independence between the mathematical
property to be achieved and the software artifact that attempts to achieve it —
the problem and the solution.

To mitigate the Assertion Inference Paradox objection, one may invoke the
following arguments:

— The Paradox only arises if the goal is to prove correctness. Specification infer-
ence can have other applications, such as reverse-engineering legacy software.

— Another possible goal of inferring a specification may be to present it to a
programmer, who will examine it for consistency with an intuitive under-
standing of its intended behavior.

— Specification inference may produce an inconsistent specification, revealing
a flaw in the implementation.

For applications to program proving, however, the contradiction remains; an
inferred specification not exhibiting any inconsistencies cannot provide a sound
basis for a proof process.

For that reason, the present work refrains from attempting specification in-
ference for the principal units of a software system: routines (functions, methods)
and those at an even higher level of granularity (such as classes). It assumes that
these routine specifications are available. Most likely they will have been written
explicitly by humans, although their origin does not matter for the rest of the
discussion.

What does matter is that once we have routine specifications it is desirable
to infer the specifications of all lower-level constructs (elementary instructions
and control structures such as conditionals and loops) automatically. At those
lower levels, the methodological objection expressed by the Assertion Inference
Paradox vanishes: the specifications are only useful to express the semantics of
implementation constructs, not to guess the software’s intent. The task then
becomes: given a routine specification — typically, a precondition and postcon-
dition — derive the proof automatically by inferring verification conditions for
the constructs used in the routine and proving that the constructs satisfy these
conditions. No vicious circle is created.

For basic constructs such as assignments and conditional instructions, the
machinery of Floyd-Hoare logic makes this task straightforward. The principal
remaining difficulty is for loops, since the approach requires exhibiting a loop
invariant, also known as an inductive assertion, and proving that the loop’s ini-
tialization establishes the invariant and that every execution of the body (when
the exit condition is not satisfied) preserves it.

A loop invariant captures the essence of the loop. Methodologically, it is
desirable that programmers devise the invariant while or before devising the
loop. As noted, however, many programmers have difficulty coming up with loop
invariants. This makes invariants an attractive target for automatic inference.



In the present work, then, postconditions are known and loop invariants
inferred. The approach has two complementary benefits:

— It does not raise the risk of circular reasoning since the specification of every
program unit is explicitly provided, not inferred.

— Having this specification of a loop’s context available gives a considerable
boost to loop invariant inference techniques. While there is a considerable
literature on invariant inference, it is surprising that none of the references
with which we are familiar use postconditions. Taking advantage of post-
conditions makes it possible — as described in the rest of this paper — to
derive the invariants of many important and sometimes sophisticated loop
algorithms that had so far eluded other techniques.

2 Illustrative Examples

This section presents the fundamental ideas behind the loop-invariant generation
technique detailed in Section [5| and demonstrates them on a few examples. It
uses an Eiffel-like [30] pseudocode, which facilitates the presentation thanks to
the native syntax for contracts and loop invariants.

As already previewed, the core idea is to generate candidate invariants by
mutating postconditions according to a few commonly recurring patterns. The
patterns capture some basic ways in which loop iterations modify the program
state towards achieving the postcondition. Drawing both from classic literature
[19/29] and our own more recent investigations we consider the following funda-
mental patterns.

Constant relaxation [29J19]: replace one or more constants by variables.

Uncoupling [29]: replace two occurrences of the same variable each by a dif-
ferent variable.

Term dropping [19]: remove a term, usually a conjunct.

Variable aging: replace a variable by an expression that represents the value
the variable had at previous iterations of the loop.

These patterns are then usually used in combination, yielding a number of mu-
tated postconditions. Each of these candidate invariants is then tested for initi-
ation and consecution (see Section over any loop, and all verified invariants
are retained.

The following examples show each of these patterns in action. The tool de-
scribed in Sections [3| and [5| can correctly infer invariants of these (and more
complex) examples.

2.1 Constant Relaxation

Consider the following routine to compute the maximum value in an array.
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1 maz (A: ARRAY [T]; n: INTEGER): T

2 require A.length =n >1

3 local i: INTEGER

4 do

5 from i:= 0; Result := A[l];

6 until i >n

7 loop

8 1 =1+ 1

9 if Result <A[i] then Result := A[j] end
0 end

1 ensureVje 1< j A j<n = A[j] <Result

Lines 5-10 may modify variables ¢ and Result but they do not affect the
input argument n, which is therefore a constant with respect to the loop body.
The constant relaxation technique replaces every occurrence of the constant n

by a variable i. The modified postcondition V j e 1< j A j< i = A[j] <
Result is indeed an invariant of the loop: after every iteration, the value of
Result is the maximum value of array A over range [1..7].

2.2 Variable Aging

Sometimes replacing a constant by a variable in the postcondition does not yield
any loop invariant because of how the loop body updates the variable. It may
happen that the loop body does not need the latest value of the substituted
variable until the next iteration. Consider another implementation of computing
the maximum of an array, which increments the variable i after using it, so that
only the range [1..i — 1] of array A has been inspected after every iteration:

1 mazv2 (A: ARRAY [T], n: INTEGER): T

2 require A.length =n >1

3 local i: INTEGER

4 do

5 from i:=1; Result := A[l];

6 until i >n

7 loop

8 if Result <A[i] then Result := A[i] end
9 i =141

0 end

1 ensureV je 1< j A j<n = A[j] < Result

The variable aging heuristics handles these cases by introducing an expression
that represents the value of the variable at the previous iteration in terms of
its current value. In the case of routine maz_v2 it is straightforward that such
an expression for variable 7 is i—1. The postcondition can be modified by first
replacing variable n by variable ¢ and then “aging” variable i into i—1. The
resulting formula vV j @ 1< j A j < i—1 = A[j] < Result correctly captures
the semantics of the loop.
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Computing the symbolic value of a variable at the “previous” iteration can
be quite complex in the general case. In practice, however, a simple (e.g., flow-
insensitive) approximation is often enough to get significant results. The exper-
iments of Section [3| provide a partial evidence to support this conjecture.

