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Abstract—Large parts of today’s software systems are devoted
to detecting and recovering from failures, making exception
handling a critical issue in software development. Concurrent
software complicates this issue: most concurrent programming
languages require a mechanism to deal with asynchronous
exceptions, but because of the diverse design choices underlying
each language, no approach fits all situations. We introduce a
classification of possible approaches to guide the development
of asynchronous exception mechanisms, and we show its ap-
plicability by deriving a sound and comprehensible mechanism
for SCOOP, an object-oriented programming model for concur-
rency. We describe the key idea of the mechanism using the
accountability framework, which precisely defines the obligations
of client and supplier regarding the reporting of exceptions. The
framework not only provides the necessary intuition to apply
the mechanism correctly, it is also useful to comprehend other
approaches.

Keywords-asynchronous exception; concurrent programming;
SCOOP

I. INTRODUCTION

In concurrent programming languages, multiple computa-
tional units execute in an interleaved, potentially parallel
manner. Many of these languages offer asynchronous (non-
blocking) calls, permitting a client to continue while the
supplier executes the call. As long as the call terminates
normally, the client does not need to be informed about the
success. If the supplier raises an exception, however, some
computational unit must propagate the exception, i.e., react
to it by changing the control flow, and subsequently handle it
by executing a dedicated sequence of instructions. The client
might already have continued its execution and no longer be
in a position to propagate the exception. An exception such
as this is known as an asynchronous exception. Its context
consists of two parts: the failed context is the supplier’s
context; the responsible context is the context in which the
client made the call. The exception is the result of a failure
– the inability of the supplier to fulfill its promise towards its
client.

Because of different design choices in each language, no ap-
proach to deal with asynchronous exceptions fits all situations.
This paper classifies existing approaches in order to guide the
development of new asynchronous exception mechanisms. It
then presents the accountability framework to describe, com-
prehend, and compare asynchronous exception mechanisms:
only within a well-defined range is the supplier obliged to
report failures; it only does so if it is held accountable. Based
on the classification and the accountability framework, this

paper derives a mechanism for SCOOP (Simple Concurrent
Object-Oriented Programming) [1], [2], an object-oriented
programming model for concurrency. The contributions are:

• A classification of approaches to deal with asynchronous
exceptions. The classification embeds existing classifiers
into the larger picture and extends them with new classi-
fiers for restricted asynchrony and propagation locations.
It also discusses the strengths and weaknesses of the
approaches.

• The accountability framework. The framework offers
concepts to describe asynchronous exception mecha-
nisms. Its applicability is shown on a number of mecha-
nisms: µC++ [3], Erlang [4], and SaGE [5].

• A mechanism for asynchronous exceptions in SCOOP.
The mechanism is derived from the classification and
described using the accountability framework.

Section II presents the classification, and Section III introduces
the accountability framework. Section IV gives information
on SCOOP and its existing exception mechanism for non-
concurrent programs. Section V presents the derived mecha-
nism for SCOOP, and Section VI concludes with future work.

II. CLASSIFICATION OF APPROACHES

The literature contains a wide variety of asynchronous
exception mechanisms. Some mechanisms support multiple
approaches to combine the advantages and compensate for the
disadvantages of these approaches. Figure 1 shows a classifica-
tion of approaches. On the top level, the classification differen-
tiates between locations where an asynchronous exception can
propagate. In case the supplier propagates the exception, the
client does not have to expect an exception; it can be assured
that the supplier will take care of any exceptions. Moreover,
the supplier can handle the exception in the failed context. As
a disadvantage, the client has no direct way of telling whether
its call succeeded. Furthermore, the supplier might not always
be able to draw the right conclusions on behalf of the client, as
it does not have access to the responsible context. The handler
can either be defined in the supplier or it can come from the
client via an argument. Supplier-specific handlers are common:
any mechanism where a supplier can deal with an exception
in a local handler falls into this category; one example is
SaGE [5]. Call-specific handlers are less common, but there
are mechanisms, such as JR [6], using this approach. Call-
specific handlers contain clean-up code specified by the client;
in general, however, the client does not know how to clean up
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Fig. 1. Classification of approaches to deal with an asynchronous exception. The figure omits repeating the subdivisions for the supervisor-based approaches.

the supplier without violating information hiding principles.
Supplier-specific handlers do not have this problem.

