
Diss. ETH No. 21822

Prototyping a Concurrency Model

A thesis submitted to attain the degree of

DOCTOR OF SCIENCES of ETH ZURICH

(Dr. sc. ETH Zurich)

presented by

BENJAMIN MORANDI

Master of Science ETH in Computer Science
born on July 7th, 1983

citizen of Rossa (GR), Switzerland

accepted on the recommendation of

Prof. Dr. Bertrand Meyer, examiner
Prof. Dr. José Meseguer, co-examiner
Prof. Dr. Jayadev Misra, co-examiner

2014

Acknowledgments

I am grateful to all those who contributed to the completion of this thesis. It was
an honor for me to work with my adviser, Bertrand Meyer, and learn from his
expertise in designing programming languages. His encouragement to find practi-
cal and simple solutions has significantly influenced the results in this thesis. His
experience in writing has helped me improve my own technical writing skills. I
also thank José Meseguer and Jayadev Misra for reviewing this thesis and giv-
ing me insightful questions and comments. Their feedback greatly helped me in
compiling the final version of this thesis.

During my stay at the Chair of Software Engineering, I had the privilege to
work with many competent and inspiring colleagues. First and foremost, I am
grateful to Sebastian Nanz for guiding me to grow as a researcher. Our interesting
and enjoyable collaboration and his numerous detailed comments have substan-
tially contributed to this thesis. I am also thankful to Scott West for our collabora-
tion on various topics and his helpful comments on performance analysis. Further-
more, I am grateful to Stephan van Staden for his comments on locks, to Martin
Nordio for his role in extending the formal specification with exceptions, to An-
dreas Leitner for pointing out the need for data sharing, to Alexander Kogtenkov
for his help in developing passive processors, to Piotr Nienaltowski for many in-
teresting SCOOP-related discussions, and to Hassan Gomaa for our collaboration.
I am also thankful to Till Bay, Manuel Oriol, and Marco Piccioni for kindly wel-
coming me to the group. Other members of our group were also an important
source of support for me, namely Volkan Arslan, Cristiano Calcagno, Georgiana
Caltais, Ilinca Ciupa, Christian Estler, Carlo A. Furia, Claudia Günthart, Alexey
Kolesnichenko, Durica Nikolić, Michela Pedroni, Yu (Max) Pei, Nadia Polikar-
pova, Chris Poskitt, Andrey Rusakov, Mischael Schill, Bernd Schoeller, Wolf-
gang Schwedler, Jiwon Shin, Mei Tang, Marco Trudel, Julian Tschannen, and
Yi (Jason) Wei. It was a pleasure to work with many bright and motivated stu-
dents, namely Florian Besser, Matteo Cortonesi, Daniel Furrer, Patrick Huber,
Damien Müllhaupt, Andrey Nikonov, Ganesh Ramanathan, Emanuele Rudel, An-
drey Rusakov, Mischael Schill, and Martino Trosi. I would also like to show my

i

ii Acknowledgments

gratitude to the Eiffel Software team, in particular Jocelyn Fiat, Ian King, Alexan-
der Kogtenkov, and Emmanuel (Manu) Stapf, for their continuous help with EVE.

My wife, Jiwon Shin, has been my beloved life companion and a valuable
source of advice. She has provided a loving environment that allowed me to
tackle challenges and grow. Her countless comments have greatly improved the
quality of this thesis. My parents, Bruno Morandi and Christine Morandi, as well
as my brothers, Michael Morandi, Simeon Morandi, and Matteo Morandi have
supported, encouraged, and motivated me continuously.

This thesis was supported by the European Unions Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC Grant agreement no. 291389, the Hasler Foun-
dation, and ETH (ETHIIRA). I am grateful for their support.

Benjamin Morandi

Abstract

Many novel programming models for concurrency have been proposed in the
wake of the multicore computing paradigm shift. These models aim to raise the
level of abstraction for expressing concurrency and synchronization in a program,
thereby helping programmers avoid programming errors. This goal, however,
causes the semantics of the models to become ever more complex and increases
the risk of design flaws. Such flaws can have costly consequences if they are dis-
covered after compiler and runtime support has been developed. It is therefore
beneficial to verify the models beforehand.

This thesis proposes to prototype concurrency models using executable formal
specifications. The prototype is useful from the beginning to the end of a model
development. Initially, developers can use the prototype to test and correct the
core of the model. As the development continues, developers can expand the
prototype iteratively. For each extension, they enhance the specification, test the
extension against the rest of the model, and apply corrections where necessary.
Once the development is completed, the prototype serves as a reference.

This thesis applies the prototyping method to SCOOP, an object-oriented con-
currency model. It demonstrates how the method facilitates the process of finding
and resolving flaws in SCOOP and two extensions. In particular, it applies the
method to extend SCOOP with (1) an exception mechanism to handle exceptions
resulting from asynchronous calls and (2) a mechanism for fast and safe data
sharing, reducing execution time by several orders of magnitude on data-intensive
parallel programs. This effort results in 16 clarifications across various aspects,
all included in a comprehensive executable formal specification in Maude.

This thesis also presents new SCOOP-specific performance metrics and a tech-
nique to compute them from event traces. Having a verified concurrency model
does not guarantee that programmers write efficient concurrent programs. It is
hence necessary to provide performance analysis tools that assist programmers in
their task. Since SCOOP differs considerably from established models, reusing
existing performance metrics is not an option. Instead, the new metrics are specif-
ically designed for SCOOP. A case study on optimizing a robot control software

iii

iv Abstract

demonstrates the usefulness of these metrics.
As a result of this thesis, SCOOP has an executable formal specification for

future SCOOP developers, new mechanisms for exception handling and data shar-
ing, as well as SCOOP-specific performance metrics. Having demonstrated the
benefits of the method on an extensive concurrency model, we believe that the
method can also benefit other models - new or mature.

Zusammenfassung

Im Zuge der zunehmenden Verbreitung von Mehrkernprozessoren wurden vie-
le Programmiermodelle für Nebenläufigkeit vorgeschlagen. Diese Modelle hel-
fen Programmierern Fehler zu vermeiden, indem sie Abstraktionen einführen, um
Nebenläufigkeit und Synchronisation auszudrücken. Diese Abstraktionen erhöhen
aber auch die Komplexität der Modelle, was das Risiko von Designfehlern erhöht.
Solche Fehler können teure Konsequenzen haben, falls sie erst nach der Entwick-
lung des Compilers und der Laufzeit gefunden werden. Es ist daher vorteilhaft,
das Modell vorweg zu verifizieren.

Diese Dissertation schlägt vor, Nebenläufigkeitsmodelle mittels ausführbaren
formalen Spezifikationen zu entwickeln. Die Spezifikation eines Modells dient
als Prototyp und ist nützlich vom Anfang bis zum Ende der Entwicklung. Zu Be-
ginn können Entwickler den Prototyp verwenden, um den Kern des Modells zu
testen und zu korrigieren. Später können Entwickler den Prototyp iterativ weiter-
entwickeln. Für jede Erweiterung ergänzen sie die Spezifikation, testen die Erwei-
terung in der Gesamtheit und bringen gegebenenfalls Korrekturen an. Sobald die
Entwicklung des Modells abgeschlossen ist, dient der Prototyp als Referenz.

Diese Dissertation wendet die Prototyping Methode auf ein objektorientier-
tes Nebenläufigkeitsmodell namens SCOOP an. Sie zeigt wie die Methode hilft,
Fehler in SCOOP und zwei Erweiterungen zu finden und zu korrigieren. Im Be-
sonderen erweitert sie SCOOP unter Einsatz der Methode mit (1) einem neuen
Mechanismus zur Behandlung von Ausnahmen, die aus asynchronen Aufrufen
resultieren, und (2) einem Mechanismus zur schnellen und sicheren Datenteilung,
welcher die Ausführungszeit von Programmen mit vielen Datenzugriffen um meh-
rere Grössenordnungen reduziert. Dieser Aufwand mündet in 16 Klarstellungen
von verschiedenen Aspekten, die alle in einer umfassenden ausführbaren formalen
Spezifikation in Maude enthalten sind.

Diese Dissertation präsentiert zusätzlich SCOOP-spezifische Leistungsmetri-
ken und eine Technik, um diese aus Ereignisprotokollen zu berechnen. Ein ve-
rifiziertes Nebenläufigkeitsmodell garantiert nicht, dass Programmierer effiziente
nebenläufige Programme schreiben. Es ist daher wichtig den Programmierern Lei-

v

vi Zusammenfassung

stungsanalysetools zur Verfügung zu stellen, die sie bei ihrer Arbeit unterstützen.
Da sich SCOOP grundlegend von etablierten Modellen unterscheidet, ist es nicht
angebracht, existierende Leistungsmetriken zu verwenden. Deshalb sind die neu-
en Metriken gezielt an SCOOP angepasst. Eine Fallstudie über die Optimierung
einer Robotersteuerung demonstriert den Nutzwert dieser Metriken.

Durch diese Dissertation erhält SCOOP eine ausführbare formale Spezifika-
tion für zukünftige SCOOP Entwickler, neue Mechanismen für die Ausnahme-
behandlung und Datenteilung, sowie SCOOP-spezifische Leistungsmetriken. Da
die Methode bei der Anwendung auf ein umfangreiches Nebenläufigkeitsmodell
vorteilhaft ist, sind wir zuversichtlich, dass die Prototyping Methode auch bei der
Entwicklung von anderen Modellen, neu oder ausgereift, von Vorteil sein kann.

Contents

1 Introduction 1
1.1 Prototyping method . 3
1.2 Thesis statement . 4
1.3 Contributions and main results 4
1.4 Organization . 6

2 Informal description 9
2.1 SCOOP in an example . 9
2.2 Programs . 11
2.3 Processors and objects . 14
2.4 Types . 15
2.5 Feature applications . 16
2.6 Feature calls . 18
2.7 Creation instructions . 19
2.8 Once routines . 20

3 Formal specification 23
3.1 Intermediate representation of programs 23

3.1.1 Abstract data types . 24
3.1.2 Basic abstract data types 26
3.1.3 Programs and settings 26
3.1.4 Class types . 27
3.1.5 Features . 27
3.1.6 Statements . 27
3.1.7 Expressions . 28
3.1.8 Types . 28

3.2 State specification . 30
3.2.1 Identifiers . 30
3.2.2 Objects and references 30
3.2.3 Heap . 31

vii

viii Contents

3.2.4 Processors and regions 36
3.2.5 Environments and store 44
3.2.6 State . 45

3.3 Execution specification . 61
3.3.1 Executions . 61
3.3.2 Initial configuration . 62
3.3.3 Issuing mechanism . 64
3.3.4 Notification mechanism 65
3.3.5 Expression evaluation mechanism 66
3.3.6 Locking and unlocking mechanism 66
3.3.7 Writing and reading mechanism 66
3.3.8 Flow control mechanism 68
3.3.9 Entity and literal expressions 68
3.3.10 Feature calls . 69
3.3.11 Feature applications . 76
3.3.12 Creation instructions . 82
3.3.13 Flow control instructions 85
3.3.14 Assignment instructions 85
3.3.15 Termination or blockage 86

4 Executable specification 87
4.1 Maude . 87
4.2 Abstract data types . 90
4.3 Transition rules . 93
4.4 Executing programs . 95

4.4.1 Rewrite and frewrite . 95
4.4.2 Strategies . 97
4.4.3 Search . 98
4.4.4 LTL model checker . 99

4.5 Other frameworks . 101

5 Testing 103
5.1 Test suite . 103
5.2 Separate callbacks . 104

5.2.1 Flaw . 105
5.2.2 Clarification . 107

5.3 Separate once functions . 108
5.3.1 Flaw . 108
5.3.2 Clarification . 110

5.4 Lock passing for queries . 113
5.4.1 Flaw . 113

Contents ix

5.4.2 Clarification . 115
5.5 Lock passing and asynchrony . 115

5.5.1 Flaw . 116
5.5.2 Clarification . 119

5.6 Related work . 120
5.6.1 Testing of programming models 120
5.6.2 Proofs for programming models 123

5.7 Discussion . 125

6 Asynchronous exceptions 127
6.1 Classification of approaches . 128
6.2 Accountability framework . 133
6.3 Accountability framework instantiations 134

6.3.1 Accountability for µC++ 134
6.3.2 Accountability for Erlang 135
6.3.3 Accountability for SaGE 136

6.4 Informal description . 137
6.4.1 Exceptions in non-concurrent SCOOP programs 137
6.4.2 Accountability for SCOOP 139

6.5 Formal specification . 143
6.5.1 Intermediate representation 143
6.5.2 Heap and regions . 143
6.5.3 Failure anchor mechanism 146
6.5.4 Notification mechanism 151
6.5.5 Locking and unlocking mechanism 152
6.5.6 Feature applications . 152

6.6 Testing . 162
6.6.1 Safe mode order . 162
6.6.2 Safe mode and creation procedures 165

6.7 Related work . 167
6.8 Discussion . 167

7 Data sharing 169
7.1 Informal description . 170
7.2 Formal specification . 173

7.2.1 Regions . 173
7.2.2 Writing and reading mechanism 175
7.2.3 Literal expressions . 175
7.2.4 Feature calls . 176
7.2.5 Feature applications . 176
7.2.6 Creation instructions . 182

x Contents

7.3 Testing . 182
7.3.1 Flaw . 182
7.3.2 Clarification . 183

7.4 Performance evaluation . 184
7.4.1 Comparison to active processors 186
7.4.2 Comparison to low-level synchronization primitives . . . 187

7.5 Other applications . 189
7.6 Related work . 189
7.7 Discussion . 191

8 Performance analysis 193
8.1 Performance metrics . 193
8.2 Using the metrics to diagnose issues and find solutions 196
8.3 From traces to metric values . 197
8.4 Tool overview . 199

8.4.1 Processor view . 201
8.4.2 Feature view . 203
8.4.3 Using the tool to improve programs 204

8.5 Evaluation . 204
8.5.1 Time overhead analysis 204
8.5.2 Optimizing concurrent robotic control software 207

8.6 Applicability to other concurrency models 211
8.7 Related work . 212
8.8 Discussion . 216

9 Conclusion 217
9.1 Defense of the thesis statement 217
9.2 Future work . 219
9.3 Final remarks . 221

Bibliography 223

List of figures 243

List of tables 247

A SCOOP 14 reference 249
A.1 ID . 249
A.2 NAME . 249
A.3 PROGRAM . 249

A.3.1 Queries . 249
A.3.2 Constructors . 249

Contents xi

A.4 SETTINGS . 250
A.4.1 Queries . 250
A.4.2 Constructors . 250

A.5 CLASS TYPE . 250
A.5.1 Queries . 250
A.5.2 Constructors . 251
A.5.3 Instances . 251

A.6 FEATURE . 251
A.6.1 Queries . 251
A.6.2 Constructors . 252
A.6.3 Subtypes . 252
A.6.4 Instances . 252

A.7 ENTITY . 252
A.7.1 Queries . 252
A.7.2 Constructors . 253
A.7.3 Subtypes . 253
A.7.4 Instances . 253

A.8 STATEMENT and STATEMENT SEQUENCE 253
A.9 INSTRUCTION . 253
A.10 OPERATION . 254
A.11 EXPRESSION . 255
A.12 LITERAL . 255
A.13 QUERY . 255
A.14 Types . 256
A.15 REF . 257

A.15.1 Queries . 257
A.15.2 Constructors . 257
A.15.3 Instances . 257

A.16 OBJ . 257
A.16.1 Queries . 257
A.16.2 Commands . 258
A.16.3 Constructors . 258

A.17 HEAP . 258
A.17.1 Queries . 258
A.17.2 Commands . 259
A.17.3 Constructors . 261

A.18 PROC . 261
A.18.1 Queries . 261
A.18.2 Constructors . 261

A.19 REGIONS . 261
A.19.1 Queries . 261

xii Contents

A.19.2 Commands . 262
A.19.3 Constructors . 265

A.20 ENV . 265
A.20.1 Queries . 265
A.20.2 Commands . 266
A.20.3 Constructors . 266

A.21 STORE . 266
A.21.1 Queries . 266
A.21.2 Commands . 266
A.21.3 Constructors . 266

A.22 STATE . 267
A.22.1 Queries . 267
A.22.2 Commands . 267
A.22.3 Constructors . 267

A.23 STATE facade: mappings . 268
A.23.1 Queries . 268
A.23.2 Commands . 269

A.24 STATE facade: importing . 269
A.24.1 Queries . 269
A.24.2 Commands . 270

A.25 STATE facade: environments . 271
A.25.1 Queries . 271
A.25.2 Commands . 271

A.26 STATE facade: writing and reading values 272
A.26.1 Queries . 272
A.26.2 Commands . 272

A.27 STATE facade: once routines . 273
A.27.1 Queries . 273
A.27.2 Commands . 274

A.28 STATE facade: locks . 274
A.28.1 Queries . 274
A.28.2 Commands . 275

A.29 STATE facade: failures . 277
A.29.1 Queries . 277
A.29.2 Commands . 277

A.30 STATE facade: passive processors 277
A.30.1 Queries . 277
A.30.2 Commands . 278

A.31 Initial configuration . 278
A.32 Issuing mechanism . 278
A.33 Notification mechanism . 279

Contents xiii

A.34 Locking and unlocking mechanism 280
A.35 Writing and reading mechanism 280
A.36 Flow control mechanism . 281
A.37 Failure anchor mechanism . 281
A.38 Entity and literal expressions . 283
A.39 Feature calls . 284
A.40 Feature applications . 286
A.41 Creation instructions . 293
A.42 Flow control instructions . 296
A.43 Assignment instructions . 296
A.44 Parallelism . 296

xiv Contents

1 Introduction

Almost all modern computer systems, ranging from servers to smartphones, have
multiple processing units such as CPU cores, GPU cores, and co-processors.
These processing units execute instructions in parallel, thus accelerating the sys-
tem. To benefit from multiple units, a program must create multiple threads, each
with a sequence of instructions that can be executed in parallel. The number of
threads does not have to match the number of units; one unit can take several
threads by interleaving their instructions. A system is concurrent when it exe-
cutes a program with multiple threads in parallel or interleaved.

To develop such a concurrent program, the programming language in use must
offer constructs to express threads and synchronization among each other. These
constructs are defined by a concurrency model. Concurrency models can be di-
vided into two main groups: models based on shared memory and models based
on message passing. In shared-memory-based models, client threads spawns sup-
plier threads with some workload. The threads read from and write to the same
memory. In message-passing models, each thread can also spawn other threads,
but each thread encapsulates its own private data. To access data of another thread,
it must send a message with a request. The sender is called the client, and the re-
ceiver is called the supplier. The act of sending a message is either synchronous,
i.e., the client waits until the supplier processed the message, or asynchronous,
i.e., the client continues while the supplier processes the message.

A popular concurrency model based on shared memory is threads with moni-
tors [88, 90], used in mainstream languages such as Java [82, 132] and C# [104].
In this model, threads use monitors to synchronize with each other before ac-
cessing the shared memory. Only one thread can lock the monitor at a given
time; other threads must wait in the monitor’s lock queue. The thread with the
lock can wait on one of the monitor’s condition variables, in which case it re-
leases the lock and places itself in the queue for the condition variable. One of

1

2 Chapter 1. Introduction

the next lock holders can then send a signal over the condition variable, moving
all threads in the queue of the condition variable into the monitor’s lock queue.
Other concurrency models based on shared memory include the Parallel Random
Access Machine (PRAM) [72,81], the Partitioned Global Address Space (PGAS)
model [6] (used in X10 [51], Fortress [4], and Chapel [118]), the tuple space
model from Linda [79], the structured fork-join model used in Cilk [24,102], and
OpenMP’s [172] underlying concurrency model.

An important message-passing model is the actor model [89], used in many
languages including Erlang [66] and Scala [168]. The actor model represents
threads as actors. An actor responds to incoming messages from other actors by
creating new actors, sending messages to other actors, or determining new be-
havior for future messages. Other message-passing concurrency models include
Communicating Sequential Processes (CSP) [91] used in occam [195], the π-
calculus [156], the Orc process calculus [157] and its language [169], the Join Cal-
culus [73] used in Cω [21], the Asynchronous Sequential Processes (ASP) calcu-
lus [49] used in ProActive [16], the Bulk Synchronous Parallel (BSP) model [208],
Petri nets [177], the Reo coordination model [12], MPI’s [146] underlying mes-
saging model, and the rendezvous synchronization used in Ada [115].

Pure message-passing concurrency models avoid race conditions on data be-
cause each thread can only access its own data. The absence of data races elimi-
nates a major source of concurrency errors, thus making it simpler to implement
correct concurrent programs. This idea of simple development of concurrent pro-
grams is also at the heart of SCOOP [150, 164], an object-oriented concurrency
model based on contracts. In SCOOP, processors encapsulate objects. A proces-
sor p can only operate on its own objects; to access an object of another processor
q, it sends a feature request message to q by performing a feature call; in this con-
text p is the client, and q is the supplier. To simplify development further, SCOOP
provides constructs for automatic lock management, automatic conditional syn-
chronization, and automatic waiting for query values. A client automatically waits
until it has the locks of all suppliers and its precondition on the suppliers is satis-
fied before it calls features on the suppliers. If the client expects a result from a
supplier, it automatically waits for the result.

SCOOP has gone through several iterations of refinement. In a series of
articles [148–150], Meyer proposed SCOOP as a concurrency extension to Eif-
fel [105]. Nienaltowski [164] worked on usability, consistency, and compatibil-
ity with existing object-oriented constructs. To differentiate the two proposals,
Meyer’s work is called SCOOP 97, and Nienaltwoski’s work is called SCOOP 07.
Since then the concurrency model has also been applied to other languages [205].
Compton and Walker [56] provided the first implementation of SCOOP 97 as an
extension of the SmartEiffel compiler [138]. Later, Fuks et al. [76] presented a
source-to-source compiler from SCOOP 97 to Eiffel. As part of his work on the

1.1. Prototyping method 3

model [164], Nienaltowski presented a source-to-source compiler for SCOOP 07.
EiffelSoftware integrated SCOOP 07 into the EiffelStudio [62] compiler and run-
time, which is also available as a research platform called EVE [67].

While the SCOOP constructs are simple to use, their semantics is sophisti-
cated, raising the possibility of design flaws. Flaws in a concurrency model can
have costly consequences if they are discovered after compiler and runtime sup-
port has been developed. When users experience inexplicable bugs, they can lose
their trust in the model. In the worst case, fixing these bugs requires many lines of
code across many files to be changed, significantly prolonging the development
time. It is therefore beneficial to verify the model prior to developing compiler
and runtime support. One possibility is theorem proving (e.g., [136, 200]). Theo-
rem proving can, however, be very time-consuming or otherwise only applicable
to a small subset of the model.

To develop a sophisticated concurrency model like SCOOP, this thesis pro-
poses to prototype the model using an executable formal specification. The exe-
cutable specification lies between a purely descriptive specification and an imple-
mentation. It specifies the model, and at the same time it can be executed to see
how the model behaves. The executable specification can thus be compared to an
aircraft model. The aircraft model specifies an aircraft, and at the same time its
aerodynamics can be tested in a wind tunnel. Using the executable formal spec-
ification, the model can be verified dynamically: the designers use test programs
to check whether the formal executions conform to expectation. This approach
combines the rigor and pureness of a formal model with the simplicity of testing.
Once the development is completed, the executable formal specification serves
as an unambiguous reference, which provides a starting point for future model
extensions as well as compiler and runtime support.

1.1 Prototyping method

The prototyping method involves the following sequence of steps:

1. Start with an informal description of the main characteristics of the model.
This step enables the development and discussion of the core ideas early
on. Knowing the core ideas aids selection of the right formalism in the next
step. It also accommodates existing informal descriptions.

2. From the informal description, develop an executable formal specification
that covers all aspects of the model. This step provides the first opportunity
to discover flaws in the model and provide clarifications.

4 Chapter 1. Introduction

3. Use the executable formal specification to test the model. Provide test pro-
grams and use the specification to analyze their executions. Address the
design flaws directly in the specification. This step typically requires sev-
eral iterations.

4. Use the clarified executable formal specification to develop compiler and
runtime support.

1.2 Thesis statement
This thesis states that the prototyping method is beneficial to the development of a
sophisticated concurrency model. The prototyping method can be applied to con-
tinue the development of an existing concurrency model and add new extensions
to the model. In particular, the comprehensive executable formal specification can
be used to test different combinations of model aspects, find flaws, and clarify the
model. No compiler or runtime support is necessary, and the model can be studied
in a purer environment.

This thesis establishes its claim by applying the method to SCOOP 07 – from
now on simply called SCOOP – starting with the informal description by Nienalt-
woski [164]. SCOOP is an excellent study subject because it has a rich semantics
and because no comprehensive formal specification exists yet; previous specifi-
cations [17, 37, 173] only cover a subset of SCOOP. To show that the method is
also beneficial for new developments, this thesis extends SCOOP with two new
mechanisms: an asynchronous exception mechanism and a mechanism for data
sharing between processors.

1.3 Contributions and main results
This thesis makes the following contributions:

• Prototyping method for concurrency models. The method uses a compre-
hensive executable formal specification to test the model with a test suite.

• Executable formal specification. The executable formal specification inte-
grates all aspects of SCOOP as well as the mechanism for asynchronous
exceptions and the mechanism for data sharing; thus, it is capable of ex-
ecuting full-fledged SCOOP programs. It models a program’s state with
a number of abstract data types. The abstract data types permit a modu-
lar specification of the state on an abstract level and support a wide range
of implementations. The executable formal specification uses a structural

1.3. Contributions and main results 5

operational semantics to describe a program’s executions in terms of the
program elements. The specification is implemented in Maude [53, 54], a
framework to specify and execute rewrite systems. We chose Maude be-
cause of its expressiveness and performance.

• Clarifications. Applying the prototyping method resulted in 16 clarifica-
tions based on flaws discovered in SCOOP and the extensions. These clari-
fications are a result of the comprehensive approach because some of them
can only be found when studying the interplay between multiple aspects.

• Exception mechanism. The new exception mechanism for SCOOP handles
exceptions resulting from asynchronous calls, called asynchronous excep-
tions. The mechanism is derived from a classification of approaches with
new classifiers for propagation locations and for exception polling points.
The classification also discusses the strengths and weaknesses of the ap-
proaches. The informal description of the mechanism is presented in a new
conceptual framework with concepts to describe exception mechanisms.

With the proposed mechanism, the client only propagates an asynchronous
exception when it synchronizes with the supplier. Upon synchronization,
the client waits for the supplier to finish all previous asynchronous calls;
hence it knows about any past failure, and thus no data race can occur. The
failed supplier reports failures as long as the client keeps a lock on it. Once
the client releases the lock, it can no longer rely on the postconditions of
the called features because another processor can intervene. Since a failure
represents a failed postcondition, the supplier’s failure becomes irrelevant,
and thus the supplier can forget its failure. For applications where this is not
suitable, the mechanism offers a safe mode where the client automatically
synchronizes with a supplier before unlocking it. This semantics ensures
that no processor has to handle the supplier’s failure in a context where the
failure is irrelevant.

• Data sharing mechanism. The new data sharing mechanism allows a pro-
cessor to become passive. A client calling a feature on an object of a passive
processor does not send a feature request; instead, it operates directly on the
object after obtaining the lock on the passive processor. For frequent and
short accesses, as common on data, this procedure is faster because it avoids
the feature request overhead. Processors can thus assign shared data to a set
of passive processors and then individually lock a passive processor subset
to safely operate on the data. A case study shows that passive processors
reduce the execution time by several orders of magnitude on data-intensive
parallel programs.

6 Chapter 1. Introduction

• Performance metrics. Having a tested concurrency model does not en-
sure that programmers write efficient concurrent programs. Effective use of
SCOOP requires tools to help programmers analyze and improve programs.
Since SCOOP’s execution semantics differs considerably from established
models, this thesis introduces new performance metrics, tailored to the se-
mantics of SCOOP. The synchronization time, for example, is the time it
takes to obtain all missing locks and to establish the precondition. A case
study on optimizing a robotic control software demonstrates the usefulness
of the metrics, where the aforementioned synchronization time relates di-
rectly to the smoothness of the robot’s gait.

The importance of verifying formal semantics of programming models has
been recognized (see Section 5.6); to the best of our knowledge, however, no pre-
vious work has targeted a full concurrency model. This thesis is the first to use a
comprehensive executable formal specification to test and improve a concurrency
model.

1.4 Organization

The organization of the thesis follows the steps of the prototyping method, focus-
ing on the development, testing, and clarification of the executable formal specifi-
cation. Chapter 2 to Chapter 5 apply the prototyping method to SCOOP. Chapter 6
and Chapter 7 apply the method to develop the exception mechanism and the data
sharing mechanism. Chapter 8 presents the performance metrics and Chapter 9
concludes the thesis with future work.

• Chapter 2 presents the existing informal description of SCOOP, as presented
by Nienaltowski [164] in 2007. It summarizes the main concepts and intro-
duces the terminology used throughout this thesis. The informal description
is the starting point in applying the prototyping method to SCOOP.

• Chapter 3 presents the formal description of SCOOP along with the clarifi-
cations found during the formalization effort.

• Chapter 4 develops the main techniques of mapping the formal specification
to Maude, namely mapping ADTs and transition rules. It also discusses
how to use Maude’s execution functionality to execute a program. These
techniques are applied to the formal specification in Chapter 3 as well as
the formal specifications for the asynchronous exception mechanism and
the data sharing mechanism.

1.4. Organization 7

• Chapter 5 presents the test suite along with the flaws and clarifications found
while testing SCOOP. It presents each flaw with a test program and the
Maude input required to reproduce the issue. It clarifies the model by im-
proving the formal specification.

• Chapter 6 applies the prototyping method to the development of the asyn-
chronous exception mechanism. Following the steps of the method, this
chapter first presents an informal description derived from a classification
of existing approaches. It introduces a new conceptual framework to present
the informal description. Based on the informal description, it extends the
formal specification from Chapter 3. It then presents the results from the
testing effort.

• Chapter 7 applies the prototyping method once again to develop the mecha-
nism for data sharing. It first presents passive processors informally. It then
extends the formal specification from Chapter 3 with passive processors and
presents the testing results. Since performance cannot be evaluated with the
executable formal specification alone, it uses a SCOOP implementation [67]
with support for passive processors to experimentally demonstrate the per-
formance benefits on data-intensive parallel programs.

• Chapter 8 introduces the performance metrics for SCOOP as well as a tech-
nique and a tool to compute the metrics from even traces. It evaluates the
metrics with a case study on robotics control software.

• Chapter 9 summarizes the work of this thesis and concludes the thesis with
future work.

This thesis discusses related work throughout the chapters to ensure proxim-
ity of relevant information among the wide range of topics. The related work
discussions are distributed as follows: Chapter 5 discusses related work on de-
veloping and verifying formal semantics. Chapter 6 discusses related work on
asynchronous exceptions. Chapter 7 discusses related work on data sharing in
message-passing concurrency models. Chapter 8 discusses related work on per-
formance analysis of concurrent programs.

The structure of this thesis guides the reader through our journey of developing
SCOOP as it follows the steps of the prototyping method. Readers who are mainly
interested in the final specification can consult Appendix A, which aggregates all
clarifications and all extensions.

8 Chapter 1. Introduction

2 Informal description

SCOOP stands for Simple Concurrent Object-Oriented Programming. This name
captures the main goal: to make the development of concurrent programs as sim-
ple as possible. Several factors contribute towards this goal. SCOOP eliminates
data races, a major source of concurrency errors, thus making it simpler to im-
plement concurrent programs correctly and reason about them. SCOOP provides
constructs for automatic lock management, automatic conditional synchroniza-
tion, and automatic waiting for query values, thus reducing programmers’ respon-
sibilities. SCOOP generalizes existing object-oriented concepts instead of intro-
ducing new ones, thus offering a familiar ground for programmers. This section
introduces SCOOP informally as presented by Nienaltowski [164].

2.1 SCOOP in an example
The central idea of SCOOP is that every object is associated with a processor,
called its handler. While an object can have only one handler, a processor can
handle multiple objects. A processor can be a CPU, but it can also be implemented
in software, for example, as a process or as a thread; any mechanism that can
execute instructions sequentially is suitable. To access an object o, a processor p
performs a feature call with target o. If o is handled by p, then p applies the called
feature on o right away. If o is handled by a different processor q, then p sends
a feature request to q. Processor q applies the feature on o, once it processed all
previous feature requests; meanwhile, p can continue. In such a feature call, the
caller p is the client; the handler of the target o is the supplier.

The producer-consumer problem serves as a simple illustration of these ideas.
A root class defines the entities producer, consumer, and buffer. The keyword
separate specifies that the referenced objects may be handled by a processor dif-
ferent from the current one.

9

10 Chapter 2. Informal description

producer: separate PRODUCER
consumer: separate CONSUMER
buffer: separate BUFFER

Figure 2.1 shows the objects in a processor diagram. A processor diagram
is an extension of an UML object diagram [109] with curves that group objects
according to their handler. Three processors p, g, and q handle the producer, the
consumer, and the buffer with its content. Both the producer and the consumer
access an unbounded buffer in feature calls such as buffer.put (n) and buffer.item.
To access the buffer, they send requests instead of operating on the buffer directly.

producer : PRODUCER item : INTEGER

buffer : BUFFER

consumer : CONSUMER

p g q

item : INTEGER

Figure 2.1: Producer-consumer processor diagram

To ensure exclusive access, the consumer and the producer lock the buffer
before calling features on it. Such locking requirements of a feature must be ex-
pressed in the formal argument list: any target of separate type within the feature
must occur as a formal argument; the arguments’ handlers are locked for the du-
ration of the feature execution, thus preventing data races. Such targets are called
controlled. For instance, in consume, buffer is a formal argument; the consumer
has exclusive access to the buffer while executing consume.

consume (buffer: separate BUFFER)
−− Consume an item from the buffer.

require
not buffer.is empty

local
consumed item: INTEGER

do
consumed item := buffer.item

end

produce (buffer: separate BUFFER)
−− Produce an item and put it into the buffer.

2.2. Programs 11

do
buffer.put (data)

end

Condition synchronization relies on preconditions (require keyword) to ex-
press wait conditions. A precondition makes the execution of the feature wait
until the condition is true. For example, the precondition of consume delays the
execution until the buffer is not empty. As the buffer is unbounded, the corre-
sponding producer feature does not need a precondition.

The runtime ensures that the result of the call buffer.item is properly assigned
to the entity consumed item using a mechanism called wait by necessity [47, 49]:
while the consumer usually does not have to wait for an asynchronous call to
finish, it will do so if it needs the result.

Automatic synchronization (based on wait by necessity, implicit locking, and
wait conditions), absence of data races, and a single keyword to introduce con-
currency – all these factors make SCOOP a concurrency model that is simple to
use. Indeed, a recent empirical study by Nanz et al. [161] supports this claim.
The runtime, however, is not simple because it takes responsibility for tasks that
programmers no longer need to worry about. The following sections describe
SCOOP and its runtime in more detail.

2.2 Programs
Figure 2.2 shows the EBNF [107] grammar for SCOOP programs and classes.
For brevity, the grammar omits white space production rules, the concatenation
symbol, and terminal symbol markings; it shows terminal symbols in color. For
example, [”expanded”, white space], ”class”, white space, class name becomes [
expanded] class class name. Furthermore, the grammar does not show produc-
tion rules for comments such as −−comment.

A program is a set of classes with a root class and a root procedure. A class is
either an expanded class (expanded keyword) or a reference class (no expanded
keyword). Instances of an expanded class are copied whenever they are passed
around; objects of a non-expanded class are aliased. As the focus of this thesis is
on operational aspects rather than typing aspects, the thesis assumes that the class
has no generic parameters and no inheritance declarations.

The class defines a set of feature clauses (feature keyword) each with a set
of features. A feature is either a routine, i.e., a sequence of instructions, or an
attribute, i.e., a data storage. If a routine returns a result, then it is a function; oth-
erwise, it is a procedure. Functions and attributes are also called queries; routines
are also called commands. After the feature keyword, a feature clause can define

12 Chapter 2. Informal description

program = {class} settings ;
settings = { class name } . feature name ;
class =

[expanded] class class name
[create feature name {, feature name}]
{feature [{ class name {, class name} }]
{feature}}

[invariant
expression
{expression}]

end ;

feature = routine | attribute ;
routine =

feature name [alias " alias name "]
[(entity {; entity})] [: type]

[require
expression
{expression}]

[local
{entity}]

(do | once)
{instruction [;]}

[ensure
expression
{expression}]

[rescue
{instruction [;]}]

end ;
attribute = entity ;
entity = entity name : type ;

class name = name ;
feature name = name ;
alias name = not | + | - | * | / | // | \\ | ˆ | .. | 〈 | 〉 | 〈= | 〉= | and | or | xor | and then | or

else | implies ;
name = (a | . . . | z | A | . . . | Z) {a | . . . | z | A | . . . | Z};
entity name = feature name | Result | Current ;

Figure 2.2: SCOOP program grammar: classes and features

2.2. Programs 13

export restrictions, i.e., a list of classes whose objects can call the listed features
on instances of the class. Without any restrictions, all objects can call the features
on instances of the class; with a restriction {NONE}, only an instance of the class
can call the features on itself. In the latter case, the features are not exported; in
all other cases, the features are exported. The class declares a number of features
as dedicated creation procedures (create keyword); these features can be used to
create new objects. Finally, the class can define an invariant (invariant keyword)
over its queries.

A routine has formal arguments and local variables (local keyword). Formal
arguments are non-writable, and they must be different from attributes; however,
when omitting the second restriction does not cause any confusion, this thesis
overlooks the second restriction to improve readability. Next to explicit local
variables, the routine has an implicit non-writable local variable Current for the
object on which the routine is being executed. A function additionally has an
implicit local variable Result; the function returns the value in Result when it
returns.

Local variables, formal arguments, and attributes are known as entities. The
Eiffel standard defines extensive initialization rules for entities; for simplicity, this
thesis uses the void reference to initialize entities, i.e., initially entities do not
reference any object.

A routine can have an alias (alias keyword), in which case the routine can ad-
ditionally be used in infix notation. The routine can define a precondition (require
keyword) and a postcondition (ensure keyword). It has a body with instructions
(do or once keyword) to establish the postcondition given the precondition. If
the routine is marked as a once routine (once keyword), then the body gets exe-
cuted only once in a given context. Finally, the routine can define a rescue clause
(rescue keyword) with instructions for exception handling.

Figure 2.3 shows the grammar for instructions and expressions. The assign-
ment instruction b := e assigns the value of the expression e to the entity b. The
command instruction e0.f (e1, ..., en) calls feature f on the target expression e0
with argument expressions e1, ..., en. The target expression is optional; if not
present, it is implicitly Current. The creation instruction create b.f (e1, ..., en)
creates a new object in entity b by calling f with argument expressions e1, ..., en.
The if instruction if e then st else sf end executes st if e is true and sf otherwise;
the else part is optional. The simplified loop instruction until e loop s end exe-
cutes s until e is true. The retry instruction retry is used for exception handling
(see Section 6.4.1). An expression is either a literal, an entity, or a query expres-
sion; a query expression can also be in infix notation, provided the called feature
has an alias. The Void literal represents the void reference.

14 Chapter 2. Informal description

instruction =

entity name := expression |
[expression .] feature name [(expression {, expression})] |
create entity name . feature name [(expression {, expression})] |
if expression then {instruction [;]} [else {instruction [;]}] end |
until expression loop {instruction [;]} end |
retry ;

expression =

literal |
entity name |
[expression .] feature name [(expression {, expression})] |
[(] [expression] alias name expression [)] ;

literal = boolean literal | integer literal | character literal | void literal ;
boolean literal = True | False ;
integer literal = [-](0 | . . . | 9) {0 | . . . | 9} ;
character literal = ’ (a | . . . | z | A | . . . | Z | 0 | . . . | 9) ’ ;
void literal = Void ;

Figure 2.3: SCOOP program grammar: instructions and expressions

2.3 Processors and objects

A processor p handles a set of objects; as the handler of these objects, p can
operate on these objects directly. If p wants to call a feature on an object handled
by a different processor q, then p needs to send a feature request to processor q.
Processor q maintains a queue with requests resulting from feature calls on other
processors; a lock protects access to the request queue. With the lock, p can add
a feature request to this queue and processor q will execute the feature request as
soon as it will have executed all previous feature requests in the request queue.
Processor q uses its call stack to execute the feature request at the beginning of
the request queue.

Definition 2.1 (Processor). A processor p is an autonomous thread of control ca-
pable of supporting the sequential execution of instructions on one or more ob-
jects. It consists of the following:

• Handled objects: objects associated to p

• Request queue: feature requests from other processors

2.4. Types 15

• Call stack: stack for feature executions

• Lock: a lock protecting access to p

• Locks: locks held by p

Processor p can only operate on its handled objects; it is the handler of these
objects. If p wants to call a feature on an object handled by a different processor
q, then p sends a feature request to q; q then applies the feature as it goes through
the following loop:

1. Idle wait. If both the call stack and the request queue are empty, then wait
for new requests to be enqueued.

2. Request scheduling. If the call stack is empty but the request queue is not
empty, then dequeue an item and push it onto the call stack.

3. Request processing. If there is an item on the call stack, then pop the item
from the call stack and process it.

�

Two objects handled by different processors are separate; two objects on the
same processor are non-separate.

Definition 2.2 (Separateness of objects). Objects that are handled by different pro-
cessors are separate from each other. All the objects on the same processor are
non-separate from each other. �

2.4 Types
A SCOOP type has three components to specify detachability, locality, and the
class type. Figure 2.4 shows the grammar.

Definition 2.3 (Type). A type has a detachable tag, a processor tag, and a class
type. The detachable tag specifies detachability, i.e., whether the typed entity can
contain the void reference or not. If the detachable tag is attached (attached
keyword), then the typed element cannot contain the void reference after initial-
ization. If the detachable tag is detachable (detachable keyword), then the typed
element can be void. In absence of both keywords, the typed element is attached.

The processor tag specifies locality. If the processor tag is non-separate (no
separate keyword), then the typed element points to the handler of the current ob-
ject. If the processor tag is separate (separate keyword), then the typed element

16 Chapter 2. Informal description

type =

detachable tag
processor tag
class type ;

detachable tag = [attached | detachable] ;
processor tag = [separate [explicit processor specification]] ;
explicit processor specification =

qualified explicit processor specification |
unqualified explicit processor specification ;

qualified explicit processor specification = 〈 entity name .handler 〉 ;
unqualified explicit processor specification = 〈 entity name 〉 ;
class type = class name ;

Figure 2.4: SCOOP program grammar: types

points to a potentially different processor; an element with an additional explicit
processor specification points to the specified processor. An explicit processor
specification is either qualified or unqualified. A qualified explicit processor spec-
ification is based on a non-writable, attached entity b; the specified processor is
the handler of the object in b. An unqualified explicit processor specification is
based on an attached processor attribute p of class type PROCESSOR; the speci-
fied processor is the processor stored in p. �

2.5 Feature applications
To apply a feature on behalf of a client q, the supplier p waits until it holds the
locks of all processors g , p handling an attached formal argument of reference
type; a detachable formal argument indicates that p should not lock the argument’s
handler (selective locking mechanism), and a handler of an expanded argument
must not be locked because p copies the object. Once p holds the lock on a pro-
cessor, it can call features without interference from other processors. To ensure
that all feature calls proceed without interference, the type system requires feature
target expressions to be controlled.

Definition 2.4 (Controlled expression). An expression e is controlled if and only
if e is attached, and e is non-separate or appears in an enclosing routine r that has
an attached formal argument with the same handler as e. �

A non-separate target is handled by p itself, hence no interference can occur.
A separate target with the same handler as an attached formal argument is ex-

2.5. Feature applications 17

clusively available to p: for each formal argument, either p holds a lock, or the
handler is p itself. To find a formal argument with the same handler, the type sys-
tem checks whether the target expression e satisfies at least one of the following
conditions:

• It appears as an attached formal argument of the enclosing routine r.

• It has a qualified explicit processor specification based on an entity w, and
w is an attached formal argument of r.

• It has an unqualified explicit processor specification based on a processor
attribute w, and some attached formal argument of r has w as its unqualified
explicit processor specification.

Once p holds all the locks, it evaluates f ’s precondition. If f ’s precondition
is violated and all its target expressions are controlled in the client q, then the
precondition remains violated because q has exclusive access to all targets; hence
p releases the locks and raises an exception in q. If f ’s precondition is not con-
trolled, then p releases the locks and tries again later.

Once p holds all locks and the precondition is satisfied, p executes f . It then
evaluates the postcondition. If any target in the postcondition is handled by p, then
p asks each target handler to evaluate its part of the postcondition; p then com-
bines the results. If no target is handled by p, then p asks any processor involved
in the postcondition to lead the evaluation. After the postcondition, p evaluates the
invariant if f is an exported routine (see Section 7.5 and Section 8.9.16 in [105]).

Finally, p releases the locks and returns. In case p returns an object o of
expanded type to a client q , p, then q imports o: it creates a copied object
structure where o and all non-separate objects reachable from o are replaced with
copied objects handled by q. A simple copy of o is not sufficient, because the copy
on q could have a non-separate entity, which would then reference an object on p.
The following definition summarizes all these steps.

Definition 2.5 (Feature application). To apply a feature f on behalf of a client q,
the supplier p takes the following steps:

1. Synchronization. Wait until all handlers g , p of attached formal arguments
of reference type are locked on behalf of p and the precondition of f holds.
If the precondition is violated and controlled in q, then p raises an exception
in q.

2. Execution. If f is a routine, then run its body. If f is an attribute, then
evaluate it.

18 Chapter 2. Informal description

3. Postcondition evaluation. If at least one target in the postcondition is han-
dled by p, ask each target handler to evaluate its part of the postcondition,
then combine the results. If no target is handled by p, then ask any processor
involved in the postcondition to lead the evaluation.

4. Invariant evaluation. If f is an exported routine, then evaluate the invariant.

5. Lock releasing. Ask each processor locked in the synchronization step to
unlock after it is done with the feature requests issued by p.

6. Result returning. If f is a query, then return the result to q. If the result is
of expanded type and p = q, then q must copy the result; if the result is of
expanded type and p , q, then q must import the result.

�

2.6 Feature calls
To call a feature f on a supplier q, the client p first evaluates the target expressions
and the argument expressions; p then passes the actual arguments to q. In case p
passes an expanded object o to a supplier q , p, then q imports o to ensure that
the copy of o on q does not have a non-separate entity with an object on p.

The client p then determines whether it needs to pass any locks. Lock passing
eliminates a major source of deadlocks. Suppose the supplier q needs a lock on g
to apply feature f . If p holds this lock, then q cannot proceed until p releases the
lock. If f is a query then p waits for the result from q while holding the lock on g,
thus preventing q to compute the result. A deadlock [55] has occurred. To avoid
such deadlocks, p temporarily passes its locks if it determines that q needs any
of them, i.e., if it attaches a controlled argument expression to an attached formal
argument of reference type.

After passing locks, p generates a feature request for q. In case p = q, then
p processes the feature request on its call stack. Otherwise it sends the feature
request to q. In case the feature call is a separate callback, i.e., q has called p and
now p calls back q, then q processes the feature request right away on its call stack
while p waits. A deadlock could occur if p would add the feature request to the
end of q’s request queue: if both calls are synchronous, then p and q would wait
for each other to terminate. To determine whether the feature call is a callback,
p checks whether q held a lock on p. In case the call is not a separate callback,
p adds the feature request to the end of q’s request queue; p only waits, if it calls
a query or if it needs to wait for passed locks to return. The following definition
summarizes the process.

2.7. Creation instructions 19

Definition 2.6 (Feature call). A client p performs the following steps to call a fea-
ture f with target expression e0 and argument expressions e1, . . . , en:

1. Target evaluation. Evaluate the target expression e0 with supplier q.

2. Argument passing. Evaluate the argument expressions (e1, . . . , en) and bind
them to the formal argument. If an actual argument is of expanded type and
p = q, then q must copy the actual argument; if an actual argument is of
expanded type and p , q, then q must import the actual argument.

3. Lock passing. Pass all locks to q if a controlled argument expression gets
attached to an attached formal argument of reference type.

4. Feature request. Generate a feature request to apply f to the target.

• If the feature call is non-separate, i.e., p = q, or the feature call is a
separate callback, i.e., q held a lock on p, then ask q to process the fea-
ture request immediately using its call stack and wait for termination.

• Otherwise, add the request to the end of q’s request queue.

5. Wait by necessity. If f is a query, then wait for the result.

6. Lock revocation. If lock passing happened, then wait for the locks to come
back.

�

The client and the supplier can be the same or they can be different. In the first
case, the feature call is separate; in the second case, it is non-separate.

Definition 2.7 (Separateness of feature calls). A feature call is separate if the sup-
plier is different from the client. Otherwise, the feature call is non-separate. �

2.7 Creation instructions
To create a new object on a processor q, a processor p executes a creation instruc-
tion on an entity b using a creation procedure f . The semantics of the creation
instruction depends on the type of b. If b is of separate type without an explicit
processor specification, then p creates a new processor with a new object. If b has
an explicit specification and the specified processor does not exist yet, then p also
creates a new processor with a new object; if the specified processor exists, p uses
that processor for the new object. If b has a non-separate type, then p creates a
new object on itself.

20 Chapter 2. Informal description

To ensure exclusive access, p makes sure to have q’s lock if q , p; p then asks
q to apply f (see Definition 2.6) and releases q’s lock if necessary. The invariant
of the new object must be satisfied after the application of f (see Section 7.5 and
Section 8.9.16 in [105]). Processor q only evaluates the invariant if f is exported
(see Definition 2.5). If f is not exported, then p should ask q to evaluate the
invariant. To simplify the creation instruction, this thesis requires all creation
procedures to be exported; thus p does not need to ask q. The following definition
reflects this.

Definition 2.8 (Creation). A processor p performs the following steps to execute
a creation instruction on entity b using a creation procedure f :

1. Handler determination. Determine the handler q of the new object.

• If b is separate without an explicit processor specification, then create
a new processor.

• If b has an explicit processor specification and the specified proces-
sor already exists, then use the specified processor. If the specified
processor does not exist yet, then create a new processor.

• If b is non-separate, then use p.

2. Locking. Ensure q , p is locked on behalf of p.

3. Object creation. Create a new object on q and attach it to b; ask q to execute
the creation procedure f .

4. Lock releasing. If q has been locked in the locking step, then ask q to unlock
after it is done with the creation.

�

2.8 Once routines
A once routine gets executed at most once in a context. If a once routine has been
executed in the context, then it is called not fresh in the context. Otherwise it is
called fresh in the context. The following definition defines the contexts.

Definition 2.9 (Once routine contexts). A once function f with a separate result
type defined in a class type c has a once per system semantics: the objects of class
type c in the system execute f at most once and then share f ’s result. A once
function f with a non-separate result type defined in a class type c has a once per

2.8. Once routines 21

processor semantics: the objects of class type c handled by the same processor
execute f at most once and then share f ’s result. A once procedure f defined in a
class type c has a once per processor semantics: the objects of class type c handled
by the same processor execute f at most once. �

Once routines complicate the import operation a bit. Consider a processor q
importing an object o with a non-separate once function from a processor p. In
case f is not fresh on q with result r and not fresh on p with a different result,
then f must return the value on q when called on o’s copy; there cannot be two
different values for the same once function on the same processor. In case f is
fresh on p, then f becomes not fresh on q with value r to preserve the existing
result, as described in the following definition.

Definition 2.10 (Once routine import). The following table summarizes the effect
of the import operation when a processor q imports an object with a non-separate
once function f from a processor p:

f is fresh on q. f is not fresh on q.

f is fresh on p. f remains fresh. f remains not fresh (value of q).
f is not fresh on p. f becomes not fresh (value of p). f remains not fresh (value of q).

�

22 Chapter 2. Informal description

3 Formal specification

The informal description of SCOOP in the previous chapter provides an overview
of SCOOP. It eases the understanding of the model as a whole, but it is too vague
to ensure correct implementation. This chapter defines SCOOP formally to enable
detailed and precise analysis of the model. The formal specification consists of
two parts. The state specification describes the structure and the functionality of
a program’s state. The execution formalization describes the steps the system can
take in a given state with a given workload. Together, they describe the executions
of a program. Both parts assume a program to be given in an enriched intermediate
representation instead of a code for rapid lookup of program elements.

3.1 Intermediate representation of programs
The formal specification assumes that a program is given in a type-checked and
enriched intermediate representation. An intermediate representation is a con-
cept borrowed from compiler theory, and its main purpose is the rapid lookup of
program elements for further processing. In the intermediate representation for
SCOOP, code elements are replaced with instances of abstract data types [135] or
instances of structurally defined types; Figure 3.1 summarizes these types. For ex-
ample, instead of browsing through the program text to find a feature based on its
name, the intermediate representation provides the feature directly as an instance
of an abstract data type.

23

24 Chapter 3. Formal specification

id : ID

name : NAME

formals : TUPLE<ENTITY,..., ENTITY>

is_once : BOOLEAN

has_pre : BOOLEAN

pre : EXPRESSION

has_post : BOOLEAN

post : EXPRESSION

locals : TUPLE<ENTITY,..., ENTITY>

body : STATEMENT_SEQUENCE

rescue_clause : STATEMENT_SEQUENCE

is_exported : BOOLEAN

class_type : CLASS_TYPE

FEATURE

ROUTINE

FUNCTION PROCEDURE

ATTRIBUTE

name : NAME

ENTITY

feature_by_name(in name : NAME) : FEATURE

id : ID

name : NAME

is_ref : BOOLEAN

is_exp : BOOLEAN

attributes : SET<FEATURE>

functions : SET<FEATURE>

procedures : SET<FEATURE>

has_inv : BOOLEAN

inv : EXPRESSION

program : PROGRAM

CLASS_TYPE

INSTRUCTION

ASSIGNMENTIF LOOPCREATIONCOMMAND

EXPRESSION

QUERY

obj : OBJECT

LITERAL

classes : SET<CLASS_TYPE>

settings : SETTINGS

PROGRAM

root_class : CLASS_TYPE

root_procedure : FEATURE

SETTINGS

OPERATION

STATEMENT

STATEMENT_SEQUENCE

Figure 3.1: Types for the intermediate representation

3.1.1 Abstract data types

An abstract data type (ADT) [135] t is a type defined through its features, i.e.,
queries, commands, and constructors. A query of the form name : t → t1 →

. . . → tn → tn+1 takes the target of type t, i.e., the instance to be operated on,
with further arguments of types t1, . . . , tn and returns information of type tn+1.
The specification uses the curried form (as in Haskell) instead of the equivalent
Cartesian form name : t× t1× . . .× tn → tn+1. The declaration of a command looks
much like the one of a query; however, the result of a command is an updated
instance, i.e., an updated version of the target. Calling a command on a target
is hence called an update of the target. Different from a command or a query, a
constructor does not take the target as an argument because its purpose is to create
a new instance of type t.