2.3 Uncoupling

Consider the task (used as part of the Quicksort algorithm) of partitioning an
array A of length n into two parts such that every element of the first part is
less than or equal to a given pivot value and every element of the second part
is greater than or equal to it. The following contracted routine specifies and
implements this task, working on an integer variable position .

partition (A: ARRAY [T]; n: INTEGER; pivot: T)

require A.length =n >1
local low_indez, high_index: INTEGER
do
from low_index := 1; high_index := n
until low_index = high_index
loop
from —— no loop initialization

until low_index = high_index V A[low_index] > pivot
loop low_index := low_index + 1 end
from —— no loop initialization
until low_index = high_index V pivot> A[high_index]
loop high_index := high_index — 1 end
A.swap (A, low_index, high_index)

end

if pivot < Allow_indez] then

low_index := low_index — 1
high_index := low_indez
end
position = low_index

ensure (Vi o 1<k Ak <position + 1= A[k] < pivot )
AN(Vk o position <k Nk<n= A[k] > pivot )

The postcondition consists of the conjunction of two formulas (lines 21 and
22). If we try to mutate it by replacing constant position by variable low_index
or by variable high_index we obtain no valid loop invariant. This is because
the two clauses of the postcondition should refer, respectively, to portion [1..
low_index—1] and [high_index+1..n] of the array. We achieve this by first uncou-
pling position, which means replacing its first occurrence (in line 21) by variable
low_index and its second occurrence (in line 22) by variable high_index. After
“aging” variable low_index we get the formula:

(VE o 1<k Ak <lowindex = A[k] < pivot )
AN (YEk e highindex <k ANk<n= A[k] > pivot ).



The reader can check that this indeed a loop invariant of all loops in routine
partition and that it allows a straightforward partial correctness proof of the
implementation.

2.4 Term Dropping

The last mutation pattern that we consider consists simply of removing a part
of the postcondition. The formula to be modified is usually assumed to be in
conjunctive normal form, that is, expressed as the conjunction of a few clauses:
then term dropping amounts to removing one or more conjuncts. Going back to
the example of partition, let us drop the first conjunct in the postcondition. The
resulting formula

VEk e Result <k A k<n = A[k] > pivot

can be further transformed through constant relaxation, so that we end up with
a conjunct of the invariant previously obtained by uncoupling: V k e high_index

<k AN k< n= A[k|> pivot. This conjunct is also by itself an invariant. In this
example term dropping achieved by different means the same result as uncou-

pling.

3 Implementation and Experiments

Before presenting the technical details of the loop-invariant generation technique,
this section describes experiments with a tool implementing the technique. The
results, discussed in more detail in Section [f] demonstrate the feasibility and
practical value of the overall approach.

gin-pink (Generation of INvariants by PostcondItioN weaKening) is a com-
mand-line tool implementing the loop-invariant inference technique described in
Section 5| While we plan to integrate gin-pink into EVE (the Eiffel Verification
Environmentﬂ) where it will analyze the code resulting from the translation of
Eiffel into Boogie [40], its availability as a stand-alone tool makes it applicable
to languages other than Eiffel provided a Boogie translator is available.

gin-pink applies the algorithm described in Section [5|to a selected procedure
in a Boogie file provided by the user. After generating all mutated postconditions
it invokes the Boogie tool to determine which of them is indeed an invariant: for
every candidate invariant I, a new copy of the original Boogie file is generated
with I declared as invariant of all loops in the procedure under analysis. It then
repeats the following until either Boogie has verified all current declarations of
I in the file or no more instances of I exist in the procedure:

1. Use Boogie to check whether the current instances of I are verified invariants,
that is they satisfy initiation and consecution.
2. If any candidate fails this check, comment it out of the file.

2 http://eve.origo.ethz.ch
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PROCEDURE LOC # LP. M.V. CND. INV. REL. T. Src.
Array Partitioning (v1) 58(22) 1 (1)2+1 38 93 (33%) 93
Array Partitioning (v2) 68(40) 3 (2)2+1 45 22(100%) 205 [29]
Array Stack Reversal 147(34) 2 (1) 1+2 134 42 (50%) 529
Array Stack Reversal (ann.) 147(34)2 (1) 1+2 134 64 (67%) 516
Bubblesort 69(20) 2 (2)2+1 14 22(100%) 65 [33]
Coincidence Count 59(29) 1 (1) 3+0 1351 1 1(100%) 4304 [27]
Dutch National Flag 77(43)1 (1)3+1 42 102 (20%) 117 [16]
Dutch National Flag (ann.) 77(43)1 (1)3+1 42 124 (33%) 122 [I6]
Longest Common Sub. (ann.) 73(59) 4 (2) 2+2 508 222 (9%) 4842
Magjority Count 48(37) 1 (1)3+0 23 52 (40%) 62 432
Maz of Array (v1) 27(17)1 (1)24+0 13 11(100%) 30
Maz of Array (v2) 27(17) 1 (1) 240 7 11(100%) 16
Plateau 53(29)1 (1)3+0 31 63 (50%) 666 [19]
Sequential Search (v1) 34(26) 1 (1)34+0 45 95 (56%) 120
Sequential Search (v2) 29(21) 1 (1) 3+0 24 66(100%) 58
Shortest Path (ann.) 57(44)1 (1) 1+4 23  22(100%) 53 [3]
Stack Search 196(49) 2 (1) 1+3 102 33(100%) 300
Sum of Array 26(15) 1 (1) 2+0 13 11(100%) 44
Topological Sort (ann.) 65(48)1 (1)2+4 21 32 (67%) 101 [31]
Welfare Crook 53(21) 1 (1)34+0 20 22(100%) 586 [19]

Table 1. Experiments with gin-pink.

