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Abstract. Message passing provides a powerful communication abstrac-
tion in both distributed and shared memory environments. It is partic-
ularly successful at preventing problems arising from shared state, such
as data races, as it avoids sharing in general. Message passing is less
effective when concurrent access to large amounts of data is needed, as
the overhead of messaging may be prohibitive. In shared memory envi-
ronments, this issue could be alleviated by supporting direct access to
shared data; but then ensuring proper synchronization becomes again the
dominant problem. This paper proposes a safe and efficient approach to
data sharing in message-passing concurrency models based on the idea
of distinguishing active and passive computational units. Passive units
do not have execution capabilities but offer to active units exclusive and
direct access to the data they encapsulate. The access is transparent due
to a single primitive for both data access and message passing. By distin-
guishing active and passive units, no additional infrastructure for shared
data is necessary. The concept is applied to SCOOP, an object-oriented
concurrency model, where it reduces execution time by several orders of
magnitude on data-intensive parallel programs.

1 Introduction

In concurrency models with message passing, such as the Actor model [14],
CSP [15], and others [6], a computational unit encapsulates its own private data.
The units interact by sending synchronous or asynchronous messages. These
concurrency models are implementable in environments with and without shared
memory. Based on these models, several languages and libraries support message
passing, e.g., Erlang [8], Ada [16], MPI [19], and SCOOP [22].

To operate on shared data, a client must send a message to the supplier
encapsulating that data. In environments with shared memory, however, the
client could access this data directly and avoid the messaging overhead. The
difficulty is to prevent data races and to combine the data access primitives with
the messaging primitives in a developer-friendly way.

Some languages and libraries [8, 16, 19, 25] have already combined mutually
exclusive shared data with message passing and observed performance gains on
shared memory systems. However, as discussed in Section 6, these approaches



either impose restrictions on the shared data or do not provide unified primitives
for data access and message passing. As a consequence of the latter limitation,
programmers are required to change their code substantially when switching
from messaging to shared data or vice versa.

To close this gap, this paper proposes the concept of passive computational
units for safe and efficient data sharing in message-passing models implemented
on shared memory. A passive unit is a supplier stripped from its execution capa-
bilities. Its only purpose is to provide a container for shared data and exclusive
access to it. The passive unit can contain any data that is containable by a regular
supplier. A client with exclusive access uses existing communication primitives
to operate on the data; instead of sending a message, these primitives access
the data directly. By overloading the semantics of the primitives, programmers
only need to change few lines of code to set a unit passive. Furthermore, passive
units are implementable with little effort as existing supplier infrastructure can
be reused.

This paper develops this concept in the context of SCOOP [20,22], an object-
oriented concurrency model based on message passing, where processors en-
capsulate objects and interact by sending requests. The implementation of the
concept is shown to reduce execution time by several orders of magnitude on
data-intensive parallel programs.

The remainder of this paper is structured as follows. Section 2 introduces
a running example. Section 3 develops the concept of passive processors infor-
mally, and Section 4 develops it formally. Section 5 evaluates the efficiency, and
Section 6 reviews related work. Finally, Section 7 discusses the applicability to
other concurrency models and concludes with an outlook on future work.

2 Pipeline System

A pipeline system serves as the running example for this paper. The pipeline
parallel design pattern [18] applies whenever a computation involves sending
packages of data through a sequence of stages that operate on the packages.
The pattern assigns each stage to a different computational unit; the stages
then synchronize with each other to process the packages in the correct order.
Using this pattern, each stage can be mapped for instance to a CPU core, a
GPU core, an FPGA, or a cryptographic accelerator, depending on the stage’s
computational needs.

The pipeline pattern can be implemented in SCOOP (Simple Concurrent
Object-Oriented Programming) [20,22]. The starting idea of SCOOP is that ev-
ery object is associated with a processor, called its handler. A processor is an
autonomous thread of control capable of executing actions on objects. An ob-
ject’s class describes its actions as features. An entity x belonging to a processor
can point to an object with the same handler (non-separate object), or to an ob-
ject on another processor (separate object). In the first case, a feature call x.f on
the target x is non-separate: the handler of x executes the feature synchronously.
In the second case, the feature call is separate: the handler of x, i.e., the supplier,



executes the call asynchronously on behalf of the requester, i.e., the client. The
possibility of asynchronous calls is the main source of concurrent execution. The
asynchronous nature of separate feature calls implies a distinction between a
feature call and a feature application: the client logs the call with the supplier
(feature call) and moves on; only at some later time will the supplier actually
execute the body (feature application).

