
Deriving Concurrent Control Software from Behavioral Specifications

Ganesh Ramanathan
Siemens AG, Switzerland

ganesh.ramanathan@siemens.com

Benjamin Morandi, Scott West, Sebastian Nanz, Bertrand Meyer
Chair of Software Engineering, ETH Zurich, Switzerland

firstname.lastname@inf.ethz.ch

Abstract— Concurrency is an integral part of many robotics
applications, due to the need for handling inherently parallel
tasks such as motion control and sensor monitoring. Writing
programs for this complex domain can be hard, in particular
because of the difficulties of retaining a robust modular design.
We propose to use SCOOP, an object-oriented programming
model for concurrency which by construction is free of data
races, therefore excluding a major class of concurrent program-
ming errors. Synchronization requirements are expressed by
waiting on routine preconditions, which turns out to provide
a natural framework for implementing coordination require-
ments in robotics applications. As demonstration application,
we describe a control program for hexapod locomotion, whose
implementation closely follows the corresponding behavioral
specification given by the biological model. We compare the
architecture with solutions expressed in more traditional ap-
proaches to robotic control applications.

I. INTRODUCTION

Complex robotic systems such as autonomous mobile
robots are typically composed of many concurrently op-
erating components such as sensors and actuators. The
corresponding software must, as a consequence, schedule
and coordinate many parallel activities such as sensing,
moving, and planning. The development of such applications
using conventional concurrent programming approaches is
challenging, partly because of the common pitfalls of con-
current programming, such as data races and deadlocks,
but also because it is often difficult to keep concurrent
code maintainable, reusable, and to show that it adheres to
specification.

We present an application of an object-oriented program-
ming model for concurrency to the development of robotic
control programs, alleviating these problems. The approach,
termed Simple Concurrent Object-Oriented Programming
(SCOOP), excludes data races by construction and as a result
helps the programmer avoid typical concurrent programming
mistakes. It also retains for concurrent programs the robust
module architecture made possible by object-oriented design.
While SCOOP was not designed for robotic programming –
but instead with the goal of simplifying the development of
mainstream concurrent applications – we found it to be useful
for expressing coordination tasks in the robotics domain
while ensuring a close correspondence between specification
and code.

The main case study of the paper is the design of a
control program for a walking hexapod robot; as a well-
understood problem with many implemented solutions, it
serves to clearly illustrate our approach. To provide an

intuition for the central mechanisms of SCOOP early, we
describe part of this problem and our solution now.

In order to preserve stability while walking, a hexapod
has to ensure that a group of legs is only allowed to
protract (lift the legs off the ground and move them to the
front) if (1) they are retracted (moved to the back) and (2)
the partner group is firmly planted on the ground. A rule
such as this can be seen as part of the specification of
a hexapod; any correct implementation will have to abide
by it. In a traditional implementation using thread libraries
(Java threads, POSIX threads, etc.) these elements of the
specification will be expressed indirectly through condition
variables, guaranteeing that the first leg group will not
protract until signaled by the partner group. Two problems
arise: since the synchronization requirements are not directly
expressed in the programming language, this obscures the
intention of the programmer and the original specification;
programming errors are easily introduced as the programmer
has to insert the signaling instructions by hand.

With SCOOP, the requirements can be explicitly stated
as wait conditions of a routine using the require keyword,
meaning that the routine execution is automatically delayed
until the conditions are true. Assume that the following
routine (method) begin protraction is part of a class that
defines state and behavior of a group of legs, and implements
the first phase of leg protraction (lifting the legs off the
ground).
begin protraction (partner signaler, my signaler: separate SIGNALER)

require
my signaler.legs retracted
partner signaler.legs down

do
legs.lift
. . .

end

When begin protraction (partner signaler, my signaler) is
called, the runtime system attempts to lock objects
partner signaler and my signaler; if this succeeds, no other
thread can change their state, thus avoiding data races. In
a next step the wait conditions get evaluated. For example,
requirement (2) above is checked by evaluating the condition
partner signaler.legs down. If all wait conditions evaluate to
true, then the body of the routine can be executed safely, as
it now fulfills the synchronization conditions. If one of the
conditions evaluates to false or the runtime system cannot
lock the objects because another thread has locked them, the
routine will not proceed; the runtime system will continue
to try locking the objects and evaluating the wait conditions



until it can proceed.
The remainder of the paper expands on the hexapod case

study. We first discuss related work in Section II. We provide
the specification of a walking hexapod by presenting a
biological model in Section III. The basics of the SCOOP
concurrency model are introduced in Section IV. Section V
discusses the SCOOP implementation of the hexapod con-
trol program. We compare our approach with traditional
sequential, multi-threaded, and event-based programming in
Section VI. Section VII discusses how our approach scales
up to larger applications, and we conclude in Section VIII.