In the end, the file contains all invariants that survive the check, as well as a
number of commented out candidate invariants that could not be checked. If no
invariant survives or the verified invariants are unsatisfactory, the user can still
manually inspect the generated files to see if verification failed due to the limited
reasoning capabilities of Boogie.

When generating candidate invariants, gin-pink does not apply all heuris-
tics at once but it tries them incrementally, according to user-supplied options.
Typically, the user starts out with just constant relaxation and checks if some
non-trivial invariant is found. If not, the analysis is refined by gradually introduc-
ing the other heuristics — and thus increasing the number of candidate invariants
as well. In the examples below we briefly discuss how often and to what extent
this is necessary in practice.

Ezamples. Table[l]summarizes the results of a number of applications of gin-pink
to Boogie procedures obtained from Eiffel code. We carried out the experi-
mental evaluation as follows. First, we collected examples from various sources
[2919I33I273] and we manually completed the annotations of every algorithm
with full pre and postconditions as well as with any loop invariant or interme-
diate assertion needed in the correctness proof. Then, we coded and tried to
verify the annotated programs in Boogie, supplying some background theory to
support the reasoning whenever necessary. The latest Boogie technology cannot
verify certain classes of properties without a sophisticated ad hoc background



theory or without abstracting away certain aspects of the implementation un-
der verification. For example, in our implementation of Bubblesort, Boogie had
difficulties proving that the output is a permutation of the input. Correspond-
ingly, we omitted the parts of the specification that Boogie could not prove even
with a detailedly annotated program. Indeed, “completeness” (full functional
correctness) should not be a primary concern, because its significance depends
on properties of the prover (here Boogie), orthogonal to the task of inferring in-
variants. Finally, we ran gin-pink on each of the examples after commenting out
all annotations except for pre and postconditions (but leaving the simple back-
ground theories in); in a few difficult cases (discussed next) we ran additional
experiments with some of the annotations left in. After running the tests, we
measured the relevance of every automatically inferred invariant: we call an in-
ferred invariant relevant if the correctness proof needs it. Notice that our choice
of omitting postcondition clauses that Boogie cannot prove does not influence
relevance, which only measures the fraction of inferred invariants that are useful
for proving correctness.

For each example, Table[l|reports: the name of the procedure under analysis;
the length in lines of codes (the whole file including annotations and auxiliary
procedures and, in parentheses, just the main procedure); the total number of
loops (and the maximum number of nested loops, in parentheses); the total num-
ber of variables modified by the loops (scalar variables/array or map variables);
the number of mutated postconditions (i.e., candidate invariants) generated by
the tool; how many invariants it finds; the number and percentage of verified
invariants that are relevant; the total run-time of gin-pink in seconds; the source
(if any) of the implementation and the annotations. The experiments where per-
formed on a PC equipped with an Intel Quad-Core 2.40 GHz CPU and 4 Gb of
RAM, running Windows XP as guest operating system on a VirtualBox virtual
machine hosted by Ubuntu GNU/Linux 9.04 with kernel 2.6.28.

Most of the experiments succeeded with the application of the most basic
heuristics. Procedures Coincidence Count and Longest Common Subsequence are
the only two cases that required a more sophisticated uncoupling strategy where
two occurrences of the same constant within the same formula were modified
to two different aged variables. This resulted in an explosion of the number
of candidate invariants and consequently in an experiment running for over an
hour.

A few programs raised another difficulty, due to Boogie’s need for user-
supplied loop invariants to help automated deduction. Boogie cannot verify any
invariant in Shortest Path, Topological Sort, or Longest Common Subsequence
without additional invariants obtained by means other than the application of
the algorithm itself. On the other hand, the performance with programs Array
Stack Reversal and Dutch National Flag improves considerably if user-supplied
loop invariants are included, but fair results can be obtained even without any
such annotation. Table [1| reports both experiments, with and without user-
supplied annotations.



More generally, Boogie’s reasoning abilities are limited by the amount of
information provided in the input file in the form of axioms and functions that
postulate sound inference rules for the program at hand. We tried to limit this
amount as much as possible by developing the necessary theories before tackling
invariant generation. In other words, the axiomatizations provided are enough
for Boogie to prove functional correctness with a properly annotated program,
but we did not strengthen them only to ameliorate the inference of invariants.
A richer axiomatization may have removed the need for user-supplied invariants
in the programs considered.

4 Foundations

Having seen typical examples we now look at the technical choices that support
the invariant inference tools. To decouple the loop-invariant generation technique
from the specifics of the programming language, we adopt Boogie from Microsoft
Research [26] as our concrete programming language; Section is then devoted
to a concise introduction to the features of Boogie that are essential for the
remainder. Sections [4.1] and introduce definitions of basic concepts and some
notational conventions that will be used. We assume the reader is familiar with
standard formal definitions of the axiomatic semantics of imperative programs.