An ADT feature can have a precondition, in which case the feature is partial,
and the feature’s signature has a crossed arrow 9 instead of a normal arrow →
after the type of each element that got restricted by the precondition. Axioms
describe the effects of commands and constructors on queries. The declaration of
a command or constructor lists all the axioms for the feature.

A generic ADT t〈G1, . . . ,Gn〉with formal type parameters G1, . . . ,Gn is a type
template rather than a single type. Using actual type parameters t1, . . . , tn, the
generic derivation t〈t1, . . . , tn〉 provides a type from the template.

For example, the following shows the generic ADT STACK〈G〉 for a stack
with elements of type G. The precondition (require keyword) of the top query
states that the target s for top must not be empty. The axioms (axioms keyword)
of the push command states that the updated stack has a new top element and that
the stack is not empty. The constructor make returns an empty stack.

3.1. Intermediate representation of programs 25

empty : STACK〈G〉 → BOOLEAN
top : STACK〈G〉9 G

s.top require
¬s.empty

push : STACK〈G〉 → G → STACK〈G〉
axioms

s.push(e).top = e
¬s.push(e).empty

pop : STACK〈G〉9 STACK〈G〉
s.pop require
¬s.empty

axioms
s.push(e).pop = s

make : STACK〈G〉
axioms

make.empty

To describe an ADT instance, one builds an expression starting with a con-
structor call. One then uses the resulting expression as the first argument in a
command or query call, resulting in a new expression. One then repeats this
process; the resulting nested expression describes the ADT instance. For better
readability, this specification uses an equivalent object-oriented notation in which
the first feature call is on the left and the last feature call is on the right. This
notation does not show targets as arguments, but shows each target in front of the
feature name, separated by a dot. This leads to the following translation between
the functional and the object-oriented notation:

• The query expression query(e0, e1, . . . , en) in functional notation is equiva-
lent to the object-oriented expression e0.query(e1, . . . , en).

• The command expression command(e0, e1, . . . , en) in functional notation is
equivalent to the object-oriented expression e0.command(e1, . . . , en).

• The functional creation expression constructor(e1, . . . , en) for an instance
of an ADT t is equivalent to the expression new t.constructor(e1, . . . , en) in
object-oriented notation.

For STACK〈PROC〉, a stack of processors, empty(pop(push(make, p))) in func-
tional notation is equivalent to new STACK〈PROC〉.make.push(p).pop.empty in
object-oriented notation.

26 Chapter 3. Formal specification

3.1.2 Basic abstract data types

A number of basic ADTs facilitate the types of code elements and the state spec-
ification. The generic ADT SET〈G〉 specifies sets of elements with type G. The
constructor make creates an empty set. The set can also be constructed intension-
ally as in {x | predicate(x)} or extensionally as in {x1, . . . , xn}. The command add
takes an element and returns a set with the element. The query has returns whether
an element is part of the set or not; the ∈ notation is an alias for the has query. The
query empty returns whether the set is empty or not, and the query count returns
the number of elements in the set.

The generic ADT TUPLE〈G1, . . . ,Gn〉 has zero or more generic parameters
for the types of the tuple elements; generic parameter Gi is the type of the element
at position i. For example, the instances of TUPLE〈G〉 are the tuples with one
element of type G, and the instances of TUPLE〈G1,G2〉 are the tuples with two
elements of type G1 and G2 respectively. The type TUPLE〈G, . . . ,G〉 includes
tuples with any number of elements of type G, i.e., lists with elements of type G.
The constructor make creates a tuple. The tuple expression (x1, . . . , xn) can also
construct a tuple. The command add returns a tuple with a new element at the
end. The query has checks whether an element is part of the tuple, and the query
empty checks whether the tuple is empty. The query count returns the number of
elements in the tuple, and the notation (x1, . . . , xn)(i) returns xi.

The generic ADT STACK〈G〉 specifies stacks with elements of type G. The
constructor make creates a stack. The command push returns a stack with a new
element at the top; the query top returns the top element, and pop removes the top
element. The query empty returns whether the stack is empty or not, and the query
count returns the number of elements in the stack. Finally, the query flat returns a
set of type SET〈G〉, merging all stack elements.

The ADT MAP〈K,G〉 specifies maps with keys of type K and values of type
G. The constructor make creates a map. The command add returns a map with a
new mapping; the first argument is the key, and the second argument is the value.
The query keys returns the set of all possible keys, and val returns the value for a
given key.

Lastly, the ADT BOOLEAN has the two boolean values true and false as in-
stances and offers the typical boolean operators. The ADT NAME specifies names
and ID specifies identifiers.

3.1.3 Programs and settings

A program is an instance of PROGRAM. The program includes a set of classes
(classes query), each of type CLASS TYPE, as well as settings (settings query)
with a root class (root class query) and a root procedure (root procedure query).

3.1. Intermediate representation of programs 27

3.1.4 Class types

A class type is an instance of CLASS TYPE. It has an identifier (id query) and
a name (name query), and it is either a reference class type (is ref query) or an
expanded class type (is exp query). Its features of type FEATURE are either at-
tributes (attributes query), functions (functions query), or procedures (procedures
query); the query feature by name returns a feature based on its name. The class
type optionally defines an invariant (has inv and inv queries). The invariant gram-
mar in Figure 2.2 supports multiple expressions. The class type represents these
expressions as a single conjunction. Lastly, the class type has a link (program
query) to its program.

The class type boolean for boolean values in SCOOP programs (not to be con-
fused with the BOOLEAN ADT for mathematical boolean values) is an instance
of CLASS TYPE. boolean is expanded, and it has an attribute item storing the
mathematical boolean value, i.e., an instance of BOOLEAN.

3.1.5 Features

A feature is an instance of FEATURE. If the feature is an attribute, it is also an
instance of ATTRIBUTE; a function is also an instance of FUNCTION, and a pro-
cedure is also an instance of PROCEDURE. A feature has an identifier (id query),
a name (name query), and formal arguments (formals query) of type ENTITY . The
feature can be exported (is exported query), and it can be a once routine (is once
query). Further, it can have a precondition (pre and has pre queries) and a post-
condition (post and has post queries), each represented as a single conjunction. It
has local variables (locals query) of type ENTITY as well as a body (body query)
and a rescue clause (rescue clause query). Lastly, the feature has a link to the
class it belongs to (class type query); this link is useful to retrieve the invariant.

3.1.6 Statements

A statement of type STATEMENT is either an instruction of type INSTRUCTION
or an operation of type OPERATION. An instruction occurs in code supplied
by programmers whereas an operation is a run-time step. Figure 3.2 structurally
defines STATEMENT; it also defines STATEMENT SEQUENCE – i.e., sequences
of statements – to type feature bodies and rescue clauses.

The notation is EBNF-like: types are structurally defined in terms of other
types, EBNF-notation, and terminal symbols. For example, a command instruc-
tion e0. f (e1, . . . , en) is of type COMMAND, and it consists of a target expression
of type EXPRESSION, a dot, a feature of type FEATURE, as well as an argument
list of type TUPLE〈EXPRESSION, . . . ,EXPRESSION〉.

28 Chapter 3. Formal specification

STATEMENT SEQUENCE , [STATEMENT {; STATEMENT}] ;
STATEMENT , INSTRUCTION | OPERATION ;
INSTRUCTION , COMMAND | CREATION | IF | LOOP | ASSIGNMENT ;
COMMAND ,

EXPRESSION . FEATURE TUPLE〈EXPRESSION, . . . ,EXPRESSION〉 ;
CREATION ,

create ENTITY . FEATURE TUPLE〈EXPRESSION, . . . ,EXPRESSION〉 ;
IF ,

if EXPRESSION then
STATEMENT SEQUENCE

[else
STATEMENT SEQUENCE]

end ;
LOOP , until EXPRESSION loop STATEMENT SEQUENCE end ;
ASSIGNMENT , ENTITY := EXPRESSION ;
RETRY , retry ;

Figure 3.2: STATEMENT , STATEMENT SEQUENCE, and INSTRUCTION

3.1.7 Expressions

An expression is an instance of EXPRESSION. An entity is an instance of ENTITY
with name name. Two ENTITY instances are particularly important for features:
current, i.e., the entity for the current object, and result, i.e., the entity for the
result of a function.

Figure 3.3 defines literals and query expressions structurally. While the ex-
pression grammar in Figure 2.3 supports query expressions in prefix and infix
notation; the intermediate representation represents all query expressions in pre-
fix notation. To convert literals into objects, the universal function obj takes a
literal and returns a new object matching the literal in both type and value.

3.1.8 Types

A type t is a triple (d, p, c): d is the detachable tag, p is the processor tag, and c is
the class type of type CLASS TYPE. The detachable tag d specifies detachability:

• If d = ! (attached keyword), then the typed element is statically guaranteed
to hold a value, i.e., to be non-void.

• If d = ? (detachable keyword), then the typed element can be void.

3.1. Intermediate representation of programs 29

EXPRESSION , ENTITY | LITERAL | QUERY ;
LITERAL = BOOL LITERAL | INT LITERAL | CHAR LITERAL | VOID LITERAL ;
BOOL LITERAL , True | False ;
INT LITERAL , [-](0 | . . . | 9){0 | . . . | 9} ;
CHAR LITERAL , ’ (a | . . . | z | A | . . . | Z | 0 | . . . | 9) ’ ;
VOID LITERAL , Void ;
QUERY ,

EXPRESSION . FEATURE TUPLE〈EXPRESSION, . . . ,EXPRESSION〉 ;

Figure 3.3: EXPRESSION

The processor tag p specifies locality:

• If p = > (separate keyword), then the typed element points to a potentially
different processor.

• If p =< x.handler > where x is of type ENTITY (separate keyword with
qualified explicit processor specification), then the typed element points to
the processor of the object in x.

• If p =< x > where x is of type ENTITY (separate keyword with unqual-
ified explicit processor specification), then the typed element points to the
processor in x.

• If p = • (no keyword), then the typed element points to the current proces-
sor.

The typing environment Γ, formalized by Nienaltowski [164], contains the
class hierarchy of a program along with all the type definitions for all features and
entities. The predicate Γ ` e : t denotes that expression e is of type t. The function
type of (Γ, e) returns the type of expression e in Γ. The predicate controlled(Γ, t)
denotes that expression e of type t is controlled. To establish controlled(Γ, t) for e,
one either finds an attached formal argument a in the enclosing routine with a type
guaranteeing a and e are handled by the same processor, or one finds that e is non-
separate. For the first case, a is the controlling entity for e; for the second case,
the current entity is the controlling entity. The function controlling entity(Γ, e)
returns the controlling entity for an expression e as an instance of ENTITY . This
function is essential to determine the handler of any controlled expression without
evaluating the expression: one can simply determine the controlling entity and
determine the handler of it.

30 Chapter 3. Formal specification

3.2 State specification

Meyer [147] defines three levels on which a data structure, such as the state of
a program, can be specified: functional, constructive, and physical. A functional
specification is an algebraic characterization of the data structure. A construc-
tive specification defines means to construct mathematical instances of the data
structure. A physical specification describes the layout of instances in memory. A
physical specification can be derived from a constructive one, and a constructive
specification can be derived from a functional one. This section models the state
with a number of ADTs, on the functional level in the above hierarchy. ADTs
permit a modular specification of the state on an abstract level, supporting a wide
range of implementations. The physical and the constructive specification can be
derived from the ADTs.

3.2.1 Identifiers

Khoshafian and Copeland [121] describe several ways of identifying elements. An
element’s identity can be based on its value, it can be user-supplied, or it can be
built-in, i.e., created and managed by the runtime. SCOOP objects and processors
have a built-in identity. ADT instances do not have a built-in identity. Instead,
their identity is defined by their value. To model a domain element with built-in
identities as an ADT instance, the ADT needs an identifier query. Over time, a
single domain element is then represented by a sequence of ADT instances with
the same identifier. Every modification of the domain element is modeled as a
new ADT instance where the value of the identifier query is preserved and all
other queries modulo the modification are preserved. The formal specification
ensures that no two ADT instances, modeling different domain elements, have the
same identifier. To avoid duplicate identifiers, it assigns a fresh identifier for each
ADT instance modeling a new domain element, using the universal stateful query
new id : ID. It then preserves the identifier.

3.2.2 Objects and references

Figure 3.4 shows the ADT for references. REF models references with an identity
query id and a constructor make. The constructor uses the query new id to create
a fresh identifier for the newly created reference. The void reference void is an
instance of this ADT.

Figure 3.5 shows the ADT for objects. Each object has a query id for its
identifier, a query class type for its class type, and a query att val for its attribute
values. An object can only have attribute values for attributes that are defined in
its class type. The command set att val changes the value of an attribute f to v.

3.2. State specification 31

id : REF → ID
make : REF

axioms
make.id = new id

Figure 3.4: REF

Only the attribute values for attributes defined in the class type can be modified.
The value can either be a reference or a processor. Processor values are necessary
to support processor attributes. The constructor make creates a new object with
the given class type and initializes all the attribute values with the void reference.
The query copy returns a copy of an object. The copied object has the same class
type and the same attribute values as the original object, but it has a new identity.

3.2.3 Heap

The heap maps references to objects and manages once routines. Figure 3.6 shows
the mapping-related features of the HEAP ADT. The query objs returns all objects,
and the query refs returns all references to these objects. Here, void is not part of
the reference set. The query ref obj maps a reference to an object. The inverse
query ref does the reverse. The query last added obj returns the reference to the
last object added to the heap.

The command add obj takes an object o, not yet on the heap, and adds it.
The query last added obj returns the reference of the newly added object. The
command update obj takes a reference r and an updated object o and returns a
heap where the reference r points to o. It requires that r is a valid reference and
that o is an updated version of the original object.

Figure 3.7 shows the HEAP features concerned with once routines. For a pro-
cessor p and a once routine f with identifier i, the query fresh returns whether f
is fresh on p or not. For a once function f that is not fresh on a processor p, the
query once result returns the result of f on p. A once function f declared as sep-
arate (with or without an explicit processor specification) has a once per system
semantics. Hence, the command set once func not fresh defines f as not fresh on
all processors. A once function f with a non-separate result type has a once per
processor semantics. Hence, set once func not fresh sets f as not fresh on p with
the once result r. A once procedure f has a once per processor semantics. Con-
sequently, set once proc not fresh sets f as not fresh on p. Finally, the command
set once rout fresh reverse the effect of the previous two.

32 Chapter 3. Formal specification

id : OBJ → ID
class type : OBJ → CLASS TYPE
att val : OBJ → ATTRIBUTE 9 REF ∪ PROC

o.att val(f) require
o.class type.attributes.has(f)

set att val : OBJ → ATTRIBUTE 9 REF ∪ PROC → OBJ
o.set att val(f , v) require

o.class type.attributes.has(f)
axioms

o.set att val(f , v).att val(f) = v
make : CLASS TYPE → OBJ

axioms
make(c).id = new id
make(c).class type = c
∀i ∈ {1, . . . , n} : make(c).att val(ai) = void

where

{a1, . . . , an}
de f
= c.attributes

copy : OBJ → OBJ
axioms

o.copy = make(o.class type)
.set att val(a1, o.att val(a1))
. . . .

.set att val(an, o.att val(an))
where

{a1, . . . , an}
de f
= o.class type.attributes

Figure 3.5: OBJ

3.2. State specification 33

objs : HEAP→ SET〈OBJ〉
refs : HEAP→ SET〈REF〉
ref obj : HEAP→ REF 9 OBJ

h.ref obj(r) require
h.refs.has(r)

last added obj : HEAP→ REF
h.last added obj require
¬h.refs.empty

add obj : HEAP→ OBJ 9 HEAP
h.add obj(o) require
∀u ∈ h.objs : u.id , o.id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF ⇒ (o.att val(a) = void ∨ h.refs.has(o.att val(a)))
axioms

h.add obj(o).objs = h.objs ∪ {o}
h.add obj(o).refs = h.refs ∪ {r}
h.add obj(o).ref obj(r) = o
h.add obj(o).last added obj = r

where

r
de f
= new REF.make

update obj : HEAP→ REF 9 OBJ 9 HEAP
h.update obj(r, o) require

h.refs.has(r)
o.id = h.ref obj(r).id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF ⇒ (o.att val(a) = void ∨ h.refs.has(o.att val(a)))
axioms

h.update obj(r, o).objs.has(o)
o , h.ref obj(r)⇒ ¬h.update obj(r, o).objs.has(h.ref obj(r))
h.update obj(r, o).ref obj(r) = o

ref : HEAP→ OBJ 9 REF
h.ref (o) require

h.objs.has(o)
axioms

h.ref obj(h.ref (o)) = o

Figure 3.6: HEAP: features to map references to objects

34 Chapter 3. Formal specification

fresh : HEAP→ PROC → ID9 BOOLEAN
once result : HEAP→ PROC → ID9 REF

h.once result(p, i) require
¬h.fresh(p, i)

set once func not fresh : HEAP→ PROC → FEATURE 9 REF 9 HEAP
h.set once func not fresh(p, f , r) require

f ∈ FUNCTION ∧ f .is once
r , void ⇒ h.refs.has(r)

axioms
(∃d, c : Γ ` f : (d, •, c))⇒
¬h.set once func not fresh(p, f , r).fresh(p, f .id)∧
h.set once func not fresh(p, f , r).once result(p, f .id) = r

(∃d, c : Γ ` f : (d, p, c) ∧ p , •)⇒ ∀q ∈ PROC :
¬h.set once func not fresh(p, f , r).fresh(q, f .id)∧
h.set once func not fresh(p, f , r).once result(q, f .id) = r

set once proc not fresh : HEAP→ PROC → FEATURE 9 HEAP
h.set once proc not fresh(p, f) require

f ∈ PROCEDURE ∧ f .is once
axioms
¬h.set once proc not fresh(p, f).fresh(p, f .id)

set once rout fresh : HEAP→ PROC → FEATURE 9 HEAP
h.set once rout fresh(p, f) require

f .is once
axioms

(f ∈ FUNCTION ∧ ∃d, c : Γ ` f : (d, •, c))⇒
h.set once rout fresh(p, f).fresh(p, f .id)

(f ∈ FUNCTION ∧ ∃d, c : Γ ` f : (d, p, c) ∧ p , •)⇒ ∀q ∈ PROC :
h.set once rout fresh(p, f).fresh(q, f .id)

(f ∈ PROCEDURE)⇒
h.set once rout fresh(p, f).fresh(p, f .id)

Figure 3.7: HEAP: features for once routines

3.2. State specification 35

The command set once func not fresh handles once functions with any result
type since the informal description does not impose any restrictions. This leads to
an issue, as shown in the following classes:

class B create make feature
p: PROCESSOR
c: separate <p> C

make
do

create c.make
end

f: separate <p> C
once

create Result.make
end

end

class A create make feature
make

local
b1, b2: B

do
create b1.make ; create b2.make
g (b1)

end

g (b: B)
local

c: separate C
do

c := b.f
end

end

class C create make feature
make

do end
end

36 Chapter 3. Formal specification

The feature make in A creates two instances b1 and b2 of type B. After creation,
both instances have a different value for p because each of them created an object
on a new processor (q1 in case of b1; q2 for b2) and assigned that processor to
p. The call to the once function f on b1 causes b1 to create another object on
q1. According to the informal description, such once functions have a once per
system semantics. Hence, b1 and b2 share the result of f. For b2, however, f
returns a result that does not conform to the result type: the result is handled
by q1, but the type suggests that the result is handled by q2. This issue would
also occur if such once functions had a once per processor semantics. A similar
example can be constructed for once functions with a qualified explicit processor
specification. There are two solutions: either such once functions have a once per
object semantics, or they must be disallowed. For simplicity, we propose a type
system rule to invalidate them.

Clarification 3.1 (Once routines). Once routines must not have a result type with
an explicit processor specification. �

Finally, the constructor make in Figure 3.8 creates a new heap with no objects
and no references. All once routines are marked as fresh on all processors.

make : HEAP
axioms

make.objs.empty
make.refs.empty
∀p ∈ PROC, f ∈ FEATURE : f .is once⇒ make.fresh(p, f .id)

Figure 3.8: HEAP: constructors

3.2.4 Processors and regions

Figure 3.9 shows the ADT for processors. A processor has an identifier returned
by the query id. The constructor make returns a new processor. The heap is
partitioned [192] into disjoint regions, one region for each processor. The proces-
sor of a region is the handler for all objects in the region. The REGIONS ADT
manages the partitions and the locks. Figure 3.10 shows the queries that map
processors to objects. The query procs returns all processors in the system. The
query handled objs returns the references of a processor’s handled objects, and
handler does the inverse. Lastly, the query last added proc returns the last added
processor.

3.2. State specification 37

id : PROC → ID
make : PROC

axioms
make.id = new id

Figure 3.9: PROC

procs : REGIONS→ SET〈PROC〉
handled objs : REGIONS→ PROC 9 SET〈REF〉

k.handled objs(p) require
k.procs.has(p)

last added proc : REGIONS9 PROC
k.last added proc require
¬k.procs.empty

handler : REGIONS→ REF 9 PROC
k.handler(r) require
∃p ∈ k.procs : k.handled objs(p).has(r)

axioms
k.handled objs(k.handler(o)).has(r)

Figure 3.10: REGIONS: queries to map processors to objects

The informal description (see Chapter 2) associates one lock to each processor.
This leads to an issue with separate callbacks. A separate callback is given if a
processor p performs a feature call f to a processor q and q held a lock on p,
as shown in Figure 3.11. To avoid a deadlock, p asks q to process the resulting
feature request right away using the call stack. However, p does not hold a lock
on q because this lock is held by processor g that locked q. To address this design
flaw, the formal specification differentiates between two types of locks: request
queue locks and call stack locks.

Clarification 3.2 (Locks). Each processor defines a lock for its request queue and
a lock for its call stack. A lock on the request queue grants permission to add
to the end of the request queue. A lock on the call stack grants permission to
add to the top of the call stack. As long as a processor has not passed its locks,
the processor is said to hold its locks. Independently of whether it has passed its
locks, it is said to claim its locks. At creation, each processor holds its call stack
lock.

38 Chapter 3. Formal specification

For a separate callback, a processor q must pass its locks to a processor p and
wait for the locks to return. Processor p can then use q’s call stack lock to perform
a separate callback to q. During the separate callback, processor p passes all its
locks so that q can process the feature request. �

processor g processor q processor p

lock

h lock

g

f

Figure 3.11: A separate callback. Processor g locks q and calls asynchronously.
Processor q locks p and calls synchronously. Processor p calls back syn-
chronously.

The queries shown in Figure 3.12 reflect this change. The feature rq locked
returns whether the request queue of a processor is locked or not; similarly, the
feature cs locked returns whether the call stack is locked. A number of queries
manage the locks of a processor: the obtained locks, i.e., locks acquired by the
processor, and the retrieved locks, i.e., locks retrieved from another processor
during lock passing. The stack of sets return type models the way processors
obtain locks. A processor goes through a nested series of feature applications
and each feature application requires a set of locks. The query obtained cs lock
always returns the obtained call stack lock of a processor. Lastly, the query passed
returns whether a processor passed its locks.

3.2. State specification 39

rq locked : REGIONS→ PROC 9 BOOLEAN
k.rq locked(p) require

k.procs.has(p)
cs locked : REGIONS→ PROC 9 BOOLEAN

k.cs locked(p) require
k.procs.has(p)

obtained rq locks : REGIONS→ PROC 9 STACK〈SET〈PROC〉〉
k.obtained rq locks(p) require

k.procs.has(p)
obtained cs lock : REGIONS→ PROC 9 PROC

k.obtained cs lock(p) require
k.procs.has(p)

retrieved rq locks : REGIONS→ PROC 9 STACK〈SET〈PROC〉〉
k.retrieved rq locks(p) require

k.procs.has(p)
retrieved cs locks : REGIONS→ PROC 9 STACK〈SET〈PROC〉〉

k.retrieved cs locks(p) require
k.procs.has(p)

passed : REGIONS→ PROC 9 BOOLEAN
k.passed(p) require

k.procs.has(p)

Figure 3.12: REGIONS: queries for locks

40 Chapter 3. Formal specification

Figure 3.13 shows commands to add processors and objects. The command
add proc creates a new region for a processor p. Once added, p’s request queue is
unlocked and its call stack is locked. Apart from the initial lock on the call stack,
p holds no locks and has not passed any locks. The command add obj adds an
object o referenced by r and associates it with a processor p. When o gets added,
it must not yet be handled by any processor.

add proc : REGIONS→ PROC 9 REGIONS
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).last added proc = p
k.add proc(p).handled objs(p).empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).empty
k.add proc(p).retrieved cs locks(p).empty
¬k.add proc(p).passed(p)

add obj : REGIONS→ PROC 9 REF 9 REGIONS
k.add obj(p, r) require

k.procs.has(p)
∀q ∈ k.procs, x ∈ k.handled objs(q) : x.id , r.id

axioms
k.add obj(p, r).handled objs(p).has(r)

Figure 3.13: REGIONS: commands to map processors to objects

3.2. State specification 41

A processor p uses the command lock rqs from Figure 3.14 to lock the request
queues of a set of processors q. None of these request queues may be locked
beforehand. At some point, processor p no longer requires the obtained request
queue locks. It uses the command pop obtained rq locks to remove its claims,
provided it has not passed the locks. The request queues q remain locked until
each of the locked processors finishes processing all feature requests and unlocks
its request queues with a call to unlock rq. In general, a request queue can only
be unlocked once no other processors claims its lock.

lock rqs : REGIONS→ PROC 9 SET〈PROC〉9 REGIONS
k.lock rqs(p, l) require

k.procs.has(p)
∀x ∈ l : k.procs.has(x)
∀x ∈ l : ¬k.rq locked(x)

axioms
k.lock rqs(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)
∀x ∈ l : k.lock rqs(p, l).rq locked(x)

pop obtained rq locks : REGIONS→ PROC 9 REGIONS
k.pop obtained rq locks(p) require

k.procs.has(p)
¬k.obtained rq locks(p).empty
¬k.passed(p)

axioms
k.pop obtained rq locks(p).obtained rq locks(p) = k.obtained rq locks(p).pop

unlock rq : REGIONS→ PROC 9 REGIONS
k.unlock rq(p) require

k.procs.has(p)
k.rq locked(p)
∀q ∈ k.procs : ¬k.obtained rq locks(q).flat.has(p)

axioms
¬k.unlock rq(p).rq locked(p)

Figure 3.14: REGIONS: commands for locking and unlocking

42 Chapter 3. Formal specification

To pass its locks to a processor q, p calls the command pass locks from Fig-
ure 3.15 with a set of request queue locks lr and a set of call stack locks lc to be
passed. At this instance, p must hold all these locks. Because lr and lc can poten-
tially be empty, the command only marks p’s locks as passed if at least one of the
two sets of locks is non-empty. If a processor q different from p passed its locks
previously, and now p passes these locks back to q, the command marks q’s locks
as not passed. This case is important for handling separate callbacks.

pass locks : REGIONS→ PROC 9 PROC 9 TUPLE〈SET〈PROC〉, SET〈PROC〉〉
9 REGIONS

k.pass locks(p, q, (lr, lc)) require
k.procs.has(p) ∧ k.procs.has(q)
∀x ∈ lr : k.obtained rq locks(p).flat.has(x) ∨ k.retrieved rq locks(p).flat.has(x)
∀x ∈ lc : x = k.obtained cs lock(p) ∨ k.retrieved cs locks(p).flat.has(x)
¬lr.empty ∨ ¬lc.empty⇒ ¬k.passed(p)

axioms
¬lr.empty ∨ ¬lc.empty⇒ k.pass locks(p, q, (lr, lc)).passed(p)
k.pass locks(p, q, (lr, lc)).retrieved rq locks(q) = k.retrieved rq locks(q).push(lr)
k.pass locks(p, q, (lr, lc)).retrieved cs locks(q) = k.retrieved cs locks(q).push(lc)

p , q∧
k.passed(q)∧
k.obtained rq locks(q).flat ⊆ lr∧
k.retrieved rq locks(q).flat ⊆ lr∧
k.obtained cs lock(q) ∈ lc∧
k.retrieved cs locks(q).flat ⊆ lc


⇒
¬k.pass locks(p, q, (lr, lc))

.passed(q)

Figure 3.15: REGIONS: command for passing locks

3.2. State specification 43

To revoke the passed locks from q, p uses the command revoke locks from
Figure 3.16. The previous lock passing operation from p to q might have marked
the locks of q as not passed; revoking the locks requires the reverse action. If after
removing p’s locks from q’s stack, p has retrieved locks from q, then q’s locks
must be marked as passed since they are now held by p.

revoke locks : REGIONS→ PROC 9 PROC 9 REGIONS
k.revoke locks(p, q) require

k.procs.has(p) ∧ k.procs.has(q)
¬k.retrieved rq locks(q).empty ∧ ¬k.retrieved cs locks(q).empty
k.retrieved rq locks(q).top ⊆

k.obtained rq locks(p).flat ∪ k.retrieved rq locks(p).flat
k.retrieved cs locks(q).top ⊆
{k.obtained cs lock(p)} ∪ k.retrieved cs locks(p).flat

k.retrieved rq locks(q).top ∪ k.retrieved cs locks(q).top , {} ⇒ k.passed(p)
¬k.passed(q)

axioms
k.retrieved rq locks(q).top ∪ k.retrieved cs locks(q).top , {} ⇒
¬k.revoke locks(p, q).passed(p)

k.revoke locks(p, q).retrieved rq locks(q) = k.retrieved rq locks(q).pop
k.revoke locks(p, q).retrieved cs locks(q) = k.retrieved cs locks(q).pop

p , q∧

∃x ∈ k.retrieved rq locks(p).flat : (
k.obtained rq locks(q).flat.has(x)∨
k.retrieved rq locks(q).pop.flat.has(x)

)∨
∃x ∈ k.retrieved cs locks(p).flat : (

x = k.obtained cs lock(q)∨
k.retrieved cs locks(q).pop.flat.has(x)

)




⇒

k.revoke locks(p, q)
.passed(q)

Figure 3.16: REGIONS: command for revoking locks

44 Chapter 3. Formal specification

The constructor make from Figure 3.17 creates a new instance of REGIONS
with no processors.

make : REGIONS
axioms

make.procs.empty

Figure 3.17: REGIONS: constructors

3.2.5 Environments and store

For every feature a processor executes, it creates a new variable environment to
store the values of formal arguments, local variables, the current object entity, and
the result entity (only for functions). Figure 3.18 shows the ENV ADT with a
query names to store the defined names and the query val to get the value for each
name. The command update assigns a new value to a name. The constructor make
returns an empty environment.

names : ENV → SET〈NAME〉
val : ENV → NAME 9 REF ∪ PROC

e.val(n) require
e.names.has(n)

update : ENV → NAME → REF ∪ PROC → ENV
axioms

e.update(n, v).names = e.names ∪ {n}
e.update(n, v).val(n) = v

make : ENV
axioms

make.names.empty

Figure 3.18: ENV

The store contains the environment stacks of all processors. The ADT STORE
in Figure 3.19 has a single query envs that returns a stack of environments for a
processor. The command push env pushes an environment on top a processor’s
stack, and the command pop env pops the top environment from a non-empty
stack of environments. The constructor make creates an empty store.

3.2. State specification 45

envs : STORE → PROC → STACK〈ENV〉
push env : STORE → PROC → ENV → STORE

axioms
s.push env(p, e).envs(p) = s.envs(p).push(e)

pop env : STORE → PROC 9 STORE
s.pop env(p) require
¬s.envs(p).empty

axioms
s.pop env(p).envs(p) = s.envs(p).pop

make : STORE
axioms
∀p ∈ PROC : make.envs(p).empty

Figure 3.19: STORE

3.2.6 State

The ADT STATE in Figure 3.20 has three queries that return the different com-
ponents of the state. The command set sets the regions, the heap, and the store.
A precondition specifies consistency criteria. The first two clauses require that a
processor can handle an object if and only if the object is on the heap. The third
clause requires that if the heap declares a feature as not fresh on a processor p,
then the processors must have a region. The fourth clause requires that all pro-
cessors stored in attribute values have a region. The fifth clause requires that each
non-empty environment in the store must belong to a processor that has a region.
The sixth precondition requires that each value in the store must either be a known
reference or a known processor. To constructor make creates a new state with a
new heap, a new store, and new regions.

46 Chapter 3. Formal specification

regions : STATE → REGIONS
heap : STATE → HEAP
store : STATE → STORE
set : STATE → REGIONS9 HEAP9 STORE 9 STATE

σ.set(k, h, s) require
∀p ∈ k.procs, r ∈ k.handled objs(p) : h.objs.has(h.ref obj(r))
∀o ∈ h.objs : ∃p ∈ k.procs : h.ref (o) ∈ k.handled objs(p)
∀p ∈ PROC, f ∈ FEATURE : ¬h.fresh(p, f .id)⇒ k.procs.has(p)
∀o ∈ h.objs, a ∈ o.class type.attributes :

o.att val(a) ∈ PROC ⇒ k.procs.has(o.att val(a))
∀p ∈ PROC, e ∈ s.envs(p) : ¬e.names.empty⇒ k.procs.has(p)
∀p ∈ k.procs, e ∈ s.envs(p), x ∈ e.names :

(e.val(x) ∈ REF ⇒ e.val(x) = void ∨ h.refs.has(e.val(x)))∧
(e.val(x) ∈ PROC ⇒ k.procs.has(e.val(x)))

axioms
σ.set(k, h, s).regions = k
σ.set(k, h, s).heap = h
σ.set(k, h, s).store = s

make : STATE
axioms

make.regions = new REGIONS.make
make.heap = new HEAP.make
make.store = new STORE.make

Figure 3.20: STATE: components features

STATE offers a facade with convenient access to the state functionality and
further features that operate on all the components instead of just one of them.
For example, the following expression defines a new state with a new processor:
σ′

de f
= σ.set(σ.regions.add proc(new PROC.make), σ.heap, σ.store). This expres-

sion is too long for this simple task, especially if the expression appears multiple
times. The facade provides a simple convenience command that updates the state
accordingly.

Mapping of processors to objects and mapping of references to objects

Figure 3.21 and Figure 3.22 show features for the mapping between processors,
objects, and references. The query new proc is a shorthand for processor creation,
and the query new obj is a shorthand for object creation.

3.2. State specification 47

procs : STATE → SET〈PROC〉
axioms

σ.procs = σ.regions.procs
last added proc : STATE 9 PROC

σ.last added proc require
¬σ.regions.procs.empty

axioms
σ.last added proc = σ.regions.last added proc

handler : STATE → REF 9 PROC
σ.handler(r) require

σ.heap.refs.has(r)
axioms

σ.handler(r) = σ.regions.handler(r)
last added obj : STATE 9 REF

σ.last added obj require
¬σ.heap.refs.empty

axioms
σ.last added obj = σ.heap.last added obj

ref obj : STATE → REF 9 OBJ
σ.ref obj(r) require

σ.heap.refs.has(r)
axioms

σ.ref obj(r) = σ.heap.ref obj(r)
ref : STATE → OBJ 9 REF

σ.ref (o) require
σ.heap.objs.has(o)

axioms
σ.ref (o) = σ.heap.ref (o)

Figure 3.21: STATE: facade features for the mapping between processors, objects,
and references

48 Chapter 3. Formal specification

add proc : STATE → PROC 9 STATE
σ.add proc(p) require
¬σ.regions.procs.has(p)

axioms
σ.add proc(p) = σ.set(σ.regions.add proc(p), σ.heap, σ.store)

add obj : STATE → PROC 9 OBJ 9 STATE
σ.add obj(p, o) require

σ.regions.procs.has(p)
∀u ∈ σ.heap.objs : u.id , o.id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF ⇒ o.att val(a) = void ∨ σ.heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC ⇒ σ.regions.procs.has(o.att val(a)))

axioms
σ.add obj(p, o) = σ.set(k, h, s)

where

h
de f
= σ.heap.add obj(o)

k
de f
= σ.regions.add obj(p, h.last added obj)

s
de f
= σ.store

update obj : STATE → REF 9 OBJ 9 STATE
σ.update obj(r, o) require

σ.heap.refs.has(r)
o.id = σ.heap.ref obj(r).id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF ⇒ o.att val(a) = void ∨ σ.heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC ⇒ σ.regions.procs.has(o.att val(a)))

axioms
σ.update obj(r, o) = σ.set(σ.regions, σ.heap.update obj(r, o), σ.store)

new proc : STATE → PROC
axioms

σ.new proc = new PROC.make
new obj : STATE → CLASS TYPE → OBJ

axioms
σ.new obj(c) = new OBJ.make(c)

Figure 3.22: STATE: facade features for the mapping between processors, objects,
and references

3.2. State specification 49

Importing

Expanded objects must be imported when they cross a processor boundary. When
a processor p passes an expanded object o to a processor q, the import operation
copies the object structure such that o and all non-separate objects are replaced
with copied objects handled by q. The import operation can produce an object
structure that contains both copied and original objects. As noted by [164], this
can be an issue in case one of the copied objects has an invariant based on the
identities of objects. For example, Figure 3.23 shows two objects a and b handled
by processor p and another object c handled by g. Object a has an invariant with
a query c.b = b. The import operation on a executed by processor q results in two
new objects a′ and b′ on q. The attribute c of object a′ points to the old c, and b
points to the new object b′. Object a′ is inconsistent because c.b and b identify
different objects, namely b and b′.

c : separate C

b : B

a : A

b : B

b : separate B

c : C
c : separate C

b : B

a' : A

b' : B

p g q

Figure 3.23: Invariant violation in an imported object structure

The deep import operation is a variant of the import operation that does not
mix the copied and the original objects. Instead of copying only non-separate
objects, it makes a full copy of the object structure. The importing processor han-
dles all the copies of the non-separate objects, and the copy of a separate object
is handled by the processor of the original object. Unfortunately, the deep import
operation has critical drawbacks. First, many more objects must be copied. Sec-
ond, preventing data races is extremely costly as the operation must atomically
lock the handlers of all reachable separate objects before a consistent copy can be
made. These drawbacks outweigh the benefits of the deep import operation; thus
the formal specification uses the import operation, but introduces a convention: in
imported object structures, invariants must not rely on object identities.

50 Chapter 3. Formal specification

Clarification 3.3 (Import). The deep import operation atomically locks the han-
dlers of all reachable separate objects, which is too costly. The import operation
is a better fit, but requires a convention: in imported object structures, invariants
must not rely on object identities. �

Once routines complicate the import operation. Consider a processor q about
to import an object o handled by a different processor p, where o has a non-
separate once function f . The informal description defines that in case f is not
fresh on p and fresh on q, the import operation uses the value on p as the new
value on q (see Figure 3.24). This causes an issue to arise. On q the once function
returns a reference to an object on p; however, the result type of f indicates that
the object should be handled by q. The problem can be solved either by the import
operation also importing the value of f and using it as the value on q, or the import
operation keeping f as fresh on q. The latter option is simpler and more efficient,
but it can cause an invariant on the imported object structure to be violated, should
the invariant rely on the value of f . Thus the formal specification introduces
another convention: in imported object structures, non-separate once functions
must return results that satisfy the object structure’s invariants when recomputed
on any processor. This convention also prevents violated invariants in case f is
not fresh on both p and q. The following clarification captures the convention
and generalizes the import operation revision for non-separate once functions and
once procedures.

f : A

a : A

b : B

f : A

a' : A

q p

Figure 3.24: Type system unsoundness due to a once routine in an imported object

Clarification 3.4 (Import and once routines). Let q be a processor about to import
an object o handled by a different processor p, where o has a non-separate once
function or once procedure f . In case f is not fresh on p and fresh on q, f remains
fresh on q. In imported object structures, non-separate once functions must com-
pute results that satisfy the object structure’s invariants when recomputed on any
processor. �

3.2. State specification 51

The command import in Figure 3.25 implements the import operation. It takes
an importing processor p and a reference r to the root of an object structure
to be imported. The query last imported obj returns the imported object struc-
ture. The import command uses the helper function import rec with map from
Figure 3.26. The function import rec with map takes an importing processor p,
the handler q of the object structure’s root, a reference r of an object to be im-
ported, and a state σ. It returns a reference r′′ to the imported object and an
updated state σ′′. The function import rec with map works hand in hand with
the function import rec without map; they recursively traverse objects. To en-
sure that no object gets imported twice, the functions use a map w to keep track
of the already traversed objects. After traversing an object, w maps that object’s
reference to the reference of the resulting object in the imported object struc-
ture. The command import starts the traversal with an empty map. The function
import rec with map determines whether the object referenced by r has already
been traversed, in which case it returns the map value; otherwise, it returns the
result of import rec without map.

The function import rec without map has several steps: a copy step (see o′0,
σ′0, and w′0), an attribute values update step (see o′i), and a result generation step
(see r′, w′, σ′). The attribute values update step uses import rec with map re-
cursively to traverse all non-void attribute values of reference type. It updates
the copied object accordingly. It sets the attributes {a1, . . . , an} to the references
r1, . . . , rn of the recursively imported objects, resulting in o′n.

last imported obj : STATE → REF
import : STATE → PROC 9 REF 9 STATE

σ.import(p, r) require
σ.regions.procs.has(p)
σ.heap.refs.has(r)
σ.heap.ref obj(r).class type.is exp

axioms
σ.import(p, r) = σ′

σ.import(p, r).last imported obj = r′

where

w
de f
= new MAP〈REF,REF〉.make

(r′,w′, σ′)
de f
= import rec with map(p, σ.handler(r), r,w, σ)

Figure 3.25: STATE: facade features for importing

52 Chapter 3. Formal specification

import rec with map(p, q, r,w, σ)
de f
= (r′′,w′′, σ′′)

where

(r′,w′, σ′)
de f
= import rec without map(p, q, r,w, σ)

r′′
de f
=

{
w.val(r) if w.keys.has(r)
r′ if ¬w.keys.has(r)

w′′
de f
=

{
w if w.keys.has(r)
w′ if ¬w.keys.has(r)

σ′′
de f
=

{
σ if w.keys.has(r)
σ′ if ¬w.keys.has(r)

import rec without map(p, q, r,w, σ)
de f
= (r′,w′, σ′)

where

o′0
de f
= σ.ref obj(r).copy

σ′0
de f
= σ.add obj(p, o′0)

w′0
de f
= w.add(r, σ′0.ref (o′0))

{a1, . . . , an}
de f
= {a | o′0.att val(a) ∈ REF ∧ o′0.att val(a) , void}

∀i ∈ {1, . . . , n} : (r′i ,w
′
i , σ
′
i)

de f
= import rec with map(p, q, o′0.att val(ai),w′i−1, σ

′
i−1)

∀i ∈ {1, . . . , n} : o′i
de f
= o′i−1.set att val(ai, r′i)

r′
de f
=


σ′n.ref (o′n) if σ.handler(r) = q ∧ {a1, . . . , an} , {}

σ′0.ref (o′0) if σ.handler(r) = q ∧ {a1, . . . , an} = {}

r otherwise

w′
de f
=


w′n if σ.handler(r) = q ∧ {a1, . . . , an} , {}

w′0 if σ.handler(r) = q ∧ {a1, . . . , an} = {}

w.add(r, r) otherwise

σ′
de f
=


σ′n.update obj(σ′n.ref (o′0), o′n) if σ.handler(r) = q ∧ {a1, . . . , an} , {}

σ′0 if σ.handler(r) = q ∧ {a1, . . . , an} = {}

σ otherwise

Figure 3.26: STATE: facade features for importing

3.2. State specification 53

Environments

When a processor p starts executing a feature f , it creates a new variable environ-
ment. The processor initializes the formal arguments with the actual arguments
r1, . . . , rn, the local variables as void, the current entity with the target r0, and
the result entity as void. The command push env with feature from Figure 3.27
updates a processor’s environment stack accordingly. The query envs returns the
updated stack, and the command pop env removes the added environment.

envs : STATE → PROC 9 STACK〈ENV〉
σ.envs(p) require

σ.regions.procs.has(p)
axioms

σ.envs(p) = σ.store.envs(p)
push env with feature : STATE → PROC 9 FEATURE → REF

→ TUPLE〈REF, . . . ,REF〉9 STATE
σ.push env with feature(p, f , r0, (r1, . . . , rn)) require

σ.regions.procs.has(p)
f .formals.count = n
∀i ∈ {0, . . . , n} : ri , void ⇒ σ.heap.refs.has(ri)

axioms
σ.push env with feature(p, f , r0, (r1, . . . , rn)) =

σ.set(σ.regions, σ.heap, σ.store.push env(p, e))
where

w
de f
= new ENV .make
.update(f .formals(1).name, r1) . . .
.update(f .formals(n).name, rn)
.update(f .locals(1).name, void) . . .
.update(f .locals(f .locals.count).name, void)
.update(current.name, r0)

e
de f
=

{
w if f ∈ PROCEDURE
w.update(result.name, void) if f ∈ FUNCTION

pop env : STATE → PROC 9 STATE
σ.pop env(p) require

σ.regions.procs.has(p)
¬σ.store.envs(p).empty

axioms
σ.pop env(p) = σ.set(σ.regions, σ.heap, σ.store.pop env(p))

Figure 3.27: STATE: facade features for environments

54 Chapter 3. Formal specification

Writing and reading values

Values can be stored in object attributes, in formal arguments, or in local variables
(the result entity is an implicit local variable). The features in Figure 3.28 and
Figure 3.29 allow a processor to write and read values in any of these entities.
The query val takes a processor p and a name n and it returns the value of n in p’s
execution context, i.e., its top environment and its current object. The command
set val writes a value v into an entity with name n. For both features, it is safe to
first check whether the current object has an attribute with name n since attribute
names and local variable names must be distinct.

val : STATE → PROC 9 NAME 9 REF ∪ PROC
σ.val(p, n) require

σ.regions.procs.has(p)
¬σ.store.envs(p).empty
e.names.has(current.name)
e.names.has(n) ∨ ∃a ∈ o.class type.attributes : a.name = n

where

e
de f
= σ.store.envs(p).top

o
de f
= σ.heap.ref obj(e.val(current.name))

axioms

σ.val(p, n) =


if ∃a ∈ o.class type.attributes : a.name = n

o.att val(a)
otherwise

σ.store.envs(p).top.val(n)
where

o
de f
= σ.heap.ref obj(σ.store.envs(p).top.val(current.name))

a
de f
= o.class type.feature by name(n)

Figure 3.28: STATE: facade features for reading values

3.2. State specification 55

set val : STATE → PROC 9 NAME 9 REF ∪ PROC 9 STATE
σ.set val(p, n, v) require

σ.regions.procs.has(p)
¬σ.store.envs(p).empty ∧ σ.store.envs(p).top.names.has(current.name)
v ∈ REF ∧ v , void ⇒ σ.heap.refs.has(v)
v ∈ PROC ⇒ σ.regions.procs.has(v)

axioms

σ.set val(p, n, v) =


if ∃a ∈ o.class type.attributes : a.name = n

σ.update obj(σ.heap.ref (o), o.set att val(a, v))
otherwise

σ.set(σ.regions, σ.heap, s)
where

o
de f
= σ.heap.ref obj(σ.store.envs(p).top.val(current.name))

a
de f
= o.class type.feature by name(n)

s
de f
= σ.store.pop env(p).push env(p, σ.store.envs(p).top.update(n, v))

Figure 3.29: STATE: facade features for writing values

Once routines

Figure 3.30 shows the facade features to query and set the status of once routines.
The commands set once func not fresh and set once proc not fresh set a once
procedure not fresh; set once rout fresh does the reverse. The queries fresh and
once result return the status of a once routine.

Locks

The facade merges a processor’s request queue locks and its call stack locks into
two sets. In Figure 3.31, the query rq locks returns the set of all obtained and
retrieved request queue locks, and the query cs locks returns the set of all obtained
and retrieved call stack locks. The query rq locked returns whether a processor
request queue is locked, and the query passed returns whether it has currently
passed its locks. Figure 3.32 and Figure 3.33 show the facade features to lock
request queues, remove obtained request queue locks, unlock request queues, pass
locks, and revoke locks.

56 Chapter 3. Formal specification

fresh : STATE → PROC 9 ID9 BOOLEAN
σ.fresh(p, i) require

σ.regions.procs.has(p)
axioms

σ.fresh(p, i) = σ.heap.fresh(p, i)
once result : STATE → PROC 9 ID9 REF

σ.once result(p, i) require
σ.regions.procs.has(p)
¬σ.heap.fresh(p, i)

axioms
σ.once result(p, i) = σ.heap.once result(p, i)

set once func not fresh : STATE → PROC 9 FEATURE 9 REF 9 STATE
σ.set once func not fresh(p, f , r) require

σ.regions.procs.has(p)
f ∈ FUNCTION ∧ f .is once
r , void ⇒ σ.heap.refs.has(r)

axioms
σ.set once func not fresh(p, f , r) =

σ.set(σ.regions, σ.heap.set once func not fresh(p, f , r), σ.store)
set once proc not fresh : STATE → PROC → FEATURE → STATE

σ.set once proc not fresh(p, f) require
σ.regions.procs.has(p)
f ∈ PROCEDURE ∧ f .is once

axioms
σ.set once proc not fresh(p, f) =

σ.set(σ.regions, σ.heap.set once proc not fresh(p, f), σ.store)
set once rout fresh : STATE → PROC → FEATURE 9 STATE

σ.set once rout fresh(p, f) require
σ.regions.procs.has(p)
f .is once

axioms
σ.set once rout fresh(p, f) =

σ.set(σ.regions, σ.heap.set once rout fresh(p, f), σ.store)

Figure 3.30: STATE: facade features for once routines

3.2. State specification 57

rq locked : STATE → PROC 9 BOOLEAN
σ.rq locked(p) require

σ.regions.procs.has(p)
axioms

σ.rq locked(p) = σ.regions.rq locked(p)
rq locks : STATE → PROC 9 SET〈PROC〉

σ.rq locks(p) require
σ.regions.procs.has(p)

axioms
σ.rq locks(p) =

σ.regions.obtained rq locks(p).flat ∪ σ.regions.retrieved rq locks(p).flat
cs locks : STATE → PROC 9 SET〈PROC〉

σ.cs locks(p) require
σ.regions.procs.has(p)

axioms
σ.cs locks(p) =

{σ.regions.obtained cs lock(p)} ∪ σ.regions.retrieved cs locks(p).flat
passed : STATE → PROC 9 BOOLEAN

σ.passed(p) require
σ.regions.procs.has(p)

axioms
σ.passed(p) = σ.regions.passed(p)

Figure 3.31: STATE: facade queries for locks

58 Chapter 3. Formal specification

lock rqs : STATE → PROC 9 SET〈PROC〉9 STATE
σ.lock rqs(p, l) require

σ.regions.procs.has(p)
∀x ∈ l : σ.regions.procs.has(x)
∀x ∈ l : σ.regions.rq locked(x) = false

axioms
σ.lock rqs(p, l) = σ.set(σ.regions.lock rqs(p, l), σ.heap, σ.store)

pop obtained rq locks : STATE → PROC 9 STATE
σ.pop obtained rq locks(p) require

σ.regions.procs.has(p)
¬σ.regions.obtained rq locks(p).empty
σ.regions.passed(p) = false

axioms
σ.pop obtained rq locks(p) =

σ.set(σ.regions.pop obtained rq locks(p), σ.heap, σ.store)
unlock rq : STATE → PROC 9 STATE

σ.unlock rq(p) require
σ.regions.procs.has(p)
σ.regions.rq locked(p) = true
∀q ∈ σ.regions.procs : ¬σ.regions.obtained rq locks(q).flat.has(p)

axioms
σ.unlock rq(p) = σ.set(σ.regions.unlock rq(p), σ.heap, σ.store)

Figure 3.32: STATE: facade commands for locking and unlocking

3.2. State specification 59

pass locks : STATE → PROC 9 PROC 9 TUPLE〈SET〈PROC〉, SET〈PROC〉〉
9 STATE

σ.pass locks(p, q, (lr, lc)) require
σ.regions.procs.has(p) ∧ σ.regions.procs.has(q)
∀x ∈ lr : σ.regions.obtained rq locks(p).flat.has(x)∨

σ.regions.retrieved rq locks(p).flat.has(x)
∀x ∈ lc : x = σ.regions.obtained cs lock(p)∨

σ.regions.retrieved cs locks(p).flat.has(x)
¬lr.empty ∨ ¬lc.empty⇒ ¬σ.regions.passed(p)

axioms
σ.pass locks(p, q, (lr, lc)) =

σ.set(σ.regions.pass locks(p, q, (lr, lc)), σ.heap, σ.store)
revoke locks : STATE → PROC 9 PROC 9 STATE

σ.revoke locks(p, q) require
σ.regions.procs.has(p) ∧ σ.regions.procs.has(q)
¬σ.regions.retrieved rq locks(q).empty∧
¬σ.regions.retrieved cs locks(q).empty

σ.regions.retrieved rq locks(q).top ⊆
σ.regions.obtained rq locks(p).flat ∪ σ.regions.retrieved rq locks(p).flat

σ.regions.retrieved cs locks(q).top ⊆
{σ.regions.obtained cs lock(p)} ∪ σ.regions.retrieved cs locks(p).flat

σ.regions.retrieved rq locks(q).top ∪ σ.regions.retrieved cs locks(q).top , {} ⇒
σ.regions.passed(p) = true

σ.regions.passed(q) = false
axioms

σ.revoke locks(p, q) = σ.set(σ.regions.revoke locks(p, q), σ.heap, σ.store)

Figure 3.33: STATE: facade commands for passing and revoking locks

60 Chapter 3. Formal specification

Notation

This section presents a notation for states. A state has four parts: the locks, the
objects, the once status, and the environments.

