
Magisterarbeit

Strategies to
Automatically Test Eiffel Programs

Andreas Leitner

————————————–

Institut für Softwaretechnologie
Technische Universität Graz

Vorstand: Vertragsprof. Dipl.-Ing.Dr.techn. Franz Wotawa

Begutachter: Vertragsprof. Dipl.-Ing.Dr.techn. Franz Wotawa
Betreuer: Roderick Bloem, PhD

Graz, im Dezember 2004

Ich versichere, diese Arbeit selbständig verfasst, andere als die angegebenen Quellen
und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubter Hilfsmittel bedient
zu haben.

Abstract

Semi-automated software testing has become an increasingly popular and effective
tool for raising the quality of software. Pre-, postconditions, and invariants describe the
semantics of a feature (i.e., method or data member) and can help to decide whether
a given test failed or passed [ARM03, Gre04, Ciu04]. Since the decision can be made
without further knowledge of the input this opens up the possibility of a fully automated
push button tester. Implementing such a system reveals both theoretical and practical
challenges.

A fully automated tester is likely to run the system under test into unrecoverable states
and must at least be able to recover gracefully in order to continue testing. A master/slave
mechanism has been implemented to automatically resume testing after a runtime crash.

The tester must be able to satisfy the preconditions of the features under test in order
to call them. Automatically satisfying preconditions in Eiffel is a challenging problem,
since the contract is in practice never complete. Even if it is, its expression language
is both non-functional and undecidable. Using the very simple approach of (almost)
random input data yields promising results, but features with strong preconditions are
left untested. A more guided approach based on a planning system has been implemented
for those cases. From Eiffel source code a planning problem is generated with the goal
being the precondition of the feature under test. A planner is used to generate a plan,
which is then executed by an Eiffel interpreter. If the goal can be reached, the precondition
of the feature under test is satisfied and thus the feature can now be tested, otherwise
information from the plan execution is used to augment the planning problem and the
planner is asked for a new plan.

2

Zusammenfassung

Semiautomatisches Testen von Software erfreut sich zunehmender Popularität. Vor-
bedingungen, Nachbedingungen und Invarianten beschreiben die Semantik eines Eiffel-
Features, auch method und data-member genannt, und können daher verwendet werden,
um zu entscheiden, ob ein Test versagt oder bestanden hat. Diese Entscheidung kann ohne
weitere Kenntnis der Eingabedaten geschehen. Daher kann der Testvorgang vollständig au-
tomatisiert werden. Die Entwicklung eines solchen Testsystems erfordert die Überwindung
von sowohl theoretischen, als auch praktischen Problemen.

In der Praxis verursacht ein automatisierter Tester, durch die nahezu unkontrollierte
Ausführung des zu testenden Systems, oft Abstürze die den Tester nicht vom weiteren
Testen abhalten dürfen. Ein Master/Slave Mechanismus wurde entwickelt der den Test-
vorgang robust gegenüber Laufzeitabstürzen macht.

Um ein Feature zu testen muss zuerst seine Vorbedingung erfüllt werden. Das auto-
matisierte Erfüllen von Vorbedingungen ist ein anspruchsvolles Problem, da in der Praxis
die Spezifikation nicht vollständig ist. Die Verwendung von zufälligen Eingabedaten liefert
jedoch erstaunlich gute Resultate. Features mit starken Vorbedingungen können in der
Regel mit dieser Strategie nicht getestet werden. Für diese Fälle wurde eine komplexe-
re Strategie, basierend auf einem Planungssystem, implementiert. Ausgehend vom Eiffel
Quelltext wird ein Planungsproblem generiert, dessen Ziel die Erfüllung der Vorbedingung
des zu testenden Features ist. Ein Planungssytem generiert dann einen Plan, der auf einem
Eiffel Interpreter ausgeführt wird. Kann das Ziel erreicht werden, ist die Vorbedingung des
zu testenden Features erfüllt und das Feature kann getestet werden. Andernfalls wird das
Planungsproblem mit Informationen aus der Planausführung erweitert und ein neuer Plan
wird erstellt.

3

Acknowledgements

Diese Magisterarbeit wurde im Jahr 2004 am Institut für Softwaretechnologie an der Tech-
nischen Universität Graz, in Zusammenarbeit mit dem Chair of Software Engineering der
ETH Zurich, durchgeführt.

Zu allererst möchte ich mich bei meinem Betreuer Dr. Roderick Bloem bedanken, der
mir in nicht endenwollender Geduld mit Rat und Tat zur Seite stand. Bei Prof. Dr. Bertrand
Meyer und Prof. Dr. Franz Wotawa möchte ich mich für das Zustandekommen dieser Mag-
isterarbeit bedanken.

Für zahlreiche Diskussionen und Vorschläge möchte ich mich bedanken bei: Dipl.-
Ing. Barbara Jobstmann, Gunther Laure, Wolfgang Lazian und Prof. Dr. Wolfgang Slany
von der TU Graz, bei Dr. Karine Arnout, Dipl.-Ing. Till Bay, Ilinca Ciupa und Vijay D’silva
von der ETH Zuerich und bei Xavier Rousselot.

Natürlich möchte ich mich bei meiner Freundin Dott.ssa Ilaria Galli bedanken, die mir
in den letzten Monaten, nicht nur mit Ihren hervoragenden Englischkenntnissen beiges-
tanden ist. Auch möechte ich mich bei meiner Familie und meinen Freunden bedanken.

Graz, im Dezember 2004 Andreas Leitner

4

Contents

1 Introduction 10
1.1 TestStudio . 10
1.2 Master/Slave Design . 11
1.3 Random Strategy . 13
1.4 Planning Strategy . 14

2 Preliminaries 16
2.1 Eiffel . 16

2.1.1 Eiffel Terminology . 16
2.1.2 Design By Contract . 17
2.1.3 CAT Calls . 19
2.1.4 LINKED LIST . 20

2.2 Testing . 21
2.3 Planning . 21

2.3.1 Bifrost . 22

3 Related Work and Alternative Approaches 25
3.1 Related Work . 25

3.1.1 TestEra . 25
3.1.2 Korat . 25

3.2 Alternative Strategies . 26
3.2.1 Genetic Programing . 26

4 Master/Slave Design 30
4.1 Contract Based Testing . 30
4.2 TestStudio . 31

4.2.1 Random Strategy . 31
4.2.2 Limitations . 31

4.3 Master/Slave . 33
4.3.1 Concept . 33
4.3.2 Interpreter . 33
4.3.3 Oracle . 37
4.3.4 Modification of the Random Strategy 39

4.4 Results . 40
4.4.1 Explanation . 40
4.4.2 Results for LINKED LIST . 41

5

4.4.3 Results for DS LINKED LIST . 42

5 Planning Strategy 46
5.1 Motivation . 46
5.2 Bifrost, A Planner . 50
5.3 Manual Problem Creation . 51

5.3.1 Eiffel Source Code . 52
5.3.2 ExtNADL Problem . 53
5.3.3 Universal Plan . 53

5.4 Dealing with Uncertainty . 55
5.4.1 Planning with Learning . 57

5.5 A General Object Model in the Planning Domain 59
5.5.1 Example . 59
5.5.2 The Type NONE . 60
5.5.3 Routines . 61
5.5.4 Creation Routines . 63
5.5.5 Expressions . 63

5.6 The COUNTER Example . 64

6 Conclusion and Outlook 65
6.1 Master/Slave Design . 65
6.2 Planning Strategy . 65
6.3 Future Work . 66

A Listings 67
A.1 TestStudio Project File for Class LINKED LIST 67
A.2 Test Result Summary for Class LINKED LIST 70
A.3 Interface of LINKED LIST . 74
A.4 Source Code of Class COUNTER . 84
A.5 Initial Problem for COUNTER.foo . 85
A.6 Execution Paths of COUNTER.foo . 94

Bibliography 96

6

List of Figures

1.1 Master Slave Concept . 12
1.2 Planning Flowchart . 14

2.1 Cursor positions of LINKED LIST . 21
2.2 Planning problem and solution as state machines 24

3.1 Population of Individuals . 27
3.2 Symbolic representation of an example individual 28
3.3 X-axis: iteration; Y-axis: mean and maximal energy 29

4.1 Sequence Diagrams of old and new TestStudio implementation 34
4.2 GERL UML class diagram . 38
4.3 LINKED LIST test results . 41
4.4 DS LINKED LIST test results . 42

5.1 Plan Generation . 52
5.2 Object Model . 61
5.3 Eiffel Type Lattice . 62

7

List of Tables

2.1 Eiffel to C++ terminology mapping . 18
2.2 Strong solution for simple extNADL example 23

4.1 Interpreter Commands . 35
4.2 Detailed Test Result Entry For LINKED LIST.make bug 42

5.1 Features of LINKED LIST that could not be tested 47
5.2 extNADL versus Eiffel . 51
5.3 Strong solution for SIMPLE LIST . 55
5.4 Strong solution for second SIMPLE LIST problem 55
5.5 Strong solution for third SIMPLE LIST problem 56
5.6 Strong solution for fourth SIMPLE LIST problem 59
5.7 Expression Conversion . 64

A.1 Test Result Summary for class LINKED LIST 70
A.1 Test Result Summary for class LINKED LIST 71
A.1 Test Result Summary for class LINKED LIST 72
A.1 Test Result Summary for class LINKED LIST 73

8

Listings

2.4 Simple extNADL planning problem . 24
4.1 Output of original TestStudio when testing LINKED LIST 32
4.2 Example Interpreter Session . 37
4.3 Log file of Example Interpreter Session . 43
4.5 Interpreter Log Entry For LINKED LIST.make bug 44
4.6 TestStudio Log Entry For LINKED LIST.make bug 45
5.1 Interfaces of features from LINKED LIST that have not been tested 48
5.7 Problem for SIMPLE LIST . 54
5.8 Second SIMPLE LIST Problem . 56
5.9 Third SIMPLE LIST Problem . 57
5.10 Fourth SIMPLE LIST Problem . 58
A.1 TestStudio Project File For Class LINKED LIST 67
A.2 Interface of class LINKED LIST . 74
A.3 Source code of class COUNTER . 84
A.4 Initial problem for COUNTER.foo . 85

9

Chapter 1

Introduction

This chapter presents an overview of the topics covered in this thesis. We explain the
concept of contract based testing. TestStudio, an application developed at the ETH Zurich
that implements contract based testing, is described. Finally extensions to TestStudio,
which have been implemented as part of this thesis, are covered.

With the advent of frameworks such as JUnit [HT03] software testing has become
increasingly popular. They automate the process of building and executing test cases.
Software equipped with preconditions, postconditions, and invariants can in many cases
be used to go one step further: test cases can be automatically derived from the contracts,
eliminating the last manual step and making testing fully automatic [Aic01]. Automated
test case generation supplements unit testing rather than substituting it. Counter exam-
ples found during automated testing can be added to the existing suite of unit tests.

The Eiffel language has built-in support for preconditions, postconditions and invari-
ants, called Design by ContractTM. When a client calls a feature (the supplier) it must
establish the precondition of the supplier. The supplier then has the duty to establish its
own postcondition. The invariant needs to be established by the creation procedure and
must then hold at the beginning and the end of (almost) every feature call. In the case of
an abnormal feature execution the guilty party can be determined:

1. If the precondition is violated the client is to blame.

2. If the class invariant is violated before the execution of the routine body the client
is to blame.

3. If the postcondition is violated the supplier is to blame.

4. If the invariant is violated after the execution of the routine body the supplier is to
blame.

Steps 3 and can serve as a testing oracle, i.e., determine whether a feature test passed
or failed.

1.1 TestStudio

TestStudio is a contract based testing tool developed by Greber [Gre04] and Ciupa [Ciu04]
at the ETH Zurich after the proposal [ARM03]. TestStudio implements the idea of contract

10

CHAPTER 1. INTRODUCTION 11

based testing. The concepts discussed in this thesis have been implemented as extensions
to TestStudio.

TestStudio, as implemented by Greber and Ciupa, is very fragile. Chapter 4 presents
the results of testing fundamental data structure classes. Even with such closed world
classes, TestStudio will abort execution before gathering any test results at all. This is
because every class (automatically) depends on the kernel library, which uses the external
“C” mechanism.

Eiffel features a foreign language interface which, for example, allows C functions to
be called from Eiffel. C functions in general do not validate their arguments and thus may
harm the systems state when called with invalid arguments. In some situations they can
even render the Eiffel runtime unusable, in which case the only option is the termination
of the system’s process. Furthermore, the damage may not be immediately detectable and
only trigger a fatal error in subsequent feature calls.

Features that destroy the invariant of one or several objects are another reason to quit
the testing process. Objects violating their invariant must not be used for further testing,
because they can confuse the oracle. Such objects may be used directly or indirectly in
subsequent test cases and trigger false positives. In general it is not possible to detect all
objects whose invariant is violated, nor can such objects be removed.

Routines such as EXCEPTIONS.die, whose purpose is to terminate the current process,
obviously also terminate testing and need to be dealt with.

1.2 Master/Slave Design

Testing classes from the EiffelBase library revealed that the problems mentioned above
can render a one process based tester dead before it produces any output at all. With a
one process based tester, the execution of a whole test suite (i.e.: a sequence of individual
test cases) is controlled from within the same process that executes the test cases. If for
some reason a test case renders the runtime of this process unusable, test cases scheduled
after the harmful test case will not be executed. Before the first feature can be tested,
objects to serve as arguments need to be created. Termination of the process in this
stage will yield not a single test result. To overcome this problem TestStudio has been
modified so that testing is split into two processes: a master and a slave. The goal of the
modification is to output results for as many test cases as possible, even in the presence
of test cases that harm the runtime. The master process knows what features to test and
communicates with the slave process through the standard input/output streams. The
slave is a minimal Eiffel interpreter which is able to create objects, execute features and
report back to the master.

The reflection facilities from ISE Eiffel are not complete enough to allow building
an Eiffel interpreter. At the time of the writing, they only provide value retrieval and
assignment for attributes. Routine invocation specifically is not possible. Due to this
limitation we implemented a reflection library generator. The Gobo [Bez03] Eiffel parser
is used to parse the system under test, then an ERL [Flu04] implementation is generated
from the parsed AST.

The slave, mainly consists of the generated reflection library. It is a simple interpreter
that listens on the standard input for requests, executes those requests and prints infor-

CHAPTER 1. INTRODUCTION 12

Driver
(Master)

Interpreter
(Slave)

* Knows what to test
* Controls test order
* Knows dependencies
 (Creates arguments necessary
 for feature call)
* Stores test results
* Can restart slave on demand

* Executes features at masters
 request
* Reports call result back to master

Figure 1.1: Master Slave Concept

mation about the execution to the standard output stream. Exceptions are caught and
also reported to the standard output stream.

If a fatal error is detected, the slave terminates. The master starts a new client
and continues testing the feature under test. If a feature under test causes a fatal error
repeatedly, the master moves on to the next feature under test. The test result information
is stored by the master so that a restart of the client does not cause any loss of information.

In order to test a feature, its precondition must be satisfied. In general it is not possible
to automatically construct objects which deterministically satisfy a given precondition
because of the following two issues:

• In practice, the assertions provided by the programmer rarely form a complete spec-
ification. Most source code is written with postconditions that only state changes,
leaving the frame problem open 1.

• Even though it is encouraged to write side effect-free functions, functions are not
checked for this property by the compiler.

Nevertheless strategies can be applied to solve the problem of satisfying preconditions
for many situations. This thesis discusses two strategies in detail: a random and a guided
approach. A third one using genetic programming has been implemented as a proof of

1[BMR95] defines the frame problem as “the inability to express that a procedure changes only those
things it has to, leaving everything else unmodified”

CHAPTER 1. INTRODUCTION 13

concept. The random approach, first implemented in the one process based tester by
Nicole Greber [Gre04], has been re-implemented in the master/slave tester. The guided
approach uses a planner.

1.3 Random Strategy

The idea of the random approach is to call the features under test with random arguments.
The following steps are taken to test a given feature f of type T:

1. Create an object of type T. A random creation procedure of T is selected. Store
created object in the object repository.

2. Create objects suitable as actual arguments for f. Again a random creation procedure
is selected. Store created objects in the object repository.

3. Select a random object from the repository and invoke a random feature on it (this
step is justified below).

4. Retrieve conforming objects from the object repository for the target object and
all actual arguments. If several objects conform for a given argument or the target
object, select one randomly.

5. Invoke feature with selected objects.

Several things are worth noting here:

• Steps 1, 2 and 3 are recursive and terminate only stochastically. To invoke a regular
feature or creation procedure new arguments may be needed.

• Step 3 may seem superfluous, but it serves the purpose to modify the objects in
the repository. This is useful if a given feature is tested repeatedly. Due to step
2 chances are that the feature will be called from different states, thus potentially
changing the code path taken by the feature and in turn increasing test coverage.

A side effect of calling a certain feature under test is that other features (and creation
procedures) might be called. Those might not even be selected for testing by the user.
But since they are executed potential bugs might be discovered.

The above strategy is rather unguided due to the heavy use of randomness. Others, for
example [MK01], have used more complex strategies. Nevertheless this strategy detected
several bugs in the production quality libraries EiffelBase and the Gobo Eiffel Structure
Library. Detecting bugs being the primary goal of a tester this is clear evidence of the
strategy’s effectiveness. Detailed results are presented in Chapter 4.

One weakness of the random strategy is that it leaves features with complex precondi-
tions untested since all modifications made to the object state are due to random feature
invocations and not influenced by the precondition of the feature under test. Thus, the
more complex/stronger the precondition the less likely it gets satisfied.

CHAPTER 1. INTRODUCTION 14

1.4 Planning Strategy

A more guided strategy is needed to satisfy complex preconditions. We developed a
planner based strategy, whose idea is to use the information given by the contracts. As
noted above the contracts are rarely complete, but they can still serve as an indication of
what features do.

The actual execution and evaluation of the feature under test is taken from the first
strategy; only the creation and modification of the objects needed to execute the call to
the feature under test is different. Figure 1.2 shows the concept of this strategy.

Eiffel
Source Code

Planning Problem
(Domain +
Init + Goal)

Weak Plan
(Univeral) Interpreter

Goal Reached?

Problem
Generator

Yes

No

Planner

Figure 1.2: Planning Flowchart

For example the feature LINKED LIST.remove, which removes the item under the
current cursor position, requires the list to be not off (i.e.: the cursor must be positioned
on a element and not before or after). For the cursor to be on an element there must at
least be one element in the list so a possible plan for testing LINKED LIST.remove would
be to:

1. Create an object of type LINKED LIST.

2. Insert the Void reference into the list.

3. Move the cursor to the position of the just inserted element.

CHAPTER 1. INTRODUCTION 15

4. Call LINKED LIST.remove.

The planner based strategy abstracts the Eiffel source code to a planning problem.
Attributes are mapped to state variables, routines to actions. The goal state is the ab-
stracted precondition of the feature under test. The initial state is a state where no object
has yet been created. Actions have a notion of precondition and effect, which are mapped
from the Eiffel routines precondition and postcondition. The routine body is not taken
into account at all.

We use the planning tool bifrost, described in [Jen03], to extract a universal plan from
the problem. A universal plan is a state-action table that associates a set of actions to a
state that can be executed in such state [CPRT03]. Due to the uncertainty of the planning
problem (which is in turn caused by non-complete contracts), in general, no strong solution
can be extracted. A strong solution is defined by [CPRT03] as follows:

Strong solutions are plans that are guaranteed to achieve the goal in spite
of nondeterminism: all the sequences of states corresponding to its execution
reach the goal.

A weak solution is defined by [CPRT03] as:

Weak solutions are plans that may achieve the goal, but are not guaranteed to
do so: at least one of the many possible sequences of states corresponding to
plan execution reaches the goal (i.e., the final state is a goal state).

A weak solution can in practice always be found. The output of the planner, the
weak solution, is parsed by the tester and then used to drive the interpreter. Due to the
nature of the weak solution, we need the interpreter to decide if a given plan really leads
to the goal state (the satisfied precondition) or not. If we can reach the goal state the
feature under test can now be tested. If the goal state has not been reached, the original
planning problem is augmented with information gained during interpretation. For every
feature invocation the object state before the feature invocation (stateold) and the state
after the feature invocation (statenew) are recorded. The action corresponding to the
feature called has its postcondition augmented with the expression stateold → statenew.
The augmented plan now has stronger postconditions and thus reduced uncertainty, which
will in many cases lead to a better weak solution. This assumes that Eiffel objects will
act deterministically, which is not true in general. Nevertheless many real life objects will
indeed act deterministically, because code that acts deterministically is much easier to
understand.

Genetic Programming Strategy A third strategy has only been implemented as a
proof of concept. The idea is to use genetic programming to breed test cases. The concept
and the experimental results are presented in Chapter 3.

Chapter 2

Preliminaries

The content of this chapter is preliminary for the rest of this thesis. We give an overview
of the implementation and target language of the tester described in this thesis. Then the
chapter explains the concept of software testing in general. Finally, planning, which is the
basis for the strategy described in Chapter 5 is introduced. This chapter may be skipped
by readers already familiar with the topics mentioned above.

2.1 Eiffel

The automatic tester is implemented in Eiffel. The language targeted by the tester is also
Eiffel. For this reason, the following gives a brief overview of the language. Eiffel is a pure
object oriented programing language. The main features of the language are:

• Static type system

• Multiple inheritance

• Constrained genericity

• Design By Contract

Listing 2.1 shows the Eiffel version of the popular Hello World example. The only class
in this example is HELLO WORLD. This class has only one feature: the procedure make.
The implementation of this procedure prints the string Hello world! followed by a new
line character to the standard output stream. In Eiffel every class implicitly or explicitly
inherits from the class ANY. The routine print is defined in this class for convenience
reasons. The procedure make is also marked to be a creation procedure. Since it has no
arguments it can serve as the programs entry point.

2.1.1 Eiffel Terminology

Eiffel has its own naming convention which often diverges from the conventions used in
languages such as C++, Java or C#. Throughout this thesis the Eiffel naming convention
is used. Loryn Jenkins wrote a terminology mapping from Eiffel to C++ [Jen04]. Table 2.1
is based on the mapping from Jenkins and shows the entries relevant for this thesis.

16

CHAPTER 2. PRELIMINARIES 17

Listing 2.1: Hello World in Eiffel� �
1 c l a s s HELLO WORLD

crea t e
make

4 f e a tu r e
make i s

do
7 pr in t (”Hello World!%N”)

end
end� �
2.1.2 Design By Contract

The perhaps most distinguished feature of Eiffel is its support for Design By Contract.
Design By Contract is a a methodology for designing computer software. It provides
benefits in the following processes:

Design – Interfaces equipped with contracts ensure that their purpose is stated clearly.

Documentation – Contracts make source code easier to understand. External docu-
mentation tends to get out of sync with the actual implementation. Contracts are
part of the source code and thus are less likely to go out of sync.

Debugging – Enabling assertion checking during runtime reveals bugs earlier and closer
to the source of the bug.

Design By Contract is derived from the correctness formulas or Hoare triples used in
formal program verification [Mey97]:

Let A be some operation (for example an instruction or a routine body). A
correctness formula is an expression of the form:

{P}A{Q}
denoting the following property, which may or may not hold:

Meaning of a correctness formula {P}A{Q}
“Any execution of A, starting in a state where P holds, will terminate in
a state where Q holds.”

In Eiffel correctness statements are supported via the following constructs:

Precondition – Boolean expression which must hold before every feature call.

Postcondition – Boolean expression which must hold after every feature call.

Class Invariant – Boolean expression which must hold before and after every feature
call.

Check Instruction – Boolean expression which must hold at a certain position in a
statement block. The check instruction is similar to the assert instruction from
Java.

CHAPTER 2. PRELIMINARIES 18

Eiffel C++
ace file Makefile

An ace file is descriptive, while a makefile is imperative
ancestor class x1 superclass
attribute data member
CAT Change of availability or type

For CAT calls see Section 2.1.3
check assert
child class derived class
cluster namespace

Clusters group classes.
Two classes from two different cluster must not have the same name

command virtual function
with void return type

create x.make x = new X
creation feature constructor
deferred feature pure virtual function
deferred class abstract base class
descendent class subclass
feature function

function = method
feature data member
feature method

method = function
fully deferred class pure virtual base class
function virtual function

with non-void return type
generic class class template
manifest object literal constant
parent class base class
Precursor super()

excepting that super() is regularly used
to call any feature of the superclass so desired

Result return

Table 2.1: Eiffel to C++ terminology mapping

Loop Invariant – Boolean expression which must hold at the beginning and the end of
each loop iteration

Loop variant – Integer expression which decreases with every loop iteration.

Following defines the semantic for the most important clauses (i.e.: precondition clause,
postcondition clause, and class-invariant clause) [Mey97]:

Let C be a class, INV its class invariant. For any routine r of the class,

CHAPTER 2. PRELIMINARIES 19

call prer(xr) and postr(xr) its precondition and postcondition; xr denotes the
possible arguments of r, to which both the precondition and the postcondition
may refer. (If the precondition or postcondition is missing from the routine
text, then prer or postr is just True.) Call Bodyr the body of routine r.
Finally, let DefaultC be the assertion expressing that the attributes of C have
the default values of their types.