4.1 Invariants
Proving a procedure correct amounts to verifying that:

1. Every computation terminates.

2. Every call to another procedure is issued only when the preconditions of the
callee hold.

3. The postconditions hold upon termination.

It is impossible to establish these facts automatically for all programs but
the most trivial ones without programmer-provided annotations. The crucial
aspect is the characterization of loops, where the expressive power of universal
computation lies. A standard technique to abstract the semantics of any number
of iterations of a loop is by means of loop invariants.

Definition 1 (Inductive loop invariant). Formula ¢ is an inductive invari-
ant of loop

from Init until Exit loop Body end

— Initiation: ¢ holds after the execution of Init
— Consecution: the truth of ¢ is preserved by every execution of Body where
Exit does not hold
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In the rest of the discussion, inductive invariants will be called just invariants
for short. Note, however, that an invariant in the weaker sense of a property
that stays true throughout the loop’s execution is not necessarily an inductive
invariant: in

from z := 1 until False loop z := — z end

the formula x > —1 will remain true throughout, but is not considered an
inductive invariant because {x > —1}  := —z {& > —1} is not a correct
Hoare triple. In the remainder we will deal solely with inductive loop invariants,
as is customary in the program proving literature.

From a design methodology perspective, the invariant expresses a weakened
form of the loop’s postcondition. More precisely [3TI19], the invariant is a form
of the loop’s postcondition that applies to a subset of the data, and satisfies the
following three properties:

1. It is strong enough to yield the postcondition when combined with the exit
condition (which states that the loop has covered the entire data).

2. Tt is weak enough to make it easy to write an algorithm (the loop initialization
Init) that will satisfy the invariant on a subset (usually empty or trivial) of
the data.

3. It is weak enough to make it easy to write an algorithm (the loop body Body)
that, given that the invariant holds on a subset of the data that is not the
entire data, extends it to cover a slightly larger subset.

“Easy”, in the last two conditions, means “much easier than solving the
entire original problem”. The loop consists of an approximation strategy that
starts with the initialization, establishing the invariant, then retains the invari-
ant while extending the scope by successive approximations to an ever larger set
of the input through repeated executions of the loop body, until it hits the exit
condition, signaling that it now covers the entire data and hence satisfies the
loop’s postcondition. This explains that the various strategies of Section [2] such
as constant relaxation and uncoupling, are heuristics for mutating the loop’s
postcondition into a weaker form. The present work applies the same heuristics
to mutate postconditions of the routine that encapsulates the loop. The connec-
tion between the routine’s and the loop’s postcondition justifies the rationale
behind using weakening heuristics as mutation heuristics to generate invariant
candidates.

4.2 Boogie

Boogie, now in its second version, is both an intermediate verification language
and a verification tool.

The Boogie language combines a typed logical specification language with
an in-the-small imperative programming language with variables, procedures,
contracts, and annotations. The type system comprises a few basic primitive
types as well as type constructors such as one- and two-dimensional arrays.
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It supports a relatively straightforward encoding of object-oriented language
constructs. Boogie is part of the Spec# programming environment; mappings
have been defined for other programming languages, including Eiffel [40] and C
[39]. This suggests that the results described here can be generalized to many
other contexts.

The Boogie tool verifies conformance of a procedure to its specification by
generating verification conditions (VC) and feeding them to an automated the-
orem prover (the standard one being Z3). The outcome of a verification attempt
can be successful or unsuccessful. In the latter case the tool provides some feed-
back on what might be wrong in the procedure, in particular by pointing out
what contracts or annotations it could not verify. Verification with Boogie is
sound but incomplete: a verified procedure is always guaranteed to be correct,
while an unsuccessful verification attempt might simply be due to limitations of
the technology.

The Boogie Specification Language The Boogie specification language is
essentially a typed predicate calculus with equality and arithmetic. Correspond-
ingly, formulas — that is, logic expressions — are built by combining atomic con-
stants, logic variables, and program variables with relational and arithmetic
operators, as well as with Boolean connectives and quantifiers. For example, the
following formula (from Section states that no element in array X within
positions 1 and n is larger than v: in other words, the array has upper bound v.

Vi:int ¢ 1<jA j<n = X[Jj] <w.

The syntactic classes Id, Number and Map represent constant and variable
identifiers, numbers and mappings.

Complex formulas and expressions can be postulated in azioms and parame-
terized by means of logic functions. Functions are a means of introducing encap-
sulation and genericity for formulas and complex expressions. For example, the
previous formula can be parameterized into function is_upper with the following
signature and definition:

function is_upper (m: int, A: array int, low: int, high: int)
returns ( bool )
{Vj:int e low<j A j<high = A[j] <m}.

Axioms constrain global constants, variables, and functions; they are useful to
supply Boogie with domain knowledge to facilitate inference and guide the au-
tomated reasoning over non-trivial programs. In certain situations it might for
example be helpful to introduce the property that if an array has the upper
bound m over the range [low..high] and the element in position high + 1 is
smaller than m then m is also the upper bound over the range [low..high + 1].
The following Boogie axiom expresses this property.

axiom ( Vm: int, A: array int, low: int, high: int e
is_upper (m, A, low, high) N Alhigh + 1] <m
= is_upper (m, A, low, high+1) ).