The case that the client propagates the exception supports
a response in the responsible context, but in turn the client
does not have access to the failed context. Table I lists
the mechanisms that support this kind of propagation. The
classification differentiates two cases: full asynchrony and
restricted asynchrony. With full asynchrony, the exception can
propagate anytime unless the client masked the exception. This
approach is well-suited for reactive systems. However, devel-
opers have to program under the assumption of interruptibility.
Furthermore, there is a risk of race conditions: the timing of
the propagation depends on the relative speed between the
client and the supplier. For masking, Krischer [7] differentiates
several possibilities:

• Dynamic masking. Propagation is enabled until it is
disabled by an opposing call. One example is Haskell
[8] with its block and unblock operations.

• Semi-dynamic masking. Propagation is enabled only
within a dedicated program block. Examples include
Haskell [8] with its scopes, µC++ [3], and SR [9].

• Static masking. Propagation is enabled within a dedicated
program block, but only when the client is statically in
the block. Examples include Krischer’s mechanism [7]
and RTSJ [10].

• No masking. Propagation is always enabled. Examples
include SaGE [5] with its client-based handlers, Erlang
[4] with its exit signals over process links, Arche [11]
where a client propagates exceptions as a result of in-
coming method calls, and ARMI [12] with its callback
mechanism.

With restricted asynchrony, the exception can only propa-
gate when the client polls the supplier, thus alleviating the
interruptibility issue. This comes at the price of a delay
between the moment the supplier raises the exception until the

client propagates it, which might be unacceptable for reactive
systems. Moreover, polling adds to the execution time even
when there are no exceptions. This polling overhead can be
diminished, in case the client waits for the supplier anyway to
first finish its workload upon polling; as a further advantage of
this, race conditions cannot occur because the supplier always
knows about its failures before answering. The classification
differentiates between explicit polling, where the client polls
using dedicated polling constructs, and implicit polling, where
the client polls in the course of executing constructs that
are not solely dedicated to exceptions. Mechanisms that offer
explicit polling include µC++ [3], Krischer’s mechanism [7],
Erlang [4] with its exit signal traps, ABCL/1 [13] where the
client can wait for exception messages, Modula-3 [14] with
its alert tests, and ProActive [15] with its exception queries
and try block barriers. With the explicit polling approach, it
is clear when the client polls. By restricting the propagation
to dedicated points, developers can first focus on the normal
behavior and deal with exceptions in a second step. Further-
more, developers are free to synchronize as often as necessary,
thus mitigating unwanted delays. As a drawback, the language
or its library must introduce a primitive for this purpose. The
implicit polling approach does not suffer from this; developers
must however be aware of the constructs that imply polling.
To poll implicitly, there are three categories:

• Transaction-oriented polling. The client polls at specific
points in a transaction. Examples include Argus [16]
with its coenter statement and Avalon/C++ [17] with
its costart statement. Arslan and Meyer’s busy processor
approach [18] for SCOOP also falls into this category:
the client polls for exceptions while locking the supplier.
This approach fits well for languages with transactions;
furthermore, it is clear when the client must expect an
exception. However, transaction-oriented polling alone is
too coarse-grained for scenarios where the client has to



TABLE I
CLASSIFICATION OF MECHANISMS WITH PROPAGATION IN THE CLIENT. THE MARKS IN EACH ROW INDICATE THE SUPPORTED APPROACHES. THE

HORIZONTAL LINES GROUP MECHANISMS WITH A SIMILAR FOCUS.

mechanism full asynchrony restricted asynchrony

dynamic semi-dynamic static no explicit polling implicit polling

masking masking masking masking transaction synchronization dispatch

Haskell X X
µC++ X X X
SR X
Krischer X X
RTSJ X
SaGE X
Erlang X X
Arche X

ABCL/1 X X
Modula-3 X X

Argus X X
Avalon/C++ X
Dirty object X

X10 X
RMIX X
Fortress X
Cilk Plus X
ProActive X X
Rintala X
ARMI X X

Failed object X X

know about exceptions at a location that is not related to
a transaction.

• Synchronization-oriented polling. The client polls upon
synchronization with the supplier. Examples include
Modula-3 [14] with its alert joins and alert wait, Argus
[19] with its synch statement, X10 [20] with its finish
statement, RMIX [21], Fortress [22] with its val method,
and Cilk Plus [23] with its sync statement. One example
for SCOOP is Brooke and Paige’s failed object mech-
anism [24]: after an object caused an exception, it is
marked as failed; any future client propagates an excep-
tion upon a synchronous call. Further examples include
languages with futures: µC++ [3], ABCL/1 [13], Argus
[19] with its promises, ProActive [15], Rintala’s C++
futures [25], and ARMI [12] with its delayed delivery
mechanism. A future represents a result that a supplier
is computing asynchronously. When the client needs the
result, it accesses the future. This forces the client to
wait until the result is available or the supplier raises
an exception. In the latter case, the client propagates the
exception. With the synchronization-oriented approach,
the client polls when it has to wait anyway; hence, it
can diminish parts of the polling time. The approach
also helps to mitigate unwanted delays: developers are
free to poll as often as necessary. Race conditions cannot
occur with this approach because the supplier finishes
its workload upon polling, and hence, it always knows

about its failures before answering. On the downside
of synchronization-oriented polling, developers have to
remember all possible implicit synchronization points.