• The locks part shows for each processor the stack of obtained request queue
locks (orq), the stack of retrieved request queue locks (rrq), and the stack
of retrieved call stack locks (rcs). The notation has two flags to indicate
when a processor’s request queue is locked or unlocked. It also has a flag to
indicate when a processor passed its locks; in absence of this flag, the locks
are not passed.

• The objects part shows for each processor the handled objects with their
references. It also shows the content of the objects. For objects other than
arrays or objects of basic class type, it shows a list of attribute values, omit-
ting the ones that are void. For objects of basic type, it shows the basic
value; for arrays, it shows the cells of the array.

• The once status part shows the status of each once routine that is not fresh.
A once routine can be not fresh either with respect to a subset of processors
or with respect to all processors. In the first case, the once status part shows
the once routine in connection with each processor in the subset. In the
second case, it uses an indicator to denote all processors.

• The environments part shows the environments for each processor.

For example, consider the state of a system with three processors:

locks :
p1 :: orq : ({p2}, {p3}) rrq : ({}, {}) rcs : ({}, {}) locked passed
p2 :: orq : () rrq : () rcs : () locked
p3 :: orq : () rrq : ({p2, p3}) rcs : ({p1}) locked

objects :
p1 :: r1 → o1

p2 :: r2 → o2[[r3, r3], [r3, r3]], r3 → o3, r4 → o4(1)
p3 :: r5 → o5(id→ r6), r6 → o6(2)

once status :
p2 :: {APPLICATION}.id→ r4
all :: {APPLICATION}.initialize

environments :
p1 :: node→ r2,Current→ r1 / node→ r5,Current→ r1

p2 ::
p3 :: root→ r1,Current→ r5,Result→ void

3.3. Execution specification 61

The request queues of all processors are locked. Processor p1 has a stack of
obtained request queue locks with two items. The set {p2} is on the bottom of the
stack, and the set {p3} is on the top. Processor p1’s stack of retrieved request queue
locks and retrieved call stack locks each consist of two empty sets. Processor p1

passed its locks, and p3’s entry shows that these locks have been passed from p1 to
p3. Processor p2 does not hold any locks, except its own call stack lock. Processor
p1 handles an object o1 referenced by r1 while processors p2 and p3 each handle
multiple objects. Object o5 has an attribute id referencing object o6. Objects o6

and o4 are integers with values 2 and 1. Object o2 is a two dimensional array
with 2 × 2 cells, where each of the cells references object o3. The once function
id of class APPLICATION is not fresh with the value r4 on processor p2. The
once procedure initialize is not fresh on all processors in the system. Processor
p1 has a stack with two environments, the environment on the left at the bottom
of the stack, and the environment on the right at the top. Processor p2 has no
environments. Processor p3 has one with three mappings: the entity root has the
value r1, the current entity has the value r5, and the result entity has the void value.

3.3 Execution specification

This section uses a structural operational semantics [179] to describe a concur-
rent program’s interleaved steps in terms of the program elements, e.g., command
instructions or query expressions. For this purpose, it introduces a number of
runtime mechanisms, used by the processors to execute program elements.

3.3.1 Executions

An execution is a sequence of configurations. Each configuration of the form
〈p1 :: sp1 | . . . | pn :: spn, σ〉 is an execution snapshot, consisting of the schedule
and the state σ. The schedule consists of the call stacks and the request queues
of p1, . . . , pn, and the state σ is of type STATE. The call stack and the request
queue of a processor are also known as the action queue [173] of the proces-
sor. The commutative and associative parallel operator | keeps the processors’
action queues apart. Each action queue contains a statement sequence of type
STATEMENT SEQUENCE, executed in FIFO order. The beginning of the ac-
tion queue contains the statements for the features that are being executed at the
moment. The tail of the action queue is the request queue of the processor. A
call stack lock is the right to add statements to the beginning of the action queue.
Similarly, a request queue lock is the right to add statements to the end of the
action queue. Statements are either instructions, i.e., program elements, or oper-

62 Chapter 3. Formal specification

ations, i.e., runtime elements. As for instructions (see Figure 3.2), Figure 3.35
structurally defines the types of the operations.

Transition rules describe the transitions that take the system from a start con-
figuration into a result configuration. The following well-known transition rule
for parallelism allows a processor to perform one step in parallel with other pro-
cessors:

Parallelism
Γ ` 〈P, σ〉 → 〈P′, σ′〉

Γ ` 〈P | Q, σ〉 → 〈P′ | Q, σ′〉

In the rule, the typing environment Γ (see Section 3.1.8) provides static infor-
mation about the program under execution.

3.3.2 Initial configuration

A SCOOP program prg of type PROGRAM defines a root class and a root pro-
cedure, which has no formal arguments and no precondition. In the beginning,
the runtime generates a bootstrap processor p and a root processor q with a root
object. The initial state σ′′′ in Figure 3.34 reflects this.

σ
de f
= new STATE.make

σ′
de f
= σ.add proc(σ.new proc) p

de f
= σ′.last added proc

σ′′
de f
= σ′.add proc(σ′.new proc) q

de f
= σ′′.last added proc

σ′′′
de f
= σ′′.add obj(q, σ′′.new obj(prg.settings.root class)) r

de f
= σ′′′.last added obj

〈p :: lock({q});
call(r, prg.settings.root procedure, ());
issue(q, unlock rq);
pop obtained locks | q ::, σ′′′〉

Figure 3.34: Initial configuration of a program prg

The bootstrap processor p first locks the request queue of the root processor
q. It then asks the root processor to execute the root procedure on the root object
and unlock thereafter. Finally, it removes the request queue lock from its stack
of obtained request queue locks, as shown in the initial configuration from Fig-
ure 3.34. In a nutshell, the lock({q}) operation locks the request queue of q. The
call(r, prg.settings.root procedure, ()) operation asks r’s handler to execute the

3.3. Execution specification 63

OPERATION , ISSUE | RESULT | NOTIFY | WAIT | EVAL | LOCK |

UNLOCK RQ | POP OBTAINED LOCKS | WRITE | READ | PROVIDED |

NOP | CALL | APPLY | CHECK PRE AND LOCK | EXECUTE BODY |
SET NOT FRESH | CHECK POST AND INV | RETURN ;

ISSUE , issue TUPLE〈PROC, STATEMENT SEQUENCE〉 ;
RESULT , result TUPLE〈CHANNEL, REF〉 ;
NOTIFY , notify TUPLE〈CHANNEL〉 ;
WAIT , wait TUPLE〈CHANNEL〉 ;
EVAL , eval TUPLE〈CHANNEL, EXPRESSION〉 ;
LOCK , lock TUPLE〈SET〈PROC〉〉 ;
UNLOCK RQ , unlock rq ;
POP OBTAINED LOCKS , pop obtained locks ;
WRITE , write TUPLE〈ENTITY , (REF | PROC), BOOLEAN〉 ;
READ , read TUPLE〈ENTITY , CHANNEL〉 ;
PROVIDED ,
provided (REF | BOOLEAN) then

STATEMENT SEQUENCE
else

STATEMENT SEQUENCE
end ;

NOP , nop ;
CALL , call TUPLE〈REF, FEATURE, TUPLE〈REF, . . . ,REF〉〉 |
call TUPLE〈CHANNEL, REF, FEATURE, TUPLE〈REF, . . . ,REF〉〉 ;

APPLY , apply TUPLE〈CHANNEL, REF, FEATURE, TUPLE〈REF, . . . ,REF〉,
PROC, TUPLE〈SET〈PROC〉, SET〈PROC〉〉〉 ;

CHECK PRE AND LOCK ,
check pre and lock TUPLE〈FEATURE, SET〈PROC〉〉 ;

EXECUTE BODY , execute body TUPLE〈FEATURE〉 ;
SET NOT FRESH , set not fresh TUPLE〈FEATURE〉 ;
CHECK POST AND INV , check post and inv TUPLE〈FEATURE〉 ;
RETURN , return TUPLE〈CHANNEL, PROC〉 |
return TUPLE〈CHANNEL, REF, PROC〉 ;

Figure 3.35: OPERATION

64 Chapter 3. Formal specification

root procedure on r. The unlock rq operation unlocks the request queue of the
processor that executes the operation. The issue(q, unlock rq) operation adds
the unlock rq operation to q’s action queue. The pop obtained locks opera-
tion removes the top element from the stack of obtained request queue locks.

3.3.3 Issuing mechanism

The issuing mechanism allows a processor to add statements to an action queue.
To issue statements sw to a processor q, processor p executes an issue(q, sw)
operation. Figure 3.36 shows the transition rules.

Issue (non-separate)
q = p
¬σ.passed(p) ∧ σ.cs locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp, σ〉 → 〈p :: sw; sp, σ〉

Issue (separate)
q , p ∧ ¬(σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))
¬σ.passed(p) ∧ σ.rq locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sq; sw, σ〉

Issue (separate callback)
q , p ∧ (σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))
¬σ.passed(p) ∧ σ.cs locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sw; sq, σ〉

Figure 3.36: Issuing mechanism transition rules

Processor p can issue statements to itself or to another processor. In the non-
separate case, i.e., p = q, p adds the statements to the beginning of its action
queue, i.e., its call stack, requiring that p holds its call stack lock. In the separate
case, i.e., p , q, p adds the statements to q’s action queue. If q claims a lock on p,
indicating a separate callback, p uses q’s call stack lock to add sw to the beginning
of q’s action queue for immediate execution. On the other hand, if q does not
claim a lock on p, p adds the statements to the end of q’s action queue, requiring
that p holds q’s request queue lock.

3.3. Execution specification 65

3.3.4 Notification mechanism

Processors communicate over channels of type CHANNEL. A processor p creates
a new channel a when using a transition rule with “a is fresh” in the premise. A
processor q can then use a to communicate with p using the transition rules from
Figure 3.37. The send a notification with value r over a, q adds the result(a, r)
operation into its action queue. To send a notification without a value over a, q
adds notify(a). Processor p executes wait(a) to wait for a notification on a. It
continues once the notification on a is ready; in case a carries a value, it substitutes
all references to the channel (see a.data) with the notification value.

Wait for result (non-separate)

Γ ` 〈p :: result(a, r); sw; wait(a); sp, σ〉 → 〈p :: sw; sp[r/a.data], σ〉

Wait for notify (non-separate)

Γ ` 〈p :: notify(a); sw; wait(a); sp, σ〉 → 〈p :: sw; sp, σ〉

Wait for result (separate)

Γ ` 〈p :: sw; wait(a); sp | q :: result(a, r); sq, σ〉 → 〈p :: sw; sp[r/a.data] | q :: sq, σ〉

Wait for notify (separate)

Γ ` 〈p :: sw; wait(a); sp | q :: notify(a); sq, σ〉 → 〈p :: sw; sp | q :: sq, σ〉

Figure 3.37: Notification mechanism transition rules

To ensure that each wait operation can be resolved with exactly one result
or notify operation, the following must hold:

• For each wait(a) operation there must be either exactly one result(a, r)
or exactly one notify(a) operation.

• For each result(a, r) or notify(a) operation there must be exactly one
wait(a) operation.

• Each result(a, r) or notify(a) operation precedes the wait(a) operation.
A statement s1 precedes a statement s2 if and only if s1 appears earlier than
s2 in the same action queue or s1 and s2 appear in different action queues.

66 Chapter 3. Formal specification

The notification mechanism is inspired by the π-calculus [156], where the
expression c(x).P denotes a process that is waiting for a notification sent on a
channel c. Once the process receives the notification, it binds the value of the
notification to the variable x and continues with the expression P. The notification
comes from a process that executes cy.Q to emit the value y on the channel c before
executing Q.

3.3.5 Expression evaluation mechanism

An expression is a literal, an entity, or a query call. A query call can contain actual
arguments that are expressions themselves. The expression evaluation mechanism
allows a processor to evaluate any expression e and post the result on a channel
a by executing eval(a, e). The eval(a, e) operation results in a result(a, r)
operation, and executing wait(a) enables a processor to use the evaluation result.
The following sections overload the eval operation for the different expression
types.

3.3.6 Locking and unlocking mechanism

A processor p about to execute a feature must first obtain the request queue locks
of the suppliers {q1, . . . , qm} by executing the lock({q1, . . . , qm}) operation from
Figure 3.38. The lock operation requires that none of the request queues is al-
ready locked. Once p is done with the execution of the feature, it asks {q1, . . . , qm}

to unlock their request queues once they are done with the issued statements. For
this purpose, p issues the unlock rq operation to processors {q1, . . . , qm}. The
unlock rq operation requires that the request queue is indeed locked and that no
processor claims the request queue lock. Once p issued the unlock rq opera-
tions, it removes {q1, . . . , qm} from its stack of obtained request queue locks using
the pop obtained locks operation; this ensures that the unlock rq operations
can proceed.

3.3.7 Writing and reading mechanism

Figure 3.39 describes operations to write and read values in entities of a proces-
sor’s execution context, i.e., its top environment and its current object. A proces-
sor p executes the write(b, v, ce) operation to set the value of an entity b to v.
If ce is true and v references an expanded object on p, the operation copies the
expanded object first. Similarly, processor p execute the read(b, a) operation to
read a value of an entity b and post it on a.

3.3. Execution specification 67

Lock
¬∃qi ∈ {q1, . . . , qm} : σ.rq locked(qi)

σ′
de f
= σ.lock rqs(p, {q1, . . . , qm})

Γ ` 〈p :: lock({q1, . . . , qm}); sp, σ〉 → 〈p :: sp, σ
′〉

Unlock request queue
σ.rq locked(p)
∀q ∈ σ.procs : ¬σ.rq locks(q).has(p)

σ′
de f
= σ.unlock rq(p)

Γ ` 〈p :: unlock rq; sp, σ〉 → 〈p :: sp, σ
′〉

Pop obtained locks

σ′
de f
= σ.pop obtained rq locks(p)

Γ ` 〈p :: pop obtained locks; sp, σ〉 → 〈p :: sp, σ
′〉

Figure 3.38: Locking and unlocking mechanism transition rules

Write

(σ′, v′)
de f
=



if
ce∧
v ∈ REF ∧ v , void ∧ σ.ref obj(v).class type.is exp∧
σ.handler(v) = p

then
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ.add obj(p, σ.ref obj(v).copy)

otherwise
(σ, v)

σ′′
de f
= σ′.set val(p, b.name, v′)

Γ ` 〈p :: write(b, v, ce); sp, σ〉 → 〈p :: sp, σ
′′〉

Read

Γ ` 〈p :: read(b, a); sp, σ〉 → 〈p :: sp[σ.val(p, b.name)/a.data], σ〉

Figure 3.39: Writing and reading mechanism transition rules

68 Chapter 3. Formal specification

3.3.8 Flow control mechanism

A processor p executing the provided v then st else s f end operation executes
st if v is true and s f if v is false. The transition rules in Figure 3.40 cover both
cases. The value v can either be an instance of the ADT BOOLEAN or a reference
pointing to an object with class type boolean. If v is an instance of BOOLEAN,
then p determines which instance v is, i.e., true or false. If v is a reference, then
p gets the referenced object and sees which boolean value it represents by evalu-
ating the attribute item. The branches st and s f can be empty; the nop operation
represents such empty statement sequences.

Conditional (true)

y
de f
=


v if v ∈ BOOLEAN
σ.ref obj(v).att val(item) if v ∈ REF ∧ σ.ref obj(v).class type = boolean
false otherwise

y = true

Γ ` 〈p :: provided v then st else s f end; sp, σ〉 → 〈p :: st; sp, σ〉

Conditional (false)

y
de f
=


v if v ∈ BOOLEAN
σ.ref obj(v).att val(item) if v ∈ REF ∧ σ.ref obj(v).class type = boolean
true otherwise

y = false

Γ ` 〈p :: provided v then st else s f end; sp, σ〉 → 〈p :: s f ; sp, σ〉

Skip

Γ ` 〈p :: nop; sp, σ〉 → 〈p :: sp, σ〉

Figure 3.40: Flow control mechanism transition rules

3.3.9 Entity and literal expressions

To evaluate an entity expression e, a processor uses the overloaded eval(a, e)
operation as specified in Figure 3.41: the processor executes the read operation
and posts a notification with the read value on a.

To evaluate a void literal, the processor takes the void reference, as can be seen
in Figure 3.41. To evaluate a non-void literal expression, the processor creates a
new object of the literal class type with the corresponding value. For this purpose,
it uses the function obj (see Section 3.1.7). Since every literal is non-separate, the

3.3. Execution specification 69

Entity expression
e ∈ ENTITY
a′ is fresh

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: read(e, a′); result(a, a′.data); sp, σ〉

Literal expression
e ∈ LITERAL

σ′
de f
=

{
σ if e = Void
σ.add obj(p, obj(e)) otherwise

r
de f
=

{
void if e = Void
σ′.last added obj otherwise

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: result(a, r); sp, σ
′〉

Figure 3.41: Entity and literal expressions transition rules

processor creates the new object on itself. The reference r to the new object is the
result of the evaluation.

3.3.10 Feature calls

A feature call is either a command call in a command instruction or a query call
in a query expression. Figure 3.42 and Figure 3.43 show the transition rules for
both cases. In each case, a processor p first evaluates the target expression e0 and
all argument expressions e1, . . . , en. It then uses the result of these evaluations to
perform the actual feature call by executing the call operation. For queries, p
creates a new channel a′ and uses it in the call operation to receive the query
result.

Command instruction
∀i ∈ {0, . . . , n} : ai is fresh

Γ `〈p :: e0. f (e1, . . . , en); sp, σ〉 →

〈p :: eval(a0, e0); eval(a1, e1); . . . ; eval(an, en);
wait(a0); wait(a1); . . . ; wait(an);
call(a0.data, f , (a1.data, . . . , an.data));
sp, σ〉

Figure 3.42: Command instructions transition rules

70 Chapter 3. Formal specification

Query expression
∀i ∈ {0, . . . , n} : ai is fresh
a′ is fresh

Γ `〈p :: eval(a, e0. f (e1, . . . , en)); sp, σ〉 →

〈p :: eval(a0, e0); eval(a1, e1); . . . ; eval(an, en);
wait(a0); wait(a1); . . . ; wait(an);
call(a′, a0.data, f , (a1.data, . . . , an.data));
result(a, a′.data);
sp, σ〉

Figure 3.43: Query expressions transition rules

According to the informal description, p passes all its locks, including a lock
on itself, if it binds a controlled actual argument to an attached formal argument
of reference type. This lock passing condition is static, allowing programmers
to statically reason about the code and supporting compilers to optimize the call
code. However, the condition is not precise enough to capture all situations where
the supplier needs the locks of the client. Consider the following classes:

class A create make feature
b: separate B
c: separate C

make
do

create b.make; create c.make
f (b)

end

f (b: separate B)
do

g (c)
end

g (c: separate C)
local

l: separate B
do

l := c.h (b)
end

end

3.3. Execution specification 71

class B create make feature
make

do end
end

class C create make feature
make

do end

h (b: separate B): separate B
do

Result := b
end

end

The program creates three processors, a, b, and c. Processor a handles an
object of type A. Likewise, processor b handles an object of type B, and processor
c handles an object of type C. In feature f, a obtains the request queue lock of
b. It then executes feature g and calls a query c.h (b). The supplier requires the
request queue lock of b, currently held by a. However, the condition from the
informal description does not trigger a to pass its locks because the expression b
is not controlled in g. A dynamic condition solves this flaw: a client p passes its
locks whenever the supplier q needs any of its locks to execute the called feature.
Processor p passes all its locks, including its call stack lock but not necessarily its
request queue lock. The call stack lock permits q to perform a separate callback
to p, during which q must pass back p’s call stack lock along with the rest of its
locks. The following clarification summarizes these changes.

Clarification 3.5 (Lock passing). During a feature call, the client p passes its locks
to the supplier q in two cases: (1) p holds a lock on a processor handling an argu-
ment of attached reference type; or (2) the feature call is a separate callback. In
both cases, p passes all its locks, including its call stack lock. �

The supplier only needs locks on processors handling arguments of attached
reference type. An argument of detachable type indicates that the handler must not
be locked (selective locking mechanism), and an expanded argument has a copy
semantics. The supplier receives a copied or imported object and hence must not
lock the handler. For the latter case, the informal description does not precisely
state when to copy or import arguments of expanded type. Consider the following
code:

72 Chapter 3. Formal specification

class A create make feature
make

local
b: separate B
c: C

do
create b.make ; create c.make
f (b, c)

end

f (b: separate B; c: C)
do

b.g (c)
c.h

end
end

class B create make feature
make

do end

g (c: C)
do end

end

expanded class C create make feature
i: INTEGER

make
do

i := 0
end

h
do

i := i + 1
end

end

3.3. Execution specification 73

In feature f, the root processor a initializes an expanded object c and passes it
to processor b in b.g (c). Then a modifies c. Since the feature call is asynchronous,
b can execute g before, while, or after a modifies c. If it is b’s responsibility to
import c, a race condition occurs because b can import c before or after a modifies
c, or worse yet, while a modifies it. To avoid this issue, a client must copy or
import expanded objects to a supplier at the moment of the call.

Clarification 3.6 (Copy and import). During a feature call, the client must copy
or import expanded objects to a supplier. �

Both clarifications are reflected in Figure 3.44 and Figure 3.45. The call
operation is overloaded for commands and for queries. Both variants take the
reference to the target r0, the feature f to be called, and the references (r1, . . . , rn)
for the evaluated argument expressions. The variant for queries additionally takes
a channel a to be used for the query result. Processor p first determines the target
handler q, the actual arguments r′1, . . . , r

′
n, and the locks l to be passed. The actual

arguments r′1, . . . , r
′
n correspond to r1, . . . , rn where expanded objects are copied or

imported to q. The tuple l contains p’s request queue and call stack locks in case
q needs one of p’s locks (see first condition) or in case of a separate callback (see
second condition); otherwise l is empty (see third condition). Processor p then
issues a feature request apply(a, r0, f , (r′1, . . . , r

′
n), p, l) to q. The issue operation

determines the nature of the call (non-separate, separate, or separate callback) and
places the feature request accordingly. The feature request contains a channel a
for the communication between p and q. For queries, p uses the channel to retrieve
the query result. For commands, p uses the channel to wait for passed locks to
return. Processor p does not pass the locks right away because q might not be
ready yet. Instead, q retrieves the locks while it applies the feature request and
returns them after completing the request.

74 Chapter 3. Formal specification

Call feature (command)

q
de f
= σ.handler(r0)

l
de f
=



if
q , p ∧ ∃i ∈ {1, . . . , n}, z, c : Γ ` f .formals(i) : (!, z, c)∧

σ.ref obj(ri).class type.is ref∧
(¬σ.passed(p) ∧ (σ.rq locks(p) ∪ σ.cs locks(p)).has(σ.handler(ri)))

then
(σ.rq locks(p), σ.cs locks(p))

if
q , p ∧ (σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))

then
(σ.rq locks(p), σ.cs locks(p))

otherwise
({}, {})

σ′0
de f
= σ

∀i ∈ {1, . . . , n} : (σ′i , r
′
i)

de f
=

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ′i−1.import(q, ri)

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) = q
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ′i−1.add obj(q, σ′i−1.ref obj(ri).copy)

otherwise
(σ′i−1, ri)

a is fresh

Γ `〈p :: call(r0, f , (r1, . . . , rn)); sp, σ〉 →

〈p :: issue(q, apply(a, r0, f , (r′1, . . . , r
′
n), p, l));

provided l , ({}, {}) then wait(a) else nop end;
sp, σ

′
n〉

Figure 3.44: Command calls transition rules

3.3. Execution specification 75

Call feature (query)

q
de f
= σ.handler(r0)

l
de f
=



if
q , p ∧ ∃i ∈ {1, . . . , n}, z, c : Γ ` f .formals(i) : (!, z, c)∧

σ.ref obj(ri).class type.is ref∧
(¬σ.passed(p) ∧ (σ.rq locks(p) ∪ σ.cs locks(p)).has(σ.handler(ri)))

then
(σ.rq locks(p), σ.cs locks(p))

if
q , p ∧ (σ.rq locks(q).has(p) ∨ σ.cs locks(q).has(p))

then
(σ.rq locks(p), σ.cs locks(p))

otherwise
({}, {})

σ′0
de f
= σ

∀i ∈ {1, . . . , n} : (σ′i , r
′
i)

de f
=

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ′i−1.import(q, ri)

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) = q
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ′i−1.add obj(q, σ′i−1.ref obj(ri).copy)

otherwise
(σ′i−1, ri)

Γ `〈p :: call(a, r0, f , (r1, . . . , rn)); sp, σ〉 →

〈p :: issue(q, apply(a, r0, f , (r′1, . . . , r
′
n), p, l)); wait(a); sp, σ

′
n〉

Figure 3.45: Query calls transition rules

76 Chapter 3. Formal specification

3.3.11 Feature applications

A feature request for a processor p is an apply(a, r0, f , (r1, . . . , rn), q, l) operation
in p’s action queue. Processor p uses channel a to communicate with the client q
after the execution of f . The reference r0 points to the target of the call; r1, . . . , rn

point to the actual arguments. The tuple l contains the locks to be passed from q
to p. Three cases exist:

• The feature f is a non-once routine or a fresh once routine.

• The feature f is a not fresh once routine.

• The feature f is an attribute.

Figure 3.46 shows the transition rule for the first case. Processor p can only
apply f on one of its own objects. In case f is a once routine, p first sets
f ’s once status to not fresh (see σ′). It then receives the passed locks from q
and creates a new environment with the actual arguments (r1, . . . , rn) (see σ′′).
Next, p locks the request queues of its suppliers and checks the precondition (see
check pre and lock). For each feature call target in f , p must either hold a call
stack lock or a request queue lock on the target’s handler. Call stack locks are
necessary for non-separate calls and separate callbacks, and request queue locks
are necessary for all other (separate) calls. Processor p thus defines two sets of re-
quired locks (see grequired cs locks and grequired rq locks). It only obtains request queue
locks not already claimed by p (see gmissing rq locks). In general, call stack locks
cannot be obtained and must be retrieved through lock passing.

Processor p can be assured that each processor, whose request queue lock p
obtained, holds its call stack lock. Assume g is one of these processors and as-
sume g does not hold its call stack lock. Processor g must have passed its locks
and thus be waiting for the locks to return. Another processor must have obtained
g’s request queue lock and added g’s current feature request. Therefore, g’s re-
quest queue must still be locked because g is still processing the feature request.
This means p could not have obtained g’s request queue lock, contradicting the
assumption.

Once p obtained all locks and found the precondition to be satisfied, it exe-
cutes f ’ body (see execute body). Processor p then checks f ’s postcondition
along with the invariant (see check post and inv). Finally, p releases the ob-
tained request queue locks (see issue and pop obtained locks) and returns
(see return) using channel a to synchronize with the client q.

3.3. Execution specification 77

Apply feature (non-once routine or fresh once routine)
f ∈ ROUTINE ∧ (f .is once⇒ σ.fresh(p, f .id))
σ.handler(r0) = p

σ′
de f
=


σ.set once func not fresh(p, f , void) if f ∈ FUNCTION ∧ f .is once
σ.set once proc not fresh(p, f) if f ∈ PROCEDURE ∧ f .is once
σ otherwise

σ′′
de f
= σ′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

grequired rq and cs locks
de f
= {p}∪

{x ∈ PROC | ∃i ∈ {1, . . . , n}, g, c : Γ ` f .formals(i) : (!, g, c)∧
σ′′.ref obj(ri).class type.is ref ∧ x = σ′′.handler(ri)}

grequired cs locks
de f
=

{x ∈ grequired rq and cs locks | x = p∨
(x , p ∧ (σ′′.rq locks(x).has(p) ∨ σ′′.cs locks(x).has(p)))}

grequired rq locks
de f
= grequired rq and cs locks \ grequired cs locks

{g1, . . . , gm}
de f
= gmissing rq locks

de f
= {x ∈ grequired rq locks | ¬σ

′′.rq locks(p).has(x)}
a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: check pre and lock(f , gmissing rq locks);
execute body(f , gmissing rq locks);
check post and inv(f);
issue(g1, unlock rq); . . . ; issue(gm, unlock rq);
pop obtained locks;
provided f ∈ FUNCTION then
read(result, a′); return(a, a′.data, q)

else

return(a, q)
end;
sp, σ

′′〉

Figure 3.46: Non-once or fresh once routine application transition rule

78 Chapter 3. Formal specification

Figure 3.47 describes the check pre and lock operation in detail. The oper-
ation takes a feature f , whose precondition must be satisfied, and a processor set
{g1, . . . , gm}, whose request queues must be locked. Processor p goes through a
number of iterations; in each iteration, it obtains the request queue locks and then
evaluates the precondition. If the precondition is not satisfied, then p releases the
request queue locks and starts another iteration; otherwise it moves on.

Check precondition and lock
a is fresh

Γ `〈p :: check pre and lock(f , {g1, . . . , gm}); sp, σ〉 →

〈p :: lock({g1, . . . , gm});
provided f .has pre then
eval(a, f .pre);
wait(a);
provided a.data then
nop

else

issue(g1, unlock rq);
. . .

issue(gm, unlock rq);
pop obtained locks;
check pre and lock(f , {g1, . . . , gm})

end

else

nop

end;
sp, σ〉

Figure 3.47: Check precondition and lock transition rule

Figure 3.48 describes the execution of the feature body. For once functions,
p updates the once status whenever it writes to the result entity by executing the
set not fresh operation.

3.3. Execution specification 79

Execute body

Γ `〈p :: execute body(f); sp, σ〉 →

〈p :: provided f ∈ FUNCTION ∧ f .is once then
f .body

[result := y; set not fresh(f)/result := y]
[create result.y; set not fresh(f)/create result.y]

else

f .body
end;
sp, σ〉

Set not fresh
f ∈ FUNCTION ∧ f .is once
σ.envs(p).top.names.has(result.name)

σ′
de f
= σ.set once func not fresh(p, f , σ.val(p, result.name))

Γ ` 〈p :: set not fresh(f); sp, σ〉 → 〈p :: sp, σ〉

Figure 3.48: Execute body transition rules

For the postcondition evaluation, the informal description allows p to ask one
of its suppliers to perform the evaluation on its behalf, i.e., to dispatch the query
calls and wait for the results. While this relaxation can improve performance,
it only makes sense if f ’s postcondition is satisfied. If the postcondition is not
satisfied, p must throw an exception and handle it in f ’s context. Hence, p cannot
delegate the evaluation. Figure 3.49 reflects this clarification.

Clarification 3.7 (Postconditions). The postcondition of a feature f must be eval-
uated by the processor executing f . �

To return, processor p removes its top environment and returns any passed
locks to q. In case p returns an expanded object and q , p, p imports the result to
q; otherwise p just returns the result rr. For a query, p posts the result on channel
a and notifies q of any returned locks. For a command with lock passing, p uses a
to notify q of the returned locks. Figure 3.50 describes these steps.

80 Chapter 3. Formal specification

Check postcondition and invariant
ainv is fresh
apost is fresh

Γ `〈p :: check post and inv(f); sp, σ〉 →

〈p :: provided f .has post then
eval(apost, f .post); wait(apost)

else

nop

end;
provided f .class type.has inv ∧ f .is exported then
eval(ainv, f .class type.inv); wait(ainv)

else

nop

end;
sp, σ〉

Figure 3.49: Check postcondition and invariant transition rule

Return (command)

σ′
de f
= σ.pop env(p).revoke locks(q, p)

Γ `〈p :: return(a, q); sp, σ〉 →

〈p :: provided σ.passed(q) then notify(a) else nop end; sp, σ
′〉

Return (query)

(σ′, r′r)
de f
=



if rr , void ∧ σ.ref obj(rr).class type.is exp ∧ σ.handler(rr) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ.import(q, rr)

otherwise
(σ, rr)

σ′′
de f
= σ′.pop env(p).revoke locks(q, p)

Γ ` 〈p :: return(a, rr, q); sp, σ〉 → 〈p :: result(a, r′r); sp, σ
′′〉

Figure 3.50: Return transition rules

3.3. Execution specification 81

Figure 3.51 and Figure 3.52 show the transition rules for once routines that are
not fresh and attributes. For once functions, processor p gets the once result from
the state and returns it. For once procedures, p does not change anything. For
attributes, p evaluates the attribute expression and returns the result of the evalua-
tion. Since f , an instance of ATTRIBUTE, is also an instance of EXPRESSION, p
can use f in eval.

Apply feature (not fresh once routine)
f ∈ ROUTINE ∧ f .is once ∧ ¬σ.fresh(p, f .id)
σ.handler(r0) = p

σ′
de f
= σ.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: provided f ∈ FUNCTION then
return(a, σ′.once result(p, f .id), q)

else

return(a, q)
end;
sp, σ

′〉

Figure 3.51: Not fresh once routine application transition rule

Apply feature (attribute)
f ∈ ATTRIBUTE
σ.handler(r0) = p

σ′
de f
= σ.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, ())

a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: eval(a′, f);
wait(a′);
return(a, a′.data, q);
sp, σ

′〉

Figure 3.52: Attribute application transition rule

82 Chapter 3. Formal specification

3.3.12 Creation instructions

The semantics of a creation instruction create b. f (e1, . . . , en) with target entity b
depends on b’s type. The following cases exist:

• The entity b has a separate type.

• The entity b has an explicit processor specification and the specified proces-
sor already exists.

• The entity b has an explicit processor specification and the specified proces-
sor does not yet exist.

• The entity b has a non-separate type.

Figure 3.53 shows the transition rule for the first case. Processor p first creates
a new processor q with a new object o referenced by r. It then obtains a request
queue lock on q so that it can issue statements. Next, it updates the target entity
b with r and calls the creation procedure f on it. Finally, p releases the obtained
request queue lock. The invariant for f must hold after the creation. Since every
creation procedure is assumed to be exported (see Chapter 2), the invariant gets
checked during f ’s application (see Section 3.3.11).

Creation instruction (separate)

(d, g, c)
de f
= type of (Γ, b)

g = >

q
de f
= σ.new proc

o
de f
= σ.new obj(c)

σ′
de f
= σ.add proc(q).add obj(q, o)

r
de f
= σ′.ref (o)

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: lock({q});
write(b, r, false);
b. f (e1, . . . , en);
issue(q, unlock rq);
pop obtained locks;
sp | q :: nop, σ′〉

Figure 3.53: Separate creation instruction transition rule

3.3. Execution specification 83

Figure 3.55 and Figure 3.56 cover the two cases where b has an explicit pro-
cessor specification: Figure 3.55 for the case the specified processor exists and
Figure 3.56 for the case it does not. An unqualified explicit processor specifica-
tion < x > is based on a processor attribute x with an attached type; the speci-
fied processor is the one stored in x. A qualified explicit processor specification
< y.handler > is based on a non-writable entity y of attached type; the specified
processor is the one handling the object referenced by y. Unlike an unqualified
specification, a qualified one always specifies an existing processor because it is
based on an existing object. Hence, the condition in Figure 3.56 does not cover
qualified specifications.

In case the specified processor q exists, processor p creates a new object o with
reference r on q. Processor p then locks q’s request queue in case it requires that
lock for the creation call, i.e., the creation call is a separate call (no callback), and
has not already claimed the lock. Processor p then continues as in the separate
case. Finally, p release q’s request queue lock in case it has obtained it earlier. In
case the specified processor does not exist yet, p creates a new processor q with a
new object o referenced by r. It then stores q in the processor entity x, locks q’s
request queue, and updates the target entity b with r. Finally, it calls the creation
routine before it releases q’s request queue lock.

For the case where b is non-separate, p creates the object on itself, updates
the target entity, and executes the creation routine. Figure 3.54 shows this case
in detail. The third argument to write ensures that p does not copy the newly
created object in case it is expanded.

Creation instruction (non-separate)

(d, g, c)
de f
= type of (Γ, b)

g = •

o
de f
= σ.new obj(c)

σ′
de f
= σ.add obj(p, o)

r
de f
= σ′.ref (o)

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: write(b, r, false);
b. f (e1, . . . , en);
sp, σ

′〉

Figure 3.54: Non-separate creation instruction transition rule

84 Chapter 3. Formal specification

Creation instruction (existing explicitly specified processor)

(d, g, c)
de f
= type of (Γ, b)

(∃x ∈ ENTITY : g =< x >) ∨ (∃x ∈ ENTITY : g =< x.handler >)

q
de f
=

{
σ.val(p, x.name) if ∃x ∈ ENTITY : g =< x >
σ.handler(σ.val(p, x.name)) if ∃x ∈ ENTITY : g =< x.handler >

σ.procs.has(q)

o
de f
= σ.new obj(c)

σ′
de f
= σ.add obj(q, o)

r
de f
= σ′.ref (o)

w
de f
= q , p∧
¬(q , p ∧ (σ′.rq locks(q).has(p) ∨ σ.cs locks(q).has(p)))∧
¬σ′.rq locks(p).has(q)

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: provided w then
lock({q})

else

nop

end;
write(b, r, false);
b. f (e1, . . . , en);
provided w then
issue(q, unlock rq);
pop obtained locks

else

nop

end;
sp, σ

′〉

Figure 3.55: Existing explicit processor creation instruction transition rule

3.3. Execution specification 85

Creation instruction (non-existing explicitly specified processor)

(d, g, c)
de f
= type of (Γ, b)

∃x ∈ ENTITY : g =< x >

< x >
de f
= g

¬σ.procs.has(σ.val(p, x.name))

q
de f
= σ.new proc

o
de f
= σ.new obj(c)

σ′
de f
= σ.add proc(q).add obj(q, o)

r
de f
= σ′.ref (o)

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: write(x, q, false);
lock({q});
write(b, r, false);
b. f (e1, . . . , en);
issue(q, unlock rq);
pop obtained locks;
sp | q :: nop, σ′〉

Figure 3.56: Non-existing explicit processor creation instruction transition rule

3.3.13 Flow control instructions

To execute an if e then st else s f end instruction or a if e then st end instruc-
tion, processor p first evaluates the expression e, as shown in Figure 3.57. It
then uses the provided operation to execute the right branch. To execute a
until e loop sl end instruction, p also first evaluates e. If e is true, p executes
the statements sl, followed by another loop iteration; if e is false, p is done.

3.3.14 Assignment instructions

To assign the value of an expression e to an entity b, processor p evaluates the
expression e, waits for the result, and then stores the result into b. Figure 3.58
shows this process. The third argument in write ensures that p copies an ex-
panded object before assigning it to b. This copy semantics is not only reflected
in the assignment instruction: the return operation (see Section 3.3.11) and the
call operation (see Section 3.3.10) also copy or import expanded objects.

86 Chapter 3. Formal specification

If instruction (with else)
a is fresh

Γ `〈p :: if e then st else s f end; sp, σ〉 →

〈p :: eval(a, e);
wait(a);
provided a.data then st else s f end;
sp, σ〉

If instruction (without else)
a is fresh

Γ `〈p :: if e then st end; sp, σ〉 →

〈p :: eval(a, e);
wait(a);
provided a.data then st else nop end;
sp, σ〉

Loop instruction
a is fresh

Γ `〈p :: until e loop sl end; sp, σ〉 →

〈p :: eval(a, e);
wait(a);
provided a.data then nop else sl; until e loop sl end end;
sp, σ〉

Figure 3.57: Flow control instructions transition rules

Assignment instruction
a is fresh

Γ ` 〈p :: b := e; sp, σ〉 → 〈p :: eval(a, e); wait(a); write(b, a.data, true); sp, σ〉

Figure 3.58: Assignment instructions transition rule

3.3.15 Termination or blockage

Once the system reaches a configuration where all action queues are empty, i.e.,
there is no more work to do, then the system terminates. If the system gets stuck in
a non-empty configuration, e.g., a deadlock, then it blocks in that configuration.

4 Executable specification

Executable formal specifications support the execution of a program without com-
piler or runtime support. A tool executes the program according to the executable
formal specification. An executable formal specification of a concurrency model
is useful in analyzing and verifying the model since test programs can be run
and their behavior can be validated. Several frameworks support the develop-
ment of executable formal specifications, as summarized in Section 4.5. We chose
Maude [53,54] because of its expressiveness, performance, and rich execution ca-
pabilities. This chapter presents the main techniques in mapping SCOOP’s formal
specification to Maude, namely mapping ADTs and transition rules. This chapter
also discusses how to use Maude’s multifaceted execution capabilities to run test
programs. The techniques presented in this chapter apply to the formal specifi-
cation in Chapter 3 as well as the formal specifications for the asynchronous ex-
ception mechanism in Chapter 6 and the data sharing mechanism in Chapter 7. In
addition to these techniques, this chapter presents background material on Maude
for readers who are not yet familiar with this framework. Readers who are already
familiar with Maude can jump directly to Section 4.2.

4.1 Maude
Maude [53, 54] offers a programming language for theories in membership equa-
tional logic [32,145] and rewriting logic [38,144]. A membership equational logic
is a Horn logic whose basic predicates either express membership assertions, stat-
ing that a term built with operators belongs to a certain sort, or equations between
terms, stating that two terms are equal under a certain condition. Some operators
are constructors. Terms only built with constructors cannot be further reduced
using equations. A sort can be a subsort of another sort. A rewrite logic has
rewrite rules that express conditional rewrites between terms. Maude combines

87

88 Chapter 4. Executable specification

the two by rewriting terms according to the rewrite logic modulo the member-
ship equational logic. It uses the equations to reduce a term to a canonical form
based on constructors, applies fitting rewrite rules, and then once again reduces
the resulting term using the equations.

A functional module (fmod keyword) contains a membership equational the-
ory. It defines the sorts (sort keyword), subsort relationships (subsort keyword),
operators (keywords op and ctor for constructors), and equations (keywords eq
and ceq) for the theory. The module can import a submodule in three modes;
these modes do not have an operational difference but simply express different
import promises. In protecting mode (protecting keyword), the module does not
extend any of the submodule’s sorts with new constructors, and it does not intro-
duce any equivalences between imported operators of these sorts. In extending
mode (extending keyword), the module can extend the sorts, but does not intro-
duce any equivalences between imported operators. In including mode (including
keyword), the module can do both, which is always a safe choice. The following
functional module, adapted from the Maude literature [53], defines a theory for
natural numbers:

fmod NAT is
protecting BOOL .
sort Nat .
sort Int .
subsort Nat < Int .

var n m : Nat .

op 0 : −> Nat [ctor] .
op s() : Nat −> Nat [ctor] .

op < : Nat Nat −> Bool .
eq s(n) < s(m) = n < m .
eq 0 < s(n) = true .
eq s(n) < 0 = false .
eq 0 < 0 = false .

op min(,) : Nat Nat −> Nat .
ceq min(n, m) = n if n < m .
ceq min(n, m) = m if m < n .
ceq min(n, m) = n if n = m .

endfm

4.1. Maude 89

First, the module imports another module for boolean values. It then defines
a sort for natural numbers as a subsort of integers. It also defines some variables
to be used throughout the module. A variable can either be declared globally as
shown above or inline as in n:Nat. The module declares several operators using
underscores to represent arguments. Two operators define the structure of natural
numbers using Peano’s successor concept. These operators are constructors, as
indicated by the ctor attribute. Other possible attributes are assoc for associative
operators, comm for commutative operators, and id for operators with an identity
element. These attributes serve as implicit equations. The next operator defines
the structure of a comparison. In the module, four equations reduce a compari-
son to a boolean value. The final operators defines the minimum of two natural
numbers with three conditional equations.

A system module (mod keyword) contains a rewrite theory with unconditional
rewrite rules (rl keyword) and conditional rewrite rules (crl keyword). Rewrite
rules can have attributes. For example, the attribute owise makes a rule applicable
only if no other rule applies. The system module can also contain a membership
equational theory. As with functional modules, the system module can import
other modules in three modes. Importing a functional module works as before
whereas importing a system module in protecting or extending mode addition-
ally promises that the reachability relation between imported operators remains
unchanged. The following system module defines a buffer with natural numbers:

mod BUFFER is
protecting NAT .
protecting LIST{Nat} .

var l l’ : List{Nat} .
var n : Nat .

sort Buffer .

op buffer() : List{Nat} −> Buffer [ctor] .

rl [produce] : buffer(l) => buffer(l .append(0 ;)) .
crl [consume] : buffer(l) => buffer(l’)

if not l .isEmpty ∧ l’ := l .pop .
endm

This system module defines an unconditional rule (see rl) to put a natural
number into a buffer. It also defines a conditional rule (see crl) to consume a
number, provided the buffer is not empty. To define the buffer, the system module

90 Chapter 4. Executable specification

includes the parametrized LIST module – a custom module with operators that
follow the object-oriented dot notation.

A module can be parametrized. To use such a module, each parameter must be
bound to another module, i.e., the parameter module. A theory defines the sorts,
subsort relationships, operators, equations, and rewrite rules that the parameter
module must provide. A view (view keyword) specifies how the parameter module
satisfies that theory. For instance, the parameter of the list module represents
the theory of a list element. The parameter has the built-in trivial theory TRIV
associated to it, and the theory has only one restriction on a module: it must have
a sort. The following view therefore specifies that NAT satisfies TRIV by mapping
the sort Nat to the theory’s sort Elt:

view Nat from TRIV to NAT is
sort Elt to Nat .

endv

4.2 Abstract data types

Two functional modules represent one ADT. The ADT sort module defines a sort
to represent the ADT along with subsort relationships. The ADT module then in-
cludes the ADT sort module to implement the ADT features with operators and
equations. The two functional modules are necessary so that the ADT module
itself can use instances of the ADT in parametrized collections. A single ADT
module would create a circular dependency between the ADT module and the col-
lection module. If instances of the ADT can become members of a parametrized
collection, then the ADT has a view to facilitate this. For instance, REGIONS
from Section 3.2 leads to the following two functional modules; a view is not
necessary for REGIONS:

fmod REGIONS−SORTS is
sort Regions .

endfm
fmod REGIONS is

including REGIONS−SORTS .
...

endfm

4.2. Abstract data types 91

The ADT module includes all the ADT modules and collection modules on
which it depends. For the REGIONS ADT, the following includes are necessary:

including REGIONS−SORTS .
including BOOL .
including REF .
including PROC .
including MAP{Proc, RefSet} .
including MAP{Proc, Bool} .
including MAP{Proc, Proc} .
including MAP{Proc, ProcSetList} .
including MAP{Proc, RefSetList} .
including PAIR{ProcSet, ProcSet} .
including SET{ProcSet} .

The ADT module of an ADT defines one constructor that determines the in-
ternal structure of an ADT instance. This structure reflects the data of an ADT
instance as defined by the queries. A number of variables relate to an ADT in-
stance and its data. For REGIONS, the internal structure holds the handled objects
ho as a map Map{Proc, RefSet} and the last added processor lap. The map also
keeps the available processors in the key set of the map. Next, the internal struc-
ture remembers which request queues and call stacks are locked using two maps
rql and csl of type Map{Proc, Bool}. The next four items orq, ocs, rrq, and rcs
manage the obtained and retrieved locks. Finally, lp remembers which processors
passed locks.

op regions : Map{Proc, RefSet} Proc Map{Proc, Bool} Map{Proc, Bool} Map{Proc,
ProcSetList} Map{Proc, Proc} Map{Proc, ProcSetList} Map{Proc, ProcSetList} Map
{Proc, Bool} −> Regions [ctor] .

var k : Regions .
var p : Proc .
var r : Ref .
var ho : Map{Proc, RefSet} .
var lap : Proc .
var rql csl lp : Map{Proc, Bool} .
var orq rrq rcs : Map{Proc, ProcSetList} .
var ocs : Map{Proc, Proc} .

The ADT module then defines operators and equations for the ADT’s features.
Each query leads to one operator and one equation. The operator reflects the

92 Chapter 4. Executable specification

structure of the query: the syntax along with the sorts for the ADT instance to
operate on, the formal arguments, and the result. The equation links the query to
the internal structure of the ADT instance. If the query has a precondition, then
the equation has a corresponding condition. The following code shows the first
three queries of REGIONS; for space reasons, precedence values and formatting
specifications are omitted:

op .procs : Regions −> Set{Proc} .
eq regions(ho, lap, rql, csl, orq, ocs, rrq, rcs, lp) .procs = ho .keys .

op .handledObjs() : Regions Proc −> Set{Ref} .
ceq regions(ho, lap, rql, csl, orq, ocs, rrq, rcs, lp) .handledObjs (p) = ho[p] .values

if ho .keys .has(p) .

op .rqLocked() : Regions Proc −> Bool .
ceq regions(ho, lap, rql, csl, orq, ocs, rrq, rcs, lp) .rqLocked (p) = rql[p] .

if ho .keys .has(p) .

Each command also leads to one operator and one equation. However, the
structure of a command is different because the result of a command is an updated
ADT instance. The equation reflects the axioms of the command: it defines how
to rewrite a command call on an ADT instance into an updated ADT instance.
The equation can define auxiliary terms in the condition. As before, the condi-
tion also contains the precondition of the command. The following code shows
the two commands to add processors and objects; in there, the auxiliary operator
refIdUnique returns whether the regions already contain a given reference or not.

op .addProc() : Regions Proc −> Regions .
ceq k .addProc (p) =

regions(
(ho .insert(p −−> empty)),
p,
(rql[p] ::= false),
(csl[p] ::= true),
(orq[p] ::= nil),
(ocs[p] ::= p),
(rrq[p] ::= nil),
(rcs[p] ::= nil),
(lp[p] ::= false)

)
if

regions(ho, lap, rql, csl, orq, ocs, rrq, rcs, lp) := k ∧

4.3. Transition rules 93

not k .procs .has(p) .

op .addObj(,) : Regions Proc Obj −> Regions .
ceq k .addObj (p, r) = regions((ho .insert(p −−> (ho[p] U {r}))), lap, rql, csl, orq, ocs,

rrq, rcs, lp)
if

regions(ho, lap, rql, csl, orq, ocs, rrq, rcs, lp) := k ∧
k .procs .has(p) ∧ k .refIdUnique(r) .

A constructor is similar to a command with the difference that it does not
operate on an ADT instance. The constructor of REGIONS initializes the internal
structure without any processors; noProc denotes no processor:

op new REGIONS.make : −> Regions .
op noProc : −> Proc [ctor] .
eq new REGIONS.make = regions(empty, noProc, empty, empty, empty, empty, empty,

empty, empty) .

With the ADT modules, Maude can reduce feature call chains. These feature
call chains can be built because constructors and commands always return a new
or updated ADT instance that can then be used by a subsequent command or query
call to operate on.

4.3 Transition rules

To represent transition rules in Maude, some basic support is necessary. A num-
ber of functional modules model a SCOOP program using sorts, operators, and
equations for programs, settings, classes, features, expressions, instructions, and
types. Other functional modules model operations. Instructions and operations
are subsorts of statements. Views ensure that they can be stored in parametrized
collections. A new system module defines sorts and operators for action queues
and configurations. A list of action queues is partitioned by the associative and
commutative parallel operator.

sorts Configuration ActionQueue ActionQueueList .
subsort ActionQueue < ActionQueueList .

op :: : Proc List{Statement} −> ActionQueue [ctor] .
op | : ActionQueueList ActionQueueList −> ActionQueueList [ctor assoc comm] .
op |− , , : Program ActionQueueList Nat State −> Configuration [ctor] .

94 Chapter 4. Executable specification

By comparing this implementation to the configuration in Section 3.3, one can
notice two deviations. First, the configuration has an additional natural number to
count the number of steps in the execution. This counter provides a continuous
stream of numbers and is used to create fresh identifiers. This link between the
step numbers and the identifiers helps in debugging because one can easily deter-
mine in which step Maude created an identifier. Second, each configuration has a
program associated with it. This program represents the typing environment. In
Section 3.3, the typing environment only occurs as part of the transition defini-
tion. With this deviation, Maude does not have to add the typing environment to
each configuration before executing a transition rule. With this basic support, the
system module can implement transition rules. First, it defines variables:

var p q : Proc .
var qs : Set{Proc} .
var σ : State .
var f : Feature .
var sw sp sq : List{Statement} .
var a : Channel .
var ic : Nat .

Each SCOOP operation leads to a sort, a subsort relationship, and an operator.
The following code represents the issue operation from Section 3.3; as before,
precedence values and formatting specifications are omitted:

sort Issue .
subsort Issue < Operation .

op issue(,) : Proc List{Statement} −> Issue [ctor] .

Each transition rule leads to a conditional rewrite rule. The condition of the
rewrite rule contains the premise of the transition rule. The label contains the
name of the transition rule. The rewrite arrow => separates the start configuration
from the result configuration. For instance, the rule for issue becomes:

crl [issueSeparateCallback] :
(Γ |− p :: issue(q, sw) ; sp | q :: sq, ic, σ) =>

(Γ |− p :: sp | q :: sw sq, ic + 1, σ)
if

q =/= p and (σ .rqLocks(q).has(p) or σ .csLocks(q).has(p)) ∧
not σ .passed(p) and σ .csLocks(p).has(q)

4.4. Executing programs 95

4.4 Executing programs

To execute a program, Maude expects an initial configuration that captures the
starting point of the program. The initial configuration can be given as a list of
classes with settings denoting the root class and the root procedure. A rewrite rule
transforms this construct into the initial configuration (see Section 3.3.2). Maude
offers a number of facilities, using different strategies, to execute programs under
different schedules.

4.4.1 Rewrite and frewrite

The rew command takes an initial configuration and an upper bound for the num-
ber of transition rules. It applies fitting transition rules using a rule-fair top-down
strategy until it reaches the upper bound, or it finds no more fitting transition rules.
The frew command is similar, but it uses a rule- and position-fair strategy. For ex-
ample, the following invocation applies 100 transition rules to execute ’make:

rew [100]
(

(
class ’A create {’make}

(
procedure {’ANY} ’make (nil)

require
True

local
nil

do
...

ensure
True

rescue
nil

end ;
)

end ;
)
settings (’A, ’make)

) .

