
Information Processing Letters 21 (1985) 219-227 18 November 1985
North-Holland

INCREMENTAL STRING MATCHING

Bertrand MEYER *

Department of Computer Science, University of California, Santa Barbara, CA 93106, U.S.A.

Communicated by J. Nievergelt
Received 1 February 1985
Revised 27 March 1985

The problem studied in this paper is to search a given text for occurrences of certain strings, in the particular case where the
set of strings may change as the search proceeds.

A well-known algorithm by Aho and Corasick applies to the simpler case when the set of strings is known beforehand and
does not change. This algorithm builds a transition diagram (finite automaton) from the strings, and uses it as a guide to
traverse the text. The search can then be done in linear time.

We show how this algorithm can be modified to allow incremental diagram construction, so that new keywords may be
entered at any time during the search. The incremental algorithm presented essentially retains the time and space complexities
of the non-incremental one.

Keywords: String matching, word processing, bibliographic search, indexing, program correctness, analysis of algorithms

1. In troduct ion

The problem of searching a text for all occur-
rences of one or more strings (hereafter called
search strings) has been well researched. Several
algorithms have been published [3,1,2].

This paper considers a variant of the problem
which, to our knowledge, has not been addressed
by previous publications! the case when the set of
search strings may change as the search proceeds.
In fact, in the practical application that led to this
work, the search strings are found in the text itself
as it is being searched.

In the next section we describe that application,
an interactive book indexing program. In Section 3
we give the algorithm by Aho and Corasick which
serves as a basis for our solution. Section 4 shows
why this algorithm does not readily apply to the
incremental case. A solution is proposed in Section

* On leave from Electricit6 de France, 1 Avenue du Grnrral de
Gaulle, 92141 Clamart, France.

5; its correctness is proved in Section 6 and its
efficiency analyzed in Section 7.

2. An index program

We first present the concrete occasion for which
we developed the algorithm below. Of course, there
may be other applications of incremental string
searching.

The occasion is a program for making book
indexes. An index is a sorted list of all the ' inter-
esting' words which appear in a text, each word
being accompanied by a sorted list of the pages
where it occurs.

As anyone who has tried knows, preparing in-
dexes is a tedious and error-prone task, and it is
natural to look for computerized aids. Much of the
work (searching for interesting words in the text,
sorting the lists) can indeed be done automati-
cally; but one critical step requires human inter-
vention: deciding which words are 'interesting'

0020-0190/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 219

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

and which are not. We call the person who will
make this decision the indexer, the best indexer is
usually the author.

The best place to look for ' interesting' words is
of course the text itself, which we assume to be
available as a computer file. Our indexing program
thus has a phase called the collector which pre-
sents the indexer with the text and asks him to
select words for indexing.

The collector is an interactive program. It dis-
plays the text one screen at a time; each word
appearing on a screen belongs to one of the follow-
ing three categories:

- 'rejected' words, which the indexer has al-
ready designated as not interesting,

- ' retained' words, which the indexer has desig-
nated as interesting (these words appear un-
derlined on the screen as the collector is being
executed),

- ' undecided ' words, whose fate has not yet
been sealed (these appear highlighted).

Thus, whenever a screenfull of text is displayed,
the indexer must choose to either reject or retain
each 'undecided ' word on the screen. This decision
process is the essential object of the collector.

From the program point of view, then, what the
collector must do is to search each successive
portion of text for occurrences of words belonging
to the union of the 'rejected' and ' retained' sets.
Both these sets change as new words are being
classified by the indexer: thus, the string searching
method must allow for incremental construction of
the set of search strings.

3 . A n o n - i n c r e m e n t a l a l g o r i t h m

A very efficient algorithm by Aho and Corasick
[1] applies to the case when there is more than one
search string. The principle of this algorithm is
that one first builds a ' t ransit ion diagram' from
the set of search strings, and then traverses the text
using this diagram as a guide. Thus, in the stan-
dard algorithm all search strings must be known at
the outset.

Since our algorithm is based on a modification
of Aho and Corasick's, we shall first present the
key aspects of theirs. Our presentat ion is slightly

different from the one in their original paper; it is
close to the one we gave in [4].

3.1. Data structures

Aho and Corasick's algori thm uses three data
structures as internal representat ion of a search
string set: a tree T, called 'goto function' in [1] (it
is in fact a trie); an 'ou tput table' O; and a 'failure
function' F. Together, these three structures con-
stitute what may be termed the ' t ransit ion di-
agram' associated with the search string set. We
describe them in turn.