In the SCOOP pipeline implementation, each stage and each package is han-
dled by its own processor, ensuring that stages can access the packages in parallel.
Each stage is numbered to indicate its position in the pipeline; it receives this
position upon creation:

class STAGE create make feature
position: INTEGER −− The stage’s position in the pipeline.

make (new position: INTEGER)
−− Create a stage at the given position.

do position := new position end

process (package: separate PACKAGE)
−− Process the package after the previous stage is done with it.

require package.is processed (position − 1) do
do work (package) −− Read from and write to the package.
package.set processed (position) −− Set the package processed.

end
end

The process feature takes a package as an argument; the keyword separate
specifies that the package may be handled by a different processor. To ensure ex-
clusive access, a stage must first lock a package before accessing it. In SCOOP,
such locking requirements are expressed in the formal argument list: any tar-
get of separate type within the feature must occur as a formal argument; the
arguments’ handlers are locked for the duration of the feature execution, thus
preventing data races. In process, package is a formal argument; hence the stage
has exclusive access to the package while executing process.

To process each package in the right order, the stages must synchronize with
each other. For this purpose, each package has two features is processed and
set processed to keep track of the stages that already processed the package.
The synchronization requirement can then be expressed elegantly using a pre-
condition (keyword require), which makes the execution of a feature wait until
the condition is true. The precondition in process delays the execution until the
package has been processed by the previous stage.

The SCOOP concepts require execution-time support, known as the SCOOP
runtime. Each processor is protected through a lock and maintains a request
queue of requests resulting from feature calls of other processors. When a client
executes a separate feature call, it enqueues a separate feature request to the
supplier’s request queue. The supplier processes the feature requests in the order
of queuing. A non-separate feature call can be processed without the request



queue: the processor creates a non-separate feature request and processes it right
away using its call stack.

A client makes sure that it holds the locks on all suppliers before executing a
feature. At the end of the feature execution, the client issues an unlock request to
each locked processor. Each locked processor unlocks itself as soon as it processed
all previous feature requests.

3 Passive Processors

The pipeline system from Section 2 showcases an important class of concur-
rent programs, namely those that involve multiple processors sharing data. In
SCOOP, it is necessary to assign the data to a new processor. For frequent and
short read or write operations this becomes problematic:

1. Each feature call to the data leads to a feature request in the request queue
of the data processor, which then picks up the request and processes it on
its call stack. This chain of actions creates a considerable overhead. For an
asynchronous write operation, the overhead outweighs the benefit of asyn-
chrony. For a synchronous read operation, the client not only waits for the
data processor to process the request, it also gets delayed further by the
overhead.

2. The data consumes operating system resources (threads, processes, locks,
semaphores) that could otherwise be freed up.

On systems with shared memory, the clients can directly operate on the data,
thus avoiding the overhead. This frees most of the operating system resources
attached to the data processor. Before accessing shared data, a client must ensure
its access is mutually exclusive; otherwise, data races can occur. For this purpose,
shared data must be grouped, and each group must be protected through a lock.
Since SCOOP processors offer this functionality already along with execution
capabilities, one can use processors, stripped from their execution capabilities,
to group and protect shared data. This insight gives rise to passive processors:

Definition 1 (Passive processor). A passive processor q does not have any
execution capabilities. Its lock protects the access to its associated objects. A
client p holding this lock uses feature calls to operate directly on q’s associated
objects. While operating on these objects, p assumes the identity of q. Processor q
becomes passive when another processor sets it as passive. When q is not passive,
it is active. Processor q becomes active again when another processor sets it as
active. It can only become passive or active when unlocked, i.e., when not being
used by any other processor.