The rew command becomes problematic when a sequence of transitions re-
sults in action queues that are equal to the action queues at the beginning. In such

96 Chapter 4. Executable specification

a case, Maude applies the same transition rules using the same action queues over
and over again instead of continuing differently. Priorities in the action queues
solve this issue. Maude brings configurations into a canonical form before ap-
plying transition rules. During this reduction, Maude orders the action queues
since the parallel operator | is commutative and associative. The priorities influ-
ence how Maude orders the action queues; consequently, the priorities influence
which action queues Maude uses next. The following code shows the changes.
An action queue has an additional natural number to associate a priority to the
processor; yield decreases the priority by increasing the number:

op { } :: : Nat Proc List{Statement} −> ActionQueue [ctor] .

sort Yield .
subsort Yield < Operation .

op yield : −> Yield [ctor] .
rl [yield] :

(Γ |− {i} p :: yield ; sp, ic, σ) => (Γ |− {i + 1} p :: sp, ic + 1, σ) .

For example, when a processor evaluates a precondition to false, it tries again
(see Section 3.3.11) and hence the resulting action queue remains unchanged.
With priorities, the processor can decrease the priority in its action queue after de-
termining that the precondition is not satisfied, causing Maude to focus on another
action queue. The following code shows this in more detail:

crl [checkPreAndLock] :
(Γ |− {i} p :: checkPreAndLock(f, qs) ; sp, ic, σ) =>

(Γ |− {i} p ::
lock(qs) ;
provided f .hasPre then

eval(a, f .pre) ;
wait(a) ;
provided a .data then

nop ;
else

nissue(qs, unlockRq ;) *** Issue unlockRq to every processor in qs.
popObtainedLocks ;
yield ;
checkPreAndLock(f, qs) ;

end ;
else

nop ;

4.4. Executing programs 97

end ;
sp, ic + 1, σ)

if a := fresh(ic, 1) . *** Create a fresh channel.

4.4.2 Strategies

The rew and frew commands use built-in strategies. In some cases, one can direct
these built-in strategies to prefer one processor over another by inserting blocking
instructions in the code. However, in general this approach is not sufficient in
enforcing a particular schedule. For this reason, the srew command [63] extends
Maude with custom strategies. A strategy takes a set of start configurations and
produces a set of result configurations that can be reached with the strategy. The
srew command applies a given strategy to a given initial configuration and returns
the result. An important subset of the many strategies the command supports is as
follows:

• The strategy idle returns the start configurations.

• The strategy tl applies the transition rule with label tl to the start configura-
tions and returns all possible result configurations. The strategy tl{s1, ..., sn}
applies the transition rule with label tl and applies substrategy si for the i-
th transition in the condition of rule tl. This strategy is indispensable for
systems with more than one processor. Many transition rules apply to only
one processor. For a system with more processors, the parallelism rule (see
Section 3.3.1) has a transition in its condition that allows one processor
to transition in parallel to the other processors. A substrategy can specify
which transition rule to use. For example, parallelism{lock} specifies that a
processor should obtain locks in parallel to the other processors.

• The strategy s1 ; s2 first applies strategy s1. It then applies s2 on the re-
sulting configuration. The strategy s* applies s zero or more times, and s+
applies s one or more times.

• The strategy s1 | s2 either applies s1 or s2. It is useful to allow multiple
execution paths such as when multiple transition rules specify one operation
with variants, and it is unclear which transition rule will apply. For example,
conditionalTrue | conditionalFalse specifies that the system either evaluates
the condition of a provided operation to true or false.

• The strategy match p adds all start configurations matching pattern p to the
set of result configurations. This strategy is useful in case multiple proces-
sors can take the same transition. As a substrategy of the parallelism rule,

98 Chapter 4. Executable specification

it can specify which processor should transition by only matching config-
urations with that processor. For example, parallelism{(match (Γ:Program
|− proc(5) :: sl:List{Statement}, ic:Nat, σ:State)) ; unlockRq} specifies that

only processor 5 should unlock its request queue.

• The strategy s1 ? s2 : s3 checks whether s1 produces at least one result con-
figuration, in which case it applies s2 to the result configurations. Other-
wise, it applies s3 to the start configurations. This strategy combined with
idle is useful when it is unclear whether a particular transition will be taken
or not. For example, unlockRq ? idle : idle specifies that a processor may or
may not unlock its request queue.

Using these strategies, one can specify an execution by concatenating one
strategy per transition. Each strategy is a parallelism rule strategy with a sub-
strategy consisting of match followed by a transition rule strategy. match selects
the subset of processors that take the transition using the subsequent transition
rule strategy. To specify alternative execution paths, one nests concatenations in
a | strategy; to specify that a transition may or may not happen, one uses the con-
ditional strategy. For example, the following invocation first gives p1 a chance
to unlock its request queue and then gives a chance to p2. Here, each processor
unlocks only if it can:

srew
(initial configuration)

using
... ;
((parallelism{

(match (Γ:Program |− proc(1) :: sl:List{Statement}, ic:Nat, σ:State)) ;
unlockRq})

? idle : idle) ;
((parallelism{

(match (Γ:Program |− proc(2) :: sl:List{Statement}, ic:Nat, σ:State)) ;
unlockRq})

? idle : idle) .

4.4.3 Search

None of the commands so far iterates through all possible schedules; the search
command fills this gap. It uses an exhaustive breadth-first strategy to find exe-
cutions starting from a given initial configuration and ending in a given terminal
configuration. It takes the terminal configuration, an upper bound on desired so-

4.4. Executing programs 99

lutions, and a maximum search depth. The terminal configuration can contain
placeholder variables and a property that has to be satisfied. For example, the
following invocation looks for a configuration where the request queues of two
processors p and q are locked:

var Γ : Program .
var aqs : ActionQueueList .
var p q : Proc .
var ic : Nat .
var sp sq : List{Statement} .
var σ : State .

search
(initial configuration)

=>*
(Γ |− p :: sp | q :: sq | aqs, ic, σ)

such that
σ .rqLocked(p) and σ .rqLocked(q) .

The search command can be used for bounded or unbounded model checking
of an invariant i; the invariant holds if search reports that no execution ends in a
configuration satisfying ¬i.

4.4.4 LTL model checker

In addition to search, Maude offers a reasonably fast [64] functional module
MODEL−CHECKER with the modelCheck operation. The modelCheck operation
takes an initial configuration with a LTL [97, 180] property and either returns a
counterexample execution or confirms that the property is satisfied. For example,
the following invocation checks whether the call stack of p1 is always locked:

mod SCOOP−PREDICATES is
protecting SYSTEM .
including SATISFACTION .
subsort Configuration < MState .

var Γ : Program .
var cl : List{Class} .
var stt : Settings .
var aqs : ActionQueueList .
var p : Proc .
var ic : Nat .

100 Chapter 4. Executable specification

var sp : List{Statement} .
var σ : State .

op csLocked : Proc −> Prop .
ceq (Γ |− p :: sp | aqs, ic, σ) |= csLocked(p) = false

if
not σ .regions .csLocked(p) .

eq (Γ |− aqs, ic, σ) |= csLocked(p) = true [owise] .
eq cl stt |= callStackLocked(p) = true .

endm

mod SCOOP−MODEL−CHECKER is
protecting SCOOP−PREDICATES .
including MODEL−CHECKER .
including LTL−SIMPLIFIER .

endm

red modelCheck((initial configuration), [] csLocked(proc(1))) .

The model checker has a module SATISFACTION with sort State for model
checker states and sort Prop for model checker properties. It also defines an op-
erator op |= : State Prop −> Bool that evaluates a property on a state. The sort
Configuration (see Section 4.3) must be a subsort of State. Since the executable
formal specification also declares a sort State, it is necessary to resolve the con-
flict, e.g., by renaming the sort State in SATISFACTION and MODEL−CHECKER
to MState. Accordingly, the custom module SCOOP−PREDICATES makes the
sort Configuration from SYSTEM a subsort of MState and declares the property
csLocked. SCOOP−MODEL−CHECKER defines the context for the modelCheck
invocation by importing SCOOP−PREDICATES along with the main module

MODEL−CHECKER and the simplification module LTL−SIMPLIFIER.

LTL properties assume executions to be infinitely long. For finite executions,
the model checker automatically converts any terminal configuration into an in-
finite sequence that repeats the terminal configuration. Programs with infinite
executions can cause the model checker not to terminate. For example, a pro-
cessor that infinitely often evaluates its precondition to false generates an infinite
sequence of differing configurations because the configurations contain a chang-
ing instruction counter.

4.5. Other frameworks 101

4.5 Other frameworks
A number of frameworks other than Maude support the development of executable
formal specifications. CafeOBJ [57] is a sister framework of Maude. Both are
descendants of OBJ2 [77]. The K framework [187] builds on top of Maude. Its
rewrite rules generalize over traditional ones by being able to specify which parts
of a term they read, write, or do not care.

PLT Redex [70] is a language designed for specifying and debugging opera-
tional semantics, requiring a grammar and reduction rules as the only input. It can
search for all reductions of a term or only for reductions into a specified term, and
it can test randomly generated terms.

ELAN [30] uses custom strategies to rewrite a term according to a set of
rewrite rules. Similarly, Stratego/XT [33] supports rewrite rules with strategies.

The Relational Meta Language (RML) [74] comes with a tool to generate
efficient C interpreters from natural semantics [120].

Several frameworks exist to develop and execute formal specifications using
Abstract State Machines (ASM) [29, 85]. Examples include AsmGofer [191] and
AsmL [86].

Proof assistants like Isabelle/HOL [165], Coq [22], PVS [175], HOL4 [197],
or Twelf [178] can also be used to develop and interpret formal specifications.
Some of them are even capable of producing a standalone interpreter. For ex-
ample, Lochbihler [136] uses Isabelle to generate an interpreter from a formal
specification of Java. Ott [193] provides a metalanguage and a tool to express for-
mal specifications and to compile them into code that can be interpreted by proof
assistants.

102 Chapter 4. Executable specification

5 Testing

The executable formal specification is useful to execute a program without com-
piler and runtime support, thus facilitating early testing of the model. Testing the
executable formal specification with an appropriate test suite enables the identi-
fication of flaws and clarifications in the model. This chapter demonstrates the
usefulness of testing on SCOOP using a test suite. It presents the resulting flaws
and clarifications.

5.1 Test suite
In testing a concurrency model, it is important to use test programs that focus on
individual aspects of the concurrency model as well as test programs that reflect
real-world scenarios. The former supports a systematic coverage of the model;
the latter enables study of all aspects together. The test suite for SCOOP contains
both types of test programs.

Table 5.1 summarizes the test programs for individual aspects. Each test pro-
gram covers one or more aspects, and each aspect is covered by at least one pro-
gram. The aspects also include failures and passive processors, as discussed in
detail in Chapter 6 and Chapter 7. Since the exception mechanism and passive
processors are new developments, several test programs cross-check the new as-
pects with the existing ones.

The real-world scenarios include parallel searching, share market simulation,
pipeline computation, producer-consumer, and concurrent linked list:

• Parallel searching. Multiple parallel searchers explore a search space.

• Share market simulation. Multiple investors buy and sell shares.

• Pipeline computation. Multiple stages in a pipeline process a stream of data.

103

104 Chapter 5. Testing

• Producer-consumer. A producer and a consumer exchange data.

• Concurrent linked list. Each node of the list is handled by its own processor.

Table 5.1: Overview of aspect tests. The marks indicate the covered aspects.

test lo
ck

in
g,

pr
ec

on
di

tio
ns

,a
nd

un
lo

ck
in

g

w
ai

tb
y

ne
ce

ss
ity

lo
ck

pa
ss

in
g

se
pa

ra
te

ca
llb

ac
ks

on
ce

ro
ut

in
es

im
po

rt

ex
pl

ic
it

pr
oc

es
so

rs
pe

ci
fic

at
io

ns

po
st

co
nd

iti
on

s
an

d
in

va
ri

an
ts

fa
ilu

re
s

pa
ss

iv
e

pr
oc

es
so

rs

1 X X X
2 X
3 X X
4 X
5 X X
6 X
7 X
8 X
9 X X
10 X X
11 X X
12 X
13 X
14 X X
15 X X
16 X X

While the test suite covers failures and passive processors, this chapter only
discusses flaws and clarifications found for SCOOP without the two new mecha-
nisms. Chapter 6 and Chapter 7 complete the discussion for the new mechanisms.

5.2 Separate callbacks
A separate callback is characterized by the following condition (see Section 3.3.3):
at the moment of a feature call, the supplier claims a lock on the client.

5.2. Separate callbacks 105

5.2.1 Flaw

While the separate callback condition adequately captures simple scenarios with
only two processors, it fails to capture more complex scenarios:

class A create make feature
b: separate B
c: separate C

make
do

create b.make; create c.make
f (b)

end

f (b: separate B)
do

b.g (c, Current)
end

k: separate D
do

create Result.make
end

end

class B create make feature
make

do end

g (c: separate C; a: separate A)
do

c.h (a)
end

end

class C create make feature
make

do end

h (a: separate A)
local

t: separate D

106 Chapter 5. Testing

do
t := a.k

end
end

class D create make feature
make

do end
end

Using Maude’s rew command, the system creates an object of type A on a new
root processor p1; processor p1 then creates two objects on two new processors p3

and p5 and executes feature f:

p1 :: orq : ({}, {p3}) rrq : ({}, {}) rcs : ({}, {}) locked
p3 :: orq : () rrq : () rcs : () locked
p5 :: orq : () rrq : () rcs : () unlocked

Processor p1 then calls processor p3. The call is synchronous as it involves
lock passing triggered by the reference to the current object as an actual argument.
Processor p1 passes both the request queue lock on p3 and its own call stack lock.
Processor p3 then obtains the request queue lock of p5:

p1 :: orq : ({}, {p3}) rrq : ({}, {}) rcs : ({}, {}) locked passed
p3 :: orq : ({p5}) rrq : ({p3}) rcs : ({p1}) locked
p5 :: orq : () rrq : () rcs : () locked

Processor p3 then passes all its locks to processor p5 during a synchronous call
with lock passing:

p1 :: orq : ({}, {p3}) rrq : ({}, {}) rcs : ({}, {}) locked passed
p3 :: orq : ({p5}) rrq : ({p3}) rcs : ({p1}) locked passed
p5 :: orq : ({}) rrq : ({p5, p3}) rcs : ({p1, p3}) locked

Finally, processor p5 synchronously calls processor p1, which is waiting for its
synchronous call to return. However, the feature call does not qualify as a separate
callback because processor p1 does not claim a lock on processor p5. Therefore,

5.2. Separate callbacks 107

processor p5 performs a regular separate feature call and adds its feature request
to the end of processor p1’s request queue. At this point, all processors wait.
Maude cannot process any of the wait operations because no processor completes
its feature request.

5.2.2 Clarification

This design flaw can be resolved by fixing the separate callback condition. Fig-
ure 5.1 shows the changes to the issuing mechanism. The separate callback con-
dition also appears in the transition rules for feature calls (see Figure 3.44 and
Figure 3.45), in the transition rule for feature applications (see Figure 3.46), and
in the transition rule for creating an object (see Figure 3.55). These rules must be
adapted accordingly.

Issue (separate)
q , p ∧ ¬σ.passed(q)
¬σ.passed(p) ∧ σ.rq locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sq; sw, σ〉

Issue (separate callback)
q , p ∧ σ.passed(q) ∧ ¬σ.passed(p) ∧ σ.cs locks(p).has(q)
¬σ.passed(p) ∧ σ.cs locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sw; sq, σ〉

Figure 5.1: Separate callback clarification

A separate callback is now characterized as: the supplier has passed its locks,
and the client holds the supplier’s call stack lock (first condition). This condition
implies that the supplier is waiting because it passed its locks over a chain of
feature calls all the way to the client. In this situation, it is necessary for the
supplier to process a feature request right away; otherwise, a deadlock would
occur. In addition to the simple scenarios with only two processors, this condition
also captures more complex scenarios such as the one shown here.

Clarification 5.1 (Separate callback). A separate callback is characterized as fol-
lows: the supplier has passed its locks, and the client holds the supplier’s call stack
lock. �

108 Chapter 5. Testing

5.3 Separate once functions

A once function gets executed at most once in a context. Once functions declared
as separate have a once per system semantics. Non-separate once functions have
a once per processor semantics. The result from the first execution in a context
becomes the result of all future executions in the same context. If a once function
has been executed in a context, it is not fresh in that context; otherwise it is fresh.

Two transition rules describe how a processor p processes a feature request
for a once routine (see Figure 3.46 and Figure 3.51). The first transition rule only
applies to once routines f that are fresh in the context p. Processor p immediately
sets f to not fresh with the void result. It then updates the once result during the
execution. The second transition rule only applies to once routines f that are not
fresh in the context p. In this case, p returns the previous result on p.

5.3.1 Flaw

This specification is problematic when a once function is of separate type and two
processors execute the once function concurrently. The following program shows
this design flaw in more detail:

class A create make feature
make

local
b1, b2: separate B

do
create b1.make; create b2.make
f (b1, b2)

end

f (b1: separate B; b2: separate B)
do

b1.g
b2.g

end
end

class B create make feature
make

do end

g
local

5.3. Separate once functions 109

c: separate C
do

c := h
end

h: separate C
once

create Result
end

end

class C create make feature
make

do end
end

A new root processor p1 creates two objects on two new processors p3 and p5.
It then asks both processors to asynchronously execute g, causing both of them
to assign the result of the separate once function h to c. One of them is first and
computes the once result; the other uses the existing result. After the assignment,
both processors should store a non-void value in c, as expressed for one of the
processors in the following formula [] ˜ voidOnceResult(proc(5)):

var Γ : Program .
var cl : List{Class} .
var stt : Settings .
var aqs : ActionQueueList .
var p : Proc .
var ic : Nat .
var sp : List{Statement} .
var σ : State .

op voidOnceResult : Proc −> Prop .
ceq (Γ |− p :: sp | aqs, ic, σ) |= voidOnceResult(p) = true

if
σ .rqLocks(p) .isEmpty /\

not (σ .envs(p) .isEmpty) /\

σ .envs(p) .top .names .has (’c) /\

(σ .val(p, ’c)) == void .
eq cl stt |= voidOnceResult (p) = false .

red modelCheck((initial configuration), [] ˜ voidOnceResult(proc(5))) .

110 Chapter 5. Testing

The property voidOnceResult identifies the step after the assignment as the
configuration where the processor has released its locks, but still has a variable
environment with one variable named ’c. The property is true if the variable stores
the void reference. The model checker tries to verify that voidOnceResult is glob-
ally false for p5. However, it does find a lengthy counterexample (more than
60’000 lines). Processors p3 is first and sets h to not fresh with the void result (see
Figure 3.46). Right before p3 creates the result, p5 determines that h is not fresh
and returns the existing result (see Figure 3.51). At that point, p3 has not created
the result yet, and thus p5 returns the void result.

5.3.2 Clarification

This design flaw can be fixed with a new status sequence for once routines: ini-
tially, a once routine is fresh in a context; just after its first execution in the con-
text, it becomes not fresh and not stable; finally, it becomes not fresh and stable
when the first execution is over. The processor that executes the once routine for
the first time in a context is the stabilizer. With this new status sequence, a pro-
cessor different from the stabilizer can now be prevented from getting the result
too soon, while still allowing the stabilizer to recursively call the once function
without blocking.

Figure 5.2 shows the changes to HEAP and the set not fresh operation.
One new query returns whether a once routine is stable. Another new query re-
turns the stabilizer. The commands to set a once routine not fresh take a new
stability flag; set not fresh sets this flag to false because it is only used in the
middle of a feature application. The state facade (see Section 3.2.6) mirrors these
changes.

The transition rule for fresh once routines (see Figure 3.46) must be updated.
The stabilizer p sets the once routine f to not fresh and not stable. Upon returning,
it sets f to stable by passing a new flag and f to the return operation, as shown
in Figure 5.3. The condition for not fresh once routines (see Figure 3.51) becomes
¬σ.fresh(p, f .id)∧(σ.stable(p, f .id)∨σ.stabilizer(p, f .id) = p). When a processor
applies a once routine that is not fresh, it waits until the routine is stable. Upon
returning, the processor does not alter the status of the routine. The condition
for attributes remains unchanged (see Figure 3.52), but the invocation of return
must be adapted.

5.3. Separate once functions 111

stable : HEAP→ PROC → ID9 BOOLEAN
h.stable(p, i) require
¬h.fresh(p, i)

stabilizer : HEAP→ PROC → ID9 PROC
h.stabilizer(p, i) require
¬h.fresh(p, i)

set once func not fresh : HEAP→ PROC → FEATURE 9 BOOLEAN → REF
9 HEAP

h.set once func not fresh(p, f , st, r) require
f ∈ FUNCTION ∧ f .is once
r , void ⇒ h.refs.has(r)

axioms
(∃d, c : Γ ` f : (d, •, c))⇒
¬h.set once func not fresh(p, f , st, r).fresh(p, f .id)∧
h.set once func not fresh(p, f , st, r).stable(p, f .id) = st∧
h.set once func not fresh(p, f , st, r).stabilizer(p, f .id) = p∧
h.set once func not fresh(p, f , st, r).once result(p, f .id) = r

(∃d, c : Γ ` f : (d, p, c) ∧ p , •)⇒ ∀q ∈ PROC :
¬h.set once func not fresh(p, f , st, r).fresh(q, f .id)∧
h.set once func not fresh(p, f , st, r).stable(q, f .id) = st∧
h.set once func not fresh(p, f , st, r).stabilizer(q, f .id) = p∧
h.set once func not fresh(p, f , st, r).once result(q, f .id) = r

set once proc not fresh : HEAP→ PROC → FEATURE 9 BOOLEAN → HEAP
h.set once proc not fresh(p, f , st) require

f ∈ PROCEDURE ∧ f .is once
axioms
¬h.set once proc not fresh(p, f , st).fresh(p, f .id)
h.set once proc not fresh(p, f , st).stable(p, f .id) = st
h.set once proc not fresh(p, f , st).stabilizer(p, f .id) = p

Set not fresh
f ∈ FUNCTION ∧ f .is once
σ.envs(p).top.names.has(result.name)

σ′
de f
= σ.set once func not fresh(p, f , false, σ.val(p, result.name))

Γ ` 〈p :: set not fresh(f); sp, σ〉 → 〈p :: sp, σ〉

Figure 5.2: Once routine stability clarification: status flags

112 Chapter 5. Testing

RETURN , return TUPLE〈CHANNEL, FEATURE, PROC, BOOLEAN〉 |
return TUPLE〈CHANNEL, FEATURE, REF, PROC, BOOLEAN〉 ;

Return (command)

σ′
de f
=

{
σ.set once proc not fresh(p, f , true) if f .is once ∧ snf
σ otherwise

σ′′
de f
= σ′.pop env(p).revoke locks(q, p)

Γ `〈p :: return(a, f , q, snf); sp, σ〉 →

〈p :: provided σ.passed(q) then notify(a) else nop end; sp, σ
′′〉

Return (query)

(σ′, r′r)
de f
=



if rr , void ∧ σ.ref obj(rr).class type.is exp ∧ σ.handler(rr) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ.import(q, rr)

otherwise
(σ, rr)

σ′′
de f
=

{
σ′.set once func not fresh(p, f , true, rr) if f .is once ∧ snf
σ′ otherwise

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p)

Γ ` 〈p :: return(a, f , rr, q, snf); sp, σ〉 → 〈p :: result(a, r′r); sp, σ
′′′〉

Figure 5.3: Once routine stability clarification: return

The new status sequence prevents reading unstable values, but it can be prob-
lematic when used improperly. Consider a stabilizer p executing a fresh separate
once function whose body has another call to f with a target on a different handler
q. Once p reaches the call, it waits for q to return; however, q cannot execute f
because it is not stable. To prevent this issue, the stabilizer must only call f on
non-separate targets. If p calls a non-once routine h on q instead, q can callback
f on p and thus get an unstable result. Processor p must therefore ensure that the
once result is meaningful before passing any locks.

Clarification 5.2 (Once routines). Just after its first execution in a context, a once
routine f is not fresh and not stable. After the execution of f , f becomes not
fresh and stable. The processor that executes f for the first time is the stabilizer.
Only the stabilizer can execute f while it is not stable. If f is a separate once
function, the stabilizer must only call f on non-separate targets. Furthermore, it
must ensure that the once result is meaningful before any calls with lock passing.
�

5.4. Lock passing for queries 113

5.4 Lock passing for queries
A client only passes its locks when it performs a separate callback or when it has
a lock that the supplier requires directly. Consequently, it does not pass its locks
in a regular query call without arguments.

5.4.1 Flaw

This specification is problematic when the supplier requires one of the client’s
locks in a later call, as can be observed in the following code:

class A create make feature
b: separate B
c: separate C

make
do

create c.make; create b.make (c)
f (b, c)

end

f (b: separate B; c: separate C)
local

t: separate D
do

t := b.g
c.k

end
end

class B create make feature
w: separate C

make (c: separate C)
do

w := c
end

g: D
do

h (w)
create Result.make

end

114 Chapter 5. Testing

h (c: separate C)
do

c.k
end

end

class C create make feature
make

do end

k
do end

end

class D create make feature
make

do end
end

Using Maude’s rew command, a new root processor p1 creates two objects on
two new processors p3 and p5. It then starts executing the feature f and locks the
two request queues:

p1 :: orq : ({}, {p3, p5}) rrq : ({}, {}) rcs : ({}, {}) locked
p3 :: orq : () rrq : () rcs : () locked
p5 :: orq : () rrq : () rcs : () locked

In f, processor p1 performs a query call to processor p3. This query call is
synchronous due to wait by necessity; however, it does not involve lock passing
as processor p3 does not require any locks from processor p1 to execute g:

p1 :: orq : ({}, {p3, p5}) rrq : ({}, {}) rcs : ({}, {}) locked
p3 :: orq : ({}) rrq : ({}) rcs : ({}) locked
p5 :: orq : () rrq : () rcs : () locked

Processor p3 then tries to obtain processor p5’s request queue lock as it exe-
cutes h (w). However, since processor p1 still holds on to this lock while waiting
for its query call to return, the system deadlocks. Maude stops because it cannot
satisfy the premise of the lock operation.

5.5. Lock passing and asynchrony 115

5.4.2 Clarification

This design flaw can be addressed by always passing locks during a query call,
as shown in Figure 5.4. This is not harmful because the client must wait anyway.
The small change also facilitates separate callbacks where the feature call chain
involves query calls (see Section 5.2).

Call feature (query)

q
de f
= σ.handler(r0)

l
de f
=

{
(σ.rq locks(p), σ.cs locks(p)) if q , p
({}, {}) otherwise

σ′0
de f
= σ

∀i ∈ {1, . . . , n} : (σ′i , r
′
i)

de f
=

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ′i−1.import(q, ri)

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) = q
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ′i−1.add obj(q, σ′i−1.ref obj(ri).copy)

otherwise
(σ′i−1, ri)

Γ `〈p :: call(a, r0, f , (r1, . . . , rn)); sp, σ〉 →

〈p :: issue(q, apply(a, r0, f , (r′1, . . . , r
′
n), p, l)); wait(a); sp, σ

′
n〉

Figure 5.4: Query lock passing clarification

Clarification 5.3 (Lock passing). During a query call, a processor passes all its
locks. �

5.5 Lock passing and asynchrony

While returning from a command call (see Figure 3.50 and Figure 5.3), a supplier
p checks whether its client q has passed any locks , in which case it returns them
and sends a notification.

116 Chapter 5. Testing

5.5.1 Flaw

To check whether q has passed any locks, p queries σ.passed(q). In case q has not
passed any locks, the command call is asynchronous, and q can engage in further
feature calls that do involve lock passing. If p returns while q has passed its locks
to another processor, p synchronizes unnecessarily. The following code shows
this scenario:

class A create make feature
make

local
b: separate B
c: separate C

do
create b.make; create c.make
f (b, c)

end

f (b: separate B; c: separate C)
do

b.g −− Asynchronous
c.h (b) −− Synchronous with lock passing

end
end

class B create make feature
make

do end

g
local

b: separate B
do

create b.make
end

end

class C create make feature
make do end

h (b: separate B)
do end

end

5.5. Lock passing and asynchrony 117

It is difficult to experience this flaw using the Maude built-in strategies as
the strategy must ensure that the supplier returns while the client has passed its
locks in another feature call. The following (truncated) custom strategy ensures
the execution order with a client p1, a supplier p3 for the call b.g, and another
supplier p5 for the call c.h (b):

... ;

*** Call b.g asynchronously.
parallelism{

(match (Γ:Program |− proc(1) :: sl:List{Statement}, ic:Nat, σ:State)) ;
callFeatureCommand} ;

... ;

*** Call c.h (b) synchronously with lock passing.
parallelism{

(match (Γ:Program |− proc(1) :: sl:List{Statement}, ic:Nat, σ:State)) ;
callFeatureCommand} ;

... ;

The strategy first lets p1 perform the two feature calls. The first one is asyn-
chronous, and the second one synchronous with lock passing. Hence, p1 waits on
channel a5 for p5. Since p5 has not started the feature application yet, p1 has not
passed its locks yet:

〈

p1 :: wait(a5); . . . |
p3 :: apply(a3, rb, g, (), p1, ({}, {})) |
p5 :: apply(a5, rc, h, (rb), p1, ({p3, p5}, {p1}))

,

locks :
p1 :: orq : ({}, {p3, p5}) rrq : ({}, {}) rcs : ({}, {}) locked
p3 :: orq : () rrq : () rcs : () locked
p5 :: orq : () rrq : () rcs : () locked

〉

The strategy then lets both suppliers start their feature applications. For now,
it only allows p3 to continue all the way and return:

*** Start application of c.h (b).
parallelism{

(match (Γ:Program |− proc(5) :: sl:List{Statement}, ic:Nat, σ:State)) ;
applyFeatureNonOnceOrFresh} ;

118 Chapter 5. Testing

... ;

*** Start application of b.g.
parallelism{

(match (Γ:Program |− proc(3) :: sl:List{Statement}, ic:Nat, σ:State)) ;
applyFeatureNonOnceOrFresh} ;

... ;

*** Return from application of b.g.
parallelism{

(match (Γ:Program |− proc(3) :: sl:List{Statement}, ic:Nat, σ:State)) ;
returnCommand} ;

... ;

Processor p3 notices that p1 has passed its locks (although to p5 and not to p3).
Hence, p3 tries to synchronize with p1 over a3. However, p1 is not waiting for p3

since it has not passed any locks to p3:

〈

p1 :: wait(a5); . . . ; |
p3 :: notify(a3) |
p5 :: execute body(h, {}); . . . |

,

locks :
p1 :: orq : ({}, {p3, p5}) rrq : ({}, {}) rcs : ({}, {}) locked passed
p3 :: orq : () rrq : () rcs : () locked
p5 :: orq : ({}) rrq : ({p3, p5}) rcs : ({p1}) locked

〉

The strategy then lets p5 return as well:

... ;

*** Return from application of c.g (b).
parallelism{

(match (Γ:Program |− proc(5) :: sl:List{Statement}, ic:Nat, σ:State)) ;
returnCommand} ;

... ;

Processor p5 also tries to synchronize with p1 to notify p1 of the returned
locks. Since p1 is actually waiting for p5, the synchronization will succeed. Pro-
cessor p3 remains stuck trying to synchronize with p1.

5.5. Lock passing and asynchrony 119

〈

p1 :: wait(a5); . . . ; |
p3 :: notify(a3) |
p5 :: notify(a5) |

,

locks :
p1 :: orq : ({}, {p3, p5}) rrq : ({}, {}) rcs : ({}, {}) locked
p3 :: orq : () rrq : () rcs : () locked
p5 :: orq : () rrq : () rcs : () locked

〉

5.5.2 Clarification

This flaw can be fixed by replacing the condition σ.passed(q) in the return op-
eration. The supplier p must check whether the client q has passed any locks
to p. For this reason, the return operation must take the received locks (lr, lc)
and only synchronize if (lr, lc) is not empty. Figure 5.5 shows the changes to the
return variant for commands; the variant for queries must be adapted accord-
ingly. The transition rules for feature applications (see Figure 3.46, Figure 3.51,
and Figure 3.52) must be adapted to invoke return with the received locks.

RETURN ,
return TUPLE〈CHANNEL, FEATURE, PROC,

TUPLE〈SET〈PROC〉, SET〈PROC〉〉, BOOLEAN〉 |
return TUPLE〈CHANNEL, FEATURE, REF, PROC,

TUPLE〈SET〈PROC〉, SET〈PROC〉〉, BOOLEAN〉 ;

Return (command)

σ′
de f
=

{
σ.set once proc not fresh(p, f , true) if f .is once ∧ snf
σ otherwise

σ′′
de f
= σ′.pop env(p).revoke locks(q, p)

Γ `〈p :: return(a, f , q, (lr, lc), snf); sp, σ〉 →

〈p :: provided (lr, lc) , ({}, {}) then notify(a) else nop end; sp, σ
′′〉

Figure 5.5: Lock revocation notification clarification

Clarification 5.4 (Lock passing). A supplier p of a command call must only syn-
chronize with the client q, if q has passed any locks to p. �

120 Chapter 5. Testing

5.6 Related work

Verification of programming models requires either testing or developing proofs.
This section discusses related work from both angles.

5.6.1 Testing of programming models

Ostroff et al. [173] present an operational semantics for a SCOOP subset and
use it in a model checker to verify small SCOOP programs. In contrast, our ap-
proach focuses on discovering flaws in the SCOOP model and not on program
verification. Although their formal semantics covers some of the most significant
aspects of SCOOP, it falls short of describing a number of other critical aspects
(see Table 5.2): selective locking, lock passing, separate callbacks, once routines,
expanded objects with the import operation, explicit processor specifications, as
well as postcondition and invariant evaluations. Further, their formal semantics
introduces an unnecessary limitation for queries: a processor p executing a query
must not perform any calls to other processors.

Brooke et al. [37] present an operational semantics of SCOOP in CSP [91]
and use a model checker to test the model with example programs. They explore
different lock passing mechanisms and different strategies to release locks. They
conclude that a supplier can unlock as soon as its client stops using it. Compared
to our formal semantics, which comprehensively models SCOOP, the CSP model
focuses only on the core SCOOP concepts (see Table 5.2) – automatic locking and
unlocking, preconditions with wait semantics, wait by necessity, and lock passing
– and does not cover other important aspects of SCOOP – selective locking, sepa-
rate callbacks, once routines, expanded objects with the import operation, explicit
processor specifications, as well as postcondition and invariant evaluations. Since
the CSP model does not support expression evaluations, it simulates precondition
evaluations with two events per feature call, one for a satisfied precondition and
one for a failed precondition.

Ellison [65] uses K [187] to describe an operational semantics of C [111,113]
with support for threads. He gains confidence in his semantics by testing it against
a GCC test suite. For SCOOP, we had to compose our own test suite because no
systematic test suite was available. Ellison uses Maude’s LTL model checker and
search command to show mutual exclusion in Dekker’s algorithm and deadlock-
freedom in a dining philosophers implementation. His approach is similar to our
approach, with the major difference that he does not use it to develop and clarify
a concurrency model.

AlTurki and Meseguer [7,8] implement a structural operational semantics [179]
and an equivalent but more efficient reduction semantics [71] for Orc [157, 169]
using Maude’s real time extension [171]. Orc is a concurrency model and pro-

5.6. Related work 121

Table 5.2: Comparison of formal semantics for SCOOP. The marks indicate the
supported aspects, where stands for complete support, and G# stands for partial
support.

semantics lo
ck

in
g,

pr
ec

on
di

tio
ns

,a
nd

un
lo

ck
in

g

w
ai

tb
y

ne
ce

ss
ity

lo
ck

pa
ss

in
g

se
pa

ra
te

ca
llb

ac
ks

on
ce

ro
ut

in
es

im
po

rt

ex
pl

ic
it

pr
oc

es
so

rs
pe

ci
fic

at
io

ns

po
st

co
nd

iti
on

s
an

d
in

va
ri

an
ts

fa
ilu

re
s

pa
ss

iv
e

pr
oc

es
so

rs

Morandi (this thesis)
Ostroff et al. [173] G#
Brooke et al. [37] G#
Bailly [17] G#

gramming language for task orchestration. It provides constructs to orchestrate
the concurrent execution of services while managing timeouts, priorities, and fail-
ures. AlTurki and Meseguer use Maude’s search command and the LTL model
checker to verify safety and liveness properties of Orc programs such as a dining
philosopher implementation and an online auction system. They extend [9] their
structural operational semantics to also model distribution using Maude’s support
for TCP sockets. Using the distributed semantics, they apply time-bounded LTL
model checking to a distributed version of the online auction system. However,
they do not use their semantics to clarify or develop Orc. Since SCOOP does not
have any real-time constructs, we did not use Maude’s real time extension.

Meredith et al. [143] use Maude to develop an operational semantics for a
subset of a Verilog [101] precursor. They use the semantics to find a bug in a
Verilog implementation by comparing the two outputs of a Verilog program.

Sperber et al. [199] define an operational semantics for a Scheme [100] subset
in PLT Redex [70]. Their semantics comes with an extensive test suite. Although
they do not point out any clarifications, the test suite is likely to have been helpful
in the development of the semantics.

Palmer et al. [176] use TLA+ [129] to introduce a formal semantics for a
subset of an MPI [146] precursor. They show a number of issues in the in-
formal description, discovered during formalization, and establish independence
theorems for MPI operations. Furthermore, they present a tool that translates

122 Chapter 5. Testing

an MPI program with embedded assertions into TLA+, invokes the TLC model
checker [223], and reports the results in terms of the program code. They use their
tool to verify a few MPI programs. Li et al. [131] provide a more comprehensive
MPI semantics in TLA+ and discuss issues in the MPI description, found during
formalization. They use the semantics to prove the correctness of the completes-
before relation [207]. By model checking a comprehensive test suite with TLC,
they demonstrate the semantics’ self-consistency and adherence to the informal
description, but they do not report any flaws in MPI found during testing.

Mousavi et al. [159, 160] develop an operational semantics in Maude for a
subset of Reo [12], a coordination model with basic and composed connectors that
link nodes to each other. They present a number of connectors and use Maude’s
LTL mode checker to verify one of them, but they do not report any findings on
the coordination model.

Verdejo and Martı́-Oliet [209] describe various formal semantics of program-
ming models implemented in Maude. Some of those semantics have intricate
features, which make the implementation challenging, but they are still very com-
pact compared to SCOOP. Thatia, Sen, and Martı́-Oliet develop a formal seman-
tics [203] of an asynchronous version of the π-calculus [156].

Farzan et al. [68, 69] use Maude to introduce an operational semantics for a
source code and bytecode subset of a Java [82, 132] precursor. To alleviate anal-
ysis, a front-end called JavaFAN translates programs and properties into Maude.
It then invokes Maude’s execution capabilities, i.e., the rewrite or frewrite com-
mands to find one possible execution and the search command or the LTL model
checker to prove or disprove a property. Finally, JavaFAN presents the results in
a readable format. In contrast to our work, Farzan et al. mostly check properties
of Java programs and do not focus on the development of a concurrency model.

Attali et al. [14] present an operational semantics of Eiffel// [47] in CEN-
TAUR [31]. A natural semantics [120] specifies inheritance and dynamic binding,
and a structural operational semantics [179] specifies the remaining aspects. An
interactive environment serves as the front-end for the semantics. The front-end
supports developing programs, changing the semantics, and browsing through
different executions. It visualizes the executions either graphically or textually.
While the front-end has a built-in deadlock detection, the authors do not report
any testing results.

Kulas and Beierle [126] develop an operational semantics for Prolog [106,
108, 110, 114] in Maude. However, they do not use any test programs to clarify
the programming model.

Testing has also been applied to memory models. Batty et al. [20] present an
axiomatic semantics for a draft version of the C++ memory model [112] in Is-
abelle/HOL [165] along with definitions for data races, unsequenced races, and
indeterminate reads. They develop a tool called CPPMEM that finds all poten-

5.6. Related work 123

tial executions of a program, filters the ones allowed by the axiomatic semantics,
and reports any flaws. During the formalization effort and using CPPMEM, they
report a number of flaws in the informal description of the memory model. To
validate their semantics of the memory model, they prove semantic preservation
of a compilation scheme from a program with their semantics to a program with
the x86-TSO semantics [174, 194].

Since CPPMEM searches exhaustively for potential executions, its usage has
been limited to small programs. To skip the exhaustive search, Blanchette et
al. [23] propose an improved version of Nitpick, Isabelle’s SAT-based model
finder, and an adapted axiomatic semantics instead of CPPMEM. They show that
this approach scales better to larger programs.

Torlak et al. [204] also use a SAT solver to develop MemSAT, another tool to
explore memory models. MemSAT takes an axiomatic semantics of a memory
model and a test program with assertions. It returns executions in which both the
assertions and the memory model axioms are satisfied. The authors used Mem-
SAT to check existing memory models against test cases and report on subtle
discrepancies. Tools like MemSAT, CPPMEM, and earlier ones [221, 222] do
not comprehensively analyze a concurrency model as they focus on the memory
model; hence, they are not suited to study full-fledged concurrent programs.

5.6.2 Proofs for programming models

The maturity of reasoning frameworks has led to a growing interest in proofs
for large formal semantics of programming models and the compilation process.
Klein and Nipkow [122] use Isabelle/HOL [165] to present an operational seman-
tics for a single-threaded Java subset with its bytecode and prove type safety. They
also formalize the source to bytecode compiler and prove that the compilation pre-
serves the semantics and well-typedness. Lochbihler [136] extends this work with
an axiomatic semantics of the Java memory model and all of Java’s concurrency
features in a precursor of the informal description [82, 132] except deprecated
methods, timing-related methods, vendor-specific extensions, and (discouraged)
spurious wake-ups. He proves type safety up to deadlocks, sequential consis-
tency for correctly synchronized programs, and the existence of a legal execution
for every well-formed program. For the compilation process, he shows semantic
preservation including deadlocks and data races. To demonstrate that the oper-
ational semantics faithfully follows the informal description, he uses Isabelle’s
code generator to extract a source code and byte code interpreter as well as a com-
piler. He uses the interpreter to run a test suite and compare the results to the ones
from the Java reference implementation. Using this technique, he finds a flaw with
binary operators, confirming that testing of executable formal semantics is benefi-
cial even after proving important properties. In contrast to Lochbihler’s approach,

124 Chapter 5. Testing

our approach focuses on prototyping. As testing gives a faster feedback than fully
formal proofs, our approach emphasizes testing to improve an executable formal
semantics until it meets the developers expectations.

Boldo et al. [25] use the Coq [22] proof assistant to prove that the Com-
pCert [130] compiler preserves the floating-point semantics of a C [111,113] pre-
cursor. Similarly, Batty et al. [19] use the theorem prover HOL4 [197] to prove
the correctness of the proposed compilation schemes for the C++ [112] load and
store concurrency primitives.

Wasserrab [211] uses Isabelle/HOL [165] to implement an operational seman-
tics for a large subset of a C++ [112] precursor. He proves type safety in presence
of multiple inheritance. Just like Lochbihler [136] he uses Isabelle’s code gener-
ator to obtain an interpreter. However, he does not report on any testing results.
Similarly, Norrish [166, 167] uses HOL to provide operational semantics for a
large subset of a C [111,113] precursor and a large subset of a C++ [112] precur-
sor. For C, he proves type safety and progress; for C++, he proves that a test suite
behaves as expected.

Stärk et al. [200] introduce an operational semantics for a large source code
and bytecode subset of a Java [82, 132] precursor. The semantics is based on
ASMs [29, 85] implemented in AsmGofer [191]. Stärk et al. also formalize the
source to bytecode compiler and the bytecode verifier, but they only formalize a
simplified memory model. A number of manual proofs show type safety, seman-
tic preservation during compilation, soundness and completeness of the bytecode
verifier, as well as soundness of the thread synchronization mechanism. Further
manual proofs show under what assumptions a compiled program can be success-
fully verified and executed. Also based on ASMs, Fruja et al. [28, 75, 119] use
AsmL [86] to present a formal semantics for a subset of a C# [104] precursor.
During the formalization effort, they found a number of weak points in the infor-
mal description. However, they neither prove any theorems nor do they report on
any testing results.

Numerous non-executable formal semantics facilitate proofs for programs and
programming models. Wehrmann et al. [213] present a timed operational seman-
tics and an event-based denotational semantics for Orc [157, 169]. They show
the equivalence of the two semantics as well as many other properties for expres-
sions [212].

Cenciarelli et al. [50] define an operational semantics for a subset of a Java [82]
precursor. They combine the operational semantics with a denotational one by
extending execution configurations with a history of events that took place. An
axiomatic semantics uses the events to restrict the result configurations reachable
from a start configuration. They show that the formal semantics only allows exe-
cutions that are also allowed by the informal description.

Ábrahám [1] also presents an operational semantics for a subset of a Java [82]

5.7. Discussion 125

precursor, focusing on dynamic thread creation and re-entrant monitors. The oper-
ational semantics is the basis of a sound and complete proof system for invariants.
For a given invariant, a tool generates a set of verification conditions, to be proven
in PVS [175].

Bailly [17] presents an operational semantics with a sound and complete proof
system for a subset of SCOOP. He uses the proof system to establish safety prop-
erties of SCOOP programs. The operational semantics does not serve as a formal
reference of SCOOP because it does not cover selective locking, lock passing,
separate callbacks, once routines, expanded objects with the import operation, ex-
plicit processor specifications, as well as postcondition and invariant evaluations
(see Table 5.2). Furthermore, it has limited support for expression evaluations,
and it assumes that clients lock their suppliers in conditional critical regions rather
than at the beginning of a feature application.

5.7 Discussion
The testing effort revealed four flaws in SCOOP. The two flaws in Section 5.2
and Section 5.4 can be found with the Maude built-in execution strategies because
they do not depend on a particular schedule. The other two flaws in Section 5.3
and Section 5.5 only appear under particular schedules, not reproducible with the
deterministic built-in strategies. Thus, these flaws can only be found by providing
a custom strategy or by applying an exhaustive strategy. The latter strategy is in
general infeasible due to state explosion. The exhaustive search can, however, be
successful if it finds the right schedule early.

126 Chapter 5. Testing

6 Asynchronous exceptions

The previous chapters showed the benefits of applying the prototyping method to
an existing model. The benefits do not end there: the method also facilitates the
development of model extensions. This and the next chapter apply the method
to two new mechanisms. This chapter extends SCOOP with a mechanism for
asynchronous exceptions.

An exception is the result of a failure – the inability of the supplier to fulfill its
promise towards its client. The supplier raises the exception, and some processor
must propagate the exception, i.e., react to it by changing the control flow, and
subsequently handle it by executing a dedicated sequence of instructions. The
failure context consists of two parts: the failed context is the supplier’s context,
and the responsible context is the context in which the client made the invocation.
An asynchronous exception is an exception raised during an asynchronous feature
call, e.g., a feature call to a command without lock passing. Due to the asyn-
chrony, the client might already have continued its execution and no longer be
in a position to propagate the exception. An asynchronous exception mechanism
specifies where, when, and how the asynchronous exception propagates.

For SCOOP, two mechanisms [13,35] for asynchronous exceptions have been
proposed. However, these mechanisms are not fully satisfactory (see Section 6.7).
To develop a new mechanism, this chapter first classifies and discusses exist-
ing approaches for asynchronous exceptions. It then presents the accountability
framework to describe, comprehend, and compare asynchronous exception mech-
anisms: only within a well-defined range is the supplier obliged to report failures,
and it only does so if it is held accountable. Based on the classification and the
accountability framework, it then derives a new mechanism for SCOOP.

127

128 Chapter 6. Asynchronous exceptions

6.1 Classification of approaches

The literature contains a wide variety of asynchronous exception mechanisms.
Some mechanisms support multiple approaches to combine the advantages and
compensate for the disadvantages of these approaches. Figure 6.1 shows a classi-
fication of approaches. On the top level, the classification differentiates between

in clientin supplier in supervisor

full

asynchrony

restricted

asynchrony

dynamic

masking

semi-dynamic

masking

static

masking
no masking synchronization-

oriented

implicit

polling

explicit

polling

transaction-

oriented

How to deal with an

asynchronous exception?

call-specific

handler

supplier-specific

handler

full

asynchrony

restricted

asynchrony

dispatch-

oriented

in cooperation

full

asynchrony

restricted

asynchrony

Figure 6.1: Classification of approaches to deal with an asynchronous excep-
tion. The figure omits repeating the subdivisions for the supervisor-based and
cooperation-based approaches.

locations where an asynchronous exception can propagate. In case the supplier
propagates the exception, the client does not have to expect an exception; it can
be assured that the supplier will take care of any exceptions. Moreover, the sup-
plier can handle the exception in the failed context. As a disadvantage, the client
has no direct way of telling whether its call succeeded. Furthermore, the supplier
might not always be able to draw the right conclusions on behalf of the client, as it
does not have access to the responsible context. The handler can either be defined
in the supplier or it can come from the client via an argument. Supplier-specific
handlers are common: any mechanism where a supplier can deal with an exception
in a local handler falls into this category; one example is SaGE [58]. Call-specific
handlers are less common, but there are mechanisms, such as JR [170], using this
approach. Call-specific handlers contain clean-up code specified by the client; in
general, however, the client does not know how to clean up the supplier without
violating information hiding principles. Supplier-specific handlers do not have
this problem.

The case that the client propagates the exception supports a response in the re-
sponsible context, but in turn the client does not have access to the failed context.

6.1. Classification of approaches 129

Table 6.1 lists the mechanisms that support this kind of propagation. The classi-
fication differentiates two cases: full asynchrony and restricted asynchrony. With
full asynchrony, the exception can propagate anytime unless the client masked the
exception. This approach is well-suited for reactive systems. However, program-
mers have to program under the assumption of interruptibility. Furthermore, there
is a risk of race conditions: the timing of the propagation depends on the relative
speed between the client and the supplier (see Figure 6.2).

client supplier

asynchronous call

fail

unmask

mask

(a) The client does not propagate the exception.

client supplier

asynchronous call

failunmask

mask

exception

(b) The client propagates the exception.

Figure 6.2: Race condition with full asynchrony. Figure 6.2a and Figure 6.2b
show two executions for two different relative speeds between the client and the
supplier. In Figure 6.2a, the client does not propagate the supplier’s exception
because the client has masked exceptions. In Figure 6.2b, the client propagates
the exception because it has not yet masked exceptions.

For masking, Krischer [125] differentiates several possibilities:

• Dynamic masking. Propagation is enabled until it is disabled by an opposing
call. One example is Haskell [140] with its block and unblock operations.

• Semi-dynamic masking. Propagation is enabled only within a dedicated pro-
gram block. Examples include Haskell [140] with its scopes, µC++ [40],
and SR [96].

• Static masking. Propagation is enabled within a dedicated program block,
but only when the client is statically in the block. Examples include the
mechanism proposed by Krischer [125] and RTSJ [26].

• No masking. Propagation is always enabled. Examples include SaGE [58]
with its client-based handlers, Erlang [66] with its exit signals over pro-
cess links, Arche [116] where a client propagates exceptions as a result of
incoming method calls, and ARMI [183] with its callback mechanism.

130 Chapter 6. Asynchronous exceptions

Table
6.1:

C
lassification

of
m

echanism
s

w
ith

propagation
in

the
client.

T
he

m
arks

indicate
the

supported
approaches.

T
he

horizontallines
group

m
echanism

s
w

ith
a

sim
ilarfocus.

m
echanism

fullasynchrony
restricted

asynchrony

dynam
ic

sem
i-dynam

ic
static

no
explicitpolling

im
plicitpolling

m
asking

m
asking

m
asking

m
asking

transaction
synchronization

dispatch

H
askell[140]

X
X

µC
+

+
[40]

X
X

X
SR

[96]
X

K
rischer[125]

X
X

R
T

SJ
[26]

X
SaG

E
[58]

X
E

rlang
[66]

X
X

A
rche

[116]
X

A
B

C
L

/1
[98]

X
X

M
odula-3

[163]
X

X

A
rgus

[133]
X

X
A

valon
/C

+
+

[216]
X

busy
processor[13]

X

X
10

[188]
X

R
M

IX
[127]

X
Fortress

[3]
X

C
ilk

Plus
[102]

X
ProA

ctive
[48]

X
X

R
intala

[186]
X

A
R

M
I[183]

X
X

failed
object[35]

X
X

6.1. Classification of approaches 131

With restricted asynchrony, the exception can only propagate when the client
polls the supplier, thus alleviating the interruptibility issue. This comes at the
price of a delay between the moment the supplier raises the exception until the
client propagates it, which might be unacceptable for reactive systems. More-
over, polling adds to the execution time even when there are no exceptions. This
polling overhead can be diminished, in case the client waits for the supplier any-
way to first finish its workload upon polling; as a further advantage of this, race
conditions cannot occur because the supplier always knows about its failures be-
fore answering. The classification differentiates between explicit polling, where
the client polls using dedicated polling constructs, and implicit polling, where the
client polls in the course of executing constructs that are not solely dedicated to
exceptions. Mechanisms that offer explicit polling include µC++ [40], Krischer’s
mechanism [125], Erlang [66] with its exit signal traps, ABCL/1 [98] where the
client can wait for exception messages, Modula-3 [163] with its alert tests, and
ProActive [48] with its exception queries and try block barriers. With the explicit
polling approach, it is clear when the client polls. By restricting the propagation
to dedicated points, programmers can first focus on the normal behavior and deal
with exceptions in a second step. Furthermore, programmers are free to synchro-
nize as often as necessary, thus mitigating unwanted delays. As a drawback, the
language or its library must introduce a primitive for this purpose. The implicit
polling approach does not suffer from this; programmers must however be aware
of the constructs that imply polling. To poll implicitly, there are three categories:

• Transaction-oriented polling. The client polls at specific points in a trans-
action. Examples include Argus [133] with its coenter statement and Aval-
on/C++ [216] with its costart statement. Arslan and Meyer’s busy processor
approach [13] for SCOOP also falls into this category: the client polls for
exceptions while locking the supplier. This approach fits well for languages
with transactions; furthermore, it is clear when the client must expect an ex-
ception. However, transaction-oriented polling alone is too coarse-grained
for scenarios where the client has to know about exceptions at a location
that is not related to a transaction.

