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The problem studied in this paper is to search a given text for occurrences of certain strings, in the particular case where the 
set of strings may change as the search proceeds. 

A well-known algorithm by Aho and Corasick applies to the simpler case when the set of strings is known beforehand and 
does not change. This algorithm builds a transition diagram (finite automaton) from the strings, and uses it as a guide to 
traverse the text. The search can then be done in linear time. 

We show how this algorithm can be modified to allow incremental diagram construction, so that new keywords may be 
entered at any time during the search. The incremental algorithm presented essentially retains the time and space complexities 
of the non-incremental one. 
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1. In troduct ion  

The problem of searching a text for all occur- 
rences of one or more strings (hereafter called 
search strings) has been well researched. Several 
algorithms have been published [3,1,2]. 

This paper considers a variant of the problem 
which, to our knowledge, has not been addressed 
by previous publications! the case when the set of 
search strings may change as the search proceeds. 
In fact, in the practical application that led to this 
work, the search strings are found in the text itself 
as it is being searched. 

In the next section we describe that application, 
an interactive book indexing program. In Section 3 
we give the algorithm by Aho and Corasick which 
serves as a basis for our solution. Section 4 shows 
why this algorithm does not readily apply to the 
incremental case. A solution is proposed in Section 
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5; its correctness is proved in Section 6 and its 
efficiency analyzed in Section 7. 

2. An  index  program 

We first present the concrete occasion for which 
we developed the algorithm below. Of course, there 
may be other applications of incremental string 
searching. 

The occasion is a program for making book 
indexes. An index is a sorted list of all the ' inter- 
esting' words which appear in a text, each word 
being accompanied by a sorted list of the pages 
where it occurs. 

As anyone who has tried knows, preparing in- 
dexes is a tedious and error-prone task, and it is 
natural to look for computerized aids. Much of the 
work (searching for interesting words in the text, 
sorting the lists) can indeed be done automati- 
cally; but one critical step requires human inter- 
vention: deciding which words are 'interesting' 
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and which are not. We call the person who will 
make this decision the indexer, the best indexer is 
usually the author. 

The best place to look for ' interesting'  words is 
of course the text itself, which we assume to be 
available as a computer  file. Our indexing program 
thus has a phase called the collector which pre- 
sents the indexer with the text and asks him to 
select words for indexing. 

The collector is an interactive program. It dis- 
plays the text one screen at a time; each word 
appearing on a screen belongs to one of the follow- 
ing three categories: 

- 'rejected' words, which the indexer has al- 
ready designated as not interesting, 

- ' retained'  words, which the indexer has desig- 
nated as interesting (these words appear un- 
derlined on the screen as the collector is being 
executed), 

- ' undecided '  words, whose fate has not yet 
been sealed (these appear highlighted). 

Thus, whenever a screenfull of text is displayed, 
the indexer must choose to either reject or retain 
each 'undecided '  word on the screen. This decision 
process is the essential object of the collector. 

From the program point of view, then, what the 
collector must  do is to search each successive 
portion of text for occurrences of words belonging 
to the union of the 'rejected' and ' retained'  sets. 
Both these sets change as new words are being 
classified by the indexer: thus, the string searching 
method must allow for incremental construction of 
the set of search strings. 

3 .  A n o n - i n c r e m e n t a l  a l g o r i t h m  

A very efficient algorithm by Aho and Corasick 
[1] applies to the case when there is more  than one 
search string. The principle of this algorithm is 
that one first builds a ' t ransit ion diagram' from 
the set of search strings, and then traverses the text 
using this diagram as a guide. Thus, in the stan- 
dard algorithm all search strings must  be known at 
the outset. 

Since our algorithm is based on a modification 
of Aho and Corasick's, we shall first present the 
key aspects of theirs. Our presentat ion is slightly 

different from the one in their original paper; it is 
close to the one we gave in [4]. 

3.1. Data structures 

Aho and Corasick's algori thm uses three data 
structures as internal representat ion of a search 
string set: a tree T, called 'goto function' in [1] (it 
is in fact a trie); an 'ou tput  table' O; and a 'failure 
function'  F. Together, these three structures con- 
stitute what may be termed the ' t ransit ion di- 
agram' associated with the search string set. We 
describe them in turn. 

3.1.1. The tree 

The branches of the tree T are labeled by 
characters. Tree T is associated in a natural way 
with the set of search strings: for example, the 
search string set {A, CAN, A N )  may yield the tree 
of Fig. 1. 