3.1.1. The tree

The branches of the tree T are labeled by
characters. Tree T is associated in a natural way
with the set of search strings: for example, the
search string set {A, CAN, A N) may yield the tree
of Fig. 1.

An important property of this tree is that each
node has an associated character string. For exam-
ple, in the above tree, node 0 is associated with the
empty string, node 3 with string CA, etc. From
now on, we will not make the distinction between a
node and the associated string; for example, we say
that string AN is a suffix of node 4 (that is, of the
associated string CAN), or that string CAT does
not appear in the above tree (that is, no node of
the tree is associated with this string).

If CC is the character set and the nodes are
numbered from 0 to N, i.e., we define

type NODE = 0..N;

then the tree may be represented as a two-dimen-
sional array

T : array[NODE, C] of NODE;

C A N
0[~ A) 2)3 t4

i N
Fig. 1. A string matching tree.

220

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

where the child of node n through branch labeled
c is T[n, c]. By convention, the root is numbered 0
and T[n, c] is 0 if there is no branch leading from
node n with label c. We will not distinguish be-
tween the tree and the associated array; note that,
in practice, the array will usually be sparse, requir-
ing a suitable implementation (hashed, linked etc.).

3.1.2. The output table
t

For any node n, the output set of n, written
O[n], is the set of suffixes of n which are search
strings (we shall carefully distinguish between the
suffixes of a string, which include the string itself,
and its proper suffixes, which do not). In Fig. 2,
corresponding to the search string set (A, CAN,
AN}, the output sets (some of which are empty)
have been written next to the corresponding nodes.

3.1.3. The failure function
The failure function F is defined on all nodes

®

{a}

{AN}

C x A

P l • 2 ~'

i
/-

I
I A 1 1
I / I "

t /
I
e N /

I
, 5

{A}
N

3 ~ 4

J

Fig. 2. A completed transition diagram.

{CAN, AN}

except the root. For such a node n, F[n] is the
longest proper suffix of n that appears in tree T.
F[n] may be node 0, the root (i.e., the empty
string). It is important to note that the inverse of F
is a tree spanning T, with node 0 as its root.

The dashed lines in Fig. 2 represent the failure
function for the search string set (A, CAN, AN}.

3.2. The string searching algorithm

Assuming a transition diagram consisting of the above three data structures has been constructed, the
string searching algorithm is a simple traversal of the text, guided by the transition diagram:

procedure Recognize (text: in STRING)

- -Search text for strings represented by T, O, and F.
n : NODE;

begin
n := 0; - -S tar t at the root
for c in text loop - -Examine next character

while n v~ 0 and T[n, c] = 0 loop - - F i n d worthy successor node
n-'= F[n]

end while;
n := T[n, c];
Report all strings in O[n] as occurring at this point of the text

end for
end procedure Recognize

This algorithm clearly makes one T transition per character of the text. It is proved in [1] that the
number of F transitions is at most ?, the length of the text. Thus, the time complexity of the searching
algorithm is O(~).

3. 3. Constructing the transition diagram

To execute the above algorithm, the three data structures T, O, and F must have been built from the

221

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

search string set S. This is done in two steps:

Build_ tree ; Build_failure

The first step builds T and initializes O; the second builds F and completes O.
We describe these two steps below. We assume that the data structures T, O, and F are global to all the

procedures given and have been proper ly dimensioned (an upper bound for N is lsum, the sum of the
lengths of the search strings) and initialized (all values of T and F to zero, all values of O to the empty set).

3.4. Constructing the tree

The first step may be done as follows:

procedure Build_tree;

last "= 0; - - N u m b e r of the last entered node
for s in S loop - - e n t e r search string s into tree

Enter_ in_ tree (s);
end for

end procedure Build_ tree

where Enter_ in _tree(local to Build_tree) is given below.

procedure Enter_ in _ tree (s : in STRING);
- - E n t e r new search string s into tree T.

n, n' : NODE;
begin

n := 0; - - S t a r t at root

for c in s loop - - E x a m i n e next character
n'- '= T[n, c];
if n' = 0 then - - C r e a t e new node

last -'= last + 1; n' := last;
Enter_chi ld(n, n', c)

end if;
n .'= n'

end for;
Enter_output(n, s)

end procedure Enter_ in_ tree

The auxiliary procedures Enter_child and Enter_output each consist of a simple assignment; the only
reason for pulling them out of the body of Enter_in _tree is to ease adapta t ion to the ' incrementa l ' case
later.

