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S Y S T E M A T I C  C O N C U R R E N T  
O B J E C T - O R I E N T E D  

P R O G R A M M I N G  

udging by the looks of the two parties, the 
marriage between concurrent computa- 
tion and object-oriented programming--  
a union much desired by practitioners in 
such fields as telecommunications, high- 
performance computing, banking and 
operating systems--appears easy enough 
to arrange. This appearance, however, is 
deceptive: the problem is a hard one. 

This article points the way toward a 
pos,;ible solution. The precise problem 
examined here is restricted to: 

What is the simplest, smallest and most convincing extension to 
the method of systematic object-oriented software construction that 
can address the needs oJ concurrent and distributed computing as well 
as those of sequential computation? 

The article does not claim to discuss concurrency and 
distribution in a general and unbiased way. Rather, it takes 
the object-oriented paradigm as a given (on the basis of 
its contributions to the production of quality software) and 
investigates how best to adapt it so it covers both concur- 
rent and sequentia;[ applications. 

The word "systematic" as used in the title of the article 
will provide strong gqaidance to our search for this minimal 
extension. We are interested in an approach that makes it 
possible to reason about software systems in a precise way, 
by extending to the concurrent case the systematic tech- 
niques, known as 'design by contract', which can be applied 
to the systematic (~dthough not necessarily fully formal) 
development of sequential object-oriented software. 

A word ofwaming as to the actual ambition of the model 
discussed here. No claim is made that the work as reported 
is final, and a number of possible criticisms are discussed 
in the final section. I do think, however, that in its discussion 

of how the mutual  attraction between 
object orientation and concurrency can 
be turned into a reasonably happy 
marriage, this article raises a number  
of questions. Although crucial for both 
theoretical understanding and prac- 
tical implementation of concurrent 
object-oriented computation, these 
questions have not been addressed (or 
in some cases even mentioned) by 
previous work on the subject, and will 
have to be resolved before a solution 
can be widely accepted and applied. 

Similarities and Contradictions 
The property which initially suggests 
an easy match between the ideas of 
concurrency and object orientation is 
the remarkable similarity between the 
basic constructs of both object orienta- 
tion and concurrency. It is hard to miss 
the analogies between objects and pro- 
cesses, or more accurately between the 
underlying abstractions: classes and 
process types. Both categories of con- 
structs support: 
• Local variables (attributes of a class, 
variables of a process or process type) 
• Persistent data, keeping their value 
between successive activations. 
• Encapsulated behavior (a single cycle 
for a process; any n u m b e r  of routines 
for a class) 
• Heavy restrictions on how modules 
can exchange information 
• A c o m m u n i c a t i o n  m e c h a n i s m  
usually based on some form of message 
passing. 

It is not surprising, then, that re- 
searchers have tried to unite the two 
areas. But although existing designs 
(for surveys see [1, 19] as well as a recent 
thesis [17]) have introduced many pro- 
ductive ideas, it is fair to state that so 
far none has succeeded in providing a 
widely accepted mechanism for con- 
current object-oriented programming. 
The primary reason is probably the 
undue  complexity of most of the pro- 
posed solutions, which tend to add the 
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full power of an independent  concur- 
rency facility to an object-oriented 
language,  or vice versa. Ano the r  
reason is that little of the existing 
l i terature devotes much attention to 
correctness issues, and more generally 
to the possibility of systematic reason- 
ing about concurrent  object-oriented 
programs.  

The  mechanism described here 
at tempts to remedy these limitations 
at least in part.  The  syntactical exten- 
sion, which it brings to an object- 
or iented language (Eiffel) is the 
smallest feasible: one new keyword. 
A new library class with procedures  
for setting two options is also pro-  
vided to adjust the behavior in spe- 
cial cases. The  mechanism makes the 
greatest possible use of  existing ob- 
ject -or iented facilities--classes, in- 
heritance, assertions, a rgument  pass- 
ing, de fe r red  c lasses-- to  cover such 
concepts of  concurrent  computat ion 
as exclusive access, processes and 
synchronization. 

Criteria 
The  design of  a p rope r  concurrent  
object-oriented mechanism must sat- 
isfy a number  of  criteria. The  combi- 
nation of  these criteria, as def ined in 
the following subsections, places 
ra ther  strict constraints on the possi- 
ble concurrency mechan i sm- - to  the 
extent  that one might  wonder  at first 
whether  any solution is possible. 

Minimallty of Mechanism 
Object-oriented software construc- 
tion is a rich and powerful  paradigm,  
which, as noted previously, would 
intuitively seem to be ready for sup- 
por t ing concurrency, I t  is essential, 
then, to aim for the smallest possible 
extension. Minimalism here is not 
jus t  a question of  good language de- 
sign, I f  the concurrent  extension is 
not minimal, some concurrency con- 
structs will be r edundan t  with the 
object-oriented constructs, or  conflict 
with them, making the program-  
mer 's  task difficult or  impossible. To 
avoid such a situation, we must find 
the smallest syntactic and semantic 
epsilon that will give concurrent  exe- 
cution capabilities to our  object- 
or iented programs.  

C O 

G R B C N 

Full Use of Inheritance and Other 
Object-Oriented Techniques 
It would be unacceptable to have a 
concurrent  object-oriented mecha- 
nism that does not take advantage of  
all object-oriented techniques, in 
part icular  inheritance. 

One of  the most interest ing contri- 
butions of  object-oriented technol- 
ogy is its ability to suppor t  many dif- 
ferent  pat terns o f  computat ion.  
Once a useful type of  behavior is 
identified,  it can be encapsulated in a 
defe r red  class (see "Deferred Classes 
and Features" sidebar) from which 
any class that uses that behavior  will 
inherit .  Such a class is similar to a 
process type in concurrent  p rogram-  
ming and its general  form may be 
expressed as: 

deferred class PROCESS feature 
live is 

- -  General structure with variants. 
do 

from setup until over loop 
step 

end; 
finalize 

end; 
feature {NONE} 

setup is deferred end; 
over: BOOLEAN is deferred end; 

step is deferred end; 
finalize is deferred end 

end 

(The clause f ea ture  (NONE} intro- 
duces features that are not available 
to clients, being meant  for internal  
use only. Features declared in a 
clause beginning with jus t  feature 
without qualification are available for 
calls by any client and are said to be 
exported.)  

Since routines initialize, over, step 
and finalize are defer red ,  descen- 
dants of  PROCESS may provide ef- 
fective implementat ions of  these rou- 
tines, cor responding to individual  
variants. The re  may be as many such 
classes as variants are needed.  The  
overall behavior,  however, is the 
same for all variants; it is de te rmined  
by the effective rout ine live. In the 
example the structure of  live involves 
a loop, but  the same ideas are appli- 
cable to any other  structure. Also, 
there will often be more  than one 
rout ine such as live, covering several 
pat terns of  behavior that are known 
at the level of  the defe r red  class. 

This technique and many others 
(such as the use of  polymorphism,  
static typing and dynamic binding to 
obtain flexible and safe software ar- 
chitectures) are essential to the ob- 
jec t -or iented approach,  and are po- 
tentially beneficial to concurrent  
p rog ramming  as well. This has been 
recognized for example  by recent 
changes to the parallel  object- 
or iented language (POOL) [3], early 
versions o f  which did not suppor t  
inheritance. The  model  presented 
here  makes full use of  all object- 
or iented techniques. 

Compatibility with Design 
by Contract 
Another  central idea of  what may be 
called the Eiffel methodology of  ob- 
ject -or iented software construction is 
the notion of  Design by Contract  [ 11, 
15]. According to this view, the de- 
sign of  a reliable software system 
should use a number  of  components  
(classes) that communicate  with one 
another  on the basis of  precise defi- 
nitions of  obligations and benefits: 
contracts. The  obligations and bene- 
fits are documented  in the text of  the 
software itself, where they appear  in 
the form of  assertions. 

A contract  governs the relation 
between client objects requesting ser- 
vices (by calling a feature) and sup- 
plier objects providing services. The  
services are expressed by the rou- 
tines of  the supplier 's  class. For  each 
routine,  an assertion known as the 
precondi t ion expresses the input  
requirements;  it binds the clients and 
protects the supplier.  Another  asser- 
tion, the postcondition,  expresses the 
propert ies  ensured by any call to the 
routine; it binds the supplier  and 
guarantees a certain result to the cli- 
ents. Beyond the precondi t ion and 
postcondition of  its individual rou- 
tines, a class is also characterized by 
its invariant, which applies to all ex- 
por ted  routines, being in effect 
added  to both their  precondit ions 
and postconditions. 

A convenient  example  that will aid 
in the search for the p roper  concur- 
rent  extension is a class describing 
queues (first-in-first-out container 
structures) of  bounded  size. The  cor- 
responding  concurrent  notion, de- 
veloped in the following p rogram 
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text, will describe bounded  buffers. 
Following is a sketch of the class, with 
the implementat ion details omitted. 
Preconditions are introduced by re- 
quire, postconditions by ensure. 

class BOUNDED_QUEUE[G] feature 
empty: BOOLEAN is 

- - I s  rhere no accessible element? 
do Result: = ... end; 

full: BOOLEAN  is 
- - I s  there no room left 
- - f o r  more elements? 

do Result: = ... end; 
put (x:G) is 

- -  Add x as newest element. 
require 

not fu l l  
do 

~ l ~ u g e  

not empty 
end; 

remove is 
- -  Remove oldest element. 

require 
not empty 

do 

ensure 
not fu l l  

end; 
item is 

--Oldest element 
- - n o t  yet consumed 

require 
not empty 

do Result: = ... end 
feature {NONE} 

... Secret features (used for 
the implementation) ... 

invariant 
... See below ... 

end 

Through  its assertions, class 
B O U N D E D _ Q U E U E  de,;cribes a 
number  of contracts gow.wning the 
use of its features by clients. For ex- 
ample, the contract for p ~ t  (x) is ex- 
pressed in Table 1. 

An important  property of precon- 
ditions, which we will haw. ~ to exam- 
ine again in the concurrent  context, 
is that they express the sole obliga- 
tions the client has to meet. This may 
be called the n o  h i d d e n  c l a u s e s  rule 
of Design by Contract. For example, 
a call to p u t  J[s guaranteed to succeed 
if the client has ensured the precon- 
dition, perhaps by writing it (with q 
of type B O U N D E D _ Q U E U E  IX] and a 
of type X for some type X) as: 

O N 
C O G 

- - / 1 /  
i f  not qfull then 

q.put (a) 
end 

or by prefacing it with a call to re- 

move,  whose postcondition implies 
the precondition of p u t  (assuming 
that the call to remove is itself correct, 
that is to say, the precondition not 
q.empty initially holds): 

- - / 2 /  
q.remove; q.put (x) 

Another  important  use of asser- 
tions is the class invariant, which 
characterizes the consistency of a 
class. Assume for example that an 
implementat ion of B O U N D E D _  

Q U E U E  relies on the well-known 
technique of using an array of ar- 

ray_count  elements, managed in a cir- 
cular way as illustrated in Figure 1. 
The  details of  the implementat ion 
are left to the reader; the following 
invariant will express its fundamen-  
tal properties, in particular the need 
to keep one position unused in order  
to be able to distinguish between the 
empty and full cases: 

array_count = capacity - 1; 
abs (next - oldest) < capacity 
0 < =oldest; oldest < =capacity; 
0 < = next; next < = capacity; 

Any call to an exported routine 
may assume that the invariant is ini- 
tially satisfied (i.e., it may expect to 
find the object in a consistent state); 
but it must also restore the invariant, 
in addition to ensur ing its postcondi- 
tion, on exit (i.e., it must leave the 
object in a consistent state). We may 
thus picture the life of the object as a 
sequence of transitions between con- 
sistent states. The shaded squares in 
Figure 1 represent states satisfying 
the invariant; the transitions repre- 
sent calls to exported features, exe- 
cuted by clients. These states are the 
only ones in which the object is acces- 
sible to a new client. 

The  notion of invariant is essential 
to the design of a proper exception 
mechanism. In  the Design by Con- 
tract approach, an exception occurs 
when a routine is unable to fulfill its 
contract through the initially 
p lanned strategy. The routine may 
try again through a Retry instruc- 

tion, usually after at tempting to cor- 
rect the source of trouble. Otherwise, 
the routine will execute to the end its 
(implicit or explicit) Rescue clause, 
fail, and cause an exception in the cli- 
ent, which will then be faced with the 
same choice--Retry or failure. In  
case of failure the Rescue clause is 
not required to fulfill the contract as 
expressed by the postcondition (this 
would be success, not failure!), but  it 
must restore the invariant, leaving 
the object in a consistent state for any 
later attempt at Retry. 

Another  reason why the notion of 
invariant is important  for concur- 
rency is that it enables us to put  the 
notion of "express message" [19] into 
a proper  perspective. Express mes- 
sages, as proposed, allow interrupt-  
ing the execution of a routine on a 
certain supplier object, on behalf  of 
some client, when a call comes in 
from another  client which is deemed 
more important.  An incoming ex- 
press message will then get served 
right away; only then will the original 
client's execution resume. Defined in 
this way, however, such a mechanism 
conflicts with correctness require- 
ments: if we allow executions to be 
interrupted,  we cannot guarantee 
they will preserve the invariant. Pro- 
ducing an object which does not sat- 
isfy the invariant of its own class is 
probably the worst disaster that may 
occur dur ing  the execution of an ob- 
ject-oriented program. (Another 
well-known source of such a situation 
is static binding.) 

As a consequence of this analysis, 
the mechanism described does not 
support  express messages in the 
sense of [19]. It will, however, allow a 
VIP client to in terrupt  an earlier cli- 
ent, causing an exception in that cli- 
ent. Such a facility is compatible with 
Design by Contract, since the invari- 
ant will be restored as a result of the 
exception handling. 

The relevance of invariants to con- 
current  programming was expressed 
by Hailpern [8], who uses a concept 
of "monitor invariant, [which] must 
be true when no process owns the 
monitor." Starting from an object- 
oriented basis, we do not need a spe- 
cial notion; class invariants will pro- 
vide a way to characterize the invari- 
ant properties associated with 
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monitors,  processes and other  con- 
structs of  nonobject-or iented concur- 
rent  p rogramming.  