• Dispatch-oriented polling. The client polls whenever it
dispatches a message to the supplier. Brooke and Paige’s
failed object mechanism [24] also falls into this category;
the client propagates an exception upon an asynchronous
call as well. This approach helps to mitigate unwanted
delays because every dispatch is a poll point. However,
this approach can introduce race conditions because a
dispatch does not wait for the supplier to finish the issued
workload. Furthermore, developers have to be aware that
each call causes polling.

Besides using the supplier or the client, a supervisor can
be used to propagate the exception. The supervisor monitors
the supplier to act upon exceptions. This approach supports
the separation of normal behavior from exceptional behavior.
Supervisors neither have access to the responsible context nor
to the failed context; they can, however, have a global view
on the system, as they can be supervising multiple suppliers.
Similar to propagation in the client, the supervisor can be
based on full asynchrony or restricted asynchrony. In µC++
[3], a supervisor comes into place when a supplier raises an
exception in a task different from the client. Such a supervisor
is in general not solely dedicated to monitoring; hence, µC++
makes use of full asynchrony with semi-dynamic masking
and restricted asynchrony with explicit polling. In Erlang



[4], supervisors are dedicated to monitoring; hence, they are
based on full asynchrony with no masking. The same is true
for Ajanta [26] with its guardian agents. In Arche [11], a
client specifies supervisors upon calling; the supervisors treat
the exceptions as incoming method calls. In ABCL/1 [13],
each call specifies a number of supervisors through complaint
destinations; the supervisors use explicit polling to propagate
exceptions. Modula-3 [14] supports supervisors with explicit
polling and implicit polling.

Cooperative concurrent systems [27] such as guardian
groups [28] are not discussed here. The classification can,
however, be extended with cooperations as another propaga-
tion location.

III. ACCOUNTABILITY

This section introduces the accountability framework and
uses it to present a number of mechanisms from Section II in
more detail.

A. Definition

Each of the mechanisms discussed in Section II differs
in some way. On an abstract level, however, each of them
addresses the same set of essential questions. This section
introduces the accountability framework with concepts to
answer these questions. In governance, Schedler [29] defines
accountability as:

A is accountable to B when A is obliged to inform
B about A’s (past or future) actions and decisions,
to justify them, and to suffer punishment in the case
of eventual misconduct.

In the context of asynchronous exceptions, a supplier is either
accountable to its client, to a supervisor, or to no one, as
it is the case with propagation in the supplier. For this rea-
son, Definition 1 generalizes accountability for asynchronous
exceptions: next to the client and the supplier, it introduces
the observer as the computational unit to whom the supplier
reports.

Definition 1: Consider a client that expects a supplier to
perform some activities on its behalf. When the supplier fails,
it performs a local reaction. An observer performs a remote
reaction in response to the failure. The supplier is accountable
to the observer for one of its activities if it is guaranteed to
report any inability to fulfill the promise about the activity
made. When the observer asks the supplier to report a failure,
the observer is said to hold the supplier accountable. The
guarantee is called an accountability. While the guarantee
lasts, the accountability is said to be alive; afterwards it is
expired.

The framework captures the essence of asynchronous ex-
ception mechanisms and provides concepts that can be instan-
tiated to describe a particular mechanism. To instantiate the
framework, the following questions must be answered:
• What is the supplier’s local reaction?
• Who is the observer?
• When does an accountability become alive and when does

it expire?

• When does the observer hold the supplier accountable?
• What is the observer’s remote reaction?

For example, the framework can be used to describe the
approaches from Section II. In future-based approaches (see
Section II), an accountability becomes alive with the creation
of a future, and it expires when the future gets disposed.
The client is the observer; it holds the supplier accountable
by accessing the future. For fully asynchronous mechanisms
with semi-dynamic masking, an accountability exists between
a client and each supplier; the client holds each supplier
accountable while it executes blocks where propagation is
enabled. With static masking, the client holds the suppli-
ers only accountable while it is statically in a block with
propagation. When exceptions propagate in supervisors, the
supervisor is the observer. With propagation in the supplier,
there is only a local reaction; hence there is no observer. These
instantiations of the framework describe abstract approaches
and not concrete mechanisms. To show how the framework can
be applied to a concrete mechanism, Section III-B instantiates
the framework for µC++ [3], Section III-C for Erlang [4], and
Section III-D for SaGE [5].