II. RELATED WORK

An early attempt to provide a concurrent programming
language for robotics was made with Concurrent C [1],
which uses rendezvous-style communication to provide syn-
chronization on top of a general-purpose language. URBI [2]
is an object-oriented script language that is coupled with
useful primitives for the parallelization of tasks and for
flexible handling of events. It enables the expression of
complex synchronization constraints using conditions. Other
languages for robotic control have a more domain-specific
character. Frob [3] is based on a functional language core and
provides a variety of useful abstractions for programming
robotic applications in a declarative way. TDL [4] is an
extension of C++ that provides explicit syntax for task-level
control synchronization. Similar to URBI, SCOOP takes a
middle ground: it provides a higher level of abstraction than
Concurrent C through object-orientation, thus allowing for a
more modular design; on the other hand it provides fewer
restrictions on programmers to express their intentions than
a domain-specific language.

Ada [5] has been used to implement a control program for
a walking hexapod in an object-oriented manner, but mainly
to provide a case study for Ada programming rather than to
suggest Ada as a language for robotic control. WalkNet [6]
is a framework for behavior-based modeling of walking
systems. It uses a set of finite state machines that are arranged
in a network in such a way that they can communicate with
each other. Each finite state machine selects an action based
on the state of the network and then autonomously executes
the action. SCOOP is not an equivalent of WalkNet, but
its mechanism could be used for the implementation of this
framework.

Several middlewares build on top of existing programming
languages to ease the development of concurrent control
software for robots. A survey can be found in [7]. The related
work section of a middleware called LCM [8] by Moore et
al. presents another short survey that includes MOOS [9],
CARMEN [10], and ROS [11]. These middlewares provide
standards, principles, applications, and libraries to support
tasks such as base and sensor control, obstacle avoidance, lo-
calization, path planning, mapping, and simulation. SCOOP
makes a contribution as a programming language and as such
does not directly provide support for common robotics tasks.
However, we discuss in Section VII the design of a robotics
framework based on SCOOP.

III. HEXAPOD: BIOLOGICAL SPECIFICATION

Hexapods in nature have six symmetrically placed legs
and are capable of walking with different patterns of leg
movement (gaits). Several studies have been conducted on
the mechanism of individual leg movement and inter-leg co-
ordination. These studies have produced well-defined models
of neural objects and rules of coordination between them.
For the purpose of creating control software for hexapod
locomotion, it is natural to base a specification on such
models.

A. Hexapod leg

Each leg of a hexapod is capable of executing a set
of actions to propel the body. Legs have three degrees of
freedom provided by three angular joints connecting the
coxa, femur and tibia segments, as depicted in Figure 1.

! Fig. 1. Hexapod leg

The leg is raised from the Posterior Extreme Position
(PEP) and swings itself to the Anterior Extreme Position
(AEP) where it is placed on the ground. This is commonly
termed as protraction of the leg. On reaching the AEP, the
leg is kept on the ground and swivels the body forward, using
the foot as a pivot. This is commonly termed as retraction
of the leg.

B. Hexapod gaits

There are three kinds of leg-movement patterns in a
hexapod: the ripple, wave and tripod gaits. The ripple gait is
the slowest and allows very precise movement (only one leg
is raised at a given time), while the tripod gait is the fastest
(three legs raised simultaneously).

We have chosen to implement the tripod gait as it is the
most precarious and hence correct coordination is critical.
Figure 2 illustrates the tripod gait.

Fig. 2. Tripod gait

Two sets of tripod legs execute alternating sequences of
protraction and retraction. The first group lifts the legs off the
ground and swings to the AEP. The second group then lifts
and swings to the AEP, concurrently with the first set which
now retracts to the PEP. This cycle is repeated continuously.



We show the requirements for the tripod gait, limiting
ourselves to walking on even, flat surfaces [12]:
(R1) A leg group may lift only if the partner group is planted

on ground.
(R2) Protraction (retraction) starts on completion of retrac-

tion (protraction).
(R3) Retraction of a leg group may only start when the

partner group is raised. This is to avoid dragging of
legs of the partner group.

(R4) Protraction should end (legs depressed) only when the
partner group’s retraction completes. This is to avoid
dragging of legs of the own group.