Definition: class correctness :
A class is correct with respect to its assertions if and only if:

• For any valid set of arguments xp to a creation procedure p:
{DefaultC and prep(xp)} Bodyp {postp(xp) and INV}
• For every exported routine r and any set of valid arguments xr:
{prer(xr) and INV} Bodyr {postr(xr) and INV}

Runtime assertion-checking can be enabled via the ace file. The rescue clause can catch
exceptions similar to the C++/Java/C# catch clauses.

2.1.3 CAT Calls

Eiffel allows for covariant redefinitions in descendants. A covariant redefinition, is a re-
definition which makes a class more restrictive than its parent. An often used example
which contains a covariant redefinition is shown in Listing 2.2.

Listing 2.2: Example of covariant redefinition� �
c l a s s FOOD
end

3
c l a s s GRASS
i n h e r i t FOOD

6 end

c l a s s ANIMAL
9 f e a tu r e

eat (f : FOOD) i s
do

12 −− . . .
end

end
15

c l a s s COW
inh e r i t ANIMAL

18 r ed e f i n e eat end
f e a tu r e

eat (f : GRASS) i s
21 do

−− . . .
end

24 end� �
These redefinitions are source for an error which is hard to detect at compile time:

the CAT call (CAT stands for Changing Availability or Type). For example the call
a.eat (f) from Listing 2.3 is a CAT call. Per language definition CAT calls are invalid.
Unfortunately checking for CAT calls statically is undecidable. Worse, most compilers
do not check for CAT calls at runtime. There, a CAT call results in undefined behavior,
which in practice often means that the runtime panics and terminates. Gelint, a tool from
the GOBO suite [Bez03], implements the dynamic type set mechanism as described in

CHAPTER 2. PRELIMINARIES 20

[Mey92]. This tool checks for CAT calls statically. It is worth noting that this mechanism
is pessimistic (it reports false negatives).

Listing 2.3: Example of CAT call� �
l o c a l

a : ANIMAL
3 c : COW

f : FOOD
do

6 c r ea t e c
c r ea t e FOOD
a := c

9 a . eat (f)
end� �
2.1.4 LINKED LIST

Most examples presented throughout this thesis will be related to the class LINKED LIST
from the EiffelBase library [Mey94]. As the name of the class suggests it is a class repre-
senting lists. It is implemented via one way linked cells. The list is navigated via a cursor,
which can be moved:

• before the beginning of the list

• to the first item of the list

• to the last item of the list

• after the end of the list

• forth one item

• back one item

Figure 2.1 shows a list with 6 items and the 4 fundamental cursor positions. Note that
even an empty list has the concept of the before and after position. The interface of the
class is shown in Section A.3. The features relevant for this thesis are:

make – Create a new list.

first – The first item in the list.

item – The item at the current cursor position.

last – The last item in the list.

count – The number of items in the list.

after – Is the cursor positioned after the end of the list?

before – Is the cursor positioned before the beginning of the list?

is empty – Is the list empty?

CHAPTER 2. PRELIMINARIES 21

isfirst – Is the current cursor positioned on the first element of the list?

islast – Is the current cursor positioned on the last element of the list?

off – Is the cursor not on a valid position? (i.e.: Is the cursor before or after?)

back – Move the cursor one position back.

finish – Move the cursor to the last element in the list.

forth – Move the cursor one position forth.

start – Move the cursor to the first item in the list.

force – Add an item to the end of the list.

before afterfirst last

Figure 2.1: Cursor positions of LINKED LIST

2.2 Testing

There are several kinds of testing. Throughout this thesis software testing means check-
ing whether a given implementation conforms to its specification. In order to completely
assure the quality of a software system, it needs to be tested against its complete input
space. In practice even for small systems, the input space is too large for complete testing.
This well known fact has been summarized by Dijksta in 1972 as “Program testing can
be used to show the presence of defects, but never their absence!” [DDH74]. Therefore it
is of great importance to select representative inputs for testing. The popular Extreme
Programming approach [Bec00], puts testing in a central position. With Extreme Pro-
gramming, before implementing the routines of a class, automatic test procedures must
be written. In traditional software process models testing is often done as one of the last
steps and then left out completely because of exceeded resources. By writing the test
cases before the actual implementation and automating the execution of the test cases,
Extreme Programming promises to avoid this problem. Since the test cases are written
before the implementation, they additionally serve as a(n) (incomplete) specification. In
[Aic01], Aichernig formalizes this relation and shows not only that test cases are formal
specification but also that they can be derived from traditional specification.

2.3 Planning

The testing strategy described in Chapter 5 is based on a planner called Bifrost [Jen03].
For this reason the following gives a brief overview of planners in general, and Bifrost in
particular.

CHAPTER 2. PRELIMINARIES 22

To solve a planning problem a sequence of actions must be found. The actions are
required to change the state of a given domain from an initial state to a goal state. A
typical example for a planning is the Blocks World. The blocks world consists of a flat
surface and several blocks. A robotic arm can pick up, lift and stack one block on top
of another. The robots task then is to place certain blocks on other blocks. A planning
problem consists of a domain theory, one or more initial states, and one or more goal
states. The STRIPS language [FN71] is one of the best known languages to represent a
domain theory. Classical planners can be categorized into:

State Space Planners search in the state space of the domain.

Plan Space Planers search through the plan space.

Recently research has gone into using new encodings for the planning problem algo-
rithms. The Model Based Planner (MBP) [CGGT97] first encoded a planning problem
as a non deterministic finite automaton (NFA). The NFA itself is represented via Binary
Decision Diagrams (BDD) [Bry86]. Generating universal plans, this technique can be suc-
cessfully used in non deterministic domains. The OBDD represents the transitions of the
NFA. The algorithms used to verify CTL properties in model checking [CGP99] can be
used to extract universal plans from the planning problem. A universal plan is a state-
action table describing in which state what actions are applicable to reach the goal. In
[CPRT03], three kinds of solutions are distinguished:

Weak solutions are plans that may achieve the goal, but are not guaranteed
to do so: at least one of the many possible sequences of states corre-
sponding to plan execution reaches the goal (i.e., the final state is a goal
state).

Strong solutions are plans that are guaranteed to achieve the goal in spite of
nondeterminism: all the sequences of states corresponding to its execution
reach the goal.

Strong cyclic solutions are plans that are guaranteed to achieve the goal
under a “fairness” assumption. Their execution can result in an infinite
sequence of states, i.e., execution can loop forever. However, this happens
only if some action is executed infinitely often in a given state and some
of its outcomes (the ones leading to the goal) never occur. We say that
these executions are “unfair”.

2.3.1 Bifrost

The Bifrost planner, like MBP, is based on BDDs. It uses the extNADL language to
describe planning problems. For this thesis, we choose Bifrost because both the precondi-
tion and effect clause support arbitrary expressions. This makes the conversion from Eiffel
source easier. (As will be explained in Chapter 5, a converter from Eiffel to extNADL was
implemented as part of this thesis.) The planner supports the strong, strong-cyclic, and
weak solution extraction algorithms.

CHAPTER 2. PRELIMINARIES 23

extNADL

The Bifrost planner uses the extNADL problem language. In Chapter 5 several planning
problems formalized in extNADL will be studied. For this reason the following briefly
describes this language. An extNADL problem consists of four parts:

1. Variables: The variables span up the state space of the NFA. A variable is declared
by providing a type and name. Possible types are bool, which represents boolean
values and nat (x), which represents positive numbers with a precision of x bits.

2. Actions: The actions represent the transitions between the states. An action con-
sists of a name, a modifies clause, a precondition clause, and an effect clause. The
modifies clause specifies which variables can be changed by the action. The precon-
dition clause specifies the set of states from which the action can be performed. The
effect clauses states how the action can change the state.

3. Initial States: The initial states specify the valid starting states.

4. Goal States: The goal states specify the set of states that are valid end states.

Note that extNADL also supports multiple agents, which can act concurrently. This
feature is not explained because it is not used in this thesis. Listing 2.4 shows a simple
planning problem. The two variables (x and y) represent the current position of the
robot on a 4 by 4 grid. The robot has four actions (move up, move down, move left, and
move right). Note that in the effect clause, a primed variable (“′”) refers to the value of
the variable after the execution of the action, while a variable not followed by a prime
refers to the value of the variable before the execution of the action. The start states
are all states in which x = 0 holds. The goal state is the state where x = 3 ∧ y = 3
holds. Figure 2.2(a) shows the state machine representing this problem. The extracted
strong solution is shown in Table 2.2. Note that a solution viewed as a state machine (see
Figure 2.2(b)) is a subset of the problem state machine.

x y
?? 0? move down
?? 10 move down
0? ?? move right
10 ?? move right

Table 2.2: Strong solution for simple extNADL example

CHAPTER 2. PRELIMINARIES 24

Listing 2.4: Simple extNADL planning problem� �
VARIABLES

2
nat (2) x
nat (2) y

5
SYSTEM

8 agt : robot

move up
11 mod : y

pre : y > 0
e f f : y ’ = y − 1

14
move down

mod : y
17 pre : y < 4

e f f : y ’ = y + 1

20 move l e f t
mod : x
pre : x > 0

23 e f f : x ’ = x − 1

move r ight
26 mod : x

pre : x < 4
e f f : x ’ = x + 1

29
ENVIRONMENT

32 INITIALLY
x = 0

35 GOAL
x = 3 /\ y = 3� �

x=0
y=0

x=2
y=0

x=1
y=0

x=3
y=0

x=0
y=1

x=2
y=1

x=1
y=1

x=3
y=1

x=0
y=2

x=2
y=2

x=1
y=2

x=3
y=2

x=0
y=3

x=2
y=3

x=1
y=3

x=3
y=3

right

left

up

down

(a) Planning Problem

x=0
y=0

x=2
y=0

x=1
y=0

x=3
y=0

x=0
y=1

x=2
y=1

x=1
y=1

x=3
y=1

x=0
y=2

x=2
y=2

x=1
y=2

x=3
y=2

x=0
y=3

x=2
y=3

x=1
y=3

x=3
y=3

(b) Strong Solution

Figure 2.2: Planning problem and solution as state machines

Chapter 3

Related Work and Alternative
Approaches

This chapter briefly describes two related research projects: TestEra [MK01] and Ko-
rat [BKM02]. Both try to automate test case generation and target the language Java.
An alternative strategy to test Eiffel programs based on genetic programming is intro-
duced. While we implemented a prototype tester based on genetic programming it was
not the main focus of this thesis.

3.1 Related Work

3.1.1 TestEra

TestEra [MK01], is a tool for test case generation. TestEra targets software written in Java.
Specification written in Alloy [Jac02] needs to be provided for the software under test. Up
to a maximum number, all non-isomorphic instances that conform to the specification
are built. The instances are translated to Java and the software is tested. The output
produced by the tests is mapped back to Alloy and is checked against a correctness criteria
also given in Alloy.

By systematically constructing input instances, TestEra is able to get good data-
coverage in closed world systems. Open world systems, however are potentially prob-
lematic. A predicate, which can be made true not by construction but by execution of an
external method cannot be dealt with automatically. For example, a class representing
a video surface is likely to have a property that decides whether the surface has been
initialized or not. Drawing routines then, will likely require an initialized surface. To
initialize a surface and make the property in question true an external routine needs to be
called. The automatic abstraction and concretization translations that convert between
Alloy and Java cannot generate test cases for such domains.

3.1.2 Korat

Korat [BKM02] too automates test case generation. Similarly to TestEra, all non-isomorphic
inputs conforming to the precondition and invariant of the method under test are generated
and used for testing. Unlike TestEra, Korat lets the programmer write the specification

25

CHAPTER 3. RELATED WORK AND ALTERNATIVE APPROACHES 26

in any language as long the specification can be translated to Java predicates. A trans-
lator for JML [LBR00] has been implemented. Objects up to a given bound are created
and checked against the precondition and invariant. The precondition and invariant as
mentioned above are available as Java predicates. Each generated object is thus checked
against those predicates for validity. Monitoring the read accesses during the predicate
execution, fields which do not influence the predicate are detected. This information is
used to prune the search space. The generated input objects are used to call the method
under test. Similar to TestStudio the postcondition and invariant are used as an oracle.

Both TestEra, Korat and TestStudio try to automatically generate test cases from
preconditions, postconditions and invariants. While TestEra and Korat target the lan-
guage Java, TestStudio targets Eiffel systems. A more fundamental difference however is
that TestEra and Korat focus on testing selected methods with as many different inputs
as possible. On the other hand the focus of TestStudio was to test as many methods as
possible.

3.2 Alternative Strategies

3.2.1 Genetic Programing

Genetic programing [Hol92] tries to automatically find computer programs that best per-
form a certain task. It uses evolutionary algorithms to optimize a population of programs.
A fitness criterion is used to decide whether a program should survive an iteration or not.
Genetic programming is typically used for problems where the best solution is hard to
find, but a good solution is acceptable. For the purpose of testing, genetic programming
could be used to search through the space of test cases.

As part of this thesis, we implemented a proof of concept program which uses ge-
netic programing for testing. The program is based on the Genetic Algorithm classes
by Ikram [Ikr03]. In this program a population, as can be seen in Figure 3.1, consists
of many individuals. Each individual represents a sequence of instructions. The fitness
criterion increases the value of those sequences whose executed features either violate a
postcondition or throw no exception at all. The goal of testing is to find bugs. Via genetic
programming this goal cannot be approached directly. A sequence of instructions does not
trigger half a bug and can then be “optimized” to trigger a full bug. However, sequences
of instructions that throw no exception are likely to create objects in “interesting” states.
Such a sequence can be mutated by adding, removing, or changing an instruction, which
could then trigger a bug. Thus the fitness criterion used is not only based on whether
a postcondition is thrown or not. It also favors instruction sequences that do not throw
exceptions at all. After execution, the energy level of an individual is determined as the
sum of the energy of its instructions:

• For every type correct instruction, the energy is increased by 1.

• For every type correct instruction that did not trigger any exception, the energy is
increased by 2

• For every type correct instruction that triggered a postcondition violation, the energy
is increased by 3

CHAPTER 3. RELATED WORK AND ALTERNATIVE APPROACHES 27

010101101100

111010010100

001011010100

101001010100

1001010101011

111010010100

Population

Individual

Sequence of Instructions

Figure 3.1: Population of Individuals

Figure 3.3 shows the mean and average energy for 2409 iterations on. The class under
test was modeled after LINKED LIST (due to technical reasons class LINKED LIST could
not be used directly). The population consisted of 300 individuals. Each bit had a
probability of 0.05 to mutate. Children were only produced by mutation, not by cross-
over. (The genetic programming library used does not support cross-over). A bug has
been implanted in the list. It was triggered when calling a certain feature on a list with
more than two items. This bug has been found only in the 2409th iteration. As Figure 3.3
shows neither the mean nor the maximal energy level rise steadily. We believe that the
reason for this is the way the instructions were represented and mutated. As mentioned
above, an individual consists of a sequence of instruction. The i-th instruction is defined
as targeti := featurej(argumentsi). Both feature invocation instructions and creation
instructions can be easily mapped to this notation. The identifier featurej is a number
identifying either a creation procedure or a regular feature of a certain type. Figure 3.2
shows the symbolic representation of an example individual. The individual in this figure
consists of three instructions. The identifiers feature35 and feature70 each represent a
creation procedure with no arguments. The identifier feature20 could stand for a regular
feature whose target object is the value returned from the first instruction execution
and whose sole argument is the value returned from the second instruction execution. If
feature20 represents a creation procedure, both target1 and target1 serve as arguments
because no target object is needed.

After an instruction was executed, its result (if any) is stored in targeti. The identifier
argumentsi is the list of actual arguments (for a creation instruction) or the target object
and the list of actual arguments (for a feature invocation instruction). If an element in
the list has the value x, it refers to the value of targetx. If an argument refers to an target
that has not been assigned to yet, it is assumed to be Void. An instruction needs to
be type-correct to be executed. Instructions that are not type correct, are not executed

CHAPTER 3. RELATED WORK AND ALTERNATIVE APPROACHES 28

target0 := feature35()
target1 := feature70()
target2 := feature20(target0, target1)

Figure 3.2: Symbolic representation of an example individual

and said to be sleeping. An instruction can be type-incorrect because its arguments are of
wrong number and/or type.

An individual is the concatenation of the bit representation of its instructions. An in-
dividual consists of a fixed number of bits. An instruction however varies in size depending
on the number of arguments its invocation requires. Thus the number of instructions per
individual varies as well. If a mutation changes the feature or creation procedure of an
instruction, the number of arguments required may change as well. Thus such a mutation
may have an effect not only of the local instruction but on all following instructions of
the same individual. A modification of the first instruction may render all subsequent
instructions type-incorrect. We believe that this drastic effect explains the problems with
the mean and maximal energy mentioned above.

The genetic program based tester has been implemented as a proof of concept and is
not the main topic of this thesis. The rest of this thesis concentrates on the robust random
strategy and the planning based strategy.

CHAPTER 3. RELATED WORK AND ALTERNATIVE APPROACHES 29

Figure 3.3: X-axis: iteration; Y-axis: mean and maximal energy

Chapter 4

Master/Slave Design

This chapter explains the idea of contract based testing and presents two usage scenarios
for it. We describe TestStudio, an application implementing the idea of contract based
testing. The chapter explains the main limitation of TestStudio: fragility. A solution (i.e.:
the master/slave concept) implemented for TestStudio is presented.

4.1 Contract Based Testing

As mentioned in Section 2.1.2, Design By Contract provides benefits during the design,
documentation and debugging processes. Furthermore, the preconditions, postconditions,
and invariants can be used for automatic testing. During the debugging process the
assertions help to narrow down the source of bugs. To debug a software system an entry
point and input data are needed. Libraries do not provide either. Instead, test cases are
often used to prevent regressions bugs. Testing frameworks such as JUnit [HT03] greatly
simplify the testing process. Such frameworks automate testing, report generation and
publishing. The test cases, however, need to be written and maintained manually. Software
written with contracts can be used in many cases to generate test cases automatically.
The test cases can be used in addition to the existing unit tests. The counter example of
bugs revealed by automated testing can be added to the suite of existing unit tests. The
following describes two possible usage scenarios for contract based testing:

Push Button Testing – Embedded in the developers’ integrated development environ-
ment, automatic testing can be started pushing a button. Working in the absence
of the developer, the results are presented on her/his return. In this scenario it is
important that there is no or only minimal initial configuration that has to be done.
The developer should be able to start testing without being asked many questions.
Testing should possibly be breadth first. All features should be tested sequentially.
Once all features have been tested, the process can start from the beginning with
different input data. This makes it possible to abort testing at any time (whenever
the developer returns) and still delivers testing results for many features of many
classes.

Stand-alone Testing – The automatic tester is installed on a non-interactive computer.
It is coupled with the source code version control system. Periodically, the tester

30

CHAPTER 4. MASTER/SLAVE DESIGN 31

retrieves the latest version of the source code from the version control system and
starts testing. Similar to auto-build servers like [Cla04], which periodically compile
and test the latest version of the source code, the tester publishes its results (for
example: via a web server or email). In this scenario, initial configuration is less of
a problem because it is only done once during the installation.

4.2 TestStudio

TestStudio, developed by Greber [Gre04] and Ciupa [Ciu04] at the ETH Zurich, uses con-
tracts for automated testing. The purpose of this thesis was to research and implement
improvements to TestStudio. Therefore, TestStudio and its architecture are briefly ex-
plained: TestStudio is an application with a graphical user interface. Via this interface
the user can create and configure a test project. A test project consists of an Eiffel sys-
tem, provided via its ace file. The user can select the cluster, classes, and features to
test. Several parameters such as the stress level (how often to test a feature) or the test
order can be selected. The user can choose those parameters per feature, class, or cluster.
After the project has been configured, TestStudio generates, compiles, and executes the
test cases. After the test-case execution the tool presents the user the test result statistics.
The statistics tell in which features bugs have been found and show the exception for every
bug.

4.2.1 Random Strategy

The testing strategy employed by TestStudio is mainly based on randomness. A feature
under test is called with random objects. The tester only ensures that the actual arguments
conform to the formal ones. The execution of the test cases happens in three phases:

Context Pool Creation – Types that are needed as target objects and arguments for
calling the features under test are instantiated. If a type exports multiple creation
procedures, one is selected randomly. The context pool stores the objects that will
later be used to call the features under test.

Context Pool Modification – To get objects in different states the objects from the
pool are modified. Random commands are called on every object from the pool in
the hope to change its state.

Testing – The features under test are called using the objects from the pool.

4.2.2 Limitations

The main limitation of TestStudio was its fragility during testing. For example, testing the
class LINKED LIST from the EiffelBase library using the TestStudio project-file shown
in Section A.1 resulted in the output shown in Listing 4.1.

During testing the runtime crashed and could not recover. Specifically, it was not able
to:

• Report what exception caused the crash.

CHAPTER 4. MASTER/SLAVE DESIGN 32

Listing 4.1: Output of original TestStudio when testing LINKED LIST� �
g en e r a t ed t e s t : PANIC: unexpected harmful s i g n a l . . .

3 g en e r a t ed t e s t : system execut ion f a i l e d .
Fol lowing i s the s e t o f recorded except i ons .
NB: The r a i s ed panic may have induced complete ly i n c on s i s t e n t in format ion :� �
• Print a stack trace of the moment the exception happened.

• Report test case results.

From the output of the tester the user can only infer that there was some fatal error that
triggered a runtime panic. Closer inspection revealed that this particular crash happened
during the phase in which commands were called on the previously created context-pool
objects. This explains why no test results at all were generated. Several things can cause
unexpected behavior of the testing process:

• Eiffel features an external C mechanism. Via this mechanism external C functions
can be called from within Eiffel. C functions, in general, do not check for invalid
function arguments. Calling a function with invalid arguments usually results in
undefined behavior. In practice such calls often render the process and/or the Eiffel
runtime into an unrecoverable state. This can result in the immediate termination
of the process. Alternatively, the process continues but crashes during the execution
of a later, potentially perfectly valid, routine call. In the latter situation it is very
complicated to locate the source of the problem.

• A bug may cause an Eiffel routine not to terminate. For example the routine could
be stuck in an infinite loop. For practical purposes, an infinite loop is not even
required: a routine which terminates, but takes an unreasonable amount of time to
complete, may give the same impression. The user will likely terminate testing by
hand.

• Eiffel features that influence the running process are potentially problematic. For
example, the feature EXCEPTIONS.die causes the current process to terminate
immediately. If this command is called during the modification of the context-pool
objects or during the execution of test cases the process terminates immediately. All
test cases scheduled after this call will not get executed.

• As explained in Chapter 2, until recently it was not possible to check for the presence
of CAT-calls statically. With many compilers CAT-calls are not even detectable at
runtime. There the behavior of a CAT-call is undefined and often results in a runtime
crash. The tester could check each call it makes, whether it is a CAT-call. This would
however only prevent direct CAT-calls. A routine called from the tester could itself
perform CAT-call. Detecting direct and indirect CAT-calls is a complex problem
and is better left to specialized tools.

The problems mentioned above have been solved by separating the testing process into
a master and a slave. The master/slave design is described in detail in Section 4.3.

CHAPTER 4. MASTER/SLAVE DESIGN 33

Another limitation was that test cases were generated as Eiffel source code, compiled
and then executed. Compiling the test cases to C and then into executable code with ISE
Eiffel takes, on modern hardware, several minutes. This makes it hard to alter the test
case for a given feature depending on the information gained on previous tests of the same
test run. Changing the test strategy also involves changing the code generator. To solve
this inflexibility, a special purpose interpreter has been implemented. It is described in
detail in Section 4.3.2.

4.3 Master/Slave

4.3.1 Concept

Figure 4.1(a) shows the sequence diagram of the original TestStudio graphical user in-
terface process and the tester process. The user starts the TestStudio application and
configures a certain Eiffel system to test. The Eiffel system is parsed, the test cases are
generated and compiled. Then the GUI launches the compiled tester as a child process.
During the execution of the child process the GUI and the tester do not interact. The
GUI waits for the tester to finish and then closes the child process. If a fatal error happens
during testing, the GUI process cannot determine during what phase or test case the error
happened. The user can only restart the tester. No test after the one triggering the fatal
error can be executed. If the fatal error happens during the pool creation or modification
phase no test results can be obtained at all.

To eliminate the problem described above, testing is split into two processes: a master
and a slave. Determining the test-strategy and the actual test-execution is separated.
The master determines which features to call with which arguments in which order. The
slave only executes those features. The less work and responsibility the slave has, the
less dramatic the consequences of its crash. Figure 4.1(b) shows the interaction between
master and slave: the server starts the client and instructs it to invoke a feature. The
slave executes the feature and reports the call status back to the server. The master
instructs the slave to execute another feature. During the execution of the second feature
the slave process crashes. The master gets an bad response (or no response at all) from
the slave process. The master times out waiting for a response and finally restarts the
slave. The master can now retry or skip the problematic feature call. Note that the slave
is instructed to execute feature by feature and not test case by test case. This leaves the
master process full flexibility. It can change test cases without recompilation of the slave.
The testing-strategy implemented is described in Section 4.3.4.