12



Statement ::= Assertion | Modification

ConditionalBranch | Loop

assert Formula | assume Formula

havoc Variableld | Variableld := Expression

call [ Variableldt := ] Procedureld ( Expression* )
if ( Formula ) Statement* [ else Statement* ]
while ( Formula ) Invariant* Statement*
invariant Formula

Annotation ::
Modification ::

ConditionalBranch ::
Loop ::
Invariant ::

Fig. 1. Simplified abstract syntax of Boogie statements

The Boogie Programming Language A Boogie program is a collection of
procedures. Each procedure consists of a signature, a specification and (option-
ally) an implementation or body. The signature gives the procedure a name
and declares its formal input and output arguments. The specification is a col-
lection of contract clauses of three types: frame conditions, preconditions, and
postconditions.

A frame condition, introduced by the keyword modifies, consists of a list of
global variables that can be modified by the procedure; it is useful in evaluating
the side-effects of procedure call within any context. A precondition, introduced
by the keyword requires, is a formula that is required to hold upon procedure
invocation. A postcondition, introduced by the keyword ensures, is a formula
that is guaranteed to hold upon successful termination of the procedure. For
example, procedure maz_v2, computing the maximum value in an array A given
its size n, has the following specification.

procedure maz-v2 (A: array int, n: int) returns (m: int)
requires n > 1;
ensures is-maz (m, A, 1, n);

The implementation of a procedure consists of a declaration of local variables,
followed by a sequence of (possibly labeled) program statements. Figure [1|shows
a simplified syntax for Boogie statements. Statements of class Annotation intro-
duce checks at any program point: an assertion is a formula that must hold of
every execution that reaches it for the program to be correct and an assumption
is a formula whose validity at the program point is postulated. Statements of
class Modification affect the value of program variables, by nondeterministically
drawing a value for them (havoc), assigning them the value of an expression
(:=), or calling a procedure with actual arguments (call). The usual conditional
if statement controls the execution flow. Finally, the while statement supports
loop iteration, where any loop can be optionally annotated with a number of
Invariants (see Section . Boogie can check whether Definition (1| holds for
any user-provided loop invariant.

The implementation of procedure maz_v2 is:

var i: int;
i:=1; m:= A[l];
while (i< n)

{
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1 =1

}

While the full Boogie language includes more types of statement, any Boogie
statement can be desugared into one of those in Figure |1l In particular, the
only looping construct we consider is the structured while; this choice simplifies
the presentation of our loop invariant inference technique and makes it closer
as if it was defined directly on a mainstream high-level programming language.
Also, there is a direct correspondence between Boogie’s while loop and Eiffel’s
from ... until loop, used in the examples of Section [2| and the definitions in

Section .1l

(m<A[i]) { m:= Al }
=1+ 1

4.3 Notational Conventions

subExp (¢, SubType) denotes the set of sub-expressions of formula ¢ that are of
syntactic type SubType. For example, subExp(is_upper(v,X,1,n), Map) denotes
all mapping sub-expressions in is_upper(v, X,1,n), that is only X[j].

replace(¢, old, new, *) denotes the formula obtained from ¢ by replacing ev-
ery occurrence of sub-expression old by expression new. Similarly, replace(¢, old,
new,n) denotes the formula obtained from ¢ by replacing only the n-th oc-
currence of sub-expression old by expression new, where the total ordering of
sub-expressions is given by a pre-order traversal of the expression parse tree. For
example, replace(is_upper(v,X,1,n),, h, %) is

Vh:int ¢ low<hA h<high = A[h] < m,
while replace(is_upper(v,X,1,n), j, h,4) is:
Vj:int o low<j A j<high = A[h<m.

Given a while loop £: while ( ... ) { Body }, targets(¢) denotes the set of its
targets: variables (including mappings) that can be modified by its Body; this
includes global variables that appear in the modifies clause of called procedures.

Given a procedure foo, variables(foo) denotes the set of all variables that
are visible within foo, that is its locals and any global variable.

A loop ¢ is nested within another loop ¢, and we write ¢/ < £, iff ¢/ belongs
to the Body of ¢. Notice that if ¢/ < ¢ then targets(¢’) C targets(¢). Given a
procedure foo, its outer while loops are those in its body that are not nested
within any other loop.

5 Generating Loop Invariants from Postconditions
This section presents the loop invariant generation algorithm.
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1

invariants ( a-procedure: PROCEDURE )
: SET_OF [FORMULA]
do
Result := 0
for each post in postconditions(a_procedure) do
for each loop in outer_loops(a_procedure) do
—— compute all mutations of post
—— according to chosen strategies
mutations := mutations(post, loop)
for each formula in mutations do
for each any_loop in loops(a_procedure) do
if is_invariant(formula, any_loop) then
Result := Result U { formula}

Fig. 2. Procedure invariants

5.1 Main Algorithm

The pseudocode in Figure [2| describes the main algorithm. The algorithm op-
erates on a given procedure and returns a set of formulas that are invariant of
some loop in the procedure. Every postcondition post among all postconditions
postconditions(a_procedure) of the procedure is considered separately (line 5).
This is a coarse-grained yet effective way of implementing the term-dropping
strategy outlined in Section the syntax of the specification language sup-
ports splitting postconditions into a number of conjuncts, each introduced by
the ensures keyword, hence each of these conjuncts is modified in isolation. It is
reasonable to assume that the splitting into ensures clauses performed by the
user separates logically distinct portions of the postcondition, hence it makes
sense to analyze each of them separately. This assumption might fail, of course,
and in such cases the algorithm can be enhanced to consider more complex com-
binations of portions of the postcondition. However, one should only move to
this more complex analysis if the basic strategy — which is often effective — fails.
This enhancement belongs to future work.