Provability 
Design by Contract  provides the 
starting point  for a potential formal 
approach  to object-oriented compu- 
tation. Assuming p roof  rules were 
available for the inner  details of  an 
object-oriented language, we could 
use a general  p roo f  rule for calls to 
prove entire object-oriented systems. 
The  p roof  rule for calls is fundamen-  
tal because at the heart  of  object- 
or iented computat ion lie operat ions 
of  the form 

t.f ( .... a . . . .  ) 

which call a feature f ,  possibly with 
arguments  such as a, on a target t 
represent ing an object. The  basic 
p roo f  rule may be informally stated 
as follows: 

I f  we can prove that the body of f ,  
started in a state satisfying the pre- 
condition of  f,  terminates in a state 
satisfying the postcondition, then we 
can deduce the same proper ty  for 
the preceding call, with actual argu- 
ments such as a substituted for the 
corresponding formal arguments ,  
and every clause o f  the form 
some_boolean_property in the assertions 
replaced by the corresponding prop-  
erty on t, o f  the form 
t.some_boolean_property. 

For example,  if we are able to 
prove that the actual implementat ion 
of  put in class BOUNDED_QUEUE, 
assuming not full initially, produces  a 
state satisfying not empty, then for any 
queue q and element  a the rule allows 
us to deduce 

{not q.full} q.put (x) {not q.empty) 

where the assertions in braces de- 
scribe the input  and output  assump- 
tions respectively. 

The  proof  rule, an adaptat ion to 
the object-oriented form of  compu- 
tation of  Hoare 's  inference rule for 
procedures  [9, 13] may be expressed 
as shown in Figure 3, where INV is 
the class invariant, Pre (f) is the set of  
precondi t ion clauses o f f  and Post Of) 
the set of  its postcondition clauses. 
Recall that an assertion is the con- 
junct ion of  a set of  clauses, of  the 
form 

O 
U 

0 ~ 

G ~ N  G 

Bas ic  Terminology 
development is based on the notion of class. 

les a set of potential run-time objects, defin- 
• ely by the applicable operations, or features. 

Any object created at run time from the pattern defined by the class 
is called an instance of the class. 

The features of a class are of two kinds: routines, which describe 
computations applicable to instances of the class; and attributes, 
which describe data fields associated with instances Of the class. For 
example, a class CAR may have attributes weight  and speed, and rou- 
tines start, stop, accelerate, average_speed. A routine is either a pro- 
cedure, which may change the object to which it is applied but does 
not directly return a result, or a function, which computes some in- 
formation about the object and returns that information as a result. 
In both cases, the routine may have one or more arguments. In the 
example start, stop, accelerate will be procedures, and average_speed 
will be a function, computing the average speed since a certain 
starting time; the funct ion will have one argument, representing 
that time. 

The basic computational mechanism is feature call, which applies a 
feature to a certain object, known through a name in the software 
text, or entity. All entities are declared. For example, wi th the decla- 
rations 

c: CAR; x: REAL 
a call to feature average_speed, used here in an assignment, could 
have the form 

x: = c.average_speed (0) 
which assigns to x the value of the average speed of the object at- 
tached to c (an instance of CAR) since time 0. The notation used here 
for calls is dot notation, which includes the fol lowing components: 
an enti ty representing the target object of the call; a dot (.); a lea- 
ture name; a list of actual arguments, i f  any, in parentheses. 

Other examples of calls are 
c.accelerate (20); 
x: = c.speed 

A call such as any of the preceding ones is executed as part of the 
text  of some rout ine-- i tsel f  executed on a certain object C_OBJ, the 
client object of the call. The object to which a call applies (the object 
attached to c in the examples) is called the supplier object. 

A feature such as speed may be implemented as either an attri. 
bute or a function. Principles of information hiding and uniform ac- 
tess imply that this choice of implementation should make no differ- 
ence to clients. The notation for feature calls, and the standard form 
for class documentation, known as the short form of a class, are in- 
deed the same in both cases. 

Table 1. The con t rac t  f o r  put (x )  

Client 

Supplier 
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clause1; ... clausen 

The  large /% signs in Figure 3 indi- 
cate conjunction of  all the given 
clauses. T h e  actual arguments  of  f 
have not been explicitly included in 
the call, but  the p r imed  expressions 
such as t.q' indicate substitution of  
the actual arguments  of  the call for 
the formal  arguments  of  J. The  rule 
is stated in Figure 3 in the form 
which does not  suppor t  proofs of  
recursive routines. Add ing  such sup- 
port,  however, does not  affect the 
present  discussion. For  details of  
handl ing recursion,  see [9] or  [13]. 

T h e  reason for consiciering the 
assertion clauses separately and then 
"anding" them is that this form pre- 
pares the rule's adapta t ion to "sepa- 
rate" calls in the concurrent  exten- 
sion. Ano the r  p roper ty  of  the 
nonconcurren t  rule which is of  inter- 
est as prepara t ion  for  that extension 
is the presence of  the invariant  I N V  
in the p roof  of  the rout ine body 
(above the line), with no directly visi- 
ble benefit  tor  the p roo f  of  the call 
(below the line). More assel:tions with 
that p roper ty  will appear  in the con- 
current  rule. 

The  provability requi rement  and 
the cri terion of  compatibili ty with 
Design by Contract  have a major 
immediate  consequence for concur- 
rent  computat ion.  The  bad news 
about proving the correctness of  a 
class is that for every expor ted  rou- 
tine f you must prove a proper ty  of  
the form 

{INV /% aUpre (f)} body 0 c) {INV /% 
allpost (f)} 

The  good news, however, is that 
you only have as many proper t ies  of  
this kind to prove as the class has 
expor ted  routines. (Attributes do not  
require  any specific proof, but  they 
may be involved in the invariant.) 
This provides a very s trong guideline 
for choosing the granulari ty of  ex- 
clusive object access in concurrent  
computat ion.  I f  we allowed a sup- 
plier object to accept a new call f rom 
a client while a call f rom another  cli- 
ent  is in progress,  the "ge,od news" 
would not  hold any more; the prop-  
erty depicted[ in Figure 2, where the 
shaded state,~ (before and after exe- 
cution of  expor ted  features) are the 

C C t} R G 

only ones in which an object is acces- 
sible from the outside, would also fail 
to be satisfied. Consequently, a p roof  
of  correctness would have to take 
into account all possible interleav- 
ings, p roducing  a combinatorial  ex- 
plosion of  proper t ies  to prove. This 
would in fact remove any hope of  
p roduc ing  realistic proofs,  even in- 
formal  ones, or  jus t  o f  being able to 
reason about  software texts in a sys- 
tematic fashion. 

As a result, any client accessing an 
object th rough  a feature must be 
guaranteed  exclusive access to the 
object th roughout  the dura t ion of  
the call. The  smallest permissible 
level o f  granulari ty for exclusive ac- 
cess to an object is the execution of  a 
call to an expor ted  feature. 

This observation generalizes the 
comments  made about  express mes- 
sages. Nothing prevents us from in- 
t e r rup t ing  an ongoing call as long as 
this is done properly:  the previous 
client must  receive an exception, so it 
will be forced ei ther  to fail or  to take 
corrective action. A facility support -  
ing such a scheme, which we may call 
a duel, will be part  o f  the mechanism. 

Support for Command-Query 
Distinction 
An impor tan t  par t  o f  the object- 
or iented method which we should try 
to preserve in concurrent  p rogram-  
ming is the necessity to maintain, 
whenever  possible, a strict distinction 
between two kinds of  features: com- 
mands and queries. A query, imple- 
mented  as an at tr ibute or  function, is 
a feature  that re turns  some informa- 
tion about  an object. A command,  
implemented  as a procedure ,  is a fea- 
ture which may modify the state of  
an object. 

The  command-query  distinction 
directs p rogrammers  to refrain from 
using a p rog ramming  style that has 
become popular  in recent  years, es- 
pecially in connection with the 
spread of  C: functions that produce  
visible side effects. This practice en- 
dangers  referential  t ransparency 
(substitutivity of  equal for equals). 

The  a t tempt  to maintain a strict 
command-query  distinction explains 
why class BOUNDED_QUEUE intro- 
duced previously has two separate 
features, remove and item. Function 

item, a query, accesses the oldest ele- 
ment  not yet removed,  but  does not 
remove it; successive calls to this fea- 
ture will r e tu rn  the same value. Pro- 
cedure remove, a command,  removes 
the oldest element.  A designer  who 
does not apply the command-query  
distinction might  be tempted  to re- 
place these routines by a side-effect- 
p roducing  function get, which both 
removes an e lement  and  re turns  its 
value. The  presence o f  several con- 
cur rent  clients accessing the same 
suppl ier  will initially make it difficult 
to ensure the command-query  dis- 
tinction; but  this rule will in fact sug- 
gest some of  the impor tan t  p roper -  
ties of  the concurrent  mechanism. 

Applicability to Many Forms 
of Concurrency 
A general  cri terion for the design o f  
a concurrent  mechanism is that it 
should suppor t  many dif ferent  
forms of  concurrency:  shared mem- 
ory, multitasking, network program-  
ming, dis tr ibuted processing, real- 
t ime applications. 

With such a broad  set of  applica- 
tion areas, a language mechanism 
cannot  be expected to provide all the 
answers. But it should lend itself to 
adapta t ion  to all the in tended forms 
of  concurrency.  Mechanisms exter- 
nal to the language itself will make it 
possible to describe a mapp ing  be- 
tween the physically available pro- 
cessing units and the abstract threads  
of  control  needed  by the software 
text. 

Support for CoroutJne 
Programming 
An interest ing form of  computat ion 
is the use of  coroutines.  Present in 
the first object-oriented language,  
Simula 67 [5, 18], coroutines (see 
Figure 4) are sequential p rogram 
units that communicate  on an equal 
basis (rather than the master-subor-  
dinate relationship of  a calling unit  
and a routine). Between its successive 
reactivations, a coroutine retains the 
value of  its data, and the location of  
its active p rogram c o u n t e r - - a s  op- 
posed to a routine,  which is always 
restar ted at the beginning. Corou- 
tines restart  each other  explicitly 
th rough  operat ions called resume in 
Simula. 
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Corout ine computat ion may be 
viewed as an ext reme form of  con- 
currency in which only one process- 
ing unit  is available. Any general- 
purpose  concurrency mechanism 
should reduce to a coroutine mecha- 
nism in this case. An impor tant  con- 
sequence of  this proper ty  will be to 
ease the transit ion from a simulation 
to the actual system. To write a com- 
puter  p rogram simulating a real- 
world system that involves concur- 
rent  activities (as most do), it is often 
convenient to use a coroutine-based 
scheme, such as Simula's discrete 
event simulation facilities. I f  the 
same language mechanism is used 
for coroutines and for actual concur- 
rency, dist inguished only by the 
number  of  available processing units, 
writing the simulation helps write the 
actual system; conversely, if the sys- 
tem has already been written, it is 
easier to write a simulation. 

Adaptability through Libraries 
Many concurrency mechanisms have 
been proposed  over the years, f rom 
semaphores  and conditional critical 
regions to Petri nets, monitors  and 
CSP. Each has its partisans, and each 
may provide the best approach for a 
certain problem area. It is impor tant  
that the proposed  mechanism should 
suppor t  at least some of  these mecha- 
nisms. More precisely, the solution 
must be general  enough to allow us 
to program various concurrency con- 
structs in terms of  the basic mecha- 
nism we will have obtained. 

One of  the most impor tant  aspects 
of  the object-oriented method is that 
it supports  the construction of  librar- 
ies for widely used schemes. The  li- 
brary construction facilities (classes, 
assertions, constrained and uncon- 
strained genericity, multiple inheri- 
tance, defer red  classes and others) 
should allow us to express many con- 
currency mechanisms in the form of  
l ibrary components.  

Support for Reuse of 
Nonconcurrent Software 
A criterion of  the desirable (rather 
than essential) category is the ability 
to reuse existing, nonconcurrent  
software, especially libraries of  reus- 
able software components.  This may 
not always be achievable, since con- 
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currency places new demands  on the 
software structure; for example we 
must specify the scope of  exclusive 
access segments. But even when ex- 
isting software cannot be reused ex- 
actly "as is" the work involved in 
making it applicable to concurrent  
development  should be reasonable,  
involving for example the writing of  
simple "wrapper"  classes encapsulat- 
ing existing sequential classes. This 
cri terion may be viewed as another  
form of  the minimality requirement ,  
appl ied here  not to the job  of  the lan- 

guage designer  but  to that of  soft- 
ware developers.  

Suppor t  for Deadlock Avoidance 
A specific but  impor tant  question is 
how the sought mechanism will help 
solve a difficult problem of  concur- 
rent  p rogramming:  avoiding dead-  
lock. A solution which guarantees 
deadlock avoidance in all cases would 
probably be too limited. For  exam- 
ple, the requi rement  to suppor t  
many dif ferent  forms of  concurrency 
suggests that our  mechanism should 
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allow writing a class describing sema- 
phores.  But as soon as we have sema- 
phores  we have the possibility of  
deadlock. A more  realistic require- 
ment,  then, is that the mechanism 
should make it possible to avoid 
deadlock by observing certain stati- 
cally enforceable res t r ic t ions--which 
must  remain  reasonable. Making this 
possible was an impor tan t  concern in 
the design of  the mechanism de- 
scribed here. So far, however, the 
question of  deadlock avoidance has 
not been pursued  very far, and no 
result on this topic is included in the 
r ema inde r  ,of this article. 

Designing a Solution 
Let us now examine how i he preced-  
ing requirements  de te rmine  a con- 
currency mechanism that remains 
compatible with the letter and spirit  
o f  object-oriented software construc- 
tion. 