4.3.2 Interpreter

As described in the last section, the slave needs to be able to execute and create features as
requested by the master. The slave will alternate between reading execution requests and
executing those requests. In principle, this makes the slave a special purpose interpreter.
The interpreter is implemented using a reflection library. Due to limitations in the Eiffel
reflection library from ISE Eiffel a reflection library generator has been implemented. The
generator is described in the next section.

Table 4.1 shows the commands understood by the interpreter. The commands that

CHAPTER 4. MASTER/SLAVE DESIGN 34

TestStudio Tester

start

stop

(a) Original TestStudio Sequence Dia-
gram

fatal error

TestStudio
(Master)

Interpreter
(Slave)

start

invoke feature

status

invoke feature

stop

start

invoke feature

status

invoke feature

status

stop

(b) Master/Slave Sequence Diagram

Figure 4.1: Sequence Diagrams of old and new TestStudio implementation

evaluate preconditions (pre create and pre invoke) are needed by the planner based strat-
egy described in Chapter 5.

If an execution was requested the interpreter responds with the messages pass or fail.
The first message means that the execution was completed successfully. After a pass
message, it prints the return value (if any) of the execution. If the type of the return
value is primitive (e.g.: INTEGER, CHARACTER, BOOLEAN), the value is returned
directly. Reference types are stored in an object-repository where they are assigned an
slot id. If the return value is of a reference type, its slot id is returned. If an execution
was interrupted by an exception, the message failed is returned followed by a description
of the exception and the stack trace. Note that the object repository is initialized with
one object already present: slot 1 contains the object referenced by Void. To invoke a

CHAPTER 4. MASTER/SLAVE DESIGN 35

Request Arguments Result
create (Create new object)

• type

• creation procedure

• target slot

• arguments

No result

invoke (Invoke feature on ob-
ject) • type

• routine

• target slot

• arguments

Reference or manifest object
(depending on feature return
type)

pre create (Evaluate precondi-
tion of creation procedure) • type

• creation procedure

• arguments

Boolean

pre invoke (Evaluate precon-
dition of routine) • type

• creation procedure

• target slot

• arguments

Boolean

quit (Quit the interpreter) No result

Table 4.1: Interpreter Commands

feature, the target object and any actual arguments needed to call a routine need to be
provided depending on their type, just like values are returned:

• Primitive types are provided as constants. For example, the integer 6 is passed as
INTEGER”6”.

• Reference types are provided via their repository id. For example, the object in slot
10 is provided as REFERENCE”10”.

CHAPTER 4. MASTER/SLAVE DESIGN 36

Communication with the interpreter happens via the standard input and output streams.
To avoid confusion when reading the output of the interpreter, it prints a mark before and
after a feature invocation. This allows the reader of the output to skip over any potential
output of the executed feature. Features like ANY.print, whose purpose is to print a mes-
sage on the standard output channel, can thus be tested without confusing the master. If
a feature was called that printed the message marking the end of the execution of that
feature, the master would still be confused. However, chances for this event are much
lower than the chances for a routine printing an arbitrary string. Using a pipe instead of
the standard output would not cure the problem completely either, since the pipe could
itself be used by features under test. The standard input and output streams are used
because they offer portable non-blocking input, whereas pipes do not.

An example session of the interpreter is shown in Listing 4.2:

• An object of type LINKED LIST [ANY] is created and stored in slot 2. The creation
terminates successfully and the interpreter reports back that the result of the creation
is an object of type LINKED LIST [ANY] and that it is stored in slot 2.

• The feature force from type LINKED LIST [ANY] is called on the object in slot 2.
The first argument is the integer 55. The routine call terminates successfully.

• The feature i th from type LINKED LIST [ANY] is called on the object in slot 2.
The first argument is the integer 12. This triggers a precondition exception. The
exception is reported together with the stack trace.

Listing 4.3 shows the log file the interpreter wrote during the session shown in List-
ing 4.2.

Gobo Based Eiffel Reflection Library

As mentioned earlier the reflection library that comes with ISE Eiffel (as of version 5.5) is
too limited to build an interpreter on top of it. The Eiffel Reflection Library (ERL) [Flu04],
defines a complete reflection API for Eiffel. The library includes both a complete reflection
API and a partial implementation based on the ISE Eiffel reflection facilities. The API
is well suited to build a complete interpreter upon. Since the implementation is based
on the reflection facilities from ISE Eiffel, it is lacking in the same regards. A complete
implementation requires changes to the underlying compiler. Gobo based ERL (GERL)
has been implemented as part of this thesis. While GERL is also an incomplete ERL
implementation, it is more powerful than the ERL implementation and suffices to build the
special purpose interpreter described above. GERL consists of a generator and a runtime
library. The generator parses the Eiffel system that should be reflect-able. It generates
source code that together with the runtime library provides an ERL implementation that
makes the parsed library reflect-able. The generator needs to be provided with an Eiffel
system and a list of types that should be reflect-able. Since the generated library needs to
be consistent, all types that are recursively needed by those that have been marked to be
reflect-able need to be reflect-able too. This is why the generator generates source code
not only for the types from the user’s list, but also from the type closure of this list.

CHAPTER 4. MASTER/SLAVE DESIGN 37

Listing 4.2: Example Interpreter Session� �
1 c r ea t e : ”LINKED LIST [ANY] ” . ” make” (REFERENCE”2”)
−−−multi−l i n e−value−s ta r t−−−
−−−multi−l i n e−value−end−−−

4 s ta tu s : ” pass ”
r e s u l t :REFERENCE”2””LINKED LIST [ANY]”
done :

7 invoke : ”LINKED LIST [ANY] ” . ” f o r c e ” (REFERENCE”2”INTEGER”55”)
−−−multi−l i n e−value−s ta r t−−−
−−−multi−l i n e−value−end−−−

10 s ta tu s : ” pass ”
done :
invoke : ”LINKED LIST [ANY] ” . ” i t h ” (REFERENCE”2”INTEGER”12”)

13−−−multi−l i n e−value−s ta r t−−−
−−−multi−l i n e−value−end−−−
s t a tu s : ” f a i l ””3”” i t h ””CHAIN”” va l i d key ”

16−−−multi−l i n e−value−s ta r t−−−
−−−
Class / Object Routine Nature o f except ion E f f e c t

19−−−
LINKED LIST i t h @2 va l i d key :
<0000000040025278> (From CHAIN) Precond i t ion v i o l a t ed . Fa i l

22−−−
GERL TYPE IMP 2 f e a t u r e i t h @1
<000000004001B848> Routine f a i l u r e . Fa i l

25−−−
FUNCTION r o u t o b j c a l l f u n c t i o n
<000000004006BAB8> Routine f a i l u r e . Fa i l

28−−−
FUNCTION apply @3
<000000004006BAB8> Routine f a i l u r e . Fa i l

31−−−
ERL FUNCTION IMP c a l l @3
<000000004006BA18> (From ERL ROUTINE) Routine f a i l u r e . Fa i l

34−−−
ERL FUNCTION IMP c a l l @2
<000000004006BA18> (From ERL FUNCTION) Routine f a i l u r e . Fa i l

37−−−
TS RT INTERPRETER c a l l r o u t i n e @6
<0000000040019030> Routine f a i l u r e . Rescue

40−−−
−−−multi−l i n e−value−end−−−
done :

43 qu i t :
done :� �

Figure 4.2 shows the main GERL classes and their relations. The classes ERL UNIVERSE,
ERL TYPE and ERL FEATURE are part of the ERL interface classes and represent Eiffel
universes, types and features respectively. An Eiffel universe is the sum of all types and
classes from a given Eiffel system (application or library). The class GERL UNIVERSE is
an implementation of ERL UNIVERSE. It can be used to retrieve objects that implement
ERL TYPE for all types that are reflect-able. For every reflect-able type the gener-
ator creates an implementation of ERL TYPE. In this example the implementations of
ERL TYPE are: GERL STRING TYPE, GERL FOO TYPE, and GERL INTEGER TYPE.

4.3.3 Oracle

In a testing system, the oracle decides whether a certain test case passed or failed. A test
case that passed means that the execution of the implementation under test behaved as
expected. If a test case fails, the implementation did not behave as expected and a bug
has been found. The oracle in TestStudio makes its decision based on the contracts of the
feature under test. Since every feature has a contract (even if it is implicitly True), every
feature call can be seen as a test case:

pass – A feature call passes if the execution of the feature triggered no exception.

CHAPTER 4. MASTER/SLAVE DESIGN 38

<<abstract>>

ERL_UNIVERSE
<<abstract>>

ERL_TYPE ERL_FEATURE

<<singleton>>

GERL_UNIVERSE

GERL_INTEGER_TYPEGERL_STRING_TYPE

GERL_FOO_TYPE

Figure 4.2: GERL UML class diagram

invalid – A feature call is invalid if the precondition of the feature under test was violated
or the class invariant was violated prior to the feature execution.

fail – A feature call fails if the execution of the feature call triggers a:

1. Postcondition violation of any feature.

2. Class invariant violation of any feature during or after the execution of the
feature under test. Due to aliasing a class invariant violation can go unnoticed.
If later an object with a violated invariant is used for testing, the feature under
test must not be blamed.

3. Precondition violation occurring in a feature other than the feature under test.
A routine that calls another routine without satisfying the called routine’s pre-
condition has a bug.

4. Check instruction violation.

5. Bad response, i.e., the slave is not able to respond correctly to the master.
This can happen if a feature call damages the process of the interpreter. The
interpreter cannot respond properly anymore. In this case the master waits for
a timeout and declares the feature call a bad response.

CHAPTER 4. MASTER/SLAVE DESIGN 39

A bad response results from one of the below cases:

• A CAT-call happened either directly or indirectly and as a consequence the inter-
preter crashed. If the CAT-call was directly caused by the test case no proper bug
has been found. If the CAT-call was caused by a feature called from the test case a
proper bug has been found.

• A feature caused a runtime panic. If the panic happened directly after or during the
feature call, the feature contains a bug. If the panic happened some time after the
feature call, a bug has been found but not in the feature that was currently tested.

• A feature like EXCEPTION.die, whose purpose is to terminate the process it was
called from, terminated the interpreter. No bug has been found.

The decision whether a thrown exception signifies a failed or invalid test case cannot
be made by only looking at the type and origin of the exception. A precondition violation
only signifies a bug if it happens more than one step in the stack trace over the feature
that executes the feature under test. Listing 4.4 shows a feature that when called with
a positive integer, yields a precondition violation. The violation happens in the feature
under test, but only in a recursive sub-call. Here the precondition violation signifies a
bug. A call to feature foo with a negative integer would trigger a precondition violation
directly in the feature under test. This precondition violation signifies an invalid feature
call.

4.3.4 Modification of the Random Strategy

If there are many features that cause fatal errors, the interpreter is restarted often. The
original random testing strategy from TestStudio first created and modified all objects that
were needed for testing. Only then the actual testing started. As described in Section 4.2.2
this may lead to a fatal error even before the actual testing phase starts. To reduce the
chances of a fatal error before and during a test case, the random strategy has been
modified in the master/slave implementation: only the objects needed for the next feature
under test are created. Then, one object is modified and the feature under test is called.
This has an important advantage: assume that only a few features may cause a fatal
error. Furthermore assume that only a few features depend on types that provide those
malicious features. With the original strategy no feature could ever be tested because all
creation and modification happens before the actual tests. The problematic features would
always be called before the actual testing phase. With the new algorithm the creations
and modifications happen directly before each test. All feature tests happening before a
fatal error are not affected from the error anymore. When a feature which triggers a fatal
error is called, the interpreter will terminate. After every termination the interpreter will
be started anew. Eventually, the problematic test case will be skipped and all subsequent
features that do not depend on a problematic feature call can be tested.

CHAPTER 4. MASTER/SLAVE DESIGN 40

4.4 Results

This section provides the test results of the class LINKED LIST from the EiffelBase li-
brary [Ise03] and the class DS LINKED LIST from the Gobo library [Bez03].

4.4.1 Explanation

TestStudio generates four files after testing completed:

Summary Table – A table with a line for each tested feature. An example summary
table can be seen in Section A.2. The columns have the following meaning:

class – Name of class that was tested.

feature – Name of feature that was tested.

status – Test status: pass, fail, no calls (objects needed could not be created), or
no valid calls (precondition of feature could not be satisfied)

#pass – Number of calls that passed.

#fail – Number of calls that failed.

#inv. – Number of times a feature could not be called because of a precondition
violation.

#bad resp. – Number of times the interpreter sent back an invalid or no response
at all.

Detailed Table – A table with a line for each feature call. An excerpt can be seen in
Table 4.2.

The columns have the following meaning:

Type – Type name under test.

Feature – Feature under test.

Status – passed if no exception occured, failed if an exception occurred.

Exception – Exception type.

Exception Receiver – Name of the routine whose execution was interrupted by
last exception.

Exception Class – Name of the class that includes the recipient of original form
of last exception.

Exception Tag – Tag of last violated assertion clause.

The value corresponds to the queries from class EXCEPTIONS.

TestStudio Log – Log file written by the TestStudio process. It shows the communica-
tion between master and slave. An example excerpt is shown in Listing 4.6.

Interpreter Log – Log file written by the interpreter process. It contains information
about every feature call. An example excerpt is shown in Listing 4.5.

CHAPTER 4. MASTER/SLAVE DESIGN 41

4.4.2 Results for LINKED LIST

The test result summary for class LINKED LIST can be found in Section A.2. Additionally
to LINKED LIST also features of the classes STRING, INTEGER INTERVAL, CURSOR
and, STD FILES have been tested automatically.

Figure 4.3 shows the test results of the features from class LINKED LIST only. From
LINKED LIST 94 features have been tested, 10 features failed. Of those 10 features, 3
failed only because of a bad response. A bad response gets triggered by a bug in most
cases, but not all. And finally, 35 features had no or no valid calls.

7 failed

3 bad response

35 no (valid) calls

150 pass

Figure 4.3: LINKED LIST test results

If a feature failed because at least one test case failed, it is certain that a bug has been
found. In most cases, using the detailed test results, the proxy log, and the interpreter
log, the source of bug can be tracked down. For example, feature LINKED LIST.make
is marked as failed. The detailed test result contain the line shown in Table 4.2. The
class invariant assertion with the tag not both from class LINKED LIST was violated.
The assertion expression for that tag is not (after and before), meaning that the internal
cursor of a list must not be both before and after the end of the list. The corresponding
log entry from the interpreter log is shown in Listing 4.5. It reveals the attribute state
of the linked list right before the call that triggered the bug. From the object state we
can infer that the list was empty and the cursor was moved one position past the end of
the list (after = True). Based on these facts the counter example shown in Listing 4.7
can be constructed. Compiling and executing this example indeed successfully reproduces
the bug. The source code for LINKED LIST.make is shown in Listing 4.8. The feature
LINKED LIST.make does not set after to False. The author probably assumed that the
feature would only ever be used as creation procedure and not in regular feature calls. The
feature is however exported to ANY both as a creation procedure and as a regular feature.
If the feature was only exported as creation procedure and not as a regular feature there
would be no bug. A creation procedure is always called on a newly instantiated object.
Such an object never has after set to True.

The bug in make has two effects:

CHAPTER 4. MASTER/SLAVE DESIGN 42

• Lists can end up in an inconsistent state where both before and after are true.
Features like index and put left, which depend on the correct value of before and
after will not perform as expected anymore.

• From the feature comment of make, the programmer is likely to infer that the com-
mand empties the list. The implementation however does not do this.

type feature status exception exception receiver exception class exception tag

LINKED LIST [ANY] make failed Class invariant make LINKED LIST not both

Table 4.2: Detailed Test Result Entry For LINKED LIST.make bug

4.4.3 Results for DS LINKED LIST

In addition to DS LINKED LIST, features of the classes STRING, INTEGER INTERVAL,
ARRAYED LIST, DS LINKED LIST CURSOR, OPERATING ENVIRONMENT, AR-
RAY, SPECIAL, and STD FILES have been tested automatically. In total, 120 features
from class DS LINKED LIST have been tested. As Figure 4.4 illustrates, 27 features had
no or no valid calls. 4 Features failed properly and 4 features failed only because of a bad
response.

4 failed

4 bad response

27 no (valid) calls

85 pass

Figure 4.4: DS LINKED LIST test results

CHAPTER 4. MASTER/SLAVE DESIGN 43

Listing 4.3: Log file of Example Interpreter Session� �
1<s e s s i o n>

<t r y c r e a t e type= ’LINKED LIST [ANY] ’ f e a tu r e= ’make ’>
<c a l l r e s u l t type= ’ success ’/>

4 <r e s u l t s t a t i c t y p e=”LINKED LIST [ANY]” dynamic type=”LINKED LIST [ANY]”>
<s l o t>2</ s l o t><ins tance <! [CDATA[
LINKED LIST [0 x40025278]

7 a c t i v e : Void
f i r s t e l e m e n t : Void
ob j e c t compar i son : BOOLEAN = False

10 b e f o r e : BOOLEAN = True
a f t e r : BOOLEAN = False
count : INTEGER = 0

13]]>
</ in s tance>

</ r e s u l t>
16</ t r y c r e a t e>

<t r y c a l l type= ’LINKED LIST [ANY] ’ f e a tu r e= ’ force ’>
<operands>

19 <operand><s l o t>2</ s l o t><ins tance <! [CDATA[
LINKED LIST [0 x40025278]
a c t i v e : Void

22 f i r s t e l e m e n t : Void
ob j e c t compar i son : BOOLEAN = False
b e f o r e : BOOLEAN = True

25 a f t e r : BOOLEAN = False
count : INTEGER = 0
]]>

28 </ in s tance>
</operand><operand><ins tance <! [CDATA[
INTEGER REF [0 x40029AE0]

31 i t em: INTEGER = 55
]]>

</ in s tance>
34</operand></operands>

<c a l l r e s u l t type= ’ success ’/>
</ t r y c a l l>

37<t r y c a l l type= ’LINKED LIST [ANY] ’ f e a tu r e= ’ i th ’>
<operands>

<operand><s l o t>2</ s l o t><ins tance <! [CDATA[
40 LINKED LIST [0 x40025278]

a c t i v e : LINKABLE [ANY] [0 x4011D7C8]
f i r s t e l e m e n t : LINKABLE [ANY] [0 x4011D7C8]

43 ob j e c t compar i son : BOOLEAN = False
b e f o r e : BOOLEAN = True
a f t e r : BOOLEAN = False

46 count : INTEGER = 1
]]>

</ in s tance>
49 </operand><operand><ins tance <! [CDATA[

INTEGER REF [0 x40120BF0]
i t em: INTEGER = 12

52]]>
</ in s tance>
</operand></operands>

55<c a l l r e s u l t type= ’ exception ’>
<meaning value= ’Precondition violated . ’/>
<tag value= ’ valid key ’/>

58 <r e c i p i e n t value= ’ i th ’/>
<c l a s s value= ’CHAIN’>

<ex c ep t i on t r a c e>
61 < ! [CDATA[

−−−
Class / Object Routine Nature o f except ion E f f e c t

64 −−−
LINKED LIST i t h @2 va l i d k e y :
<0000000040025278> (From CHAIN) Precond i t ion v i o l a t ed . Fa i l

67 −−−
GERL TYPE IMP 2 f e a t u r e i t h @1
<000000004001B848> Routine f a i l u r e . Fa i l

70 −−−
FUNCTION r o u t o b j c a l l f u n c t i o n
<000000004006BAB8> Routine f a i l u r e . Fa i l

73 −−−
FUNCTION apply @3
<000000004006BAB8> Routine f a i l u r e . Fa i l

76 −−−
ERL FUNCTION IMP c a l l @3
<000000004006BA18> (From ERL ROUTINE) Routine f a i l u r e . Fa i l

79 −−−
ERL FUNCTION IMP c a l l @2
<000000004006BA18> (From ERL FUNCTION) Routine f a i l u r e . Fa i l

82 −−−
TS RT INTERPRETER c a l l r o u t i n e @6
<0000000040019030> Routine f a i l u r e . Rescue

85 −−−
]]>

</ ex c ep t i on t r a c e>
88 </ c a l l r e s u l t>

</ t r y c a l l>
</ s e s s i o n>� �

CHAPTER 4. MASTER/SLAVE DESIGN 44

Listing 4.4: Bug in recursive feature� �
foo (i : INTEGER) i s

r e qu i r e
3 i > 0

do
foo (−1)

6 end� �

Listing 4.5: Interpreter Log Entry For LINKED LIST.make bug� �
<t r y c a l l type=’LINKED LIST [ANY] ’ f e a tu r e =’make’>
<operands>

3<operand><s l o t >145</ s l o t ><ins tance < ! [CDATA[
LINKED LIST [0 x40706090]

a c t i v e : Void
6 f i r s t e l em en t : Void

object compar i son : BOOLEAN = False
be f o r e : BOOLEAN = False

9 a f t e r : BOOLEAN = True
count : INTEGER = 0

]] >
12 </instance>

</operand></operands>
<c a l l r e s u l t type=’ except ion ’>

15<meaning value=’Class i nva r i an t v i o l a t ed . ’/>
<tag value=’not both ’/>
<r e c i p i e n t value=’make’/>

18<c l a s s value=’LINKED LIST’>
<excep t i on t race >
< ! [CDATA[

21−−−
Class / Object Routine Nature o f except ion E f f e c t
−−−

24 LINKED LIST make @2 not both :
<0000000040706090> Class i nva r i an t v i o l a t ed . Fa i l
−−−

27 LINKED LIST make @2
<0000000040706090> Routine f a i l u r e . Fa i l
−−−

30 GERL TYPE IMP 1 feature make @1
<00000000408A3EC8> Routine f a i l u r e . Fa i l
−−−

33 PROCEDURE rou t ob j c a l l p r o c e du r e
<00000000408A7D08> Routine f a i l u r e . Fa i l
−−−

36 PROCEDURE apply @3
<00000000408A7D08> Routine f a i l u r e . Fa i l
−−−

39 ERL PROCEDURE IMP c a l l @3
<00000000408A7C70> (From ERL ROUTINE) Routine f a i l u r e . Fa i l
−−−

42 TS RT TEST CLIENT c a l l r o u t i n e @5
<00000000408A34B8> Routine f a i l u r e . Rescue
−−−

45]] >
</excep t i on t race >
</ c a l l r e s u l t >

48 </ t r y c a l l >� �

CHAPTER 4. MASTER/SLAVE DESIGN 45

Listing 4.6: TestStudio Log Entry For LINKED LIST.make bug� �
dr iver−>i n t e r p r e t e r : [invoke :]
dr iver−>i n t e r p r e t e r : [”]

3 dr iver−>i n t e r p r e t e r : [LINKED LIST [ANY]]
dr iver−>i n t e r p r e t e r : [” . ”]
dr iver−>i n t e r p r e t e r : [make]

6 dr iver−>i n t e r p r e t e r : [” (]
dr iver−>i n t e r p r e t e r : [REFERENCE”145”]
dr iver−>i n t e r p r e t e r : [)

9]
i n t e r p r e t e r−>d r i v e r [−−−multi−l i n e−value−s ta r t−−−]
i n t e r p r e t e r−>d r i v e r [−−−multi−l i n e−value−end−−−]

12 i n t e r p r e t e r−>d r i v e r [s t a tu s : ” f a i l ””6””make””LINKED LIST”” not both ”]
i n t e r p r e t e r−>d r i v e r [−−−multi−l i n e−value−s ta r t−−−]
i n t e r p r e t e r−>d r i v e r

[−−−]
15 i n t e r p r e t e r−>d r i v e r [Class / Object Routine Nature o f except ion

E f f e c t]
i n t e r p r e t e r−>d r i v e r

[−−−]
i n t e r p r e t e r−>d r i v e r [LINKED LIST make @2 not both :]

18 i n t e r p r e t e r−>d r i v e r [<0000000040706090> Class i nva r i an t v i o l a t ed .
Fa i l]

i n t e r p r e t e r−>d r i v e r
[−−−]

i n t e r p r e t e r−>d r i v e r [LINKED LIST make @2]
21 i n t e r p r e t e r−>d r i v e r [<0000000040706090> Routine f a i l u r e .

Fa i l]
i n t e r p r e t e r−>d r i v e r

[−−−]
i n t e r p r e t e r−>d r i v e r [GERL TYPE IMP 1 feature make @1]

24 i n t e r p r e t e r−>d r i v e r [<00000000408A3EC8> Routine f a i l u r e .
Fa i l]

i n t e r p r e t e r−>d r i v e r
[−−−]

i n t e r p r e t e r−>d r i v e r [PROCEDURE rou t ob j c a l l p r o c e du r e]
27 i n t e r p r e t e r−>d r i v e r [<00000000408A7D08> Routine f a i l u r e .