The accountability framework and the classification from
Section II can also be used as a guide to develop new
mechanisms: the accountability framework defines the primary
questions to be answered; the classification discusses possible
answers from the literature. Section V demonstrates this on a
new mechanism for SCOOP.

B. Accountability for µC++

µC++ [3] extends C++ [30] with language constructs for
concurrency. A task can asynchronously spawn another task
and retrieve results from it over a future. The supplier fails by
executing a throw or resume statement.

What is the supplier’s local reaction? Developers can en-
close code blocks with two kinds of handlers: termination
and resumption handlers. When a supplier executes a throw
statement, it continues the execution in the nearest enclosing
termination handler; after the supplier completes, it continues
after the termination handler. When a supplier executes a
resume statement, it executes the nearest enclosing resumption
handler; after the supplier completes, it returns to the statement
after the resume statement. A resume statement can optionally
specify a different task to be informed about the failure, in
which case the supplier remembers its failure and continues. In
case the supplier issued a future to a client, it can additionally
use the future to remember its failure.

Default handlers exist for the case no explicit termination or
resumption handler has been defined. The default termination
handler terminates the program; the default resumption handler
initiates a search for a termination handler from the point of
the initial resume statement.

Who is the observer? An observer comes into place when
the supplier executes a resume statement that specifies another
task; the specified task becomes the observer. This task can
either be the client, or any other task that is dedicated to



supervise the supplier. A task also becomes an observer when
it receives a future from the supplier.

When does an accountability become alive and when does
it expire? A supplier’s accountability becomes alive with the
creation of the supplier, and it expires when all its observers
terminate. Consequently, the supplier might remain account-
able after it terminates.

When does the observer hold the supplier accountable? An
observer holds a supplier accountable when executing a block
where masking is disabled, when executing a poll statement,
or when querying a future from the supplier.

What is the observer’s remote reaction? When the observer
learns of a supplier’s failure by accessing a future, it executes
the nearest enclosing termination handler; the observer then
continues after the termination handler. In all other cases, the
observer behaves as if it executed a resume statement, i.e., it
executes the nearest enclosing resumption handler and then
returns to the statement after the resume statement.

C. Accountability for Erlang

Erlang [4] is a functional programming language whose
concurrency support is based on the actor model [31]. An actor
is a computational unit that responds to incoming asynchro-
nous messages from other actors; in response to a message,
the actor can either create other actors, send messages to other
actors, or determine new behavior for future messages. In
Erlang, actors are termed processes; these processes can be
linked to each other.

What is the supplier’s local reaction? When a supplier fails,
it remembers the failure, terminates, and waits until it is held
accountable.

Who is the observer? Dedicated supervisors are responsible
for monitoring processes. Each supervisor has a list of child
specifications that specifies the processes to be monitored. A
supervisor can also monitor another supervisor, permitting a
supervision tree. In addition to supervisors, a linked client is
also an observer.

When does an accountability become alive and when does
it expire? An accountability becomes alive with the creation
of a process; it expires with the termination of all observers.

When does the observer hold the supplier accountable? A
supervisor holds its monitored processes permanently account-
able; it uses full asynchrony without masking. A linked client
can have a trap to convert the failure of a supplier into an exit
message. In case a linked client has a trap, it holds the supplier
accountable when it responds to the exit message; otherwise,
it holds the supplier permanently accountable.

What is the observer’s remote reaction? The list of child
specifications determines for each monitored process how the
supervisor will react upon a failure; possible reactions are:
restart or shutdown. For both restarts and shutdowns, there
are a number of strategies to choose from. For instance, the
supervisor can either restart just the failed process or all
monitored processes. A linked client with a trap processes the
supplier’s failure as a message; a linked client without a trap
fails.

D. Accountability for SaGE

SaGE [5] is an exception mechanism for languages using the
active object pattern [32]. The active object pattern provides
a solution to decouple an invocation in one object from the
resulting execution in another object by giving an own thread
of control to each object; the pattern is often used to implement
the actor model [31]. In SaGE, each object scans its received
messages. When it decides to accept a request in a message, it
spawns a service that processes the message concurrently. The
service, i.e., the client, can then send messages to other objects,
causing further services, i.e., the suppliers, to be created.

What is the supplier’s local reaction? Developers can attach
handlers to services or objects. When a supplier fails, it first
searches for a matching handler attached to itself. If no such
handler exists, it searches for a matching handler attached to
its owner object. In case the supplier finds a handler in this
way, it executes the handler and terminates along with its own
suppliers. Otherwise, it remembers the failure and waits until
it is held accountable. After it is held accountable, the supplier
terminates along with its suppliers.