C. Hexapod coordination for locomotion

Extensive biological studies have been conducted to de-
duce the biological model of locomotion in hexapods [12],
[13]. Porcino [13] describes the coordination in the form of
pattern generators and inhibitory links.

A coupled set of neurons, the Central Pattern Generator
(CPG), provides periodic electrical pulses which are 90◦ out
of phase with respect to each other. These pulses trigger
the motor mechanism to perform the protraction-retraction
cycle. The pulses are generated continuously; the motor
mechanism requires certain conditions to be satisfied before
the action is executed. These conditions are enforced by
“inhibitions”, or gates, that block signal transmission. For
example, a protraction invoking pulse will be blocked if the
sensory neuron recognizes a high load, which occurs when
a neighboring leg is raised.

Such inhibitions can be directly and mechanically ex-
pressed by SCOOP’s wait conditions in our control program
for a hexapod robot, as shown in Section V-B.

IV. THE SCOOP CONCURRENCY MODEL

In this section we turn to a more detailed description of the
SCOOP concurrency model. Object-oriented programming
models are well-suited to capture in software the components
of a robot: classes define the types of components, and each
component is an instance of such a class; abstraction and
refinement can be included with inheritance relationships be-
tween the classes. There have been many proposals to extend
the sequential object-oriented model to support concurrency;
in practice, however, most applications simply extend an
object-oriented language with a thread library. In thread-
based models, concurrency is the result of multiple threads
where each of them executes a sequence of instructions on
a shared set of objects, in parallel to the other threads.

In SCOOP [14], [15], processors take over the role of
threads. A processor is an abstract concept that must not
be confused with a CPU. Just like a thread, a processor is
an independent unit of control that executes instructions on
a number of objects. The main difference between a thread
and a processor lies in the relationship to objects. In SCOOP,
every object can only be accessed by one processor: its
handler. Each object is handled by exactly one processor;
but one processor can handle multiple objects. This principle
prevents data races with respect to single objects.

To illustrate the model, we take a system with one con-
troller, one sensor, one actuator, and a mechanism that is
regulated by the actuator. Figure 3 shows the objects and the
associations to processors; every object that is located in a
region labeled by one of the processors p, q, and r is handled
by the respective processor.

actuator : separate ACTUATOR

sensor : separate SENSOR

controller : CONTROLLER

mechanism : MECHANISM

actuator : ACTUATOR

mechanism : MECHANISM

sensor : SENSOR

pq r

Fig. 3. SCOOP example layout

While processor p can access the controller, SCOOP
ensures that p can neither directly access the sensor, the
actuator, nor the mechanism. If p wants to access the sensor
then it must ask processor q to do the job on its behalf.
To guarantee atomicity, p must acquire a lock on q before
sending a job request.

The SCOOP approach expresses such locking require-
ments through the formal argument list of the corresponding
routine. Consider the following code that shows a feature of
the controller, handled by p, that starts the actuator with the
value of the sensor.

activate (sensor: separate SENSOR; actuator: separate ACTUATOR)
require

actuator.is ready
local

value: INTEGER
do

value := sensor.value
actuator.start (value)

end

Before executing activate, p must acquire the locks on the
handlers of the formal arguments, i.e. processors q and r
which are handling the sensor and the actuator, respectively.
Thanks to the locks, data races cannot occur on the set of
objects handled by q and r.

Note the separate keyword in the signature. A type
marked with this keyword denotes an objects that may be
handled by a different processor than p. This extension of
the type system enables programmers to distinguish routines
with asynchronous evaluation semantics from ordinary syn-
chronously evaluated routines.

In our system, the actuator can only be started if it is
ready. In SCOOP, such a synchronization requirement is
expressed as a wait condition, written after the keyword
require. Processor p cannot execute the activation feature
until the wait condition is satisfied, i.e. the query actuator.
is ready is true.

Once the wait condition is satisfied, processor p can start
with the execution of the routine body. Figure 4 illustrates
the interaction between the processors. In the first step, p
calls sensor.value to get the value of the sensor handled by
q. Processor p waits automatically until q returns the result,



as subsequent instructions in the activation feature depend
on the result. This synchronization scheme is called wait by
necessity.