Fa i l]
i n t e r p r e t e r−>d r i v e r

[−−−]
i n t e r p r e t e r−>d r i v e r [PROCEDURE apply @3]

30 i n t e r p r e t e r−>d r i v e r [<00000000408A7D08> Routine f a i l u r e .
Fa i l]

i n t e r p r e t e r−>d r i v e r
[−−−]

i n t e r p r e t e r−>d r i v e r [ERL PROCEDURE IMP c a l l @3]
33 i n t e r p r e t e r−>d r i v e r [<00000000408A7C70> (From ERL ROUTINE) Routine f a i l u r e .

Fa i l]
i n t e r p r e t e r−>d r i v e r

[−−−]
i n t e r p r e t e r−>d r i v e r [TS RT TEST CLIENT c a l l r o u t i n e @5]

36 i n t e r p r e t e r−>d r i v e r [<00000000408A34B8> Routine f a i l u r e .
Rescue]

i n t e r p r e t e r−>d r i v e r
[−−−]

i n t e r p r e t e r−>d r i v e r [−−−multi−l i n e−value−end−−−]
39 i n t e r p r e t e r−>d r i v e r [done :]� �

Listing 4.7: Example to reproduce LINKED LIST.make bug� �
l o c a l

l l : LINKED LIST [ANY]
3 do

c r ea t e l l . make
l l . f o r th

6 l l . make
end� �

Listing 4.8: Source code for feature LINKED LIST.make� �
make i s

2 −− Create an empty l i s t .
do

be f o r e := True
5 ensure

i s b e f o r e : be f o r e
end� �

Chapter 5

Planning Strategy

This chapter introduces a guided strategy to automatically satisfy non-trivial precondi-
tions. The case is made that the random strategy is not suitable to satisfy non-trivial
preconditions. A strategy using a planner is presented as a solution. First the strategy is
demonstrated on a simple example by going through the steps manually. An object model
is introduced which makes a general conversion mechanism possible. Finally, the imple-
mented conversion mechanism is tested using an example and the results are discussed.

5.1 Motivation

While the implementation presented in Chapter 4 was very effective in that many bugs
have been found in the tested classes, it also uncovered a limitation: features with non-
trivial preconditions are hardly ever tested. Table 5.1 shows the call statistics of all features
of class LINKED LIST (taken from the EiffelBase library) that could not be tested all.
The meaning of the columns is as follows:

feature – Name of feature that was tested.

status – Test status.

#pass – Number of calls that passed. Precondition and postcondition was satisfied.

#fail – Number of calls that failed. Precondition was satisfied, postcondition was vio-
lated.

#inv. – Number of times a feature was called but its body was not executed because of
a precondition violation.

#bad resp. – Number of times the interpreter sent back a bad or no response at all.

The features from Table 5.1 could not be called because of various reasons:

• Feature default pointer has not been tested because it is of type POINTER. POINTER
is a class representing C pointers such as void*. Features dealing with such types
are potentially much more harmful and thus excluded from testing. Since the intro-
duction of the master/slave design this is less of an issue, because now a test case

46

CHAPTER 5. PLANNING STRATEGY 47

feature status #pass #fail #inv. #bad resp.
item no valid calls 0 0 19 0

replace no valid calls 0 0 26 0
remove no valid calls 0 0 29 0

i th no valid calls 0 0 26 0
put i th no valid calls 0 0 26 0

swap no valid calls 0 0 39 0
duplicate no valid calls 0 0 26 0

default pointer no calls 0 0 0 0
do all no valid calls 0 0 22 0
do if no valid calls 0 0 38 0

there exists no valid calls 0 0 32 0
for all no valid calls 0 0 27 0

Table 5.1: Features of LINKED LIST that could not be tested

that causes its process to terminate can be recovered from. However, in order to call
the features under test on “interesting” objects, a long life of the interpreter is still
of benefit.

• The features do all, do if, there exists, and for all all take an agent as argument.
Agents are objects representing partially or completely specified computations, a
concept similar to function pointers and closures. TestStudio does not yet know how
to create agents and is thus unable to call features which take agents as arguments.

• The other features item, replace, remove, i th, put i th, swap, and duplicate have no
property which would exclude them from testing, but they still were not called suc-
cessfully. Listing 5.1 shows the interfaces of those features. The complete interface
of class LINKED LIST is shown in the Section A.3 of the appendix.

All untested features from the last group have preconditions stronger than True:

item, replace, remove demand that the list’s internal cursor is on a valid position,
which implies that the list is not empty.

i th, put i th need an INTEGER called i which refers to a valid list index, which implies
that the list is not empty.

swap demands that the list’s internal cursor is on a valid position, which implies that the
list is not empty and need an INTEGER called i which refers to a valid list index.

duplicate demands that the list’s internal cursor is on a valid position, which implies
that the list is not empty or that the cursor is positioned at the end of the list.

All but the last feature require a list that contains at least one element and a list-cursor
positioned on one of the list’s elements (i.e.: the query off returns False). Listing 5.2 shows
how such a list can be constructed.

CHAPTER 5. PLANNING STRATEGY 48

Listing 5.1: Interfaces of features from LINKED LIST that have not been tested� �
item : G i s

2 −− Current item
r equ i r e

n o t o f f : not o f f
5 readab le : r eadab le

r ep l a c e (v : l i k e item) i s
8 −− Replace cur rent item by ‘v ’ .

r e qu i r e
wr i t ab l e : wr i t ab l e

11 ensure −− from ACTIVE
i t em rep laced : item = v

14 remove i s
−− Remove cur rent item .
−− Move cur so r to r i gh t neighbor

17 −− (or ‘ a f t e r ’ i f no r i gh t neighbor) .
r e qu i r e

prunable : prunable
20 wr i t ab l e : wr i t ab l e

ensure
after when empty : i s empty imp l i e s a f t e r

23
i t h (i : INTEGER) : l i k e item i s

−− Item at ‘ i ’−th po s i t i o n
26 −− Was dec la r ed in CHAIN as synonym of ‘@’ .

−− (from CHAIN)
r equ i r e

29 va l i d key : va l i d i nd ex (i)

pu t i t h (v : l i k e item ; i : INTEGER) i s
32 −− Put ‘v ’ at ‘ i ’−th po s i t i o n .

−− (from CHAIN)
r equ i r e

35 va l i d key : va l i d i nd ex (i)
ensure

i n s e r t i on done : i t h (i) = v
38

swap (i : INTEGER) i s
−− Exchange item at ‘ i ’−th po s i t i o n with item

41 −− at cur so r po s i t i o n .
−− (from CHAIN)

r equ i r e
44 n o t o f f : not o f f

v a l i d i nd ex : va l i d i nd ex (i)
ensure

47 swapped to item : item = old i t h (i)
swapped from item : i t h (i) = old item

50 dup l i c a t e (n : INTEGER) : l i k e Current
−− Copy o f sub−chain beginning at cur rent po s i t i o n
−− and having min (‘ n ’ , ‘ f rom here ’) items ,

53 −− where ‘ from here ’ i s the number o f items
−− at or to the r i gh t o f cur rent po s i t i o n .
−− (from DYNAMIC CHAIN)

56 r equ i r e
n o t o f f u n l e s s a f t e r : o f f imp l i e s a f t e r
va l i d subcha in : n >= 0� �

As trivial as it might seem for a human being, the random strategy was not able to
satisfy the property not off. The contracts of a class help the reader to infer the semantics
of that class. Unfortunately, in practice the contracts provided by the programmer are
almost never sufficiently complete. To define sufficient completeness [Mey97] first defines
what constitutes a correct ADT expression:

Definition: correct ADT expression

Let f(x1,. . . , xn) be a well-formed expression involving one or more functions
on a certain ADT. This expression is correct if and only if all the xi are
(recursively) correct, and their values satisfy the precondition of f, if any.

Then [Mey97] defines sufficient completeness as:

CHAPTER 5. PLANNING STRATEGY 49

Listing 5.2: Instructions to create a LINKED LIST with the property not off� �
l o c a l

2 l l : LINKED LIST [ANY]
do

c r ea t e l l . make −− Create new ob j e c t o f type LINKED LIST and
5 −− attach i t to en t i t y ‘ l l ’ .

l l . f o r c e (Void) −− Add the ‘Void ’ r e f e r e n c e at the end o f ‘ l l ’ .
l l . f i n i s h −− Move the i n t e r n a l cur so r o f ‘ l l ’ to the l a s t

8 −− element in the l i s t .
end� �

Definition: sufficient completeness

An ADT specification for a type T is sufficiently complete if and only if the
axioms of the theory make it possible to solve the following problems for any
well-formed expression e:

S1 Determine whether e is correct

S2 If e is a query expression and has been shown to be correct under S1,
express e’s value under a form not involving any value of type T.

One problem why contracts are almost never sufficiently complete is the frame problem,
which [BMR95] defines as follows:

Definition: frame problem

The inability to express that a procedure changes only those things it has to,
leaving everything else unmodified.

It is common practice in Eiffel to assume that things that are not stated in the post-
condition do not change. For example, feature force from class LINKED LIST (see List-
ing 5.4), does specify that after the insertion the list contains one more element and that
it now contains the inserted element. It does not state that all the other elements, which
already were in the list previous to the insertion, remained the same and unchanged. At
a first glance it might seem reasonable to let the planner make the same assumption.

However, as can again be seen in the class LINKED LIST, the above assumption does
not necessarily hold at all times. For example feature forth (see Listing 5.4) states index
= old index + 1, but also has the effect that after the execution either not off or after
holds. The property off holds if and only if at the end of the execution of forth if index >
0 and index <= count (see invariant of LINKED LIST in Listing A.2) holds. Since forth
does not specify that count does not change, it could, with regards to the postcondition,
reduce it, so that off would never hold. Since the name forth implies that the internal
cursor moves forward one position, a human being implicitly assumes that the contained
elements are not changed. An automatic reasoner however cannot infer this fact without
an understanding of the English language. Thus a planner needs to assume that everything
not mentioned in the postcondition can change. As discussed in Section 5.5.3, the planner
does assume that an object can only change its direct attributes. While this is not true
in general, it helps to reduce the amount of uncertainty.

CHAPTER 5. PLANNING STRATEGY 50

Listing 5.3: Feature LINKED LIST.force� �
f o r c e (v : l i k e item)

−− Add ‘v ’ to end .
3 −− (from SEQUENCE)

r equ i r e −− from SEQUENCE
extend ib l e : ex t end ib l e

6 ensure then −− from SEQUENCE
new count : count = old count + 1
i t em in s e r t ed : has (v)� �

Listing 5.4: Feature LINKED LIST.forth� �
1 f o r th

−− Move cur so r to next po s i t i o n .
r e qu i r e −− from LINEAR

4 no t a f t e r : not a f t e r
ensure then −− from LIST

moved forth : index = old index + 1� �
Because of the uncertainty in postconditions, it is in general not possible to automat-

ically infer a sequence of instructions that will deterministically fulfill a given precondi-
tion, even though such a sequence exists. However, the contracts still bear hints as to
what routes can not be successful at all. For example, feature wipe out (see Listing 5.5),
which removes all elements from a list, states is empty in its postcondition, which implies
(through the classes invariant) count = 0. Thus, it can be inferred from the contract that
to increase the number of elements in the container wipe out is counter-productive.

Listing 5.5: Feature LINKED LIST.wipe out� �
wipe out

−− Remove a l l i tems .
3 r equ i r e −− from COLLECTION

prunable : prunable
ensure −− from COLLECTION

6 wiped out : i s empty
ensure then −− from DYNAMIC LIST

i s b e f o r e : be f o r e� �

5.2 Bifrost, A Planner

As described in Chapter 2, a universal planner extracts a universal plan from a planning
problem. A problem consists of the planning domain, the initial states and the goal states.
A planning domain consists of state variables and actions that change the variables. An
action has a precondition clause which specifies from what states the action may be called,
and an effect clause which specifies how the action changes the state. In the bifrost
problem language (extNADL), an action, furthermore, has a modifies clause which states
what variables can be changed by the action.

An extracted universal plan tells which action to call in what state in order to reach one
of the goal states. The main concept behind the planning strategy is to create a planning
problem from Eiffel source code. The planning domain is created from the classes involved,
the goal state is the precondition to be reached, and the initial state is a state where no
object has been created yet.

CHAPTER 5. PLANNING STRATEGY 51

Bifrost, the planner used in the implementation, is based on Binary Decision Diagrams
and thus limited to finite state domains. Since Eiffel programs are Turing complete, the
planning problem is only an abstraction of the original. The amount of precision used
for references and integers can be selected at runtime. Negative numbers are currently
not supported. The ideas from [DHJ+01] could be used to improve to current abstraction
mechanism. The experiments for this thesis have been run with a precision of 2 bits for
both integers and references. The loss of precision is acceptable because a tester does not
prove the correctness of software but it proves the presence of defects instead. Due to
the loss of precision, even if a strong solution can be found, for completely deterministic
source code, the resulting test case is not necessarily valid. A valid test case here means
a test case that executes the feature under test (without violating its precondition). To
remedy this an Eiffel interpreter is used to execute the test case. Since the interpreter
works with the original source (without any precision loss) it can decide whether a test
case is valid or not.

5.3 Manual Problem Creation

The planner needs a planning problem to extract a plan, so the Eiffel source code has to
be converted to a planning problem. The planning problem is formulated in the extNADL
language. extNADL is significantly different from Eiffel. Table 5.2 shows the main differ-
ences. To highlight the problems present in converting Eiffel to extNADL, a hand-written
plan for the problem of satisfying not off (the precondition that could not be satisfied
by the random strategy) is presented first. To make things even more simple, instead
of the class LINKED LIST, the class SIMPLE LIST (see Listing 5.6) is used. A general
translation method is described in Section 5.5.

Planning Domain Eiffel

• Static memory (finite number of vari-
ables)

• Actions with no arguments

• Only natural numbers and booleans (no
composite types)

• Limited, side-effect free and non recur-
sive expressions

• Dynamic memory management (dy-
namic object creation)

• Routines with arbitrary many argu-
ments

• Integers, floating point values, compos-
ite objects, references, ...

• Multiple inheritance (respectively mul-
tiple dispatch)

• non-functional, recursive expressions

Table 5.2: extNADL versus Eiffel

The complete process from Eiffel source code to a universal plan is shown in Figure 5.1.

CHAPTER 5. PLANNING STRATEGY 52

The Eiffel source code is converted into a planning problem, then the planner is asked to
extract a plan from the problem. Note that for the SIMPLE LIST example the conversion
from Eiffel to extNADL was done by hand.

Eiffel
Source Code

extNADL
Problem

Unversal
PlanProblem

Generator
Bifrost

Planner

Figure 5.1: Plan Generation

5.3.1 Eiffel Source Code

Listing 5.6 shows a stripped down version of the class LINKED LIST called SIMPLE LIST
where no manual frame information has been added. It is too simple to even handle to
most important job of a list: to store objects. Nevertheless it is powerful enough to expose
the obstacle that prevented the random strategy from testing several features of the class
LINKED LIST: it can represent the property off and features the two commands (force
and finish) that are needed to create a list where off does not hold.

Listing 5.6: SIMPLE LIST� �
1 c l a s s SIMPLE LIST

f e a tu r e −− Queries
4

index : INTEGER
−− Index o f item at cur rent cur so r po s i t i o n

7
count : INTEGER
−− Number o f items in t h i s l i s t

10
i s l a s t : BOOLEAN
−− I s i n t e r n a l cur so r on the l a s t item?

13
o f f : BOOLEAN
−− I s i n t e r n a l cur so r not at a va l i d po s i t i o n ?

16
f e a tu r e −− Commands

19 f o r c e
−− Add an element .

ensure
22 count = old count + 1

f i n i s h
25 −− Move i n t e r n a l cur so r to l a s t item .

ensure
count > 0 imp l i e s i s l a s t

28
i nva r i an t

31 count >= 0
index >= 0
index <= count + 1

34 i s l a s t = ((count > 0) and (index = count))
o f f = ((index = 0) or (index = count + 1))

37 end� �

CHAPTER 5. PLANNING STRATEGY 53

5.3.2 ExtNADL Problem

Listing 5.7 shows a hand written planning problem for SIMPLE LIST with the goal state
¬off. See Chapter 2 for a brief description of the extNADL syntax. A problem consists of
five clauses:

VARIABLES – The four Eiffel attributes of class SIMPLE LIST are translated to
extNADL variables. The Eiffel type BOOLEAN has a direct equivalent in extNADL,
the type bool, while the type INTEGER doesn’t. The extNADL type nat(x), which
represents natural numbers with the precision x, is used to represent INTEGER. A
better solution would be to introduce a new type in extNADL representing signed
numbers, but due to time constraints this has not been implemented.

SYSTEM – The two Eiffel commands force and finish have been translated to extNADL
actions. Notice that the effect clause is a conjunction of the postcondition and
the invariant, since extNADL does not feature the invariant concept. The modifies
clause is present only in extNADL and has been set according to the commands
implementation and not their contracts. Because the modifies clause has been set
by hand the frame problem has been solved.

ENVIRONMENT – Bifrost is able to create plans for systems with multiple agents
that can act concurrently. Currently only single threaded test cases are considered
and this feature is not needed.

INITIALLY – The initial state is taken from the list’s implementation, not from the
contract.

GOAL – The goal consists of every state in which ¬off holds. This is directly derived
from the condition the random strategy had problems with.

5.3.3 Universal Plan

Table 5.3 shows the strong solution that bifrost extracted from this planning problem.
The table tells what action can be called in what state to reach one of the goal states.
The values represent bit patterns; a star (“?”) represents both 0 and 1. Executing the
solution leads to the following path:

1. The initial state is count = 0 ∧ index = 0 ∧ ¬is last ∧ off. The solution suggests to
execute force.

2. The state now changed to count = 1 ∧ index = 0 ∧¬is last ∧ off . The solution
suggests finish.

3. A goal state was reached: count = 1 ∧ index = 1 ∧ is last ∧¬off.

Note that a strong solution can only be extracted because the problem was created by
hand. It contains information that cannot be inferred form the source code automatically:
Eiffel programmers usually only state, in the postcondition, those things that change and

CHAPTER 5. PLANNING STRATEGY 54

Listing 5.7: Problem for SIMPLE LIST� �
VARIABLES

2
nat (2) count
nat (2) index

5 bool i s l a s t
bool o f f

8 SYSTEM

agt : l i s t
11 f o r c e

mod : count
pre : t rue

14 e f f : (count ’ = count + 1) /\
(count ’ + 1 > 0) /\
(index ’ + 1 > 0) /\

17 (index ’ < count ’ + 2) /\
(i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\
(o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

20
f i n i s h

mod : index , i s l a s t , o f f
23 pre : t rue

e f f : (count ’ > 0) => (i s l a s t ’ = 1) /\
(count ’ + 1 > 0) /\

26 (index ’ + 1 > 0) /\
(index ’ < count ’ + 2) /\
(i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\

29 (o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

32 ENVIRONMENT

INITIALLY
35 count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

GOAL
38 ˜ o f f� �

not those that don’t. As discussed above, it needs to be assumed that a routine changes
potentially anything, except if it states otherwise. An automatic problem generator would
need to put all variables into the modifies clause. If the modifies clauses in the SIM-
PLE LIST problem would list all variables, no strong solution could have been extracted.
Extracting a weak solution leads to further problems, because it assumes that everything
uncertain will act in favor of the agent. Features inherited from the default ancestor ANY
often have no postcondition (which is equivalent with a True postcondition), for example
the feature print. In practice those features need to be included for planning since they
are part of the interface of every class. A weak solution extracted from a problem that
includes actions that have the postcondition True (such as print) will always suggest the
execution of print regardless of the goal. The True postcondition restricts nothing and
per weak solution definition it is assumed to act in the agents favor (i.e.: reach the goal
immediately).

Furthermore, the current problem only represents the very simple class SIMPLE LIST
and it cannot be easily extended to represent the much more complex class LINKED LIST.
There is no notion of object, object creation, reference or polymorphism . A list con-
tains references to objects of many types like CURSOR to store the internal cursor posi-
tion. CURSOR is only an abstract class, LINKED LIST uses the CURSOR descendant
LINKED LIST CURSOR internally. A general approach must be able to represent this
and is described in Section 5.5.

CHAPTER 5. PLANNING STRATEGY 55

count index is last off
00 ?0 0 1 force
01 ?? ? 1 finish
1? ?? ? 1 finish

Table 5.3: Strong solution for SIMPLE LIST

5.4 Dealing with Uncertainty

Before introducing a general object model, in the next section, uncertainty in postcondi-
tions is discussed. An object model (while necessary for a general conversion mechanism)
is complex and would only distract from the problems stemming from uncertainty. As
mentioned earlier, the problem shown in Listing 5.7 was manually tuned to contain a
strong solution. Listing 5.8 shows the same problem, except that every action can modify
every variable. This is the model obtained when frame information is not available. The
extracted weak solution is shown in Listing 5.4. Note that a strong solution does not exist
for this problem. Executing this solution is less straightforward:

1. The initial state is count = 0 ∧ index = 0 ∧¬is last ∧ off. The solution suggests to
execute add or finish. The solution has no preference for either. Executing finish
does not change the object state, only force is effective in this state. When the test
is run repeatedly and in case of multiple suggested actions one is chosen randomly
eventually force will be executed in this state.

2. (After executing force) the state now changed to count = 1 ∧ index = 0 ∧¬is last ∧
off. The solution suggests finish.

3. The goal state was reached: count = 1 ∧ index = 1 ∧ is last ∧ off

count index is last off
0? ?? ? 1 force
10 ?? ? 1 force
?? ?? ? 1 finish

Table 5.4: Strong solution for second SIMPLE LIST problem

If the goal is strengthened to ¬off ∧ count = 2 and the precision is increased to 3 bits
an even bigger problem shows. Listing 5.9 shows the new problem; Table 5.5 the new
weak solution.

In the start state count = 0 ∧ index = 0 ∧¬is last ∧ off only finish is suggested.
Executing the solution the goal can never be reached. There are two problems here:

• The action finish is suggested in the start state. Executing it has no effect to the
state of the list. Why does the solution suggest it then? The planner only knows the

CHAPTER 5. PLANNING STRATEGY 56

Listing 5.8: Second SIMPLE LIST Problem� �
VARIABLES

3 nat (2) count
nat (2) index
bool i s l a s t

6 bool o f f

SYSTEM
9

agt : l i s t
f o r c e

12 mod : count , index , i s l a s t , o f f
pre : t rue
e f f : (count ’ = count + 1) /\

15 (count ’ + 1 > 0) /\
(index ’ + 1 > 0) /\
(index ’ < count ’ + 2) /\

18 (i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\
(o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

21 f i n i s h
mod : count , index , i s l a s t , o f f
pre : t rue

24 e f f : (count ’ > 0) => (i s l a s t ’ = 1) /\
(count ’ + 1 > 0) /\
(index ’ + 1 > 0) /\

27 (index ’ < count ’ + 2) /\
(i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\
(o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

30
ENVIRONMENT

33 INITIALLY
count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

36 GOAL
˜ o f f� �

count index is last off
001 ? ? ? ? ? force
00? ? ? ? ? ? finish
010 ? ? ? ? 1 finish
011 ? ? ? ? ? finish
1 ? ? ? ? ? ? ? finish

Table 5.5: Strong solution for third SIMPLE LIST problem

planning problem and not the real list implementation. The postcondition of finish
is too weak. An implementation that would add several elements to the list and then
move the cursor to the last one would not violate the postcondition of finish. Per
definition the weak solution assumes everything uncertain to be in favor of reaching
the goal. Thus the planner suggests finish.

• Even though force is perfectly suited to be executed in the initial state, it is not
suggested. The planner extracts the weak solution via a backwards breadth-first
search. Starting with the goal states, it calculates pre-images and stops when either
a fix point or one of the goal states has been reached. According to the domain,
finish could be implemented in a way to reach the goal state in only one step. The
planner only extracts the shortest optimistic path. Starting from the goal states, the
planner find that finish can lead from a start state directly to a goal state in its first

CHAPTER 5. PLANNING STRATEGY 57

Listing 5.9: Third SIMPLE LIST Problem� �
VARIABLES

2
nat (3) count
nat (3) index

5 bool i s l a s t
bool o f f

8 SYSTEM

agt : l i s t
11 f o r c e

mod : count , index , i s l a s t , o f f
pre : t rue

14 e f f : (count ’ = count + 1) /\
(count ’ + 1 > 0) /\
(index ’ + 1 > 0) /\

17 (index ’ < count ’ + 2) /\
(i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\
(o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

20
f i n i s h

mod : count , index , i s l a s t , o f f
23 pre : t rue

e f f : (count ’ > 0) => (i s l a s t ’ = 1) /\
(count ’ + 1 > 0) /\

26 (index ’ + 1 > 0) /\
(index ’ < count ’ + 2) /\
(i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\

29 (o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

32 ENVIRONMENT

INITIALLY
35 count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

GOAL
38 ˜ o f f /\ count = 2� �

backward step. Thus the planner stops after one iteration. Why is force contained
in the table at all? Because, according to its postcondition, it could be implemented
not only to add one element, but also to move the cursor to the last position. Note
however that the postcondition explicitly states that exactly one element is added.
Thus force cannot be implemented to reach the goal in one step. The action force is
in the table because it can reach the goal when already one element is inserted.