No Active-Passive Distinction 
The  first concern is whether  we need 
a special notion of  "active object" and 
process. Most cur rent  proposals  for 
object-oriented concurrency mecha- 
nisms include such notions. Two ex- 
amples among many are the article 
by Caromel on a concurrent  Eiffel 
extension [7], which incl,ades: "The 
first choice faced when designing a con- 
current lang~,.age is process genesis. What 
language construct and concept permit 
process definition?" and a descript ion 
of  the POOL language by America  
[3], which in an in t roductory para-  
graph,  states "each object also has a 
body, a local process that starts as soon as 
the object is created and rum in parallel 
with all the other objects in the system." 
The  present  discussion differs from 
such approaches  by refusing to in- 
clude an explicit notion of  process or  
of  active object. 

The  reasoning behind proposals 
suppor t ing  active objects is as fol- 
lows: In the usual, sequential form of  
object-oriented computat ion,  objects 
are "sitting there" waiting for re- 
quests addressed to them. Such re- 
quests are fi.~ature calls, o f  the form 
t.f (...), meaning  "apply the feature 
associated with f to the object at- 
tached to t, with the given arguments  
if any." 

G C O G 
1¢ 

Such a feature call is executed on 
behalf  of  a requesting object, the cli- 
ent, and is addressed to a target  ob- 
ject,  the supplier.  In  this scheme a 
suppl ier  object is just  a passive repos- 
itory of  features, ready to be trig- 
gered at the client's behest. The  cli- 
ent  is in the same position with 
respect to its own clients. In  fact, 
every object except the one created 
first (the root) is used as suppl ier  of  
o ther  objects. Execution of  a system 
is started by creating a root  object 
and applying a feature to it, f ir ing off  
a chain o f  feature calls. 

For  concurrent  computat ion,  the 
a rgument  goes, we need active ob- 
jects with their  own computat ional  
p o w e r - - t h e i r  own agenda.  Such ob- 
jects will cor respond to the processes 
found in most nonobject-or iented 
models of  concurrent  computat ion.  
Thus  we will have objects of  two 
kinds: passive objects, as in sequen- 
tial object-oriented computat ion;  and 
active objects. Such a distinction was 
in fact previewed in Simula [5, 18], 
where a class could, in addi t ion to its 
features, include a b o d y - - a  sequence 
of  instructions describing a behavior  
associated with the instances of  the 
class. This made instances of  such 
classes the forerunners  to active ob- 
jects. This facility served in part icular  
for the use o f  Simula classes as co- 
routines, and for discrete-event sim- 
ulation. 

On closer examination,  however, 
the passive-active distinction appears  
unjustif ied and in fact harmful .  I t  is 
useless to associate a special algo- 
r i thm with an object when, through 
the routines of  its class, it can have as 
many as the class au thor  desires. 

A typical example  of  an active ob- 
ject  would be the process associated 
with a printer .  The  process would 
describe the algori thm that governs 
the printer 's  life: initialize; repeat-  
edly process user jobs; shutdown. In 
object-oriented programming,  how- 
ever, this will jus t  be one of  the fea- 
tures associated with the printer .  The  
cor responding  class, using tech- 
niques of  behavior  encapsulation il- 
lustrated previously with class 
P R I N T E R ,  could appear  in sketched 
form as: 

class PRINTER inherit 

PROCESS 
rename over as off_line, finalize as stop 

end 
feature 

off-line: BOOLEAN; 
- -  over is effected as an attribute, 
- -  under the name off_line. 

stop is 
- -  Go off-line. 

do off_line := true end; 
feature {NONE} 

step is 
- -  Execute individual actions 
- -  of an iteration step. 
do 

start_job; process_job; finish._job 
end; 

setup is do ... end; 
start_job is do ... end; 
process_job is do ... end; 
finish_job is do ... end 

end 

The  p rocedure  live describes the 
process associated with the printer .  
Were a special notion of  active object 
to be added,  this p rocedure  would 
become the body of  class P R I N T E R .  
But why should we settle for one 
p rocedure  when we can have as 
many as we want? By sticking to the 
scheme shown we retain the ability to 
have more  features than jus t  avail- 
able to clients, for example  shutoff, 
print__diagnostics, prepare_for_main- 
tenance and many others. This is the 
start ing point  o f  object orientat ion:  
the realization that you can almost 
always do more  than one thing with 
an object. This refusal to consider  
any one feature as "the main opera-  
tion" on a class is one of  the main 
tenets of  the object-oriented method,  
and yields some of  its key advantages 
in terms o f  software extendibili ty and 
reusability. By graft ing onto object- 
or iented p rog ramming  an indepen-  
dent  concept  of  process, in the form 
of  active objects, we would lose this 
essential p roper ty  and gain nothing 
new. 

The  addi t ion o f  processes as an 
independen t  concept  would cause 
other  problems as well. Limiting an 
active object's available scripts to jus t  
one raises the question of  how active 
objects (processes) request  services 
from each other. The  fundamenta l  
object-oriented computat ion mecha- 
nism, feature call, would not work 
any more  without some special syn- 
chronization mechanism: in the exe- 
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cution o f  t.f. (...), if  the object T_OBJ 
attached to t is active, it will be busy 
with its own computat ion and not  
ready to handle  the call unless special 
measures are taken. To solve the 
problem, we would have to add CSP- 
or  Ada-l ike mechanisms, resulting in 
a full new language layer. The  com- 
plexity of  the result would be unac- 
ceptable. 

Processors 
I f  processes are not the appropr ia te  
new basic concept, we must find a 
bet ter  way of  expressing the funda- 
mental difference between sequen- 
tial and concurrent  object-oriented 
programming.  The  following simple 
observation may serve as a basis for 
an answer. Computat ion,  as de- 
scribed by Figure 5, involves three 
elements: certain processors apply 
certain actions to certain objects. 
Object-oriented p rogramming  has 
been quite effective at captur ing the 
last two aspects, by attaching the de- 
scription of  actions (routines) to the 
descript ion of  objects (classes). In  
ord inary  sequential computat ion,  
there is only one processor, which is 
why it tends to remain  implicit. 

With concurrent  computat ion,  
however, we have two or  more pro- 
cessors, and so we need to make pro-  
cessors explicit. This will be the 
major result of  adding  concurrency 
to the f ramework of  sequential ob- 
ject-or iented computation.  For  every 
object T_OBJ, there must be a pro- 
cessor responsible for executing all 
calls having T_OBJ as target. This 
processor will be said to handle  
T_OBJ; the handler  of  every object is 
de te rmined  when the object is cre- 
ated. 

A processor is a separate thread  of  
control capable of  suppor t ing  the 
sequential execution of  operat ions 
on one or more objects. It is impor-  
tant to note that this notion of  pro- 
cessor is virtual, not  physical. A pro- 
cessor may represent  a physical 
computat ional  device (CPU), for ex- 
ample a computer  on a network, but 
this is not necessarily the case: a pro- 
cessor may jus t  as well be t ime-shared 
with other  processors on a computer .  
For  example,  a Unix task or  a light- 
weight process may be used as pro- 
cessors. The  difference between vir- 
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tual processors and physical CPUs 
was clearly expressed by Lieberman 
[10]: 

The number of [processors] need not be 
bounded in advance, and if there are too 

many [processors] for the number of real 
physical [CPUs] you have on your com- 
puter system, they are automatically time- 
shared. Thus the user can pre tend  that 
processor resources are practically infi- 
nite. 

(Lieberman's  terminology and 
concurrency model  are different  
from those of  this article, hence the 
bracketed words.) To avoid any con- 
fusion, the present  discussion will 
employ the term "processor" only in 
this sense of  virtual thread of  con- 
trol; "CPU" is used to refer  to an ac- 
tual computat ional  device. 

Because processors are virtual, not  
physical, the mechanism described 
here may be used to suppor t  distrib- 
uted processing, in which the proces- 
sors are physically distinct comput-  
ers, as well as mul t iprogramming,  in 
which the processors are suppor ted  
by opera t ing  system processes. An 
ext reme case is the availability of  jus t  
one CPU: then the mechanism may 
be used for coroutine programming.  
The  virtual nature  of  processors has 
another  consequence: al though the 
mechanism as described here does 
not permit  reassigning an object to a 
new processor, nothing prevents an 
implementat ion from offer ing a way 
to reassign a processor to a new CPU, 
which in practice achieves the de- 
sired effect. 

A process, in this scheme, becomes 
a trivial n o t i o n - - a n  instance of  a 
"process class." A process class has a 
dist inguished procedure ,  the only 
one of  interest for clients. For  the 
common case in which the distin- 
guished procedure  is a loop describ- 
ing a behavior  to be repeated  until 
termination,  we can write any pro- 
cess class as an effective descendant  
of  the class PROCESS as in t roduced 
previously. The re  is no need for new 
language constructs. 

Contracts and Concurrency 
Moving from sequential to concur- 
rent  object-oriented programming ,  
then, will imply making the proces- 
sors explicit in some way. To find the 

appropr ia te  method  for doing this, 
we must unders tand  what having 
more  than one processor implies for 
the basic scheme o f  the .object- 
or iented method:  design by contract. 

As pointed out, a fully def ined 
contract  implies a no hidden clause 
proper ty :  clients that "play by the 
rules," observing the precondi t ion of  
a call, are guaranteed  to obtain the 
result, as expressed by the postcondi- 
tion. Unfortunately,  this crucial 
p roper ty  will not hold in a concur- 
rent  context without a change in the 
semantics. 

Consider  again the bounded  
queue example,  with the calls to put 
in t roduced previously a s / 1 / a n d / 2 / .  
In  ei ther case, the condit ion no t  

q.empty will hold pr ior  to the call to 
put. This results from the test in the 
first case and from the postcondit ion 
of  remove in the second. Another  way 
to express this p roper ty  is to state 
that in sequential p rogramming  as- 
sertions express correctness condi- 
tions. If, pr ior  to the call to put, the 
condit ion n o t  q.fuU is violated, this 
simply indicates a bug in the client 
containing this call. The  only reason- 
able response is to correct  the bug. 
The  presence o f  a mechanism to 
check assertions at run  time, as exists 
in the Eiffel environment ,  does not 
change anything in this regard:  run-  
t ime assertion moni tor ing is a pre- 
cious aid to quality assurance, in par-  
ticular testing and debugging;  but  it 
is not a technique for treat ing certain 
special but  expected conditions in a 
part icular  way. 

Unfortunately,  these propert ies  
break down for concurrent  situa- 
tions. Assume the processor han- 
dl ing the client is different  f rom the 
processor handl ing the object at- 
tached to q. Then  in /1 / ,  as any stu- 
dent  having taken an int roductory 
course in concurrent  computat ion 
knows, one or  more  processors can 
sneak in between the test and the call 
to put and call features such as put on 
q on behalf  of  o ther  clients, making 
the test totally useless. In  the same 
way, between the two instructions of  
/2/, other  processors can invalidate 
the result (not q.full) achieved by the 
call to remove. 

In other  words, merely ensuring 
the precondi t ion before  a call does 
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not guaran~Lee correctness,; any more 
if the client and the supplier are han- 
dled by different proce~,;sors. This 
means the sequential contract model 
does not hold in its original form for 
concurrent  computation. 

Separate Entities 
A consequence of the previous dis- 
cussion is that the sequential seman- 
tics of assertions will have to be 
adapted for cases in which the client 
and the supplier are handled by dif- 
ferent processors. Before we start 
exploring what the new semantics 
should be in such cases, and regard- 
less of the eventual answer, we must 
address an absolute requirement:  
ensur ing that the effect of an opera- 
tion is clear from the soft:ware text. 

Any concurrent  semantics we 
choose will imply that t.]~ (...) may 
have a different effect depending  on 
whether the object attached to t is 
handled by the same processor as the 
client or by a different one. It would 
be unacceptable to hide this impor- 
tant difference from the reader of 
the software text. 

As a result, we should have a spe- 
cial notation to declare that a certain 
entity (see "Entities, Types and Val- 
ues" sidebar for definition of this 
term) denotes objects that will be 
handled by a different processor. 
The syntactic extension is immediate. 
Instead of the usual decla:ration 

- - / 4 /  
x: S O M E _ T Y P E  

we will declare an entity as 

- - / 5 /  
y: separate S O M E _ T Y P E  

to express that y may become at- 
tached to objects handled by a differ- 
ent processor. 

With such a declaration, the crea- 
tion instruction 

!! y.make(.. .)  

has an extra ,effect. In  all cases (sepa- 
ra t e  declaration or not) the instruc- 
tion creates a new object, initializes it 
to language-defined default values, 
and applies the creation procedure 
make with the given arguments  as a 
way to overr~de default initialization 
as needed. I f  y is declared as sepa- 
rate, the instruction will, in addition, 

o 
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Figure S. 

D e f e w f e d  
C l a s s e s  a n d  
F e a t u r e s  

class is deferred (or 
abstract) if It has 
one or more fea- 

tures declared as deferred, 
that is to saY, specified but 
not implemented. A nonde- 
ferred class or feature is said 
to be effective. A descendant 
of a deferred class (that is to 
say, a class which irlherits 
from it directly or indirectly) 
is effective if it implements 
(or effects) all deferred fea- 
tures by providing effective 
forms. 

A deferred class describes a 
general abstraction which 
may have many different real- 
izations. It may also serve to 
capture a common set of 
behaviors by using an effec- 
tive (nondeferred) routine, 
such as procedure live in class 
PROCESS, which calls deferred 
ones (setup, over, step). De- 
scendant classes will retain 
the common behavior and 
provide the specifics through 
effective versions of the origi- 
nally deferred routines. 

assign a new processor to handle the 
newly created object. 

The semantics of the language 
should not specify how the new pro- 
cessor is determined,  although it is 
possible to envision library mecha- 
nisms that will give programmers 
some control in this respect. Another  
way to obtain a separate object is 

through a call to some function of 
the form 

new_object: separate T is  ... 

Such a function may be declared as 
ex terna l ,  allowing some control from 
outside the language proper. This 
makes it possible to assign objects to 
different threads of control (for ex- 
ample, to various computers on a 
network or multimicroprocessor sys- 
tem) through some external mecha- 
nism, without recompilation of the 
software. The  details of such mecha- 
nisms fall beyond the present discus- 
sion, but it is important  to make sure 
they are possible. 