In the second step, p makes a call to start the actuator,
hence sending a request to r. However, p does not wait until
r executed the request because there is no result – the feature
is evaluated asynchronously, possibly involving a call to the
mechanism. Lastly, p asks all locked handlers, here, q and
r, to unlock as soon as they are done with the execution of
the requests sensor.value and actuator.start (value) that have
been added during the execution of the feature activate.

p q r

sensor.value

actuator.start (value)

unlock

mechanism.start

Fig. 4. SCOOP example interaction

V. HEXAPOD: IMPLEMENTATION

The SCOOP mechanisms serve as the basis for the im-
plementation of the control program for a walking hexapod
robot. SCOOP makes it possible to write code that closely
reflects the hexapod specification presented in Section III.
We review the hardware setup first.

A. Robot hardware

Fig. 5. The hexapod robot

Figure 5 shows the complete robot. Each leg of the
robot consists of three servo motors and represents the
three key segments: coxa, femur and tibia. Servo motors
have a self-contained control loop mechanism ensuring that
it achieves and maintains the desired position. Hence, the
control program only needs to provide the desired position
to the servo motor.

To determine whether the leg is planted on the ground, the
feet of the two middle legs are equipped with a force sensor.

Angle sensors provide confirmation that a leg has reached
the AEP / PEP. For this, the sensors are installed next to the
coxa servo motors of the middle legs.

The control program runs on a PC host, transmits com-
mands, and receives sensor values over a wireless link from
the hexapod.

B. Hexapod control in SCOOP

The biological hexapod described in Section III-C contains
a pattern generator for each leg. The pattern generator pro-
duces a periodic signal for the protraction-retraction cycle.
The sensory ganglions inhibit or excite actions by taking
inputs from the leg’s sensory system and also taking inputs
from state of neighboring legs. Given the coordination rules,
we can now develop an object model that is in almost direct
correspondence with the biological equivalent.

1) Concurrent object model: Figure 6 shows typical ob-
jects (class instances) in the design of the hexapod.

pattern_generator_A : PatternGenerator

pattern_generator_B : PatternGenerator

tripod_gait_processor : TRIPOD_GAIT_PROCESSOR

my_signaler : SIGNALER

partner_signaler : SIGNALER

tripod : LEG_GROUP

pattern_generator_A : PATTERN_GENERATOR

my_signaler : SIGNALER

partner_signaler : SIGNALER

tripod : LEG_GROUP

pattern_generator_B : PATTERN_GENERATOR

leg_group_A : LEG_GROUP

leg_group_B : LEG_GROUP

signaler_A : SIGNALER

signaler_B : SIGNALER

signaler_A : SIGNALER

signaler_B : SIGNALER

sensor_poller : SENSOR_POLLER

Fig. 6. Design

The tripod gait processor has two pattern generators for
each of the two leg groups and triggers them to walk or
stop. Upon receiving the signal, each pattern generator begin
its sequence of protraction-retraction cycles. The pattern
generator uses the actuation services of the leg group to cause
leg movements; sensory data provided by the signaler tells
the pattern generator about the state of the leg. The sensor
poller is a common service which polls the sensors on the
hardware and updates the signalers.

2) Execution: This section shows how the locomotion and
the coordination of the two leg groups is implemented, based
on the rules described in Section III-B. We highlight the
natural translation of these rules to wait conditions.

The pattern generator, like its biological counterpart, trig-
gers protraction and retraction cycles continuously.
walk

do
checklegs (my signaler)
from until stop requested (my signaler)
loop

begin protraction (partner signaler, my signaler)
ensure protraction (my signaler)
complete protraction (partner signaler)
execute retraction (partner signaler, my signaler)



end
end

Protraction is divided into three phases: raising the legs,
swinging to the AEP and then finally depressing to the
ground. We now examine each of the routines called in the
loop above.
begin protraction (partner signaler, my signaler: separate SIGNALER)

require
my signaler.legs retracted
partner signaler.legs down
not partner signaler.protraction pending

do
tripod.lift
my signaler.set protraction pending (true)

end

The first two wait conditions implement the rules (R1)
and (R2). The third wait condition is implicitly necessary
for the case where both leg groups are retracted and ready
to protract. The call to tripod.lift is asynchronous and there
can be a delay between the call and the moment the legs are
physically raised. Without the third wait condition, it would
be possible that one leg group executes begin protraction just
after the other group finished begin protraction, because the
sensors could indicate that both leg groups are on the ground.
We create virtual sensor information to indicate when a
protraction is in progress and use it to prevent the above
situation. Routine ensure protraction is the continuation of
the protraction.
ensure protraction (my signaler: separate SIGNALER)

require
my signaler.legs up

do
my signaler.set protraction pending (false)
tripod.swing (my signaler.stride length, my signaler.stride ratio,