Who is the observer? The observer is the client that called
the faulty supplier.

When does an accountability become alive and when does
it expire? An accountability becomes alive when an object
creates a service. The accountability expires when the service
terminates.

When does the observer hold the supplier accountable?
A client holds a called supplier permanently accountable,
i.e., even after it terminates; it uses full asynchrony without
masking.

What is the observer’s remote reaction? In addition to
handlers attached to services and objects, developers can also
attach handlers to requests. When a client learns about the
failure of a supplier, it first searches for a matching handler
that is attached to the corresponding request. If no such handler
exists, the client evaluates a resolution function. The purpose
of the resolution function is to aggregate and filter exceptions
from different suppliers. If an exception remains, the client
treats the supplier’s failure as its own.

IV. SCOOP

This section gives an overview of SCOOP and its exist-
ing exception mechanism for non-concurrent programs, upon
which the proposed mechanism builds.

A. Introduction to SCOOP

The starting idea of SCOOP is that every object is asso-
ciated for its lifetime with a processor, called its handler.
A processor is an autonomous thread of control capable of
executing actions on objects. An object’s class describes the
possible actions as features. Any mechanism that can execute
instructions sequentially, such as a CPU core or a thread, is
suitable as a processor.

A variable x belonging to a processor can point to an object
with the same handler (non-separate object), or to an object on
another processor (separate object). In the first case, a feature



call x.f is non-separate: the handler of x executes the feature
synchronously. In this context, x is called the target of the
feature call. In the second case, the feature call is separate: the
handler of x, i.e., the supplier, executes the call asynchronously
on behalf of the requester, i.e., the client. The possibility of
asynchronous calls is the main source of concurrent execution.
The asynchronous nature of separate feature calls implies a
distinction between a feature call and a feature application:
the client logs the call with the supplier (feature call) and
moves on; only at some later time will the supplier actually
execute the body (feature application).

Consider an application that explores a search space to find
solutions to a problem. A controller triggers two concurrent
searchers; a log records the solutions. Assume that each object
is handled by its own processor. One can then simplify the
discussion using a single name to refer both to the object and
its handler. For example, one can use “controller” to refer both
to the controller object and its handler. In the following code
for this example, note that the keyword separate is a type
system extension to specify that an entity may reference an
object on a different processor. A creation instruction on such
an entity creates an object on a new processor.

class CONTROLLER feature
start (

first searcher, second searcher: separate SEARCHER;
log: separate LOG

)
do
−− Search concurrently.
first searcher.search; second searcher.search
−− Record the solutions.

log.add entry (first searcher, second searcher)
end

end

Locking requirements of a feature must be expressed in the
formal argument list: any target of separate type within the
feature must occur as a formal argument; the arguments’
handlers are locked for the duration of the feature execution,
thus preventing data races. Such targets are called controlled.
For instance, in start, log is a formal argument; the controller
has exclusive access to the log while executing start.

Sometimes it is necessary to transfer the ownership of locks
between processors through the lock passing mechanism. In
start, the log takes the searchers as arguments. To be able to
continue, the log requires the lock on the searchers, currently
owned by the controller. To resolve the situation, the controller
automatically passes the locks and waits until the locks return;
hence the feature call becomes synchronous. There is another
situation where a separate feature call becomes synchronous:
when a client expects a result from a supplier, then the
client must wait until the supplier provides the result (wait
by necessity).

These concepts require execution-time support, known as

the SCOOP runtime. The following description is abstract;
actual implementations may differ. Each processor maintains
a request queue for feature requests from other processors.
When a client performs a separate feature call, it enqueues
a separate feature request to the supplier’s request queue.
The supplier processes the feature requests in the order of
queuing. A non-separate feature call can be processed right
away without going through the request queue: the processor
creates a non-separate feature request for itself and processes
it right away using its call stack. Whenever a processor is
ready to let go of obtained locks, it issues an unlock request
to each locked processor. Each locked processor unlocks itself
as soon as it processed all previous feature requests.

B. Exceptions in Non-Concurrent Programs

The mechanism presented in this article relies on the rescue-
retry approach for non-concurrent programs [1], summarized
in this section. While this approach originates in Eiffel,
languages such as Ruby [33] or Jass [34] have adopted it too.
In the rescue-retry approach there are two possible responses
to a failure:
• Organized panic. The supplier admits that the promise

cannot be fulfilled. It brings all affected objects to a
consistent state and reports the failure by passing the
exception to its client.

• Resumption. The supplier attempts to fix the reasons for
the failure and retries the execution.