A possible objection should be 
examined here. One might be con- 
cerned that by declaring t as separate 
we are giving out too much imple- 
mentat ion detail. Should we not just  
be able to write t.f (...) without worry- 
ing where the call is executed? But 
this objection is not justified. What 
should be hidden from the client in 
all but special cases is the precise 
knowledge of which processor han- 
dles a call. The mechanism described 
here achieves this objective. But 
whether the processor in question is 
the same one as the processor han- 
dling the client, or another,  is highly 
relevant information, since the se- 
mantics are different. In addition to 
the change in the interpretat ion of 
assertions, there is an even more fun- 
damental  difference: execution by 
the same processor is b locking-- the  
client cannot proceed until  execution 
of f has been completed--whereas  
execution by a different processor 
should not prohibit the client from 
cont inuing its own execution until  it 
actually needs the results of  the call, 
if ever. (This property will give rise 
to the policy of lazy wait, explained 
later.) So it is indeed necessary to 
state clearly whether the processor is 
the same. 

Certain classes are meant  to be 
used only as types of separate enti- 
ties. As a notational convenience, it 
will be permitted to declare such 
classes as 

separate class C L A S S _ N A M E  ... the 
rest as usual ... 

meaning that an entity declared of 
type C L A S S _ N A M E  will always be 
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separate. As with the two other exist- 
ing mechanisms to characterize a 
class, deferred and expanded, the sep- 
arate or nonseparate status of a class 
is not transmitted through inheri- 
tance: a separate class may inherit 
from a nonseparate one (the com- 
mon case) and conversely. For exam- 
ple, we may describe bounded buff- 
ers through a class declaration 
consisting simply of 

separate class 
BOUNDED__BUFFER [G] 

inherit 
BOUNDED_QUEUE [G] 

end 

The three specific properties of 
classes are exclusive: the syntax en- 
ables the keyword class to be pre- 
ceded by at most one of deferred, ex- 
panded and separate. 

The separate declaration for enti- 
ties and classes will turn  out to be the 
only syntactic extension needed by 
the mechanism described here, al- 
though we have yet to examine its 
full semantic consequences. 

It will be convenient to use the 
term "separate" in various contexts. 
A class declared as separate class is a 
separate class. An entity declared as 
separate SOME_TYPE, or as 
SOME_SEPARATE_TYPE if SOME_ 
SEPARATE_TYPE is based on a sepa- 
rate class, is a separate entity. A call 
t.f (...) is separate if its target t is sepa- 
rate. An expression y is separate if it 
involves at least one separate entity. 
If  t is a separate entity, and at some 
point dur ing  the execution of the 
system has a nonvoid value, the at- 
tached object, which is handled by a 
different processor, is said to be a 
separate object. 

For consistency, a validity rule will 
require that in any assignment of the 
form x := y, if the source y is sepa- 
rate, the target x must also be sepa- 
rate. Otherwise we would be able to 
cheat by manipulat ing a separate ob- 
ject through a nonseparate entity x, 
obtaining the wrong semantics. It will 
be permitted, however, to assign a 
nonseparate value to a separate en- 
tity; calls on the corresponding object 
will then have the semantics of sepa- 
rate calls, which is harmless. 

The same rule applies to actual- 
formal argument  association, as in 

O 
U 
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the call t.f (y), where the correspond- 
ing formal a rgument  declared for 
routine f is x. (The semantics of as- 
signment is the same as that of argu- 
ment  passing; the term at tachment 
covers both operations.) 

Semantics of  Assertions 
With the notion of separate entity in 
place to ensure that every call is 
clearly identified as intended for the 
same processor or for another, we 
need to re turn  to the important  
question of what assertions mean for 
separate calls. We have seen that pre- 
conditions, or at least those clauses of 
a precondition that involve separate 
entities, cannot be taken as correct- 
ness conditions. But the require- 
ments expressed by a precondition 
are still needed for the routine to do 
its job properly. For example, we 
cannot write a correct version of put 
without some guarantee that the 
queue is no-full on entry. 

What then should the semantics of 
a precondition such as not full be if 
the client and supplier are handled 
by different processors? Only two 
answers seem to make sense: 

• Failure to meet the precondition 
may mean failure of the call. As 
noted previously, the contract model 
provides for such a case: a call may 
fail if the routine is unable to fulfill 
its contract; this causes an exception 
in the client. The client may recover 
from the exception through a Rescue 
clause which takes any needed cor- 
rective actions and, through a Retry 
instruction, tries another (or the 
same) strategy. If  no Rescue clause is 
present, the client itself fails and 
passes the exception to its own client. 
This behavior may be called the ex- 
ception semantics. 
• More commonly, failing to meet 
the precondition may simply mean 
the conditions are not ripe yet for the 
routine body to execute, without 
implying failure. The  call in this case 
should just  block the client from pro- 
gressing, releasing the supplier's 
processor for handling requests from 
other client processors, which may be 
expected to produce effects that will 
make the precondition true. When 
the supplier's processor completes a 
call, it will examine the requests from 

blocked clients and select one for 
which the blocking precondition is 
now true. This behavior may be 
called the waiting semantics. 

Both strategies are compatible 
with the contract model. Experience 
with the practice of concurrent  pro- 
gramming suggests we should retain 
the waiting semantics as the default. 
This is particularly clear in the 
bounded  queue example: handled by 
a separate processor, the bounded  
queue becomes a bounded  buffer, 
which various clients use to deposit 
and withdraw elements. Then  if such 
a client calls put with the buffer full, 
or item with the buffer empty, it 
should normally be made to wait 
until  another client has corrected the 
situation (through a remove in the 
first case and a put in the second). 

Thus  as a basic semantic rule, a 
precondition clause involving a sepa- 
rate call should cause the client to 
wait until  the clause becomes satis- 
fied. There  may remain a need for 
the exception semantics when the cli- 
ent expressly wants to treat precon- 
dition violation as an exceptional 
case. A type example is access to a 
file, a case that occurs in sequential 
object-oriented programming,  since 
the underlying concurrency is usu- 
ally hidden. The  following extract 
(using class FILE from the basic Eif- 
fel library) would seem safe: 

f: FILE; 

i f  f~ = Void and then f.readable then 
f .some_input_routine 

--some_input_routine is any 
- - r o u t i n e  that reads data 
- - f r o m  the file; 
- - i t s  precondition is readable. 

end 

Here the test in the conditional 
instruction is meant  to guarantee 
that f is attached to a readable file, 
meeting the precondition of 
some_input_routine. But although this 
extract does not explicitly show the 
concurrency, a file is a separate per- 
sistent structure, so the client has no 
way to avoid the case in which an in- 
teractive user (or some other soft- 
ware system) will access the file and 
make it unreadable between the test of 
f.readable and the execution of 
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some_input_routine. Here, however, 
waiting for readable to become true 
again is not the appropriate behav- 
ior; instead:, the client should prob- 
ably get an exception (from which it 
will be able to recover if it has a Res- 
cue clause). 

Because such cases are un!ikely to 
be the most common, the waiting 
semantics will be the default. 
Through  calls to routines of the ker- 
nel library it will be possible for a cli- 
ent to request the exception seman- 
tics. 

Reserving ODjects 
Considering separate precondition 
clauses as wait conditions does not 
yet provide us with enough control, 
especially if a client needs to reserve 
an object for the durat ion of several 
operations. In  the bounded  queue 
example, consider the client extract 
(again for q declared as a queue and a 
as a queue element): 

--131 
a := q.item; 
... Other instructions (not calling 
remove) . . .  

q.remove 

The call to item accesses a queue 
element (after a wait if the queue is 
empty at the time of the call). The  
call to remove is intended to remove 
that element. But there is no guaran- 
tee that the two calls indeed manipu-  
late the same queue element: with 
the mechanisms introduced so far, 
we have no way of preventing other 
separate clients from int ruding be- 
tween the two calls and performing 
one or more remove. 

The problem arises even if the 
calls to item and remove are consecu- 
tive in the client text. Of  course, in 
this case, we could solve the problem 
by renouncing the command-query 
distinction and adding a feature get 
to class BOUNDED_QUEUE: 

get: X is 
- - R e m o v e  an element, 
- - a n d  re turn  it as re.,mlt. 

require 
not empty 

do 
Result := item; remove 

end 

but this would imply a drastic change 

o+ 0 +  G C U G 

in the recommended design style and 
in any case does not help us for the 
general case with one or more 
"Other instructions" between the two 
calls. 

These observations highlight the 
need for a technique that will allow a 
client to reserve a separate supplier 
object for a certain period. Although 
routine calls similar to P and V oper- 
ations on semaphores could be envi- 
sioned for that purpose, it is prefer- 
able, in the interest of deadlock 
prevention, to look for a linguistic 
construct: whereas it is practically 
impossible to ensure that every client 
that executes a P will later execute a 
V, a linguistic construct which re- 
serves an object will have a fixed syn- 
tactic scope; execution of the con- 
struct will automatically release the 
object at the end of that scope. 

Such a construct could have the 
following form: 

- - N o t e :  uses a form not retained. 
- - F o r  purposes of discussion only. 

hold q then 
... Here the client has exclusive 
access to the object attached to q ... 

end 

Let Q_OBJ be the object attached 
to q. The  execution of such a con- 
struct would imply that if Q_OBJ is 
already reserved the client will wait 
until  Q_OBj is free again. Unfortu-  
nately, a simple hold construct as we 
have defined does not provide us 
with a flexible enough synchroniza- 
tion mechanism. Often a client will 
need to wait not just  until  a certain 
supplier becomes available, but  also 
until a certain condition becomes 
t r ue - - f o r  example not q.empty if the 
client needs to perform a q.item or 
q.remove. This suggests a variant of 
the hold construct, which includes 
waiting on one or more conditions. 
For example: 

- - N o t e :  uses a form not retained. 
- - F o r  purposes of discussion only. 

hold q when not q.empty then 
a: = q.item; 
... Other instructions ... 
q.remove 

end 

Such a construct could be used as 
the basis of a workable solution. One 
advantage of such a solution would 

be to give assertions their original 
semantics: within a hold, a precondi- 
tion is a correctness condition; the 
proof rule (left for the reader to ex- 
press) would indicate that, right after 
the then, the condition given by the 
when clause may be assumed. 

On further  examination, however, 
this solution is not fully satisfactory. 
A first problem that will have to be 
settled by the language designer is 
whether to allow any separate call 
(such as q.item) outside of a hold on 
the corresponding target (here q). 
The goal of consistency, always so 
important  in language design, sug- 
gests prohibiting this. But then client 
code will be encumbered by many 
hold instructions. 

Even if we decide against this strict 
policy, clients will have to include 
numerous  hold to access such sepa- 
rate objects as bounded  buffers. Any 
such s i tua t ion-- in  which a clearly 
identified scheme occurs repeatedly 
in a certain application a r e a - -  
triggers the object-oriented design- 
er's basic instinct: encapsulate. 
Rather than individually wrapping 
every nontrivial buffer  access in its 
own local ... end, the competent  ob- 
ject-oriented designer will write a 
class which encapsulates the corre- 
sponding behavior (see Figure 6). 

In Figure 6, any class needing that 
behavior will inherit  from BUF- 
FER_.ACCESS. Such classes are likely 
to be needed for every separate data 
structure. But then we may ask 
whether the hold construct is useful 
at all. If  every significant use of a 
buffer q occurs through a routine 
with q as argument ,  could we not use 
argument  passing as the mechanism 
for reserving objects? In  other 
words, we might simply decide that 
whenever a routine call has a sepa- 
rate argument ,  any routine call will 
perform a "hold" operation on the 
corresponding separate object. 

There  remains the problem of 
waiting not just  on object availability 
but also on conditions. Here the idea 
of preconditions as waiting condi- 
tions makes a comeback: since the 
routine cannot execute its body 
properly until its precondition be- 
comes true, the precondition again 
presents itself as offering a natural  
wait condition. We may note here 
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that the style that would likely have 
become the most common for using 
the hold construct, as il lustrated by 
BUFFER__ACCESS in Figure 6, would 
entail f requent  duplications of  pre- 
condit ion texts as hold conditions; 
this is the case in Figure 6 with the 
use of  put, remove and item. 

The  solution finally retained,  
then, involves the following ele- 
ments: 

1. No special "holding" construct is 
needed,  separate declarations remain 
the only syntactical extension. 
2. No separate call, o f  the form t.f 
(...) where the target  t is separate,  
is permi t ted  unless t is a formal  
a rgument  of  the rout ine in which 
the call appears.  
3. I f  any nonvoid a rgument  to a rou- 
tine call is separate,  the call will block 
until the corresponding object be- 
comes available. 
4. I f  a precondi t ion clause of  a rou- 
tine f involves a separate call (whose 
target, because of  rule 2, must  be a 
formal  a rgument  o f f ) ,  a call t o f  will 
block until the precondi t ion clause is 
satisfied. 
5. I f  nei ther  rule 3 nor  rule 4 causes 
a call to block, the call is said to be 
satisfiable. I f  there  are one or more 
satisfiable calls on available objects 
handled  by a given processor, one o f  
them will proceed.  (The semantics 
does not specify which satisfiable call 
will be selected if there  are two or  
more; but  it does require  that one of  
them will proceed.  In  other  words, a 
processor may not go on strike.) 
6. "Available," as used in rules 3 and 
5, is def ined as follows: An object is 
busy if some call using it as a target  
has been started but  not yet com- 
pleted. The  object is available if it is 
not busy and its processor is ei ther 
idle (not executing any call) or 
blocked (as per  rule 3 or  4) on a sepa- 
rate call executed on behalf  of  an- 
o ther  object. 