my signaler.retraction time)
end

The wait condition ensures that the leg group is raised
before we proceed with the swing. This wait condition
is not an explicit part of the rules (R1) - (R4), as it is
a constraint of the protraction itself. Note that it is not
necessity to wait in a busy way until the leg group is
lifted. The leg group lifts asynchronously and the pattern
generator proceeds automatically as soon as the signaler is
locked and the leg group is lifted. After the swing has been
executed, the leg group is ready to be dropped, subject to
wait conditions expressing rule (R4). This is shown in feature
complete protraction.
complete protraction (partner signaler: separate SIGNALER)

require
partner signaler.legs retracted

do
tripod.drop

end

With this set of operations the leg group has been raised
from the PEP and planted on the AEP. Now it is time to
retract the leg group with a call to execute retraction.
execute retraction (partner signaler, my signaler: separate SIGNALER)

require
my signaler.legs down
partner signaler.legs up

do
tripod.retract (my signaler.retraction time)

end

The retraction is guarded by a wait condition that covers
rules (R2) and (R3). Now the loop jumps back to a call to the
feature begin protraction, whose wait condition my signaler
.legs retracted will trigger waiting until the retraction com-
pleted.

VI. COMPARISON OF PROGRAMMING APPROACHES

This section contrasts the SCOOP approach with more
traditional approaches: sequential, event-driven, and multi-
threaded programming.

A. Sequential programming

It is quite easy to structure the hexapod’s tripod gait as a
sequence of operations.
TripodLeg lead = tripodA;
TripodLeg lag = tripodB;

while (true) {
lead.Raise();
lag.Retract();
lead.Swing();
lead.Drop();

TripodLeg temp = lead;
lead = lag;
lag = temp;

}

The solution defines a lead and a lag group. The lead
leg group performs the protraction and the lag leg group
performs the retraction. After each iteration the leg groups
change their roles. Each of the calls, Raise, Retract, Swing
and Drop, is synchronous; It returns only when the comple-
tion is confirmed by the sensors.

The sequential program is by construction incapable of
performing concurrent actions and this results in less efficient
walking. Also, when trying to scale the problem to a more
robust hexapod with autonomous legs, the code may become
more complicated.

B. Event-driven model

The publisher-subscriber model, in which clients register
themselves with a provider to receive updates, supports
a decoupled system. The subscription request and update
callbacks occur over simple interfaces. Some languages even
provide a built-in mechanism to support this methodology.
For the hexapod leg coordination, each leg subscribes to
event information from its neighbors. In the callback han-
dlers, the control is established; upon receiving a neighbor’s
retraction start event, a leg can start protracting.

Such models, heavily used in middlewares such as
MOOS [9] and ROS [11], result in complex control flow
due to the interactions of event handlers. Maintaining clear
control flow is trivial in SCOOP as sequential reasoning can
be applied, up to wait-conditions and wait-by-necessity. Still,
these two mechanisms support direct reasoning better than an
event-driven approach, where the events are separated from
control-flow structures.



C. Multi-threaded programming

The following C# code is an example of a multi-threaded
hexapod control program:

private object m protractionLock = new object();

private void ThreadProcWalk(object obj) {
TripodLeg leg = obj as TripodLeg;
while (Thread.CurrentThread.ThreadState != ThreadState.

AbortRequested) {
lock (m protractionLock) {

leg.Partner.DroppedEvent.WaitOne();
leg.Raise();

}
leg.Swing();

leg.Partner.RetractedEvent.WaitOne();
leg.Drop();

leg.Partner.RaisedEvent.WaitOne();
leg.Retract();

}
}

Here the two threads execute a cycle of protraction
and retraction and are synchronized with each other using
semaphores. Threads use a shared lock to compete for the
protraction privilege. A sensory-polling thread periodically
queries the sensors and signals the semaphores.

The multi-threaded approach suffers from an extra level
of indirection for conditional synchronization. Conditions
are represented by variables that are used to define signals
between threads. These condition variables must be manually
identified and managed (setting, unsetting, locking, and un-
locking). In SCOOP, expressions represent these conditions
and waiting emerges directly from predicates on the state.

However, the conveniences of SCOOP are not free. They
require a runtime system which can do implicit locking and
unlocking, notify objects of changes, and other operations.
This overhead means that, in general, the SCOOP model
will not generate implementations which are as efficient as
their multi-threaded counterparts, making these more suitable
in situations where speed requirements are stringent. Also,
learning a new language such as SCOOP requires some
effort, but can be quickly amortized by the benefits of a struc-
tured approach. Within a robotics framework, as outlined in
Section VII, several languages may serve different purposes,
providing an opportunity for combining approaches.