procedure Enter_child(n, n' : in NODE; C : in CHARACTER);
- - A d d to the tree a branch f rom n to n' labeled c.

be n
T[n, c] "= n'

end procedure Enter_ child;

222

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

Procedure Enter_output(n : in NODE; S : in STRING);

- -Def ine the output set of n as consisting of the sole string s.
begin

O[n] := (s)
end procedure Enter_ output

3. 5. Constructing the failure function

For any node n other than the root, let lps(n) be the longest p roper suffix of n which appears in the tree.
To comple te the t ransi t ion diagram, procedure Build failure must set F[n] to lps(n) for every non- roo t
n o d e n, and comple te O[n] accordingly.

To do this, the Build_failure algor i thm uses a loop that considers all nodes of T in order of increasing
length of the associated strings (i.e., first the root, then its children, then their chi ldren etc.).

procedure Build_failure;
Precondition : T is a tree associated with the given string set
Postcondition : For all nodes i =~ 0, F[i] = lps(i)

Build the failure function F corresponding to T.
begin

for n in NODE in order of increasing length loop - -Compute F for the children of n
- - l o o p invariant

- - F o r any child i of a node previously considered, F[i] = lps(i)
- - e n d invariant
for c in CC such that T[n, c] 4= 0 loop

Complete_failure(n, c); --ComputeF[T[n, c]]
end for

end for
end procedure Build_failure

with Complete_failure def ined as follows:

procedure Complete_failure(n : in NODE; C : in CHARACTER);

- -Precondit ion : For any i 4:0 which is either n or a shorter node, F[i] = lps(i)
- -Compute FIT[n, c]].
n', m, m ' : NODE;

begin
n' := T[n, c]; m := n;
repeat
m := F[m]

- - l o o p invariant
- - m is a proper suffix of n,
- - a n d for any proper suffix p of n longer than m in the tree, T[p, c] = 0

- - e n d invariant
until m = 0 or Tim, c] ~ 0

end repeat;
m' := T[m, c];
F[n'] := m' ;
O[n'] := O[n'] u O[m']

end procedure Complete_failure

223

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

(Note that the invariant of a repea t . . , until loop
is written at the end of the loop body since it may
not be satisfied until after the first iteration.)

The correctness of Build failure will follow
from the loop invariant of that procedure since
any node but the root is a child of another.

To show that this invariant is indeed preserved
by the loop body, assume that n v~ 0 and that
F(i) = lps(i) for all nodes i considered before n. We
have to show that, for any child n' of n, say
n' = T[n, c], execution of Complete_failure(n, c)
results in F[n'] = lps(n').

Using the notat ion xy for the concatenation of
x and y (where x is a string and y is a string or a
single character), we have n' = nc. Thus, the longest
proper suffix of n' in the tree is either m ' = mc,
where m is the longest proper suffix of n in the
tree such that T[m, c] is not 0, or 0 if there is no
such m.

Now the list of all proper suffixes of n which
appear in the tree is precisely, in order of decreas-
ing length, the list of nodes examined successively
by Complete_failure, namely F[n], F[F[n]],
F[F[F[n]]], etc. This is a direct consequence of the
inductive assumption: since n is not the root, n is
the child of a previously considered node: thus,
F[n] is the longest proper suffix of n in T.

It is essential for this correctness argument that
the set of nodes be explored in order of increasing
length. This can be ensured in three different
ways:

- T h e above Build_tree algorithm may be
modified so that the number assigned to any
node is smaller than the number assigned to
nodes on the following level in the tree. To do
this, Build_tree should consider successive
character positions in all search strings rather
than successive search strings (that is, the
order of the embedded loops in BuiM_tree
should be reversed). Then, the loop in Build_
failure will just consider nodes in order from
0 to N. This is the solution presented in [4].

- Another solution is to add a topological sort
step between Build_tree and Build failure
which will renumber the nodes according to
the rule stated above.

- The solution given in [1] uses a F IFO queue
of nodes in Build _failure to make sure that

nodes are processed in order of increasing
levels, without imposing a special node num-
bering.

3.6. Efficiency

It is shown in [1] that construction of the com-
plete transition diagram, as given above, takes no
more than O(lsum) time and space, where lsum is
the sum of the lengths of the search strings.