5.4.1 Planning with Learning

The weak solution extraction algorithm is too optimistic. Many routines from ANY have
True as their postcondition. The weaker the postcondition, the worse the effect of the
planner’s optimism. Every class implicitly or explicitly inherits from ANY. These inherited
routines alone make the weak solution extraction algorithm ineffective for all practical
purposes. Since the testing process has to be completely automatic, strengthening the
postconditions in the Eiffel source code by hand is not possible. They can, however, be
strengthened in the problem automatically: the interpreter, while executing a plan, can
record the state transitions. When a given solution could not reach the goal, the recorded
transitions can be feed back to the problem. The following steps describe the new planning
with learning algorithm:

1. A planning problem is created from the Eiffel source code.

2. A weak solution is extracted from the problem.

CHAPTER 5. PLANNING STRATEGY 58

3. The solution is executed and the state transitions are recorded: The object state of
every feature execution is recorded before (state) and after the execution (state′).

4. If, after a certain number of feature executions, the goal is reached, the process stops
and the feature can now be tested. If the goal could not be reached the recorded
state transitions are added to the problem: Let posti be the postcondition of a
feature of the current domain: the new postcondition is then defined as: posti+1 :=
posti ∧(state→ state′)

5. Go to Step 2.

If, after a certain number of iterations, the goal is still not reached the process ends.
Note that currently the domain only describes a single list object. When using the object
model, which is described in Section 5.5, multiple objects can be represented. There, all
objects of the same type and state are assumed to behave equal. Taking the list problem
from Listing 5.9 and its solution from Table 5.5, only force would ever be suggested for
execution. The recorded transition would be (count = 0 ∧ index = 0 ∧ off ∧ ¬is last)
→ (count’ = 0 ∧ index’ = 0 ∧ off’ ∧ ¬is last’). Augmenting the problem with this
recording results in the problem shown in Listing 5.10. The corresponding solution is
shown in Table 5.6. Note that, in general, routines are not required to be deterministic.
The postcondition augmentation assumes deterministic behavior. In practice only very
few routines are non-deterministic. Thus the augmentation will work in most situations.

Listing 5.10: Fourth SIMPLE LIST Problem� �
1 VARIABLES

nat (3) count
4 nat (3) index

bool i s l a s t
bool o f f

7
SYSTEM

10 agt : l i s t
f o r c e

mod : count , index , i s l a s t , o f f
13 pre : t rue

e f f : (count ’ = count + 1) /\
(count ’ + 1 > 0) /\

16 (index ’ + 1 > 0) /\
(index ’ < count ’ + 2) /\
(i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\

19 (o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1)))

f i n i s h
22 mod : count , index , i s l a s t , o f f

pre : t rue
e f f : (count ’ > 0) => (i s l a s t ’ = 1) /\

25 (count ’ + 1 > 0) /\
(index ’ + 1 > 0) /\
(index ’ < count ’ + 2) /\

28 (i s l a s t ’ <=> ((count ’ > 0) /\ (index ’ = count ’))) /\
(o f f ’ <=> ((index ’ = 0) \/ (index ’ = count ’ + 1))) /\

((count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t) =>
31 (count ’ = 0 /\ index ’ = 0 /\ o f f ’ /\ ˜ i s l a s t ’))

ENVIRONMENT
34

INITIALLY
count = 0 /\ index = 0 /\ o f f /\ ˜ i s l a s t

37
GOAL

˜ o f f /\ count = 2� �

CHAPTER 5. PLANNING STRATEGY 59

count index is last off
000 000 0 1 force
001 ? ? ? ? ? force
00? ? ? ? ? ? finish
010 ? ? ? ? 1 finish
011 ? ? ? ? ? finish
1 ? ? ? ? ? ? ? finish

Table 5.6: Strong solution for fourth SIMPLE LIST problem

The new solution now suggests force both with an empty list and a list with one
element. Although it still suggests paths that do not lead to the goal state, the correct
path is now included. Selecting a random action in states where multiple actions are
suggested will eventually reach the goal.

5.5 A General Object Model in the Planning Domain

The generated planning problems must have a notion of object. extNADL doesn’t have
such a concept. To solve this, an object model is placed on top of extNADL. This is similar
to what a compiler for an object oriented language does when compiling to native code.
The language a computer directly understands does not have a notion for objects either.
Since the planning domain must be finite state, the maximal number of objects possible
is limited as well. Object state is stored in slots. With a (selectable) reference precision
of n there are 2n slots available. Their indexes range from 0 to 2n − 1. A slot with the
index x has the following variables:

• A boolean variable (named is alive x) that tells if the slot contains an object.

• A natural number called type id x that contains the (dynamic) type of the object
stored in this slot.

• A variable for each argument-less query of every included Eiffel type.

5.5.1 Example

Listing 5.11 shows two simple classes. Class FOO has two integer attributes that can be
incremented and decremented. Class BAR has a reference to an object of type FOO. The
corresponding object model can been seen in Figure 5.2. Note that Figure 5.2 shows only
the storage aspect of the model, not the behavioral. A complete example is discussed in
Section 5.6.

Four things are worth noting:

1. The model does not use memory in most ergonomic way, but instead focuses on
simplicity and readability. With the current model every type has storage for every
(argument-less) query for every type. At one time only one object of a given type

CHAPTER 5. PLANNING STRATEGY 60

Listing 5.11: Example classes for object model� �
c l a s s i n t e r f a c e FOO

3 f e a tu r e
i : INTEGER

6 j : INTEGER

f ea tu r e
9

i n c r e a s e i
ensure

12 i = old i + 1

d e c r e a s e i
15 ensure

i = old i − 1

18 i n c r e a s e j
ensure

j = old j + 1
21

d e c r e a s e j
ensure

24 j = old j − 1

end
27

c l a s s i n t e r f a c e BAR

30 f e a tu r e

r e f : FOO
33

end� �
can be stored in a slot. As soon as more than two types, each with more than 0
argument-less queries, are modeled there are unused variables.

2. The current model does not support queries with arguments. On first sight it seems
easier to only store attributes in the model and retrieve the result of functions via
actions. Functions are often used in Eiffel expressions. The planning language does
not have a notion of functions and thus Eiffel expressions that contain calls to func-
tions can not be translated. In this model, argument-less queries (i.e.: attributes and
functions without arguments), are both treated as storage and can be used in ex-
pressions. Boolean expressions that contain functions with arguments are converted
to true since they are not yet supported.

3. References are stored as natural numbers. The value of the number is the slot
number of the object that is referenced.

4. The actual implementation does not use class and feature names to build an attribute
variable. Instead, the identifier numbers assigned by the Eiffel parser are used.
This is because type and feature names are not trivially convertible to extNADL
identifiers. (For example a generic type contains square brackets, which are not
allowed in extNADL identifiers.)

5.5.2 The Type NONE

In the extNADL object model, to represent that a reference is not attached to any ob-
ject the variable is assigned the value 0. In Eiffel, unlike in many other object oriented

CHAPTER 5. PLANNING STRATEGY 61

Slot No. Data

0

bool is_alive_0

nat(2) type_id_0

nat(2) attr_FOO_i_0

nat(2) attr_FOO_j_0

nat(2) attr_BAR_ref_0

1

bool is_alive_1

nat(2) type_id_1

nat(2) attr_FOO_i_1

nat(2) attr_FOO_j_1

nat(2) attr_BAR_ref_1

2

bool is_alive_2

nat(2) type_id_2

nat(2) attr_FOO_i_2

nat(2) attr_FOO_j_2

nat(2) attr_BAR_ref_2

3

bool is_alive_3

nat(2) type_id_3

nat(2) attr_FOO_i_3

nat(2) attr_FOO_j_3

nat(2) attr_BAR_ref_3

Figure 5.2: Object Model

languages, the type hierarchy is a lattice. As illustrated in Figure 5.3, every type inherits
from ANY. Class NONE inherits from every type. Class NONE is of course not a real
class, but rather a concept. In every system there is exactly one object of type NONE
which can be accessed via the keyword Void. Void serves a similar purpose as null in
Java, but it does not need a special rule in the type system. Since NONE conforms to
every class in a given system, its sole instance referenced via Void can be assigned to any
entity.

In the extNADL object model the object referenced by Void does not need special
treatment either: The INITIAL clause simply states that no object is alive, except the
one in slot 0 whose type is NONE. Assuming the id 0 for type NONE this can be written
as alive 0∧(type 0 = 0) ∧ ¬ alive 1∧¬ alive 2∧¬ alive 3.

5.5.3 Routines

Figure 5.2 only shows the variable declarations for the domain. Eiffel routines are con-
verted to actions, but instead of one action per Eiffel routine, 2n−1 actions per routine are

CHAPTER 5. PLANNING STRATEGY 62

ANY

NONE

FOO BARNUMERIC

INTEGER DOUBLE

...

Figure 5.3: Eiffel Type Lattice

created (where n is precision for references). The subtraction by one is an optimization
because the object referenced by Void has no public features. It might seem strange that
every slot, except the first one, has its own set of actions. The frame problem forces such
drastic measures. Every action needs a modifies clause which states what variables can
be modified by its action. The more variables there are in a modifies clause, the more
uncertain is the effect of its action. To keep the number of variables in the modifies clause
limited, it is assumed that a routine can only modify the attributes from the object it has
been called on (which is in general not true). This can only be expressed if there is an
action per slot. Class FOO has four routines, with a reference type precision of two bits,
hence 12 actions need to be generated.

Modifies Clause – lists all variables representing attributes. Note that this makes the
planner assume that an object only modifies its own attributes. Of course in general
an object can modify not only its direct attributes, but also the attributes of its
attributes (recursively). However, we expect that in practice the above assumption
will hold for many problems. The limitation was introduced to reduce uncertainty.
Without this reduction of uncertainty, extracted plans get too optimistic. A routine
would be assumed to possibly change all attributes of all instances not mentioned in
the routines postcondition, even though those instances are completely decoupled.

Precondition Clause – an action representing a routine of object target must only be

CHAPTER 5. PLANNING STRATEGY 63

called if the object in slot target is alive and its type includes the routine in question.
Additionally the precondition of the routine must hold. The precondition of an action
representing a routine is: alive target ∧ type target = type id ∧ routine precondition.

Effect Clause – an action representing a routine has the routine’s postcondition as effect.

5.5.4 Creation Routines

Creation routines are handled similar to regular routines:

Modifies Clause – an action representing the creation procedure of object target lists
all variables representing the objects attributes, alive target, and type target.

Precondition Clause – an action representing a routine of object target must only be
called if the object in slot target is alive and its type includes the routine in question.
Additionally the precondition of the routine must hold. The precondition of an action
representing a routine is: alive target ∧ type target = type id ∧ routine precondition

Effect Clause – an action representing a routine has the routine’s postcondition as effect
and alive target ∧ type target = type id.

5.5.5 Expressions

To generate a problem, expressions need to be converted from Eiffel to extNADL in various
places:

• Precondition clauses

• Effect clauses

• Initial states clause

• Goal states clause

The lack of references also shows when converting expressions from Eiffel to extNADL.
As a result, extNADL expressions are often much longer than their counterpart in Eiffel.
Let’s assume that the precondition of a routine from class FOO is i = const, where const is
an arbitrary natural number. The first row in Table 5.7 shows its translation to extNADL.
target is assumed to be the slot id of the action. In this conversion the extNADL expression
is not any more complex than its Eiffel counterpart. As soon as references come into play
the extNADL expressions start to grow. For example, assume a precondition of a routine
in class BAR states ref.i = const. Again, const is assumed to be a constant, target the
slot id of the action where the expression occurs. Since the i to compare depends on
the value of ref, a manual quantification using a conjunction of implications is needed.
Such quantifications significantly increases the size of the underlying BDD and affect the
performance of the solution extraction.

Eiffel uses keyword old (in postcondition expressions) to identify the state of an entity
before the execution of a routine. In extNADL primed variables (“′”) are used to identify
the state of a variables after the execution of a feature. Additionally Eiffel allows the

CHAPTER 5. PLANNING STRATEGY 64

Eiffel extNADL

i = const i target = const

ref.i = const (ref target = 0→ (i 0 = const))∧
(ref target = 1→ (i 1 = const))∧
(ref target = 2→ (i 2 = const))∧
(ref target = 3→ (i 3 = const))

Table 5.7: Expression Conversion

old keyword as a prefix operation on an arbitrary expression, whereas in extNADL only
variables (and not expressions) can be primed. An expression converter has been imple-
mented that walks an Eiffel expression from its leaves to its root node and creates the
corresponding extNADL expression. Because of time constraints not all Eiffel expressions
are supported (e.g.: agent expressions, expressions containing primitive types other than
INTEGER and BOOLEAN, expressions containing function calls that take arguments).
Unsupported boolean expressions (in extNADL all top level expressions are boolean) are
converted to true. Such a conversion makes the generated domain too optimistic. It adds
infeasible paths to the solution, which have to be detected by the interpreter. Replacing
unsupported expressions with false would yield in more pessimistic domains. Using false,
many problems would not contain a solution at all, which is clearly the worse scenario.

5.6 The COUNTER Example

The implemented algorithm has been tested on the Eiffel class shown in Listing A.3. Class
COUNTER has two integer attributes: i and j. Each integer attribute has two commands
to increase and decrease the value. Note that the frame problem not only is present in the
routines inherited from class ANY but also in the commands from class COUNTER. The
feature to test is foo. Its precondition is (i = j − 2) ∧ (i > 0).

The problem generated in the first iteration is shown in Listing A.4. To reach the
goal, the initial problem has been augmented 5 times with transitions recorded during
execution. The execution paths are shown in Section A.6.

Chapter 6

Conclusion and Outlook

Contract based testing promises to be an effective new testing method. Supplementing
rather than replacing traditional unit testing, contract based testing provides a low entry
barrier to testing. In this work we proposed two strategies for automatically testing Eiffel
programs. Based on the work from Greber and Ciupa and the idea of contract based
testing, we described a robust random strategy and a planning-based strategy. While the
robust random strategy proves to be very effective, it falls short on routines with strong
preconditions. Even though the planning-based strategy is not yet complete enough for
practical usage, it promises to step in where the random strategy falls short.

6.1 Master/Slave Design

The master/slave design moved logic from the process that executes the tests, to the
controlling GUI process. This change required the implementation of a special purpose
interpreter and a reflection library generator. We showed that with the new design, the
tester can recover from fatal errors. Our experiments prove that a slightly modified ran-
dom strategy together with the master/slave design can reveal bugs in real world classes.
Testing two classes and a total of 214 features the new implementation revealed bugs in
11 features. Both classes were taken unmodified from production quality libraries. The
fact that we found several real bugs in this two classes is clear evidence of TestStudio’s
potential.

The interpreter and reflection library generator we implemented as part of this thesis
and lack support for infix features, default creation procedures and agents. The reflection
library generator is not dependent on other parts of the TestStudio code base. Further
work on the generator would not only benefit TestStudio but might also interest other
Eiffel projects that need a more complete reflection facility.

6.2 Planning Strategy

Features with strong preconditions present a problem to the random strategy. For such
features a more guided approach is necessary. The proposed planning strategy borrows
techniques from the planning and model checking domains. Because of the inherent com-
plexity, automated reasoning about software system is infeasible without accepting a loss

65

CHAPTER 6. CONCLUSION AND OUTLOOK 66

of precession. The planning-based strategy abstracts the Eiffel source code to a (less pre-
cise) planning problem. The interpreter validates potential solutions by executing them.
To overcome the uncertainty present in contracts, we combined planning with learning.
The implementation is not yet complete enough for real world classes. Its main limitation
is the lack of support for routines with arguments. However the strategy showed promising
results on the COUNTER example. The contracts for the class COUNTER exposes the
typical uncertainties present in Eiffel contracts. Conventional planning algorithms such
as the weak and strong solution extraction algorithms failed at extracting a useful plan.
However, the combination of the weak solution extraction algorithm in conjunction with
learning solved the problem in only 6 planning/learning iterations.

6.3 Future Work

Using specification in the form of preconditions, postconditions and invariants to automat-
ically generate test cases is an active research topic. Korat [BKM02] uses an interesting
approach that emphasizes good input-data coverage, while the focus of TestStudio lies
on good feature coverage. A combination of both approaches seems promising. Work
by Christian Rilke at the ETH Zurich regarding coverage analysis is currently underway
which can be seen as a first step in this direction.

Recently research has gone into program abstraction for the purpose of finite state
verification. The abstraction algorithm used by the planner-based strategy could greatly
benefit from the ideas proposed in [DHJ+01]. The transition recording, which is needed to
augment plans could be generalized to automatically detect stronger contracts as described
in [ECGN99].

To limit uncertainty the planning strategy currently assumes that an object can only
assign to its own attributes. This assumption is true in many cases, but not all. A more
sophisticated approach could weight transitions caused by actions. In practice routines
change very little compared to the complete state. A possible weighting strategy is: the
more attributes and the further away those attributes, the more a transition costs. A
planner can then look for the cheapest instead for the shortest path to a goal state. Such
an approach could remove the assumption that a routine only changes its own attributes,
without increasing uncertainty too much. The planner we use currently, does not support
actions with arguments. Eiffel routines with arguments could be supported by emulating
arguments as global variables. Alternatively a different planner or model checker that
more closely supports the Eiffel concepts could be used.

We expect contract based testing to supplement traditional unit testing. Good inte-
gration of contract based testing and unit testing would be very desirable. TestStudio
could be extended to extracting minimal counter examples [Zel99] based on failed test
cases. It could then ask the user if the counter example should be added to the existing
unit test suite automatically.

We are certain that the idea of contract based testing will help programmers to detect
bugs better and earlier. Even though TestStudio is relatively new and much remains to
be done, the results already look very promising.

Appendix A

Listings

A.1 TestStudio Project File for Class LINKED LIST

Listing A.1: TestStudio Project File For Class LINKED LIST� �
<?xml ve r s i on=”1.0” encoding=”ISO8859−1” ?>

2<p r o j e c t s e t t i n g s>
<project name> xxx </ project name>
<p r o j e c t d i r> /tmp/ </ p r o j e c t d i r>

5 <a c e f i l e> /home/ a l e i t n e r / s r c / e c l i p s e work spac e / t e s t s t u d i o / t e s t l i b r a r i e s / l i b r a r yba s e . ace </
a c e f i l e>

<t e s t s c op e>
<c l u s t e r s e l e c t i o n>

8 <c l u s t e r> l i s t </ c l u s t e r>
</ c l u s t e r s e l e c t i o n>
<c l a s s s e l e c t i o n>

11 <c l u s t e r>
<name> l i s t </name>
<c l a s s e s>

14 <c lass name> LINKED LIST </ c lass name>
</ c l a s s e s>

</ c l u s t e r>
17 </ c l a s s s e l e c t i o n>

< f e a t u r e s e l e c t i o n>
<c l a s s>

20 <name> LINKED LIST </name>
<f e a t u r e s>

<feature name> item </ feature name>
23 <feature name> f i r s t </ feature name>

<feature name> va l i d c u r s o r </ feature name>
<feature name> go to </ feature name>

26 <feature name> r ep l a c e </ feature name>
<feature name> remove </ feature name>
<feature name> make (c r e a t i on) </ feature name>

29 <feature name> l a s t </ feature name>
<feature name> index </ feature name>
<feature name> cur so r </ feature name>

32 <feature name> count </ feature name>
<feature name> readab le </ feature name>
<feature name> a f t e r </ feature name>

35 <feature name> be fo r e </ feature name>
<feature name> o f f </ feature name>
<feature name> i s f i r s t </ feature name>

38 <feature name> i s l a s t </ feature name>
<feature name> f u l l </ feature name>
<feature name> i s i n s e r t e d </ feature name>

41 <feature name> s t a r t </ feature name>
<feature name> f i n i s h </ feature name>
<feature name> f o r th </ feature name>

44 <feature name> back </ feature name>
<feature name> move </ feature name>
<feature name> g o i t h </ feature name>

47 <feature name> put f r on t </ feature name>
<feature name> extend </ feature name>
<feature name> p u t l e f t </ feature name>

50 <feature name> put r i gh t </ feature name>
<feature name> merg e l e f t </ feature name>
<feature name> merge r ight </ feature name>

53 <feature name> r emove l e f t </ feature name>
<feature name> remove r ight </ feature name>

67

APPENDIX A. LISTINGS 68

<feature name> wipe out </ feature name>
56 <feature name> copy </ feature name>

<feature name> i s e q u a l </ feature name>
<feature name> has </ feature name>

59 <feature name> i ndex o f </ feature name>
<feature name> i t h </ feature name>
<feature name> i n f i x ”@” </ feature name>

62 <feature name> occur r ence s </ feature name>
<feature name> i nd ex s e t </ feature name>
<feature name> va l i d i nd ex </ feature name>

65 <feature name> va l i d c u r s o r i nd e x </ feature name>
<feature name> put </ feature name>
<feature name> pu t i t h </ feature name>

68 <feature name> swap </ feature name>
<feature name> dup l i c a t e </ feature name>
<feature name> wr i tab l e </ feature name>

71 <feature name> ex t end ib l e </ feature name>
<feature name> prunable </ feature name>
<feature name> f i l l </ feature name>

74 <feature name> prune </ feature name>
<feature name> p rune a l l </ feature name>
<feature name> i s empty </ feature name>

77 <feature name> empty </ feature name>
<feature name> object compar i son </ feature name>
<feature name> changeab l e compar i s on c r i t e r i on </ feature name>

80 <feature name> compare objects </ feature name>
<feature name> compare re f e r ence s </ feature name>
<feature name> l i n e a r r e p r e s e n t a t i o n </ feature name>

83 <feature name> generator </ feature name>
<feature name> gene ra t ing type </ feature name>
<feature name> conforms to </ feature name>

86 <feature name> same type </ feature name>
<feature name> c on s i s t e n t </ feature name>
<feature name> s t anda rd i s e qua l </ feature name>

89 <feature name> equal </ feature name>
<feature name> s tandard equa l </ feature name>
<feature name> deep equal </ feature name>

92 <feature name> standard copy </ feature name>
<feature name> c lone </ feature name>
<feature name> s tandard c lone </ feature name>

95 <feature name> standard twin </ feature name>
<feature name> deep c lone </ feature name>
<feature name> deep copy </ feature name>

98 <feature name> setup </ feature name>
<feature name> i o </ feature name>
<feature name> out </ feature name>

101 <feature name> tagged out </ feature name>
<feature name> pr in t </ feature name>
<feature name> Operating environment </ feature name>

104 <feature name> d e f a u l t r e s c u e </ feature name>
<feature name> d e f a u l t c r e a t e </ feature name>
<feature name> do nothing </ feature name>

107 <feature name> de f au l t </ feature name>
<feature name> d e f a u l t p o i n t e r </ feature name>
<feature name> Void </ feature name>

110 <feature name> f o r c e </ feature name>
<feature name> append </ feature name>
<feature name> search </ feature name>

113 <feature name> exhausted </ feature name>
<feature name> d o a l l </ feature name>
<feature name> d o i f </ feature name>

116 <feature name> t h e r e e x i s t s </ feature name>
<feature name> f o r a l l </ feature name>
<feature name> s e qu en t i a l o c cu r r e n c e s </ feature name>

119 </ f e a t u r e s>
</ c l a s s>

</ f e a t u r e s e l e c t i o n>
122 </ t e s t s c op e>

<t e s t da t a>
<u s e r d e f i n e d va l u e s>

125 <ba s i c t yp e s>
<i n t e g e r>

<value> −1 </ value>
128 <value> 0 </ value>

<value> 1 </ value>
<value> 2 </ value>

131 <value> −2 </ value>
<value> 10 </ value>
<value> −10 </ value>

134 <value> 100 </ value>
<value> −100 </ value>
<value> 2147483647 </ value>

137 <value> −2147483648 </ value>
</ i n t e g e r>
<r e a l>

140 <value> −1 </ value>
<value> 0 </ value>
<value> 1 </ value>

APPENDIX A. LISTINGS 69

143 <value> 2 </ value>
<value> −2 </ value>
<value> 10 </ value>

146 <value> −10 </ value>
<value> 100 </ value>
<value> −100 </ value>

149 <value> 3.40282 e+38 </ value>
<value> 1.17549 e−38 </ value>
<value> 1.19209 e−07 </ value>

152 </ r e a l>
<double>

<value> −1 </ value>
155 <value> 0 </ value>

<value> 1 </ value>
<value> 2 </ value>

158 <value> −2 </ value>
<value> 3.1415926535897931 </ value>
<value> −2.7182818284590451 </ value>

161 <value> 1.7976931348623157 e+308 </ value>
<value> 2.2250738585072014 e−308 </ value>
<value> 2.2204460492503131 e−16 </ value>

164 </double>
<boolean>

<value> True </ value>
167 <value> False </ value>

</boolean>
<charac t e r> 0 . . . 6 4 , 9 1 . . . 9 6 , 1 2 3 . . . 2 5 5 , ’a ’ , ’Z ’ </ charac t e r>

170 <s t r i n g> ”a . . . z” , Void , ”” , ”/01/.../255/” , ”x” </ s t r i n g>
</ ba s i c t yp e s>
<o the r va l u e s>

173 </ o the r va l u e s>
</ u s e r d e f i n e d va l u e s>
< s t r e s s l e v e l>

176 <g l oba l> 3 </ g l oba l>
<c l u s t e r l e v e l>
</ c l u s t e r l e v e l>

179 <c l a s s l e v e l>
</ c l a s s l e v e l>
< f e a t u r e l e v e l>

182 </ f e a t u r e l e v e l>
<parameters>

< s t r e s s l e v e l>
185 < l e v e l> 1 </ l e v e l>

<number o f method ca l l s> 10 </ number o f method ca l l s>
<t e s t i n d e s c endan t s> False </ t e s t i n d e s c endan t s>

188 </ s t r e s s l e v e l>
< s t r e s s l e v e l>

< l e v e l> 2 </ l e v e l>
191 <number o f method ca l l s> 20 </ number o f method ca l l s>

<t e s t i n d e s c endan t s> False </ t e s t i n d e s c endan t s>
</ s t r e s s l e v e l>

194 < s t r e s s l e v e l>
< l e v e l> 3 </ l e v e l>
<number o f method ca l l s> 30 </ number o f method ca l l s>

197 <t e s t i n d e s c endan t s> False </ t e s t i n d e s c endan t s>
</ s t r e s s l e v e l>
< s t r e s s l e v e l>

200 < l e v e l> 4 </ l e v e l>
<number o f method ca l l s> 50 </ number o f method ca l l s>
<t e s t i n d e s c endan t s> True </ t e s t i n d e s c endan t s>

203 </ s t r e s s l e v e l>
< s t r e s s l e v e l>

< l e v e l> 5 </ l e v e l>
206 <number o f method ca l l s> 100 </ number o f method ca l l s>

<t e s t i n d e s c endan t s> True </ t e s t i n d e s c endan t s>
</ s t r e s s l e v e l>

209 </parameters>
</ s t r e s s l e v e l>

</ t e s t da t a>
212 <t e s t o p t i o n s>

<a s s e r t i o n s>
<pre cond i t i on s> True </ pr e cond i t i on s>

215 <po s t cond i t i on s> True </ po s t cond i t i on s>
<c l a s s i n v a r i a n t s> True </ c l a s s i n v a r i a n t s>
< l o op va r i a n t s and i nva r i a n t s> True </ l o op va r i a n t s and i nva r i a n t s>

218 <c h e c k i n s t r u c t i o n s> True </ ch e c k i n s t r u c t i o n s>
</ a s s e r t i o n s>
<t e s t i n g o r d e r> 1 </ t e s t i n g o r d e r>

221 <g e n e r i c i t y s u p p o r t l e v e l> 1 </ g e n e r i c i t y s u p p o r t l e v e l>
<ou tput d i r e c t o ry> /tmp/ </ ou tput d i r e c t o ry>

</ t e s t o p t i o n s>
224</ p r o j e c t s e t t i n g s>� �

APPENDIX A. LISTINGS 70

A.2 Test Result Summary for Class LINKED LIST

Table A.1: Test Result Summary for class LINKED LIST

class feature status #pass #fail #inv #bad resp.