Developers decide on the appropriate response by providing
a rescue clause (rescue keyword) for each feature; features
without an explicit rescue clause implicitly have an empty
one. Whenever the supplier fails, it executes the rescue clause.
The main purpose of the rescue clause is to put the affected
objects back into a consistent state. If executed until the end,
the supplier reports the failure to the client (organized panic).
A rescue clause may terminate by executing a retry instruction
(retry keyword), which restarts the feature from the beginning
(resumption); the idea is for the rescue clause to change some
of the context to ensure that the new execution tries some
other path.

Consider the class SEARCHER, whose feature search finds
a solution using a random search with a new seed. If the
new seed is invalid, the searcher raises an exception, and the
rescue clause restores the seed before reporting the failure.
The postcondition (ensure keyword) expresses the promise.

class SEARCHER feature
seed: INTEGER −− The seed used in the random search.
solution: STRING −− The result.

search
do
−− Get the seed from atmospheric noise.

seed := atmospheric noise
if seed >= 0 then

solution := random solution (seed) −− Search.



else
raise exception −− Fail.

end
ensure not solution = Void −− The postcondition.
rescue seed := 0 −− Restore consistency.
end

invariant seed >= 0 −− The consistency criterion.
end

V. ASYNCHRONOUS EXCEPTION MECHANISM FOR
SCOOP

This section presents an asynchronous exception mechanism
for SCOOP. The main goal of SCOOP is to provide concur-
rency mechanisms that are simple to understand and to use [1],
[2]; the asynchronous exception mechanism must be designed
in the same spirit. This is part of the following requirements:
• Comprehensibility. The mechanism must be easy to un-

derstand.
• Compatibility. It must be compatible with the exist-

ing mechanism for non-concurrent programs (see Sec-
tion IV-B).

• Consistency. It must guarantee the consistency of a failed
supplier.

This section first instantiates the accountability framework. It
then presents an implementation, an example, and a compari-
son with related mechanisms.

A. Accountability for SCOOP

What is the supplier’s local reaction? To satisfy the com-
patibility and the consistency requirements, the supplier must
execute its rescue clause to reestablish its consistency, as
explained in Section IV-B. The rescue clause is a supplier-
specific handler. Without a retry instruction, the supplier
remembers the failure and cleans up: it purges any remaining
feature requests from the client because it no longer makes
sense to execute them after the failure; it also releases the
locks. It then waits until it is held accountable or until its
accountability expires.

Who is the observer? The propagation in a supervisor
approach would not be suitable for SCOOP because it is not
compatible with the existing exception mechanism for non-
concurrent programs; by definition, a non-concurrent program
cannot have a supervisor working in parallel to the main
execution. The client is a better observer; with this choice,
the mechanism meets the compatibility requirement because
the non-concurrent mechanism also displays a division of labor
between the supplier and the client.

Lock passing complicates the situation. When a client
p passes a lock on a supplier to another processor p′, p′

temporarily becomes the new client. However, as long as p′ is
not the observer, it cannot hold the supplier accountable. Yet,
it has a legitimate need to do so. One way to resolve this is
to transfer the accountability during lock passing, i.e., when
p passes the lock on the supplier to p′, then p also passes

the supplier’s accountability to p′; when p′ returns the lock to
p, p′ also returns the accountability. For the duration of lock
passing, p′ is the observer. Accountability transfer extends the
responsible context to include all feature executions along the
lock passing chain.

When does an accountability become alive and when does
it expire? For this question, it is helpful to consider when
a client can assume the promise of a supplier to fulfill the
postcondition of an issued feature call: this is the case as
long as the client keeps a lock on the supplier; as soon as
the client gives up the lock, it no longer has any guarantees
because another processor could have modified the supplier.
A client relies on a promise of a supplier by performing a
synchronous feature call, while it can still assume the promise.
We argue that a supplier’s failure only matters when the client
relies on the promise of the supplier. This view is compatible
with the view on asynchrony in SCOOP: the supplier is not
required to establish the promise of an asynchronous feature
call immediately, but when the client relies on the promise
[1], [2]. Therefore, a failure does not matter anymore when
the client can no longer assume the promise. For the proposed
mechanism, this means that a supplier is accountable from the
moment the client locks the supplier to the moment the client
gives up the lock. As a consequence of this, an accountability
persists throughout a chain of lock passing operations. By
letting an accountability expire, SCOOP programs can become
more fault-tolerant. Because a supplier always restores the
consistency of a failed object, this objects can safely be
accessed again.

One question remains: does it make sense for a client not
to rely on a promise? It does, for example, when the client
spawns multiple suppliers but only wants the results from some
of them. In Section IV, the log might not care about the second
searcher if the first searcher found a satisfying solution. In
absence of a cancellation mechanism, the log must ignore the
second searcher by not synchronizing with it. Section V-C
shows this example in more detail.