When a processor p operates on the objects of a passive processor q, it as-
sumes q’s identity. For example, if p creates a literal object or another non-
separate object, it creates this object on q and not on itself; otherwise, a non-
separate entity on q would reference an object on p.

Besides safe and fast data sharing, passive processors have further benefits:



– Minimal user code changes. The feature call primitive unifies sending mes-
sages to active processors and accessing shared data on passive processors,
ensuring minimal code changes to set a processor passive or active. With
respect to SCOOP’s type system [22], the same types can be used to type
objects on passive and active processors. The existing type system rules en-
sure that no object on a passive processor can be seen as non-separate on a
different processor, thus providing type soundness.

– Minimal compiler and runtime changes. To implement passive processors,
much of the existing infrastructure can be reused. In particular, no new
code for grouping objects and for locking request queues is required.

package processor (active)

call stack: package.put(v)

request queue: package.item

locked: yes

locks: 

handled objects:

stage processor (active)

call stack: stage.process(package)

request queue: ...

locked: yes

locks: package processor

handled objects:

stage : STAGE package : PACKAGE record : RECORD

(a) The package processors are active.

package processor (passive)

locked: yes

handled objects:

stage processor (active)

call stack: package.put(v) ; stage.process(package)

request queue: ...

locked: yes

locks: package processor

handled objects:

stage : STAGE package : PACKAGE record : RECORD

(b) The package processors are passive.

Fig. 1: A stage processor processes a package. The stage object, handled by the
left-hand side processor, has a separate reference (depicted by an arrow) to the
package object, handled by the right-hand side processor. The package object
references a non-separate record object to remember the processing history.

In the pipeline system, each package can be handled by a passive processor
rather than an active one. To achieve this, it suffices to set a package’s pro-
cessor passive after its construction. No other code changes are necessary since
the existing feature calls to the packages automatically assume the data access
semantics. For example, the following code creates a package on a new passive
processor and asks the stages to process the package.



create package.make (data, number of stages) ; set passive (package)
stage 1.process (package) ; ... ; stage n.process (package)

Figure 1 illustrates the effect of the call to set passive. In Figure 1a, active
package processors have a call stack, a request queue, and a stack of locks. The
stage processors send asynchronous (see put) and synchronous (see item) feature
requests. In Figure 1b, passive package processors do not have any execution
capabilities. Therefore, the stage processors operate directly and synchronously
on the packages, thus making a better use of their own processing capabilities
rather than relaying all operations to the package processors.

4 Formal Specification

This section provides a structural operational semantics for the passive processor
mechanism and shows that setting a processor passive or active preserves the
execution order of called features.

4.1 State Formalization

Let Ref be the type of references, let Proc be the type of processors, and let
Entity be the type of entities. A state σ is then a 6-tuple (σh, σl, σo, σi, σf , σe)
of functions:

– σh : Ref → Proc maps each reference to its handler.
– σl : Proc→ Boolean indicates which processors are locked.
– σo : Proc→ Stack[Set[Proc]] maps each processor to its obtained locks.
– σi : Proc→ Boolean indicates which processors are passive.
– σf : Proc → Proc maps each processor p to the handler of the object on

which p currently operates. Normally σf (p) = p, but when operating on the
objects of a passive supplier q, then σf (p) = q.

– σe : Proc → Stack[Map[Entity,Ref ]] maps each processor to its stack of
entity environments.

4.2 Execution Formalization

An execution is a sequence of configurations. Each configuration of the form
〈p1 :: sp1 | . . . | pn :: spn, σ〉 is an execution snapshot consisting of the schedule,
i.e., the call stacks and the request queues of processors p1, . . . , pn, and the state
σ. The call stack and the request queue of a processor are also known as the
action queue of the processor. The commutative and associative parallel operator
| keeps the processors’ action queues apart. Within an action queue, a semicolon
separates statements. Statements are either instructions, i.e., program elements,
or operations, i.e., runtime elements. The following overview shows the structure
of statements, instructions, and operations. The elements et, e, and all items in
ea are entities of type Entity. The element rt and all items in ra are references
of type Ref . The element f of type Feature denotes a feature where f.body



returns the feature’s body. Lastly, q1, . . . , qn and w are processors of type Proc,
and x is a flag of type Boolean.

s , in | op
in ,
et.f(ea) | Call a feature.
create et.f(ea) | Create an object.
set passive(e) | Set the handler of the referenced object passive.
set active(e) Set the handler of the referenced object active.

op ,
apply(rt, f, ra) | Apply a feature.
revert({q1, . . . , qn}, w, x) | Finish a feature application or an object creation.
unlock Unlock a processor.