Rule 2 may seem unduly  restric- 
tive. I t  does bring, however, a much 
desirable extra safety, avoiding situa- 
tions such as /3/ ment ioned previ- 
ously where the author  of  the client 
code mistakenly believes that two dis- 
tinct calls using the same separate 
entity as targets, such as the calls 
q.item and q.remove, actually apply to 

~q c 0 
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Entitles, TYpes and values 

,=rm 'entity', a generalization of the usual notion of vari- 
covers any name used to denote run-time values. Enti- 

include the following: attributes of classes (see "Basic 
Terminology" sidebar); formal arguments of routines; local entities 
of routines (accessible only within the routine's body, and allocated 
anew for each execution of the routine, as with a local variable In 
Pascal); and Result, a predeflned entity used in functions to denote 
the result to be returned to the client. 

Types describe the run-time values that entitles denote in the soft- 
ware text. There are two kinds of values: Objects, and references to 
objects. Correspondingly, there are two kinds of types: expanded 
types, whose values are objects, and reference types, whose values 
are references to objects. 

Expanded types include basic, predeflned types such as INTEGER 
and REAL. SO the value of an entity declared of type INTEGER is di- 
rectly an integer value. A reference type may be obtained from a 
class which is not declared as expanded. For example, with the class 
BOUNDED_QUEUE introduced earlier, the declaration 

q: BOUNDED_QUEUE IX] 
introduces q as an entity of reference type. The possible values of 
such an entity at run time are references: either void (not attached 
to any object), or attached to an object, here an instance of BOUN. 
DED_QUEUE. "Attached" is the technical term which describes the 
association between a nonvoid reference and an object. 

the same object. Without  rule 2, such 
errors  would be likely to occur. They 
would be difficult to detect  and 
debug, since the corresponding run-  
time behavior,  which depends  on 
how many other  calls creep in be- 
tween the two calls, is nondeterminis-  
tic. Such errors  typify the difficulty 
of  constructing and debugging par-  
allel programs,  and we should not  
lightly forsake an oppor tuni ty  to 
avoid them through a statically en- 
forceable rule. 

True,  rule 2 will require  some 
extra  work on the par t  of  the concur- 
rent  p rogrammer :  we can no longer 
write q.remove freely, but  must en- 
close this call in a rout ine using q 
(assumed to be of  type separate 
BOUNDED_QUEUE [X] for some X) 
as argument .  But this extra  require- 
ment  seems just if ied in light of  the 
gain in reliability; in addition, we 
may expect that many uses of  such 
structures will rely on a class encap- 
sulating the appropr ia te  behavior,  
such as B UFFER--ACCESS in 
Figure 6, where the problem is taken 
care of  once and for all. As before,  
classes needing these facilities will 
inherit  f rom BUFFER__ACCESS. The  

class BUFFER__ACCESS will now be 
written more  simply as shown in Fig- 
ure  7. 

The  use of  separate actual argu- 
ments as ways to reserve objects re- 
quires one fur ther  comment.  I f  a 
rout ine call names two or  more  such 
arguments ,  the call will block until it 
has got hold o f  al l  o f  them, and satis- 
fied the corresponding precondi-  
tions. This may prove difficult to 
implement ,  especially in a distr ibuted 
system, which will require  consensus 
between the various processors. It is 
possible to restrict the mechanism by 
allowing a rout ine call to involve at 
most one separate argument .  Then  it 
will be the individual p rogrammer ' s  
j ob  to reserve all necessary resources 
th rough  nested calls, using one o f  the 
algori thms described in the l i terature 
(e.g., see [4]). I t  may be preferable,  
however, to keep the model  without 
restrictions, following the a rgument  
that tedious and e r ro r -p rone  tasks 
should be handled  whenever  possi- 
ble, by the p rogramming  environ- 
ment  ra ther  than by individual pro- 
grammers.  This reasoning is central 
in object-oriented programming,  
where it justifies such impor tant  fa- 
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- - Note:  uses a forrn not  re ta ined.  For p u r p o s e s  of  d i scuss ion  only.  
class BUFFER_A CCESS [ G ] feature 

put(q:  separate BOUNDED_QUEUE [G ] ;  x: G) is 
- - Insert  x into q, wa i t i ng  if n e c e s s a r y  until there  is room. 

do 
ho ld  q when no t  ct.full then q.put (x) end 

end; 

remove (q: separate BOUNDED_QUEUE [G ] )  is 
- - Remove an element from q, waiting if necessary 
- - until there is such an element, 

do 
hold q when not q.empty then q.remove end 

end; 

item, (q: separate BOUNDED_QUEUE [G]): G is 
... Lef t  to the r e a d e r  ... 

end 

Figure  6. 

- - E n c a p s u l a t i o n  of  a c c e s s  to b o u n d e d  bu f fe r s  
class BUFFER_ACCESS [X ]  is 

put (q: separate BOUNDED_QUEUE [G ] ;  x: G) is 
- - Inser t  x into q, wa i t i ng  if n e c e s s a r y  
- -  unti l  t he re  is room.  

require 
not q. full 

do 
q.pu~(x) 

ensure 
not q. empty 

end; 

remove (q: separate BOUNDED_QUEUE [ G ] )  is 
- - R e m o v e  an e l e m e n t  f r om q, wa i t i ng  if n e c e s s a r y  
- -  u~ti l  t he re  is such  an e lemen t .  

... Lef t  to the  r e a d e r  ... 

ite, m (q: separate' B O U N D E D Q U E U E  [G ]): G is 
- -  O l d e s t  e l e m e n t  not  ye t  c o n s u m e d  

require 
not cI. empty 

do 
Result := q.item 

e n s u r e  

not o. full 
end 

end 

Figure  7. 

A A {INV^ pePre[ f )p}  body(f) ^ q~Post(f) 

A A t.q'} 
{ p~:_ Nonsep_pre(f) t.p'} t.f { q~ Nonsep_post(f) 

Figure  8. 

cilities as garbage collection and com- 
piler-applied static binding. 

A Proof Rule 
In  the scheme retained here, waiting 
on a precondition clause occurs only 
for a precondition of the form t.cond, 
where t is a formal a rgument  of the 
enclosing routine and is separate. 
This is why the preconditions on the 
routines of BUFFER_ACCESS are 
needed: violation of a precondition 
of a BOUNDED_QUEUE would be 
the routines of correctness violation, 
not a wait condition, since these rou- 
tines do not have any separate argu- 
ment. The  routines of BUF- 
FER_.ACCESS, however, have a 
separate a rgument  q, so any precon- 
dition clause of the form q.some_con- 
dition in these routines is a waiting 
condition. 

In  general, then, in a routine of 
the form 

f (  .. . .  a: T . . . .  ) i s  
r e q u i r e  

clause l ; 
clause2; 

d o  ... e n d  

any of the precondition clauses 
which does not involve any separate 
call on a separate formal a rgument  is 
a correctness condition: any client 
must ensure that condition prior to 
any call, otherwise the call is in error. 
Any precondition clause involving a 
call of the form a.some_condition, 
where a is a separate formal argu- 
ment,  is a wait condition which will 
cause calls to block if it is not satis- 
fied. These observations may be ex- 
pressed as a proof rule, shown in 
Figure 8 which, for separate compu- 
tation, replaces the sequential rule 
given in Figure 3. 

In  Figure 8, nonsep_pre (f) is the set 
of clauses in f ' s  precondition which 
do not involve any separate calls, and 
similarly for Nonsep_post (f). 

This rule captures in part the es- 
sence of parallel computation. To 
prove a routine correct, we must still 
prove the same conditions (those 
above the line) as in the sequential 
rule. But the consequences on the 
properties of a call (below the line) 
are different: the client has fewer 
properties to ensure before the call, 
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since trying to ensure the separate 
par t  of  the precondi t ion would be 
futile anyway; but  we also obtain 
fewer guarantees on output .  The  
former  difference may be considered 
good news for the client, the latter is 
bad news. 

The  separate clauses in precondi-  
tions and postconditions thus join the 
invariant as proper t ies  that must be 
included as par t  of  the internal  p roof  
of  the rout ine body, but  are not  di- 
rectly usable as propert ies  of  the call. 
The  rule also serves to restore the 
symmetry between precondit ions 
and postconditions, a job  that will be 
completed by considering the lazy 
wait technique. The  discussion so far 
was essentially based on an analysis 
of  the proper t ies  of  precondit ions.  

Comments  on t he  us e  of  
Precondit ions  
The  idea that assertions, and in par- 
ticular precondit ions,  may have two 
different  semant ics- -somet imes  cor- 
rectness conditions, sometimes wait 
condi t ions- - i s  somewhat disturbing. 
Yet in the design of  this mechanism, 
the idea kept  re turn ing  each time it 
was discarded.  

One possible objection, however, is 
unjustified. In Eiffel, run-t ime asser- 
tion checking may be turned  on or  
off  as a result of  a compilation switch. 
Is it not dangerous,  then, to attach 
that much semantic importance to 
precondit ions in concurrent  object- 
or iented programming?  

Such an objection misses, however, 
the true nature  of  assertions. Asser- 
tions are not primari ly a debugging 
or  run-t ime checking tool. Instead, 
one should view assertions as full- 
f ledged components  of  classes. In the 
form for p u t ,  the precondi t ion and 
postcondition belong to the routine 
jus t  as much as the do clause. They 
are part  of  an impor tant  proper ty  of  
the routine: its specification. Al- 
though this may appear  paradoxical,  
the compilation option that switches 
run-t ime assertion checking on or  off  
does no t  affect the semantics of  the 
language. This is because the seman- 
tics of  any language is defined for 
correct programs only. But a pro- 
gram whose execution may violate an 
assertion is incorrect! (The definit ion 
of  a correct class is precisely that the 
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do  clauses of  its routines are compat-  
ible with the assertions.) 

To a practicing p rogrammer ,  the 
a rgument  may appear  specious, since 
checking assertions at runtimes may 
be the best way to de termine  that a 
class is incorrect. But in principle it 
should be possible to prove class cor- 
rectness statically; run-t ime monitor-  
ing is only an imperfect  solution. 
(This is particularly difficult to ex- 
plain to C programmers ,  who when 
they accept assertions at all, tend to 
see them just  as executable con- 
structs, meant  to check certain prop-  
erties at run  time for debugging pur-  
poses.) 

Assertions, then, are always par t  of  
the software, whether  or not they are 
moni tored  at run  time. The  differ- 
ence between their separate and 
nonseparate  clauses is simply that the 
semantics does not  require  a nonsep- 
arate clause to be evaluated at run  
time if the software is correct, but  
does require  run-t ime checking of  
separate clauses. 

Lazy Wait 
One more rule is needed for a full 
definit ion of  the semantics. This rule 
will de termine  how two processors 
are resynchronized when one needs 
a result f rom another.  The  rule, 
which may be called lazy wait by anal- 
ogy with the so-called lazy evaluation 
of  p rograms written in functional 
languages such as Lisp, requires a cli- 
ent  to wait when it absolutely needs 
information resulting from a call, but  
no sooner. 

Consider  a rout ine containing a 
separate call: 

r(  .... t: separate S O M E _ T Y P E  . . . .  ) i s  

do 
...; t.f(...); - - *  
other_ ins t ruc t ions  

end 

Assume r is executed on an object 
C_OBJ and,  as part  of  its execution, 
executes the call marked *, with tar- 
get t. Let T_OBJ be the object at- 
tached to t. These rules indicate that t 
must  be a formal a rgument  of  r; so 
C_OBJ will have obtained hold of  
T_OBJ pr ior  to the call. 

For  the preceding syntax to be 
l ega l , f  must  be a procedure.  The  call 
t o f  proceeds when it is satisfiable and 

selected by the processor of  T_OBJ, 
which then starts executing it. But 
C_OBJ is handled  by another  proces- 
sor, and that  processor does not need 
to wait for the call to terminate:  it 
should immediately continue with its 
fur ther  business, other_ins truc t ions .  

This will be the rule according to the 
lazy wait policy: separate p rocedure  
calls should not (except for one spe- 
cial case discussed later) cause the cli- 
ent  to wait. 

Assume the other_ ins t ruc t ions  con- 
tain more p rocedure  calls on the 
same separate target  T_OBJ. These  
calls, like the first one, will not make 
the client wait. It  is essential for con- 
sistency, however, that the o rde r  in 
which they will eventually get ser- 
viced be the o rde r  in which the client, 
here C_OBJ, has requested them. 
The  semantic rule must guarantee 
this p roper ty  of  o rde r  preservation. 

When then, if  ever, must  C_OBJ 
wait for the terminat ion of  the call to 
f ?  The  lazy answer is that an object 
will wait when it needs the result of  a 
query (function or  at tr ibute call) on a 
separate object. Assume for example 
that the other_ ins t ruc t ions  are of  the 
form 

o ther_ ins t ruc t ions_ l  ; ... 

o ther_ ins t ruc t ions_n  ; 

k: = t . some_va lue  

where s o m e _ v a l u e  is an integer attri- 
bute or  function applicable to t, and k 
is an auxiliary entity, also of  integer 
type. To assign the value o f  the last 
call to k, we need access to T_OBJ; 
thus the call t o f m u s t  have been com- 
pleted, as well as any intervening call 
with T_OBJ as its target,  and if  
s o m e _ v a l u e  is a function we must also 
wait for the computat ion of  that 
function to complete.  (Remember  
that the entire f ragment  appears  in a 
rout ine of  which t is a formal argu- 
ment,  so there is no dahgei" o f  an- 
o ther  client sneaking in and grabbing 
T_OBJ between the call to f and the 
call to some_va lue :  C_OBJ has exclu- 
sive separate access to T_OBJ 
th roughout  the execution of  this 
fragment.)  

The  lazy wait policy requires that a 
client per forming  a query on a sepa- 
rate target  shall not  proceed until all 
earl ier  calls have been completed in 
the o rde r  logged, and the query itself 

COMMUNICA'rIouS Oll'l'Hml m~m September 1993/Vol.36, No.9 6 9  



has been executed to completion. 
Together  with the rule that a call 
proceeds when it is satiisfiable, this 
p roper ty  iLS the principal  semantic 
difference between concurrent  and 
sequential object-oriented computa-  
tion. (It would need to be included in 
the semantics of  calls def ined in 
Chapter  21[ of  [14].) The  lazy policy 
may be seen as a form of  waiting on 
the postcondition,  in the same sense 
that the basic mechanism causes wait- 
ing on the precondit ion.  