• Synchronization-oriented polling. The client polls upon synchronization
with the supplier. Examples include Modula-3 [163] with its alert joins
and alert wait, Argus [134] with its synch statement, X10 [188] with its
finish statement, RMIX [127], Fortress [3] with its val method, and Cilk
Plus [102] with its sync statement. One example for SCOOP is Brooke
and Paige’s failed object mechanism [35]: after an object caused an ex-
ception, it is marked as failed; any future client propagates an exception
upon a synchronous call. Further examples include languages with futures:

132 Chapter 6. Asynchronous exceptions

µC++ [40], ABCL/1 [98], Argus [134] with its promises, ProActive [48],
Rintala’s C++ futures [186], and ARMI [183] with its delayed delivery
mechanism. A future represents a result that a supplier is computing asyn-
chronously. When the client needs the result, it accesses the future. This
forces the client to wait until the result is available or the supplier raises
an exception. In the latter case, the client propagates the exception. With
the synchronization-oriented approach, the client polls when it has to wait
anyway; hence, it can diminish parts of the polling time. The approach
also helps to mitigate unwanted delays: programmers are free to poll as of-
ten as necessary. Race conditions cannot occur with this approach because
the supplier finishes its workload upon polling, and hence, it always knows
about its failures before answering. On the downside of synchronization-
oriented polling, programmers have to remember all possible implicit syn-
chronization points.

• Dispatch-oriented polling. The client polls whenever it dispatches a mes-
sage to the supplier. Brooke and Paige’s failed object mechanism [35] also
falls into this category; the client propagates an exception upon an asyn-
chronous call as well. This approach helps to mitigate unwanted delays
because every dispatch is a poll point. However, this approach can intro-
duce race conditions because a dispatch does not wait for the supplier to
finish the issued workload. Furthermore, programmers have to be aware
that each call causes polling.

Besides using the supplier or the client, a supervisor can be used to propa-
gate the exception. The supervisor monitors the supplier to act upon exceptions.
This approach supports the separation of normal behavior from exceptional be-
havior. Supervisors neither have access to the responsible context nor to the failed
context; they can, however, have a global view on the system, as they can be super-
vising multiple suppliers. Similar to propagation in the client, the supervisor can
be based on full asynchrony or restricted asynchrony. In µC++ [40], a supervisor
comes into place when a supplier raises an exception in a task different from the
client. Such a supervisor is in general not solely dedicated to monitoring; hence,
µC++ makes use of full asynchrony with semi-dynamic masking and restricted
asynchrony with explicit polling. In Erlang [66], supervisors are dedicated to
monitoring; hence, they are based on full asynchrony with no masking. The same
is true for Ajanta [206] with its guardian agents. In Arche [116], a client specifies
supervisors upon calling; the supervisors treat the exceptions as incoming method
calls. In ABCL/1 [98], each call specifies a number of supervisors through com-
plaint destinations; the supervisors use explicit polling to propagate exceptions.
Modula-3 [163] supports supervisors with explicit polling and implicit polling.

6.2. Accountability framework 133

Finally, the exception can propagate in an entire cooperation with several
threads performing a job together. CA actions [185,219] provide a general frame-
work for coordinated exception handling. This approach supports a collaborative,
yet member-specific response in the responsible context, but the coordination is
costly and the members do not have access to the failed context. As with the prop-
agation in clients and supervisors, the members can propagate the exception using
full asynchrony or restricted asynchrony. For example, the Guardian model [154]
follows the fully asynchronous approach.

6.2 Accountability framework
Each of the mechanisms discussed in Section 6.1 differs from the others in some
way. On an abstract level, however, each of them addresses the same set of es-
sential questions. This section introduces the accountability framework, identi-
fying these questions and providing concepts to answer them. In governance,
Schedler [189] defines accountability:

A is accountable to B when A is obliged to inform B about A’s (past
or future) actions and decisions, to justify them, and to suffer punish-
ment in the case of eventual misconduct.

In essence, accountability is the obligation to inform about a failure and to
take the consequences. It not only applies in governance, but also to threads.
Accountability describes a supplier’s obligation to inform about its failure after a
failed asynchronous invocation. The supplier is either accountable to its client, to
a supervisor, to a cooperation, or to no one, as it is the case with propagation in the
supplier. Definition 6.1 introduces accountability for threads. It defines concepts
that appear in all mechanisms and uses them to identify the essential questions
that each mechanism answers individually. The concepts and the questions form
the accountability framework.

Definition 6.1 (Accountability framework). Consider a client that expects a sup-
plier to perform some activities on its behalf. When the supplier fails, it performs
a local reaction. An observer performs a remote reaction in response to the fail-
ure. The supplier is accountable to the observer for one of its activities if it is
guaranteed to report any inability to fulfill the promise about the activity made.
When the observer asks the supplier to report a failure, the observer is said to hold
the supplier accountable. The guarantee is called an accountability. While the
guarantee lasts, the accountability is said to be alive; afterwards it is expired. To
instantiate this conceptual framework for a particular mechanism, the following
questions must be answered:

134 Chapter 6. Asynchronous exceptions

• What is the supplier’s local reaction?

• Who is the observer?

• When does an accountability become alive and when does it expire?

• When does the observer hold the supplier accountable?

• What is the observer’s remote reaction?

�

The accountability framework and the classification from Section 6.1 can be
used as a guide to develop new mechanisms: the accountability framework de-
fines the primary questions to be answered; the classification discusses possible
answers from the literature. The framework can also be used to describe existing
approaches.

6.3 Accountability framework instantiations

To demonstrate the generality of the accountability framework, this section de-
scribes three diverse mechanisms. Section 6.3.1 instantiates the framework for
µC++ [40], Section 6.3.2 for Erlang [66], and Section 6.3.3 for SaGE [58].

6.3.1 Accountability for µC++

µC++ [40] extends C++ [112] with language constructs for concurrency. A task
can asynchronously spawn another task and retrieve results from it over a future.
The supplier fails by executing a throw or resume statement.

What is the supplier’s local reaction? Programmers can enclose code blocks
with two kinds of handlers: termination handlers and resumption handlers. When
a supplier executes a throw statement, it continues the execution in the nearest
enclosing termination handler; after the supplier completes, it continues after the
termination handler. When a supplier executes a resume statement, it executes
the nearest enclosing resumption handler; after the supplier completes, it returns
to the statement after the resume statement. A resume statement can optionally
specify a different task to be informed about the failure, in which case the supplier
remembers its failure and continues. In case the supplier issued a future to a client,
it can additionally use the future to remember its failure.

Default handlers exist for the case no explicit termination or resumption han-
dler has been defined. The default termination handler terminates the program;

6.3. Accountability framework instantiations 135

the default resumption handler initiates a search for a termination handler from
the point of the initial resume statement.

Who is the observer? An observer comes into place when the supplier executes
a resume statement that specifies another task; the specified task becomes the
observer. This task can either be the client, or any other task that is dedicated to
supervise the supplier. A task also becomes an observer when it receives a future
from the supplier.

When does an accountability become alive and when does it expire? A sup-
plier’s accountability becomes alive with the creation of the supplier, and it ex-
pires when all its observers terminate. Consequently, the supplier might remain
accountable after it terminates.

When does the observer hold the supplier accountable? An observer holds
a supplier accountable when executing a block where masking is disabled, when
executing a poll statement, or when querying a future from the supplier.

What is the observer’s remote reaction? When the observer learns of a sup-
plier’s failure by accessing a future, it executes the nearest enclosing termination
handler; the observer then continues after the termination handler. In all other
cases, the observer behaves as if it executed a resume statement, i.e., it executes
the nearest enclosing resumption handler and then returns to the statement after
the resume statement.

6.3.2 Accountability for Erlang

Erlang [66] is a functional programming language whose concurrency support is
based on the actor model [89]. An actor is a thread that responds to incoming
asynchronous messages from other actors; in response to a message, the actor
can either create other actors, send messages to other actors, or determine new
behavior for future messages. In Erlang, actors are termed processes, and these
processes can be linked to each other.

What is the supplier’s local reaction? When a supplier fails, it remembers the
failure, terminates, and waits until it is held accountable.

Who is the observer? Dedicated supervisors are responsible for monitoring
processes. Each supervisor has a list of child specifications that specifies the pro-
cesses to be monitored. A supervisor can also monitor another supervisor, per-
mitting a supervision tree. In addition to supervisors, a linked client is also an
observer.

When does an accountability become alive and when does it expire? An ac-
countability becomes alive with the creation of a process; it expires with the ter-
mination of all observers.

When does the observer hold the supplier accountable? A supervisor holds
its monitored processes permanently accountable; it uses full asynchrony without

136 Chapter 6. Asynchronous exceptions

masking. A linked client can have a trap to convert the failure of a supplier into an
exit message. In case a linked client has a trap, it holds the supplier accountable
when it responds to the exit message; otherwise, it holds the supplier permanently
accountable.

What is the observer’s remote reaction? The list of child specifications de-
termines for each monitored process how the supervisor will react upon a failure;
possible reactions are restart or shutdown. For both restart and shutdown, there
are a number of strategies to choose from. For instance, the supervisor can either
restart just the failed process or all monitored processes. A linked client with a
trap processes the supplier’s failure as a message whereas a linked client without
a trap fails.

6.3.3 Accountability for SaGE

SaGE [58] is an exception mechanism for languages using the active object pat-
tern [59]. The active object pattern provides a solution to decouple an invocation
in one object from the resulting execution in another object by giving an own
thread of control to each object; this pattern is often used to implement the actor
model [89]. In SaGE, each object scans its received messages. When an object
decides to accept a request in a message, it spawns a service that processes the
message concurrently. The service, i.e., the client, can then send messages to
other objects, causing further services, i.e., the suppliers, to be created.

What is the supplier’s local reaction? Programmers can attach handlers to
services or objects. When a supplier fails, it first searches for a matching handler
attached to itself. If no such handler exists, the supplier searches for a matching
handler attached to its owner object. In case the supplier finds a handler in this
way, it executes the handler. If the supplier does not fail during the execution
of the handler, it terminates along with its own suppliers. If the supplier fails
during the execution of the handler, or if it does not find a handler, it remembers
the failure and waits until it is held accountable. After it is held accountable, the
supplier terminates along with its suppliers.

Who is the observer? The observer is the client that called the faulty supplier.
When does an accountability become alive and when does it expire? An ac-

countability becomes alive when an object creates a service. The accountability
expires when the service terminates.

When does the observer hold the supplier accountable? A client holds a called
supplier permanently accountable, i.e., even after the client terminates. The client
uses full asynchrony without masking.

What is the observer’s remote reaction? In addition to handlers attached to
services and objects, programmers can also attach handlers to requests. When a
client learns about the failure of a supplier, it first searches for a matching handler

6.4. Informal description 137

that is attached to the corresponding request. If no such handler exists, the client
evaluates a resolution function. The purpose of the resolution function is to ag-
gregate and filter exceptions from different suppliers. If an exception remains, the
client treats the supplier’s failure as its own.

6.4 Informal description
The proposed exception mechanism for SCOOP builds on an existing mechanism
for non-concurrent programs. This section first presents the non-concurrent mech-
anism and then uses the accountability framework to develop the concurrent one
for SCOOP.

6.4.1 Exceptions in non-concurrent SCOOP programs

The presented mechanism for SCOOP relies on the rescue-retry approach for non-
concurrent programs [150]. While this approach originates in Eiffel, languages
such as Ruby [99] or Jass [18] have also adopted it. In the rescue-retry approach
there are two possible responses to a failure:

• Organized panic. The supplier admits that the promise cannot be fulfilled.
It brings all affected objects to a consistent state and reports the failure by
passing the exception to its client.

• Resumption. The supplier attempts to fix the reasons for the failure and
retries the execution.

Programmers decide on the appropriate response by providing a rescue clause
(rescue keyword) for each feature; features without an explicit rescue clause im-
plicitly have an empty one. Whenever the supplier fails, it executes the rescue
clause to put affected objects back into a consistent state. If the supplier reaches
the end of the rescue clause, it reports the failure to the client (organized panic).
The supplier can leave the rescue clause by executing a retry instruction (retry
keyword), in which case it restarts the feature execution (resumption). Before

retrying, the supplier must ensure that the new attempt is more successful, e.g., by
trying a different strategy.

As an example, consider an application that explores a search space to find
solutions to a problem. A controller triggers two concurrent searchers. A log
records the solutions.

138 Chapter 6. Asynchronous exceptions

class CONTROLLER feature
start (

first searcher: separate SEARCHER;
second searcher: separate SEARCHER;
log: separate LOG

)
−− Use the searchers to search for a solution; log one of the solutions.

do
first searcher.search; second searcher.search −− Search concurrently.
log.add entry (first searcher, second searcher) −− Record one of the solutions.

end
end

The class SEARCHER has a feature search to find a solution using a random
search with a new seed. If the new seed is invalid, the searcher raises an ex-
ception, and the rescue clause restores the seed before reporting the failure. The
postcondition expresses the promise.

class SEARCHER feature
seed: INTEGER −− The seed used in the random search.
solution: STRING −− The result.

search
−− Search for a solution.

do
−− Get the seed from atmospheric noise.

seed := atmospheric noise
if seed >= 0 then

solution := random solution (seed) −− Search.
else

raise −− Fail.
end

ensure
not equal (solution, Void)

rescue
seed := 0 −− Restore consistency.

end

invariant seed >= 0 −− The consistency criterion.
end

6.4. Informal description 139

6.4.2 Accountability for SCOOP

The main goal of SCOOP is to provide concurrency mechanisms that are simple
to understand and to use [150,164]; the asynchronous exception mechanism must
be designed in the same spirit. This is part of the following requirements:

• Comprehensibility. The mechanism must be easy to understand.

• Compatibility. It must be compatible with the existing mechanism for non-
concurrent programs (see Section 6.4.1).

• Consistency. It must guarantee the consistency of a failed supplier.

What is the supplier’s local reaction? To satisfy the compatibility and the con-
sistency requirements, the supplier must execute its rescue clause to reestablish its
consistency, as explained in Section 6.4.1. The rescue clause is a supplier-specific
handler. Without a retry instruction, the supplier first determines whether the fea-
ture call is asynchronous or synchronous. For an asynchronous call, the supplier
remembers the failure and cleans up. The supplier purges any remaining feature
requests from the client since they depend on the postcondition of the failed call.
It also releases its obtained locks and returns any retrieved locks. It then waits
until it is held accountable or until its accountability expires. For a synchronous
call, the supplier notifies the client. It neither remembers the failure nor purges
any feature requests; hence, it remains available for further work. This definition
ensures compatibility.

Who is the observer? Propagation in a supervisor or in a cooperation would
not be suitable for SCOOP because these approaches are not compatible with the
existing exception mechanism for non-concurrent programs; by definition, a non-
concurrent program cannot have a supervisor or cooperation members working in
parallel to the main execution. The client is a better observer. Using the client
as the observer, the mechanism meets the compatibility requirement because the
non-concurrent mechanism also displays a division of labor between the supplier
and the client.

When does an accountability become alive and when does it expire? To an-
swer this question, it is helpful to consider when a client can assume the promise
of a supplier fulfilling the postcondition of an issued feature call: this is the case
as long as the supplier’s request queue is locked; as soon as the request queue
is unlocked, the client no longer has any guarantees because another processor
could have modified the supplier. A client relies on a promise of a supplier by
performing a synchronous feature call while it can still assume the promise. We
argue that a supplier’s failure only matters when the client relies on the promise of
the supplier. This view is compatible with the view on asynchrony in SCOOP: the

140 Chapter 6. Asynchronous exceptions

supplier is required to establish the promise of an asynchronous feature call not
immediately, but instead when the client relies on the promise [150, 164]. There-
fore, a failure does not matter anymore when the client can no longer assume the
promise. For the proposed mechanism, this means that a supplier is accountable
as long as its request queue is locked. By letting an accountability expire, SCOOP
programs can become more fault-tolerant. Because a supplier always restores the
consistency of a failed object, this object can safely be accessed again.

Lock passing complicates the situation. When a client p passes a lock on a
supplier to a new client p′, p transfers the supplier’s accountability to p′; when
p′ returns the lock to p, p′ also returns the accountability. For the duration of
lock passing, p′ is the observer. Accountability transfer extends the responsible
context to include all feature executions along the lock passing chain. When a
client p passes its call stack lock to another processor p′, p′ becomes an observer
with a new accountability. This accountability expires when p′ returns the call
stack lock.

One question remains: does it make sense for a client not to rely on a promise?
It does, for example, when the client spawns multiple suppliers but only wants the
results from some of them. In Section 6.4.1, the log might not care about the
second searcher if the first searcher found a satisfying solution. In absence of a
cancellation mechanism, the log must ignore the second searcher by not synchro-
nizing with it.

Mechanisms using futures, e.g., ProActive [48], also allow an accountability
to expire: when the client does not query the future, the accountability expires.
For some programs, however, it might not be safe to forget about failures. The
answer to the next question includes a solution for these cases.

When does the observer hold the supplier accountable? Restricted asynchrony
is suited for SCOOP because it alleviates the interruptibility issue and thus keeps
the mechanism comprehensible. With restricted asynchrony, a client can poll im-
plicitly or explicitly. Implicit, synchronization-oriented polling fits SCOOP well.
SCOOP has three types of synchronization points: query calls, non-separate calls,
and calls with lock passing. With synchronization-oriented polling, each such call
triggers the client to hold its supplier accountable, making the proposed mecha-
nism compatible. In a non-concurrent program, every feature call is non-separate;
hence, every feature call becomes a poll point in the proposed mechanism, just
as in the underlying mechanism. Furthermore, synchronization-oriented polling
ensures that the supplier finishes issued feature calls before reporting, thus pre-
venting race conditions (see Section 6.1). This would not be guaranteed with
dispatch-oriented polling, where the client would hold the supplier accountable
during asynchronous feature calls as well.

An accountability expires as soon as the supplier unlocks its request queue.
With expiration of the accountability, past failures disappear as well. There are,

6.4. Informal description 141

however, some programs where failures must not disappear. For this reason,
the mechanism has a safe mode, in which a client holds its locked suppliers ac-
countable before their accountabilities expire. This mode is based on transaction-
oriented polling. The safe mode ensures that no failure is lost, but it also reduces
the potential for concurrency. In the safe mode, the client can no longer just asyn-
chronously issue unlock requests and then continue. It first has to wait until the
suppliers finished.

In summary, a client must synchronize with a supplier to learn about a failure.
For long-lived suppliers, this might not be convenient for the client. For these
cases, failures in suppliers can also be handled entirely in the supplier’s local
reaction, for example, with a callback to the client.

What is the observer’s remote reaction? When the client learns about a failure
of its supplier, it treats the failure as its own failure. Consequently, it assumes the
role of a supplier for its own client. This ensures compatibility.

Definition 6.2 (Exception mechanism). The following instantiation of the account-
ability framework describes the SCOOP exception mechanism:

• What is the supplier’s local reaction? The supplier executes its rescue
clause. Without a retry instruction, the supplier first determines whether
the feature call is asynchronous or synchronous. For an asynchronous call,
the supplier remembers the failure and cleans up. It purges any remaining
feature requests from the client, releases its obtained locks, and returns any
retrieved locks. It then waits until it is held accountable or until its account-
ability expires. For a synchronous call, the supplier notifies the client.

• Who is the observer? The client is the observer.

• When does an accountability become alive and when does it expire? A
supplier becomes accountable when its request queue gets locked; this ac-
countability expires when the supplier unlocks its request queue. When
the supplier passes its call stack lock, it creates a new accountability; this
accountability expires when the supplier retrieves its call stack lock.

• When does the observer hold the supplier accountable? The client holds
the supplier accountable as it synchronizes with the supplier.

• What is the observer’s remote reaction? The client treats a supplier’s failure
as its own failure.

�

142 Chapter 6. Asynchronous exceptions

As an example, consider again the searcher program. Figure 6.3 shows an ex-
ecution in which the controller calls the two searchers and passes them to the log.
Meanwhile, the first searcher fails. Due to lock passing, the searchers’ account-
abilities persist throughout start and add entry.

lock rq

log processorsecond searcher processor

rescue

failure

controller processor first searcher processor

rescue

failure

search

rescue

unlock rq

add_entry (first_searcher, second_searcher)

solution

Figure 6.3: The interactions between the controller, the searchers, and the log.
The shaded areas indicate the searchers’ accountabilities.

The following class describes the log that writes the solutions to disk.

class LOG feature
add entry (

first searcher: separate SEARCHER;
second searcher: separate SEARCHER

)
−− Log one of the solutions of the searchers.

do
−− Has the first searcher found a solution?
if not first searcher.solution.is empty then
−− Yes. Log the first solution.
write (first searcher.solution)

else
−− No. Log the second solution.
write (second searcher.solution)

end
end

end

6.5. Formal specification 143

By calling solution synchronously, the log holds the first searcher accountable,
fails, and reports the failure to the controller, who is waiting for the locks to return.

6.5 Formal specification
Support for exceptions is a cross-cutting concern because exceptions propagate
through the system. This section describes the changes to the formal specifica-
tion organized according to the structure in Chapter 3. It also introduces a new
mechanism to support jumps between feature bodies and rescue clauses.

6.5.1 Intermediate representation

Every program of type PROGRAM defines settings of type SETTINGS. To support
exceptions, SETTINGS has a query safe mode that returns whether the program
is in safe mode (see Figure 6.4). Hence f .class type.program.settings.safe mode
returns whether a feature f is part of a program in safe mode.

PROGRAM

classes : SET<CLASS_TYPE>

settings : SETTINGS

SETTINGS

root_class : CLASS_TYPE

root_procedure : FEATURE

safe_mode : BOOLEAN

Figure 6.4: Types for the intermediate representation: failure support

6.5.2 Heap and regions

A processor p remembers a failure resulting from an asynchronous feature call if
it cannot recover in a rescue clause. For this purpose, REGIONS has one more
query has failed that returns whether p has failed; the command set failed sets
p’s failure status. A new processor starts without a failure as can be seen in Fig-
ure 6.5. REGIONS does not keep track of accountabilities because a processor’s
accountability lasts exactly as long as its request queue is locked.

Just like a non-once routine, a once routine can also fail; however, a failed
once routine must fail again if invoked later on. For this reason, HEAP must keep
track of once routines that have failed. Figure 6.6 shows the changes. The state
facade mirrors the changes in Figure 6.5 and Figure 6.6.

144 Chapter 6. Asynchronous exceptions

has failed : REGIONS→ PROC 9 BOOLEAN
k.has failed(p) require

k.procs.has(p)
set failed : REGIONS→ PROC 9 BOOLEAN → REGIONS

k.set failed(p, hf) require
k.procs.has(p)

axioms
k.set failed(p, hf).has failed(p) = hf

add proc : REGIONS→ PROC 9 REGIONS
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).last added proc = p
k.add proc(p).handled objs(p).empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).empty
k.add proc(p).retrieved cs locks(p).empty
¬k.add proc(p).passed(p)
¬k.add proc(p).has failed(p)

Figure 6.5: REGIONS: failure support

6.5. Formal specification 145

has failed : HEAP→ PROC → ID9 BOOLEAN
h.has failed(p, i) require
¬h.fresh(p, i)

set once func not fresh : HEAP→ PROC → FEATURE 9 BOOLEAN → BOOLEAN
→ REF 9 HEAP

h.set once func not fresh(p, f , st, hf , r) require
f ∈ FUNCTION ∧ f .is once
r , void ⇒ h.refs.has(r)

axioms
(∃d, c : Γ ` f : (d, •, c))⇒
¬h.set once func not fresh(p, f , st, hf , r).fresh(p, f .id)∧
h.set once func not fresh(p, f , st, hf , r).stable(p, f .id) = st∧
h.set once func not fresh(p, f , st, hf , r).stabilizer(p, f .id) = p∧
h.set once func not fresh(p, f , st, hf , r).has failed(p, f .id) = hf∧

h.set once func not fresh(p, f , st, hf , r).once result(p, f .id) =

{
r if ¬hf
void if hf

(∃d, c : Γ ` f : (d, p, c) ∧ p , •)⇒ ∀q ∈ PROC :
¬h.set once func not fresh(p, f , st, hf , r).fresh(q, f .id)∧
h.set once func not fresh(p, f , st, hf , r).stable(q, f .id) = st∧
h.set once func not fresh(p, f , st, hf , r).stabilizer(q, f .id) = p∧
h.set once func not fresh(p, f , st, hf , r).has failed(q, f .id) = hf∧

h.set once func not fresh(p, f , st, hf , r).once result(q, f .id) =

{
r if ¬hf
void if hf

set once proc not fresh : HEAP→ PROC → FEATURE 9 BOOLEAN → BOOLEAN
→ HEAP

h.set once proc not fresh(p, f , st, hf) require
f ∈ PROCEDURE ∧ f .is once

axioms
¬h.set once proc not fresh(p, f , st, hf).fresh(p, f .id)
h.set once proc not fresh(p, f , st, hf).stable(p, f .id) = st
h.set once proc not fresh(p, f , st, hf).stabilizer(p, f .id) = p
h.set once proc not fresh(p, f , st, hf).has failed(p, f .id) = hf

Figure 6.6: HEAP: failure support

146 Chapter 6. Asynchronous exceptions

6.5.3 Failure anchor mechanism

In case of a failure in a feature f , processor p aborts the feature body and executes
f ’s rescue clause. If p executes a retry instruction, it aborts the rescue clause and
retries the feature body. The failure anchor mechanism supports these statement
jumps. A failure anchor is an operation in p’s action queue providing a jump
target with statements for different scenarios. Figure 6.7 shows the structure of
the failure anchor. The failure anchor has a boolean flag that indicates whether a
failure has occurred. Further, it has sections for different scenarios:

• The rescue section contains statements to rescue after a failure, provided
the preceding boolean flag is true.

• The retry section contains statements to retry during a rescue.

• The failure section contains statements to fail.

• The normal section contains statements to be executed in case of no failure.

• The final section contains statements to be executed in case of no failure
and to fail.

FAILURE ANCHOR ,
failure anchor BOOLEAN
final STATEMENT SEQUENCE
normal STATEMENT SEQUENCE
rescue BOOLEAN STATEMENT SEQUENCE
retry STATEMENT SEQUENCE
failure STATEMENT SEQUENCE

end ;
FAIL , fail |
fail

rescue BOOLEAN STATEMENT SEQUENCE
retry STATEMENT SEQUENCE
failure STATEMENT SEQUENCE

end ;

Figure 6.7: Failure anchor mechanism: operations

6.5. Formal specification 147

To fail, p calls raise as described in Figure 6.8.

Call runtime (raise)

Γ ` 〈p :: call(r0, raise, ()); sp, σ〉 → 〈p :: fail; sp, σ〉

Figure 6.8: Runtime calls: failure support

By performing this runtime call, p executes the fail operation. The fail
operation has optional sections to overwrite the rescue, retry, and failure
sections of the next failure anchor in p’s action queue. Figure 6.9 shows the tran-
sition rules: to fail with overwrite, p skips the statements s1; sn to the next failure
anchor, sets the failure flag to true, overwrites the sections, and then continues
with the failure anchor; to fail without overwrite, p only changes the failure flag.

Processor p then executes the failure anchor, as described in Figure 6.10. If
the rescue flag is set, p sets up a new failure anchor where the rescue flag is not
set and executes the rescue statements; the new failure anchor provides a jump
target for a retry instruction, as described in Figure 6.11. In case p encounters a
retry instruction, p replaces the remaining statements with the retry statements
of the new failure anchor; it also sets the failure flag of the new failure anchor
to false, providing a jump target for new failures. Without a retry instruction, p
reaches the new failure anchor but does not execute the rescue statements again;
instead p executes the final statements followed by the failure statements.

If p reaches a failure anchor without a failure, it executes the final statements
followed by the normal statements (see Figure 6.10).

148 Chapter 6. Asynchronous exceptions

Fail (without failure anchor overwrite)
∀i ∈ 1, . . . , n : ¬si ∈ FAILURE ANCHOR

Γ ` 〈p :: fail;
s1; . . . ; sn;
failure anchor false
final sfinal

normal snormal

rescue rescue srescue

retry sretry

failure ssfailure

end;
sp, σ〉 →

〈p :: fail rescue rescue srescue retry sretry failure sfailure end;
sp, σ〉

Fail (with failure anchor overwrite)
∀i ∈ 1, . . . , n : ¬si ∈ FAILURE ANCHOR

Γ ` 〈p :: fail rescue rescue′ s′rescue retry s′retry failure s′failure end;
s1; . . . ; sn;
failure anchor false
final sfinal

normal snormal

rescue rescue srescue

retry sretry

failure ssfailure

end;
sp, σ〉 →

〈p :: failure anchor true
final sfinal

normal snormal

rescue rescue′ s′rescue
retry s′retry

failure s′failure

end;
sp, σ〉

Figure 6.9: Failure anchor mechanism: fail transition rule

6.5. Formal specification 149

Failure anchor

Γ ` 〈p :: failure anchor failure
final sfinal

normal snormal

rescue rescue srescue

retry sretry

failure sfailure

end;
sp, σ〉 →

〈p :: provided ¬failure then
sfinal; snormal

else

provided rescue then
srescue;
failure anchor failure
final sfinal

normal snormal

rescue false srescue

retry sretry

failure sfailure

end

else

sfinal; sfailure

end

end;
sp, σ〉

Figure 6.10: Failure anchor mechanism: failure anchor transition rule

150 Chapter 6. Asynchronous exceptions

Retry instruction
∀i ∈ {1, . . . , n} : ¬si ∈ FAILURE ANCHOR

Γ ` 〈p :: retry;
s1; . . . ; sn;
failure anchor true
final sfinal

normal snormal

rescue false srescue

retry sretry

failure ssfailure

end;
sp, σ〉 →

〈p :: sretry;
failure anchor false
final sfinal

normal snormal

rescue rescue true
retry sretry

failure sfailure

end;
sp, σ〉

Figure 6.11: Failure anchor mechanism: retry instruction transition rule

6.5. Formal specification 151

6.5.4 Notification mechanism

To support synchronous failure notifications, the notify operation receives a
new flag that indicates failures, as shown in Figure 6.12. A supplier q executes
notify(a, true) to signal a failure to a client p waiting on channel a; p then propa-
gates the failure. To notify an asynchronous client p, q cannot use notify(a, true)
because p is not waiting on a. Instead, q calls σ.set failed(q) (see Section 6.5.2);
p can then check σ.has failed(q) next time it waits for q and propagate the failure.
To support this, the wait operation receives a new argument for the processor to
wait for, as shown in Figure 6.12.

NOTIFY , notify TUPLE〈CHANNEL, BOOLEAN〉 ;
WAIT , wait TUPLE〈CHANNEL, PROC〉 ;

Wait for result (non-separate)

Γ ` 〈p :: result(a, r); sw; wait(a, p); sp, σ〉 → 〈p :: sw; sp[r/a.data], σ〉

Wait for notify (non-separate)

Γ `〈p :: notify(a, hf); sw; wait(a, p); sp, σ〉 →

〈p :: sw; provided hf then fail else nop end; sp, σ〉

Wait for result (separate)

Γ ` 〈p :: sw; wait(a, q); sp | q :: result(a, r); sq, σ〉 → 〈p :: sw; sp[r/a.data] | q :: sq, σ〉

Wait for notify (separate)

Γ `〈p :: sw; wait(a, q); sp | q :: notify(a, hf); sq, σ〉 →

〈p :: sw; provided hf then fail else nop end; sp | q :: sq, σ〉

Wait for failure (separate)
σ.has failed(q)

Γ ` 〈p :: wait(a, q); sp | q :: sq, σ〉 → 〈p :: fail; sp | q :: sq, σ〉

Figure 6.12: Notification mechanism: failure support

The changes to notify and wait trigger a number of small adaptations: the
transition rules for feature calls, flow control instructions, and assignment instruc-
tions must use the extended signatures.

152 Chapter 6. Asynchronous exceptions

6.5.5 Locking and unlocking mechanism

An accountability of a supplier p expires when p unlocks its request queue using
unlock rq; hence, p can forget about any failures at that point. Figure 6.13
extends the unlock rq operation accordingly. Once p’s request queue gets locked
anew, a new accountability starts.

Unlock request queue
σ.rq locked(p)
∀q ∈ σ.procs : ¬σ.rq locks(q).has(p)

σ′
de f
= σ.unlock rq(p).set failed(p, false)

Γ ` 〈p :: unlock rq; sp, σ〉 → 〈p :: sp, σ
′〉

Figure 6.13: Locking and unlocking mechanism: failure support

6.5.6 Feature applications

A supplier p can encounter a failure while applying a feature f . Hence, it can
either return successfully or with a failure. For this purpose, the return operation
receives a new flag that indicates whether a failure has occurred, as shown in
Figure 6.14 for a successful return and in Figure 6.15 for a return with a failure.
For a successful return, p sets f to not fresh, stable, and not failed if the flag snf
(see Section 5.3) is set; for a failed return, p sets f to not fresh, stable, and failed.
In addition to snf , the return has a new flag sf to indicate whether p should set
f as fresh if f is a once routine; this support is necessary to handle failures in
preconditions. For a failed return, p determines the type of call from the client q:
if the call is non-separate, p fails; if the call is separate and synchronous, p notifies
q of the failure; if the call is separate and asynchronous, p purges any remaining
feature requests using the purge operation described in Figure 6.16. During a
purge, p discards any feature requests until its request queue lock gets released, at
which point p can forget about its failure and accept new feature requests.

6.5. Formal specification 153

RETURN ,
return TUPLE〈CHANNEL, FEATURE, PROC,

TUPLE〈SET〈PROC〉, SET〈PROC〉〉, BOOLEAN, BOOLEAN, BOOLEAN〉 |
return TUPLE〈CHANNEL, FEATURE, REF, PROC,

TUPLE〈SET〈PROC〉, SET〈PROC〉〉, BOOLEAN, BOOLEAN, BOOLEAN〉 ;

Return (successful command)

σ′
de f
=


σ.set once proc not fresh(p, f , true, false) if f .is once ∧ snf
σ.set once rout fresh(p, f) if f .is once ∧ sf
σ otherwise

σ′′
de f
= σ′.pop env(p).revoke locks(q, p)

Γ `〈p :: return(a, f , q, (lr, lc), false, snf , sf); sp, σ〉 →

〈p :: provided (lr, lc) , ({}, {}) then notify(a, false) else nop end;
sp, σ

′′〉

Return (successful query)

(σ′, r′r)
de f
=



if rr , void ∧ σ.ref obj(rr).class type.is exp ∧ σ.handler(rr) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ.import(q, rr)

otherwise
(σ, rr)

σ′′
de f
=


σ′.set once func not fresh(p, f , true, false, rr) if f .is once ∧ snf
σ′.set once rout fresh(p, f) if f .is once ∧ sf
σ′ otherwise

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p)

Γ ` 〈p :: return(a, f , rr, q, (lr, lc), false, snf , sf); sp, σ〉 → 〈p :: result(a, r′r); sp, σ
′′′〉

Figure 6.14: Return: success

154 Chapter 6. Asynchronous exceptions

Return (failure)

σ′
de f
=



if f ∈ FUNCTION ∧ f .is once ∧ snf
σ.set once func not fresh(p, f , true, true, void)

if f ∈ PROCEDURE ∧ f .is once ∧ snf
σ.set once proc not fresh(p, f , true, true)

if f .is once ∧ sf
σ.set once rout fresh(p, f)

otherwise
σ

σ′′
de f
=

{
σ′.set failed(p, true) if p , q ∧ f < FUNCTION ∧ (lr, lc) = ({}, {})
σ′ otherwise

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p)

Γ `〈p :: return(a, f , q, (lr, lc), true, snf , sf); sp, σ〉 →

〈p :: provided p = q then fail else
provided f < FUNCTION ∧ (lr, lc) = ({}, {}) then
purge

else

notify(a, true)
end

end;
sp, σ

′′′〉

Figure 6.15: Return: failure

PURGE , purge ;

Purge request queue unlock request

Γ ` 〈p :: purge; unlock rq; sp, σ〉 → 〈p :: unlock rq; sp, σ〉

Purge feature request

Γ ` 〈p :: purge; apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 → 〈p :: purge; sp, σ〉

Purge notification request

Γ ` 〈p :: purge; notify(a, false); sp, σ〉 → 〈p :: purge; sp, σ〉

Figure 6.16: Purging

6.5. Formal specification 155

To apply a non-once routine or a fresh once routine f , p sets f to not fresh,
not stable, and not failed if f is a once routine. It then sets up a failure anchor as
shown in Figure 6.18. Without a failure, p releases the locks and returns success-
fully, setting f to stable and not failed if f is a once routine. In case of a failure, p
executes the rescue clause, as described in Figure 6.17; in case f is a once func-
tion, p updates f ’s once status as not fresh, not stable, and not failed whenever it
writes to the result entity. In case of a retry, p restores the feature body. Without a
retry, p releases the locks and returns with a failure, setting f to stable and failed
if f is a once routine. After setting up the failure anchor, p obtains the necessary
locks and checks the precondition. Once the precondition is satisfied, p executes
the body of f . It then evaluates the postcondition and the invariant.

EXECUTE RESCUE CLAUSE , execute rescue clause TUPLE〈FEATURE〉 ;

Execute rescue clause

Γ `〈p :: execute rescue clause(f); sp, σ〉 →

〈p :: provided f ∈ FUNCTION ∧ f .is once then
f .rescue clause

[result := y; set not fresh(f)/result := y]
[create result.y; set not fresh(f)/create result.y]

else

f .rescue clause
end;
sp, σ〉

Set not fresh
f ∈ FUNCTION ∧ f .is once
σ.envs(p).top.names.has(result.name)

σ′
de f
= σ.set once func not fresh(p, f , false, false, σ.val(p, result.name))

Γ ` 〈p :: set not fresh(f); sp, σ〉 → 〈p :: sp, σ〉

Figure 6.17: Execute rescue clause

156 Chapter 6. Asynchronous exceptions

Apply feature (non-once routine or fresh once routine)
f ∈ ROUTINE ∧ (f .is once⇒ σ.fresh(p, f .id))
σ.handler(r0) = p

σ′
de f
=



if f ∈ FUNCTION ∧ f .is once
σ.set once func not fresh(p, f , false, false, void)

if f ∈ PROCEDURE ∧ f .is once
σ.set once proc not fresh(p, f , false, false)

otherwise σ

σ′′
de f
= σ′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

grequired rq and cs locks
de f
= {p}∪

{x ∈ PROC | ∃i ∈ {1, . . . , n}, g, c : Γ ` f .formals(i) : (!, g, c)∧
σ′′.ref obj(ri).class type.is ref ∧ x = σ′′.handler(ri)}

grequired cs locks
de f
=

{x ∈ grequired rq and cs locks | x = p∨
(x , p ∧ σ′′.passed(x) ∧ ¬σ′′.passed(p) ∧ σ′′.cs locks(p).has(x)}

grequired rq locks
de f
= grequired rq and cs locks \ grequired cs locks

{g1, . . . , gm}
de f
= gmissing rq locks

de f
= {x ∈ grequired rq locks | ¬σ

′′.rq locks(p).has(x)}
a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: check pre and lock(a, f , q, (lr, lc), gmissing rq locks);
execute body(f , gmissing rq locks); check post and inv(f);
failure anchor false
final

issue(g1, unlock rq); . . . ; issue(gm, unlock rq);
pop obtained locks

normal

provided f ∈ FUNCTION then
read(result, a′); return(a, f , a′.data, q, (lr, lc), false, true, false)

else

return(a, f , q, (lr, lc), false, true, false)
end

rescue true execute rescue clause(f)
retry execute body(f , gmissing rq locks); check post and inv(f)
failure return(a, f , q, (lr, lc), true, true, false)

end; sp, σ
′′〉

Figure 6.18: Non-once or fresh once routine application: failure support

6.5. Formal specification 157

A precondition is either a correctness condition or a wait condition. If vio-
lated, a correctness condition remains violated because the state of its feature call
targets cannot change; since it is the client’s responsibility to establish the pre-
condition, the client fails. A wait condition, on the other hand, involves targets
that can change between evaluations; the supplier waits until the precondition is
satisfied. According to the informal description, a correctness condition only in-
volves feature calls on targets that are controlled in the calling context. This static
property does not precisely cover all scenarios where the correctness condition
cannot change. For example, consider a client obtaining a request queue lock on
a target at the beginning of a non-separate call sequence; in the last non-separate
call, it synchronously calls the supplier and passes the target as an argument. The
supplier has a failed precondition on the target; it determines that the precondition
is a wait condition because the target is not controlled. However, since the target
is locked and the client is waiting, the precondition will not change. A dynamic
property is more precise: a precondition of a feature is a correctness condition
if the feature call is synchronous and the client has a lock on each target. This
property implies that all targets remain unchanged because both the client and
the supplier are waiting, and no other processor can access the targets; hence the
precondition remains unchanged.

Clarification 6.1 (Preconditions). A precondition of a feature f is a correctness
condition if and only if (1) the call to f is synchronous and (2) the client claims
the request queue lock or the call stack lock for every target in the precondition.
Every other precondition is a wait condition. �

Figure 6.19 shows the revised transition rule to check a precondition. The
supplier p first determines the handlers g of the precondition targets: for each
target, it determines the controlling entity and finds the handler of that entity;
p itself is not part of this set. It then determines whether the precondition is a
correctness condition (see cc), i.e., (1) the call is synchronous because it is non-
separate (p = q), it is a function call (f ∈ FUNCTION), or it involves lock
passing ((lr, lc) , ({}, {})), and (2) the client q claims a lock for every target (g ⊆
σ.rq locks(q) ∪ σ.cs locks(q)). If p finds a correctness condition unsatisfied, it
fails to propagate the failure to the client. Because p is not responsible for the
failure, it must not execute a rescue clause, and it must set f to fresh again if f is
a once routine. To do so, it overwrites the failure anchor accordingly. If p finds a
wait condition unsatisfied, it releases the locks and tries again.

158 Chapter 6. Asynchronous exceptions

CHECK PRE AND LOCK ,
check pre and lock TUPLE〈CHANNEL, FEATURE, PROC,
TUPLE〈SET〈PROC〉, SET〈PROC〉〉, SET〈PROC〉〉 ;

Check precondition and lock

targets(e)
de f
=

{
{e0}
⋃

i=1,...,n targets(ei) if e = e0.h(e1, . . . , en)
{} otherwise

g
de f
= {x ∈ σ.procs | (∃y, z ∈ EXPRESSION : y ∈ targets(f .pre)
∧ z = controlling entity(Γ, y)) ∧ x = σ.handler(σ.val(p, z.name)) ∧ x , p}

a is fresh

cc
de f
= (p = q ∨ f ∈ FUNCTION ∨ (lr, lc) , ({}, {}))∧

(g ⊆ σ.rq locks(q) ∪ σ.cs locks(q))

Γ `〈p :: check pre and lock(a, f , q, (lr, lc), {g1, . . . , gm}); sp, σ〉 →

〈p :: lock({g1, . . . , gm});
provided f .has pre then
eval(a, f .pre);
wait(a, p);
provided a.data then
nop

else

provided cc then
fail

rescue false nop
retry nop

failure return(a, f , q, (lr, lc), true, false, true)
end

else

issue(g1, unlock rq);
. . .

issue(gm, unlock rq);
pop obtained locks;
check pre and lock(a, f , q, (lr, lc), {g1, . . . , gm})

end

end

else

nop

end;
sp, σ〉

Figure 6.19: Check precondition and lock: failure support

6.5. Formal specification 159

Figure 6.20 shows the transition rule to execute the body of f . If f is a once
function, then p sets the once result as not fresh, not stable, and not failed when-
ever it writes to the result entity. To support the safe mode, execute body re-
ceives the set of processors {g1, . . . , gn}whose request queues p is going to release.
In case p executes a program in safe mode, it asks each processor in {g1, . . . , gn}

to send a notification after finishing the issued workload; p then waits for these
processors. In case none of them fails, p receives a notification from each of them
and continues; in case a processor g ∈ {g1, . . . , gn} fails asynchronously, g records
its failure in the state (see Figure 6.15) and purges the notification request along
with all further feature requests (see Figure 6.16); p then propagates the failure
(see Figure 6.12).

EXECUTE BODY , execute body TUPLE〈FEATURE, SET〈PROC〉〉 ;

Execute body
∀i ∈ {1, . . . , n} : ai is fresh

Γ `〈p :: execute body(f , {g1, . . . , gn}); sp, σ〉 →

〈p :: provided f ∈ FUNCTION ∧ f .is once then
f .body

[result := y; set not fresh(f)/result := y]
[create result.y; set not fresh(f)/create result.y]

else

f .body
end;
provided f .class type.program.settings.safe mode then
issue(g1, notify(a1, false)); . . . ; issue(gn, notify(an, false));
wait(a1, g1); . . . ; wait(an, gn)

else

nop

end;
sp, σ〉

Figure 6.20: Execute body: failure support

160 Chapter 6. Asynchronous exceptions

After the body execution, p evaluates the postcondition and the invariant, as
shown in Figure 6.21. If p finds one of them not to hold, it fails; this time, p is
responsible for the contract violation.

Check postcondition and invariant
ainv is fresh
apost is fresh

Γ `〈p :: check post and inv(f); sp, σ〉 →

〈p :: provided f .has post then
eval(apost, f .post); wait(apost, p);
provided apost.data then nop else fail end

else

nop

end;
provided f .class type.has inv ∧ f .is exported then
eval(ainv, f .class type.inv); wait(ainv, p);
provided ainv.data then nop else fail end

else

nop

end; sp, σ〉

Figure 6.21: Check postcondition and invariant: failure support

To apply a once routine f that is not fresh, p sets up a failure anchor, as can be
seen in Figure 6.23. In case f has failed, p does not execute a rescue clause but
simply fails again without changing the status of f ; in case of no failure, p returns
as before, not changing the status of f . To apply an attribute, p behaves as before.

Apply feature (attribute)
f ∈ ATTRIBUTE
σ.handler(r0) = p

σ′
de f
= σ.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, ())

a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: eval(a′, f); wait(a′, p);
return(a, f , a′.data, q, (lr, lc), false, false, false); sp, σ

′〉

Figure 6.22: Attribute application: failure support

6.5. Formal specification 161

Apply feature (not fresh once routine)
f ∈ ROUTINE ∧ f .is once∧
¬σ.fresh(p, f .id) ∧ (σ.stable(p, f .id) ∨ σ.stabilizer(p, f .id) = p)

σ.handler(r0) = p

σ′
de f
= σ.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: provided σ′.has failed(p, f) then
fail

else

nop

end;
failure anchor false
final nop

normal

provided f ∈ FUNCTION then
return(a, f , σ′.once result(p, f .id), q, (lr, lc), false, false, false)

else

return(a, f , q, (lr, lc), false, false, false)
end

rescue false nop
retry nop

failure return(a, f , q, (lr, lc), true, false, false)
end;
sp, σ

′〉

Figure 6.23: Not fresh once routine application: failure support

162 Chapter 6. Asynchronous exceptions

6.6 Testing

The test suite used in Chapter 5 also includes tests for the exception mechanism.
These tests revealed two flaws concerning the safe mode in the initial design.

6.6.1 Safe mode order

Before releasing the request queue locks of {g1, . . . , gn} in safe mode, processor p
asks each g ∈ {g1, . . . , gn} to send a notification after finishing the issued workload;
p then waits for these processors.

Flaw

The order in which p asks for notifications is problematic. Consider the following:

class A create make feature
make

local
b1: separate B
b2: separate B

do
create b1.make; create b2.make
f (b1, b2)

end

f (b1: separate B; b2: separate B)
do

b1.g
b2.h

end
end

class B create make feature
make

do end

g
do raise end

h
do end

end

6.6. Testing 163

Using Maude’s rew command, a new root processor p1 creates two objects on
two new processors p3 and p5. It starts executing the feature f and locks the two
request queues. It then asynchronously calls both of them; p5 succeeds, but p3

fails, purging any further feature requests and recording its failure in the state. In
the meantime, p1 issues notification requests to both processors and waits for their
report:

〈

p1 :: wait(a3, p3); wait(a5, p5); . . . |
p3 :: purge; notify(a3, true) |
p5 :: notify(a5, true)

,

locks :
p1 :: orq : ({}, {p3, p5}) rrq : ({}, {}) rcs : ({}, {}) locked
p3 :: orq : () rrq : () rcs : () locked
p5 :: orq : () rrq : () rcs : () locked

failures :
p3

〉

Since p3 failed, p1 fails as well without receiving p5’s notification, causing p5

to wait indefinitely.

Clarification

Before releasing the request queue locks of {g1, . . . , gn} in safe mode, processor
p must wait for the notification of each g ∈ {g1, . . . , gn} before asking the next
one for a notification, as shown in Figure 6.24. This change prevents any pending
notifications.

Clarification 6.2 (Failures). Before releasing the request queue locks of proces-
sors {g1, . . . , gn} in safe mode, a processor p asks each g ∈ {g1, . . . , gn} to send a
notification after finishing the issued workload; for all i ∈ {1, n − 1}, p waits for
gi’s notification before asking gi+1. �

164 Chapter 6. Asynchronous exceptions

Execute body
∀i ∈ {1, . . . , n} : ai is fresh

Γ `〈p :: execute body(f , {g1, . . . , gn}); sp, σ〉 →

〈p :: provided f ∈ FUNCTION ∧ f .is once then
f .body

[result := y; set not fresh(f)/result := y]
[create result.y; set not fresh(f)/create result.y]

else

f .body
end;
provided f .class type.program.settings.safe mode then
issue(g1, notify(a1, false)); wait(a1, g1);
. . . ;
issue(gn, notify(an, false)); wait(an, gn)

else

nop

end;
sp, σ〉

Figure 6.24: Safe mode clarification: body execution

6.6. Testing 165

6.6.2 Safe mode and creation procedures

The safe mode should guarantee that no supplier fails without notifying its client.
For this reason, every client p executes a check point after executing a feature
body (see Figure 6.20 and Figure 6.24) to wait for suppliers before releasing their
request queue locks.

Flaw

The current check point does not guarantee that all failures propagate to the client.
Consider the following program:

class A create make feature
make

local
b: separate B

do
create b.make

end
end

class B create make feature
make

do
raise

end
end

Using Maude’s rew command, a new root processor p1 starts executing make.
In make, p1 executes the creation instruction (see Figure 3.53). It creates a new
object on a new processors p3 . It then locks the request queue of p3 and issues
an asynchronous feature call to the failing creation routine. It then releases the
request queue lock; consequently, p3 forgets about its failure. Ending make, p1

executes the safe mode check point. However, p3 has already forgotten its failure;
furthermore, the check point does not check p3 because it only includes processors
reserved at the beginning of make. A similar flaw exists for creation instructions
on entities with explicit processor specifications.

Clarification

This flaw can be resolved with another check point at the end of a creation call, as
exemplified in Figure 6.25. In safe mode, the client p waits for the newly created

166 Chapter 6. Asynchronous exceptions

processor q before releasing its request queue lock. For this purpose, it sets up
a failure anchor: in case of a no failure, p simply releases the lock; in case of a
failure, p releases the lock and then fails.

Clarification 6.3 (Failures). Before unlocking the request queue of a supplier q
after a creation call in safe mode, the client p must query q for any failures and
wait for the notification. �

Creation instruction (separate)

(d, g, c)
de f
= type of (Γ, b)

g = >

q
de f
= σ.new proc

o
de f
= σ.new obj(c)

σ′
de f
= σ.add proc(q).add obj(q, o)

r
de f
= σ′.ref (o)

a is fresh

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: lock({q});
write(b, r, false);
b. f (e1, . . . , en);
provided f .class type.program.settings.safe mode then
issue(q, notify(a, false)); wait(a, q)

else

nop

end;
failure anchor false
final issue(q, unlock rq); pop obtained locks
normal nop

rescue false nop
retry nop

failure fail

end;
sp | q :: nop, σ′〉

Figure 6.25: Safe mode clarification: creation

6.7. Related work 167

6.7 Related work

Section 6.1 classifies and discusses asynchronous exception mechanism found
in the literature. This section zooms in on mechanism for SCOOP. Brooke and
Paige [35] propose three options from which programmers can choose. The first
two options are radical: the first option halts the entire system as a response to
an asynchronous exception; the second option ignores any asynchronous excep-
tions. The third option marks failed objects permanently; any future client holds
the failed object’s handler accountable upon each feature call, i.e., each processor
is an observer of each other processor, and an accountability persists until the end.
The third option is limiting because it prevents cases where it would be valid to
access the failed object once again. In particular, a different context might only
assume that the failed object is consistent; it might not care about past failures.
Hence, it would be valid to access the failed object again, provided that the failed
object’s consistency has been restored. Furthermore, the third option permits race
conditions between the client and the supplier because the supplier is not permit-
ted to finish its workload. On the plus side, polling at each feature call reduces the
propagation delay.

In Arslan and Meyer’s busy processor mechanism [13], a supplier becomes
busy when it fails; only the client that made the faulty feature call can relock
the request queue of the supplier, in which case it holds the supplier accountable.
For this to work, the accountability persists beyond the locking context. This
mechanism causes an exception to propagate in a context where the client cannot
assume the promise of the corresponding feature call. Furthermore, it does not
consider lock passing. If a client of a faulty supplier passes a lock to a second
client, then the second client does not propagate the exception, even though it is
operating in the locking context in which the exception occurred.

6.8 Discussion

This chapter introduced the accountability framework with concepts to describe
asynchronous exception mechanisms and presented a classification of approaches
along with a discussion of their strengths and weaknesses. It used them to derive
a mechanism for asynchronous exceptions in SCOOP. With the proposed mecha-
nism, the client only propagates an asynchronous exception when it synchronizes
with the supplier. Upon synchronization, the client waits for the supplier to finish
all previous asynchronous calls; hence it knows about any past failure, and thus
no data race can occur. The failed supplier reports failures as long as its request
queue remains locked. Once the client releases the lock, it can no longer rely on
the postconditions of the called features because another processor can intervene.