LINKED LIST make failed 3696 1 0 0
LINKED LIST item no valid calls 0 0 23 0
LINKED LIST first passed 3 0 35 0
LINKED LIST last no valid calls 0 0 29 0
LINKED LIST index passed 51 0 0 0
LINKED LIST cursor passed 57 0 0 0
LINKED LIST count passed 48 0 0 0
LINKED LIST readable passed 59 0 0 0
LINKED LIST after passed 54 0 0 0
LINKED LIST before passed 53 0 0 0
LINKED LIST off passed 46 0 0 0
LINKED LIST isfirst passed 49 0 0 0
LINKED LIST islast passed 47 0 0 0
LINKED LIST valid cursor passed 50 0 0 0
LINKED LIST full passed 56 0 0 0
LINKED LIST is inserted failed 0 39 0 0
LINKED LIST start passed 50 0 0 0
LINKED LIST finish passed 44 0 0 0
LINKED LIST forth passed 42 0 11 0
LINKED LIST back passed 2 0 29 0
LINKED LIST move passed 40 0 0 0
LINKED LIST go i th passed 7 0 29 0
LINKED LIST go to passed 27 0 19 0
LINKED LIST put front passed 61 0 0 0
LINKED LIST extend passed 46 0 0 0
LINKED LIST put left passed 3 0 25 0
LINKED LIST put right passed 49 0 3 0
LINKED LIST replace no valid calls 0 0 35 0
LINKED LIST merge left passed 3 0 28 0
LINKED LIST merge right passed 47 0 7 0
LINKED LIST remove no valid calls 0 0 35 0
LINKED LIST remove left failed 0 2 28 0
LINKED LIST remove right no valid calls 0 0 34 0
LINKED LIST wipe out passed 47 0 0 0
LINKED LIST copy passed 48 0 0 0
LINKED LIST is equal passed 40 0 0 0
LINKED LIST has passed 47 0 0 0
LINKED LIST index of passed 29 0 31 0
LINKED LIST i th no valid calls 0 0 35 0
LINKED LIST infix @ no calls 0 0 0 0
LINKED LIST occurrences passed 45 0 0 0
LINKED LIST index set passed 54 0 0 0
LINKED LIST valid index passed 47 0 0 0
LINKED LIST valid cursor index passed 53 0 0 0
LINKED LIST put failed 1 28 0 0
LINKED LIST put i th no valid calls 0 0 29 0
LINKED LIST append passed 57 0 1 0
LINKED LIST fill failed 47 0 0 2
LINKED LIST swap no valid calls 0 0 31 0
LINKED LIST duplicate passed 2 0 31 0
LINKED LIST writable passed 50 0 0 0

APPENDIX A. LISTINGS 71

Table A.1: Test Result Summary for class LINKED LIST

class feature status #pass #fail #inv #bad resp.

LINKED LIST extendible passed 57 0 0 0
LINKED LIST prunable passed 48 0 0 0
LINKED LIST prune passed 53 0 0 0
LINKED LIST prune all passed 51 0 0 0
LINKED LIST is empty passed 47 0 0 0
LINKED LIST empty passed 50 0 0 0
LINKED LIST object comparison passed 52 0 0 0
LINKED LIST changeable comparison criterion passed 54 0 0 0
LINKED LIST compare objects passed 48 0 0 0
LINKED LIST compare references passed 57 0 0 0
LINKED LIST linear representation passed 50 0 0 0
LINKED LIST generator passed 50 0 0 0
LINKED LIST generating type passed 40 0 0 0
LINKED LIST conforms to passed 55 0 0 0
LINKED LIST same type passed 49 0 2 0
LINKED LIST standard is equal passed 41 0 0 0
LINKED LIST equal failed 49 0 0 2
LINKED LIST standard equal passed 52 0 0 0
LINKED LIST deep equal passed 52 0 0 0
LINKED LIST standard copy passed 49 0 2 0
LINKED LIST clone passed 46 0 0 0
LINKED LIST standard clone passed 50 0 0 0
LINKED LIST standard twin passed 49 0 0 0
LINKED LIST deep clone passed 45 0 0 0
LINKED LIST deep copy failed 48 2 0 0
LINKED LIST io passed 57 0 0 0
LINKED LIST out passed 47 0 0 0
LINKED LIST tagged out passed 50 0 0 0
LINKED LIST print passed 45 0 0 0
LINKED LIST Operating environment passed 40 0 0 0
LINKED LIST default rescue passed 59 0 0 0
LINKED LIST do nothing passed 59 0 0 0
LINKED LIST default passed 45 0 0 0
LINKED LIST default pointer no calls 0 0 0 0
LINKED LIST force passed 50 0 0 0
LINKED LIST search passed 49 0 0 0
LINKED LIST exhausted passed 53 0 0 0
LINKED LIST do all no valid calls 0 0 25 0
LINKED LIST do if no valid calls 0 0 34 0
LINKED LIST there exists no valid calls 0 0 31 0
LINKED LIST for all no valid calls 0 0 35 0
LINKED LIST sequential occurrences passed 48 0 0 0
STRING make filled failed 15 3 21 0
STRING prune passed 1 0 0 0
LINKED LIST twin passed 22 0 0 0
STRING make failed 21 2 17 0
STRING make empty passed 47 0 0 0
STRING string passed 2 0 0 0
LINKED LIST deep twin passed 19 0 0 0
CURSOR is equal passed 1 0 0 0
CURSOR standard twin passed 1 0 0 0
CURSOR conforms to passed 2 0 0 0
CURSOR generator passed 1 0 0 0
CURSOR deep equal passed 1 0 0 0

APPENDIX A. LISTINGS 72

Table A.1: Test Result Summary for class LINKED LIST

class feature status #pass #fail #inv #bad resp.

CURSOR deep copy passed 1 0 0 0
CURSOR twin passed 1 0 0 0
CURSOR deep twin passed 2 0 0 0
CURSOR deep clone passed 2 0 0 0
STRING make from string passed 39 0 2 0
STRING append double passed 1 0 0 0
STRING resize no valid calls 0 0 1 0
CURSOR equal failed 0 0 0 1
STRING out passed 1 0 0 0
STRING has passed 2 0 0 0
STRING fill no valid calls 0 0 2 0
STRING is equal passed 1 0 1 0
STRING fill blank passed 1 0 0 0
STRING remove tail passed 1 0 1 0
CURSOR standard clone passed 1 0 0 0
STRING equal passed 1 0 0 0
STRING prune all passed 1 0 0 0
INTEGER INTERVAL make passed 13 0 0 0
INTEGER INTERVAL fill no valid calls 0 0 1 0
STRING standard equal passed 1 0 0 0
STRING replace substring no valid calls 0 0 2 0
STRING extend passed 1 0 0 0
STRING right adjust passed 1 0 0 0
CURSOR standard equal passed 1 0 0 0
STRING is inserted passed 1 0 0 0
CURSOR default rescue passed 1 0 0 0
INTEGER INTERVAL is inserted passed 1 0 0 0
STD FILES same type passed 1 0 0 0
INTEGER INTERVAL full passed 1 0 0 0
INTEGER INTERVAL twin passed 1 0 0 0
STRING item no valid calls 0 0 1 0
STRING capacity passed 1 0 0 0
CURSOR default passed 1 0 0 0
STRING prepend boolean passed 1 0 0 0
STRING default passed 2 0 0 0
STRING True constant passed 1 0 0 0
STRING subcopy no valid calls 0 0 3 0
INTEGER INTERVAL additional space passed 2 0 0 0
STRING adapt size passed 1 0 0 0
CURSOR standard copy passed 1 0 1 0
INTEGER INTERVAL exists1 passed 1 0 0 0
INTEGER INTERVAL lower defined passed 1 0 0 0
STRING left adjust passed 1 0 0 0
STRING remake no valid calls 0 0 1 0
INTEGER INTERVAL object comparison passed 1 0 0 0
STRING adapt passed 2 0 0 0
INTEGER INTERVAL clone passed 1 0 0 0
INTEGER INTERVAL deep twin passed 1 0 0 0
STRING index set passed 3 0 0 0
STRING valid index passed 1 0 0 0
INTEGER INTERVAL lower passed 1 0 0 0
STRING False constant passed 1 0 0 0
STRING insert string passed 1 0 1 0
STRING do nothing passed 1 0 0 0

APPENDIX A. LISTINGS 73

Table A.1: Test Result Summary for class LINKED LIST

class feature status #pass #fail #inv #bad resp.

STRING deep copy passed 1 0 0 0
STRING deep equal passed 2 0 0 0
STRING is empty passed 1 0 0 0
STRING linear representation passed 1 0 0 0
STRING fuzzy index no valid calls 0 0 3 0
STRING object comparison passed 3 0 0 0
STRING mirror passed 1 0 0 0
STRING generating type passed 3 0 0 0
STRING remove substring no valid calls 0 0 2 0
STRING standard twin passed 2 0 0 0
STRING append passed 1 0 0 0
STD FILES lastchar passed 1 0 0 0
STRING default rescue passed 1 0 0 0
STRING extendible passed 1 0 0 0
STRING Growth percentage passed 1 0 0 0
STRING append integer passed 1 0 0 0
STRING tail no valid calls 0 0 1 0
STRING compare objects no valid calls 0 0 2 0
STRING prune all trailing passed 2 0 0 0
STRING to boolean no valid calls 0 0 1 0
STRING standard is equal passed 1 0 0 0
STRING to upper passed 1 0 0 0
STRING keep head passed 1 0 0 0
INTEGER INTERVAL adapt passed 1 0 0 0
STRING head no valid calls 0 0 1 0
STRING mirrored passed 1 0 0 0
STRING conforms to passed 1 0 0 0
STRING to lower passed 1 0 0 0
STRING twin passed 1 0 0 0
STRING grow passed 1 0 0 0
STRING to integer 64 no valid calls 0 0 1 0
STRING deep twin passed 1 0 0 0
STRING clone passed 1 0 0 0
STRING replace blank passed 1 0 0 0
STD FILES error passed 1 0 0 0
STRING min passed 1 0 0 0
STRING fill character passed 1 0 0 0

APPENDIX A. LISTINGS 74

A.3 Interface of LINKED LIST

Listing A.2: Interface of class LINKED LIST� �
1 index ing

d e s c r i p t i o n : ”Sequential , one−way linked l i s t s ”
s t a tu s : ”See notice at end of class”

4 names : l i n k e d l i s t , sequence
r ep r e s en t a t i on : l i nked
acc e s s : index , cursor , membership

7 contents : g ene r i c
date : ”$Date : 2003/08/19 01:00:10 $”
r e v i s i o n : ”$Revision : 1.24 $”

10
c l a s s i n t e r f a c e

LINKED LIST [G]
13

c r ea t e

16 make
−− Create an empty l i s t .

ensure
19 i s b e f o r e : be f o r e

f e a tu r e −− I n i t i a l i z a t i o n
22

make
−− Create an empty l i s t .

25 ensure
i s b e f o r e : be f o r e

28 f e a tu r e −− Access

cur so r : CURSOR
31 −− Current cur so r po s i t i o n

ensure −− from CURSOR STRUCTURE
cur s o r no t vo i d : Result /= Void

34
f i r s t : l i k e item

−− Item at f i r s t p o s i t i o n
37 r equ i r e −− from CHAIN

not empty : not is empty

40 gene ra t ing type : STRING
−− Name o f cur rent object ’ s genera t ing type
−− (type o f which i t i s a d i r e c t in s tance)

43 −− (from ANY)

generator : STRING
46 −− Name o f cur rent object ’ s genera t ing c l a s s

−− (base c l a s s o f the type o f which i t i s a d i r e c t i n s tance)
−− (from ANY)

49
has (v : l i k e item) : BOOLEAN

−− Does chain inc lude ‘v ’ ?
52 −− (Reference or ob j e c t equa l i ty ,

−− based on ‘ object compar i son ’ .)
−− (from CHAIN)

55 ensure −− from CONTAINER
not found in empty : Result imp l i e s not is empty

58 i t h (i : INTEGER) : l i k e item
−− Item at ‘ i ’−th po s i t i o n
−− Was dec la r ed in CHAIN as synonym of ‘@’ .

61 −− (from CHAIN)
r equ i r e −− from TABLE

va l i d key : va l i d i nd ex (k)
64

index : INTEGER
−− Index o f cur rent po s i t i o n

67
index o f (v : l i k e item ; i : INTEGER) : INTEGER

−− Index o f ‘ i ’−th occurrence o f item i d e n t i c a l to ‘v ’ .
70 −− (Reference or ob j e c t equa l i ty ,

−− based on ‘ object compar i son ’ .)
−− 0 i f none .

73 −− (from CHAIN)
r equ i r e −− from LINEAR

po s i t i v e o c c u r r e n c e s : i > 0
76 ensure −− from LINEAR

non nega t i v e r e s u l t : Result >= 0

79 item : G
−− Current item

r equ i r e −− from TRAVERSABLE

APPENDIX A. LISTINGS 75

82 n o t o f f : not o f f
r e qu i r e −− from ACTIVE

readab le : r eadab le
85

l a s t : l i k e item
−− Item at l a s t p o s i t i o n

88 r equ i r e −− from CHAIN
not empty : not is empty

91 s e qu en t i a l o c cu r r e n c e s (v : G) : INTEGER
−− Number o f t imes ‘v ’ appears .
−− (Reference or ob j e c t equa l i ty ,

94 −− based on ‘ object compar i son ’ .)
−− (from LINEAR)

ensure −− from BAG
97 non nega t i v e occu r r ence s : Result >= 0

i n f i x ”@” (i : INTEGER) : l i k e item
100 −− Item at ‘ i ’−th po s i t i o n

−− Was dec la r ed in CHAIN as synonym of ‘ i th ’ .
−− (from CHAIN)

103 r equ i r e −− from TABLE
va l i d key : va l i d i nd ex (k)

106 f e a tu r e −− Measurement

count : INTEGER
109 −− Number o f items

i ndex s e t : INTEGER INTERVAL
112 −− Range o f acceptab l e indexes

−− (from CHAIN)
ensure −− from INDEXABLE

115 not vo id : Result /= Void
ensure then −− from CHAIN

coun t d e f i n i t i o n : Result . count = count
118

occur r ence s (v : l i k e item) : INTEGER
−− Number o f t imes ‘v ’ appears .

121 −− (Reference or ob j e c t equa l i ty ,
−− based on ‘ object compar i son ’ .)
−− (from CHAIN)

124 ensure −− from BAG
non nega t i v e occu r r ence s : Result >= 0

127 occur r ence s (v : l i k e item) : INTEGER
−− Number o f t imes ‘v ’ appears .
−− (Reference or ob j e c t equa l i ty ,

130 −− based on ‘ object compar i son ’ .)
−− (from CHAIN)

ensure −− from BAG
133 non nega t i v e occu r r ence s : Result >= 0

f ea tu r e −− Comparison
136

f ro z en deep equa l (some : ANY; other : l i k e some) : BOOLEAN
−− Are ‘ some ’ and ‘ other ’ e i t h e r both void

139 −− or attached to isomorphic ob j e c t s t r u c t u r e s ?
−− (from ANY)

ensure −− from ANY
142 sha l l ow imp l i e s d e ep : s tandard equa l (some , other) imp l i e s Result

both or none vo id : (some = Void) imp l i e s (Result = (other = Void))
same type : (Result and (some /= Void)) imp l i e s some . same type (other)

145 symmetric : Result imp l i e s deep equa l (other , some)

f r o z en equal (some : ANY; other : l i k e some) : BOOLEAN
148 −− Are ‘ some ’ and ‘ other ’ e i t h e r both void or attached

−− to ob j e c t s cons ide red equal ?
−− (from ANY)

151 ensure −− from ANY
d e f i n i t i o n : Result = (some = Void and other = Void) or e l s e ((some /= Void and other /=

Void) and then some . i s e q u a l (other))

154 i s e q u a l (other : l i k e Current) : BOOLEAN
−− Does ‘ other ’ conta in the same elements ?
−− (from LIST)

157 r equ i r e −− from ANY
othe r no t vo id : other /= Void

ensure −− from ANY
160 symmetric : Result imp l i e s other . i s e q u a l (Current)

c on s i s t e n t : s t anda rd i s e qua l (other) imp l i e s Result
ensure then −− from LIST

163 ind ices unchanged : index = old index and other . index = old other . index
t r u e imp l i e s s ame s i z e : Result imp l i e s count = other . count

166 f r o z en standard equa l (some : ANY; other : l i k e some) : BOOLEAN
−− Are ‘ some ’ and ‘ other ’ e i t h e r both void or attached to
−− f i e l d−by−f i e l d i d e n t i c a l ob j e c t s o f the same type ?

APPENDIX A. LISTINGS 76

169 −− Always uses d e f au l t ob j e c t comparison c r i t e r i o n .
−− (from ANY)

ensure −− from ANY
172 d e f i n i t i o n : Result = (some = Void and other = Void) or e l s e ((some /= Void and other /=

Void) and then some . s t anda rd i s e qua l (other))

f r o z en s t anda rd i s e qua l (other : l i k e Current) : BOOLEAN
175 −− I s ‘ other ’ attached to an ob j e c t o f the same type

−− as cur rent object , and f i e l d−by−f i e l d i d e n t i c a l to i t ?
−− (from ANY)

178 r equ i r e −− from ANY
othe r no t vo id : other /= Void

ensure −− from ANY
181 same type : Result imp l i e s same type (other)

symmetric : Result imp l i e s other . s t anda rd i s e qua l (Current)

184 f e a tu r e −− Status r epor t

a f t e r : BOOLEAN
187 −− I s there no va l i d cur so r po s i t i o n to the r i gh t o f cur so r ?

be f o r e : BOOLEAN
190 −− I s there no va l i d cur so r po s i t i o n to the l e f t o f cur so r ?

changeab l e compar i s on c r i t e r i on : BOOLEAN
193 −− May ‘ object compar i son ’ be changed?

−− (Answer : yes by de f au l t .)
−− (from CONTAINER)

196
conforms to (other : ANY) : BOOLEAN

−− Does type o f cur rent ob j e c t conform to type
199 −− o f ‘ other ’ (as per E i f f e l : The Language , chapter 13) ?

−− (from ANY)
r equ i r e −− from ANY

202 o the r no t vo id : other /= Void

exhausted : BOOLEAN
205 −− Has s t ru c tu r e been complete ly explored ?

−− (from LINEAR)
ensure −− from LINEAR

208 exhausted when of f : o f f imp l i e s Result

Extendib le : BOOLEAN i s True
211 −− May new items be added? (Answer : yes .)

−− (from DYNAMIC CHAIN)

214 Ful l : BOOLEAN i s False
−− I s s t ruc tu r ed f i l l e d to capac i ty ? (Answer : no .)

217 is empty : BOOLEAN
−− I s s t r u c tu r e empty?
−− (from FINITE)

220
i s i n s e r t e d (v : G) : BOOLEAN

−− Has ‘v ’ been i n s e r t e d at the end by the most r ecent ‘ put ’ or
223 −− ‘ extend ’ ?

i s f i r s t : BOOLEAN
226 −− I s cur so r at f i r s t p o s i t i o n ?

ensure −− from CHAIN
va l i d p o s i t i o n : Result imp l i e s not is empty

229
i s l a s t : BOOLEAN

−− I s cur so r at l a s t p o s i t i o n ?
232 ensure −− from CHAIN

va l i d p o s i t i o n : Result imp l i e s not is empty

235 object compar i son : BOOLEAN
−− Must search ope ra t i on s use ‘ equal ’ r a the r than ‘= ’
−− f o r comparing r e f e r e n c e s ? (Defau l t : no , use ‘= ’ .)

238 −− (from CONTAINER)

o f f : BOOLEAN
241 −− I s there no current item?

prunable : BOOLEAN
244 −− May items be removed? (Answer : yes .)

−− (from DYNAMIC CHAIN)

247 readab le : BOOLEAN
−− I s there a cur rent item that may be read ?

250 same type (other : ANY) : BOOLEAN
−− I s type o f cur rent ob j e c t i d e n t i c a l to type o f ‘ other ’ ?
−− (from ANY)

253 r equ i r e −− from ANY
othe r no t vo id : other /= Void

ensure −− from ANY

APPENDIX A. LISTINGS 77

256 d e f i n i t i o n : Result = (conforms to (other) and other . conforms to (Current))

v a l i d c u r s o r (p : CURSOR) : BOOLEAN
259 −− Can the cur so r be moved to po s i t i o n ‘p ’ ?

v a l i d c u r s o r i nd e x (i : INTEGER) : BOOLEAN
262 −− I s ‘ i ’ c o r r e c t l y bounded f o r cur so r movement?

−− (from CHAIN)
ensure −− from CHAIN

265 v a l i d c u r s o r i n d e x d e f i n i t i o n : Result = ((i >= 0) and (i <= count + 1))

va l i d i nd ex (i : INTEGER) : BOOLEAN
268 −− I s ‘ i ’ with in a l l owab l e bounds?

−− (from CHAIN)
ensure then −− from INDEXABLE

271 o n l y i f i n i n d e x s e t : Result imp l i e s ((i >= index s e t . lower) and (i <= index s e t . upper))
ensure then −− from CHAIN

v a l i d i n d e x d e f i n i t i o n : Result = ((i >= 1) and (i <= count))
274

wr i t ab l e : BOOLEAN
−− I s there a cur rent item that may be modi f ied ?