A note is in o rde r  on the rule that 
clients do not wait for separate pro- 
cedure  calls to terminate.  At  first this 
may be viewed as jus t  an optimiza- 
tion: forcing clients to wait for the 
terminat ion o f  such calls before pro-  
ceeding would simply make less use 
of  the available parallelism. But such 
a policy would be misgu:ided. I f  the 
other_instructions of  the preceding 
pat tern are empty, as in 

r( .... t: s e p a r a t e  S O M E _ T Y P E  . . . .  ) is  
do ... t.f(...) end 

the execution o f  r will terminate  
immediately after  launching the call 
to f ,  without waiting for that call to 
terminate.  'This may cause the caller 
of  r to relinquish the reservation it 
made  on the client of  T_OBJ, which 
may be crucial if that object is needed  
by o ther  clients. 

A common variant of  this scheme, 
which would not work without the 
ability to continue execution after 
start ing a separate p rocedure  call, is 
a loop which gets a number  of  previ- 
ously created objects started with 
their  own lives. For  example:  

launch (a: A R R A Y  [separate ~q) is 
- -  Get every element of a started. 

require 
- -  No element of a is void 

local 
i: INTE G E R  

do 
from i : =  1 until i > a.count loop 

launch_one (a @ i); i := i + 1 
e n d  

end 
launch_one (p: separate X) is 

- -  Get p started. 
require 

p/= Void 
do p.live end 

(The notat ion a @ i denotes the ith 
e lement  of  a. @ is an infix feature of  
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the Kernel  Library class A R R A Y .  The  
array must have been previously ini- 
tialized to hold nonvoid elements, 
numbered  from 1 to a.count.)  If, as 
may well be the case, p rocedure  live 
of  class X describes an infinite pro-  
cess, this scheme only works if each 
loop iteration proceeds immediately 
after start ing launch_one; otherwise 
the loop would never get beyond its 
first iteration. 

Passing Nonseparate References 
One technical point  remains to be 
clarified regard ing  the passing of  
arguments .  In  some cases we may 
wish, in a class B, to include a sepa- 
rate call of  the form 

t . f  (a) 

where the actual a rgument  a is o f  a 
reference type, but  not  separate.  The  
cor responding  routine,  in the sup- 
plier class C, could be of  the form 

f ( x : S O M E _ T Y P E )  is  
do ... y: = x ... end 

where y is some at tr ibute o f  C. 
All the entities involved- -a ,  x, y - -  

denote  references to objects. The  
assignment enables C to retain a ref- 
erence to an object A__OBJ handled  
by the client processor,  so that later, 
af ter  the terminat ion o f f ,  a rout ine 
of  C may execute a call of  the form 

y.some_routine (...) 

The  object to which this call ap- 
plies is A__OBJ; but  the call should be 
separate since the processors han- 
dl ing the instances o f  B and C are 
different!  Unless x, and hence y too, 
are declared as s e p a r a t e ,  the call will 
have the wrong semantics. A lan- 
guage rule will require  that any such 
formal  a rgument  should be declared 
as separate.  In  the example,  
S O M E _ T Y P E  must be a separate 
type. The  rule on those assignments 
then requires y also to be declared as 
separate.  

The  case examined here has a con- 
sequence on the semantics of  calls: 
because the body o f f  may per fo rm a 
call with target  A__OBJ, we cannot  let 
the client proceed even i f f i s  a proce- 
dure.  The  call to f should block the 
client until f terminates.  This will be 
the general  semantic rule if  we allow 
separate calls having nonsepara te  

references as actual arguments:  any 
such call will block the client with no 
possibility of  lazy wait. This rule in- 
troduces a small but  unpleasant  com- 
plication. We could avoid it by disal- 
lowing nonsepara te  reference 
arguments  a l together  in separate 
calls. An upcoming  example  will 
show, however, that it is convenient  
(although not  strictly indispensable) 
to keep this possibility open. 

The  preceding  discussion only 
applies to reference types. I f  a is o f  
an expanded  type, its possible values 
are objects, and a t tachment  (in par-  
ticular a rgument  passing) implies 
copying an object onto another  
ra ther  than assigning a reference,  so 
this problem does not arise. This 
possibility immediately suggests, 
however, a new validity constraint:  
no expanded  type may include sepa- 
rate attributes. 

Duels 
The  preceding  discussion concludes 
the presentat ion of  the basic seman- 
tic model.  In  practice, we need an 
extra  degree  of  flexibility to have a 
fully usable mechanism. The  major  
remaining  problem is how a client 
can avoid waiting on a nonavailable 
separate supplier,  or  one that does 
not  satisfy a separate  precondi t ion 
clause. As noted in the example  of  
reading  a file that  may suddenly have 
become unreadable ,  the appropr ia te  
policy in such a case may be to cause 
an exception in the client, not  to 
make it wait. 

How best should we provide such 
flexibility? The  situation is compara-  
ble to the problem of  exer t ing fine 
control  on exception handl ing  in se- 
quential  object-oriented computa-  
tion. The  basic Eiffel exception 
mechanism is extremely simple, pro-  
viding a Rescue clause enabling a 
rout ine to catch exceptions, and a 
Retry instruction enabling the rou- 
tine to try again after  a t tempt ing to 
correct  the cause of  the exception. 
These  facilities suffice in most cases. 
To obtain fur ther  facilities for more  
sophisticated cases, without compli- 
cating the language or  changing the 
basic semantics of  exception han- 
dling, p rogrammers  may use the 
class E X C E P T I O N S  from the Kernel  
Library,  offer ing such features as the 
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integer code of the last exception (so 
that a Rescue clause may discrimi- 
nate between different causes of ex- 
ception) and many others. Classes 
needing these facilities simply inherit  
from EXCEPTIONS.  

Here we may use a comparable 
approach by defining a simple li- 
brary class CONCURRENCY,  from 
which classes may freely inherit. This 
class will include a procedure im- 
mediate..service. A call to this proce- 
dure alters the normal response to a 
nonsatisfiable call: instead of waiting, 
if the object is not available or a sepa- 
rate condition is not satisfied, it will 
cause an exception in the client. Pro- 
cedure normal_.service will serve to 
restore standard behavior. 

This can be used immediately in 
the file-reading example, assuming 
FILE now becomes a separate class: 

analyze Or: FILE) is 
do 

immediate_service; 
i f  f.readable then 

... Various read operations of form 
f .input_routine ... 

else 
... Report impossibility in some way 

end; 
normal_.service 

r e s c u e  

... Take corrective action, or report 
problem ... 

end 

In the contract method of software 
construction, exceptions should be 
reserved for truly exceptional cases 
which would be difficult or impossi- 
ble to handle otherwise without add- 
ing great complication to the text of 
the software. (This is in marked con- 
trast with, for example, the Ada or 
CLU mechanisms, which essentially 
use exceptions as interprocedural 
control structures.) The preceding 
use satisfies this requirement,  since it 
applies to a case that is unlikely to 
occur o f t en - - the  case in which a file 
was checked to be readable but be- 
comes unreadable or inexistent be- 
fore its actual use because of the ac- 
tions of some independent  agent. 
Although infrequent,  this case must 
still be handled properly. 

A similar mechanism may be used 
to provide a safe form of express 
messages. Assume we want to allow a 
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VIP client, the challenger, immediate 
access to a separate object; if any 
other client, the holder, currently 
holds it, it will be interrupted.  The  
only acceptable solution in this case, 
in light of the Design by Contract 
principles, is to make the holder's call 
fail, so the holder will be forced to 
take corrective action (if it has a Res- 
cue clause) or to fail. Because it has 
such drastic consequences for the 
holder, however, this behavior 
should only occur if the holder has 
accepted the possibility by calling 
procedure yield of class CONCUR- 
RENCY.  In this case, a challenger 
that has called immediate_.service and 
finds the desired object nonavailable 
will not get an exception itself, but 
will actually get the object, and cause 
an exception in the holder. (The 
immediate recipient of the exception 
is the common supplier, which after 
executing its Rescue clause to restore 
its invariant will normally pass on the 
exception to the holder.) To restore 
the normal (no-yield) behavior, the 
holder will call procedure insist. 

The result of the potential conflict 
between a holder and a challenger, 
which we may call a duel, is specified 
in all cases by Table 2. The  default 
behavior for each duelist, as well as 
the overall default in the absence of 
any call to the procedures of class 
C O N C U R R E N C Y  (top-left table 
entry), are underl ined.  

Examples 
To illustrate the mechanism, the fol- 
lowing examples have been chosen 
from diverse backgrounds. To con- 
serve space, only the most salient 
points of the examples are shown; 
the full texts are included in [16]. 

The Dining Philosophers 
We begin with the inevitable dining 
philosophers. It seems hard to pro- 
vide a simpler form for describing 
the philosophers' behavior than the 
following class, which relies on the 
general control structure provided 
by PROCESS:  

separate class P H I L O S O P H E R  
creation 

make 

.inherit 
PROCESS 

rename setup as getup end 
feature {BUTLER} 

step is 
- -  Think  and eat 

do 
think; eat (left, right) 

end 
feature {NONE} 

- -  The two required forks: 
left, right: separate FORK; 
getup is do ... end; 
think is do ... end; 
eat (l, r: separate FORK) is 

- -  Eat, having grabbed 
- -  l and r. 

do ,.. end 
feature {NONE}- -Crea t ion  

make (l, r: separate FORK) is 
- - A s s i g n  l and r 
- - a s  the required forks. 

do 
left := l; right := r 

end 
end 

The entire synchronization require- 
ment  is embodied by the call to eat, 
which uses arguments left and right 
representing the two necessary forks, 
thus reserving these objects. 

Of  course the simplicity of this so- 
lution comes from the mechanism's 
ability to reserve several resources 
through a single call having two or 
more separate arguments,  here left 
and right. If  we restricted the sepa- 
rate arguments  to at most one per 
call, the solution would use one of 
the published algorithms (e.g., see 
[4]) for getting hold of two forks one 
after the other without causing dead- 
lock. 

Thanks to the use of multiple ob- 
ject reservation through arguments,  
the solution described here does not 
produce deadlock, but it is not guar- 
anteed to be fair; some of the philos- 
ophers can conspire to starve the 
others. Here too the literature pro- 
vides various solutions, which may be 
integrated into the preceding 
scheme. 

The  notation feature  {BUTLER} 
indicates that the following features 
are exported only to class BUTLER,  
the controller class, and its descen- 
dants if any. The  notation feature 
{NONE}, already encountered in ear- 
lier examples, similarly makes fea- 
tures available to N O N E  only. NONE,  
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a Kernel  Library class, ihas no de- 
scendants, so this implies making the 
features secret. Most of  tlhe features 
appear ing  in the following examples 
will be secret or  selectively expor ted  
in this way. Such a situation is much 
less common in sequential object- 
or iented programming ,  but  the dif- 
ference of  style is no accident: in con- 
current  object-oriented program-  
ming, many classes are the equivalent 
of  processes in ord inary  concurrent  
p rogramming ,  which need few or  no 
expor ted  features. Class FORK has 
no feature  for this example.  The  de- 
tails of  class B U T L E R ,  used to set up 
and start sessions, are left to the 
reader  (see [16]). 

Making Full Use of Hardware 
Parallelism 
The example shown in Figure 10, 
al though somewhat academic, illus- 
trates how ]lazy wait can be used to 
draw the maximum benefit  f rom any 
available hardware  pa ra l l e l i sm-- the  
f igure depicts an extract (not involv- 
ing concurrency) f rom ~L class de- 
scribing binary trees. Function nodes 
makes a s tandard  use of  recursion to 
compute  the number  of  :aodes in a 
tree. The  recursion is indirect,  
th rough  node_count. 

In a concurrent  envi ronment  of- 
fer ing many processors, it is tempt- 
ing to study how we could offload all 
the separate node computat ions to 
di f ferent  processors. Declaring the 
class as separate, replacing nodes by 
an attr ibute and introducing proce- 
dures  does the job,  as shown in Fig- 
ure  11. The  recursive calls to com- 
pute_nodes will now be started in 
parallel. The  addi t ion operat ions 
wait for these two paralle] computa-  
tions to complete.  

I f  an unbounded  number  of  CPUs 
(physical processors) are available, 
this solution seems to make the opti- 
mal possible use of  the hardware  
parallelism. I f  there  are fewer CPUs 
than nodes in the tree, the speedup  
over sequential computat ion will 
depend  on how well the implementa-  
tion allocates CPUs to the (virtual) 
processors. 

The  presence of  two tests for vacu- 
ity of  b may appea r  unpleasant.  It 
results, however, f rom the need to 
separate the parallelizable p a r t - - t h e  
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procedure  calls, launched concur- 
rently on left and r i g h t - - f r o m  the 
additions, which by nature  must  wait 
for their  operands  to become ready. 

Coroutines 
One of  the requirements  stated at the 
beginning of  the article was that the 
mechanism should suppor t  corou- 
tine programming.  Figures 12a and 
12b show two classes which achieve 
this goal. 

One or  more  coroutines will share 
one coroutine control ler  (set up by a 
"once" function, the mechanism 
which allows informat ion sharing 
while avoiding the dangers  of  global 
variables [11, 14]). Each coroutine 
has an integer  identifier.  To resume 
a coroutine of  identif ier  i, p rocedure  
resume will, th rough  actual_resume, set 
the next attr ibute of  the control ler  to 
i, and then block, waiting on the pre- 
condit ion next = j ,  where j is the co- 
routine 's  own identifier.  This en- 
sures the desired behavior. 

Al though this solution looks like 
normal  concurrent  software, it is 
organized in such a way that  if all 
coroutines have dif ferent  identifiers 
only one coroutine may proceed at 
any one time; so it is useless to allo- 
cate more than one physical CPU for 
them. 