VII. TOWARDS A FRAMEWORK

We believe that our approach can scale to larger robotics
applications, and plan to develop a framework for robotic
control on the basis of SCOOP within a three-layer architec-
ture [16]. In this architecture, a control layer implements
one or more stateless feedback control loops that couple
sensors to actuators. The result is a primitive behavior of the
robot. The hexapod control software developed in this paper
is entirely located in the control layer. Next, a sequencer
layer interacts with the control layer to fulfill a task. The
sequencer layer is stateful and selects the primitive behaviors
the control layer should use at a given time. A deliberator
layer performs time-consuming deliberative computations. It

can either produce plans for the sequencer layer or it can
respond to specific queries from the sequencer layer.

In a future framework, SCOOP could be used on all layers.
Each of the layers will be located on a different set of pro-
cessors and the framework will ensure inter-layer access. For
interoperability reasons, the framework will have interfaces
to existing middlewares that can be used on all layers. The
framework will be the basis for the development of complex
robotics applications using SCOOP. The abstractions of the
framework and the modularity of SCOOP programs will be
helpful for implementing large robotics applications.

VIII. CONCLUSION

The SCOOP model of concurrency is a novel approach to
the problem of coordinated robotic control. The features of
atomicity and wait-conditions allow a style of programming
that permits close association of a behavioral specification
with the implementation. This is an important result as
one of the most difficult challenges in creating software is
correctly transitioning from requirements to implementation.
In general, lowering the effort required to perform this
transition means less time spent on development and also
more correct software.

Acknowledgments. This work is part of the SCOOP project
at ETH Zurich, which has benefitted from grants from the
Hasler Foundation, the Swiss National Foundation, Microsoft
(Multicore award) and ETH (ETHIIRA).

REFERENCES

[1] I. J. Cox and N. H. Gehani, “Concurrent programming and robotics,”
Int. J. of Robotics Research, vol. 8, no. 2, pp. 3–16, 1989.

[2] J.-C. Baillie, “URBI: Towards a universal robotic low-level program-
ming language,” in IROS’05, 2005.

[3] J. Peterson, G. D. Hager, and P. Hudak, “A language for declarative
robotic programming,” in ICRA’99, 1999, pp. 1144–1151.

[4] R. Simmons and D. Apfelbaum, “A task description language for robot
control,” in IROS’98, vol. 3, Oct 1998, pp. 1931–1937.

[5] B. Thirion and L. Thiry, “Concurrent programming for the control of
hexapod walking,” Ada Letters, vol. XXII, no. 1, pp. 17–28, 2002.

[6] H. Cruse, T. Kindermann, M. Schumm, J. Dean, and J. Schmitz,
“Walknet–a biologically inspired network to control six-legged walk-
ing,” Neural Networks, vol. 11, no. 7-8, pp. 1435–1447, 1998.

[7] N. Mohamed, J. Al-Jaroodi, and I. Jawhar, “Middleware for robotics:
A survey,” in RAM’08, 2008.

[8] D. Moore, E. Olson, and A. Huang, “Lightweight communications and
marshalling for low-latency interprocess communication,” Computer
Science and Artificial Intelligence Laboratory, MIT, Tech. Rep., 2003.

[9] P. M. Newman, “MOOS: Mission orientated operating suite,” Depart-
ment of Ocean Engineering, MIT, Tech. Rep., 2008.

[10] M. Montemerlo, N. Roy, and S. Thrun, “Perspectives on standardiza-
tion in mobile robot programming: The carnegie mellon navigation
(CARMEN) toolkit,” in IROS’03, 2003, pp. 2436–2441.

[11] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[12] V. Dürr, J. Schmitz, and H. Cruse, “Behaviour-based modelling
of hexapod locomotion: linking biology and technical application,”
Arthropod Structure & Development, vol. 33, no. 3, pp. 237–250, 2004.

[13] N. Porcino, “Hexapod gait control by a neural network,” in IJCNN’90,
1990, pp. 189–194.

[14] P. Nienaltowski, “Practical framework for contract-based concurrent
object-oriented programming,” Ph.D. dissertation, ETH Zurich, 2007.

[15] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-
Hall, 1997.

[16] E. Gat, “On three-layer architectures,” in Artificial Intelligence and
Mobile Robots, 1997, pp. 195–210.