Figure 2 shows the transition rules. A processor q becomes passive when a
processor p executes the set passive instruction (see Set Passive) with an entity
e that evaluates to a reference r on q. Processor q becomes active again when
a processor p executes the set active instruction (see Set Active). Processor q
can only become passive or active when q is unlocked, guaranteeing that q is not
being used by any other processor.

To perform a feature call et.f(ea) (see call rules) a client p evaluates the
target (see rt) and the arguments (see ra). It then looks at the handler q of the
target. If q is different from p and not passive, p creates a feature request (see
apply) and appends it to the end of q’s request queue. If q is p or if q is passive,
then p itself immediately processes the feature request.

To process a feature request (see Apply), a processor p first determines the
missing locks q as the difference between required locks and already obtained
locks. It only proceeds when all missing locks are available, in which case it
obtains these locks. It also adds a new entity environment and updates σf with
the target handler, i.e., p for non-passive calls or the handler of the target for
passive calls. Processor p then executes the feature body and cleans up (see
Revert). It releases the obtained locks, restores σf , and removes the top entity
environment. The locked suppliers unlock themselves asynchronously once they
are done with the issued workload (see Unlock).

To execute a creation instruction create et.f(ea) (see creation rules), a pro-
cessor p looks at the type of the target et. If the type is separate, i.e., its decla-
ration has the separate keyword, p creates an active and idle processor q with
a new object referenced by rt. It then locks that processor, performs the cre-
ation call (see call rules), and cleans up. If the type of et is non-separate, i.e.,
no separate keyword, p creates a new object on the handler on whose objects
p currently operates on, i.e., σf (p). In case σf (p) = q 6= p, it is important to
create the new object on q rather than on p; otherwise the non-separate entity
et on q would point to an object not on q, thus compromising the soundness of
the type system.

We embedded the transition rules from Figure 2 into the comprehensive for-
mal specification for SCOOP [10], implemented in Maude [5]. This specification



Set Passive

r
def
= σe(p).top.val(e) q

def
= σh(r) ¬σl(q)

〈p :: set passive(e); sp, σ〉 → 〈p :: sp, (σh, σl, σo, σi[q 7→ true], σf , σe)〉

Set Active

r
def
= σe(p).top.val(e) q

def
= σh(r) ¬σl(q)

〈p :: set active(e); sp, σ〉 → 〈p :: sp, (σh, σl, σo, σi[q 7→ false], σf , σe)〉

Separate Call

rt
def
= σe(p).top.val(et) ra

def
= σe(p).top.val(ea) q = σh(rt) p 6= q ∧ ¬σi(q)

〈p :: et.f(ea); sp | q :: sq, σ〉 → 〈p :: sp | q :: sq; apply(rt, f, ra), σ〉

Non-Separate/Passive Call

rt
def
= σe(p).top.val(et) ra

def
= σe(p).top.val(ea) q = σh(rt) p = q ∨ σi(q)

〈p :: et.f(ea); sp, σ〉 → 〈p :: apply(rt, f, ra); sp, σ〉

Apply

q
def
= σh(ra) \ (σo(p).flat ∪ {p})

∧
q∈q ¬σl(q)

〈p :: apply(rt, f, ra); sp, σ〉 →
〈p :: f.body ; revert(q, σf (p), true); sp, (σh, σl[q 7→ true], σo[p 7→ σo(p).push(q)], σi,

σf [p 7→ σh(rt)], σe[p 7→ σe(p).push((current 7→ rt, f.formals 7→ ra))])〉

Revert

e′
def
=

{
σe[p 7→ σe(p).pop] if x

σe otherwise

〈p :: revert({q1, . . . , qn}, w, x); sp | q1 :: sq1 | . . . | qn :: sqn, σ〉 →
〈p :: sp | q1 :: sq1; unlock | . . . | qn :: . . . , (σh, σl, σo[p 7→ σo(p).pop], σi, σf [p 7→ w], e′)〉