Mechanisms using futures, e.g., ProActive [15], also allow
an accountability to expire: when the client does not query
the future, the accountability expires [35]. For some programs,
however, it might not be safe to forget about failures. The next
paragraph includes a solution for these cases.

When does the observer hold the supplier accountable?
Restricted asynchrony is suited for SCOOP because it alle-
viates the interruptibility issue and thus keeps the mecha-
nism comprehensible. Next, implicit, synchronization-oriented
polling fits well. SCOOP has three types of synchronization
points: query calls, non-separate calls, and calls with lock
passing. With this choice, each such call triggers the client to
hold its supplier accountable. This choice makes the proposed
mechanism compatible: in a non-concurrent program, every
feature call is non-separate; hence every feature call becomes a
poll point in the proposed mechanism, just as in the underlying
mechanism. Furthermore, this choice ensures that the supplier
finishes issued feature calls before reporting, thus preventing
race conditions (see Section II). This would not be guaranteed



with dispatch-oriented polling, where the client would hold
the supplier accountable during asynchronous feature calls as
well.

An accountability expires as soon as the client gives up the
lock; with the accountability, any past failure disappears as
well. There are some programs where failures must not disap-
pear. For this reason, the mechanism has a safe mode, in which
a client holds its locked suppliers accountable before their
accountabilities expire. This mode is based on transaction-
oriented polling. It ensures that no failure is lost. However,
it also reduces the potential for concurrency: the client can
no longer just asynchronously issue unlock requests and then
continue; it first has to wait until the suppliers finished.

In summary, a client must synchronize with a supplier to
learn about a failure. For long-lived suppliers, this might not be
convenient for the client. For these cases, failures in suppliers
can also be handled entirely in the supplier’s local reaction,
for example with a callback to the client.

What is the observer’s remote reaction? When the client
learns about a failure of its supplier, it treats the failure as its
own failure. Consequently, it assumes the role of a supplier
for its own client. This ensures compatibility.

B. Implementation

Figure 2 shows the interactions between a client p and
suppliers {q1, . . . , qn} for a feature request f . The event-
based notation follows Cachin et al. [36]. Every processor
runs one instance of the algorithm along with its normal
loop, in which it processes its feature requests in requests,
executes a rescue clause upon a failure, and retries the ex-
ecution after a retry instruction. The declaration upon event
〈Event name | arguments〉 such that condition do defines an
event handler with arguments; a processor executes the handler
in a mutually exclusive way when the named event occurred
and the condition is satisfied. The instructions trigger and
wait initiate respectively wait for an event; rescue terminates
an event handler and initiates the rescue clause. Processors
communicate with each other over reliable and ordered links;
messages are enclosed in square brackets. For brevity, we
omitted the scheduler and the bookkeeping of locks in the
client.

Whenever a client locks a supplier (see Fea-
ture application start), the supplier remembers that it is
locked and accountable (see 〈Get | p, [LOCK]〉). The supplier
does not have to remember the observer because the existing
runtime system ensures that only the observer can access the
supplier. For the same reason, the accountability does not
need to be transferred explicitly during lock passing. In case
the supplier fails, it executes the associated rescue clause
to reestablish its consistency. Without a retry instruction
(see Rescue clause end), the supplier remembers the failure
and cleans up: it purges any remaining feature requests
from the client and releases the locks as it ends the feature
application (see Feature application end). It then waits until
the client holds it accountable or asks it to unlock. The
client holds the supplier accountable in the course of a

upon event 〈Initialize〉 do
locked := false; accountable := false;
failed := false; requests := ();

upon event 〈Feature application start | f , {q1, . . . , qn}〉
do

forall the qi ∈ {q1, . . . , qn} do trigger 〈Send | qi,
[LOCK]〉;

upon event 〈Feature call | f , qi, is synchronous〉 do
trigger 〈Send | qi, [FEATURE REQUEST, f]〉;
if is synchronous then

trigger 〈Send | qi, [HOLD ACCOUNTABLE]〉;
wait 〈Get | qi, [REPORT, s]〉;
if s = fail then rescue;

end

upon event 〈Feature body end | f , {q1, . . . , qn},
in safe mode〉 do

if in safe mode then
forall the qi ∈ {q1, . . . , qn} do

trigger 〈Send | qi,
[HOLD ACCOUNTABLE]〉;
wait 〈Get | qi, [REPORT, s]〉;
if s = fail then rescue;