4. T h e p r o b l e m w i t h i n c r e m e n t a l c o n s t r u c t i o n

Let us now assume that instead of being all
known beforehand, the search strings become
available as the search proceeds.

There is no particular problem with the con-
struction of the tree; we can execute Enter_in_
tree(s) as each new string comes along. The real
difficulty is associated with the failure function
(and with the associated 'complet ion ' of the output
table).

From a practical point of view, it should be
noted that the failure function is only useful when
some search strings may be proper suffixes of
others. Referring to the book indexing application
mentioned in Section 2, this will not occur if all
index entries correspond to words, always enclosed
in delimiters in the text. If such is the case, the
Build_ tree procedure as given above is sufficient,
and one may apply Aho and Corasick's method
without a failure function. In many cases, how-
ever, one needs to have phrases as well as single
words in index entries, so that a search string may
be the proper suffix of another; for example, an
index to the present paper might include entries
for both strings suffix and proper suffix. If such is
the case, one must find a way to build the F
function incrementally, as new search strings are
entered into T.

Now, when a new node n ' = T[n, c] is entered,
one must compute F[n']; this in itself raises no
difficulty since the longest proper suffix of n' in
the tree must be of the form T[m, c] for some
proper suffix m of n, and we may assume induc-
tively as before that all proper suffixes of n are
accessible through F. But this is not the whole

224

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

'~l. r C ",, A

° 1 ,,, .. . - -
1 ~"

5

Fig. 3. Node insertion.

N
\

N x
~ 4

story: when adding n' we may also have to update
the failure value of existing nodes.

Fig. 3 illustrates the problem. The dashed lines
represent the current value of the failure function.
Assume we initially had the two search strings A
and CAN and we add AN, corresponding to the
transition represented by the double arrow. Then,
F[4] must be updated to point to the new node 5.

The next section presents a solution to this
problem.

5. The incremental algorithm

When a new node n' = T[n, c] is entered, the value of F[x'] must be changed for some existing node x' if
and only if n' is the longest proper suffix of the string associated with x'. This may only be the case if
x' = T[x, c] for a node x such that n ~ F+[x], where + denotes (nonreflexive) transitive closure.

Thus, to be able to find all the nodes whose F value needs to be updated, we must keep a record IF of
the inverse function of F. Note that F is single-valued but IF may be multi-valued. As indicated in Section
3.1.3, IF is a tree.

If we have access to IF, then to enter a new search string we use the procedure Enter in _tree as given in
Section 3.4. We only need to change procedures Enter_ output and Enter_child. Both now have a slightly
different specification and become recursive, as follows. We assume that IF, as the other data structures, is
properly initialized: IF[n] should be initially empty for all nodes n.

procedure Enter_output(n : in NODE; S : in STRING);

- - A d d s to the output set of any node which has n as a suffix.
begin

O[nl-'= O[n] U (s};
for x in IF[n] loop Enter output(x, s) end for;

end procedure Enter_ output;

procedure Enter_chiM(n, n' : in NODE; C: in CHARACTER);

- - A d d branch from n to n' labeled c;
--update failure and inverse functions to account for the insertion of n'.

begin
T[n, c]-'= n';
Complete _ failure (n, c);
IF[F[n']] := IFIF[n']] u (n'};
Complete_inverse(n, n', c);

end procedure Enter_ child

--Compit te F[n']
- - Update IF for m' = F[n']
- -Compute IF[n'] and change to n' the corresponding

values of F

Procedure Complete_failure is as before (Section 3.5). Procedure Complete_inverse finds all nodes
which will 'fail to' a new node and is defined as follows:

225

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

procedure Complete_inverse(y, n ' : i n NODE; c : i n CHARACTER);

- - R e c u r s i v e Precondition" n' is a suffix of yc
- - a n d T[13n, c] = 0 for any proper suffic 13n of y in the tree (where n' = nc)
- -Record n' as new failure value for all x' such that yc = lps(x')
x, x' : NODE;

begin
for x in IF[y] loop

- - (y = lps(x))
if T[x, c] :~ 0 then

x' := T[x, c];

else

- - [y c is a proper suffix of x'; thus so is n'}
- -Remove previous failure value of x'; install new one.
IF[F[x']] = IF[F[x ']] - (x'}; - - S e t difference
F[x'] := n'; IF[n'] := IF[n'] u (x'};

- - T r y recursively with nodes having x as proper suffix
Complete_inverse(x, n', c);

end if
end for

end procedure Complete inverse

6. Correctness

To prove the correctness of the above incremen-
tal algorithm, we first note that termination of the
two recursive calls follows from the fact that IF is
a tree, and that the changes brought to T and O
when a new search string is inserted are the same
ones that Aho and Corasick's algorithm would
have performed. Thus, we concentrate on the par-
tial correctness of the modifications to F and IF.