An  important  property of this tree is that each 
node has an associated character string. For exam- 
ple,  in the above tree, node 0 is associated with the 
empty  string, node 3 with string CA, etc. From 
now on, we will not make  the distinction between a 
node and the associated string; for example, we say 
that string AN is a suffix of  node 4 (that is, of the 
associated string CAN), or that string CAT does 
not  appear in the above tree (that is, no node of 
the tree is associated with this string). 

If CC is the character set and the nodes are 
numbered  from 0 to N, i.e., we define 

type NODE = 0..N; 

then the tree may be represented as a two-dimen- 
sional array 

T : array[NODE, C] of NODE; 

C A N 
0[~ A) 2 )3 t4 

i N 
Fig. 1. A string matching tree. 
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where the child of node n through branch labeled 
c is T[n, c]. By convention, the root is numbered 0 
and T[n, c] is 0 if there is no branch leading from 
node n with label c. We will not distinguish be- 
tween the tree and the associated array; note that, 
in practice, the array will usually be sparse, requir- 
ing a suitable implementation (hashed, linked etc.). 

3.1.2. The output table 
t 

For any node n, the output set of n, written 
O[n], is the set of suffixes of n which are search 
strings (we shall carefully distinguish between the 
suffixes of a string, which include the string itself, 
and its proper suffixes, which do not). In Fig. 2, 
corresponding to the search string set (A, CAN, 
AN}, the output sets (some of which are empty) 
have been written next to the corresponding nodes. 

3.1.3. The failure function 
The failure function F is defined on all nodes 

® 
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Fig. 2. A completed transition diagram. 

{CAN, AN} 

except the root. For such a node n, F[n] is the 
longest proper suffix of n that appears in tree T. 
F[n] may be node 0, the root (i.e., the empty 
string). It is important to note that the inverse of F 
is a tree spanning T, with node 0 as its root. 

The dashed lines in Fig. 2 represent the failure 
function for the search string set (A, CAN, AN}. 

3.2. The string searching algorithm 

Assuming a transition diagram consisting of the above three data structures has been constructed, the 
string searching algorithm is a simple traversal of the text, guided by the transition diagram: 

procedure Recognize (text: in STRING) 

- -Search  text for strings represented by T, O, and F. 
n : NODE;  

begin 
n := 0; - -S tar t  at the root 
for c in text loop - -Examine  next character 

while n v~ 0 and T[n, c] = 0 loop - - F i n d  worthy successor node 
n-'= F[n] 

end while; 
n := T[n, c]; 
Report all strings in O[n] as occurring at this point of  the text 

end for 
end procedure Recognize 

This algorithm clearly makes one T transition per character of the text. It is proved in [1] that the 
number of F transitions is at most ?, the length of the text. Thus, the time complexity of the searching 
algorithm is O(~). 

3. 3. Constructing the transition diagram 

To execute the above algorithm, the three data structures T, O, and F must have been built from the 
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search string set S. This is done in two steps: 

Build_ tree ; Build_failure 

The first step builds T and initializes O; the second builds F and completes  O. 
We describe these two steps below. We assume that the data  structures T, O, and F are global to all the 

procedures  given and have been proper ly  dimensioned (an upper  bound  for N is lsum, the sum of the 
lengths of the search strings) and initialized (all values of T and F to zero, all values of O to the empty  set). 

3.4. Constructing the tree 

The first step may  be done as follows: 

procedure Build_tree; 

last "= 0; - - N u m b e r  of  the last entered node 
for s in S loop - - e n t e r  search string s into tree 

Enter_ in_ tree (s); 
end for 

end procedure Build_ tree 

where  Enter_ in _tree(local to Build_tree)  is given below. 

procedure Enter_ in _ tree (s : in STRING); 
- - E n t e r  new search string s into tree T. 

n, n' : NODE; 
begin 

n := 0; - - S t a r t  at root 

for c in s loop - - E x a m i n e  next character 
n'- '= T[n, c]; 
if n' = 0 then - - C r e a t e  new node 

last -'= last + 1; n'  := last; 
Enter_chi ld(n,  n', c) 

end if; 
n .'= n' 

end for; 
Enter_output(n,  s) 

end procedure Enter_ in_ tree 

The auxiliary procedures  Enter_child and Enter_output each consist  of  a simple assignment;  the only 
reason for pulling them out of the body  of  Enter_in _tree is to ease adapta t ion  to the ' incrementa l '  case 
later. 