Unlock

〈p :: unlock; sp, σ〉 →
〈p :: sp, (σh, σl[p 7→ false], σo, σi, σf , σe)〉

Parallelism
〈P, σ〉 → 〈P ′, σ′〉

〈P | Q, σ〉 → 〈P ′ | Q, σ′〉

Separate Creation

et.type = separate q
def
= fresh proc(σh) rt

def
= fresh obj(σh)

〈p :: create et.f(ea); sp, σ〉 → 〈p :: et.f(ea); revert({q}, σf (p), false); sp | q ::,
(σh[rt 7→ q], σl[q 7→ true], σo[p 7→ σo(p).push({q})][q 7→ ()], σi[q 7→ false],

σf [q 7→ q], σe[p 7→ σe(p).update(et 7→ rt)][q 7→ ()])〉

Non-Separate Creation

et.type = non–separate rt
def
= fresh obj(σh)

〈p :: create et.f(ea); sp, σ〉 →
〈p :: et.f(ea); sp, (σh[rt 7→ σf (p)], σl, σo, σi, σf , σe[p 7→ σe(p).update(et 7→ rt)])〉

Fig. 2: Transition rules



uses σf (p) also in other situations where p performs an action on behalf of a
passive processor, namely to create literals, to set the status of a once routine
(a routine only executed once), and to import and copy object structures. We
used the specification to test [21] the passive processor mechanism against other
SCOOP aspects and used the results to refine the specification.

4.3 Order Preservation

The formal semantics can be used to prove Theorem 1, stating that a supplier
can always be set passive or active without altering the sequence in which called
features get applied. This property enables developers to use the same reasoning
in determining a feature’s functional correctness, irrespective of whether the
suppliers are passive or active. Lemma 1 is necessary to prove Theorem 1:

Lemma 1 (Action queue order preservation). Let p be a processor with
statements s1, . . . , sl in its action queue. In a terminating program, p will execute
s1, . . . , sl in the sequence order.

Proof. The transition rules in Figure 2 only allow p to execute the leftmost
statement and then continue with the next one. Since none of the rules delete
or shuffle any statements, and since p’s program is terminating, p must execute
s1, . . . , sl in the sequence order.

Theorem 1 (Feature call order preservation). Let p be a processor that is
about to apply a feature f in a terminating program. Let q be the processors that
p locks to apply f . For each q ∈ q, regardless whether it is passive or active, the
feature requests for q, resulting from feature calls in f ’s body, will be processed
in the order given by f ’s body.

Proof. Processor p first inserts f ’s instructions s1, . . . , sl into its action queue
(see Apply). Lemma 1 states that processor p executes all of these instructions
in code order. Hence, the proof can use mathematical induction over the length
l of f ’s body. In the base case, i.e., l = 0, p did not execute any instructions;
hence, the property holds trivially. For the inductive step, the property holds for
l = i − 1; the proof needs to show that the property holds for l = i. Consider
the instruction si at position i:

– si is a set passive or set active instruction. Processor p does not change
any action queues (see Set Passive and Set Active); the property is pre-
served.

– si is a separate feature call to a passive processor q. Processor p executes the
feature call (see Non-Separate/Passive Call). Processor q must already
have been passive during earlier calls because a processor cannot be set
passive when it is locked (see Apply and Set Passive). Hence, processor p
must have processed all earlier calls. Because of the induction hypothesis, it
must have done so in the order given by the code. Consequently, processing
si now preserves the property for q. Because of the induction hypothesis,



the configuration after si−1 satisfied the property for all other suppliers in
q; Lemma 1 guarantees that these processors will execute their statements
in the same order even after si, thus the property is preserved.

– si is a separate feature call to an active processor q. Processor p executes
a separate call (see Separate Call) to add a feature request to the end
of q’s action queue. Because of the induction hypothesis, q must either have
processed all earlier calls in the code order, or some of these calls must be
scheduled in q’s action queue, to be executed in code order. In either case,
adding a feature request for si to the end of the action queue preserves the
property for q (see Lemma 1). As in the passive case, Lemma 1 guarantees
that the property is preserved for all other suppliers in q as well.