168 Chapter 6. Asynchronous exceptions

Since a failure represents a failed postcondition, the supplier’s failure becomes
irrelevant, and thus the supplier can forget its failure. For applications where this
is not suitable, the mechanism offers a safe mode where the client automatically
synchronizes with a supplier before unlocking its request queue. This semantics
ensures that no processor has to handle the supplier’s failure in a context where
the failure is irrelevant.

The mechanism can be extended with exception resolution [45]. A client can
have more than one supplier, and each supplier can raise an asynchronous ex-
ception. In the proposed mechanism, the client handles the exception of the first
supplier with whom it synchronizes. With exception resolution, the client can col-
lect exceptions from multiple suppliers and handle them together. Examples with
this technique include Rintala’s C++ futures [186], SaGE [58], ProActive [48],
the Guardian model [154], Arche [116], and Java ThreadGroups [80]. Further,
the mechanism can be extended with a reset functionality for suppliers that failed
asynchronously; this functionality can be invoked at the end of a rescue clause or
during a retry instruction.

Another possible extension is lock delegation: a client p can delegate its ob-
tained locks to another client q; after delegation, p asynchronously continues with-
out the delegated locks. This mechanism is useful in case p wants q to continue
its work on a supplier g without unlocking g’s request queue and thus expiring g’s
accountability.

7 Data sharing

SCOOP 07 has no mechanism to share data between processors, and consequently,
writing programs with shared data is clumsy. The shared data must be assigned to
a new processor, handling client’s access requests. For frequent and short read or
write operations, this becomes problematic:

1. Each feature call to the data leads to a feature request in the request queue
of the data processor, which then picks up the request and processes it on
its call stack. This chain of actions creates a considerable overhead. For an
asynchronous write operation, the overhead outweighs the benefit of asyn-
chrony. For a synchronous read operation, the client not only waits for the
data processor to process the request, it also gets delayed further by the
overhead.

2. The data consumes operating system resources (threads, processes, locks,
semaphores) that could otherwise be freed up.

On systems with shared memory, the clients can directly operate on the data,
thus avoiding the overhead. This frees most of the operating system resources
attached to the data processor. To address this need, this chapter applies the proto-
typing method on the development of a new mechanism for shared data: passive
processors. It introduces passive processors informally, extends the formal speci-
fication with support for passive processors, and presents the testing results. Since
performance cannot be evaluated with the executable formal specification alone,
it uses a SCOOP implementation [67] with support for passive processors to ex-
perimentally demonstrate the performance benefits.

169

170 Chapter 7. Data sharing

7.1 Informal description
Before accessing shared data, a processor must ensure its access is mutually ex-
clusive; otherwise, data races can occur. For this purpose, shared data must be
grouped, and each group must be protected through a lock. Since SCOOP proces-
sors offer this functionality already along with execution capabilities, one can use
processors, stripped from their execution capabilities, to group and protect shared
data.

Definition 7.1 (Passive processor). A passive processor q does not have any ex-
ecution capabilities. Its request queue lock protects the access to its associated
objects. A client p holding this lock uses feature calls to operate directly on q’s
associated objects. While operating on these objects, p assumes the identity of q.
Processor q becomes passive when another processor sets it as passive. When q is
not passive, it is active. Processor q becomes active again when another processor
sets it as active. It can only become passive or active when its request queue is
unlocked, i.e., when not being used by any other processor. �

When a processor p operates on the objects of a passive processor q, it assumes
q’s identity. For example, if p creates a literal object or another non-separate
object, it creates this object on q and not on itself; otherwise, a non-separate entity
on q would reference an object on p. Similarly, p copies or imports expanded
objects to q, and it sets a once routine to not fresh on q.

Besides safe and fast data sharing, passive processors have further benefits:

• Minimal user code changes. The feature call primitive unifies sending mes-
sages to active processors and accessing shared data on passive processors,
ensuring minimal code changes to set a processor passive or active. With
respect to the type system, the same types can be used to type objects on
passive and active processors. The existing type system rules ensure that
no object on a passive processor can be seen as non-separate on a different
processor, thus providing type soundness.

• Minimal compiler and runtime changes. To implement passive processors,
much of the existing infrastructure can be reused. In particular, no new code
for grouping objects and for locking request queues is required.

A pipeline system is a good representative for the class of programs targeted
by the proposed mechanism: multiple stages share packages of data. The pipeline
parallel design pattern [142] applies whenever a computation involves sending
packages of data through a sequence of stages that operate on the packages. The
pattern assigns each stage to a different thread, then the stages synchronize with

7.1. Informal description 171

each other to process the packages in the correct order. Using this pattern, each
stage can be mapped for instance to a CPU core, a GPU core, an FPGA, or a
cryptographic accelerator, depending on the stage’s computational needs.

To implement a pipeline system in SCOOP, each stage and each package must
be handled by its own processor to ensure that stages can access the packages in
parallel. Each stage is numbered to indicate its position in the pipeline, and it
receives this position upon creation:

class STAGE create make feature
position: INTEGER −− The stage’s position in the pipeline.

make (new position: INTEGER)
−− Create a stage at the given position.

do
position := new position

end

process (package: separate PACKAGE)
−− Process the package after the previous stage is done with it.

require
package.is processed (position − 1)

do
do work (package) −− Read from and write to the package.
package.set processed (position) −− Set the package processed.

end
end

To process each package in the right order, the stages must synchronize with
each other. For this purpose, each package has two features is processed and
set processed to keep track of the stages that already processed the package. The
synchronization requirement can then be expressed elegantly using SCOOP’s pre-
conditions. The precondition in process delays the execution until the package
has been processed by the previous stage.

class PACKAGE create make feature
number of stages: INTEGER −− The number of stages.
record: RECORD −− The processing history.

make (new number of stages: INTEGER)
−− Create a package in a pipeline with the given number of stages.

do
number of stages := new number of stages

172 Chapter 7. Data sharing

create record.make (1, new number of stages)
end

set processed (stage number: INTEGER)
−− Set the package processed by the given stage.

do
record.put (True, stage number)

end

is processed (stage number: INTEGER): BOOLEAN
−− Is the package processed by the given stage?

do
if stage number >= 1 then

Result := record.item (stage number)
else

Result := True
end

end
end

To avoid the messaging overhead of active processors, packages can be han-
dled by passive processors. To achieve this, it suffices to set a package passive
after its construction. The following code creates a package on a new passive
processor and asks the stages to process the package.

create package.make (data, number of stages); set passive (package)
stage 1.process (package); ... ; stage n.process (package)

No other code changes are necessary. The existing feature calls to the pack-
ages automatically assume the data access semantics. Furthermore, a stage can
still use separate PACKAGE as the type of a package because the stage is still
handled by a different processor than the package. Similarly, a package can still
use the type RECORD for its record because the package still has the same handler
as the record.

Figure 7.1 illustrates the effect of the call to set passive. In Figure 7.1a, active
package processors have a call stack, a request queue, and a stack of locks. The
stage processors send asynchronous (see put) and synchronous (see item) feature
requests. In Figure 7.1b, passive package processors do not have any execution
capabilities. Therefore, the stage processors operate directly and synchronously
on the packages, thus making a better use of their own processing capabilities
rather than relaying all operations to the package processors.

7.2. Formal specification 173

package processor (active)

call stack: package.put(v)

request queue: package.item

locked: yes

locks:

handled objects:

stage processor (active)

call stack: stage.process(package)

request queue: ...

locked: yes

locks: package processor

handled objects:

stage : STAGE package : PACKAGE record : RECORD

(a) The package processors are active.

package processor (passive)

locked: yes

handled objects:

stage processor (active)

call stack: package.put(v) ; stage.process(package)

request queue: ...

locked: yes

locks: package processor

handled objects:

stage : STAGE package : PACKAGE record : RECORD

(b) The package processors are passive.

Figure 7.1: A stage processor processes a package. The stage object, handled
by the left-hand side processor, has a separate reference to the package object,
handled by the right-hand side processor. The package object references a non-
separate record object to remember the processing history.

7.2 Formal specification
To operate on an object of a passive processor, a client assumes the identity of the
passive processor. This section describes the changes to the formal specification.

7.2.1 Regions

To record passiveness, REGIONS has a query passive that returns whether a pro-
cessor p is passive, as shown in Figure 7.2. It also has a command set passive
to set p passive (ip = true) or active (ip = false). When p operates on an object
of a passive processor q, p assumes q’s identity. For this purpose, REGIONS has
a query executes for and a command set executes for. When p operates on q’s
objects, the query executes for(p) returns q. When p operates on its own objects,
executes for(p) returns p. Processor p is active upon creation and assumes its own
identity, as shown in add proc. The state facade mirrors these changes.

174 Chapter 7. Data sharing

passive : REGIONS→ PROC 9 BOOLEAN
k.passive(p) require

k.procs.has(p)
executes for : REGIONS→ PROC 9 PROC

k.executes for(p) require
k.procs.has(p)

set passive : REGIONS→ PROC 9 BOOLEAN → REGIONS
k.set passive(p, ip) require

k.procs.has(p)
ip⇒ k.executes for(p) = p
¬ip⇒ ¬∃q ∈ k.procs : (q , p ∧ k.executes for(q) = p)

axioms
k.set passive(p, ip).passive(p) = ip

set executes for : REGIONS→ PROC 9 PROC 9 REGIONS
k.set executes for(p, q) require

k.procs.has(p)
k.procs.has(q)
p , q⇒ ¬k.passive(p) ∧ k.passive(q)

axioms
k.set executes for(p, q).executes for(p) = q

add proc : REGIONS→ PROC 9 REGIONS
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).last added proc = p
k.add proc(p).handled objs(p).empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).empty
k.add proc(p).retrieved cs locks(p).empty
¬k.add proc(p).passed(p)
¬k.add proc(p).has failed(p)
¬k.add proc(p).passive(p)
k.add proc(p).executes for(p) = p

Figure 7.2: REGIONS: passive processor support

7.2. Formal specification 175

7.2.2 Writing and reading mechanism

When a processor p copies an expanded object while operating on behalf of a
passive processor, p must create the copy on the passive processor. Figure 7.3
reflects this change. Processor p creates the copy on executes for(p): if p operates
on an object of q, the copy is handled by q; otherwise it is handled by p.

Write

(σ′, v′)
de f
=



if
ce∧
v ∈ REF ∧ v , void ∧ σ.ref obj(v).class type.is exp∧
σ.handler(v) = σ.executes for(p)

then
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ.add obj(σ.executes for(p), σ.ref obj(v).copy)

otherwise
(σ, v)

σ′′
de f
= σ′.set val(p, b.name, v′)

Γ ` 〈p :: write(b, v, ce); sp, σ〉 → 〈p :: sp, σ
′′〉

Figure 7.3: Writing and reading mechanism: passive processor support

7.2.3 Literal expressions

When p creates a literal object, p also creates the object on the processor returned
by executes for(p). Figure 7.4 shows the change.

Literal expression
e ∈ LITERAL

σ′
de f
=

{
σ if e = Void
σ.add obj(σ.executes for(p), obj(e)) otherwise

r
de f
=

{
void if e = Void
σ′.last added obj otherwise

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: result(a, r); sp, σ
′〉

Figure 7.4: Literal expressions: passive processor support

176 Chapter 7. Data sharing

7.2.4 Feature calls

To set a processor q passive, another processor p executes set passive(e) with an
expression e referencing an object on q. Processor p evaluates e and performs a
runtime call, as described in Figure 7.5. The runtime call only succeeds once q’s
request queue is unlocked. Once q is passive, p operates directly on q’s objects.
When p performs a call on one of q’s objects, it does not send a feature request to
q; instead, p processes the feature request itself, as shown in Figure 7.6 for query
calls. Processor p first determines the handler q of the target and the processor g
to apply the called feature, i.e., p if q is passive and q otherwise. Processor p then
imports and copies arguments of expanded type to q.

Call runtime (set passive)
¬σ.rq locked(σ.handler(r1))

σ′
de f
= σ.set passive(σ.handler(r1), true)

Γ ` 〈p :: call(r0, set passive, (r1)); sp, σ〉 → 〈p :: sp, σ
′〉

Call runtime (set active)
¬σ.rq locked(σ.handler(r1))

σ′
de f
= σ.set passive(σ.handler(r1), false)

Γ ` 〈p :: call(r0, set active, (r1)); sp, σ〉 → 〈p :: sp, σ
′〉

Figure 7.5: Runtime calls: passive processor support

7.2.5 Feature applications

To apply a feature f on behalf of a passive processor g, p assumes g’s identity,
as shown in Figure 7.7, Figure 7.8, and Figure 7.9. Processor p is not required to
be the handler of the target, as it is the case for calls to active processors; instead,
p must hold a request queue lock on g (see premise). To restore its identity later
on, p saves the identity (see w). It then proceeds on behalf of q using its own
execution capabilities, e.g., its stacks of variable environments and locks. If f is
a fresh once routine, p sets f to not fresh on q. If f is a not fresh once routine, p
queries f ’s status on q and proceeds accordingly. To return a result of expanded
type to a different processor, p imports the result to executes for(q), as described
in Figure 7.10. If the client q is operating on a passive processor, p imports the
result to the passive processor; otherwise it imports the result to q. Finally, p
restores its previous identity. For this purpose, the return operation receives a
new argument w with the previous identity, as shown in Figure 7.10 for queries.

7.2. Formal specification 177

Call feature (query)

q
de f
= σ.handler(r0)

g
de f
=

{
p if σ.passive(q)
q otherwise

l
de f
=

{
(σ.rq locks(p), σ.cs locks(p)) if g , p
({}, {}) otherwise

σ′0
de f
= σ

∀i ∈ {1, . . . , n} : (σ′i , r
′
i)

de f
=

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ′i−1.import(q, ri)

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) = q
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ′i−1.add obj(q, σ′i−1.ref obj(ri).copy)

otherwise
(σ′i−1, ri)

Γ `〈p :: call(a, r0, f , (r1, . . . , rn)); sp, σ〉 →

〈p :: issue(g, apply(a, r0, f , (r′1, . . . , r
′
n), p, l)); wait(a, g); sp, σ

′
n〉

Figure 7.6: Query calls: passive processor support

178 Chapter 7. Data sharing

Apply feature (non-once routine or fresh once routine)

w
de f
= σ.executes for(p)

σ′
de f
= σ.set executes for(p, σ.handler(r0))

f ∈ ROUTINE ∧ (f .is once⇒ σ.fresh(σ′.executes for(p), f .id))
¬σ′.passive(σ′.handler(r0))⇒ σ′.handler(r0) = p
σ′.passive(σ′.handler(r0))⇒ ¬σ′.passed(p) ∧ σ′.rq locks(p).has(σ′.handler(r0))

σ′′
de f
=



if f ∈ FUNCTION ∧ f .is once
σ′.set once func not fresh(σ′.executes for(p), f , false, false, void)

if f ∈ PROCEDURE ∧ f .is once
σ′.set once proc not fresh(σ′.executes for(p), f , false, false)

otherwise σ′

σ′′′
de f
= σ′′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

grequired rq and cs locks
de f
= {p}∪

{x ∈ PROC | ∃i ∈ {1, . . . , n}, g, c : Γ ` f .formals(i) : (!, g, c)∧
σ′′′.ref obj(ri).class type.is ref ∧ x = σ′′′.handler(ri)}

grequired cs locks
de f
=

{x ∈ grequired rq and cs locks | x = p∨
(x , p ∧ σ′′′.passed(x) ∧ ¬σ′′′.passed(p) ∧ σ′′′.cs locks(p).has(x)}

grequired rq locks
de f
= grequired rq and cs locks \ grequired cs locks

{g1, . . . , gm}
de f
= gmissing rq locks

de f
= {x ∈ grequired rq locks | ¬σ

′′′.rq locks(p).has(x)}
a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: check pre and lock(a, f , q, (lr, lc), gmissing rq locks,w);
execute body(f , gmissing rq locks); check post and inv(f);
failure anchor false
final

issue(g1, unlock rq); . . . ; issue(gm, unlock rq);
pop obtained locks

normal

provided f ∈ FUNCTION then
read(result, a′); return(a, f , a′.data, q, (lr, lc),w, false, true, false)

else return(a, f , q, (lr, lc),w, false, true, false) end
rescue true execute rescue clause(f)
retry execute body(f , gmissing rq locks); check post and inv(f)
failure return(a, f , q, (lr, lc),w, true, true, false)

end; sp, σ
′′′〉

Figure 7.7: Non-once or fresh once routine application: passive processor support

7.2. Formal specification 179

Apply feature (not fresh once routine)

w
de f
= σ.executes for(p)

σ′
de f
= σ.set executes for(p, σ.handler(r0))

f ∈ ROUTINE ∧ f .is once ∧ ¬σ′.fresh(σ′.executes for(p), f .id)∧
(σ′.stable(σ′.executes for(p), f .id)∨
σ′.stabilizer(σ′.executes for(p), f .id) = σ′.executes for(p))

¬σ′.passive(σ′.handler(r0))⇒ σ′.handler(r0) = p
σ′.passive(σ′.handler(r0))⇒ ¬σ′.passed(p) ∧ σ′.rq locks(p).has(σ′.handler(r0))

σ′′
de f
= σ′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: provided σ′′.has failed(σ′′.executes for(p), f) then
fail

else

nop

end;
failure anchor false
final nop

normal

provided f ∈ FUNCTION then
return(a, f , σ′′.once result(σ′′.executes for(p), f .id),

q, (lr, lc),w, false, false, false)
else

return(a, f , q, (lr, lc),w, false, false, false)
end

rescue false nop
retry nop

failure return(a, f , q, (lr, lc),w, true, false, false)
end;
sp, σ

′′〉

Figure 7.8: Not fresh once routine application: passive processor support

180 Chapter 7. Data sharing

Apply feature (attribute)

w
de f
= σ.executes for(p)

σ′
de f
= σ.set executes for(p, σ.handler(r0))

f ∈ ATTRIBUTE
¬σ′.passive(σ′.handler(r0))⇒ σ′.handler(r0) = p
σ′.passive(σ′.handler(r0))⇒ ¬σ′.passed(p) ∧ σ′.rq locks(p).has(σ′.handler(r0))

σ′′
de f
= σ′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, ())

a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: eval(a′, f);
wait(a′, p);
return(a, f , a′.data, q, (lr, lc),w, false, false, false);
sp, σ

′′〉

Figure 7.9: Attribute application: passive processor support

7.2. Formal specification 181

RETURN , . . . |
return TUPLE〈CHANNEL, FEATURE, REF, PROC,

TUPLE〈SET〈PROC〉, SET〈PROC〉〉, PROC,
BOOLEAN, BOOLEAN, BOOLEAN〉 ;

Return (successful query)

(σ′, r′r)
de f
=



if
rr , void ∧ σ.ref obj(rr).class type.is exp∧
σ.handler(rr) , σ.executes for(q)

then
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ.import(σ.executes for(q), rr)

otherwise
(σ, rr)

σ′′
de f
=



if f .is once ∧ snf
σ′.set once func not fresh(σ.executes for(p), f , true, false, rr)

if f .is once ∧ sf
σ′.set once rout fresh(σ.executes for(p), f)

otherwise
σ′

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p).set executes for(p,w)

Γ ` 〈p :: return(a, f , rr, q, (lr, lc),w, false, snf , sf); sp, σ〉 → 〈p :: result(a, r′r); sp, σ
′′′〉

Figure 7.10: Query return: passive processor support

182 Chapter 7. Data sharing

7.2.6 Creation instructions

When p creates a non-separate object while operating on behalf of a passive pro-
cessor, p creates the object on the processor returned by executes for(p), as shown
in Figure 7.11.

Creation instruction (non-separate)

(d, g, c)
de f
= type of (Γ, b)

g = •

o
de f
= σ.new obj(c)

σ′
de f
= σ.add obj(σ.executes for(p), o)

r
de f
= σ′.ref (o)

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: write(b, r, false);
b. f (e1, . . . , en);
sp, σ

′〉

Figure 7.11: Non-separate creation instruction: passive processor support

7.3 Testing
The test suite from Chapter 5 also includes tests that combine passive processors
with other SCOOP aspects. These tests revealed one flaw. A supplier p calls
the import feature on an object of expanded type before returning it to a different
processor. If the client q is operating on a passive processor, p imports the result
to the passive processor; otherwise it imports the result to q.

7.3.1 Flaw

If a processor p returns an expanded object from a passive processor g to itself
or another passive processor, it does not import the result (see Figure 7.10). This
negligence is problematic, as the following code shows:

class A create make feature
make

local
b: separate B

do

7.3. Testing 183

create b.make;
set passive (b)
f (b)

end

f (b: separate B)
local

i: INTEGER
do

i := b.g
end

end

class B create make feature
make

do end

g: INTEGER
do

Result := 0
end

end

Using Maude’s rew command, a new root processor p1 creates a new object
on a new passive processors p3. It starts executing the feature f and locks p3’s
request queue to execute the query b.g on behalf of p3 (see Figure 7.7). It saves its
identity, i.e., w = p1 and assumes p3’s identity, i.e., executes for(p1) = p3. It then
creates a new expanded object with reference r on p3, i.e., handler(r) = p3, and
assigns r to the result entity. When p1 returns (see Figure 7.10), it does not import
r because handler(r) = p3 = executes for(p1). Hence p1 receives an expanded
object that it supposed to be handled by p1, but is actually handled by p3.

7.3.2 Clarification

If p returns an expanded object from a passive processor to itself or another pas-
sive processor, it must import the object to that processor. Figure 7.12 shows the
clarified return operation. Processor p determines the processor g to which p
imports the expanded object. If p finishes a call to a passive processor, then p
imports to w, i.e., itself or another passive processor; otherwise, p behaves as
before.

184 Chapter 7. Data sharing

Clarification 7.1 (Passive processors). If p returns an expanded object with ref-
erence r from a passive processor to itself or another passive processor, it must
import r to that processor. �

Return (successful query)

g
de f
=

{
w if p = q
σ.executes for(q) otherwise

(σ′, r′r)
de f
=



if rr , void ∧ σ.ref obj(rr).class type.is exp ∧ σ.handler(rr) , g
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ.import(g, rr)

otherwise
(σ, rr)

σ′′
de f
=



if f .is once ∧ snf
σ′.set once func not fresh(σ.executes for(p), f , true, false, rr)

if f .is once ∧ sf
σ′.set once rout fresh(σ.executes for(p), f)

otherwise
σ′

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p).set executes for(p,w)

Γ ` 〈p :: return(a, f , rr, q, (lr, lc),w, false, snf , sf); sp, σ〉 → 〈p :: result(a, r′r); sp, σ
′′′〉

Figure 7.12: Passive processor return clarification

7.4 Performance evaluation
Improved performance is one of the prime goals of the passive processor mech-
anism. Since performance cannot be evaluated with the executable formal spec-
ification alone, this section uses a SCOOP implementation [67] with support for
passive processors to experimentally evaluate the performance of the mechanism.
Since the pipeline system is a good representative for the class of targeted pro-
grams, this section compares the performance of the pipeline system when imple-
mented using passive processors, active processors, and low-level synchronization
primitives; the latter two are the closest competing approaches.

7.4. Performance evaluation 185

Ta
bl

e
7.

1:
A

ve
ra

ge
ex

ec
ut

io
n

tim
es

(i
n

se
co

nd
s)

of
va

ri
ou

s
lo

w
-p

as
s

fil
te

rs
ys

te
m

s
w

ith
va

ri
ou

s
si

gn
al

le
ng

th
s

co
nfi

gu
ra

tio
n

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6
13

10
72

26
21

44
52

42
88

se
qu

en
tia

l,
SC

O
O

P
1.

00
1.

66
3.

22
6.

35
12

.7
1

26
.1

9
55

.0
5

12
0.

37
27

2.
38

se
qu

en
tia

l,
th

re
ad

0.
62

1.
09

2.
19

4.
66

9.
57

20
.2

3
41

.4
5

93
.4

0
21

3.
59

1
pi

pe
lin

e,
ac

tiv
e

33
7.

55
68

2.
29

14
56

.6
7

28
75

.2
3

-
-

-
-

-
1

pi
pe

lin
e,

pa
ss

iv
e

1.
64

2.
72

5.
02

10
.9

9
24

.6
8

55
.2

9
11

8.
30

24
7.

29
53

3.
83

1
pi

pe
lin

e,
th

re
ad

0.
31

0.
58

1.
16

2.
44

5.
26

11
.1

1
23

.5
9

53
.2

4
12

2.
00

2
pi

pe
lin

es
,p

as
si

ve
1.

19
1.

77
3.

05
6.

35
14

.1
9

29
.8

2
60

.2
4

12
4.

99
26

3.
96

3
pi

pe
lin

es
,p

as
si

ve
1.

07
1.

47
2.

34
4.

71
9.

87
20

.6
5

41
.7

8
85

.7
2

18
5.

19
5

pi
pe

lin
es

,a
ct

iv
e

23
1.

25
49

6.
68

10
48

.9
5

21
92

.5
3

-
-

-
-

-
5

pi
pe

lin
es

,p
as

si
ve

0.
87

1.
23

1.
86

3.
27

6.
35

13
.5

0
27

.1
7

55
.9

5
11

7.
12

5
pi

pe
lin

es
,t

hr
ea

d
0.

16
0.

23
0.

40
0.

74
1.

53
3.

05
6.

30
13

.7
6

31
.8

2
10

pi
pe

lin
es

,a
ct

iv
e

33
4.

93
72

6.
83

15
49

.0
1

33
22

.7
0

-
-

-
-

-
10

pi
pe

lin
es

,p
as

si
ve

0.
84

1.
08

1.
38

2.
36

4.
13

8.
28

16
.8

9
35

.1
3

76
.6

4
10

pi
pe

lin
es

,t
hr

ea
d

0.
16

0.
22

0.
33

0.
59

1.
08

2.
09

4.
26

9.
21

20
.9

3

186 Chapter 7. Data sharing

7.4.1 Comparison to active processors

A low-pass filter pipeline is especially suited because it exhibits frequent and short
read and write operations on the packages, each of which represents a signal to
be filtered. The pipeline has three stages: the first performs a decimation-in-
time radix-2 fast Fourier transformation [117]; the second applies a low-pass filter
in Fourier space; and the third inverses the Fourier transformation. The system
supports any number of pipelines operating in parallel, and it splits the signals
evenly.

Table 7.1 shows the average execution times of various low-pass filter sys-
tems processing signals of various lengths. The experiments have been conducted
on a 4 × Intel Xeon E7-4830 2.13 GHz server (32 physical cores), 256 GB of
RAM running Windows Server 2012 Datacenter (64 Bit) in a Kernel-based Vir-
tual Machine (KVM) on Red Hat 4.4.7-3 (64 Bit). A modified version of EVE
13.11 [67] compiled the programs in finalized mode with an inline depth of 100.
Every data point reflects the average execution time over ten runs processing 100
signals each. Using ten pipelines, it took nearly ten hours to compute the average
for active signals of length 16384; thus we refrained from computing data points
for bigger lengths.

1

10

100

1000

2048 4096 8192 16384 32768 65536 131072 262144 524288

average

execution time (s)

signal length

1 pipeline, active 5 pipelines, active 10 pipelines, active

sequential 1 pipeline, passive 2 pipelines, passive

3 pipelines, passive 5 pipelines, passive 10 pipelines, passive

Figure 7.13: Speedup of passive processors over active processors

Figure 7.13 visualizes the data. The upper three curves belong to the active
signal processors. The lower curves result from the passive processors and a se-
quential execution. As the graph indicates, the passive processors are more than

7.4. Performance evaluation 187

two orders of magnitude faster than the active ones. In addition, with increas-
ing number of pipelines, the passive processors become faster than the sequential
program. In fact, two pipelines are enough to have an equivalent performance.
The overhead of the mechanism is thus small enough to benefit from an increase
in parallelism. In contrast, active processors deliver their peak performance with
around five pipelines but never get faster than the sequential programs.

7.4.2 Comparison to low-level synchronization primitives

Figure 7.14 and Table 7.1 compare pipelines with passive processors to pipelines
based on low-level synchronization primitives. In the measured range, the passive
processors are between 3.7 to 5.4 times slower. As the signal length increases,
the slowdown tends to becomes smaller. With more pipelines, the slowdown also
tends to decrease at signal lengths above 8192. The two curves for sequential exe-
cutions show that a slowdown can also be observed for non-concurrent programs.

0.1

1

10

100

1000

2048 4096 8192 16384 32768 65536 131072 262144 524288

average

execution time (s)

signal length

sequential, SCOOP sequential, thread 1 pipeline, passive 1 pipeline, thread

5 pipelines, passive 5 pipelines, thread 10 pipelines, passive 10 pipelines, thread

Figure 7.14: Slowdown of passive processors over EiffelThread

The slowdown is the consequence of SCOOP’s programming abstractions.
Compare the following thread-based stage implementation to the SCOOP one
from Section 7.1. Besides the addition of boilerplate (inherit clause, redefini-
tion of execute), this code exhibits some more momentous differences. First, the
thread-based stage class implements a work queue: it has an attribute to hold
the packages and a loop in execute to go over them. In SCOOP, request queues
provide this functionality. Second, each thread-based package has a mutex and a

188 Chapter 7. Data sharing

condition variable for synchronization. To process a package, stage i first locks the
mutex and then uses the condition variable to wait until stage i − 1 has processed
the package. Once stage i − 1 is done, it uses the condition variable to signal all
waiting stages. Only stage i leaves the loop. In SCOOP, wait conditions provide
this kind of synchronization off-the-shelf. We expect the cost of wait conditions
and other aspects to drop further as the compiler and the runtime mature.

class STAGE inherit THREAD create make feature
position: INTEGER −− The stage’s position in the pipeline.
packages: ARRAY[PACKAGE] −− The packages to be processed.

make (new position: INTEGER; new packages: ARRAY[PACKAGE])
−− Create a stage at the given position to operate on the packages.

do
position := new position
packages := new packages

end

execute
−− Process each package after the previous stage is done with it.

do
across packages as package loop

package.mutex.lock −− Lock the package.
−− Sleep until previous stage is done; release the lock meanwhile.
from until package.is processed (position − 1) loop

package.condition variable.wait (package.mutex)
end
process (package) −− Process the package.
package.condition variable.broadcast −−Wake up next stage.
package.mutex.unlock −− Unlock the package.

end
end

process (package: PACKAGE)
−− Process the package.

do
do work (package) −− Read from and write to the package
package.set processed (position) −− Set the package processed.

end
end

7.5. Other applications 189

7.5 Other applications
A variety of other applications could also profit from passive processors. Object
structures can be distributed over passive processors. Multiple clients can thus
operate on dynamically changing but distinct parts of these structures while ex-
changing coordination messages. For example, in parallel graph algorithms, the
vertices can be distributed over passive processors. In producer-consumer pro-
grams, intermediate buffers can be passive. Normally, about half of the operations
in producer-consumer programs are synchronous read accesses. Without the mes-
saging overhead, the consumer can execute these operations much faster than the
buffer. Passive processors can also be useful to handle objects whose only purpose
it is to be lockable, e.g., forks of dining philosophers, or to encapsulate a shared
state, e.g., a robot’s state in a controller [184].

7.6 Related work
Several languages and libraries combine shared data with message passing. In
Ada [115], tasks execute concurrently and communicate during a rendezvous:
upon joining a rendezvous, the client waits for a message from the supplier, and
the supplier synchronously sends a message to the client. The client joins a ren-
dezvous by calling a supplier’s entry. The supplier joins by calling an accept
statement on that entry. To share data, tasks access protected objects that en-
capsulate data and provide exclusive access thereon through guarded functions,
procedures, and entries. Since functions may only read data, multiple function
calls may be active simultaneously. In contrast, passive processors do not support
multiple readers. However, unlike protected objects, passive processors do not
require new data access primitives. Furthermore, passive processors can become
active at runtime.

Erlang [66] is a functional programming language whose concurrency support
is based on the actor model [89]. Processes exchange messages and share data
using an ets table, providing atomic and isolated access to table entries. A process
can also use the Mnesia database management system to group a series of table
operations into an atomic transaction. While passive processors do not provide
support for transactions, they are not restricted to tables.

Schill et al. [190] developed a library offering indexed arrays that can be ac-
cessed concurrently by multiple SCOOP processors. To prevent data races on an
array, each processor must reserve a slice of the array. Slices support fine-grained
sharing as well as multiple readers using views, but they are restricted to indexed
containers. For instance, distributed graphs cannot be easily expressed.

A group of MPI [146] processes can share data using the remote memory ac-

190 Chapter 7. Data sharing

cess mechanism and its passive target communication. The processes collectively
create a window of shared memory. In a static window, each process dedicates
a segment of its local memory and maps it into the window during creation. In
a window with shared segments, a process accesses data using local memory op-
erations, i.e., it maps the window into its local address space. With non-shared
segments, a process accesses data using remote memory access operations, where
data are identified by a process rank, i.e., its identifier, and an offset. In a dynamic
window, processes attach and detach segments dynamically after creating the win-
dow. Processes access a window during an epoch, which begins with a collective
synchronization call, continues with communication calls, and ends with another
synchronization call. Synchronization includes fencing and locking. Locks can be
partial or full, and they can be shared or exclusive. Passive processors neither offer
fences nor shared locks; they do, however, offer automatic conditional synchro-
nization based on preconditions. MPI can also be combined with OpenMP [172].
Just like MPI alone, this combination does not provide unified concepts. Instead,
it provides distinct primitives to access shared data and to send messages.

Uniformity distinguishes passive processors also from further approaches. For
example, Wong and Rendell [218] extend the Danui distributed shared mem-
ory system with message passing, thus supporting both communication styles.
Gustedt [87] proposes an interface to transfer data and access rights thereon in a
message-passing system. Kranz et al. [124] describe how the Alewife computer
architecture and its software stack support shared data and message passing.

Several studies agree that performance gains can be realized if the setup of
a program with both message passing and shared data fits the underlying archi-
tecture. For instance, Bull et al. [41], Cappello and Etiemble [46], as well as
Rabenseifner et al. [182] focus on benchmarks for MPI+OpenMP. Wei and Yil-
maz [214] study an adaptive integral method to analyze electromagnetic scattering
from perfectly conducting surfaces. Chorley and Walker [52] study a molecular
dynamics simulation. Dunn and Meyer [61] study a QR factorization algorithm
that can be adjusted to apply only message passing, only shared data, or both.

A number of approaches focus on optimizing messaging on shared memory
systems instead of combining message passing with shared data. Gruber and
Boyer [84] use an ownership management system to avoid copying messages be-
tween actors while retaining memory isolation. When an actor sends a message,
the system transfers ownership over the message to the receiver. From that point
on, only the receiver can access the message, and the sender would get an excep-
tion if it tries to do so. Villard et al. [210], Negara et al. [162], and Bono et al. [27]
employ static analysis techniques to determine when a message can be passed by
reference rather than by value. Protopopov and Skjellum [181], Ávila et al. [15],
Buntinas et al. [42, 43], Graham and Shipman [83], as well as Brightwell [34]
present techniques to allocate and use shared memory for messages.

7.7. Discussion 191

7.7 Discussion
A client calling a feature on an object of a passive processor does not send a
feature request; instead, it operates directly on the object after obtaining the re-
quest queue lock of the passive processor. Passive processors extend SCOOP’s
message-passing foundation with support for safe data sharing, reducing the ex-
ecution time by several orders of magnitude on data-intensive parallel programs.
They are useful whenever multiple processors access shared data using frequent
and short read or write operations, where the overhead outweighs the benefit of
asynchrony.

Passive processors can be implemented with minimal effort because much of
the existing infrastructure can be reused. The feature call primitive unifies send-
ing messages to active processors and accessing shared data on passive proces-
sors. Therefore, no significant code change is necessary to set a processor passive
or active. This smooth integration differentiates passive processors from other
approaches. The concept can also be generalized and applied to other message-
passing concurrency models. For instance, messages to passive actors [89] can be
translated into direct, synchronous, and mutually exclusive accesses to the actor’s
data.

Passive processors can be developed further in several directions. With shared
read locks, multiple clients can simultaneously operate on a passive processor.
Shared read locks require features that are guaranteed to be read-only. Functions
could serve as a first approximation since they are read-only by convention. Fur-
ther, passive processors can be added to a future distributed version of SCOOP.
Because frequent remote calls are expensive, implementing distributed passive
processors requires an implicit copy mechanism to move the supplier’s data into
the client’s memory.

192 Chapter 7. Data sharing

8 Performance analysis

The executable formal specifications enables SCOOP to be tested; however, hav-
ing a verified concurrency model does not ensure that programmers write ef-
ficient concurrent programs. As the complex interactions between processors
make the analysis of the behavior of concurrent programs difficult, effective use
of SCOOP requires tools to help programmers analyze and improve programs.
Since SCOOP’s execution semantics differs considerably from established mod-
els, reusing an established tool is not an option for SCOOP. The chapter presents
performance metrics and a performance analyzer specifically designed for SCOOP.
The metrics and the tool are evaluated on a number of example problems as well as
on a larger case study on optimizing a robotics control software written in SCOOP.

8.1 Performance metrics

To define SCOOP-specific metrics, one must take a closer look at the interactions
in the runtime system. Consider a share market application with investors, share
issuers, and markets, where integer identifiers represent the issuers. The following
listing shows the class that describes the investors. The market and the investors
are handled by different processors.

class INVESTOR feature
id: INTEGER −− The identifier.

buy (market: separate MARKET; issuer id: INTEGER)
−− Buy a share of the issuer on the market.

require
market.can buy (id, issuer id)

do

193

194 Chapter 8. Performance analysis

market.buy (Current, issuer id)
end

sell (market: separate MARKET; issuer id: INTEGER)
−− Sell a share of the issuer on the market.

require
market.can sell (id, issuer id)

do
market.sell (Current, issuer id)

end
end

An investor has features to buy and sell shares. To execute one of these fea-
tures, the investor must wait for the request queue lock on the market and for the
precondition to be satisfied. In the feature call to the market, the investor passes a
reference to itself, which triggers lock passing. This enables the market to query
the investor’s identifier in a separate callback, but the lock passing operation forces
the investor to wait until the market finished. Consider the following routine that
makes an investor buy a share on a market. A log keeps a record of the transaction.

do transaction (
investor: separate INVESTOR;
issuer id: INTEGER;
log: separate LOG

)
−−Make the investor buy a share of the issuer on a market. Log the transaction.

require
not log.is full

do
investor.buy (market, issuer id)
log.add buy entry (investor.id, issuer id)

end

Figure 8.1 illustrates a possible execution with one timeline for each processor.
Looking at these timelines, one can deduce the time metrics in Definition 8.1.

8.1. Performance metrics 195

application

processor:

investor

processor:

00:29 - 00:35

useful time

00:06 - 00:35

execution time

00:11 - 00:29

waiting time

00:06 - 00:11

useful time

00:08

call buy

00:11

call id

00:06 - 00:35

exec do_transaction

00:00 - 00:06

sync do_transaction

00:25 - 00:29

exec id

00:16 - 00:20

exec buy

00:12 - 00:16

sync buy

00:20 - 00:25

synchronization time

00:11 - 00:20

queue time

00:20 - 00:25

sync id

00:25 - 00:29

execution time

00:00 - 00:06

synchronization time

Figure 8.1: Time intervals for the share market application. The application first
synchronizes (00:00 – 00:06) to get the request queue locks on its arguments’
handlers and to ensure that the log is not full. It then executes (00:06 – 00:35) two
feature calls and waits for the second one to complete. Each feature call leads to
a synchronization and execution step in the investor.

Definition 8.1 (Time metrics). The following time metrics exist:

• Lifetime of a processor: the time from when the processor gets created until
when it is no longer needed, at which point it will be reclaimed by the
runtime system.

• Queue time of a feature request: the time from the feature call until the
feature application begins. For non-separate feature calls, the queue time is
zero.

• Synchronization time of a feature request: the time from when the feature
application begins until when all the required request queues are locked and
the precondition is satisfied.

• Execution time of a feature request: the time during which the feature actu-
ally gets executed. It is divided into the following parts:

– Waiting time: the sum of

* the queue time, the synchronization time, and the execution time
of each feature request that results from a synchronous separate
feature call, and

* the synchronization time of each feature request that results from
a non-separate feature call.

196 Chapter 8. Performance analysis

– Useful time: the remaining part of the execution time in which the
executing processor is not waiting.

• Measuring time of a processor: the time during which the processor per-
forms measuring related actions.

• Idle time of a processor: the time during which the processor is not syn-
chronizing, not executing, and not measuring.

�

During a synchronization step, a processor might evaluate the precondition
multiple times until it finds it to hold. To measure this, another metric counts the
number of precondition evaluations in a synchronization step. Yet another met-
ric counts the number of feature requests that have been generated for a feature.
Definition 8.2 shows these two metrics.

Definition 8.2 (Count metrics). The following count metrics exist:

• Number of precondition evaluations of a feature request: the number of
times the precondition gets evaluated in the synchronization step.

• Number of feature requests of a feature: the number of feature requests that
have been generated for the feature.

�

The time and count metrics introduced so far are called raw metrics. They can
be used to calculate derived metrics. For example, the number of feature requests
can be used to calculate statistical values such as the mean and the standard devi-
ation of all metrics defined per feature request, i.e., queue time, synchronization
time, execution time, waiting time, useful time, and the number of precondition
evaluations. Further, the raw metrics can be used to obtain aggregated values.

8.2 Using the metrics to diagnose issues and find so-
lutions

The raw metrics are useful to diagnose issues in concurrent programs and find
appropriate solutions. A large queue time of a feature request indicates that it
takes a long time for the request to be served by the responsible processor and
that therefore this processor is too busy. This can be resolved by distributing the
workload onto more processors.

8.3. From traces to metric values 197

A large synchronization time of a feature request can be due to one of two
reasons. If the feature request has a high number of precondition evaluations,
then the processor is able to get the required locks, but it has problems satisfying
the precondition. On the other hand, if the feature request has a low number
of precondition evaluations, then the required locks are hard to obtain because
it takes the processor a long time to even get to the point where it can evaluate
the precondition. In the first case, one can look at the precondition to figure out
why it is so hard to be satisfied. In the second case, one can introduce additional
processors that replicate the roles of the congested processors.

A large execution time of a feature request is either due to a large waiting time
or a large useful time. To reduce the waiting time, one can reduce the queue time,
the synchronization time, or the execution time of the performed synchronous fea-
ture calls. Alternatively, one can also eliminate some of the synchronous feature
calls. For instance, one can increase the concurrency granularity by synchronizing
less often. To reduce the useful time, one must optimize the feature.

A large measuring time can be influenced through parameters of the measuring
process (see Section 8.4 and Section 8.5). A large idle time means that a processor
is not busy enough so that one can introduce more load for this processor. A large
number of feature requests for a feature in combination with large queue times,
synchronization times, or execution times indicates that it is especially worthwhile
to optimize the feature.

8.3 From traces to metric values

This section describes how a tool can calculate the raw metrics from a trace, i.e.,
a sequence of events corresponding to one execution of a program. Each type of
event is described by a class, as shown in Figure 8.2. An event has a timestamp
and refers to one processor.

For a feature request r on processor p, the tool has to calculate the queue
time, the synchronization time, the execution time – divided into waiting time and
useful time – and the number of precondition evaluations. The following events
facilitate these metrics. If r is a separate feature request that p receives from an-
other processor g, p records a separate feature request event. This event contains
g’s identifier. As soon as p starts the synchronization step for r, p creates a syn-
chronization start event. Each such event contains the identifiers of the processors
whose request queue locks p requests. Each time p evaluates the precondition,
it adds one precondition evaluation event. When p starts executing, it records an
execution start event. If p performs a feature call to a different processor q, then p
creates a separate feature call event. This event stores q’s identifier and whether
the feature call is synchronous or asynchronous. The tool can use q’s identifier to

198 Chapter 8. Performance analysis

timestamp : DATE_TIME

processor_id : INTEGER

EVENT

PROCESSOR_START_EVENT

class_name : STRING

feature_name : STRING

FEATURE_EVENT PROCESSOR_END_EVENTMEASURING_EVENT

requested_processor_ids : SET[INTEGER]

SYNCHRONIZATION_START_EVENT

called_processor_id : INTEGER

is_synchronous : BOOLEAN

SEPARATE_FEATURE_CALL_EVENT

PRECONDITION_EVALUATION_EVENT

RETURN_EVENT

caller_processor_id : INTEGER

SEPARATE_FEATURE_REQUEST_EVENT

EXECUTION_START_EVENT

MEASURING_START_EVENT MEASURING_END_EVENT

Figure 8.2: Class hierarchy for performance analysis events. The class EVENT
is the parent of all event types. The class FEATURE EVENT is the parent of
all events that are related to metrics for feature requests and features; the class
MEASURING EVENT is the parent of all measuring event types.

find the events on q that are related to the resulting feature request by reconstruct-
ing each processor’s request queue and call stack from the sequence of events.
With this, the tool can link the separate feature call event on p to the related sepa-
rate feature request event on q and then match this event to the remaining related
events on q. After p is done with the execution, p creates a return event.

Figure 8.3 shows the metrics calculation for r in more detail. The notation
tn(a) denotes the timestamp of the event with name n and parameter a. The nota-
tion cn(a) denotes the count of events with name n and parameter a in the trace.
If r is a separate feature request, then the queue time is the time between the sep-
arate feature request event and the synchronization start event. The queue time
of a non-separate feature request is zero. The synchronization time is the time
between the synchronization start event and the execution start event, and the ex-
ecution time is the time between the execution start event and the return event.
To calculate the waiting time of r, the tool first looks for all synchronous separate
feature call events that p recorded during the execution step. The time between
such a separate feature call event and the matching return event on the called pro-
cessor is part of the waiting time. In addition, the tool looks for synchronization
start events that p recorded during the execution step; these events belong to non-
separate feature calls. The time between the synchronization start event and the
matching execution start event is also part of the waiting time. The useful time is
the part of the execution time that is not waiting time. The number of precondition
evaluations is the count of precondition evaluation events.

8.4. Tool overview 199

queue time(r)
de f
=


if r is a separate feature request

tsynchronization start(r) − tseparate feature request(r)
if r is a non-separate feature request

0

synchronization time(r)
de f
= texecution start(r) − tsynchronization start(r)

execution time(r)
de f
= treturn(r) − texecution start(r)

waiting time(r)
de f
=

n∑
i=1

(treturn(ri) − tseparate feature call(r,wi))+

m∑
i=n+1

(texecution start(ri) − tsynchronization start(ri))

where
w1, . . . ,wn are the synchronous separate feature calls during r
r1, . . . , rn are the matching feature requests on the called processors
rn+1, . . . , rm are the feature requests for non-separate feature calls during r

useful time(r)
de f
= execution time(r) − waiting time(r)

number of precondition evaluations(r)
de f
= cprecondition evaluation(r)

number of feature requests(f)
de f
= cexecution start(f)

Figure 8.3: Metric values for a feature request r, and a feature f

For a feature f , the tool only has to calculate the number of feature requests
for the feature. This number is simply the count of execution start events for f .
Figure 8.3 shows this calculation.

To calculate the lifetime of a processor p, p records an event when it gets
created and when it is about to be disposed. Processor p’s lifetime is the time
difference between these two events. To calculate the measuring time, p creates
an event when a measuring action starts and another event when the action ends.
Finally, the idle time of p is its lifetime minus its measuring time minus the syn-
chronization time and execution time of each of its feature requests. Figure 8.4
shows this in more detail.

8.4 Tool overview

This section presents the tool that calculates and visualizes the metrics from Sec-
tion 8.1. The tool comes with an extended SCOOP compiler to generate a stat-

200 Chapter 8. Performance analysis

lifetime(p)
de f
= tprocessor end(p) − tprocessor start(p)

measuring time(p)
de f
=

n∑
i=1

(tmeasuring end(p,wi) − tmeasuring start(p,wi))

where
w1, . . . ,wn are the measuring steps on p

idle time(p)
de f
= lifetime(p) − measuring time(p)−

n∑
i=1

(synchronization time(ri) + execution time(ri))

=lifetime(p)−

measuring time(p) −
n∑

i=1

(treturn(ri) − tsynchronization start(ri))

where
r1, . . . , rn are the feature requests on p

Figure 8.4: Metric values for a processor p

ically instrumented executable. The compiler inserts indirect instrumentation
code, augmenting the original source code with calls to a performance analysis
library. With the help of the instrumentation code and the extended SCOOP run-
time, the tool performs exact monitoring: it records the events from Section 8.3
consistently at specified execution steps.

The alternative to exact monitoring, i.e., statistical monitoring, is not suitable
for the SCOOP performance analyzer. With statistical monitoring, the tool would
record the events by periodically sampling the program state, enabling it to control
the overhead by adjusting the sampling rate. However, the tool could not reliably
compute intervals – a necessity for most SCOOP metrics. To compute an interval,
the tool needs to know when the interval starts and when it ends. Since the tool
might sample the program state at the wrong points in time, it would not collect
these events reliably. Statistical monitoring is suitable for metrics that capture a
single point in time. For instance, the Cilk performance analyzer [202] measures
the number of idle CPU cores and the percentage of execution time used for man-
agement activities. Both of these metrics aggregate over single points in time and
are therefore suitable for statistical monitoring.

To generate an event timestamp, a processor queries the system time. With a
system time resolution of n milliseconds, a timestamp can have an error of ±n/2
milliseconds. Hence a value for a metric consisting of a single interval can have

8.4. Tool overview 201

an error of ±n milliseconds. A value for a metric consisting of m intervals, such
as the waiting time metric, can have an error of ±(m × n).

Each processor keeps its events in its own buffer, to avoid expensive synchro-
nization actions on a central storage during the execution. A processor flushes its
buffer into a file once the buffer is full. For fast lookup, it encodes in the file name
the timestamps of the first and last event in the buffer. The files of all processors
constitute the execution trace. To reduce overhead, the tool does not analyze this
trace online; instead it performs a postmortem analysis and creates two views: the
processor view and the feature view.

8.4.1 Processor view

The processor view has one timeline for each processor, and each timeline shows
all the actions performed by one processor. Each step is presented as a bar, whose
length indicates the duration of the action. The location of the bar in the timeline
indicates when the action happened. The following bars exist:

• Each synchronization step is shown as a synchronization bar. This bar in-
dicates the processors whose request queues got locked. It can be expanded
to see the precondition evaluations as precondition evaluation marks.

• Each execution step is shown as an execution bar. This bar shows the metric
values of the corresponding feature request. It can be expanded to see the
feature calls: the tool shows the synchronization and execution step for each
non-separate feature call and a separate feature call bar for each separate
feature call. The separate feature call bar, whose length indicates the wait-
ing time, is linked to the resulting execution step. Expanding the separate
feature call bar shows the separate callbacks.

• Each measuring step is shown as a measuring bar.

For example, consider another transaction with one market, two investors, and
one available share from one issuer. Each of the two investors wants first to buy
the share and then to sell the share again. After the execution of this transaction
each investor has two feature requests in its request queue: the first one for the
buy feature and the second one for the sell feature.

do transaction (
first investor: separate INVESTOR;
second investor: separate INVESTOR;
issuer id: INTEGER

)

202 Chapter 8. Performance analysis

−−Make each of the two investors buy and then sell a share of the issuer on a
market.

do
first investor.buy (market, issuer id)
second investor.buy (market, issuer id)
first investor.sell (market, issuer id)
second investor.sell (market, issuer id)

end

Figure 8.5 shows the processor view for the market application. It does not
list any measuring steps because the chosen buffer size is large enough to not
flush in the shown time segment. To execute the buy feature, both investors tried
to obtain the request queue of the market while the precondition is satisfied. From
the shorter synchronization bar, one can see that the second investor succeeded
first. The precondition evaluation mark below the synchronization bar indicates
that it evaluated the precondition only once. During its execution step, the second
investor performed a feature call to the buy feature on the market. This separate
feature call was synchronous, as indicated by the elongated separate feature call
bar below the execution bar. Below the separate feature call bar, the tool shows
how the market made several separate callbacks to the id feature.

Figure 8.5: Processor view for the share market application, manually annotated
with processor names and a legend

After the second investor finished the execution of the buy feature, it released
the market’s request queue lock and went straight into a second synchronization
step for the sell feature. At this point, both investors tried to lock the market’s
request queue, the first investor to execute buy and the second investor to execute
sell. The first investor got the lock and evaluated the precondition. However, the
precondition was not satisfied since it required the availability of a share that had
been sold to the second investor. Hence, the first investor released the request
queue lock to let the second investor proceed with sell. After the execution of
sell, the second investor released the request queue lock, letting the first investor
proceed with buy.

8.4. Tool overview 203

8.4.2 Feature view

The feature view groups feature requests according to the requested features. Fig-
ure 8.6 shows an extract of the feature view for the share market application.

Figure 8.6: Extract of the feature view for the share market application. The
measurements have been made on an Intel Core 2 Duo T9300 2.5 GHz CPU with
2 GB of RAM running Windows 7 SP1 (32 Bit). The system time resolution is 1
millisecond.

The first column shows a number of trees, each tree corresponding to one class.
Each first level node of a tree belongs to one feature of the class; such a feature
node stands for a group of feature requests. Each second level node belongs to
one of the feature requests; such a node is a feature request node. The remaining
columns contain the metric values in both raw and derived form.

The tool highlights some of the metric values as hotspots. A hotspot is a met-
ric value that might be a good starting point to optimize the program. There are
two types of hotspots: worst performers and imperfections. A worst performer is
the worst metric value in a metric column – the largest number of feature requests,
the largest number of precondition evaluations, the biggest mean of precondition
evaluations, and the smallest percentage of useful time. An imperfection is a met-
ric value that is not ideal, e.g., a queue time, synchronization time, or execution
time above zero, or a percentage of useful time below 100%. Imperfections are
not as grave as worst performers; most reasonable features are imperfect. Thus,
we suggest concentrating on the worst performers when optimizing.