procedure Enter_child(n,  n' : in NODE; C : in CHARACTER); 
- - A d d  to the tree a branch f rom n to n' labeled c. 

be n 
T[n, c] "= n'  

end procedure Enter_ child; 
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Procedure Enter_output(n : in NODE; S : in STRING); 

- -Def ine  the output set of n as consisting of the sole string s. 
begin 

O[n] := (s)  
end procedure Enter_ output 

3. 5. Constructing the failure function 

For  any node  n other  than  the root, let lps(n) be the longest  p roper  suffix of n which appears  in the tree. 
To  comple te  the t ransi t ion diagram,  procedure  Build failure must  set F[n] to lps(n) for every non- roo t  
n o d e  n, and  comple te  O[n] accordingly.  

To  do this, the Build_failure algor i thm uses a loop that  considers  all nodes  of T in order  of increasing 
length  of the associated strings (i.e., first the root,  then its children, then their chi ldren etc.). 

procedure Build_failure; 
Precondition : T is a tree associated with the given string set 
Postcondition : For all nodes i =~ 0, F[i] = lps(i) 

Build the failure function F corresponding to T. 
begin 

for n in NODE in order of increasing length loop - -Compute  F for the children of n 
- - l o o p  invariant 

- - F o r  any child i of a node previously considered, F[i] = lps(i) 
- - e n d  invariant 
for c in CC such that T[n, c] 4= 0 loop 

Complete_failure(n, c); --ComputeF[T[n, c]] 
end for 

end for 
end procedure Build_failure 

with Complete_failure def ined  as follows: 

procedure Complete_failure(n : in NODE; C : in CHARACTER); 

- -Precondit ion : For any i 4:0 which is either n or a shorter node, F[i] = lps(i) 
- -Compute  FIT[n, c]]. 
n',  m, m '  : NODE; 

begin 
n'  := T[n, c]; m := n; 
repeat 
m := F[m] 

- - l o o p  invariant 
- - m  is a proper suffix of n, 
- - a n d  for any proper suffix p of n longer than m in the tree, T[p, c] = 0 

- - e n d  invariant 
until m = 0 or Tim, c] ~ 0 

end repeat; 
m'  := T[m, c]; 
F[n'] := m' ;  
O[n'] := O[n'] u O[m'] 

end procedure Complete_failure 
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(Note that the invariant of a repea t . . ,  until loop 
is written at the end of the loop body since it may 
not be satisfied until after the first iteration.) 

The correctness of Build failure will follow 
from the loop invariant of that procedure since 
any node but  the root is a child of another. 

To show that this invariant is indeed preserved 
by the loop body, assume that n v~ 0 and that 
F(i) = lps(i) for all nodes i considered before n. We 
have to show that, for any child n' of n, say 
n' = T[n, c], execution of Complete_failure(n, c) 
results in F[n'] = lps(n'). 

Using the notat ion xy for the concatenation of 
x and y (where x is a string and y is a string or a 
single character), we have n' = nc. Thus, the longest 
proper suffix of n' in the tree is either m ' =  mc, 
where m is the longest proper suffix of n in the 
tree such that T[m, c] is not 0, or 0 if there is no 
such m. 

Now the list of all proper suffixes of n which 
appear in the tree is precisely, in order of decreas- 
ing length, the list of nodes examined successively 
by Complete_failure, namely F[n], F[F[n]], 
F[F[F[n]]], etc. This is a direct consequence of the 
inductive assumption: since n is not  the root, n is 
the child of a previously considered node: thus, 
F[n] is the longest proper suffix of n in T. 

It is essential for this correctness argument that 
the set of nodes be explored in order of increasing 
length. This can be ensured in three different 
ways: 

- T h e  above Build_tree algorithm may be 
modified so that the number  assigned to any 
node is smaller than the number  assigned to 
nodes on the following level in the tree. To do 
this, Build_tree should consider successive 
character positions in all search strings rather 
than successive search strings (that is, the 
order of the embedded loops in BuiM_tree 
should be reversed). Then, the loop in Build_ 
failure will just  consider nodes in order from 
0 to N. This is the solution presented in [4]. 

- Another  solution is to add a topological sort 
step between Build_tree and Build failure 
which will renumber  the nodes according to 
the rule stated above. 

- The solution given in [1] uses a F IFO queue 
of nodes in Build _failure to make sure that 

nodes are processed in order of increasing 
levels, without imposing a special node num- 
bering. 