– si is a non-separate feature call. Regardless of the suppliers’ passiveness, p
executes a non-separate feature call (see Non-Separate/Passive Call).
Lemma 1 guarantees that the property is preserved for all q in q.

– si is a separate creation instruction. Regardless of the suppliers’ passiveness,
p executes a separate feature call (see Separate Creation), adding a new
feature request to a new processor. Lemma 1 guarantees that the property
is preserved for all q in q.

– si is a non-separate creation instruction. Regardless of the supplier’s passive-
ness, p executes a non-separate feature call (see Non-Separate Creation).
Lemma 1 guarantees that the property is preserved for all q in q.

5 Evaluation

The pipeline system from Section 2 is a good representative for the class of pro-
grams targeted by the proposed mechanism: multiple stages share packages of
data. This section experimentally compares the performance of the pipeline sys-
tem when implemented using passive processors, active processors, and low-level
synchronization primitives; the latter two are the closest competing approaches.
To this end, we extended the SCOOP implementation [9] with passive processors.

5.1 Comparison to active processors

A low-pass filter pipeline is especially suited because it exhibits frequent and
short read and write operations on the packages, each of which represents a signal
to be filtered. The pipeline has three stages: the first performs a decimation-in-
time radix-2 fast Fourier transformation [17]; the second applies a low-pass filter
in Fourier space; and the third inverses the transformation. The system supports
any number of pipelines operating in parallel and splits the signals evenly.

Table 1 shows the average execution times of various low-pass filter systems
processing signals of various lengths. The experiments have been conducted on a
4 × Intel Xeon E7-4830 2.13 GHz server (32 cores) with 256 GB of RAM running
Windows Server 2012 Datacenter (64 Bit) in a Kernel-based Virtual Machine
on Red Hat 4.4.7-3 (64 Bit). A modified version of EVE 13.11 [9] compiled the
programs in finalized mode with an inline depth of 100. Every data point reflects



the average execution time over ten runs processing 100 signals each. Using ten
pipelines, it took nearly ten hours to compute the average for active signals of
length 16384; thus we refrained from computing data points for bigger lengths.

Table 1: Average execution times (in seconds) of various low-pass filter systems
with various signal lengths.

configuration 2048 4096 8192 16384 32768 65536 131072 262144 524288

sequential, SCOOP 1.00 1.66 3.22 6.35 12.71 26.19 55.05 120.37 272.38
sequential, thread 0.62 1.09 2.19 4.66 9.57 20.23 41.45 93.40 213.59
1 pipeline, active 337.55 682.29 1456.67 2875.23 - - - - -
1 pipeline, passive 1.64 2.72 5.02 10.99 24.68 55.29 118.30 247.29 533.83
1 pipeline, thread 0.31 0.58 1.16 2.44 5.26 11.11 23.59 53.24 122.00
2 pipelines, passive 1.19 1.77 3.05 6.35 14.19 29.82 60.24 124.99 263.96
3 pipelines, passive 1.07 1.47 2.34 4.71 9.87 20.65 41.78 85.72 185.19
5 pipelines, active 231.25 496.68 1048.95 2192.53 - - - - -
5 pipelines, passive 0.87 1.23 1.86 3.27 6.35 13.50 27.17 55.95 117.12
5 pipelines, thread 0.16 0.23 0.40 0.74 1.53 3.05 6.30 13.76 31.82
10 pipelines, active 334.93 726.83 1549.01 3322.70 - - - - -
10 pipelines, passive 0.84 1.08 1.38 2.36 4.13 8.28 16.89 35.13 76.64
10 pipelines, thread 0.16 0.22 0.33 0.59 1.08 2.09 4.26 9.21 20.93