end
end

upon event 〈Feature application end | f , {q1, . . . , qn}〉
do

forall the qi ∈ {q1, . . . , qn} do trigger 〈Send | qi,
[UNLOCK]〉;

upon event 〈Get | p, [LOCK]〉 do
locked := true; accountable := true;

upon event 〈Get | p, [FEATURE REQUEST, f ]〉 do
if ¬failed then requests := requests • f ;

upon event 〈Rescue clause end〉 do
failed := true; requests := ();

upon event 〈Get | p, [HOLD ACCOUNTABLE]〉 such
that requests = () do

if failed ∧ accountable then trigger 〈Send | p,
[REPORT fail ]〉;
else trigger 〈Send | p, [REPORT success ]〉;

upon event 〈Get | p, [UNLOCK]〉 do
accountable := false;

upon ¬accountable∧ requests = () do
locked := false; failed := false;

Fig. 2. Asynchronous exception mechanism



[LOCK]

log processorsecond searcher processor

rescue

[REPORT, fail]

controller processor first searcher processor

[FEATURE_REQUEST, solution] [HOLD_ACCOUNTABLE]

rescue

[REPORT, fail] with lock return

[FEATURE_REQUEST, search]

rescue

[UNLOCK]

[FEATURE_REQUEST, add_entry] [HOLD_ACCOUNTABLE] with lock passing

Fig. 3. The interactions between the controller, the searchers, and the log. The shaded areas indicate the searchers’ accountabilities.

synchronous feature call (see Feature call) or at the end
of a feature body (see Feature body end) in safe mode;
in both cases the supplier makes a report (see 〈Get | p,
[HOLD ACCOUNTABLE]〉). As soon as the client asks the
supplier to unlock (see Feature application end), the supplier
dismisses its accountability (see 〈Get | p, [UNLOCK]〉); when
it unlocks (see ¬accountable∧ request queue = ()), it forgets
about its failure. Without a failure, the supplier must finish
pending feature requests before reporting or unlocking.

C. Example

Consider again the controller from Section IV-A and the
searchers from Section IV-B. Figure 3 shows an execution in
which the controller calls the two searchers and passes them
to the log. Meanwhile, the first searcher fails. Due to lock
passing, the searchers’ accountabilities persist throughout start
and add entry.

The following class describes the log that writes the solu-
tions to disk:

class LOG feature
add entry (first searcher, second searcher: separate

SEARCHER)
do
−− Has the first searcher found a solution?
if not first searcher.solution.is empty then
−− Yes. Log the first solution.
write (first searcher.solution)

else
−− No. Log the second solution.
write (second searcher.solution)

end
end

end

By calling solution synchronously, the log holds the first
searcher accountable, fails, and reports the failure to the
controller, who is waiting for the locks to return.

D. Comparison

In Arslan and Meyer’s busy processor mechanism [18], a
supplier becomes busy when it fails; only the client that made
the faulty feature call can relock the supplier, in which case it
holds the supplier accountable. For this to work, the account-
ability persists beyond the locking context. This mechanism
causes an exception to propagate in a context where the client
cannot assume the promise of the corresponding feature call.
Furthermore, it does not consider lock passing.

Brooke and Paige [24] propose three options from which
developers can choose. The first two options are radical:
the first option halts the entire system as a response to
an asynchronous exception; the second option ignores any
asynchronous exceptions. The third option marks failed objects
permanently; any future client holds the failed object’s handler
accountable upon each feature call, i.e., each processor is an
observer of each other processor, and an accountability persists
until the end. The third option is limiting because it prevents
cases where it would be valid to access the failed object once
again. In particular, a different context might only assume that
the failed object is consistent; it might not care about past
failures. Hence, it would be valid to access the failed object
again, provided that the failed object’s consistency has been
restored. Furthermore, the third option permits race conditions
between the client and the supplier because the supplier is not
permitted to finish its workload. On the plus side, polling at
each feature call reduces the propagation delay.

VI. CONCLUSION

Deficiencies in exception handlers can cause severe failures.
To support developers in writing correct error handlers, espe-
cially when reasoning about concurrent code, a comprehensi-
ble model of exception handling is critical. We introduced the
accountability framework with concepts to describe asynchro-
nous exception mechanisms, and we presented a classification
of approaches along with a discussion. We used them to
derive a mechanism for asynchronous exceptions in SCOOP. In
future work, we want to extend the mechanism with exception
resolution [37]. A client can have more than one supplier,



and each supplier can raise an asynchronous exception. In
the proposed mechanism, the client handles the exception of
the first supplier with whom it synchronizes. With exception
resolution, the client can collect exceptions from multiple
suppliers and handle them together. We are also extending
the formal semantics for SCOOP [38] with the mechanism.
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