The  recourse to integer identifiers 
is necessary, since giving resume an 
a rgument  of  type COROUTINE,  a 
separate type, would cause deadlock. 
Using Eiffel's "unique" declarat ion 
(similar to Pascal's enumera ted  
types), p rogrammers  do not need to 
worry about assigning such values 
manually.  This use of  integers also 
has an interest ing consequence: if we 
allow two or  more  coroutines to have 
the same identifier,  then with a single 
CPU we obtain a nondeterminis t ic  
mechanism: a call to resume (i) will 
cause the restart ing o f  any coroutine 
whose identif ier  has value i. With 
more  than one CPU a call resume (i) 
will allow all coroutines of  identif ier  i 
to proceed in parallel. This scheme, 
which for a single CPU provides a 
coroutine mechanism, doubles up in 
the case of  several CPUs as a mecha- 
nism for controll ing the maximum 
number  of  processes o f  a certain type 
which may be simultaneously active. 

Locking and Semaphores 
Assume we want to allow a number  
of  clients (the "lockers") to obtain 
exclusive access to certain resources 
(the "lockables") without having to 
enclose the exclusive access sections 
in routines, using a semaphore- l ike 
technique. A solution is shown in 
Figure 13. 

Any class describing resources will 
inheri t  f rom LOCKABLE.  T h e  
p rope r  funct ioning of  the mecha- 
nism assumes that every locker per-  
forms sequences of  grab and release 
operat ions,  in this order .  Other  be- 
havior will usually result  in deadlock.  
We can once again rely on the power 
of  object-oriented computat ion to 
enforce the required protocol;  ra ther  
than trust ing every locker to behave, 
we may require  lockers to go th rough  
a p rocedure  use in descendants  of  a 
class LOCKING, which describes the 
required behavior.  Class LOCKING is 
left to the reader  (see [16]); it will 
inheri t  f rom PROCESS.  

Whether  or  not  we go th rough  
class LOCKING,  a grab does not  re- 
serve the cor responding  lockable for 
all compet ing clients: it only excludes 
other  lockers observing the protocol. 
To exclude any possible client f rom 
accessing a resource,  you must en- 
close the operat ions accessing the 
resource in a rout ine to which you 
pass it as argument .  

The  reader  may have noted that in 
rout ine grab of  class LOCKER,  the 
separate call to set_holder passes Cur- 
rent as argument .  Current, a reference 
to the cur ren t  object (the call's client) 
is a nonsepara te  reference.  Accord- 
ingly, the cor responding  formal  ar- 
gument  of  set_holder is declared as 
separate. Without  the possibility of  
passing nonsepara te  references as 
arguments  to separate calls, we 
would need to rely, as with the co- 
rout ine examples,  on a scheme asso- 
ciating an integer  with every instance 
of  class LOCKER.  

An Elevator Control System 
A case in which object-orientation 
and the mechanism def ined in this 
article can be used to achieve 'a  de- 
centralized event-driven architecture 
is shown in Figures 14 th rough  17. 
The  example  describes software for 
an elevator control  system, with sev- 
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eral elevators serving many floors. 
The design is somewhat fanatically 
object-oriented in the sense that 
every significant type of component  
in the physical system--for  example 
the notion of individual button in an  
elevator cabin, marked with a floor 
n u m b e r - - h a s  an associated separate 
class, so each corresponding object 
such as a button has its own virtual 
thread of control (processor). The 
benefit is that the system is entirely 
event-driven; in particular, it does 
not need to include any loop for ex- 
amining repeatedly the status of ob- 
jects, for example whether any but- 
ton has been pressed. The class texts 
are  only sketched, but  provide a 
good idea of what a complete solu- 
tion would be. The  creation proce- 
dures, which must perform the nec- 
essary initializations, have been left 
to the reader. 

It is convenient to start with class 
MOTOR. This class describes the 
motor associated with one elevator 
cabin, and the interface with the 
mechanical hardware (see Figure 
14). 

The creation procedure of this 
class must associate an elevator, cabin, 
with every motor. Class ELEVATOR 
(Figure 15) includes the reverse in- 
formation through attribute puller, 
indicating the motor pulling the cur- 
rent  elevator. 

The reason for making an elevator 
a n d  its motor separate objects is to 
reduce the grain of locking: once an  
elevator has sent a move request to its 
motor, it is free again, thanks to the 
lazy wait policy, to accept requests 
from buttons either inside or outside 
the cabin. It will resynchronize with 
its motor on receipt of a call to pro- 
cedure record_stop, through sig- 
nal_.stopped. The actual time dur ing  
which an instance of ELEVATOR will 
be reserved by a call from either a 
MOTOR or BUTTON object is very 
short. 

There  are two kinds of buttons: 
floor buttons, which passengers press 
to call the elevator to a certain floor, 
a n d  cabin buttons, which are inside a 
cabin a n d  are  pressed by passengers 
to request a move to a certain floor. 
There  is of course a difference be- 
tween the corresponding kinds of 
requests: a request from a cabin but- 
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Table  2. The semant ics  of  duels 

Chal l enger  --* 

H o l d e r  

no~a~e~ce  immediate..service 

insist Challenger waits Exception in challenger 

yield Challenger waits Exception in both 

\ / 

Figure g. 

ton is directed to the cabin to which 
the button belongs, whereas a floor 
button request may be handled by 
a n y  elevator. A request of  the latter 
kind will be sent to a dispatcher ob- 
ject, which will poll the various eleva- 
tors and select the one that can best 
handle the request. (The precise se- 
lection algorithm is left unimple- 
mented, since it is irrelevant to this 
discussion; the same applies to the 
algorithm used by elevators to man- 
age their pending queue of requests in 
class ELEVATOR in Figure 15.) 

Class FLOOR_BUTTON (Figure 
16) assumes that there is only one 
button on each floor. It is not diffi- 
cult to update the design to support  
two buttons, one for up requests and 
the other for down requests. It is 
convenient, although not essential, to 
have a common parent  BUTTON for 
the classes representing the two 
kinds of buttons. Remember that the 
features exported by ELEVATOR to 
BUTTON are, through the standard 
rules of selective information hiding, 
also exported to the two descendants 
of this class. 

The  class DISPATCHER is shown 
in Figure 17. To refine the algorithm 
that selects an elevator in procedure 
accept, it will need to access the attri-  

butes position and moving of class EL- 
EVATOR, which in the full system 
should be complemented by a Bool- 
ean attribute going_up. Such accesses 
will not cause any problem as the 
design ensures that ELEVATOR ob- 
jects never get reserved for a long 
time. 

A WatChdOg Mechanism 
Together with the previous one, the 
last example helps show the applica- 
bility of the mechanism to real-time 
problems. It also illustrates the con- 
cept of duel. We want to enable a 
class to perform a call to a certain 
procedure action, with the provision 
that the call will be interrupted,  and a 
Boolean attribute failed set to true, if 
the procedure has not completed its 
execution after t seconds. The only 
basic t iming mechanism available is a 
procedure wait (t), which will execute 
for t seconds. 

Figure 18 depicts the solution, 
using a duel. A class that needs the 
mechanism should inherit  from class 
TIMED and provide an effective ver- 
sion of the procedure action which, in 
TIMED, is deferred. To let action 
execute for at most t seconds, it suf- 
fices to call timed_action (t). This pro- 
cedure sets up a watchdog (an in-  
s t a n c e  of class WATCHDOG), which 
executes wait (t) and then interrupts 
its client. If, however, action has been 
completed in the meantime, it is the 
client that interrupts the watchdog. 

In  class WATCHDOG, the Boolean 
attribute terminated_before_time a n d  
the Rescue clause are not actually 
needed; they have been added for 
clarity. In  a more robust version, the 
Rescue clauses should test for the 
type of exception, in order to use the 
preceding scheme only for excep- 
tions caused by a call from a client 
having requested immediate.service. 
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c lass  RINARY_ TREE [ G ] feature  
left, right: BINARY_TREE [ G ] ;  . . .  O t h e r  f e a t u r e s  ...  

nodes: INTEGI-R is 
- -  N u m b e r  o f  n o d e s  in t h i s  t r e e  

d e  
Result :=  node_count (left) + node_count (right) + 1 

e n d  
feature  { NONE} 

node_count (b: BINARY_TREE [ G ] ) :  INTEGER is 
- -  N u m b e r  o f  n o d e s  in b 

d e  
i f  b I= Void then 

Result :=  b.nodes 
e n d  

e n d  
e n d  

F i g u r e  10. 

separate class BINARY_TREE [ G ] feature 

left, right: BINARY._TREE [ G ] ;  
... O the r  f ea tu res  ... 

nodes: INTEGER; 

update_nodes is 
- - U p d a t e  nodes to re f lec t  the  n u m b e r  of  n o d e s  in th is t ree.  

do 
nodes = 1; 
compute_nodes (left); compute_nodes (right); 
adjust_nodes (left); adjust_nodes (right) 

end 
feature { NONE } 

compute_nodes (b: BINARY_TREE [ G ]) is 
- - U p d a t e  in fo rmat ion  a b o u t  the  n u m b e r  of  n o d e s  in b. 

do 
i f  b/= Void then b. update_nodes end 

end; 

ad/ust_nodes (b: BINARY_TREE [ G ] )  is 
- - A d j u s t  n u m b e r  of n o d e s  f rom those  in b. 

do 
i f  b/= Void then 

nodes := nodes + b.nodes 
end 

end 
end 

Figure 11. 

The Mechanism 
Following i,; the precise description 
of the mechanism that results from 
the preceding discussion. The de- 
scription consists of three parts: syn- 
tax; validity rules (static: semantic 
constraints); semantics. It must be 
understood as an extension to the 
Eiffel language specification as given 
in [14]. 

Syntax 
The syntactic extension in;volves just  
one new keyword, separate. (In 
preparation for this extension, the 

list of  keywords in Appendix G of 
[14] already included separate.) A 
declaration of an entity or function, 
which normally appears as x: T Y P E ,  

may now also be of the form 

- - / 6 /  
x: separate T Y P E  

In  addition, a class declaration, 
which normally begins with one of 
class C, d e f e r r e d  c lass  C or expanded 
class C, may now be of the form: 

- - / 7 /  
separate class C ... 

In  this case C is called a "separate 
class." The  syntactic convention im- 
plies that separate status for a class is 
incompatible both with expanded 
status and with deferred status. As in 
the case of expanded and deferred 
classes, the property of being sepa- 
rate is not inherited: a class is sepa- 
rate or not according to its own dec- 
laration only, regardless of the 
separateness status of its parents. An 
entity or function x will be said to be 
separate if either it is declared unde r  
form/6/,  or its type is based on a sep- 
arate class (declared unde r  form/7/).  
It is not an error  for both of these to 
apply: in form /6/, T Y P E  may be 
based on a separate class, although in 
this case the use of s e p a r a t e  in the 
declaration of x is redundant .  

C o n s t r a i n t s  

A number  of validity rules apply to 
constructs involving separate entities. 

The first rule applies to a declara- 
tion of the preceding form/6/ :  

In  a type of the form separate T Y P E ,  

the base class of T Y P E  must be nei- 
ther deferred nor  expanded. 

The  next rule governs the combi- 
nation of separate and nonseparate 
elements in an attachment. The term 
"attachment" covers both assignment 
and a rgument  passing, which have 
the same semantics. An attachment 
ofy to x is either an assignment of the 
form x: = y, or an a rgument  passing 
in a call of the form f ( .... y . . . .  ) o r t . f  
(...,y .... ), where the formal a rgument  
of the routine f, at the position corre- 
sponding to y, is x. Here is the attach- 
'ment rule: 

In  an attachment of y to x, if the 
source y is separate, the target x must 
also be separate. 

It is permitted to redefine an en- 
tity from separate to nonseparate 
and conversely (with the correspond- 
ing constraints on polymorphic at- 
tachment, not detailed here). 

The  following rules, explained 
earlier, apply to separate calls (calls 
whose targets are separate). 

• For a separate call to be valid, the 
call must appear in a routine and its 
target must be a formal a rgument  of 
the enclosing routine. 
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• I f  an  actual a r g u m e n t  of  a separate  
call is o f  a re ference  type, the corre- 
s p o n d i n g  formal  a r g u m e n t  mus t  be 
declared as separate. 
• I f  an  actual a r g u m e n t  of  a separate  
call is o f  an  e x p a n d e d  type, the cor- 
r e s p o n d i n g  base class may not  have 
any  a t t r ibute  of  re fe rence  type. 

T h e  last cons t ra in t  removes  any  
possibility that  the very process of  
evaluat ing  a p recond i t ion  clause (as 
par t  o f  an  access to a separate  object), 
or  more  general ly  an  assertion, could 
lead to fu r the r  blocking: 

I f  an  actual a r g u m e n t  a to a func-  
t ion call is separate an d  the call is 
par t  o f  an  assertion, then  the call 
mus t  be par t  o f  a rou t ine  an d  a mus t  
be a formal  a r g u m e n t  of  that  rou-  
tine. 

This  rule  (which implies that  a 
func t ion  call appea r ing  in a class in- 
var iant  may not  use a separate enti ty 
as actual a rgumen t )  was no t  intro-  
duced  in the earl ier  discussion. With- 
out  it, we could have a rou t ine  of  the 
form 

f (x:SOME_TYPE) is 
r equ i re  

some_property (separate__attribute) 
do ... e n d  

where separate_attribute is a separate 
a t t r ibute  of  the enclosing class. But  
then  the evaluat ion of  f ' s  precondi -  
t ion, e i ther  as par t  o f  assert ion moni-  
tor ing  for correctness,  or  as a syn- 
chroniza t ion  condi t ion  if the actual 
a r g u m e n t  co r r e spond ing  to x in a call 
is itself separate,  could cause block- 
ing  if the at tached object is no t  avail- 
able! Such behavior  is clearly unac-  
ceptable. 

This  concludes the list o f  validity 
constraints.  T h e  semantics will be 
discussed in three  parts:  creat ion;  
object states; calls. 

Semantics of  Creation 
I f  the target  t o f  a creat ion instruc- 
t ion (which appears  af ter  the second 
exclamat ion mark  in, for example!!  
t.make (...)) is nonsepara te ,  the newly 
created object will be hand led  by the 
same processor as the creat ing object. 
If, however,  t is separate,  the new 
object will be allocated to a new pro- 
cessor. 