3.6. Efficiency 

It is shown in [1] that construction of the com- 
plete transition diagram, as given above, takes no 
more than O(lsum) time and space, where lsum is 
the sum of the lengths of the search strings. 

4.  T h e  p r o b l e m  w i t h  i n c r e m e n t a l  c o n s t r u c t i o n  

Let us now assume that instead of being all 
known beforehand, the search strings become 
available as the search proceeds. 

There is no particular problem with the con- 
struction of the tree; we can execute Enter_in_ 
tree(s) as each new string comes along. The real 
difficulty is associated with the failure function 
(and with the associated 'complet ion '  of the output  
table). 

From a practical point  of view, it should be 
noted that the failure function is only useful when 
some search strings may be proper suffixes of 
others. Referring to the book indexing application 
mentioned in Section 2, this will not occur if all 
index entries correspond to words, always enclosed 
in delimiters in the text. If such is the case, the 
Build_ tree procedure as given above is sufficient, 
and one may apply Aho and Corasick's method 
without a failure function. In many cases, how- 
ever, one needs to have phrases as well as single 
words in index entries, so that a search string may 
be the proper suffix of another; for example, an 
index to the present paper might include entries 
for both strings suffix and proper suffix. If such is 
the case, one must  find a way to build the F 
function incrementally, as new search strings are 
entered into T. 

Now, when a new node n ' =  T[n, c] is entered, 
one must compute  F[n']; this in itself raises no 
difficulty since the longest proper  suffix of n'  in 
the tree must  be of the form T[m, c] for some 
proper  suffix m of n, and we may assume induc- 
tively as before that all proper  suffixes of n are 
accessible through F. But this is not  the whole 
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Fig. 3. Node insertion. 
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story: when adding n' we may also have to update  
the failure value of existing nodes. 

Fig. 3 illustrates the problem. The dashed lines 
represent the current value of the failure function. 
Assume we initially had the two search strings A 
and CAN and we add AN, corresponding to the 
transition represented by the double arrow. Then, 
F[4] must  be updated to point  to the new node 5. 

The next section presents a solution to this 
problem. 

5. The incremental algorithm 

When a new node n' = T[n, c] is entered, the value of F[x'] must  be changed for some existing node x' if 
and only if n' is the longest proper  suffix of the string associated with x'. This may only be the case if 
x' = T[x, c] for a node x such that  n ~ F+[x], where + denotes (nonreflexive) transitive closure. 

Thus, to be able to find all the nodes whose F value needs to be updated, we must  keep a record IF  of 
the inverse function of F. Note  that  F is single-valued but  IF may be multi-valued. As indicated in Section 
3.1.3, IF is a tree. 

If we have access to IF, then to enter a new search string we use the procedure Enter in _tree as given in 
Section 3.4. We only need to change procedures Enter_ output and Enter_child. Both now have a slightly 
different specification and become recursive, as follows. We assume that IF, as the other data structures, is 
properly initialized: IF[n] should be initially empty  for all nodes n. 

procedure Enter_output(n : in NODE; S : in STRING);  

- - A d d  s to the output set of any node which has n as a suffix. 
begin 

O[nl-'= O[n] U (s}; 
for x in IF[n] loop Enter output(x, s) end for; 

end procedure Enter_ output; 

procedure Enter_chiM(n, n' : in NODE;  C: in CHARACTER); 

- - A d d  branch from n to n' labeled c; 
--update failure and inverse functions to account for the insertion of n'. 

begin 
T[n, c]-'= n'; 
Complete _ failure (n, c); 
IF[F[n']] := IFIF[n']] u (n'}; 
Complete_inverse(n, n', c); 

end procedure Enter_ child 

--Compit te  F[n'] 
- -  Update IF  for m' = F[n'] 
- -Compute  IF[n'] and change to n' the corresponding 

values of F 

Procedure Complete_failure is as before (Section 3.5). Procedure Complete_inverse finds all nodes 
which will 'fail to' a new node and is defined as follows: 
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procedure Complete_inverse(y, n ' : i n  NODE; c : i n  CHARACTER); 