1
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2048 4096 8192 16384 32768 65536 131072 262144 524288

average 

execution time (s) 

signal length 

1 pipeline, active 5 pipelines, active 10 pipelines, active

sequential 1 pipeline, passive 2 pipelines, passive

3 pipelines, passive 5 pipelines, passive 10 pipelines, passive

Fig. 3: The speedup of passive processors over active processors

Figure 3 visualizes the data. The upper three curves belong to the active
signal processors. The lower curves result from the passive processors and a
sequential execution. As the graph indicates, the passive processors are more
than two orders of magnitude faster than the active ones. In addition, with
increasing number of pipelines, the passive processors become faster than the



sequential program. In fact, two pipelines are enough to have an equivalent
performance. The overhead is thus small enough to benefit from an increase in
parallelism. In contrast, active processors deliver their peak performance with
around five pipelines but never get faster than the sequential programs.

5.2 Comparison to low-level synchronization primitives

Figure 4 and Table 1 compare pipelines with passive processors to pipelines
based on low-level synchronization primitives. In the measured range, the pas-
sive processors are between 3.7 to 5.4 times slower. As the signal length increases,
the slowdown tends to becomes smaller. With more pipelines, the slowdown also
tends to decrease at signal lengths above 8192. The two curves for sequential exe-
cutions show that a slowdown can also be observed for non-concurrent programs.

0.1

1

10

100

1000

2048 4096 8192 16384 32768 65536 131072 262144 524288

average 

execution time (s) 

signal length 

sequential, SCOOP sequential, thread 1 pipeline, passive 1 pipeline, thread

5 pipelines, passive 5 pipelines, thread 10 pipelines, passive 10 pipelines, thread

Fig. 4: The slowdown of passive processors over EiffelThread

The slowdown is the consequence of SCOOP’s programming abstractions.
Compare the following thread-based stage implementation to the SCOOP one
from Section 2. Besides the addition of boilerplate (inherit clause, redefinition of
execute), this code exhibits some more momentous differences. First, the thread-
based stage class implements a work queue: it has an attribute to hold the
packages and a loop in execute to go over them. In SCOOP, request queues
provide this functionality. Second, each thread-based package has a mutex and
a condition variable for synchronization. To process a package, stage i first locks
the mutex and then uses the condition variable to wait until stage i − 1 has
processed the package. Once stage i− 1 is done, it uses the condition variable to



signal all waiting stages. Only stage i leaves the loop. In SCOOP, wait conditions
provide this kind of synchronization off-the-shelf. We expect the cost of wait
conditions and other SCOOP concepts to drop further, as the compiler and the
runtime mature.

class STAGE inherit THREAD create make feature
position: INTEGER −− The stage’s position in the pipeline.
packages: ARRAY[PACKAGE] −− The packages to be processed.

make (new position: INTEGER; new packages: ARRAY[PACKAGE])
−− Create a stage at the given position to operate on the packages.

do position := new position ; packages := new packages end

execute
−− Process each package after the previous stage is done with it.

do
across packages as package loop

package.mutex.lock −− Lock the package.
−− Sleep until previous stage is done; release the lock meanwhile.
from until package.is processed (position − 1) loop

package.condition variable.wait (package.mutex)
end
process (package) −− Process the package.
package.condition variable.broadcast −− Wake up next stage.
package.mutex.unlock −− Unlock the package.

end
end

process (package: PACKAGE)
−− Process the package.

do
do work (package) −− Read from and write to the package
package.set processed (position) −− Set the package processed.

end
end

5.3 Other applications

A variety of other applications could also profit from passive processors. Object
structures can be distributed over passive processors. Multiple clients can thus
operate on dynamically changing but distinct parts of these structures while
exchanging coordination messages. For example, in parallel graph algorithms,
the vertices can be distributed over passive processors. In producer-consumer
programs, intermediate buffers can be passive. Normally, about half of the oper-
ations in producer-consumer programs are synchronous read accesses. Without
the messaging overhead, the consumer can execute these operations much faster
than the buffer. Passive processors can also be useful to handle objects whose
only purpose it is to be lockable, e.g., forks of dining philosophers, or to encap-
sulate a shared state, e.g., a robot’s state in a controller.