It suffices to prove that an execution of
Enter_in_ tree as given above leaves the following
two properties of the transition diagram invariant:

- (INV) IF is the inverse of F.
- (SUFF) For any node x ¢ 0, F[x] = lps(x)

(that is, F[x] is the longest proper suffix of x
in the tree).

Property (INV) is trivially invariant since any
modification to F in Enter_in _tree is accompa-
nied by the corresponding modification to IF and
conversely.

To show that property (SUFF) is invariant, we
study in what way function lps changes when
n ' = T[n, c] is inserted and check that F follows
suit. There may be two reasons for change:

(1) The definition of lps has to be extended for
n' in accordance with (SUFF) ; the call to Com-

plete_failure takes care of this case.
(2) The value of lps[y'] for some previously

existing nodes y' may now become n'. These nodes
are those which have n', i.e., nc, as a proper suffix,
and have no longer proper suffix in the tree.

Assuming inductively that (SUFF) was satisfied
before the insertion, any such y' is of the form anc
(see Fig. 4), such that no node of the form 13nc,
where 13 is a proper suffix of a, exists in the tree.

Thus, y ' = T[y, c], where y = an. As expressed
by the 'recursive precondit ion' to procedure Com-
plete_inverse, the required y nodes are exactly
those which are considered (in order of increasing
length) by the successive recursive calls to that
procedure, starting with y = n.

I,l J

I I

Is I .

I - I
Y

I I
y ~

Fig. 4. Strings and suffixes.

226

Volume 21, Number 5 INFORMATION PROCESSING LETTERS 18 November 1985

7. Efficiency

The recognition algorithm (procedure Recog-
nize) is not affected by the modification; nor is the
performance of the part of the algorithm which
builds the tree. We must consider the impact of
the modification on the building of the failure and
output functions.

Regarding space efficiency, since we must store
IF[n] for every node n (presumably as a linked
list), the space requirement for the representation
of the failure function is doubled, remaining
O(lsum).

Regarding time, we first notice that for each
search string the operations performed by Com-
plete_failure are a subset of those performed in
the original algorithm; there may be fewer oper-
ations because some proper suffixes may not have
been entered yet. Thus, the total time for this
procedure will be O(lsum). For a given search
string set, the operations performed by Enter_ out-
put (adding elements to the output sets) are also
the same in the incremental algorithm as in the
original, although the former may do them in a
different order and will follow inverse F chains.

The case of Complete_inverse is more delicate
since this procedure may follow void chains which
the direct algorithm would never have explored.
When inserting n' = T[n, c], the maximum number
of nodes which may be searched in this fashion is
the number of elements in the set IF+[n]. Thus,
the maximum number of extra operations is

K * ~ descendants(n),
n ~ N O D E

where K is the size of the character set CC and

descendants(n) is the number of proper descen-
dants of node n in the IF tree.

It is easily proved that, for any tree with M
nodes and height h,

Y'~ descendants(n) <~ M * h.
n E N O D E

Here, IF has the same nodes as T, thus M ~< lsum,
and h ~< lmax, where lmax is the maximum search
string length.

Thus, the overall complexity of the algorithm is
now O(K * lmax • lsum), which is identical to the
original O(lsum) if we consider K and lmax as
constants. In normal practical cases, the constant
factors to apply are much smaller than the above
analysis would seem to imply.

Acknowledgment

We are grateful to Man-Tak Shing and Don
Brady for useful comments and for pointing out
errors in a previous version of this paper.

References

[1] A.V. Aho and M.J. Corasick, Fast pattern matching: An
aid to bibliographic search, Comm. ACM 18 (6) (1975)
333-340.

[2] R.S. Boyer and J. Strother Moore, A fast string searching
algorithm, Comm. ACM 20 (10) (1977)¢762-772.

[3] D.E. Knuth, J.H. Morris and V.R. Pratt, Fast pattern
matching in strings, TR CS-74-440, Stanford Univ., CA,
1974.

[4] B. Meyer and C. Baudoin, M6thodes de Programmation
(Eyrolles, Paris, 1978) (new edition, 1984).

227