- - R e c u r s i v e  Precondition" n' is a suffix of yc 
- - a n d  T[13n, c] = 0 for any proper suffic 13n of y in the tree (where n' = nc) 
- -Record  n' as new failure value for all x' such that yc = lps(x') 
x, x' : NODE; 

begin 
for x in IF[y] loop 

- - ( y  = lps(x)) 
if T[x, c] :~ 0 then 

x' := T[x, c]; 

else 

- - [ y c  is a proper suffix of x'; thus so is n'} 
- -Remove  previous failure value of x'; install new one. 
IF[F[x']] = IF[F[x ' ] ] -  (x'}; - - S e t  difference 
F[x'] := n'; IF[n'] := IF[n'] u (x'}; 

- - T r y  recursively with nodes having x as proper suffix 
Complete_inverse(x, n', c); 

end if 
end for 

end procedure Complete inverse 

6. Correctness 

To prove the correctness of the above incremen- 
tal algorithm, we first note that termination of the 
two recursive calls follows from the fact that IF is 
a tree, and that the changes brought to T and O 
when a new search string is inserted are the same 
ones that Aho and Corasick's algorithm would 
have performed. Thus, we concentrate on the par- 
tial correctness of the modifications to F and IF. 

It suffices to prove that an execution of 
Enter_in_ tree as given above leaves the following 
two properties of the transition diagram invariant: 

- (INV) IF  is the inverse of F. 
- (SUFF) For any node x ¢ 0, F[x] = lps(x) 

(that is, F[x] is the longest proper suffix of x 
in the tree). 

Property (INV) is trivially invariant since any 
modification to F in Enter_in _tree is accompa- 
nied by the corresponding modification to IF  and 
conversely. 

To show that property (SUFF) is invariant, we 
study in what way function lps changes when 
n ' =  T[n, c] is inserted and check that F follows 
suit. There may be two reasons for change: 

(1) The definition of lps has to be extended for 
n' in accordance with (SUFF) ;  the call to Com- 

plete_failure takes care of this case. 
(2) The value of lps[y'] for some previously 

existing nodes y' may now become n'. These nodes 
are those which have n', i.e., nc, as a proper  suffix, 
and have no longer proper suffix in the tree. 

Assuming inductively that (SUFF)  was satisfied 
before the insertion, any such y' is of the form anc 
(see Fig. 4), such that no node of the form 13nc, 
where 13 is a proper suffix of a, exists in the tree. 

Thus, y ' =  T[y, c], where y = an.  As expressed 
by the 'recursive precondit ion'  to procedure Com- 
plete_inverse, the required y nodes are exactly 
those which are considered (in order of increasing 
length) by the successive recursive calls to that 
procedure, starting with y = n. 

I,l J 

I I 

Is I .  

I - I 
Y 

I I 
y ~  

Fig. 4. Strings and suffixes. 
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7. Efficiency 

The recognition algorithm (procedure Recog- 
nize) is not affected by the modification; nor is the 
performance of the part of the algorithm which 
builds the tree. We must consider the impact of 
the modification on the building of the failure and 
output functions. 

Regarding space efficiency, since we must store 
IF[n] for every node n (presumably as a linked 
list), the space requirement for the representation 
of the failure function is doubled, remaining 
O( lsum ). 

Regarding time, we first notice that for each 
search string the operations performed by Com- 
plete_failure are a subset of those performed in 
the original algorithm; there may be fewer oper- 
ations because some proper suffixes may not have 
been entered yet. Thus, the total time for this 
procedure will be O(lsum). For a given search 
string set, the operations performed by Enter_ out- 
put (adding elements to the output sets) are also 
the same in the incremental algorithm as in the 
original, although the former may do them in a 
different order and will follow inverse F chains. 

The case of Complete_inverse is more delicate 
since this procedure may follow void chains which 
the direct algorithm would never have explored. 
When inserting n' = T[n, c], the maximum number  
of nodes which may be searched in this fashion is 
the number of elements in the set IF+[n]. Thus, 
the maximum number  of extra operations is 

K *  ~ descendants(n), 
n ~ N O D E  

where K is the size of the character set CC and 

descendants(n) is the number of proper descen- 
dants of node n in the IF tree. 

It is easily proved that, for any tree with M 
nodes and height h, 

Y'~ descendants(n) <~ M * h. 
n E N O D E  

Here, IF has the same nodes as T, thus M ~< lsum, 
and h ~< lmax, where lmax is the maximum search 
string length. 

Thus, the overall complexity of the algorithm is 
now O(K * lmax • lsum), which is identical to the 
original O(lsum) if we consider K and lmax as 
constants. In normal practical cases, the constant 
factors to apply are much smaller than the above 
analysis would seem to imply. 
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