6 Related work

Several languages and libraries combine shared data with message passing. In
Ada [16], tasks execute concurrently and communicate during a rendezvous:
upon joining a rendezvous, the client waits for a message from the supplier,
and the supplier synchronously sends a message to the client. The client joins a
rendezvous by calling a supplier’s entry. The supplier joins by calling accept on
that entry. To share data, tasks access protected objects that encapsulate data
and provide exclusive access thereon through guarded functions, procedures, and
entries. Since functions may only read data, multiple function calls may be active
simultaneously. In contrast, passive processors do not support multiple readers.
However, unlike protected objects, passive processors do not require new data
access primitives. Furthermore, passive processors can become active at runtime.

Erlang [8] is a functional programming language whose concurrency support
is based on the actor model [14]. Processes exchange messages and share data
using an ets table, providing atomic and isolated access to table entries. A process
can also use the Mnesia database management system to group a series of table
operations into an atomic transaction. While passive processors do not provide
support for transactions, they are not restricted to tables.

Schill et al. [25] developed a library offering indexed arrays that can be ac-
cessed concurrently by multiple SCOOP processors. To prevent data races on an
array, each processor must reserve a slice of the array. Slices support fine-grained
sharing as well as multiple readers using views, but they are restricted to indexed
containers. For instance, distributed graphs cannot be easily expressed.

A group of MPI [19] processes can share data using the remote memory ac-
cess mechanism and its passive target communication. The processes collectively
create a window of shared memory. Processes access a window during an epoch,
which begins with a collective synchronization call, continues with communica-
tion calls, and ends with another synchronization call. Synchronization includes
fencing and locking. Locks can be partial or full, and they can be shared or
exclusive. Passive processors neither offer fences nor shared locks; they do, how-
ever, offer automatic conditional synchronization based on preconditions. MPI
can also be combined with OpenMP [23]. Just like MPI alone, this combina-
tion does not provide unified concepts. Instead, it provides distinct primitives to
access shared data and to send messages. Uniformity also distinguishes passive
processors from further approaches such as [13].

Several studies agree that performance gains can be realized if the setup
of a program with both message passing and shared data fits the underlying
architecture. For instance, Bull et al. [3] and Rabenseifner et al. [24] focus on
benchmarks for MPI+OpenMP. Wei and Yilmaz [27] study an adaptive integral
method to analyze electromagnetic scattering from perfectly conducting surfaces.
Dunn and Meyer [7] use a QR factorization algorithm that can be adjusted to
apply only message passing, only shared data, or both.

A number of approaches focus on optimizing messaging on shared memory
systems instead of combining message passing with shared data. Gruber and
Boyer [12] use an ownership management system to avoid copying messages be-



tween actors while retaining memory isolation. When an actor sends a message,
the system transfers ownership over the message to the receiver. From that point
on, only the receiver can access the message, and the sender would get an excep-
tion if it tries to do so. Villard et al. [26] and Bono et al. [1] employ static analysis
techniques to determine when a message can be passed by reference rather than
by value. Buntinas et al. [4], Graham and Shipman [11], as well as Brightwell [2]
present techniques to allocate and use shared memory for messages.

7 Conclusion

Passive processors extend SCOOP’s message-passing foundation with support
for safe data sharing, reducing execution time by several orders of magnitude on
data-intensive parallel programs. They are useful whenever multiple processors
access shared data using frequent and short read or write operations, where
the overhead outweighs the benefit of asynchrony. Passive processors can be
implemented with minimal effort because much of the existing infrastructure can
be reused. The feature call primitive unifies sending messages to active processors
and accessing shared data on passive processors. Therefore, no significant code
change is necessary to set a processor passive or active. This smooth integration
differentiates passive processors from other approaches. The concept of passive
computational units can also be applied to other message-passing concurrency
models. For instance, messages to passive actors [14] can be translated into
direct, synchronous, and mutually exclusive accesses to the actor’s data.

Passive processors currently do not offer shared read locks, which allow mul-
tiple clients to simultaneously operate on a passive processor. Shared read locks
require features that are guaranteed to be read-only. Functions could serve as
a first approximation since they are read-only by convention. Further, passive
processors are not distributed yet. Because frequent remote calls are expensive,
implementing distributed passive processors requires an implicit copy mechanism
to move the supplier’s data into the client’s memory.
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