277 −− (from SEQUENCE)

f e a tu r e −− Status s e t t i n g
280

compare objects
−− Ensure that fu tu r e search ope ra t i on s w i l l use ‘ equal ’

283 −− ra the r than ‘= ’ f o r comparing r e f e r e n c e s .
−− (from CONTAINER)

r equ i r e −− from CONTAINER
286 changeab l e compar i s on c r i t e r i on : changeab l e compar i s on c r i t e r i on

ensure −− from CONTAINER
object compar i son

289
compare re f e r ence s

−− Ensure that fu tu r e search ope ra t i on s w i l l use ‘= ’
292 −− ra the r than ‘ equal ’ f o r comparing r e f e r e n c e s .

−− (from CONTAINER)
r equ i r e −− from CONTAINER

295 changeab l e compar i s on c r i t e r i on : changeab l e compar i s on c r i t e r i on
ensure −− from CONTAINER

re f e r ence compar i son : not ob ject compar i son
298

f e a tu r e −− Cursor movement

301 back
−− Move to prev ious item .

r equ i r e −− from BILINEAR
304 no t be f o r e : not be f o r e

f i n i s h
307 −− Move cur so r to l a s t p o s i t i o n .

−− (Go be fo r e i f empty)
ensure then −− from CHAIN

310 a t l a s t : not is empty imp l i e s i s l a s t
ensure then

empty convention : i s empty imp l i e s be f o r e
313

f o r th
−− Move cur so r to next po s i t i o n .

316 r equ i r e −− from LINEAR
no t a f t e r : not a f t e r

ensure then −− from LIST
319 moved forth : index = old index + 1

g o i t h (i : INTEGER)
322 −− Move cur so r to ‘ i ’−th po s i t i o n .

r e qu i r e −− from CHAIN
va l i d c u r s o r i nd e x : v a l i d c u r s o r i nd e x (i)

325 ensure −− from CHAIN
pos i t i on expe c t ed : index = i

328 go to (p : CURSOR)
−− Move cur so r to po s i t i o n ‘p ’ .

r e qu i r e −− from CURSOR STRUCTURE
331 c u r s o r p o s i t i o n v a l i d : v a l i d c u r s o r (p)

move (i : INTEGER)
334 −− Move cur so r ‘ i ’ p o s i t i o n s . The cur so r

−− may end up ‘ o f f ’ i f the o f f s e t i s too big .
ensure −− from CHAIN

337 t o o f a r r i g h t : (o ld index + i > count) imp l i e s exhausted
t o o f a r l e f t : (o ld index + i < 1) imp l i e s exhausted
expected index : (not exhausted) imp l i e s (index = old index + i)

340 ensure then
moved i f inbounds : ((o ld index + i) >= 0 and (old index + i) <= (count + 1)) imp l i e s index

= (old index + i)
b e f o r e s e t : (o ld index + i) <= 0 imp l i e s be f o r e

APPENDIX A. LISTINGS 78

343 a f t e r s e t : (o ld index + i) >= (count + 1) imp l i e s a f t e r

search (v : l i k e item)
346 −− Move to f i r s t p o s i t i o n (at or a f t e r cur rent

−− po s i t i o n) where ‘ item ’ and ‘v ’ are equal .
−− I f s t r u c tu r e does not inc lude ‘v ’ ensure that

349 −− ‘ exhausted ’ w i l l be t rue .
−− (Reference or ob j e c t equa l i ty ,
−− based on ‘ object compar i son ’ .)

352 −− (from BILINEAR)
ensure −− from LINEAR

objec t f ound : (not exhausted and object compar i son) imp l i e s equal (v , item)
355 item found : (not exhausted and not object compar i son) imp l i e s v = item

s t a r t
358 −− Move cur so r to f i r s t p o s i t i o n .

ensure then −− from CHAIN
a t f i r s t : not is empty imp l i e s i s f i r s t

361 ensure then
empty convention : i s empty imp l i e s a f t e r

364 f e a tu r e −− Element change

append (s : SEQUENCE [G])
367 −− Append a copy o f ‘ s ’ .

−− (from CHAIN)
r equ i r e −− from SEQUENCE

370 argument not void : s /= Void
ensure −− from SEQUENCE

new count : count >= old count
373

extend (v : l i k e item)
−− Add ‘v ’ to end .

376 −− Do not move cur so r .
r e qu i r e −− from COLLECTION

extend ib l e : ex t end ib l e
379 ensure −− from COLLECTION

i t em in s e r t ed : i s i n s e r t e d (v)
ensure then −− from BAG

382 one more occurrence : occur r ence s (v) = old (occur r ence s (v)) + 1

f i l l (other : CONTAINER [G])
385 −− F i l l with as many items o f ‘ other ’ as p o s s i b l e .

−− The r ep r e s en t a t i on s o f ‘ other ’ and cur rent s t r u c tu r e
−− need not be the same .

388 −− (from CHAIN)
r equ i r e −− from COLLECTION

othe r no t vo id : other /= Void
391 ex t end ib l e : ex t end ib l e

f o r c e (v : l i k e item)
394 −− Add ‘v ’ to end .

−− (from SEQUENCE)
r equ i r e −− from SEQUENCE

397 ex t end ib l e : ex t end ib l e
ensure then −− from SEQUENCE

new count : count = old count + 1
400 i t em in s e r t ed : has (v)

me r g e l e f t (other : l i k e Current)
403 −− Merge ‘ other ’ i n to cur rent s t ru c tu r e be f o r e cur so r

−− po s i t i o n . Do not move cur so r . Empty ‘ other ’ .
r e qu i r e −− from DYNAMIC CHAIN

406 ex t end ib l e : ex t end ib l e
no t be f o r e : not be f o r e
o t h e r e x i s t s : other /= Void

409 not cur r en t : other /= Current
ensure −− from DYNAMIC CHAIN

new count : count = old count + old other . count
412 new index : index = old index + old other . count

othe r i s empty : other . i s empty

415 merge r ight (other : l i k e Current)
−− Merge ‘ other ’ i n to cur rent s t ru c tu r e a f t e r cur so r
−− po s i t i o n . Do not move cur so r . Empty ‘ other ’ .

418 r equ i r e −− from DYNAMIC CHAIN
extend ib l e : ex t end ib l e
n o t a f t e r : not a f t e r

421 o t h e r e x i s t s : other /= Void
not cur r en t : other /= Current

ensure −− from DYNAMIC CHAIN
424 new count : count = old count + old other . count

same index : index = old index
othe r i s empty : other . i s empty

427
put (v : l i k e item)

−− Replace cur rent item by ‘v ’ .
430 −− (Synonym fo r ‘ r ep lace ’)

APPENDIX A. LISTINGS 79

−− (from CHAIN)
r equ i r e −− from COLLECTION

433 ex t end ib l e : ex t end ib l e
ensure −− from COLLECTION

i t em in s e r t ed : i s i n s e r t e d (v)
436 ensure then −− from CHAIN

same count : count = old count

439 put f r on t (v : l i k e item)
−− Add ‘v ’ to beg inning .
−− Do not move cur so r .

442 ensure −− from DYNAMIC CHAIN
new count : count = old count + 1
i t em in s e r t ed : f i r s t = v

445
pu t i t h (v : l i k e item ; i : INTEGER)

−− Put ‘v ’ at ‘ i ’−th po s i t i o n .
448 −− (from CHAIN)

r equ i r e −− from TABLE
va l i d key : va l i d i nd ex (k)

451 ensure then −− from INDEXABLE
in s e r t i on done : i t h (k) = v

454 p u t l e f t (v : l i k e item)
−− Add ‘v ’ to the l e f t o f cur so r po s i t i o n .
−− Do not move cur so r .

457 r equ i r e −− from DYNAMIC CHAIN
extend ib l e : ex t end ib l e
no t be f o r e : not be f o r e

460 ensure −− from DYNAMIC CHAIN
new count : count = old count + 1
new index : index = old index + 1

463 ensure then
p r e v i o u s e x i s t s : p rev ious /= Void
i t em in s e r t ed : prev ious . item = v

466
pu t r i gh t (v : l i k e item)

−− Add ‘v ’ to the r i gh t o f cur so r po s i t i o n .
469 −− Do not move cur so r .

r e qu i r e −− from DYNAMIC CHAIN
extend ib l e : ex t end ib l e

472 n o t a f t e r : not a f t e r
ensure −− from DYNAMIC CHAIN

new count : count = old count + 1
475 same index : index = old index

ensure then
n e x t e x i s t s : next /= Void

478 i t em in s e r t ed : not o ld be f o r e imp l i e s next . item = v
i t em i n s e r t e d b e f o r e : o ld be fo r e imp l i e s a c t i v e . item = v

481 r ep l a c e (v : l i k e item)
−− Replace cur rent item by ‘v ’ .

r e qu i r e −− from ACTIVE
484 wr i t ab l e : wr i t ab l e

ensure −− from ACTIVE
i t em rep laced : item = v

487
f e a tu r e −− Removal

490 prune (v : l i k e item)
−− Remove f i r s t occurrence o f ‘v ’ , i f any ,
−− a f t e r cur so r po s i t i o n .

493 −− I f found , move cur so r to r i gh t neighbor ;
−− i f not , make s t ru c tu r e ‘ exhausted ’ .
−− (from DYNAMIC CHAIN)

496 r equ i r e −− from COLLECTION
prunable : prunable

499 p run e a l l (v : l i k e item)
−− Remove a l l o ccur r ence s o f ‘v ’ .
−− (Reference or ob j e c t equa l i ty ,

502 −− based on ‘ object compar i son ’ .)
−− Leave s t ru c tu r e ‘ exhausted ’ .
−− (from DYNAMIC CHAIN)

505 r equ i r e −− from COLLECTION
prunable : prunable

ensure −− from COLLECTION
508 no more occurrences : not has (v)

ensure then −− from DYNAMIC CHAIN
i s exhaus t ed : exhausted

511
remove

−− Remove cur rent item .
514 −− Move cur so r to r i gh t neighbor

−− (or ‘ a f t e r ’ i f no r i gh t neighbor) .
r e qu i r e −− from ACTIVE

517 prunable : prunable
wr i t ab l e : wr i t ab l e

APPENDIX A. LISTINGS 80

ensure then −− from DYNAMIC LIST
520 after when empty : i s empty imp l i e s a f t e r

r emove l e f t
523 −− Remove item to the l e f t o f cur so r po s i t i o n .

−− Do not move cur so r .
r e qu i r e −− from DYNAMIC CHAIN

526 l e f t e x i s t s : index > 1
r equ i r e e l s e −− from DYNAMIC LIST

not be f o r e : not be f o r e
529 ensure −− from DYNAMIC CHAIN

new count : count = old count − 1
new index : index = old index − 1

532
remove r ight

−− Remove item to the r i gh t o f cur so r po s i t i o n .
535 −− Do not move cur so r .

r e qu i r e −− from DYNAMIC CHAIN
r i g h t e x i s t s : index < count

538 ensure −− from DYNAMIC CHAIN
new count : count = old count − 1
same index : index = old index

541
wipe out

−− Remove a l l i tems .
544 r equ i r e −− from COLLECTION

prunable : prunable
ensure −− from COLLECTION

547 wiped out : i s empty
ensure then −− from DYNAMIC LIST

i s b e f o r e : be f o r e
550

f e a tu r e −− Transformation

553 swap (i : INTEGER)
−− Exchange item at ‘ i ’−th po s i t i o n with item
−− at cur so r po s i t i o n .

556 −− (from CHAIN)
r equ i r e −− from CHAIN

no t o f f : not o f f
559 va l i d i nd ex : va l i d i nd ex (i)

ensure −− from CHAIN
swapped to item : item = old i t h (i)

562 swapped from item : i t h (i) = old item

f e a tu r e −− Conversion
565

l i n e a r r e p r e s e n t a t i o n : LINEAR [G]
−− Representat ion as a l i n e a r s t ru c tu r e

568 −− (from LINEAR)

f e a tu r e −− Dupl i cat ion
571

copy (other : l i k e Current)
−− Update cur rent ob j e c t us ing f i e l d s o f ob j e c t attached

574 −− to ‘ other ’ , so as to y i e l d equal ob j e c t s .
r e qu i r e −− from ANY

othe r no t vo id : other /= Void
577 t yp e i d en t i t y : same type (other)

ensure −− from ANY
i s e q u a l : i s e q u a l (other)

580
f r o z en deep copy (other : l i k e Current)

−− Ef f e c t equ iva l en t to that o f :
583 −− ‘ copy ’ (‘ other ’ . ‘ deep twin ’)

−− (from ANY)
r equ i r e −− from ANY

586 o the r no t vo id : other /= Void
ensure −− from ANY

deep equal : deep equa l (Current , other)
589

f r o z en deep twin : l i k e Current
−− New ob j e c t s t ru c tu r e r e c u r s i v e l y dup l i ca ted from Current .

592 −− (from ANY)
ensure −− from ANY

deep equal : deep equa l (Current , Result)
595

dup l i c a t e (n : INTEGER) : l i k e Current
−− Copy o f sub−chain beginning at cur rent po s i t i o n

598 −− and having min (‘ n ’ , ‘ f rom here ’) items ,
−− where ‘ from here ’ i s the number o f items
−− at or to the r i gh t o f cur rent po s i t i o n .

601 −− (from DYNAMIC CHAIN)
r equ i r e −− from CHAIN

n o t o f f u n l e s s a f t e r : o f f imp l i e s a f t e r
604 va l i d subcha in : n >= 0

f rozen standard copy (other : l i k e Current)

APPENDIX A. LISTINGS 81

607 −− Copy every f i e l d o f ‘ other ’ onto corresponding f i e l d
−− o f cur rent ob j e c t .
−− (from ANY)

610 r equ i r e −− from ANY
othe r no t vo id : other /= Void
t yp e i d en t i t y : same type (other)

613 ensure −− from ANY
i s s t anda rd equa l : s t anda rd i s e qua l (other)

616 f r o z en standard twin : l i k e Current
−− New ob j e c t f i e l d−by−f i e l d i d e n t i c a l to ‘ other ’ .
−− Always uses d e f au l t copying semant ics .

619 −− (from ANY)
ensure −− from ANY

standard tw in not vo id : Result /= Void
622 equal : s tandard equa l (Result , Current)

f r o z en twin : l i k e Current
625 −− New ob j e c t equal to ‘ Current ’

−− ‘ twin ’ c a l l s ‘ copy ’ ; to change copying / twining semantics , r e d e f i n e ‘ copy ’ .
−− (from ANY)

628 ensure −− from ANY
twin not vo id : Result /= Void
i s e q u a l : Result . i s e q u a l (Current)

631
f e a tu r e −− Basic ope ra t i on s

634 f r o z en de f au l t : l i k e Current
−− Defaul t value o f object ’ s type
−− (from ANY)

637
f ro z en d e f a u l t p o i n t e r : POINTER

−− Defaul t value o f type ‘POINTER’
640 −− (Avoid the need to wr i t e ‘p ’ . ‘ de fau l t ’ f o r

−− some ‘p ’ o f type ‘POINTER’ .)
−− (from ANY)

643
d e f a u l t r e s c u e

−− Process except ion f o r r ou t i n e s with no Rescue c l au s e .
646 −− (Defau l t : do nothing .)

−− (from ANY)

649 f ro z en do nothing
−− Execute a nu l l a c t i on .
−− (from ANY)

652
f e a tu r e −− I t e r a t i o n

655 d o a l l (ac t i on : PROCEDURE [ANY, TUPLE [G]])
−− Apply ‘ act ion ’ to every item .
−− Semantics not guaranteed i f ‘ act ion ’ changes the s t ru c tu r e ;

658 −− in such a case , apply i t e r a t o r to c lone o f s t r u c tu r e in s t ead .
−− (from LINEAR)

r equ i r e −− from TRAVERSABLE
661 a c t i o n e x i s t s : a c t i on /= Void

d o i f (ac t i on : PROCEDURE [ANY, TUPLE [G]] ; t e s t : FUNCTION [ANY, TUPLE [G] , BOOLEAN])
664 −− Apply ‘ act ion ’ to every item that s a t i s f i e s ‘ t e s t ’ .

−− Semantics not guaranteed i f ‘ act ion ’ or ‘ t e s t ’ changes the s t ru c tu r e ;
−− in such a case , apply i t e r a t o r to c lone o f s t r u c tu r e in s t ead .

667 −− (from LINEAR)
r equ i r e −− from TRAVERSABLE

a c t i o n e x i s t s : a c t i on /= Void
670 t e s t e x i t s : t e s t /= Void

f o r a l l (t e s t : FUNCTION [ANY, TUPLE [G] , BOOLEAN]) : BOOLEAN
673 −− I s ‘ t e s t ’ t rue f o r a l l i tems ?

−− (from LINEAR)
r equ i r e −− from TRAVERSABLE

676 t e s t e x i t s : t e s t /= Void
ensure then −− from LINEAR

empty : i s empty imp l i e s Result
679

t h e r e e x i s t s (t e s t : FUNCTION [ANY, TUPLE [G] , BOOLEAN]) : BOOLEAN
−− I s ‘ t e s t ’ t rue f o r at l e a s t one item?

682 −− (from LINEAR)
r equ i r e −− from TRAVERSABLE

t e s t e x i t s : t e s t /= Void
685

f e a tu r e −− Output

688 i o : STD FILES
−− Handle to standard f i l e setup
−− (from ANY)

691
out : STRING

−− New s t r i n g conta in ing t e r s e p r i n t ab l e r ep r e s en t a t i on
694 −− o f cur rent ob j e c t

APPENDIX A. LISTINGS 82

−− Was dec la r ed in ANY as synonym of ‘ tagged out ’ .
−− (from ANY)

697
pr in t (some : ANY)

−− Write t e r s e ex t e rna l r ep r e s en t a t i on o f ‘ some ’
700 −− on standard output .

−− (from ANY)

703 f ro z en tagged out : STRING
−− New s t r i n g conta in ing t e r s e p r i n t ab l e r ep r e s en t a t i on
−− o f cur rent ob j e c t

706 −− Was dec la r ed in ANY as synonym of ‘ out ’ .
−− (from ANY)

709 f e a tu r e −− Platform

operat ing environment : OPERATING ENVIRONMENT
712 −− Objects a v a i l a b l e from the operat ing system

−− (from ANY)

715 inva r i an t

prunable : prunable
718 empty constra int : i s empty imp l i e s ((f i r s t e l em en t = Void) and (a c t i v e = Void))

not vo id un le s s empty : (a c t i v e = Void) imp l i e s i s empty
b e f o r e c on s t r a i n t : be f o r e imp l i e s (a c t i v e = f i r s t e l em en t)

721 a f t e r c o n s t r a i n t : a f t e r imp l i e s (a c t i v e = l a s t e l emen t)
−− from ANY

r e f l e x i v e e q u a l i t y : s t anda rd i s e qua l (Current)
724 r e f l e x i v e con f o rmance : conforms to (Current)

−− from ANY
r e f l e x i v e e q u a l i t y : s t anda rd i s e qua l (Current)

727 r e f l e x i v e con f o rmance : conforms to (Current)
−− from LIST

b e f o r e d e f i n i t i o n : be f o r e = (index = 0)
730 a f t e r d e f i n i t i o n : a f t e r = (index = count + 1)

−− from CHAIN
non negat ive index : index >= 0

733 index smal l enough : index <= count + 1
o f f d e f i n i t i o n : o f f = ((index = 0) or (index = count + 1))
i s f i r s t d e f i n i t i o n : i s f i r s t = ((not is empty) and (index = 1))

736 i s l a s t d e f i n i t i o n : i s l a s t = ((not is empty) and (index = count))
i t em co r r e sponds to index : (not o f f) imp l i e s (item = i t h (index))
index se t has same count : i nd ex s e t . count = count

739 −− from ACTIVE
wr i t a b l e c on s t r a i n t : wr i t ab l e imp l i e s readab le
empty constra int : i s empty imp l i e s (not readab le) and (not wr i t ab l e)

742 −− from INDEXABLE
ind ex s e t no t vo i d : i nd ex s e t /= Void
−− from BILINEAR

745 not both : not (a f t e r and be fo r e)
b e f o r e c on s t r a i n t : be f o r e imp l i e s o f f
−− from LINEAR

748 a f t e r c o n s t r a i n t : a f t e r imp l i e s o f f
−− from TRAVERSABLE

empty constra int : i s empty imp l i e s o f f
751 −− from FINITE

empty de f i n i t i on : i s empty = (count = 0)
non negat ive count : count >= 0

754 −− from DYNAMIC CHAIN
extend ib l e : ex t end ib l e

757 index ing
l i b r a r y : ” [

EiffelBase : Library of reusable components for E i f f e l .
760] ”

s t a tu s : ” [
Copyright 1986−2001 Interactive Software Engineering (ISE) .

763 For ISE customers the original versions are an ISE product
covered by the ISE Ei f f e l l icense and support agreements .

] ”
766 l i c e n s e : ” [

EiffelBase may now be used by anyone as FREE SOFTWARE to
develop any product , public−domain or commercial , without

769 payment to ISE , under the terms of the ISE Free Ei f f e l Library
License (IFELL) at http :// e i f f e l .com/products/base/ l icense .html .

] ”
772 source : ” [

Interactive Software Engineering Inc .
ISE Building

775 360 Storke Road, Goleta , CA 93117 USA
Telephone 805−685−1006, Fax 805−685−6869
Electronic mail <info@ei f fe l .com>

778 Customer support http ://support . e i f f e l .com
]”
i n f o : ” [

781 For latest info see award−winning pages : http :// e i f f e l .com
]”

APPENDIX A. LISTINGS 83

784 end −− c l a s s LINKED LIST� �

APPENDIX A. LISTINGS 84

A.4 Source Code of Class COUNTER

Listing A.3: Source code of class COUNTER� �
c l a s s

2 COUNTER

crea t e
5

make

8 f e a tu r e

make i s
11 do

i := 0
j := 0

14 ensure
i = 0
j = 0

17 end

f e a tu r e −− Att r ibute s
20

i : INTEGER
j : INTEGER

23
f e a tu r e −− Commands

26 i n c r e a s e i i s
do

i := i + 1
29 ensure

i = old i + 1
end

32
d e c r e a s e i i s

do
35 i := i − 1

ensure
i = old i − 1

38 end

i n c r e a s e j i s
41 do

j := j + 1
ensure

44 j = old j + 1
end

47 d e c r e a s e j i s
do

j := j − 1
50 ensure

j = old j − 1
end

53
f e a tu r e −− Feature under t e s t

56 foo i s
r e qu i r e

i = j − 2
59 i > 0

do
pr in t (”Hoorayy!!!%N”)

62 end

end� �

APPENDIX A. LISTINGS 85

A.5 Initial Problem for COUNTER.foo

Listing A.4: Initial problem for COUNTER.foo� �
VARIABLES

2
nat (2) arg todo
bool a l i v e 0

5 bool a l i v e 1
bool a l i v e 2
bool a l i v e 3

8 nat (2) type 0
nat (2) type 1
nat (2) type 2

11 nat (2) type 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. i
nat (2) a t t r 1 2927 0

14 nat (2) a t t r 1 2927 1
nat (2) a t t r 1 2927 2
nat (2) a t t r 1 2927 3

17 % va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. j
nat (2) a t t r 1 2928 0
nat (2) a t t r 1 2928 1

20 nat (2) a t t r 1 2928 2
nat (2) a t t r 1 2928 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. generator

23 nat (2) a t t r 1 1 0
nat (2) a t t r 1 1 1
nat (2) a t t r 1 1 2

26 nat (2) a t t r 1 1 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. gene ra t ing type
nat (2) a t t r 1 2 0

29 nat (2) a t t r 1 2 1
nat (2) a t t r 1 2 2
nat (2) a t t r 1 2 3

32 % va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. twin
nat (2) a t t r 1 1 0 0
nat (2) a t t r 1 1 0 1

35 nat (2) a t t r 1 1 0 2
nat (2) a t t r 1 1 0 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. standard twin

38 nat (2) a t t r 1 1 5 0
nat (2) a t t r 1 1 5 1
nat (2) a t t r 1 1 5 2

41 nat (2) a t t r 1 1 5 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. deep twin
nat (2) a t t r 1 1 6 0

44 nat (2) a t t r 1 1 6 1
nat (2) a t t r 1 1 6 2
nat (2) a t t r 1 1 6 3

47 % va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. i o
nat (2) a t t r 1 2 0 0
nat (2) a t t r 1 2 0 1

50 nat (2) a t t r 1 2 0 2
nat (2) a t t r 1 2 0 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. out

53 nat (2) a t t r 1 2 2 0
nat (2) a t t r 1 2 2 1
nat (2) a t t r 1 2 2 2

56 nat (2) a t t r 1 2 2 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. tagged out
nat (2) a t t r 1 2 1 0

59 nat (2) a t t r 1 2 1 1
nat (2) a t t r 1 2 1 2
nat (2) a t t r 1 2 1 3

62 % va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. Operating environment
nat (2) a t t r 1 2 4 0
nat (2) a t t r 1 2 4 1

65 nat (2) a t t r 1 2 4 2
nat (2) a t t r 1 2 4 3
% va r i a b l e s f o r a t t r i bu t e or func t i on without arguments : COUNTER. de f au l t