The algorithm of Figure then considers every outer while loop (line 6). For
each, it computes a set of mutations of the postcondition post (line 9) according
to the heuristics of Section 2l It then examines each mutation to determine if
it is invariant to any loop in the procedure under analysis (lines 10-13), and
finally returns the set Result of mutated postconditions that are invariants to
some loop. For is_invariant( formula, loop), the check consists of verifying whether
initiation and consecution hold for formula with respect to loop, according to
Definition |1l This check is non-trivial, because loop invariants of different loops
within the same procedure may interact in a circular way: the validity of one of
them can be established only if the validity of the others is known already and
vice versa.

This was the case of partition presented in Section[2.3] Establishing consecu-
tion for the modified postcondition in the outer loop requires knowing that the
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same modified postcondition is invariant to each of the two internal while loops
(lines 8-13) because they belong to the body of the outer while loop. At the
same time, establishing initiation for the first internal loop requires that conse-
cution holds for the outer while loop, as every new iteration of the external loop
initializes the first internal loop. Section [3| discussed a solution to this problem.

1 mutations ( post: FORMULA; loop: LOOP )

2 . SET_OF [FORMULA]

3 do

4  Result := {post}

5 all_subexpressions := subExp(post, Id) U

6 subExp(post, Number) U

7 subExp(post, Map)

8  for each constant in all_subexpressions\targets(loop) do

9 for each variable in targets(loop) do

10 Result := Result U

11 coupled_mutations(post, constant, variable) U
12 uncoupled_mutations(post, constant, variable)

Fig. 3. Procedure mutations

5.2 Building Mutated Postconditions

Algorithm mutations(post, loop), described in Figure [3l computes a set of modi-
fied versions of postcondition formula post with respect to outer while loop loop.
It first includes the unchanged postcondition among the mutations (line 4). Then,
it computes (lines 5-7) a list of sub-expressions of post made of atomic variable
identifiers (syntactic class Id), numeric constants (syntactic class Number) and
references to elements in arrays (syntactic class Map). Each such sub-expres-
sion that loop does not modify (i.e., it is not one of its targets) is a constant
with respect to the loop. The algorithm then applies the constant relaxation
heuristics of Section [2.1] by relaxing constant into any variable among the loop’s
targets (lines 8-9). More precisely, it computes two sets of mutations for each
pair (constant,variable): in one uncoupling, described in Section is also
applied (lines 12 and 11, respectively).

The justification for considering outer loops only is that any target of the
loop is a candidate for substitution. If a loop ¢ is nested within another loop ¢
then targets(¢') C targets(£), so considering outer while loops is a conservative
approximation that does not overlook any possible substitution.

5.3 Coupled Mutations

The algorithm in Figure [4 applies the constant relaxation heuristics to postcon-
dition post without uncoupling. Hence, relaxing constant into variable simply

16



1 coupled_mutations

2 ( post: FORMULA; constant, variable: EXPRESSION )
3 . SET_OF [FORMULA)]
4 do

5 Result := replace(post, constant, variable, *)

6 aged_variable := aging(variable, loop)

7 Result := Result U

8 replace(post, constant, aged_variable, *)

Fig. 4. Procedure coupled_mutations

amounts to replacing every occurrence of constant by wvariable in post (line

5); i.e., replace(post, constant, variable, *) using the notation introduced in Sec-

tion Afterward, the algorithm applies the aging heuristics (introduced in
2.2)

Section : it computes the “previous” value of variable in an execution of
loop (line 6) and it substitutes the resulting expression for constant in post
(lines 7-8).

While the implementation of function aging could be very complex we adopt
the following unsophisticated approach. For every possible acyclic execution path
in loop, we compute the symbolic value of variable with initial value vy as a
symbolic expression €(vg). Then we obtain aging(variable,loop) by solving the
equation e(vg) = wariable for vy, for every execution pathE| For example, if
the loop simply increments variable by one, then €(vg) = vg + 1 and therefore
aging(variable,loop) = variable—1. Again, while the example is unsophisticated
it is quite effective in practice; indeed, most of the times it is enough to con-
sider simple increments or decrements of variable to get a “good enough” aged
expression.

5.4 Uncoupled Mutations

The algorithm of Figure[5]is a variation of the algorithm of Figure [d] applying the
uncoupling heuristics outlined in Section[2:3] It achieves this by considering every
occurrence of constant in post separately when performing the substitution of
constant into variable (line 6). Everything else is as in the non-uncoupled case;
in particular, aging is applied to every candidate for substitution.

This implementation of uncoupling relaxes one occurrence of a constant at a
time. In some cases it might be useful to substitute different occurrences of the
same constant by different variables. This was the case of partition discussed in
Section [2.3] where relaxing two occurrences of the same constant position into
two different variables was needed in order to get a valid invariant. Section
showed, however, that the term-dropping heuristics would have made this double
relaxation unnecessary for the procedure.

3 Note that aging(variable, loop) is in general a set of expressions, so the notation at
lines 6-8 in Figure E| is a shorthand.
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1 uncoupled_mutations

2 (post: FORMULA; constant, variable: EXPRESSION)
3 . SET_OF [FORMULA)]
4 do

5 Result := (; indez := 1

6 for each occurrence of constant in post do
7 Result := Result U

8 {replace(post, constant, variable,index)}

9 aged_variable = aging(variable, loop)

10 Result := Result U

11 {replace(post, constant, aged_variable,index)}
12 index := index + 1

Fig. 5. Procedure uncoupled_mutations

6 Discussion and Related Work

6.1 Discussion

The experiments in Section [3] provide a partial, yet significant, assessment of
the practicality and effectiveness of our technique for loop invariant inference.
Two important factors to evaluate any inference technique deserve comment:
relevance of the inferred invariants and scalability to larger programs.