204 Chapter 8. Performance analysis

8.4.3 Using the tool to improve programs

This section presents a guideline on how to use the tool to improve a program.
To start, one adjusts the event buffer size to have an acceptable overhead. Large
buffers lead to infrequent flushes, which is useful for decreasing the time overhead
at the expense of the memory overhead. Small buffers lead to frequent flushes,
which is useful for decreasing the memory overhead at the expense of the time
overhead. Once the overhead is acceptable, the next step is to look for hotspots in
the feature view to know which feature to focus on. One then uses the processor
view to find the executions of the troubled feature. Using the discussion from
Section 8.2, one finds the issues and translates some of the proposed solutions to
the source code. For this, one starts by opening the code of the troubled feature.
The translation is not always straightforward; it requires programmers that are
knowledgeable about SCOOP. These steps may need to be repeated several times
as no automatic solution exists at the moment.

In Figure 8.6, for example, one can see that both features buy and sell from
class INVESTOR have on average 40% useful time. A low percentage of useful
time is the result of waiting. For this, Section 8.2 suggests to look at the syn-
chronous feature calls in buy and sell. From the processor view, one can tell that
buy and sell perform synchronous feature calls to the market, causing separate
callbacks to id. The feature view reflects this in the number of feature requests:
the id feature has been called 20 times. This setup decreases the performance of
the program in two ways. First, the feature call to the market is synchronous. Sec-
ond, the separate callbacks cause unnecessary communication. To optimize the
program, one can change the buy feature and the sell feature so that the investors
pass the identifier instead of the investor object itself. This change turns the syn-
chronous feature calls into asynchronous ones. The investors do not have to wait
any longer and the market does not have to perform any separate callbacks.

8.5 Evaluation
The evaluation includes an analysis of the tool’s time overhead in Section 8.5.1 as
well as an application of the metrics and the tool on a concurrent robotic control
software in Section 8.5.2.

8.5.1 Time overhead analysis

A number of SCOOP solutions to well-known synchronization problems [60]
served as subjects to measure the time overhead of the tool:

• Barbershop problem. A barbershop consists of a waiting room with a num-

8.5. Evaluation 205

ber of chairs and a barber room with the barber chair. When a customer
arrives and the waiting room is full, the customer leaves the barbershop.
When the waiting room is not full, the customer checks whether the barber
is busy or not. If the barber is busy, the customer takes a seat in the wait-
ing room; otherwise the customer gets a haircut. The experiments use ten
customers, each wanting to get two haircuts, and a waiting room with five
chairs.

• Dining philosophers. A number of philosophers sit around a round table
with one chopstick between each philosopher and one bowl of food in the
middle of the table. Each philosopher goes through a loop where each iter-
ation consists of thinking, fetching the left and the right chopstick, eating,
and dropping the chopsticks. The experiments use ten philosophers, each
philosopher performing ten iterations.

• Dining savages. A tribe of savages shares a meal from a single pot. A cook
is responsible to fill the large shared pot. When a savage wants to eat, he
takes a serving from the pot unless the pot is empty. If the pot is empty, the
savage wakes up the cook and then waits until the cook has refilled the pot.
The experiments use ten savages, each savage getting five servings from the
pot. The pot has a capacity of five servings.

• Parallel workers. An application spawns several workers and waits until
each of the workers returns a result to combine the results and terminate.
The experiment uses ten workers.

These programs represent various interactions that can take place in concurrent
programs. Furthermore, these programs do not depend on external input, which
makes them suitable for overhead measurements. However, we do not claim that
these programs represent all possible interaction schemes. Figure 8.7 shows the
average time overhead for the programs over different buffer sizes. The average
overhead is more interesting than the overhead of a single run because of the
inherent nondeterminism in concurrent programs.

Each of the programs produces a different time overhead. The reason comes
from the different number of events per second: the more events a program pro-
duces per second, the higher the time overhead is. The dining savages program is
the most intensive program because of the high number of exhibited interactions.
The other programs show a more consistent behavior.

With growing buffer size, the time overhead of the programs decreases modulo
a few bumps. The time overhead results from collecting the events in the buffers
and from writing the buffers to disk. The second part contributes most to the time
overhead. Since the buffer flush frequency decreases (non-strictly) with growing

206 Chapter 8. Performance analysis

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70

average time overhead

(percent)

buffer size (number of events)

barbershop dining philosophers dining savages parallel workers

Figure 8.7: Average time overhead for different programs and varying buffer sizes.
Each point reflects the average over ten runs; the bars represent the standard devi-
ations. The baseline is the average of ten runs where the performance analyzer is
disabled. A buffer size of zero means that there is no buffer; each event gets im-
mediately written to disk after creation. The experiments have been conducted on
an Intel Core 2 Duo T9300 2.5 GHz CPU with 2 GB of RAM running Windows
7 SP1 (32 Bit).

buffer size, the time overhead decreases (non-strictly) with growing buffer size as
well. At some point the buffer size is large enough to hold all generated events,
so that the tool can write all events at the end of the program. At this point,
the overhead is minimal. One can observe this saturation especially well with
the parallel workers program. The bumps can be explained with the non-strictly
decreasing flush frequency. A bump is the result of an increasing time overhead
due to a larger buffer size that does not get compensated by a decreasing flush
frequency.

While the decentralized event collection would support an increase of proces-
sors along with an increase of CPU cores, a program with thousands of processors
would require a different approach to visualization: it would not be reasonable for
programmers to analyze in detail the metric values for thousands of processors;
instead, programmers would require a high-level view on the metric values.

In summary, one should always adapt the buffer size according to the programs
characteristics in order to minimize the time overhead. For example, one can start
with a small buffer size and use the processor view to judge whether there are too
many measuring steps. One can then either increase or decrease the buffer size.
The biggest improvement can be expected from an increase of the buffer size from
zero to a bigger value.

8.5. Evaluation 207

8.5.2 Optimizing concurrent robotic control software

This section demonstrates how the metrics and the tool can be used to optimize a
concurrent robotic control software. Robotic control software is especially suited
for evaluation purposes, as the SCOOP model has its main strength in expressing
concurrent interactions (handling the nondeterministic arrival of events), rather
than purely deterministic parallel algorithms.

Hexapod

Earlier work [184] demonstrates that SCOOP is suitable to implement concurrent
robotic control software in a way that the code has a close correspondence to the
behavioral specification. The hexapod robot, shown in Figure 8.8, serves as an
illustration for this. The hexapod has six legs, each with three actuators. The

Figure 8.8: The hexapod has six legs with three degrees of freedom.

six legs are grouped into two tripods. Each tripod consists of the middle leg on
one side and the outer legs on the other side, and these legs are synchronized with
each other. Each tripod is equipped with sensors. A tripod’s middle leg has a force
sensor to determine whether the tripod is planted on the ground; the tripod is on
the ground whenever the load sensor reports a weight. A tripod’s middle leg also
has two angle sensors to detect when the tripod reached its extreme positions in
the back or in the front. The hexapod has a simple interface to retrieve the sensor

208 Chapter 8. Performance analysis

values and to send commands to the actuators. This interface is accessible over an
integrated ZigBee [5] wireless port.

pattern_generator_A : PATTERN_GENERATOR

pattern_generator_B : PATTERN_GENERATOR

tripod_gait_processor : TRIPOD_GAIT_PROCESSOR

my_signaler : SIGNALER

partner_signaler : SIGNALER

tripod : LEG_GROUP

pattern_generator_A : PATTERN_GENERATOR

my_signaler : SIGNALER

partner_signaler : SIGNALER

tripod : LEG_GROUP

pattern_generator_B : PATTERN_GENERATOR

leg_group_A : LEG_GROUP

leg_group_B : LEG_GROUP

legs_down : BOOLEAN

legs_up : BOOLEAN

legs_retracted : BOOLEAN

signaler_A : SIGNALER

legs_down : BOOLEAN

legs_up : BOOLEAN

legs_retracted : BOOLEAN

signaler_B : SIGNALER

signaler_A : SIGNALER

signaler_B : SIGNALER

sensor_poller : SENSOR_POLLER

Figure 8.9: Runtime structure of the hexapod controller

The control software, shown in Figure 8.9, runs on a PC with an external
ZigBee port that connects to the hexapod. At runtime, the controller has a sensor
poller that periodically connects to the hexapod to retrieve the latest sensor values.
The sensor poller updates two signalers, one for each tripod, that translate the
sensor values into meaningful queries. For example, two such queries use the
load sensor values to return whether the tripod is on the ground or not.

Two pattern generators use the signalers to control the movements of the two
tripods by sending commands to the hexapod. Each tripod executes an alternating
sequence of protraction and retraction. To initialize, the first tripod lifts, swings
forward, and drops. Then one normal iteration begins: the second tripod lifts and
swings forward while the first tripod pushes the body forward using its foot as the
pivot; the second tripod drops as soon as the first tripod is done. The first tripod’s
action is a protraction. The second tripod’s action is a retraction. In the next
iteration, the two tripods change the roles.

Each pattern generator is responsible to execute the alternating sequence for
one of the tripods. Each pattern generator has one feature for each phase of an
iteration. Each of these features has a precondition to ensure that the tripods
are in a state to start the actions. For example, a retraction of a tripod can only
start when the tripod is on the ground and the other tripod is raised; otherwise the

8.5. Evaluation 209

hexapod will either trip or drag its legs. The following feature shows this in detail:

execute retraction (
my signaler: separate SIGNALER;
partner signaler: separate SIGNALER

)
−− Retract the tripod.

require
my signaler.legs down
partner signaler.legs up

do
tripod.retract (my signaler.retraction time)

end

Optimization

The synchronization times of the pattern generator features relate to the smooth-
ness of the hexapod’s gait. When the synchronization time of a feature increases,
the corresponding phase gets delayed, and the gait becomes more uneven. It is
therefore important to keep the synchronization time as low as possible. The
two main influences on the synchronization time are the polling frequency and
the hexapod’s mechanical and electronic constraints. The hexapod’s constraints
cannot be influenced by the controller; however, the polling frequency can be
changed.

When the polling frequency increases, the controller knows about the hexa-
pod’s state sooner, which reduces the synchronization time. On the other hand,
the polling frequency should be kept as low as possible to reduce the CPU time of
the sensor poller and to reduce the network traffic between the controller and the
hexapod. The optimal polling frequency is therefore a trade-off.

The synchronization time metric can be used to find the optimal polling fre-
quency. For this purpose it is necessary to introduce a delay into the code of the
sensor poller. One can then use the tool to measure the synchronization times
of the pattern generator features and reduce the polling frequency until the syn-
chronization times increase. Figure 8.10 shows the tool’s reported average total
synchronization time and the average polling frequency for different delays in
the sensor poller. The progression of the average polling frequency confirms that
increasing the delay indeed reduces polling. The course of the average total syn-
chronization time shows that synchronization becomes slower as the polling gets
reduced. It is however interesting to see that the first 20 milliseconds of delay do
not have a big impact on synchronization. One can therefore reduce the polling

210 Chapter 8. Performance analysis

5000

6000

7000

8000

9000

10000

11000

0 10 20 30 40 50 60 70 80 90 100 120 150 170 200

average total

synchronization

time (ms)

delay (ms)

2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6
3.8
4.0

0 10 20 30 40 50 60 70 80 90 100 120 150 170 200

average polling

frequency (Hz)

delay (ms)

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60 70 80 90 100 120 150 170 200

average total

number of wait

condition trials

delay (milliseconds)

Figure 8.10: Average total synchronization time and average polling frequency
for varying polling delays. Each point reflects the average over three walks, each
consisting of several iterations; the bars represent the standard deviations.

frequency with a minimal impact on the hexapod’s gait.
One concern remains to be answered: the tool is creating overhead, and thus it

is not immediately clear whether the results are transferable to executions without
the tool. In general, the overhead could cause a fundamentally different schedule.
In the case at hand, however, only few schedules are possible. In the beginning,
either tripod can start. Due to the symmetry of the hexapod (3 legs on each side),
both choices do not fundamentally change the schedule. Henceforth, the precon-
ditions ensure that the tripods proceed in the predefined order. For instance, the
precondition of execute retraction ensures that the retraction of one tripod only
starts after the other tripod has lifted (see partner signaler.legs up). Similarly,
another precondition ensures that one tripod can only drop after the other tripod
has retracted. In fact, the only remaining scheduling ambiguity is whether one
tripod starts swinging forward before the other tripod starts retracting, or the other
way around. This choice, however, also happens without the tool and does not
change the essence of the schedule.

The tool’s overhead, however, causes an additional delay in the sensor poller.
Due to this additional delay, the curves in Figure 8.10 must be shifted to the right
to transfer the results to executions without the tool. Furthermore, the overhead
coming from the synchronization start events, the precondition evaluation events,
and the execution start events affect the average total synchronization time. Hence,
the curve with the average total synchronization time must be shifted to the bot-

8.6. Applicability to other concurrency models 211

tom. Note that these two shifts are conservative in the sense that the above con-
clusions still hold on executions without the tool.

The optimization of the controller is not limited to the sensor poller. The
number of feature requests also indicates that the controller performs a lot of un-
necessary separate feature calls such as my signaler.retraction time in the feature
execute retraction. As this feature call returns a value that is constant over an ex-
ecution, the value can be cached in the pattern generators, which eliminates this
and other similar calls. The tool is also helpful to visually validate the gait by
inspecting the processor view for the controller.

8.6 Applicability to other concurrency models

The proposed metrics not only apply to SCOOP, but they can also be adapted to
concurrency models that share SCOOP’s core ideas, i.e., assignment of an object
to one autonomous thread of control along with a request queue and atomic lock-
ing with preconditions that have wait semantics. One such model is Cameo [36],
where each object has its own thread of control and an associated request queue
for feature requests from other objects. All feature calls are synchronous unless
the async keyword indicates otherwise. To perform a remote feature call, a client
adds a feature request to the supplier’s request queue. The behavior of a local
feature call depends on the nature of the call: if the call is synchronous, the object
processes the call immediately; if the call is asynchronous, the object adds a fea-
ture request to its own request queue. Before executing a feature, an object locks
the actual arguments for the duration of the execution. It also delays the execution
until the feature’s wait condition is satisfied. When one of its suppliers is in need
of its locks, it temporarily passes its locks to the supplier. The object implicitly
obtains a lazy lock on a supplier that is not a locked actual argument. The lazy
lock lasts just for the duration of the feature call on the supplier. A lazy lock is
semantically equivalent to a synchronous feature call to a local wrapper with the
same precondition as the called feature.

To adapt the proposed metrics to Cameo, one must translate the terminology.
Separate feature calls become remote feature calls, non-separate feature calls be-
come local feature calls, and processors become objects. In addition to these ter-
minological changes, one must make a number of semantic changes. The queue
time metric can be reused with a change: the queue time of a local feature call
is not always zero; for asynchronous local feature calls, it is the time between
the feature call and the beginning of the feature application. The synchronization
time and execution time metrics can be used without a change; however, a lazy
lock must be treated as an implicit local feature call with an own synchronization
and execution time. Lastly, the waiting time metric must exclude asynchronous

212 Chapter 8. Performance analysis

local feature calls because an object does not wait for itself to process such a call.

8.7 Related work

While we are the first to propose performance metrics for SCOOP, performance
metrics have been proposed for other programming models. This section discusses
these metrics and the tools that compute them. It focuses on the most interesting
metrics and thus does not discuss elementary metrics such as the execution time,
number of invocations, IO activity, or memory usage.

The Intel VTune Amplifier XE [103] is a performance analysis tool for multi-
threaded CPU and GPU applications. It uses statistical and exact monitoring. The
tool calculates various architecture-specific metrics such as CPU core idleness and
the number of wrong branch predictions. It also has metrics that measure wait-
ing of threads and locking of synchronization objects. The tool is supported by
a Performance Monitoring Unit that is part of Intel CPUs. AMD CodeXL [10]
provides similar functionality for programs running on AMD CPUs. Just as the
VTune Amplifier XE, the SCOOP performance analyzer keeps track of waiting
on resources; it does so with the synchronization time and the number of precon-
dition evaluations metrics. However, it does not record idle CPU cores and other
architecture-specific values. Its metrics are all on the level of the programming
model to make it easier to relate the metrics to the code.

Wolf and Mohr [158, 217] introduce KOJAK to analyze the performance of
MPI [146] and OpenMP [172] programs using exact monitoring. KOJAK offers
a number of metrics to measure communication inefficiencies, lock and barrier
waiting times, idleness, and runtime overhead. For instance, the late sender metric
represents the time wasted when a receiver executes a blocking receive operation
before the sender starts. The metrics relate directly to concepts of the program-
ming model and are thus helpful to find issues in programs. The communication
inefficiencies metrics are similar to the queue time in the SCOOP performance an-
alyzer because both represent the gap between a sender and a receiver. The lock
waiting time and the barrier waiting time metrics have a similar purpose than the
synchronization time metric. These similarities are not surprising because most
concurrent programming models have notions for communication and synchro-
nization, and these notions must be reflected in any set of model-specific metrics.

Geimer et al. [78] evolve KOJAK into SCALASCA. Compared to KOJAK,
SCALASCA can identify wait states even in executions with a large number of
processes. It supports incremental performance analysis since it can produce ei-
ther a simple online profile or a complete postmortem analysis. SCALASCA
extends KOJAK’s metrics with architecture-specific metrics and offers many new
visualizations. Lorentz et al [137] complements SCALASCA with further visu-

8.7. Related work 213

alizations and a metric that measures the accumulated waiting time caused by a
delay.

Vampir by Brunst, Knüpfer, et al. [39,123] also has its roots in KOJAK. Vam-
pir measures communication metrics and architecture-specific metrics, including
metrics that measure energy consumption. The HPCTOOLKIT [2] by Adhianto et
al. is another performance analyzer for MPI and OpenMP. It uses statistical mon-
itoring to compute architecture-specific metrics. Shende and Malony [139, 196]
introduce Tau, a performance analyzer for many programming models. Tau uses
statistical or exact monitoring to measure architecture-specific metrics.

Tallnet et al. [202] propose a performance analysis tool for Cilk [24] using sta-
tistical monitoring. The tool has two main metrics: parallel idleness and parallel
overhead. Parallel idleness of a program unit is the number of CPU cores that are
idle during the execution. Parallel overhead of a program unit is the percentage
of execution time that is used for management activities. These metrics can be
used to diagnose performance problems of a program unit. If the program unit
has both low parallel idleness and low parallel overhead, then the parallelization
is optimal. If only the parallel idleness is high, then one should refine concur-
rency granularity. If only the parallel overhead is high, then one should coarsen
the concurrency granularity. If both metrics are high, then one should change the
strategy; for instance, one can use a combination of data and task parallelism in-
stead of just one of them. These metrics are well-suited for Cilk programs because
concurrency is triggered implicitly by the runtime; thus it is indeed important to
audit the runtime by measuring the CPU core utilization and the imposed over-
head. These measurements are less important in SCOOP because programmers
trigger concurrency explicitly. This difference has another implication. Since
Cilk programmers do not need to know in detail how the runtime executes, the
Cilk performance analyzer shows the metric values in a call graph. In contrast,
the SCOOP performance analyzer distributes the metric values over the timelines
to show the explicitly triggered concurrent executions.

Su et al. [201] present a performance analysis tool for programs based on
the Partitioned Global Address Space (PGAS) model [6]. A PGAS system has
a global memory address space that is partitioned among nodes; all nodes can
access all partitions. The tool has an interface that PGAS systems implement
to provide the necessary measurements. The tool offers metrics to measure the
computational and storage load of nodes as well as the communication between
different nodes. These metrics are well-suited for PGAS systems because they
have a direct correspondence to the model. These metrics are also useful to de-
scribe the load and communication of SCOOP processors. However, they do not
capture other aspects of the SCOOP model such as synchronization.

Miller et al. [152] present Paradyn, a performance analysis tool for MPI-
based [146] and multi-threaded programs. The tool uses dynamic instrumentation

214 Chapter 8. Performance analysis

to perform statistical monitoring on demand and is therefore suitable to analyze
long-running programs. It supports a number of metrics to analyze communica-
tion and synchronization. Paradyn relies on Dyninst [95] to dynamically instru-
ment executables. The SCOOP performance analyzer uses static instrumentation
due to the lack of support in SCOOP.

Hollingsworth et al. [93] present a quantitative technique to compare the ef-
fectiveness of concurrent performance metrics in guiding programmers. The True
Zeroing approach defines a reference metric. For each method, the effect on to-
tal execution time of removing the method from the application. To remove the
method, the authors first execute the application on a given input and record the
state changes made by the method. They then replace each call to the method with
a number of assignments that make the same changes to the state. To perform the
comparison, they calculate for each method the value of the reference metric and
the value of all other metrics. For each metric, they determine the suggested order
in which the methods should be optimized. For each order, they calculate the nor-
malized differences between the metric values of the ordered methods. Based on
this, they calculate a correlation coefficient between each metric to be compared
and the reference metric. The authors use this technique to compare the metrics
of the following approaches:

• The IPS-2 approach [153] computes for each method the useful CPU time.

• The NPT approach [11] calculates for each method the time the executing
process is doing useful work divided by the number of processes doing use-
ful work at the same time. The approach suggests optimizing the method
with the longest execution time and the largest number of processes that
wait while the method is being executed.

• The critical path approach [220] determines the critical path and then sums
up the useful CPU time for each method on the critical path.

• The Logical Zeroing approach [153] compares for each method the total
execution time of the original critical path with the total execution time
of the alternative critical path, where the duration of the method is set to
zero. This gives an approximation of how much the total execution time
will change when the method is optimized. The approach does not consider
that the optimization might cause event reordering.

• The Slack approach [94] first determines the critical path. For each method
on the critical path, the slack value indicates how much the method can be
improved before the critical path will change. The motivation is that an
improvement of the longest executing method on the critical path might not

8.7. Related work 215

significantly improve the total execution time because the critical path might
change to a path that is slightly shorter. The approach does not work for
applications where all paths are comparably long. It also ignores situations
in which a method on the critical path is also on a secondary path and hence
an improvement of the method will reduce the total execution time of both
paths.

The authors conclude that there is no single universal metric. Performance
analysis tools must support multiple metrics and assist in the selection. The met-
rics can be applied to most concurrency models. This makes them general, but
also less expressive. For example, they are not designed to find synchronization
issues, as done in the analysis of the hexapod (see Section 8.5). The SCOOP per-
formance analyzer does not perform critical path analysis; however, it would be
straightforward to calculate the critical path from the processor view.

Snelick [198] presents S-Check, a performance analysis tool to determine the
effect of changes in the code without actually performing the changes. S-Check is
based on synthetic perturbation screening. This technique assumes that if a code
segment is sensitive to perturbations, then a comparable improvement will boost
the performance in a similar way. In a first step, S-Check assists in picking code
lines that are suspected bottlenecks. Then S-Check inserts artificial delays at the
specified code lines in a way that each delay can be enabled or disabled; each
delay combination generates a new version of the program. S-Check executes
some of the versions and records the total execution times. This results in a total
execution time for some of the delay combinations. Based on this, S-Check fits
a polynomial function whose input is a delay combination and whose output is
the total execution time for the delay combination. With this function, S-Check
extrapolates the effect of each delay. The approach suggests optimizing the line of
code whose delay has the largest effect. To find out whether the basic assumption
is valid, this approach could be combined with the Slack approach.

Cai et al. [44] develop a monitor for programs written in occam [195], a con-
current programming language based on CSP [91]. The monitor minimizes the
probe effect (the alteration of the system’s behavior due to the measurement). It
guarantees that in each execution the events are identical regardless of the mon-
itor’s presence. The monitor uses a variation of logical clocks [128] to order
events partially. Every process has one logical clock that records the execution
time minus the delay caused by the monitor. Whenever a process wants to pick
one channel from a set of available ones, the monitor delays the decision until it
finds the communication partner that has a matching communication event with
the lowest logical clock timestamp. To apply this approach to SCOOP, the mon-
itor would only allow a processor to obtain a lock when it is sure that no other
processor with an earlier logical clock value will try to obtain the lock. However,

216 Chapter 8. Performance analysis

in SCOOP the set of processors that will try to obtain a lock is generally unknown.
Hence, this approach is not directly applicable to SCOOP.

8.8 Discussion
Motivations for making a program concurrent include optimizing the performance,
improving the reliability, bringing convenience to users, and profiting from the
modeling power of concurrent programming languages. To assess concurrent pro-
grams with respect to the first goal, performance analysis is critical. New models,
such as SCOOP, often have an execution semantics that differs considerably from
established models. These models thus require new tools with performance anal-
ysis metrics that are tailored their semantics.

This chapter presented a tool to find performance issues in SCOOP programs,
using a number of novel metrics that are specific to the SCOOP model. For ex-
ample, one of the newly-introduced metrics is the synchronization time metric.
The synchronization time metric represents the time it takes to obtain the request
queue locks and to satisfy the precondition. This metric relates directly to the
smoothness of the robot’s gait when applied to the hexapod control, proving its
usefulness in optimizing concurrent software.

In a future version of the tool, the processor view can show the critical path
along with a hotspot based on Slack values [94], and also show when a processor
unlocks itself. The precondition evaluation marks can show a breakdown of the
precondition, allowing programmers to see the parts of the precondition that were
satisfied and the ones that could not be satisfied. The feature view can be extended
with the Logical Zeroing analysis [153] and the sensitivity analysis [198]. A fur-
ther view can show for each processor how often its request queue lock has been
requested and in which contexts the lock has been requested. A hotspot can show
the processor whose request queue lock has been requested most often.

For a future distributed implementations, it will be necessary to also measure
the communication impact. The timestamps of the events could be based on log-
ical clocks such as Lamport clocks [128] or vector clocks [141] for the ordering
of events and synchronized clocks using the Network Time Protocol [155] for
the approximation of durations. In practice, the Network Time Protocol could be
precise enough to order the events from different nodes.

9 Conclusion

This thesis presented a method for developing concurrency models in a systematic
way and applied the method to clarify and extend an object-oriented concurrency
model, SCOOP. The presented method relies on executable formal specifications
to conduct testing prior to developing compiler and runtime support. The benefits
of using this method was demonstrated on SCOOP. Prior to this thesis, SCOOP
was defined informally in [150, 164], but no complete and comprehensive formal
specification existed. This thesis used the proposed method to clarify SCOOP and
extend SCOOP with two new mechanisms - asynchronous exceptions and fast
and safe data sharing. In addition to clarification and extension of SCOOP, this
thesis resulted in a comprehensive executable formal specification of SCOOP im-
plemented in Maude; the executable formal specification can serve as a reference
and starting point for future model extensions.

9.1 Defense of the thesis statement

Presentation of a method would not be complete without a thorough evaluation.
This thesis applied the prototyping method to SCOOP, and the process revealed
several clarifications. Some of these clarifications could only be found through
a comprehensive study of SCOOP. For example, Clarification 7.1 could only be
revealed by understanding both passive processor and import operation for ex-
panded object fully. In general, the clarifications minimize the risk of the runtime
and complier suffering from semantic flaws. A complete list of clarifications are
as follows:

• Clarification 3.1. Once routines must not have a result type with an explicit
processor specification.

217

218 Chapter 9. Conclusion

• Clarification 3.2. Each processor defines a lock for its request queue and a
lock for its call stack.

• Clarification 3.3. The deep import operation atomically locks the handlers
of all reachable separate objects, which is too costly. The import opera-
tion is a better fit, but requires a convention: in imported object structures,
invariants must not rely on object identities.

• Clarification 3.4. Let q be a processor about to import an object o handled
by a different processor p; o has a non-separate once function or once pro-
cedure f . In case f is not fresh on p and fresh on q, f remains fresh on
q.

• Clarification 3.4. In imported object structures, non-separate once functions
must compute results that satisfy the object structure’s invariants when re-
computed on any processor.

• Clarification 3.5. During a feature call, the client p passes its locks to the
supplier q in two cases: (1) p holds a lock on a processor handling an argu-
ment of attached reference type; or (2) the feature call is a separate callback.
In both cases, p passes all its locks, including its call stack lock.

• Clarification 3.6. During a feature call, the client must copy or import ex-
panded objects to a supplier.

• Clarification 3.7. The postcondition of a feature f must be evaluated by the
processor executing f .

• Clarification 5.1. A separate callback is characterized as: the supplier has
passed its locks, and the client holds the supplier’s call stack lock.

• Clarification 5.2. Just after its first execution in a context, a once routine f is
not fresh and not stable; after its execution, f becomes not fresh and stable.
The processor that executes f for the first time is the stabilizer. Only the
stabilizer can execute f while it is not stable. If f is a separate once function,
the stabilizer must only call f on non-separate targets; furthermore, it must
ensure that the once result is meaningful before any calls with lock passing.

• Clarification 5.3. During a query call, a processor passes all its locks.

• Clarification 5.4. A supplier p of a command call must only synchronize
with the client q, if q has passed any locks to p.

9.2. Future work 219

• Clarification 6.1. A precondition of a feature f is a correctness condition
if and only if (1) the call to f is synchronous and (2) the client claims the
request queue lock or the call stack lock for every target in the precondition.
Every other precondition is a wait condition.

• Clarification 6.2. Before releasing the request queue locks of processors
{g1, . . . , gn} in safe mode, a processor p asks each g ∈ {g1, . . . , gn} to send a
notification after finishing the issued workload; for all i ∈ {1, n− 1}, p waits
for gi’s notification before asking gi+1.

• Clarification 6.3. Before unlocking the request queue of a supplier q after
a creation call in safe mode, the client p must query q for any failures and
wait for the notification.

• Clarification 7.1. If p returns an expanded object with reference r from a
passive processor to itself or another passive processor, it must import r to
that processor.

The list of clarifications is an evidence that the prototyping method is bene-
ficial to clarify a concurrency model before implementing compiler and runtime
support. Without these clarifications, the compiler and runtime developers would
have to debug many lines of code to resolve the flaws in the model. With the
prototyping method, the semantics of the model can be studied in a purer environ-
ment before its compiler and runtime support are introduced. Although executable
specifications suffer from the same criticism of principle as program tests in that
the approach can at best give partial reassurance, never a full guarantee, the results
reported here suggest that executable specifications are, in practice, a realistically
usable and fruitful path to the verification of semantic models. Having success-
fully demonstrated the benefits of the method on an extensive concurrency model,
we believe that our prototyping method will also prove its usefulness in the devel-
opment of other models.

9.2 Future work
The work on this thesis has opened up several directions for future work. The pos-
sible directions vary from automatic testing of the executable formal specification
to introducing teaching instrument and extending SCOOP itself.

• Testing framework. A tool can use the executable formal specification to
run test program and check them automatically against a specified out-
come. The tool can use Maude strategies (see Section 4.4.2) to test different
scheduling algorithms.

220 Chapter 9. Conclusion

• Compiler and runtime conformance checking. A tool can run a compiled
test programs and run the same program using the executable formal spec-
ification; it can then check whether the two executions conform to each
other.

• Teaching instrument. Similar to Eiffel// [14] (see Section 5.6), a front-
end for SCOOP could enable students to develop a program and navigate
through different executions. The front-end translates the SCOOP program
into Maude syntax, uses Maude strategies to realize the executions, and vi-
sualizes the Maude output. Advanced students can even explore variants of
the SCOOP semantics by modifying the executable formal specification; no
lengthy recompilation of the compiler and the runtime is necessary.

• Performance simulation. Each operation can be annotated with timing data.
Maude can then compute the values for the metrics in Section 8.1 under
various executions without any compiler or runtime support, thus comple-
menting the performance analysis tool from Section 8.1. The effectiveness
of such performance simulation tools has been shown by Hoefler et al. [92]
and others.

• Further extensions to SCOOP. The prototyping method can be used to ex-
tend SCOOP further with:

– Lock delegation (see Section 6.8). A client p can delegate its obtained
locks to another client q; after delegation, p asynchronously continues
without the delegated locks.

– Shared read locks (see Section 7.7). Multiple clients can simultane-
ously read objects on a passive processor.

– Duel mechanism [150]. A processor can challenge another processor
for its locks.

– Garbage collector [151]. The system collects unused processors and
objects. The garbage collector in the current executable formal speci-
fication only collects objects.

– Deadlock detection. The system detects deadlocks due to unavail-
able locks and unsatisfied wait conditions. This mechanism comple-
ments West et al.’s static deadlock prevention approach for SCOOP
programs [215].

• Eiffel coverage. While the executable formal specification covers all opera-
tional aspects of SCOOP, it does not cover the entirety [105] of Eiffel. In the
future, it could support more Eiffel aspects such as inheritance, genericity,
agents, object tests, and entity initialization.

9.3. Final remarks 221

• Application to other concurrency models. The prototyping method can be
used to develop concurrency models other than SCOOP.

9.3 Final remarks
The thesis presented a prototyping method for a systematic development of con-
current models and demonstrated its effectiveness on SCOOP. By applying the
prototyping method, it clarified SCOOP and added two much needed mecha-
nisms - asynchronous exceptions and efficient data sharing. In terms of excep-
tion handling, this thesis introduced the accountability framework with concepts
to describe asynchronous exception mechanisms and presented a classification of
approaches along with a discussion of their strengths and weaknesses. It used
the accountability framework and the classification to derive a mechanism for
asynchronous exceptions in SCOOP. In terms of data-sharing, this thesis further
extended SCOOP’s message-passing foundation with passive processors. Pas-
sive processors support safe data sharing and reduce execution time by several
orders of magnitude on data-intensive parallel programs. Lastly, the thesis pre-
sented SCOOP-specific performance analysis metrics to enable programmers use
SCOOP more effectively. The performance analyzer diagnoses performance bot-
tlenecks in SCOOP programs, easing the analysis and improvement of programs.
The performance analysis metrics, the clarifications, and the new mechanisms ex-
tend SCOOP significantly. Because of these advances, we feel confident to add
our proposal to the record started by Meyer’s SCOOP 97 [150] and continued by
Nienaltowski’s SCOOP 07 [164] by naming it SCOOP 14.

222 Chapter 9. Conclusion

Bibliography

[1] Erika Ábrahám. An Assertional Proof System for Multithreaded Java –
Theory and Tool Support. PhD thesis, University of Leiden, 2005.

[2] Laksono Adhianto, Sinchan Banerjee, Michael W. Fagan, Mark Krentel,
Gabriel Marin, John M. Mellor-Crummey, and Nathan R. Tallent. HPC-
TOOLKIT: tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience, 22(6):685–701,
2010.

[3] Eric Allen, David Chase, Joe Hallet, Victor Luchangco, Jan-Willem
Maessen, Sukyoung Ryu, Guy L. Steele Jr., and Sam Tobin-Hochstadt. The
Fortress language specification. Technical report, Sun, 2008.

[4] Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and Guy
L. Steele Jr. Object-oriented units of measurement. In Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, pages 384–403, 2004.

[5] ZigBee Alliance. ZigBee specification. Technical report, ZigBee Alliance,
2012.

[6] George Almasi. Partitioned global address space (PGAS) languages. In
David A. Padua, editor, Encyclopedia of Parallel Computing, page 1465.
Springer, 2011.

[7] Musab AlTurki and José Meseguer. Real-time rewriting semantics of Orc.
In International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 131–142, 2007.

[8] Musab AlTurki and José Meseguer. Reduction semantics and formal anal-
ysis of Orc programs. Electronic Notes in Theoretical Computer Science,
200(3):25–41, 2008.

223

224 Bibliography

[9] Musab AlTurki and José Meseguer. Dist-Orc: A rewriting-based dis-
tributed implementation of Orc with formal analysis. In International
Workshop on Rewriting Techniques for Real-Time Systems, pages 26–45,
2010.

[10] AMD. CodeXL. http://developer.amd.com/tools-and-sdks/heterogeneous-
computing/codexl/, 2013.

[11] Thomas E. Anderson and Edward D. Lazowska. Quartz: a tool for tun-
ing parallel program performance. In ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, pages 115–125, 1990.

[12] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical Structures in Computer Science, 14(3):329–
366, 2004.

[13] Volkan Arslan and Bertrand Meyer. Asynchronous exceptions in concur-
rent object-oriented programming. In Symposium on Concurrency, Real-
Time, and Distribution in Eiffel-Like Languages, pages 62–70, 2006.

[14] Isabelle Attali, Denis Caromel, Sidi O. Ehmety, and Sylvain Lippi.
Semantic-based visualization for parallel object-oriented programming. In
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 421–440, 1996.

[15] Rafael Bohrer Ávila, Caciano Machado, and Philippe O. A. Navaux.
Message-passing over shared memory for the SECK programming environ-
ment. In International Conference on Parallel and Distributed Processing
Techniques and Applications, pages 590–595, 2002.

[16] Laurent Baduel, Françoise Baude, Denis Caromel, Arnaud Contes, Fabrice
Huet, Matthieu Morel, and Romain Quilici. Grid computing: Software
environments and tools. chapter Programming, Composing, Deploying for
the Grid, pages 205–229. Springer, 2006.

[17] Arnaud Bailly. Formal semantics and proof system for SCOOP. http:
//se.inf.ethz.ch/, 2004.

[18] Detlef Bartetzko, Clemens Fischer, Michael Möller, and Heike Wehrheim.
Jass - Java with assertions. Electronic Notes in Theoretical Computer Sci-
ence, 55(2), 2001.

[19] Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter
Sewell. Clarifying and compiling C/C++ concurrency: from C++11 to

http://se.inf.ethz.ch/
http://se.inf.ethz.ch/

Bibliography 225

POWER. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 509–520, 2012.

[20] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber.
Mathematizing C++ concurrency. In ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 55–66, 2011.

[21] Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency ab-
stractions for C#. ACM Transactions on Programming Languages and Sys-
tems, 26(5):269–804, 2004.

[22] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Pro-
gram Development. Springer, 2010.

[23] Jasmin Christian Blanchette, Tjark Weber, Mark Batty, Scott Owens, and
Susmit Sarkar. Nitpicking C++ concurrency. In International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming,
pages 113–124, 2011.

[24] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an efficient multi-
threaded runtime system. Journal of Parallel and Distributed Computing,
37(1):55–69, 1996.

[25] Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume
Melquiond. A formally-verified C compiler supporting floating-point arith-
metic. In IEEE Symposium on Computer Arithmetic, pages 107–115, 2013.

[26] Greg Bollella, James Gosling, Benjamin M. Brosgol, Peter Dibble, Steve
Furr, David Hardin, and Mark Turnbull. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[27] Viviana Bono, Chiara Messa, and Luca Padovani. Typing copyless message
passing. In European Symposium on Programming, pages 57–76, 2011.

[28] Egon Börger, Nicu G. Fruja, Vincenzo Gervasi, and Robert F. Stärk. A
high-level modular definition of the semantics of C#. Theoretical Computer
Science, 336(2–3):235–284, 2005.

[29] Egon Börger and Robert F. Stärk. Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer, 2003.

226 Bibliography

[30] Peter Borovanský, Claude Kirchner, Hélène Kirchner, Pierre-Etienne
Moreau, and Marian Vittek. ELAN: A logical framework based on compu-
tational systems. Electronic Notes in Theoretical Computer Science, 4:35–
50, 1996.

[31] Patrick Borras, Dominique Clément, Thierry Despeyroux, Janet Incerpi,
Gilles Kahn, Bernard Lang, and Valérie Pascual. CENTAUR: The system.
In ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-
cal Software Development Environments, pages 14–24, 1988.

[32] Adel Bouhoula, Jean-Pierre Jouannaud, and José Meseguer. Specification
and proof in membership equational logic. Theoretical Computer Science,
236(1-2):35–132, 2000.

[33] Martin Bravenboer, Karl T. Kalleberg, Rob Vermaas, and Eelco Visser.
Stratego/XT 0.17. a language and toolset for program transformation. Sci-
ence of Computer Programming, 72(1–2):52–70, 2008.

[34] Ron Brightwell. Exploiting direct access shared memory for MPI on multi-
core processors. International Journal of High Performance Computing
Applications, 24(1):69–77, 2010.

[35] Phillip J. Brooke and Richard F. Paige. Exceptions in concurrent Eiffel.
Journal of Object Technology, 6(10):111–126, 2007.

[36] Phillip J. Brooke and Richard F. Paige. Cameo: an alternative model of con-
currency for Eiffel. Formal Aspects of Computing, 21(4):363–391, 2009.

[37] Phillip J. Brooke, Richard F. Paige, and Jeremy L. Jacob. A CSP model of
Eiffel’s SCOOP. Formal Aspects of Computing, 19(4):487–512, 2007.

[38] Roberto Bruni and José Meseguer. Generalized rewrite theories. In In-
ternational Colloquium on Automata, Languages and Programming, pages
252–266, 2003.

[39] Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling.
Comprehensive performance tracking with Vampir 7. In International Par-
allel Tools Workshop, pages 17–29, 2009.

[40] Peter A. Buhr. µC++ annotated reference manual. Technical report, Uni-
versity of Waterloo, 2013.

[41] J. Mark Bull, James P. Enright, Xu Guo, Chris Maynard, and Fiona Reid.
Performance evaluation of mixed-mode OpenMP/MPI implementations.
International Journal of Parallel Programming, 38(5–6):396–417, 2010.

Bibliography 227

[42] Darius Buntinas, Guillaume Mercier, and William Gropp. Data transfers
between processes in an SMP system: Performance study and application
to MPI. In International Conference on Parallel Processing, pages 487–
496, 2006.

[43] Darius Buntinas, Guillaume Mercier, and William Gropp. Implementation
and evaluation of shared-memory communication and synchronization op-
erations in MPICH2 using the Nemesis communication subsystem. Parallel
Computing, 33(9):634–644, 2007.

[44] Wentong Cai and Stephen John Turner. An approach to the run-time mon-
itoring of parallel programs. The Computer Journal, 37(4):333–345, 1994.

[45] Roy H. Campbell and Brian Randell. Error recovery in asynchronous sys-
tems. IEEE Transactions on Software Engineering, 12(8):811–826, 1986.

[46] Franck Cappello and Daniel Etiemble. MPI versus MPI+OpenMP on IBM
SP for the NAS benchmarks. In Supercomputing 2000, 2000.

[47] Denis Caromel. Toward a method of object-oriented concurrent program-
ming. Communications of the ACM, 36(9):90–102, 1993.

[48] Denis Caromel and Guillaume Chazarain. Robust exception handling in an
asynchronous environment. In Workshop on Exception Handling in Object-
Oriented Systems, 2005.

[49] Denis Caromel and Ludovic Henrio. A Theory of Distributed Objects.
Springer, 2004.

[50] Pietro Cenciarelli, Alexander Knapp, and Eleonora Sibilio. The java mem-
ory model: Operationally, denotationally, axiomatically. In European Sym-
posium on Programming, pages 331–346, 2007.

[51] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa,
Allan Kielstra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar.
X10: an object-oriented approach to non-uniform cluster computing. In An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pages 519–538, 2005.

[52] Martin J. Chorley and David W. Walker. Performance analysis of a hybrid
mpi/openmp application on multi-core clusters. Journal of Computational
Science, 1(3):168–174, 2010.

228 Bibliography

[53] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Martı́-Oliet, José Meseguer, and Carolyn Talcott. All About Maude – A
High-Performance Logical Framework. Springer, 2007.

[54] Manuel Clavel, Steven Eker, Patrick Lincoln, and José Meseguer. Princi-
ples of Maude. Electronic Notes in Theoretical Computer Science, 4:65–89,
1996.

[55] Edward G. Coffman, Melanie J. Elphick, and Arie Shoshani. System dead-
locks. ACM Computing Surveys, 3(2):67–78, 1971.

[56] Michael Compton and Richard Walker. A run-time system for SCOOP.
Journal of Object Technology, 1(3):119–157, 2002.

[57] Razvan Diaconescu and Kokichi Futatsugi. CafeOBJ Report: The Lan-
guage, Proof Techniques, and Methodologies for Object-Oriented Alge-
braic Specification, volume 6 of AMAST Series in Computing. World Sci-
entific, 1998.

[58] Christophe Dony, Christelle Urtado, and Sylvain Vauttier. Exception han-
dling and asynchronous active objects: Issues and proposal. In Advanced
Topics in Exception Handling Techniques, pages 81–100, 2006.

[59] Hans Rohnert Frank Buschmann Douglas Schmidt, Michael Stal. Pattern-
Oriented Software Architecture Volume 2: Patterns for Concurrent and Net-
worked Objects. Wiley, 2000.

[60] Allen B. Downey. The Little Book of Semaphores. Green Tea Press, 2nd
edition, 2005.

[61] Ian N. Dunn and Gerard G.L. Meyer. Parallel QR factorization for hybrid
message passing/shared memory operation. Journal of the Franklin Insti-
tute, 338(5):601–613, 2001.

[62] Eiffel Software. EiffelStudio. http://www.eiffel.com/, 2013.

[63] Steven Eker, Narciso Martı́-Oliet, José Meseguer, and Alberto Verdejo. De-
duction, strategies, and rewriting. Electronic Notes in Theoretical Com-
puter Science, 174(11):3–25, 2007.

[64] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude
LTL model checker. Electronic Notes in Theoretical Computer Science,
71:162–187, 2004.

http://www.eiffel.com/

Bibliography 229

[65] Chucky Ellison. A Formal Semantics of C with Applications. PhD thesis,
University of Illinois, 2012.

[66] Ericsson. Erlang/OTP system documentation. Technical report, Ericsson,
2012.

[67] ETH Zurich. EVE. https://trac.inf.ethz.ch/trac/meyer/eve/,
2013.

[68] Azadeh Farzan, Feng Chen, José Meseguer, and Grigore Roşu. Formal
analysis of Java programs in JavaFAN. In International Conference on
Computer Aided Verification, pages 501–505, 2004.

[69] Azadeh Farzan, José Meseguer, and Grigore Roşu. Formal JVM code anal-
ysis in JavaFAN. In Algebraic Methodology and Software Technology,
pages 132–147, 2004.

[70] Matthias Felleisen, Robert B. Findler, and Matthew Flatt. Semantics Engi-
neering with PLT Redex. MIT Press, 2009.

[71] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science,
103(2):235–271, 1992.

[72] Steven Fortune and James Wyllie. Parallelism in random access machines.
In Annual ACM Symposium on Theory of Computing, pages 114–118,
1978.

[73] Cédric Fournet and Georges Gonthier. The reflexive CHAM and the join-
calculus. In ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, pages 372–385, 1996.

[74] Peter Fritzson, Adrian Pop, David Broman, and Peter Aronsson. Formal
semantics based translator generation and tool development in practice. In
Australian Software Engineering Conference, pages 256–266, 2009.

[75] Nicu G. Fruja. Specification and implementation problems for C#. In
Abstract State Machines, pages 127–143, 2004.

[76] Oleksandr Fuks, Jonathan S. Ostroff, and Richard F. Paige. SECG:
The SCOOP-to-Eiffel Code Generator. Journal of Object Technology,
3(10):143–161, 2004.

https://trac.inf.ethz.ch/trac/meyer/eve/

230 Bibliography

[77] Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José
Meseguer. Principles of OBJ2. In Annual ACM Symposium on Principles
of Programming Languages, pages 52–66, 1985.

[78] Markus Geimer, Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel
Becker, and Bernd Mohr. The SCALASCA performance toolset architec-
ture. Concurrency and Computation: Practice and Experience, 22(6):702–
719, 2010.

[79] David Gelernter, Nicholas Carriero, Sarat Chandran, and Silva Chang. Par-
allel programming in Linda. In International Conference on Parallel Pro-
cessing, pages 255–263, 1985.

[80] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David Holmes,
and Doug Lea. Java Concurrency in Practice. Addison-Wesley, 2006.

[81] Leslie M. Goldschlager. A unified approach to models of synchronous
parallel machines. In Annual ACM Symposium on Theory of Computing,
pages 89–94, 1978.

[82] James Gosling, Bill Joy, Guy L. Steele Jr., Gilad Bracha, and Alex Buckley.
The Java Language Specification, Java SE 7 Edition. Addison-Wesley,
2013.

[83] Richard L. Graham and Galen M. Shipman. MPI support for multi-core ar-
chitectures: Optimized shared memory collectives. In European PVM/MPI
Users Group Meeting, pages 130–140, 2008.

[84] Olivier Gruber and Fabienne Boyer. Ownership-based isolation for con-
current actors on multi-core machines. In European Conference on Object-
Oriented Programming, pages 281–301, 2013.

[85] Yuri Gurevich. Specification and validation methods. chapter Evolving
algebras 1993: Lipari guide, pages 9–36. Oxford University Press, 1995.

[86] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. Semantic
essence of AsmL. Theoretical Computer Science, 343(3):370–412, 2005.

[87] Jens Gustedt. Data handover: Reconciling message passing and shared
memory. In Foundations of Global Computing, 2005.

[88] Per B. Hansen. The programming language Concurrent Pascal. IEEE
Transaction on Software Engineering, 1(2):199–207, 1975.

Bibliography 231

[89] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular AC-
TOR formalism for artificial intelligence. In International Joint Conference
on Artificial Intelligence, pages 235–245, 1973.

[90] C. A. R. Hoare. Monitors: an operating system structuring concept. Com-
munications of the ACM, 17(10):549–557, 1974.

[91] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[92] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. LogGOPSim -
simulating large-scale applications in the LogGOPS model. In ACM Inter-
national Symposium on High Performance Distributed Computing, pages
597–604, 2010.

[93] Jeffrey K. Hollingsworth and Barton P. Miller. Parallel program perfor-
mance metrics: A comparison and validation. In ACM/IEEE Conference
on Supercomputing, pages 4–13, 1992.

[94] Jeffrey K. Hollingsworth and Barton P. Miller. Slack: a new performance
metric for parallel programs. Technical report, University of Wisconsin
Madison, 1994.

[95] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic
program instrumentation for scalable performance tools. In Scalable High
Performance Computing Conference, pages 841–850, 1994.

[96] Daniel T. Huang and Ronald A. Olsson. An exception handling mechanism
for SR. Computer Languages, Systems & Structures, 15(3):163–176, 1990.

[97] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and
Reasoning about Systems. Cambridge University Press, 2nd edition, 2004.

[98] Yuuji Ichisugi and Akinori Yonezawa. Exception handling and real time
features in an object-oriented concurrent language. In Concurrency: The-
ory, Language, and Architecture, pages 91–109, 1991.

[99] Information-technology Promotion Agency. Ruby. Technical report,
Information-technology Promotion Agency, 2010.

[100] Insititue of Electrical and Electronics Engineers. IEEE standard for the
Scheme programming language. Technical Report 1178-1990, Insititue of
Electrical and Electronics Engineers, 2008.

232 Bibliography

[101] Insititue of Electrical and Electronics Engineers. SystemVerilog – unified
hardware design, specification, and verification language. Technical Report
1800–2012, Insititue of Electrical and Electronics Engineers, 2012.

[102] Intel. Cilk Plus language extension specification. Technical report, Intel,
2011.

[103] Intel. Parallel Amplifier. http://software.intel.com/en-us/intel-vtune-
amplifier-xe/, 2013.

[104] Ecma International. C# language specification 4th edition. Technical Re-
port ECMA-334, Ecma International, 2006.

[105] Ecma International. Eiffel: Analysis, design and programming language
2nd edition. Technical Report ECMA-367, Ecma International, 2006.

[106] International Organization for Standardization. Prolog – part 1: General
core. Technical Report 13211-1:1995, International Organization for Stan-
dardization, 1995.

[107] International Organization for Standardization. Extended BNF. Technical
Report ISO/IEC 14977:1996, International Organization for Standardiza-
tion, 1996.

[108] International Organization for Standardization. Prolog – part 2: Modules.
Technical Report 13211-2:2000, International Organization for Standard-
ization, 2000.

[109] International Organization for Standardization. Unified Modeling Lan-
guage (UML) Version 1.4.2. Technical Report ISO/IEC 19501:2005, In-
ternational Organization for Standardization, 2005.

[110] International Organization for Standardization. Technical Report 13211-
1:1995/Cor 1:2007, International Organization for Standardization, 2007.

[111] International Organization for Standardization. C. Technical Report
ISO/IEC 9899:2011, International Organization for Standardization, 2011.

[112] International Organization for Standardization. C++. Technical Re-
port ISO/IEC 14882:2011, International Organization for Standardization,
2011.

[113] International Organization for Standardization. Technical Report ISO/IEC
9899:2011/Cor 1:2012, International Organization for Standardization,
2012.

Bibliography 233

[114] International Organization for Standardization. Technical Report 13211-
1:1995/Cor 2:2012, International Organization for Standardization, 2012.

[115] International Organization for Standardization. Ada. Technical Report
ISO/IEC 8652:2012, International Organization for Standardization, 2012.

[116] Valérie Issarny. An exception handling mechanism for parallel object-
oriented programming: towards reusable, robust distributed software. Jour-
nal of Object-Oriented Programming, 6(6):29–39, 1993.

[117] Douglas L. Jones. Decimation-in-time (DIT) radix-2 FFT. http://cnx.
org/content/m12016/1.7/, 2013.

[118] Mackale Joyner, Bradford L. Chamberlain, and Steven J. Deitz. Iterators in
Chapel. In International Parallel and Distributed Processing Symposium,
2006.

[119] Horatiu Jula and Nicu G. Fruja. An executable specification of C#. In
Abstract State Machines, pages 275–288, 2005.

[120] Gilles Kahn. Natural semantics. In Annual Symposium on Theoretical
Aspects of Computer Science, pages 22–39, 1987.

[121] Setrag Khoshafian and George P. Copeland. Object identity. In Conference
on Object Oriented Programming Systems Languages and Applications,
pages 406–416, 1986.

[122] Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-
like language, virtual machine and compiler. ACM Transactions on Pro-
gramming Languages and Systems, 28(4):619–695, 2006.

[123] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz,
Matthias Lieber, Holger Mickler, Matthias S. Müller, and Wolfgang E.
Nagel. The Vampir performance analysis tool-set. In International Par-
allel Tools Workshop, pages 139–155, 2008.

[124] David A. Kranz, Kirk L. Johnson, Anant Agarwal, John Kubiatowicz, and
Beng-Hong Lim. Integrating message-passing and shared-memory: Early
experience. In ACM SIGPLAN Symposium on Principles & Practice of
Parallel Programming, pages 54–63, 1993.