68 nat (2) a t t r 1 2 8 0
nat (2) a t t r 1 2 8 1
nat (2) a t t r 1 2 8 2

71 nat (2) a t t r 1 2 8 3

SYSTEM
74

agt : i n t e r p r e t e r
% ac t i on s f o r c r e a t i on procedure : COUNTER. make

77 c r e a t 1 2926 1
mod :

a l i v e 1 , type 1 , a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 ,
a t t r 1 15 1 , a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 ,
a t t r 1 2 8 1

APPENDIX A. LISTINGS 86

80 pre :
˜ a l i v e 1 /\ a l i v e 0

e f f :
83 a l i v e 1 ’ /\ (type 1 ’ = 1) /\

% pos t cond i t i on
(a t t r 1 2927 1 ’ = 0) /\

86 (a t t r 1 2928 1 ’ = 0) /\
t rue

89
c r e a t 1 2926 2

mod :
92 a l i v e 2 , type 2 , a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 ,

a t t r 1 15 2 , a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 ,
a t t r 1 2 8 2

pre :
˜ a l i v e 2 /\ a l i v e 1

95 e f f :
a l i v e 2 ’ /\ (type 2 ’ = 1) /\

% pos t cond i t i on
98 (a t t r 1 2927 2 ’ = 0) /\

(a t t r 1 2928 2 ’ = 0) /\
t rue

101

c r e a t 1 2926 3
104 mod :

a l i v e 3 , type 3 , a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 ,
a t t r 1 15 3 , a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 ,
a t t r 1 2 8 3

pre :
107 ˜ a l i v e 3 /\ a l i v e 2

e f f :
a l i v e 3 ’ /\ (type 3 ’ = 1) /\

110% pos t cond i t i on
(a t t r 1 2927 3 ’ = 0) /\
(a t t r 1 2928 3 ’ = 0) /\

113 true

116 % ac t i on s f o r rout ine : COUNTER. make
rout 1 2926 1

mod :
119 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
122 e f f :

% pos t cond i t i on
(a t t r 1 2927 1 ’ = 0) /\

125 (a t t r 1 2928 1 ’ = 0) /\
t rue

/\
128% t r a n s i t i o n s

t rue

131
% ac t i on s f o r rout ine : COUNTER. make
rout 1 2926 2

134 mod :
a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

137 a l i v e 2 /\ (type 2 = 1)
e f f :

% pos t cond i t i on
140 (a t t r 1 2927 2 ’ = 0) /\

(a t t r 1 2928 2 ’ = 0) /\
t rue

143 /\
% t r a n s i t i o n s

t rue
146

% ac t i on s f o r rout ine : COUNTER. make
149 rout 1 2926 3

mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
152 pre :

a l i v e 3 /\ (type 3 = 1)
e f f :

155 % pos t cond i t i on
(a t t r 1 2927 3 ’ = 0) /\
(a t t r 1 2928 3 ’ = 0) /\

158 true
/\

% t r a n s i t i o n s

APPENDIX A. LISTINGS 87

161 true

164 % ac t i on s f o r rout ine : COUNTER. i n c r e a s e i
r ou t 1 2929 1

mod :
167 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
170 e f f :

% pos t cond i t i on
(a t t r 1 2927 1 ’ = a t t r 1 2927 1 + 1) /\

173 true
/\

% t r a n s i t i o n s
176 true

179 % ac t i on s f o r rout ine : COUNTER. i n c r e a s e i
r ou t 1 2929 2

mod :
182 a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

a l i v e 2 /\ (type 2 = 1)
185 e f f :

% pos t cond i t i on
(a t t r 1 2927 2 ’ = a t t r 1 2927 2 + 1) /\

188 true
/\

% t r a n s i t i o n s
191 true

194 % ac t i on s f o r rout ine : COUNTER. i n c r e a s e i
r ou t 1 2929 3

mod :
197 a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
pre :

a l i v e 3 /\ (type 3 = 1)
200 e f f :

% pos t cond i t i on
(a t t r 1 2927 3 ’ = a t t r 1 2927 3 + 1) /\

203 true
/\

% t r a n s i t i o n s
206 true

209 % ac t i on s f o r rout ine : COUNTER. d e c r e a s e i
r ou t 1 2930 1

mod :
212 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
215 e f f :

% pos t cond i t i on
(a t t r 1 2927 1 ’ = a t t r 1 2927 1 − 1) /\

218 true
/\

% t r a n s i t i o n s
221 true

224 % ac t i on s f o r rout ine : COUNTER. d e c r e a s e i
r ou t 1 2930 2

mod :
227 a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

a l i v e 2 /\ (type 2 = 1)
230 e f f :

% pos t cond i t i on
(a t t r 1 2927 2 ’ = a t t r 1 2927 2 − 1) /\

233 true
/\

% t r a n s i t i o n s
236 true

239 % ac t i on s f o r rout ine : COUNTER. d e c r e a s e i
r ou t 1 2930 3

mod :
242 a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3

APPENDIX A. LISTINGS 88

pre :
a l i v e 3 /\ (type 3 = 1)

245 e f f :
% pos t cond i t i on

(a t t r 1 2927 3 ’ = a t t r 1 2927 3 − 1) /\
248 true

/\
% t r a n s i t i o n s

251 true

254 % ac t i on s f o r rout ine : COUNTER. i n c r e a s e j
r ou t 1 2931 1

mod :
257 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
260 e f f :

% pos t cond i t i on
(a t t r 1 2928 1 ’ = a t t r 1 2928 1 + 1) /\

263 true
/\

% t r a n s i t i o n s
266 true

269 % ac t i on s f o r rout ine : COUNTER. i n c r e a s e j
r ou t 1 2931 2

mod :
272 a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

a l i v e 2 /\ (type 2 = 1)
275 e f f :

% pos t cond i t i on
(a t t r 1 2928 2 ’ = a t t r 1 2928 2 + 1) /\

278 true
/\

% t r a n s i t i o n s
281 true

284 % ac t i on s f o r rout ine : COUNTER. i n c r e a s e j
r ou t 1 2931 3

mod :
287 a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
pre :

a l i v e 3 /\ (type 3 = 1)
290 e f f :

% pos t cond i t i on
(a t t r 1 2928 3 ’ = a t t r 1 2928 3 + 1) /\

293 true
/\

% t r a n s i t i o n s
296 true

299 % ac t i on s f o r rout ine : COUNTER. d e c r e a s e j
r ou t 1 2932 1

mod :
302 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
305 e f f :

% pos t cond i t i on
(a t t r 1 2928 1 ’ = a t t r 1 2928 1 − 1) /\

308 true
/\

% t r a n s i t i o n s
311 true

314 % ac t i on s f o r rout ine : COUNTER. d e c r e a s e j
r ou t 1 2932 2

mod :
317 a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

a l i v e 2 /\ (type 2 = 1)
320 e f f :

% pos t cond i t i on
(a t t r 1 2928 2 ’ = a t t r 1 2928 2 − 1) /\

323 true
/\

% t r a n s i t i o n s

APPENDIX A. LISTINGS 89

326 true

329 % ac t i on s f o r rout ine : COUNTER. d e c r e a s e j
r ou t 1 2932 3

mod :
332 a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
pre :

a l i v e 3 /\ (type 3 = 1)
335 e f f :

% pos t cond i t i on
(a t t r 1 2928 3 ’ = a t t r 1 2928 3 − 1) /\

338 true
/\

% t r a n s i t i o n s
341 true

344 % ac t i on s f o r rout ine : COUNTER. foo
rout 1 2933 1

mod :
347 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1) /\
350 (a t t r 1 2927 1 = a t t r 1 2928 1 − 2) /\

(a t t r 1 2927 1 > 0) /\
t rue

353
e f f :

t rue
356

% ac t i on s f o r rout ine : COUNTER. foo
359 rout 1 2933 2

mod :
a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
362 pre :

a l i v e 2 /\ (type 2 = 1) /\
(a t t r 1 2927 2 = a t t r 1 2928 2 − 2) /\

365 (a t t r 1 2927 2 > 0) /\
t rue

368 e f f :
t rue

371
% ac t i on s f o r rout ine : COUNTER. foo
rout 1 2933 3

374 mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
pre :

377 a l i v e 3 /\ (type 3 = 1) /\
(a t t r 1 2927 3 = a t t r 1 2928 3 − 2) /\
(a t t r 1 2927 3 > 0) /\

380 true

e f f :
383 true

386 % ac t i on s f o r rout ine : COUNTER. copy
rou t 1 11 1

mod :
389 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1) /\
392 (arg todo <> 0) /\

t rue /\% unsupported expre s s i on
true

395
e f f :

% pos t cond i t i on
398 true /\% unsupported expre s s i on

true
/\

401% t r a n s i t i o n s
t rue

404
% ac t i on s f o r rout ine : COUNTER. copy
rou t 1 11 2

407 mod :

APPENDIX A. LISTINGS 90

a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,
a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2

pre :
410 a l i v e 2 /\ (type 2 = 1) /\

(arg todo <> 0) /\
t rue /\% unsupported expre s s i on

413 true

e f f :
416 % pos t cond i t i on

true /\% unsupported expre s s i on
true

419 /\
% t r a n s i t i o n s

t rue
422

% ac t i on s f o r rout ine : COUNTER. copy
425 rou t 1 11 3

mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
428 pre :

a l i v e 3 /\ (type 3 = 1) /\
(arg todo <> 0) /\

431 true /\% unsupported expre s s i on
true

434 e f f :
% pos t cond i t i on
true /\% unsupported expre s s i on

437 true
/\

% t r a n s i t i o n s
440 true

443 % ac t i on s f o r rout ine : COUNTER. standard copy
rou t 1 12 1

mod :
446 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1) /\
449 (arg todo <> 0) /\

t rue /\% unsupported expre s s i on
true

452
e f f :

% pos t cond i t i on
455 true /\% unsupported expre s s i on

true
/\

458% t r a n s i t i o n s
t rue

461
% ac t i on s f o r rout ine : COUNTER. standard copy
rou t 1 12 2

464 mod :
a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

467 a l i v e 2 /\ (type 2 = 1) /\
(arg todo <> 0) /\

t rue /\% unsupported expre s s i on
470 true

e f f :
473 % pos t cond i t i on

true /\% unsupported expre s s i on
true

476 /\
% t r a n s i t i o n s

t rue
479

% ac t i on s f o r rout ine : COUNTER. standard copy
482 rou t 1 12 3

mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
485 pre :

a l i v e 3 /\ (type 3 = 1) /\
(arg todo <> 0) /\

488 true /\% unsupported expre s s i on
true

APPENDIX A. LISTINGS 91

491 e f f :
% pos t cond i t i on
true /\% unsupported expre s s i on

494 true
/\

% t r a n s i t i o n s
497 true

500 % ac t i on s f o r rout ine : COUNTER. deep copy
rou t 1 18 1

mod :
503 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1) /\
506 (arg todo <> 0) /\

t rue

509 e f f :
% pos t cond i t i on
true /\% unsupported expre s s i on

512 true
/\

% t r a n s i t i o n s
515 true

518 % ac t i on s f o r rout ine : COUNTER. deep copy
rou t 1 18 2

mod :
521 a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

a l i v e 2 /\ (type 2 = 1) /\
524 (arg todo <> 0) /\

t rue

527 e f f :
% pos t cond i t i on
true /\% unsupported expre s s i on

530 true
/\

% t r a n s i t i o n s
533 true

536 % ac t i on s f o r rout ine : COUNTER. deep copy
rou t 1 18 3

mod :
539 a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
pre :

a l i v e 3 /\ (type 3 = 1) /\
542 (arg todo <> 0) /\

t rue

545 e f f :
% pos t cond i t i on
true /\% unsupported expre s s i on

548 true
/\

% t r a n s i t i o n s
551 true

554 % ac t i on s f o r rout ine : COUNTER. pr in t
r ou t 1 23 1

mod :
557 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
560 e f f :

t rue

563
% ac t i on s f o r rout ine : COUNTER. pr in t
r ou t 1 23 2

566 mod :
a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

569 a l i v e 2 /\ (type 2 = 1)
e f f :

t rue
572

APPENDIX A. LISTINGS 92

% act i on s f o r rout ine : COUNTER. pr in t
575 rou t 1 23 3

mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
578 pre :

a l i v e 3 /\ (type 3 = 1)
e f f :

581 true

584 % ac t i on s f o r rout ine : COUNTER. d e f a u l t r e s c u e
r ou t 1 26 1

mod :
587 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
590 e f f :

t rue

593
% ac t i on s f o r rout ine : COUNTER. d e f a u l t r e s c u e
r ou t 1 26 2

596 mod :
a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

599 a l i v e 2 /\ (type 2 = 1)
e f f :

t rue
602

% ac t i on s f o r rout ine : COUNTER. d e f a u l t r e s c u e
605 rou t 1 26 3

mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
608 pre :

a l i v e 3 /\ (type 3 = 1)
e f f :

611 true

614 % ac t i on s f o r rout ine : COUNTER. do nothing
rou t 1 27 1

mod :
617 a t t r 1 2927 1 , a t t r 1 2928 1 , a t t r 1 1 1 , a t t r 1 2 1 , a t t r 1 10 1 , a t t r 1 15 1 ,

a t t r 1 16 1 , a t t r 1 20 1 , a t t r 1 22 1 , a t t r 1 21 1 , a t t r 1 24 1 , a t t r 1 2 8 1
pre :

a l i v e 1 /\ (type 1 = 1)
620 e f f :

t rue

623
% ac t i on s f o r rout ine : COUNTER. do nothing
rou t 1 27 2

626 mod :
a t t r 1 2927 2 , a t t r 1 2928 2 , a t t r 1 1 2 , a t t r 1 2 2 , a t t r 1 10 2 , a t t r 1 15 2 ,

a t t r 1 16 2 , a t t r 1 20 2 , a t t r 1 22 2 , a t t r 1 21 2 , a t t r 1 24 2 , a t t r 1 2 8 2
pre :

629 a l i v e 2 /\ (type 2 = 1)
e f f :

t rue
632

% ac t i on s f o r rout ine : COUNTER. do nothing
635 rou t 1 27 3

mod :
a t t r 1 2927 3 , a t t r 1 2928 3 , a t t r 1 1 3 , a t t r 1 2 3 , a t t r 1 10 3 , a t t r 1 15 3 ,

a t t r 1 16 3 , a t t r 1 20 3 , a t t r 1 22 3 , a t t r 1 21 3 , a t t r 1 24 3 , a t t r 1 2 8 3
638 pre :

a l i v e 3 /\ (type 3 = 1)
e f f :

641 true

644
ENVIRONMENT

647 INITIALLY
a l i v e 0 /\ (type 0 = 0) /\ ˜ a l i v e 1 /\ ˜ a l i v e 2 /\ ˜ a l i v e 3

GOAL
650 (a l i v e 1 /\ (type 1 = 1) /\ ((t rue /\ (a t t r 1 2927 1 = a t t r 1 2928 1 − 2)) /\ (

a t t r 1 2927 1 > 0))) \/
(a l i v e 2 /\ (type 2 = 1) /\ ((t rue /\ (a t t r 1 2927 2 = a t t r 1 2928 2 − 2)) /\ (

a t t r 1 2927 2 > 0))) \/

APPENDIX A. LISTINGS 93

(a l i v e 3 /\ (type 3 = 1) /\ ((t rue /\ (a t t r 1 2927 3 = a t t r 1 2928 3 − 2)) /\ (
a t t r 1 2927 3 > 0)))� �

APPENDIX A. LISTINGS 94

A.6 Execution Paths of COUNTER.foo

• Problem 1

– Step 1: create COUNTER.make (1)

– Step 2: COUNTER.increase i (1)

– Step 3: COUNTER.print (1)

– Step 4: COUNTER.default rescue (1)

– Step 5: COUNTER.print (1)

– Step 6: COUNTER.print (1)

– Step 7: COUNTER.default rescue (1)

– Step 8: COUNTER.print (1)

– Step 9: COUNTER.default rescue (1)

– Step 10: COUNTER.do nothing (1)

– Step 11: COUNTER.print (1)

• Problem 2

– Step 1: create COUNTER.make (1)

– Step 2: COUNTER.print (1)

– Step 3: COUNTER.default rescue (1)

– Step 4: COUNTER.do nothing (1)

– Step 5: COUNTER.default rescue (1)

– Step 6: COUNTER.print (1)

– Step 7: COUNTER.do nothing (1)

– Step 8: COUNTER.do nothing (1)

– Step 9: COUNTER.increase i (1)

– Step 10: COUNTER.make (1)

– Step 11: COUNTER.do nothing (1)

• Problem 3

– Step 1: create COUNTER.make (1)

– Step 2: COUNTER.do nothing (1)

– Step 3: COUNTER.increase j (1)

– Step 4: COUNTER.default rescue (1)

– Step 5: COUNTER.increase i (1)

– Step 6: COUNTER.print (1)

– Step 7: COUNTER.default rescue (1)

– Step 8: COUNTER.print (1)

APPENDIX A. LISTINGS 95

– Step 9: COUNTER.do nothing (1)
– Step 10: COUNTER.do nothing (1)
– Step 11: COUNTER.default rescue (1)

• Problem 4

– Step 1: create COUNTER.make (1)
– Step 2: COUNTER.default rescue (1)
– Step 3: COUNTER.increase j (1)
– Step 4: COUNTER.print (1)
– Step 5: COUNTER.do nothing (1)
– Step 6: COUNTER.do nothing (1)
– Step 7: COUNTER.print (1)
– Step 8: COUNTER.do nothing (1)
– Step 9: COUNTER.print (1)
– Step 10: COUNTER.print (1)
– Step 11: COUNTER.do nothing (1)

• Problem 5

– Step 1: create COUNTER.make (1)
– Step 2: COUNTER.make (1)
– Step 3: COUNTER.make (1)
– Step 4: COUNTER.make (1)
– Step 5: COUNTER.make (1)
– Step 6: COUNTER.make (1)
– Step 7: COUNTER.make (1)
– Step 8: COUNTER.make (1)
– Step 9: COUNTER.make (1)
– Step 10: COUNTER.make (1)
– Step 11: COUNTER.make (1)

• Problem 6

– Step 1: create COUNTER.make (1)
– Step 2: COUNTER.increase j (1)
– Step 3: COUNTER.increase j (1)
– Step 4: COUNTER.do nothing (1)
– Step 5: COUNTER.print (1)
– Step 6: COUNTER.do nothing (1)
– Step 7: COUNTER.increase i (1)
– Step 8: COUNTER.increase j (1)

Bibliography

[Aic01] B. Aichernig. Systematic Black-Box Testing of Computer-Based Systems
through Formal Abstraction Techniques. PhD thesis, Institute for Software
Technology, TU Graz, Austria, January 2001.

[ARM03] K. Arnout, X. Rousselot, and B. Meyer. Test wizard: Automatic test case
generation based on Design by ContractTM, draft report. Retrieved July
2003 from http://se.inf.ethz.ch/people/arnout/arnout_rousselot_meyer_
test_wizard.pdf, 2003.

[Bec00] K. Beck. Extreme Programming, Das Manifest. Addison-Wesley, 2000.

[Bez03] E. Bezault. Gobo Eiffel project. http://www.gobosoft.com/, 2003.

[BKM02] C. Boyapati, S. Khurshid, and D. Marinov. Korat: automated testing based on Java
predicates. SIGSOFT Softw. Eng. Notes, 27(4):123–133, 2002.

[BMR95] A. Borgida, J. Mylopoulos, and R. Reiter. On the frame problem in procedure speci-
fications. Software Engineering, 21(10):785–798, 1995.

[Bry86] Randal E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

[CGGT97] A. Cimatti, F. Giunchiglia, E. Giunchiglia, and P. Traverso. Planning via model
checking: A decision procedure for AR. In ECP, pages 130–142, 1997.

[CGP99] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
MA, 1999.

[Ciu04] I. Ciupa. Test Studio: An environment for automatic test generation based on De-
sign by ContractTM. Master’s thesis, Chair of Software Engineering, Eidgenössische
Technische Hochschule Zürich, 2004.

[Cla04] M. Clark. Pragmatic Project Automation, How to Build, Deploy, and Monitor Java
Applications. The Pragmatic Programmers, 2004.

[CPRT03] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence, 147(1-2):35–84, 2003.

[DDH74] O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. Number 8
in A.P.I.C. Studies in Data Processing. Academic Press, London, New York, sixth
edition, 1974.

[DHJ+01] M. B. Dwyer, J. Hatcliff, R. Joehanes, S. Laubach, C. S. Pasareanu, Robby, H. Zheng,
and W. Visser. Tool-supported program abstraction for finite-state verification. In
International Conference on Software Engineering, pages 177–187, 2001.

96

http://se.inf.ethz.ch/people/arnout/arnout_rousselot_meyer_test_wizard.pdf
http://se.inf.ethz.ch/people/arnout/arnout_rousselot_meyer_test_wizard.pdf
http://www.gobosoft.com/

BIBLIOGRAPHY 97

[ECGN99] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. In International Conference
on Software Engineering, pages 213–224, 1999.

[Flu04] B. Fluri. Reflection for Eiffel. Master’s thesis, Chair of Software Engineering, Eid-
genössische Technische Hochschule Zürich, 2004.

[FN71] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the application of theorem
proving to problem solving. In Proc. of the 2nd IJCAI, pages 608–620, London, UK,
1971.

[Gre04] N. Greber. Test Wizard: Automatic test generation based on Design by ContractTM.
Master’s thesis, Chair of Software Engineering, Eidgenössische Technische Hochschule
Zürich, 2004.

[Hol92] J. H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence. MIT Press, 1992.

[HT03] A. Hunt and D. Thomas. Pragmatic Unit Testing in Java with JUnit. The Pragmatic
Programmers, 2003.

[Ikr03] I. M. Ikram. Genetic Algorithm classes. http://eiffelzone.com/esd/gac/index.
html, 2003.

[Ise03] ISE Eiffel. http://www.eiffel.com, 2003.

[Jac02] D. Jackson. Alloy: a lightweight object modelling notation. ACM Trans. Softw. Eng.
Methodol., 11(2):256–290, 2002.

[Jen03] R. M. Jensen. Efficient BDD-Based Planning for Non-Deterministic, Fault-Tolerant,
and Adversarial Domains. PhD thesis, Carnegie Mellon University, June 2003.

[Jen04] Eiffel to C++ terminology mapping. http://www.berenddeboer.net/eiffel/
archive/eiffel-cpp-map.html, 2004.

[LBR00] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface specification language for Java. Technical Report 98-06i, 2000.

[Mey92] Bertrand Meyer. Eiffel: The Language. Prentice Hall Object-Oriented Series. Prentice
Hall, New York, London, Toronto, Sydney, Tokyo, Singapore, 1992.

[Mey94] B. Meyer. Reusable Software: The Base Object-Oriented Component Libraries. Pren-
tice Hall, 1994.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice Hall PTR, 2nd edition,
1997.

[MK01] D. Marinov and S. Khurshid. TestEra: A novel framework for automated testing of
Java programs. In Proc. 16th IEEE International Conference on Automated Software
Engineering (ASE), pages 22–34, 2001.

[Zel99] A. Zeller. Yesterday, my program worked. Today, It does not. Why? In ESEC /
SIGSOFT FSE, pages 253–267, 1999.

http://eiffelzone.com/esd/gac/index.html
http://eiffelzone.com/esd/gac/index.html
http://www.eiffel.com
http://www.berenddeboer.net/eiffel/archive/eiffel-cpp-map.html
http://www.berenddeboer.net/eiffel/archive/eiffel-cpp-map.html

	Introduction
	TestStudio
	Master/Slave Design
	Random Strategy
	Planning Strategy

	Preliminaries
	Eiffel
	Eiffel Terminology
	Design By Contract
	CAT Calls
	darkblue LINKED_LIST
	Testing
	Planning
	Bifrost

	Related Work and Alternative Approaches
	Related Work
	TestEra
	Korat
	Alternative Strategies
	Genetic Programing

	Master/Slave Design
	Contract Based Testing
	TestStudio
	Random Strategy
	Limitations
	Master/Slave
	Concept
	Interpreter
	Oracle
	Modification of the Random Strategy
	Results
	Explanation
	Results for darkblue LINKED_LIST
	Results for darkblue DS_LINKED_LIST

	Planning Strategy
	Motivation
	Bifrost, A Planner
	Manual Problem Creation
	Eiffel Source Code
	ExtNADL Problem
	Universal Plan

	Dealing with Uncertainty
	Planning with Learning

	A General Object Model in the Planning Domain
	Example
	The Type darkblue NONE
	Routines
	Creation Routines
	Expressions

	The darkblue COUNTER Example
	Conclusion and Outlook
	Master/Slave Design
	Planning Strategy
	Future Work
	Listings
	TestStudio Project File for Class darkblue LINKED_LIST
	Test Result Summary for Class darkblue LINKED_LIST
	Interface of darkblue LINKED_LIST
	Source Code of Class darkblue COUNTER
	Initial Problem for darkblue COUNTER.foo
	Execution Paths of darkblue COUNTER.foo

	Bibliography