A large portion of the invariants retrieved by gin-pink are relevant — i.e., re-
quired for a functional correctness proof — and complex —i.e., involving first-order
quantification over several program elements. To some extent, this is unsurpris-
ing because deriving invariants from postconditions ensures by construction that
they play a central role in the correctness proof and that they are at least as
complex as the postcondition.

As for scalability to larger programs, the main problem is the combinatorial
explosion of the candidate invariants to be checked as the number of variables
that are modified by the loop increases. In properly engineered code, each rou-
tine should not be too large or call too many other routines. The empirical
observations mentioned in [24, Sec. 9] seem to support this assumption, which
ensures that the candidate invariants do not proliferate and hence the inference
technique can scale within reasonable limits. The examples of Section [3] are not
trivial in terms of length and complexity of loops and procedures, if the yardstick
is well-modularized code. On the other hand, there is plenty of room for finess-
ing the application order of the various heuristics in order to analyze the most
“promising” candidates first; the Houdini approach [I7] might also be useful in
this context. The investigation of these aspects belongs to future work.

6.2 Limitations

Relevant invariants obtained by postcondition mutation are most of the times
significant, practically useful, and complementary to a large extent to the cate-
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gories that are better tackled by other methods (see next sub-section). Still, the
postcondition mutation technique cannot obtain every relevant invariant. Fail-
ures have two main different origins: conceptual limitations and shortcomings of
the currently used technology.

The first category covers invariants that are not expressible as mutations of
the postcondition. This is the case, in particular, whenever an invariant refers
to a local variable whose final state is not mentioned in the postcondition. For
example, the postcondition of procedure maz in Section [2.I] does not mention
variable i because its final value n is not relevant for the correctness. Corre-
spondingly, invariant ¢ < n — which is involved in the partial correctness proof —
cannot be obtained from by mutating the postcondition. A potential solution to
these conceptual limitations is two-fold: on the one hand, many of these invari-
ants that escape postcondition mutations can be obtained reliably with other
inference techniques that do not require postconditions — this is the case of in-
variant ¢ < n in procedure max which is retrieved automatically by Boogie. On
the other hand, if we can augment postconditions with complete information
about local variables, the mutation approach can have a chance to work. In the
case of mazx, a dynamic technique could suggest the supplementary postcondi-
tion i < n A ¢ >n which would give the sought invariant by dropping the second
conjunct.

Shortcomings of the second category follow from limitations of state-of-the-
art automated theorem provers, which prevent reasoning about certain inter-
esting classes of algorithms. For the sake of illustration, consider the following
idealizedﬂ implementation of Newton’s algorithm for the square root of a real
number, more precisely the variant known as the Babylonian algorithm [29]:

square_root (a: REAL): REAL
require a >0
local y: REAL
do
from Result :=1; y:=a
until Result = y
loop
Result := (Result + y)/2
y := a / Result
end
ensure Result >0 A Result * Result = «

Postcondition mutation would correctly find invariant Result * y = a (by term
dropping and uncoupling), but Boogie cannot verify that it is an invariant be-
cause the embedded theorem prover Z3 does not handle reasoning about prop-
erties of products of numeric variables [27]. If we can verify by other means that
a candidate is indeed an invariant, the postcondition mutation technique of this
paper would be effective over additional classes of programs.

4 The routine assumes infinite-precision reals and does not terminate.
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6.3 Related Work

The amount of research work on the automated inference of invariants is formi-
dable and spread over more than three decades; this reflects the cardinal role
that invariants play in the formal analysis and verification of programs. This
section outlines a few fundamental approaches and provides some evidence that
this paper’s technique is complementary, in terms of kinds of invariants inferred,
to previously published approaches. For more references, in particular regarding
software engineering applications, see the “related work” section of [15].

Static methods. Historically, the earliest methods for invariant inference where
static as in the pioneering work of Karr [23]. Abstract interpretation and the
constraint-based approach are the two most widespread frameworks for static
invariant inference (see also [6, Chap. 12]).

Abstract interpretation is, roughly, a symbolic execution of programs over
abstract domains that over-approximates the semantics of loop iteration. Since
the seminal work by Cousot and Cousot [I1], the technique has been updated
and extended to deal with features of modern programming languages such as
object-orientation and heap memory-management (e.g., [28/[9]).

Constraint-based techniques rely on sophisticated decision procedures over
non-trivial mathematical domains (such as polynomials or convex polyhedra)
to represent concisely the semantics of loops with respect to certain template
properties.

Static methods are sound — as is the technique introduced in this paper —
and often complete with respect to the class of invariants that they can infer.
Soundness and completeness are achieved by leveraging the decidability of the
underlying mathematical domains they represent; this implies that the extension
of these techniques to new classes of properties is often limited by undecidabil-
ity. In fact, state-of-the-art static techniques can mostly infer invariants in the
form of “well-behaving” mathematical domains such as linear inequalities [T2J10],
polynomials [38/37], restricted properties of arrays [7I520], and linear arithmetic
with uninterpreted functions [I]. Loop invariants in these forms are extremely
useful but rarely sufficient to prove full functional correctness of programs. In
fact, one of the main successes of abstract interpretation has been the devel-
opment of sound but incomplete tools [2] that can verify the absence of simple
and common programming errors such as division by zero or void dereferencing.
Static techniques for invariant inference are now routinely part of modern static
checkers such as ESC/Java [I18], Boogie/Spec# [26], and Why/Krakatoa/Ca-
duceus [22].