I4 C U °0 G R ~ N C 

separate class COROUTINE creation 
make 

feature { COROUTINE } 
resume (i: INTEGER) is 

- - W a k e  up c o r o u t i n e  o f  i den t i f i e r  i a n d  g o  to  s l eep .  
do actual_resume ( i, controller) end 

feature { NONE} 
controller: COROUTINE_CONTROLLER ; 

identifier: INTEGER; 

actual_resume (i: INTEGER; c: COROUTINE_CONTROLLER) is 
- - W a k e  up  c o r o u t i n e  of  i den t i f i e r  i a n d  g o  to  s l eep .  
- - ( A c t u a l  w o r k  of  resume). 

do 
c.set_next ( i ) ;  request ( c) 

end; 

request(c: COROUTINE_CONTROLLER) is 
- -  R e q u e s t  e v e n t u a l  r e - a w a k e n i n g  by  c. 

require 
c.is__next (identifier) 

do end 

feature {NONE} - - C r e a t i o n  
make ( i : INTEGER; c: COROUTINE_CONTROLLER) is 

- - A s s i g n  i as  iden t i f i e r  a n d  c as  con t ro l l e r .  
do 

identifier := i; controller := c 
end 

end 

Figure 12a. 

separate class COROUTINE_CONTROLLER feature {NONE} 
next. INTEGER 

feature { COROUTINE} 
set__next (i: INTEGER) is 

- - Select i as the identifier of the next coroutine to be awakened. 
do next := i end; 

is_next(i: INTEGER): BOOLEAN is 
- - Is i the index of the next coroutine to be awakened? 

do Result := (next = i) end 
end 

Figure 12b. 

Object Sta tes  

Once  it has been  created, an  object 
OBJ will be in e i ther  o f  three  states: 

• Busy: a rou t ine  is be ing  executed 
on  OBJ for the benef i t  o f  a client ob- 
ject,  and  is no t  blocked. 

• Blocked: the last rou t ine  to be 
started on  OBJ has requested access 
to an object hand led  by a d i f fe ren t  
processor,  bu t  the processor was no t  
available or  a separate p recondi t ion  
was no t  satisficd. 
• Idle:  n o n e  of  the preceding.  T h e r e  
is no  p e n d i n g  client request  on  OBJ. 

In  the object-or iented style of  pro- 

g ram m ing ,  a call is always executed 
on  beha l f  o f  "someone"  e l s e - - a  cli- 
ent.  In  sequential  computa t ion ,  the 
client  is always ano the r  object, except  
in the case of  the system's root  object, 
whose client  is the h u m a n  or  o ther  
system that  started the execut ion.  
With c o n c u r r e n t  computa t ion ,  the 
only new proper ty  is that  a system 
may have more  than  one root  object. 

Figure  19 informal ly  shows the 
t ransi t ions  be tween states, as dis- 
cussed in the following two subsec- 
tions. A processor is said to be avail- 
able if and  only if every one  of  the 
objects that  it handles  is e i ther  idle or  
blocked. 
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class LOCKER feature 
grab (resource : separate LOCKABLE ) is 

- - R e q u e s t  e x c l u s i v e  a c c e s s  to  resource. 
requi re  

no t  resource, locked 
do resource.se tho lder  (Current) end 

release (rez;ource : separate LOCKABLE ) is 
requi re  

resource.is_held (Current) 
do resource.release end 

end 

class L OCKABLE ;feature { LOCKER } 
set_holder ( l :  separate LOCKER) is 

- -  D e s i g n a t e  1 a s  h o l d e r .  

requi re  
1/= Void 

do 
holder :=  1 

ensure 
locked 

end; 

locked: BOOLEAN is 
- -  Is r e s o u r c e  r e s e r v e d  b y  a l o c k e r ?  

do Ftesult := (ho lder /= Void) end; 

is_held (I: separate LOCKER): BOOLEAN is 
- -  Is r e s o u r c e  r e s e r v e d  b y  1 ? 

do F'esult := (holder = I) end;  

release is 
- -  R e l e a s e  f r o m  c u r r e n t  h o l d e r .  

do 
holder := Void 

ensLire 
not  looked 

end 

feature { NONE} 
holder: separate LOCKER 

end 

F i g u r e  13. 

separate class MOTOR feature { ELEVA TOR } 
move (floor:INTEGER) is 

- - Go  to floor, o n c e  there,  repor t .  
do 

"D i rec t  the  phys i ca l  d e v i c e  to m o v e  to flooP; 
signal_stopped (cabin) 

end; 

signal_stopped (e:  ELEVATOR) is 
- - R e p c r t  that  e l e v a t o r  s t o p p e d  on level  e. 

do 
e. record_stop (position) 

end 

feature { NONE } 
cabin: ELEVATOR; 

position: INTEGER i,J 
- - Cu r ren t  f l oo r  level  

do 
Result := "The cu r ren t  f l oo r  level ,  read  f rom phys i ca l  senso rs "  

end 
end 

Semantics of Calls 
To study the semantics of  calls, we 
may use the general  f o r m t . f (  . . . .  s . . . .  ) 

and assume that f is a routine. ( I f f  is 
an attribute, we may replace calls to f,  
for the purpose  o f  this discussion, by 
calls to a function whose sole purpose  
is to re turn  the value of  the attribute;  
this may affect per formance  but  does 
not change the semantics.) 

The  introduct ion of  concurrency 
affects the semantics of  a call only if  
one or  more  of  the elements in- 
v o l v e d - t a r g e t  and actual argu- 
m e n t s - a r e  separate.  Let us assume 
that one or  more  of  the actual argu- 
ments are separate,  but  the target  t is 
not. (The effect o f  having the target  
separate  is examined in the next sub- 
section.) The  call is executed as par t  
of  the execution of  a rout ine on a 
certain object, say C_OBJ, which may 
only be in a busy state at that stage. 
The  proper ty  which determines  
whether  the call proceeds or  blocks 
may be def ined as follows: 

D e f i n i t i o n  ( s a t i s f i a b l e  ca l l )  

A call to a rout ine f is satisfiable if  
and only if  every separate actual ar- 
gument  a having a nonvoid value, 
and hence at tached to a separate  ob- 
ject  A_OBJ, satisfies the following 
three conditions: A_OBJ is idle; the 
processor handl ing A__OBJ is avail- 
able; every separate clause of  the 
precondi t ion off ,  when evaluated for 
A_OBJ and the actual arguments  
given, has value true. In this defini- 
tion an assertion clause is separate if 
and only if  it includes a call whose 
target  is separate.  

I f  the call is satisfiable, it proceeds 
immediately:  C_OBJ remains in the 
busy state and A..OBJ enters the busy 
state, in which it executesf .  When  the 
execution of  f terminates.  A..OBJ 
re turns  to the idle state. 

I f  the call is not satisfiable, C_OBJ 
enters the blocked state. The  call at- 
tempt  has no immediate  effect on its 
target  and actual arguments .  The  
processor handl ing C_OBJ becomes 
available; in particular,  if any object 
also handled  by that  processor had 
previously blocked on a call that is 
now satisfiable, the processor will se- 
lect one such object, re turn  it to the 
busy state and execute the corre- 
sponding call as described.  I f  there  is 

F i g u r e  14. 



more than one selectable candidate, 
the semantics does not specify which 
one will be selected, but does require 
the processor to select one. If  a pro- 
cessor is available and there is no 
immediately satisfiable call, the pro- 
cessor remains available until a state 
is reached in which there is a satisfi- 
able call for that processor. 

A note is in order  on exactly when 
preconditions clauses will cause 
blocking in the definition of satis- 
fiability. A precondition clause is sep- 
arate (and so may clause blocking) 
only if it includes a call on a separate 
target. Other precondition clauses 
remain correctness conditions, not 
blocking conditions. For example, a 
precondition of the form i >  1, 
where i is an integer entity (ex- 
panded, and hence nonseparate) is a 
normal correctness condition, which 
must be ensured before the call by 
the client. Failure to ensure this con- 
dition at the time of the call indicates 
a bug in the client, not a run-t ime 
waiting condition. Similarly, for sep- 
arate s l  and s2, preconditions clauses 
of the form s l  /= Void or sl  = s2 are 
correctness conditions, since they do 
not involve any calls. Both are tests 
for reference equality, which may be 
performed regardless of the status 
(idle, busy, waiting) of the objects at- 
tached to s l  and s2, if any. In particu- 
lar, separate actual arguments may 
cause blocking only if they are non- 
void. 

An adaptation of the preceding 
description is applicable to classes 
inherit ing from class C O N C U R -  
R E N C Y .  The effect of calls to proce- 
dures immediate._service, normal.ser- 
vice, insist and yield is defined by 
Table 2. 

Separate Targets and Lazy Wait 
The final semantic change is the ef- 
fect of having a separate target t in a 
call of the form t . f  ( .... s . . . .  ). This 
appears in a routine r of which t must 
be a formal argument.  When the call 
is executed, the object T_OBJ at- 
tached to t is busy (it became busy 
when the latest call to r was selected) 
and "reserved" by r. The previous 
discussion still applies; the only new 
effect is the lazy wait policy, which 
affects the client executing the call. 

l,I C U 
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separate class ELEVATOR feature {BUTTON } 
accept (floor: INTEGER) is 

- - Reco rd  and p rocess  a reques t  to go  to floor. 
do 

record (floor); 
ff not moving then 

process_request 
end 

end; 

feature { MOTOR} 
record_stop (floor: INTEGER) is 

- - Reco rd  in format ion that e leva to r  has s t opped  on floor. 
do 

moving := false; position := floor; 
process_request 

end; 

feature { DISPATCHER } 
position: INTEGER; moving: BOOLEAN 

feature {NONE } 
puller: MOTOR; 

pending: QUEUE [INTEGER ]; 
- - T h e  queue  of pend ing  reques ts  
- - (each ident i f ied by  the numbe r  of the dest ina t ion  f loor)  

record (floor: INTEGER) is 
- - Reco rd  reques t  to go  to floor. 

do 
"A lgor i thm to insert  reques t  for  floor into pending" 

end; 

process__request is 
- - Hand le  next  pend ing  request ,  if any.  

local 
floor: INTEGER 

do 
ff not pending.empty then 

floor := pending.item; 
actual_process (puller, floor); 
pending, remove 

end 
end, 

actual_process (m:  separate MOTOR; floor: INTEGER ) is 
- - D i rect  m to go  to floor. 

do 
moving := true; m.move (floor) 

end 
end 

Figure lS. 

Lazy wait pol icy  on satisfiable calls 
with separate targets: Once a satisfi- 
able call has been selected for execu- 
tion: 

• If  the call is to a procedure, the cli- 
ent continues its execution unless 
one of its actual arguments is a non- 
separate reference. 

• If  the call is to a query (function or 
attribute), or includes a nonseparate 
reference among its actual argu- 
ments, the client's execution waits 
until  the completion of the code. 

Conclusion and Open Issues 
This presentation has described an 
approach to concurrent  object- 
oriented computation, and the ra- 
tionale that led to it. I consider this 
article only a first step toward a solu- 
tion of the problem under  study. 
The  following points are open to 
criticism: 

• The  dual semantics of assertions 
on separate and nonseparate targets 
• The rule that the target of a sepa- 
rate call must be a formal a rgument  
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separate class BUTTON feature 
ta,rget: INTEGER; 

end 

separate class CABIN_gUTTON inherit BUTTON feature 
... Left to the reader ... 

end 

separate class FLOOR_BUTTON inherit BUTTON feature 
controller: D/SPA TCHER ; 

request is 

do 

end 

- - Send to dispatcher a request to stop on level target. 

a ctual_request (controller) 

actual_request ( d : D/SPA TCHER ) is 
- - Send to d a request to stop on level target. 

do 
d.accept (target) 

end 
end 

Figure  16. 

separate class DISPATCHER feature {FLOOR_BUTTON} 
accept (floor: INTEGER) is 

- - Handle a request to send an elevator to floor. 
local 

index: INTEGER; chosen: ELEVA TOR; 
do 

"A gorithm to determine the elevator 
wl-ich should handle the request for floo£; 
index := "The index of the chosen elevator"; 
chosen := elevators @ index; 
ser~d_request (chosen, floor) 

end 
feature {NONE} 

send_request (e: ELEVATOR; floor: INTEGER) is 
- - Send to e a request to go to floor. 

do e.accept (floor) end, 

ele.vators: ARRAY [ELEVATOR]; 
end 

Figure  17. 

~ C a l l  not leading to 
Feature call / ~ BLOCKED, 
from client I ] or instruction 

C,,,-'~I D L E " ~ ' ~  ~ - ~ ' ~ = " ~  other than call. 

Call t e r m ~  l 

Feature call with busy / / 
or blocked separate / / All separate arguments 

argument, or separate / / idle, and all separate 
precondition not / / preconditions satisifed 

satisified l 

Figure 19. 

of  the enclosing routine, which may 
require adding apparently superflu- 
ous actual_xxx routines 

Additionally, much practical and 
theoretical work remains to be done 
in the following areas: 

• Devising the practical facilities for 
associating processors, as defined in 
this article, with physical resources: 
computers on a network, tasks in an 
operating system, physical processors 
in a multiprocessing system. 
• Implementing the mechanism in 
various environments- -shared 
memory,  distributed systems and 
others. 
• Exploring the proof  rules further  
and performing proofs of  significant 
systems. 
• Studying whether it is possible, by 
observing certain restrictions in the 
use of  the mechanisms described, to 
guarantee deadlock avoidance. 
• Finding out whether the mecha- 
nism can be adapted to ensure fair- 
ness, and if so, how (perhaps 
through library facilities, as was done 
to achieve the semantics of  duels). 

One may hope these questions can be 
answered in a way that preserves the 
advantages of  the concurrency 
mechanism described here, in partic- 
ular its minimal departure from the 
concepts of  sequential object- 
oriented computation and its com- 
patibility with the assertion concepts 
which are so essential to a proper  
understanding of  this field. 
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