The technique of the present paper is complementary to most static tech-
niques in terms of the kinds of invariant that it can infer, because it derives
invariants directly from postconditions. In this respect “classic” static inference
and our inference by means of postcondition mutation can fruitfully work to-
gether to facilitate functional verification; to some extent this happens already
when complementing Boogie’s built-in facilities for invariant inference with our
own technique.
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[B42TI8I2524] are the approaches that, for different reasons, share more sim-
ilarities with ours. To our knowledge, [342TI8I25] are the only other works ap-
plying a static approach to derive loop invariants from annotations. [2I] relies
on user-provided assertions nested within loop bodies and essentially tries to
check whether they hold as invariants of the loop. This does not release the
burden of writing annotations nested within the code, which is quite complex
as opposed to providing only contracts in the form of pre and postconditions.
In practice, the method of [2I] works only when the user-provided annotations
are very close to the actual invariant; in fact the few examples where the tech-
nique works are quite simple and the resulting invariants are usually obtainable
by other techniques that do not need annotations. [§] briefly discusses deriv-
ing the invariant of a for loop from its postcondition, within a framework for
reasoning about programs written in a specialized programming language. [25]
also leverages specifications to derive intermediate assertions, but focusing on
lower-level and type-like properties of pointers. On the other hand, [34] derives
candidate invariants from postconditions in a very different setting than ours,
with symbolic execution and model-checking techniques.

Finally, [24] derives complex loop invariants by first encoding the loop seman-
tics as recurring relations and then instructing a rewrite-based theorem prover
to try to remove the dependency on the iterator variable(s) in the relations. It
shares with our work a practical attitude that favors powerful heuristics over
completeness and leverages state-of-the-art verification tools to boost the infer-
ence of additional annotations.

Dynamic methods. More recently, dynamic techniques have been applied to in-
variant inference. The Daikon approach of Ernst et al. [I5] showed that dynamic
inference is practical and sprung much derivative work (e.g., [35/13I36] and many
others). In a nutshell, the Daikon approach consists in testing a large number of
candidate properties against several program runs; the properties that are not
violated in any of the runs are retained as “likely” invariants. This implies that
the inference is not sound but only an “educated guess”: dynamic invariant in-
ference is to static inference what testing is to program proofs. Nonetheless, just
like testing is quite effective and useful in practice, dynamic invariant inference
is efficacious and many of the guessed invariants are indeed sound.

Our approach shares with the Daikon approach the idea of guessing a candi-
date invariant and testing it a posteriori. There is an obvious difference between
our approach, which retains only invariants that can be soundly verified, and
dynamic inference techniques, which rely on a finite set of tests. A deeper dif-
ference is that Daikon guesses candidate invariants almost blindly, by trying
out a pre-defined set of user-provided templates (including comparisons between
variables, simple inequalities, and simple list comprehensions). On the contrary,
our technique assumes the availability of contracts (and postconditions in par-
ticular) and leverages it to restrict quickly the state-space of search and get to
good-quality loop invariants in a short time. As it is the case for static tech-
niques, dynamic invariant inference methods can also be usefully combined with
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our technique, in such a way that invariants discovered by dynamic methods
boost the application of the postcondition-mutation approach.

Program construction. Classical formal methods for program construction
[T419129132] have first described the idea of deriving loop invariants from post-
conditions. Several of the heuristics that we discussed in Section 2] are indeed
a rigorous and detailed rendition of some ideas informally presented in [29J19].
In addition, the focus of the seminal work on program construction is to derive
systematically an implementation from a complete functional specification. In
this paper the goal is instead to enrich the assertions of an already implemented
program and to exploit its contracts to annotate the code with useful invariants
that facilitate a functional correctness proof.

7 Conclusion and Future Work

We have shown that taking advantage of postconditions yields loop invariants
through effective techniques — not as predictable as the algorithms that yield
verification conditions for basic constructs such as assignments and conditionals,
but sufficiently straightforward to be applied by tools, and yielding satisfactory
results in many practical cases.

The method appears general enough, covering most cases in which a pro-
grammer with a strong background in Hoare logic would be able at some effort
to derive the invariant, but a less experienced one would be befuddled. So it does
appear to fill what may be the biggest practical obstacle to automatic program
proving.

The method requires that the programmer (or a different person, the “proof
engineer”, complementing the programmer’s work, as testers traditionally do)
provide the postcondition for every routine. As has been discussed in Section [T}
we feel that this is a reasonable expectation for serious development, reflected in
the Design by Contract methodology. For some people, however, the very idea of
asking programmers or other members of a development team to come up with
contracts of any kind is unacceptable. With such an a priori assumption, the
results of this paper will be of little practical value; the only hope is to rely on
invariant inference techniques that require the program only (complemented, in
approaches such as Daikon, by test results and a repertoire of invariant patterns).

Some of the results that the present approach yields (sometimes trivially)
when it is applied manually, are not yet available through the tools used in the
current implementation of gin-pink. Although undecidability results indicate that
program proving will never succeed in all possible cases, it is fair to expect that
many of these limitations — such as those following from Z3’s current inability
to handle properties of products of variables — will go away as proof technology
continues to progress.

We believe that the results reported here can play a significant role in the ef-
fort to make program proving painless and even matter-of-course. So in addition
to the obvious extensions — making sure the method covers all effective patterns
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of postcondition mutation, and taking advantage of progress in theorem prover
technology — our most important task for the near future is to integrate the re-
sults of this article, as unobtrusively as possible for the practicing programmer,
in the background of a verification environment for contracted object-oriented
software components.
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