[125] Roy Krischer. Advanced Concepts in Asynchronous Exception Handling.
PhD thesis, University of Waterloo, 2010.

http://cnx.org/content/m12016/1.7/
http://cnx.org/content/m12016/1.7/

234 Bibliography

[126] Marija Kulas and Christoph Beierle. Defining standard Prolog in rewrit-
ing logic. Electronic Notes in Theoretical Computer Science, 36:158–174,
2000.

[127] Dawid Kurzyniec and Vaidy S. Sunderam. Semantic aspects of asyn-
chronous RMI: the RMIX approach. In International Parallel and Dis-
tributed Processing Symposium, 2004.

[128] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[129] Leslie Lamport. The temporal logic of actions. ACM Transactions on
Programming Languages and Systems, 16(3):872–923, 1994.

[130] Xavier Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107–115, 2009.

[131] Guodong Li. Formal Verification of Programs and Their Transformations.
PhD thesis, University of Utah, 2010.

[132] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java
Virtual Machine Specification, Java SE 7 Edition. Addison-Wesley, 2013.

[133] Barbara Liskov, Mark Day, Maurice Herlihy, Paul Johnson, Gary Leavens,
Robert Scheifler, and William Weihl. Argus reference manual. Technical
report, Massachusetts Institute of Technology, 1995.

[134] Barbara Liskov and Liuba Shrira. Promises: Linguistic support for efficient
asynchronous procedure calls in distributed systems. SIGPLAN Notices,
23(7):260–267, 1988.

[135] Barbara Liskov and Stephen Zilles. Programming with abstract data types.
ACM SIGPLAN Notices, 9(4):50–59, 1974.

[136] Andreas Lochbihler. A Machine-Checked, Type-Safe Model of Java Con-
currency: Language, Virtual Machine, Memory Model, and Verified Com-
piler. PhD thesis, Karlsruher Institute of Technology, 2012.

[137] Daniel Lorenz, David Böhme, Bernd Mohr, Alexandre Strube, and Zoltán
Szebenyi. Extending Scalasca’s analysis features. In International Parallel
Tools Workshop, pages 115–126, 2012.

[138] LORIA. SmartEiffel. http://smarteiffel.loria.fr/, 2013.

http://smarteiffel.loria.fr/

Bibliography 235

[139] Allen D. Malony, Sameer Shende, Wyatt Spear, Chee Wai Lee, and Scott
Biersdorff. Advances in the tau performance system. In International Par-
allel Tools Workshop, pages 119–130, 2011.

[140] Simon Marlow, Simon Peyton-Jones, Andrew Moran, and John Reppy.
Asynchronous exceptions in Haskell. SIGPLAN Notices, 36(5):274–285,
2001.

[141] Friedemann Mattern. Virtual time and global states of distributed systems.
In Workshop on Parallel and Distributed Algorithms, pages 215–226, 1989.

[142] Timothy G. Mattson, Beverly A. Sanders, and Berna L. Massingill. Pat-
terns for Parallel Programming. Addison-Wesley, 2004.

[143] Patrick O’Neil Meredith, Michael Katelman, José Meseguer, and Grigore
Roşu. A formal executable semantics of Verilog. In ACM/IEEE Inter-
national Conference on Formal Methods and Models for Codesign, pages
179–188, 2010.

[144] José Meseguer. Conditional rewriting logic as a unified model of concur-
rency. Theoretical Computer Science, 96(1):73–155, 1992.

[145] José Meseguer. Membership algebra as a logical framework for equational
specification. In Workshop on Algebraic Development Techniques, pages
18–61, 1997.

[146] Message Passing Interface Forum. MPI: A message-passing interface stan-
dard. Technical report, Message Passing Interface Forum, 2012.

[147] Bertrand Meyer. A three-level approach to data structure description, and
notational framework. In Workshop on Data Abstraction, Databases and
Conceptual Modelling, pages 164–166, 1981.

[148] Bertrand Meyer. Sequential and concurrent object-oriented programming.
In Technology of Object-Oriented Languages and Systems, pages 17–28,
1990.

[149] Bertrand Meyer. Systematic concurrent object-oriented programming.
Communications of the ACM, 36(9):56–80, 1993.

[150] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
2nd edition, 1997.

236 Bibliography

[151] Bertrand Meyer, Alexander Kogtenkov, and Anton Akhi. Processors and
their collection. In International Conference on Multicore Software Engi-
neering, Performance, and Tools, pages 1–15, 2012.

[152] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchitha-
padam, and Tia Newhall. The Paradyn parallel performance measurement
tool. IEEE Computer, 28(11):37–46, 1995.

[153] Barton P. Miller, Morgan Clark, Jeffrey K. Hollingsworth, Steven Kier-
stead, Sek-See Lim, and Timothy Torzewski. IPS-2: the second generation
of a parallel program measurement system. IEEE Transactions on Parallel
and Distributed Systems, 1(2):206–217, 1990.

[154] Robert Miller and Anand R. Tripathi. The guardian model and primitives
for exception handling in distributed systems. IEEE Transactions on Soft-
ware Engineering, 30(12):1008–1022, 2004.

[155] David L. Mills. Computer Network Time Synchronization: The Network
Time Protocol on Earth and in Space. CRC Press, 2nd edition, 2010.

[156] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

[157] Jayadev Misra and William R. Cook. Computation orchestration: A basis
for wide-area computing. Software and Systems Modeling, 6(1):83–110,
2007.

[158] Bernd Mohr and Felix Wolf. KOJAK - a tool set for automatic perfor-
mance analysis of parallel programs. In European Conference on Parallel
Processing, pages 1301–1304, 2003.

[159] Mohammad Reza Mousavi, Marjan Sirjani, and Farhad Arbab. Specifica-
tion and verification of component connectors. Technical Report CSR-04-
15, Eindhoven University of Technology, 2004.

[160] Mohammad Reza Mousavi, Marjan Sirjani, and Farhad Arbab. Formal
semantics and analysis of component connectors in Reo. Electronic Notes
in Theoretical Computer Science, 154(1):83–99, 2006.

[161] Sebastian Nanz, Faraz Torshizi, Michela Pedroni, and Bertrand Meyer. De-
sign of an empirical study for comparing the usability of concurrent pro-
gramming languages. Information and Software Technology, 55(7):1304–
1315, 2013.

Bibliography 237

[162] Stas Negara, Rajesh K. Karmani, and Gul Agha. Inferring ownership trans-
fer for efficient message passing. In ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, pages 81–90, 2011.

[163] Greg Nelson. Systems Programming With Modula-3. Prentice Hall, 1991.

[164] Piotr Nienaltowski. Practical framework for contract-based concurrent
object-oriented programming. PhD thesis, ETH Zurich, 2007.

[165] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL:
A Proof Assistant for Higher-Order Logic. Springer, 2002.

[166] Michael Norrish. C formalised in HOL. PhD thesis, University of Cam-
bridge, 1998.

[167] Michael Norrish. A formal semantics for C++. Technical report, NICTA,
2007.

[168] Martin Odersky. The Scala language specification version 2.8. Technical
report, ETH Lausanne, 2013.

[169] University of Texas at Austin. Orc reference manual v2.1.0. Technical
report, University of Texas at Austin, 2013.

[170] Ronald A. Olsson and Aaron W. Keen. The JR Programming Language.
Kluwer Academic Publishers, 2004.

[171] Peter Csaba Ölveczky and José Meseguer. Semantics and pragmatics
of Real-Time Maude. Higher-Order and Symbolic Computation, 20(1–
2):161–196, 2007.

[172] OpenMP Architecture Review Board. OpenMP application program inter-
face. Technical report, OpenMP Architecture Review Board, 2013.

[173] Jonathan S. Ostroff, Faraz A. Torshizi, Hai F. Huang, and Bernd Schoeller.
Beyond contracts for concurrency. Formal Aspects of Computing,
21(4):319–346, 2008.

[174] Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory
model: x86-TSO. In International Conference on Theorem Proving in
Higher Order Logics, pages 391–407, 2009.

[175] Sam Owre, John M. Rushby, and Natarajan Shankar. PVS: A prototype
verification system. In International Conference on Automated Deduction,
pages 748–752, 1992.

238 Bibliography

[176] Robert L. Palmer. Formal Analysis for MPI-Based High Performance Com-
puting Software. PhD thesis, University of Utah, 2007.

[177] Carl A. Petri. Kommunikation mit Automaten. PhD thesis, Technical Uni-
versity Darmstadt, 1962.

[178] Frank Pfenning and Carsten Schürmann. System description: Twelf - a
meta-logical framework for deductive systems. In International Conference
on Automated Deduction, pages 202–206, 1999.

[179] Gordon D. Plotkin. A structural approach to operational semantics. The
Journal of Logic and Algebraic Programming, 60–61:17–139, 2004.

[180] Amir Pnueli. The temporal logic of programs. In Annual Symposium on
Foundations of Computer Science, pages 46–57, 1977.

[181] Boris V. Protopopov and Anthony Skjellum. Shared-memory communi-
cation approaches for an MPI message-passing library. Concurrency and
Computation: Practice and Experience, 12(9):799–820, 2000.

[182] Rolf Rabenseifner, Georg Hager, and Gabriele Jost. Hybrid MPI/OpenMP
parallel programming on clusters of multi-core SMP nodes. In Euromi-
cro International Conference on Parallel, Distributed and Network-Based
Processing, pages 427–436, 2009.

[183] Rajeev R. Raje, Joseph I. Williams, and Michael Boyles. Asynchronous
remote method invocation (ARMI) mechanism for Java. Concurrency and
Computation: Practice and Experience, 9(11):1207–1211, 1997.

[184] Ganesh Ramanathan, Benjamin Morandi, Scott West, Sebastian Nanz, and
Bertrand Meyer. Deriving concurrent control software from behavioral
specifications. In IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 1994–1999, 2010.

[185] Brian Randell, Alexander Romanovsky, Robert J. Stroud, Jie Xu, and
Avelino F. Zorzo. Coordinated atomic actions: from concept to implemen-
tation. Technical Report 595, University of Newcastle upon Tyne, 1997.

[186] Matti Rintala. Handling multiple concurrent exceptions in C++ using fu-
tures. In Advances in Exception Handling Techniques, pages 62–80, 2006.

[187] Grigore Roşu and Traian Florin Şerbănuţă. An overview of the K semantic
framework. Journal of Logic and Algebraic Programming, 79(6):397–434,
2010.

Bibliography 239

[188] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David
Grove. X10 language specification. Technical report, IBM, 2011.

[189] Andreas Schedler. Conceptualizing accountability. In Andreas Schedler,
Larry Diamond, and Marc F. Plattner, editors, The Self-Restraining State:
Power and Accountability in New Democracies, pages 13–28. Lynne Rien-
ner, 1999.

[190] Mischael Schill, Sebastian Nanz, and Bertrand Meyer. Handling paral-
lelism in a concurrency model. In International Conference on Multicore
Software Engineering, Performance, and Tools, pages 37–48, 2013.

[191] Joachim Schmid. Refinement and Implementation Techniques for Abstract
State Machines. PhD thesis, Ulm University, 2002.

[192] Heinz W. Schmidt and Jian Chen. Reasoning about concurrent objects. In
Asia-Pacific Software Engineering Conference, pages 86–95, 1995.

[193] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar, and Rok Strniša. Ott: Effective tool sup-
port for the working semanticist. volume 20, pages 71–122, 2010.

[194] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Z. Nardelli, and Mag-
nus O. Myreen. x86-TSO: a rigorous and usable programmer’s model for
x86 multiprocessors. Communications of the ACM, 53(7):89–97, 2010.

[195] SGS-Thomson. occam 2.1 reference manual. Technical report, SGS-
Thomson, 1995.

[196] Sameer Shende and Allen D. Malony. The Tau parallel performance sys-
tem. International Journal of High Performance Computing Applications,
20(2):287–311, 2006.

[197] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Inter-
national Conference on Theorem Proving in Higher Order Logics, pages
28–32, 2008.

[198] Robert Snelick. S-Check: a tool for tuning parallel programs. In Interna-
tional Parallel Processing Symposium, pages 107–112, 1997.

[199] Michael Sperber, R. Kent Dybvig, Matthew Flatt, and Anton van Straaten.
Revised Report [6] on the Algorithmic Language Scheme. Cambridge Uni-
versity Press, 2010.

240 Bibliography

[200] Robert F. Stärk, Joachim Schmid, and Egon Börger. Java and the Java
Virtual Machine: Definition, Verification, Validation. Springer, 2001.

[201] Hung-Hsun Su, Max Billingsley III, and Alan D. George. Parallel per-
formance wizard: a performance system for the analysis of partitioned
global-address-space applications. International Journal of High Perfor-
mance Computing Applications, 24(4):485–510, 2010.

[202] Nathan R. Tallent and John M. Mellor-Crummey. Effective performance
measurement and analysis of multithreaded applications. In ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
pages 229–240, 2009.

[203] Prasanna Thati, Koushik Sen, and Narciso Martı́-Oliet. An executable spec-
ification of asynchronous Pi-calculus semantics and may testing in Maude
2.0. Electronic Notes in Theoretical Computer Science, 71:261–281, 2004.

[204] Emina Torlak, Mandana Vaziri, and Julian Dolby. MemSAT: Checking
axiomatic specifications of memory models. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 341–350,
2010.

[205] Faraz Torshizi, Jonathan S. Ostroff, Richard F. Paige, and Marsha Chechik.
The SCOOP concurrency model in Java-like languages. In Communicating
Process Architectures Conference, pages 155–178, 2009.

[206] Anand R. Tripathi and Robert Miller. Exception handling in agent-oriented
systems. In Advances in Exception Handling Techniques, pages 128–146,
2000.

[207] Sarvani S. Vakkalanka, Ganesh Gopalakrishnan, and Robert M. Kirby. Dy-
namic verification of MPI programs with reductions in presence of split op-
erations and relaxed orderings. In International Conference on Computer
Aided Verification, pages 66–79, 2008.

[208] Leslie G. Valiant. A bridging model for parallel computation. Communi-
cations of the ACM, 33(8):103–111, 1990.

[209] Alberto Verdejo and Narciso Martı́-Oliet. Executable structural operational
semantics in Maude. Journal of Logic and Algebraic Programming, 67(1-
2):226–293, 2006.

[210] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving copyless
message passing. In Asian Symposium on Programming Languages and
Systems, pages 194–209, 2009.

Bibliography 241

[211] Daniel Wasserrab. From Formal Semantics to Verified Slicing: A Modular
Framework with Applications in Language Based Security. PhD thesis,
Karlsruher Institute of Technology, 2010.

[212] Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra. Prop-
erties of the timed operational and denotational semantics of Orc. Technical
Report TR-07-65, University of Texas at Austin, 2007.

[213] Ian Wehrman, David Kitchin, William R. Cook, and Jayadev Misra. A
timed semantics of Orc. Theoretical Computer Science, 402(2–3):234–248,
2008.

[214] Fangzhou Wei and Ali E. Yilmaz. A hybrid message passing/shared mem-
ory parallelization of the adaptive integral method for multi-core clusters.
Parallel Computing, 37(6):279–301, 2011.

[215] Scott West, Sebastian Nanz, and Bertrand Meyer. A modular scheme for
deadlock prevention in an object-oriented programming model. In Interna-
tional Conference on Formal Engineering Methods, pages 597–612, 2010.

[216] Jeannette M. Wing, Maurice Herlihy, Stewart Clamen, David Detlefs,
Karen Kietzke, Richard Lerner, and Su-Yuen Ling. The Avalon/C++ pro-
gramming language (version 0). Technical report, Carnegie Mellon Uni-
versity, 1988.

[217] Felix Wolf and Bernd Mohr. Automatic performance analysis of hy-
brid MPI/OpenMP applications. Journal of Systems Architecture, 49(10–
11):421–439, 2003.

[218] H’sien J. Wong and Alistair P. Rendell. Integrating software distributed
shared memory and message passing programming. In IEEE International
Conference on Cluster Computing, pages 1–10, 2009.

[219] Jie Xu, Brian Randell, Alexander B. Romanovsky, Cecilia M. F. Rubira,
Robert J. Stroud, and Zhixue Wu. Fault tolerance in concurrent object-
oriented software through coordinated error recovery. In International Sym-
posium on Fault-Tolerant Computing, pages 499–508, 1995.

[220] Cui-Qing Yang and Barton P. Miller. Critical path analysis for the execu-
tion of parallel and distributed programs. In International Conference on
Distributed Computing Systems, pages 366–373, 1988.

[221] Yue Yang, Ganesh Gopalakrishnan, and Gary Lindstrom. Specifying Java
thread semantics using a uniform memory model. In Joint ACM-ISCOPE
Conference on Java Grande, pages 192–201, 2002.

242 Bibliography

[222] Yue Yang, Ganesh Gopalakrishnan, Gary Lindstrom, and Konrad Slind.
Nemos: A framework for axiomatic and executable specifications of mem-
ory consistency models. In International Parallel and Distributed Process-
ing Symposium, 2004.

[223] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. Model checking TLA
specifications. In Conference on Correct Hardware Design and Verification
Methods, pages 54–66, 1999.

List of figures

2.1 Producer-consumer processor diagram 10
2.2 SCOOP program grammar: classes and features 12
2.3 SCOOP program grammar: instructions and expressions 14
2.4 SCOOP program grammar: types 16

3.1 Types for the intermediate representation 24
3.2 STATEMENT , STATEMENT SEQUENCE, and INSTRUCTION . 28
3.3 EXPRESSION . 29
3.4 REF . 31
3.5 OBJ . 32
3.6 HEAP: features to map references to objects 33
3.7 HEAP: features for once routines 34
3.8 HEAP: constructors . 36
3.9 PROC . 37
3.10 REGIONS: queries to map processors to objects 37
3.11 Separate callback . 38
3.12 REGIONS: queries for locks . 39
3.13 REGIONS: commands to map processors to objects 40
3.14 REGIONS: commands for locking and unlocking 41
3.15 REGIONS: command for passing locks 42
3.16 REGIONS: command for revoking locks 43
3.17 REGIONS: constructors . 44
3.18 ENV . 44
3.19 STORE . 45
3.20 STATE: components features . 46
3.21 STATE: facade features for the mapping between processors, ob-

jects, and references . 47
3.22 STATE: facade features for the mapping between processors, ob-

jects, and references . 48
3.23 Invariant violation in an imported object structure 49

243

244 List of figures

3.24 Type system unsoundness due to a once routine in an imported
object . 50

3.25 STATE: facade features for importing 51
3.26 STATE: facade features for importing 52
3.27 STATE: facade features for environments 53
3.28 STATE: facade features for reading values 54
3.29 STATE: facade features for writing values 55
3.30 STATE: facade features for once routines 56
3.31 STATE: facade queries for locks 57
3.32 STATE: facade commands for locking and unlocking 58
3.33 STATE: facade commands for passing and revoking locks 59
3.34 Initial configuration . 62
3.35 OPERATION . 63
3.36 Issuing mechanism transition rules 64
3.37 Notification mechanism transition rules 65
3.38 Locking and unlocking mechanism transition rules 67
3.39 Writing and reading mechanism transition rules 67
3.40 Flow control mechanism transition rules 68
3.41 Entity and literal expressions transition rules 69
3.42 Command instructions transition rules 69
3.43 Query expressions transition rules 70
3.44 Command calls transition rules 74
3.45 Query calls transition rules . 75
3.46 Non-once or fresh once routine application transition rule 77
3.47 Check precondition and lock transition rule 78
3.48 Execute body transition rules . 79
3.49 Check postcondition and invariant transition rule 80
3.50 Return transition rules . 80
3.51 Not fresh once routine application transition rule 81
3.52 Attribute application transition rule 81
3.53 Separate creation instruction transition rule 82
3.54 Non-separate creation instruction transition rule 83
3.55 Existing explicit processor creation instruction transition rule . . . 84
3.56 Non-existing explicit processor creation instruction transition rule 85
3.57 Flow control instructions transition rules 86
3.58 Assignment instructions transition rule 86

5.1 Separate callback clarification 107
5.2 Once routine stability clarification: status flags 111
5.3 Once routine stability clarification: return 112
5.4 Query lock passing clarification 115

List of figures 245

5.5 Lock revocation notification clarification 119

6.1 Classification of approaches to deal with an asynchronous exception128
6.2 Race condition with full asynchrony 129
6.3 Searchers interactions . 142
6.4 Types for the intermediate representation: failure support 143
6.5 REGIONS: failure support . 144
6.6 HEAP: failure support . 145
6.7 Failure anchor mechanism: operations 146
6.8 Runtime calls: failure support 147
6.9 Failure anchor mechanism: fail transition rule 148
6.10 Failure anchor mechanism: failure anchor transition rule 149
6.11 Failure anchor mechanism: retry instruction transition rule 150
6.12 Notification mechanism: failure support 151
6.13 Locking and unlocking mechanism: failure support 152
6.14 Return: success . 153
6.15 Return: failure . 154
6.16 Purging . 154
6.17 Execute rescue clause . 155
6.18 Non-once or fresh once routine application: failure support 156
6.19 Check precondition and lock: failure support 158
6.20 Execute body: failure support . 159
6.21 Check postcondition and invariant: failure support 160
6.22 Attribute application: failure support 160
6.23 Not fresh once routine application: failure support 161
6.24 Safe mode clarification: body execution 164
6.25 Safe mode clarification: creation 166

7.1 A stage processor processes a package 173
7.2 REGIONS: passive processor support 174
7.3 Writing and reading mechanism: passive processor support 175
7.4 Literal expressions: passive processor support 175
7.5 Runtime calls: passive processor support 176
7.6 Query calls: passive processor support 177
7.7 Non-once or fresh once routine application: passive processor

support . 178
7.8 Not fresh once routine application: passive processor support . . . 179
7.9 Attribute application: passive processor support 180
7.10 Query return: passive processor support 181
7.11 Non-separate creation instruction: passive processor support . . . 182
7.12 Passive processor return clarification 184

246 List of figures

7.13 Speedup of passive processors over active processors 186
7.14 Slowdown of passive processors over EiffelThread 187

8.1 Time intervals for the share market application 195
8.2 Class hierarchy for performance analysis events 198
8.3 Metric values for a feature request r, and a feature f 199
8.4 Metric values for a processor p 200
8.5 Processor view for the share market application 202
8.6 Extract of the feature view for the share market application 203
8.7 Average performance analysis time overhead for different pro-

grams and varying buffer sizes 206
8.8 Hexapod . 207
8.9 Runtime structure of the hexapod controller 208
8.10 Average total synchronization time and average polling frequency

for varying polling delays . 210

List of tables

5.1 Overview of aspect tests . 104
5.2 Comparison of formal semantics for SCOOP 121

6.1 Classification of mechanisms with propagation in the client 130

7.1 Average execution times of various low-pass filter systems with
various signal lengths . 185

247

248 List of tables

A SCOOP 14 reference

A.1 ID

The universal stateful query new id : ID returns a fresh identifier of type ID.

A.2 NAME

NAME represents names.

A.3 PROGRAM

A.3.1 Queries

classes : PROGRAM → SET〈CLASS TYPE〉
settings : PROGRAM → SETTINGS

A.3.2 Constructors

make : SET〈CLASS TYPE〉 → SETTINGS→ PROGRAM
axioms

make(c, st).classes = c
make(c, st).settings = st

249

250 Appendix A. SCOOP 14 reference

A.4 SETTINGS

A.4.1 Queries

root class : SETTINGS→ CLASS TYPE
root procedure : SETTINGS→ FEATURE
safe mode : SETTINGS→ BOOLEAN

A.4.2 Constructors

make : CLASS TYPE → FEATURE → BOOLEAN → SETTINGS
axioms

make(c, f , sm).root class = c
make(c, f , sm).root procedure = f
make(c, f , sm).safe mode = sm

A.5 CLASS TYPE

A.5.1 Queries

id : CLASS TYPE → ID
name : CLASS TYPE → NAME
is ref : CLASS TYPE → BOOLEAN
is exp : CLASS TYPE → BOOLEAN
attributes : CLASS TYPE → SET〈FEATURE〉
functions : CLASS TYPE → SET〈FEATURE〉
procedures : CLASS TYPE → SET〈FEATURE〉
has inv : CLASS TYPE → BOOLEAN
inv : CLASS TYPE → EXPRESSION
program : CLASS TYPE → PROGRAM
feature by name : CLASS TYPE → NAME 9 FEATURE

c.feature by name(n) require
∃ f ∈ (c.attributes ∪ c.functions ∪ c.procedures) : f .name = n

axioms
c.feature by name(n) = f

where
f ∈ (c.attributes ∪ c.functions ∪ c.procedures) ∧ f .name = n

A.6. FEATURE 251

A.5.2 Constructors

make : ID→ NAME → BOOLEAN → BOOLEAN → SET〈FEATURE〉 →
SET〈FEATURE〉 → SET〈FEATURE〉 → BOOLEAN → EXPRESSION
→ PROGRAM → CLASS TYPE

axioms
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).id = id
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).name = n
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).is ref = ir
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).is exp = ie
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).attributes = fa
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).functions = f f

make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).procedures = fp

make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).has inv = hinv
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).inv = inv
make(id, n, ir, ie, fa, f f , fp, hinv, inv, prg).program = prg

A.5.3 Instances

One instance of CLASS TYPE is boolean, the class type of boolean objects. The
class type boolean is expanded. It declares the attribute item, storing a boolean
value as an instance of BOOLEAN.

A.6 FEATURE

A.6.1 Queries

id : FEATURE → ID
name : FEATURE → NAME
formals : FEATURE → TUPLE〈ENTITY , . . . ,ENTITY〉
is once : FEATURE → BOOLEAN
has pre : FEATURE → BOOLEAN
pre : FEATURE → EXPRESSION
has post : FEATURE → BOOLEAN
post : FEATURE → EXPRESSION
locals : FEATURE → TUPLE〈ENTITY , . . . ,ENTITY〉
body : FEATURE → STATEMENT SEQUENCE
rescue clause : FEATURE → STATEMENT SEQUENCE
is exported : FEATURE → BOOLEAN
class type : FEATURE → CLASS TYPE

252 Appendix A. SCOOP 14 reference

A.6.2 Constructors

make : ID→ NAME → TUPLE〈ENTITY , . . . ,ENTITY〉 → BOOLEAN → BOOLEAN
→ EXPRESSION → BOOLEAN → EXPRESSION
→ TUPLE〈ENTITY , . . . ,ENTITY〉 → STATEMENT SEQUENCE
→ STATEMENT SEQUENCE → BOOLEAN → CLASS TYPE → FEATURE

axioms
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).id = id
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).name = n
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).formals = b f

make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).is once = io
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).has pre = hpre
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).pre = pre
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).has post = hpost
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).post = post
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).locals = bl

make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).body = body
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).rescue clause = resc
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).is exported = ie
make(id, n, b f , io, hpre, pre, hpost, post, bl, body, resc, ie, c).class type = c

A.6.3 Subtypes

FEATURE has four subtypes: ROUTINE for routines, FUNCTION for functions,
PROCEDURE for procedures, and ATTRIBUTE for attributes.

A.6.4 Instances

Three instances of FEATURE are raise to raise an exception as well as set passive
and set active to set a processor of a given expression passive or active.

A.7 ENTITY

A.7.1 Queries

name : ENTITY → NAME

A.8. STATEMENT and STATEMENT SEQUENCE 253

A.7.2 Constructors

make : NAME → ENTITY
axioms

make(n).name = n

A.7.3 Subtypes

ENTITY has one subtype ATTRIBUTE representing attributes.

A.7.4 Instances

Two instances of ENTITY are current, i.e., the entity for the current object, and
result, i.e., the entity for the result of a function.

A.8 STATEMENT and STATEMENT SEQUENCE

STATEMENT SEQUENCE , [STATEMENT {; STATEMENT}] ;
STATEMENT , INSTRUCTION | OPERATION ;

A.9 INSTRUCTION

INSTRUCTION , COMMAND | CREATION | IF | LOOP | ASSIGNMENT ;
COMMAND ,

EXPRESSION . FEATURE TUPLE〈EXPRESSION, . . . ,EXPRESSION〉 ;
CREATION ,

create ENTITY . FEATURE TUPLE〈EXPRESSION, . . . ,EXPRESSION〉 ;
IF ,

if EXPRESSION then
STATEMENT SEQUENCE

[else
STATEMENT SEQUENCE]

end ;
LOOP , until EXPRESSION loop STATEMENT SEQUENCE end ;
ASSIGNMENT , ENTITY := EXPRESSION ;
RETRY , retry ;

254 Appendix A. SCOOP 14 reference

A.10 OPERATION

OPERATION , ISSUE | RESULT | NOTIFY | WAIT | EVAL | LOCK |

UNLOCK RQ | POP OBTAINED LOCKS | WRITE | READ | PROVIDED |

NOP | CALL | APPLY | CHECK PRE AND LOCK | EXECUTE BODY |
EXECUTE RESCUE CLAUSE | SET NOT FRESH | CHECK POST AND INV |
RETURN | PURGE | FAILURE ANCHOR | FAIL ;

ISSUE , issue TUPLE〈PROC, STATEMENT SEQUENCE〉 ;
RESULT , result TUPLE〈CHANNEL, REF〉 ;
NOTIFY , notify TUPLE〈CHANNEL, BOOLEAN〉 ;
WAIT , wait TUPLE〈CHANNEL, PROC〉 ;
EVAL , eval TUPLE〈CHANNEL, EXPRESSION〉 ;
LOCK , lock TUPLE〈SET〈PROC〉〉 ;
UNLOCK RQ , unlock rq ;
POP OBTAINED LOCKS , pop obtained locks ;
WRITE , write TUPLE〈ENTITY , (REF | PROC), BOOLEAN〉 ;
READ , read TUPLE〈ENTITY , CHANNEL〉 ;
PROVIDED ,
provided (REF | BOOLEAN) then

STATEMENT SEQUENCE
else

STATEMENT SEQUENCE
end ;

NOP , nop ;
CALL , call TUPLE〈REF, FEATURE, TUPLE〈REF, . . . ,REF〉〉 |
call TUPLE〈CHANNEL, REF, FEATURE, TUPLE〈REF, . . . ,REF〉〉 ;

APPLY , apply TUPLE〈CHANNEL, REF, FEATURE, TUPLE〈REF, . . . ,REF〉,
PROC, TUPLE〈SET〈PROC〉, SET〈PROC〉〉〉 ;

CHECK PRE AND LOCK ,
check pre and lock TUPLE〈CHANNEL, FEATURE, PROC,
TUPLE〈SET〈PROC〉, SET〈PROC〉〉, SET〈PROC〉, PROC〉 ;

EXECUTE BODY , execute body TUPLE〈FEATURE, SET〈PROC〉〉 ;
EXECUTE RESCUE CLAUSE , execute rescue clause TUPLE〈FEATURE〉 ;
SET NOT FRESH , set not fresh TUPLE〈FEATURE〉 ;
CHECK POST AND INV , check post and inv TUPLE〈FEATURE〉 ;
RETURN ,
return TUPLE〈CHANNEL, FEATURE, PROC,

TUPLE〈SET〈PROC〉, SET〈PROC〉〉, PROC,
BOOLEAN, BOOLEAN, BOOLEAN〉 |

return TUPLE〈CHANNEL, FEATURE, REF, PROC,
TUPLE〈SET〈PROC〉, SET〈PROC〉〉, PROC,
BOOLEAN, BOOLEAN, BOOLEAN〉 ;

A.11. EXPRESSION 255

PURGE , purge ;
FAILURE ANCHOR ,
failure anchor BOOLEAN
final STATEMENT SEQUENCE
normal STATEMENT SEQUENCE
rescue BOOLEAN STATEMENT SEQUENCE
retry STATEMENT SEQUENCE
failure STATEMENT SEQUENCE

end ;
FAIL , fail |
fail

rescue BOOLEAN STATEMENT SEQUENCE
retry STATEMENT SEQUENCE
failure STATEMENT SEQUENCE

end ;

A.11 EXPRESSION

EXPRESSION , ENTITY | LITERAL | QUERY ;

A.12 LITERAL

LITERAL = BOOL LITERAL | INT LITERAL | CHAR LITERAL | VOID LITERAL ;
BOOL LITERAL , True | False ;
INT LITERAL , [-](0 | . . . | 9){0 | . . . | 9} ;
CHAR LITERAL , ’ (a | . . . | z | A | . . . | Z | 0 | . . . | 9) ’ ;
VOID LITERAL , Void ;

The universal function obj : OBJ takes a literal and returns a new object
matching the literal in both type and value.

A.13 QUERY

QUERY ,
EXPRESSION . FEATURE TUPLE〈EXPRESSION, . . . ,EXPRESSION〉 ;

256 Appendix A. SCOOP 14 reference

A.14 Types
A type t is a triple (d, p, c): d is the detachable tag, p is the processor tag, and c is
the class type of type CLASS TYPE. The detachable tag d specifies detachability:

• If d = !, then the typed element is statically guaranteed to hold a value, i.e.,
to be non-void.

• If d = ?, then the typed element can be void.

The processor tag p specifies locality:

• If p = >, then the typed element points to a potentially different processor.

• If p =< x.handler > where x is of type ENTITY , then the typed element
points to the processor of the object in x.

• If p =< x > where x is of type ENTITY , then the typed element points to
the processor in x.

• If p = •, then the typed element points to the current processor.

The typing environment Γ, as formalized by Nienaltowski [164], contains the
class hierarchy of the program along with all the type definitions for all features
and entities. The predicate Γ ` e : t denotes that expression e is of type t.
The function type of (Γ, e) returns the type of expression e in Γ. The predicate
controlled(Γ, t) denotes that expression e of type t is controlled. The function
controlling entity(Γ, e) returns the controlling entity for an expression e as an in-
stance of ENTITY .

A.15. REF 257

A.15 REF

A.15.1 Queries

id : REF → ID

A.15.2 Constructors

make : REF
axioms

make.id = new id

A.15.3 Instances

One instance of REF is void, the void reference.

A.16 OBJ

A.16.1 Queries

id : OBJ → ID
class type : OBJ → CLASS TYPE
att val : OBJ → ATTRIBUTE 9 REF ∪ PROC

o.att val(f) require
o.class type.attributes.has(f)

copy : OBJ → OBJ
axioms

o.copy = make(o.class type)
.set att val(a1, o.att val(a1))
. . . .

.set att val(an, o.att val(an))
where

{a1, . . . , an}
de f
= o.class type.attributes

258 Appendix A. SCOOP 14 reference

A.16.2 Commands

set att val : OBJ → ATTRIBUTE 9 REF ∪ PROC → OBJ
o.set att val(f , v) require

o.class type.attributes.has(f)
axioms

o.set att val(f , v).att val(f) = v

A.16.3 Constructors

make : CLASS TYPE → OBJ
axioms

make(c).id = new id
make(c).class type = c
∀i ∈ {1, . . . , n} : make(c).att val(ai) = void

where

{a1, . . . , an}
de f
= c.attributes

A.17 HEAP

A.17.1 Queries

objs : HEAP→ SET〈OBJ〉
refs : HEAP→ SET〈REF〉
ref obj : HEAP→ REF 9 OBJ

h.ref obj(r) require
h.refs.has(r)

last added obj : HEAP→ REF
h.last added obj require
¬h.refs.empty

ref : HEAP→ OBJ 9 REF
h.ref (o) require

h.objs.has(o)
axioms

h.ref obj(h.ref (o)) = o
fresh : HEAP→ PROC → ID9 BOOLEAN

A.17. HEAP 259

stable : HEAP→ PROC → ID9 BOOLEAN
h.stable(p, i) require
¬h.fresh(p, i)

stabilizer : HEAP→ PROC → ID9 PROC
h.stabilizer(p, i) require
¬h.fresh(p, i)

has failed : HEAP→ PROC → ID9 BOOLEAN
h.has failed(p, i) require
¬h.fresh(p, i)

once result : HEAP→ PROC → ID9 REF
h.once result(p, i) require
¬h.fresh(p, i)

A.17.2 Commands

add obj : HEAP→ OBJ 9 HEAP
h.add obj(o) require
∀u ∈ h.objs : u.id , o.id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF ⇒ (o.att val(a) = void ∨ h.refs.has(o.att val(a)))
axioms

h.add obj(o).objs = h.objs ∪ {o}
h.add obj(o).refs = h.refs ∪ {r}
h.add obj(o).ref obj(r) = o
h.add obj(o).last added obj = r

where

r
de f
= new REF.make

update obj : HEAP→ REF 9 OBJ 9 HEAP
h.update obj(r, o) require

h.refs.has(r)
o.id = h.ref obj(r).id
∀a ∈ o.class type.attributes :

o.att val(a) ∈ REF ⇒ (o.att val(a) = void ∨ h.refs.has(o.att val(a)))
axioms

h.update obj(r, o).objs.has(o)
o , h.ref obj(r)⇒ ¬h.update obj(r, o).objs.has(h.ref obj(r))
h.update obj(r, o).ref obj(r) = o

260 Appendix A. SCOOP 14 reference

set once func not fresh : HEAP→ PROC → FEATURE 9 BOOLEAN → BOOLEAN
→ REF 9 HEAP

h.set once func not fresh(p, f , st, hf , r) require
f ∈ FUNCTION ∧ f .is once
r , void ⇒ h.refs.has(r)

axioms
(∃d, c : Γ ` f : (d, •, c))⇒
¬h.set once func not fresh(p, f , st, hf , r).fresh(p, f .id)∧
h.set once func not fresh(p, f , st, hf , r).stable(p, f .id) = st∧
h.set once func not fresh(p, f , st, hf , r).stabilizer(p, f .id) = p∧
h.set once func not fresh(p, f , st, hf , r).has failed(p, f .id) = hf∧

h.set once func not fresh(p, f , st, hf , r).once result(p, f .id) =

{
r if ¬hf
void if hf

(∃d, c : Γ ` f : (d, p, c) ∧ p , •)⇒ ∀q ∈ PROC :
¬h.set once func not fresh(p, f , st, hf , r).fresh(q, f .id)∧
h.set once func not fresh(p, f , st, hf , r).stable(q, f .id) = st∧
h.set once func not fresh(p, f , st, hf , r).stabilizer(q, f .id) = p∧
h.set once func not fresh(p, f , st, hf , r).has failed(q, f .id) = hf∧

h.set once func not fresh(p, f , st, hf , r).once result(q, f .id) =

{
r if ¬hf
void if hf

set once proc not fresh : HEAP→ PROC → FEATURE 9 BOOLEAN → BOOLEAN
→ HEAP

h.set once proc not fresh(p, f , st, hf) require
f ∈ PROCEDURE ∧ f .is once

axioms
¬h.set once proc not fresh(p, f , st, hf).fresh(p, f .id)
h.set once proc not fresh(p, f , st, hf).stable(p, f .id) = st
h.set once proc not fresh(p, f , st, hf).stabilizer(p, f .id) = p
h.set once proc not fresh(p, f , st, hf).has failed(p, f .id) = hf

set once rout fresh : HEAP→ PROC → FEATURE 9 HEAP
h.set once rout fresh(p, f) require

f .is once
axioms

(f ∈ FUNCTION ∧ ∃d, c : Γ ` f : (d, •, c))⇒
h.set once rout fresh(p, f).fresh(p, f .id)

(f ∈ FUNCTION ∧ ∃d, c : Γ ` f : (d, p, c) ∧ p , •)⇒ ∀q ∈ PROC :
h.set once rout fresh(p, f).fresh(q, f .id)

(f ∈ PROCEDURE)⇒
h.set once rout fresh(p, f).fresh(p, f .id)

A.18. PROC 261

A.17.3 Constructors

make : HEAP
axioms

make.objs.empty
make.refs.empty
∀p ∈ PROC, f ∈ FEATURE : f .is once⇒ make.fresh(p, f .id)

A.18 PROC

A.18.1 Queries

id : PROC → ID

A.18.2 Constructors

make : PROC
axioms

make.id = new id

A.19 REGIONS

A.19.1 Queries

procs : REGIONS→ SET〈PROC〉
handled objs : REGIONS→ PROC 9 SET〈REF〉

k.handled objs(p) require
k.procs.has(p)

last added proc : REGIONS9 PROC
k.last added proc require
¬k.procs.empty

handler : REGIONS→ REF 9 PROC
k.handler(r) require
∃p ∈ k.procs : k.handled objs(p).has(r)

axioms
k.handled objs(k.handler(o)).has(r)

262 Appendix A. SCOOP 14 reference

rq locked : REGIONS→ PROC 9 BOOLEAN
k.rq locked(p) require

k.procs.has(p)
cs locked : REGIONS→ PROC 9 BOOLEAN

k.cs locked(p) require
k.procs.has(p)

obtained rq locks : REGIONS→ PROC 9 STACK〈SET〈PROC〉〉
k.obtained rq locks(p) require

k.procs.has(p)
obtained cs lock : REGIONS→ PROC 9 PROC

k.obtained cs lock(p) require
k.procs.has(p)

retrieved rq locks : REGIONS→ PROC 9 STACK〈SET〈PROC〉〉
k.retrieved rq locks(p) require

k.procs.has(p)
retrieved cs locks : REGIONS→ PROC 9 STACK〈SET〈PROC〉〉

k.retrieved cs locks(p) require
k.procs.has(p)

passed : REGIONS→ PROC 9 BOOLEAN
k.passed(p) require

k.procs.has(p)
has failed : REGIONS→ PROC 9 BOOLEAN

k.has failed(p) require
k.procs.has(p)

passive : REGIONS→ PROC 9 BOOLEAN
k.passive(p) require

k.procs.has(p)
executes for : REGIONS→ PROC 9 PROC

k.executes for(p) require
k.procs.has(p)

A.19.2 Commands

add obj : REGIONS→ PROC 9 REF 9 REGIONS
k.add obj(p, r) require

k.procs.has(p)
∀q ∈ k.procs, x ∈ k.handled objs(q) : x.id , r.id

axioms
k.add obj(p, r).handled objs(p).has(r)

A.19. REGIONS 263

add proc : REGIONS→ PROC 9 REGIONS
k.add proc(p) require
¬k.procs.has(p)

axioms
k.add proc(p).procs.has(p)
k.add proc(p).last added proc = p
k.add proc(p).handled objs(p).empty
¬k.add proc(p).rq locked(p)
k.add proc(p).cs locked(p)
k.add proc(p).obtained rq locks(p).empty
k.add proc(p).obtained cs lock(p) = p
k.add proc(p).retrieved rq locks(p).empty
k.add proc(p).retrieved cs locks(p).empty
¬k.add proc(p).passed(p)
¬k.add proc(p).has failed(p)
¬k.add proc(p).passive(p)
k.add proc(p).executes for(p) = p

lock rqs : REGIONS→ PROC 9 SET〈PROC〉9 REGIONS
k.lock rqs(p, l) require

k.procs.has(p)
∀x ∈ l : k.procs.has(x)
∀x ∈ l : ¬k.rq locked(x)

axioms
k.lock rqs(p, l).obtained rq locks(p) = k.obtained rq locks(p).push(l)
∀x ∈ l : k.lock rqs(p, l).rq locked(x)

pop obtained rq locks : REGIONS→ PROC 9 REGIONS
k.pop obtained rq locks(p) require

k.procs.has(p)
¬k.obtained rq locks(p).empty
¬k.passed(p)

axioms
k.pop obtained rq locks(p).obtained rq locks(p) = k.obtained rq locks(p).pop

unlock rq : REGIONS→ PROC 9 REGIONS
k.unlock rq(p) require

k.procs.has(p)
k.rq locked(p)
∀q ∈ k.procs : ¬k.obtained rq locks(q).flat.has(p)

axioms
¬k.unlock rq(p).rq locked(p)

264 Appendix A. SCOOP 14 reference

pass locks : REGIONS→ PROC 9 PROC 9 TUPLE〈SET〈PROC〉, SET〈PROC〉〉
9 REGIONS

k.pass locks(p, q, (lr, lc)) require
k.procs.has(p) ∧ k.procs.has(q)
∀x ∈ lr : k.obtained rq locks(p).flat.has(x) ∨ k.retrieved rq locks(p).flat.has(x)
∀x ∈ lc : x = k.obtained cs lock(p) ∨ k.retrieved cs locks(p).flat.has(x)
¬lr.empty ∨ ¬lc.empty⇒ ¬k.passed(p)

axioms
¬lr.empty ∨ ¬lc.empty⇒ k.pass locks(p, q, (lr, lc)).passed(p)
k.pass locks(p, q, (lr, lc)).retrieved rq locks(q) = k.retrieved rq locks(q).push(lr)
k.pass locks(p, q, (lr, lc)).retrieved cs locks(q) = k.retrieved cs locks(q).push(lc)

p , q∧
k.passed(q)∧
k.obtained rq locks(q).flat ⊆ lr∧
k.retrieved rq locks(q).flat ⊆ lr∧
k.obtained cs lock(q) ∈ lc∧
k.retrieved cs locks(q).flat ⊆ lc


⇒
¬k.pass locks(p, q, (lr, lc))

.passed(q)

revoke locks : REGIONS→ PROC 9 PROC 9 REGIONS
k.revoke locks(p, q) require

k.procs.has(p) ∧ k.procs.has(q)
¬k.retrieved rq locks(q).empty ∧ ¬k.retrieved cs locks(q).empty
k.retrieved rq locks(q).top ⊆

k.obtained rq locks(p).flat ∪ k.retrieved rq locks(p).flat
k.retrieved cs locks(q).top ⊆
{k.obtained cs lock(p)} ∪ k.retrieved cs locks(p).flat

k.retrieved rq locks(q).top ∪ k.retrieved cs locks(q).top , {} ⇒ k.passed(p)
¬k.passed(q)

axioms
k.retrieved rq locks(q).top ∪ k.retrieved cs locks(q).top , {} ⇒
¬k.revoke locks(p, q).passed(p)

k.revoke locks(p, q).retrieved rq locks(q) = k.retrieved rq locks(q).pop
k.revoke locks(p, q).retrieved cs locks(q) = k.retrieved cs locks(q).pop

p , q∧

∃x ∈ k.retrieved rq locks(p).flat : (
k.obtained rq locks(q).flat.has(x)∨
k.retrieved rq locks(q).pop.flat.has(x)

)∨
∃x ∈ k.retrieved cs locks(p).flat : (

x = k.obtained cs lock(q)∨
k.retrieved cs locks(q).pop.flat.has(x)

)




⇒

k.revoke locks(p, q)
.passed(q)

A.20. ENV 265

set failed : REGIONS→ PROC 9 BOOLEAN → REGIONS
k.set failed(p, hf) require

k.procs.has(p)
axioms

k.set failed(p, hf).has failed(p) = hf
set passive : REGIONS→ PROC 9 BOOLEAN → REGIONS

k.set passive(p, ip) require
k.procs.has(p)
ip⇒ k.executes for(p) = p
¬ip⇒ ¬∃q ∈ k.procs : (q , p ∧ k.executes for(q) = p)

axioms
k.set passive(p, ip).passive(p) = ip

set executes for : REGIONS→ PROC 9 PROC 9 REGIONS
k.set executes for(p, q) require

k.procs.has(p)
k.procs.has(q)
p , q⇒ ¬k.passive(p) ∧ k.passive(q)

axioms
k.set executes for(p, q).executes for(p) = q

A.19.3 Constructors

make : REGIONS
axioms

make.procs.empty

A.20 ENV

A.20.1 Queries

names : ENV → SET〈NAME〉
val : ENV → NAME 9 REF ∪ PROC

e.val(n) require
e.names.has(n)

266 Appendix A. SCOOP 14 reference

A.20.2 Commands

update : ENV → NAME → REF ∪ PROC → ENV
axioms

e.update(n, v).names = e.names ∪ {n}
e.update(n, v).val(n) = v

A.20.3 Constructors

make : ENV
axioms

make.names.empty

A.21 STORE

A.21.1 Queries

envs : STORE → PROC → STACK〈ENV〉

A.21.2 Commands

push env : STORE → PROC → ENV → STORE
axioms

s.push env(p, e).envs(p) = s.envs(p).push(e)
pop env : STORE → PROC 9 STORE

s.pop env(p) require
¬s.envs(p).empty

axioms
s.pop env(p).envs(p) = s.envs(p).pop

A.21.3 Constructors

make : STORE
axioms
∀p ∈ PROC : make.envs(p).empty

A.22. STATE 267

A.22 STATE

A.22.1 Queries

regions : STATE → REGIONS
heap : STATE → HEAP
store : STATE → STORE

A.22.2 Commands

set : STATE → REGIONS9 HEAP9 STORE 9 STATE
σ.set(k, h, s) require
∀p ∈ k.procs, r ∈ k.handled objs(p) : h.objs.has(h.ref obj(r))
∀o ∈ h.objs : ∃p ∈ k.procs : h.ref (o) ∈ k.handled objs(p)
∀p ∈ PROC, f ∈ FEATURE : ¬h.fresh(p, f .id)⇒ k.procs.has(p)
∀o ∈ h.objs, a ∈ o.class type.attributes :

o.att val(a) ∈ PROC ⇒ k.procs.has(o.att val(a))
∀p ∈ PROC, e ∈ s.envs(p) : ¬e.names.empty⇒ k.procs.has(p)
∀p ∈ k.procs, e ∈ s.envs(p), x ∈ e.names :

(e.val(x) ∈ REF ⇒ e.val(x) = void ∨ h.refs.has(e.val(x)))∧
(e.val(x) ∈ PROC ⇒ k.procs.has(e.val(x)))

axioms
σ.set(k, h, s).regions = k
σ.set(k, h, s).heap = h
σ.set(k, h, s).store = s

A.22.3 Constructors

make : STATE
axioms

make.regions = new REGIONS.make
make.heap = new HEAP.make
make.store = new STORE.make

268 Appendix A. SCOOP 14 reference

A.23 STATE facade: mappings

A.23.1 Queries

procs : STATE → SET〈PROC〉
axioms

σ.procs = σ.regions.procs
last added proc : STATE 9 PROC

σ.last added proc require
¬σ.regions.procs.empty

axioms
σ.last added proc = σ.regions.last added proc

handler : STATE → REF 9 PROC
σ.handler(r) require

σ.heap.refs.has(r)
axioms

σ.handler(r) = σ.regions.handler(r)
last added obj : STATE 9 REF

σ.last added obj require
¬σ.heap.refs.empty

axioms
σ.last added obj = σ.heap.last added obj

ref obj : STATE → REF 9 OBJ
σ.ref obj(r) require

σ.heap.refs.has(r)
axioms

σ.ref obj(r) = σ.heap.ref obj(r)
ref : STATE → OBJ 9 REF

σ.ref (o) require
σ.heap.objs.has(o)

axioms
σ.ref (o) = σ.heap.ref (o)

new proc : STATE → PROC
axioms

σ.new proc = new PROC.make
new obj : STATE → CLASS TYPE → OBJ

axioms
σ.new obj(c) = new OBJ.make(c)

A.24. STATE facade: importing 269

A.23.2 Commands

add proc : STATE → PROC 9 STATE
σ.add proc(p) require
¬σ.regions.procs.has(p)

axioms
σ.add proc(p) = σ.set(σ.regions.add proc(p), σ.heap, σ.store)

add obj : STATE → PROC 9 OBJ 9 STATE
σ.add obj(p, o) require

σ.regions.procs.has(p)
∀u ∈ σ.heap.objs : u.id , o.id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF ⇒ o.att val(a) = void ∨ σ.heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC ⇒ σ.regions.procs.has(o.att val(a)))

axioms
σ.add obj(p, o) = σ.set(k, h, s)

where

h
de f
= σ.heap.add obj(o)

k
de f
= σ.regions.add obj(p, h.last added obj)

s
de f
= σ.store

update obj : STATE → REF 9 OBJ 9 STATE
σ.update obj(r, o) require

σ.heap.refs.has(r)
o.id = σ.heap.ref obj(r).id
∀a ∈ o.class type.attributes :

(o.att val(a) ∈ REF ⇒ o.att val(a) = void ∨ σ.heap.refs.has(o.att val(a)))∧
(o.att val(a) ∈ PROC ⇒ σ.regions.procs.has(o.att val(a)))

axioms
σ.update obj(r, o) = σ.set(σ.regions, σ.heap.update obj(r, o), σ.store)

A.24 STATE facade: importing

A.24.1 Queries

last imported obj : STATE → REF

270 Appendix A. SCOOP 14 reference

A.24.2 Commands
import : STATE → PROC 9 REF 9 STATE

σ.import(p, r) require
σ.regions.procs.has(p)
σ.heap.refs.has(r)
σ.heap.ref obj(r).class type.is exp

axioms
σ.import(p, r) = σ′

σ.import(p, r).last imported obj = r′

where

w
de f
= new MAP〈REF,REF〉.make

(r′,w′, σ′)
de f
= import rec with map(p, σ.handler(r), r,w, σ)

import rec with map(p, q, r,w, σ)
de f
= (r′′,w′′, σ′′)

where

(r′,w′, σ′)
de f
= import rec without map(p, q, r,w, σ)

r′′
de f
=

{
w.val(r) if w.keys.has(r)
r′ if ¬w.keys.has(r)

w′′
de f
=

{
w if w.keys.has(r)
w′ if ¬w.keys.has(r)

σ′′
de f
=

{
σ if w.keys.has(r)
σ′ if ¬w.keys.has(r)

import rec without map(p, q, r,w, σ)
de f
= (r′,w′, σ′)

where

o′0
de f
= σ.ref obj(r).copy

σ′0
de f
= σ.add obj(p, o′0)

w′0
de f
= w.add(r, σ′0.ref (o′0))

{a1, . . . , an}
de f
= {a | o′0.att val(a) ∈ REF ∧ o′0.att val(a) , void}

∀i ∈ {1, . . . , n} : (r′i ,w
′
i , σ
′
i)

de f
= import rec with map(p, q, o′0.att val(ai),w′i−1, σ

′
i−1)

∀i ∈ {1, . . . , n} : o′i
de f
= o′i−1.set att val(ai, r′i)

r′
de f
=


σ′n.ref (o′n) if σ.handler(r) = q ∧ {a1, . . . , an} , {}

σ′0.ref (o′0) if σ.handler(r) = q ∧ {a1, . . . , an} = {}

r otherwise

w′
de f
=


w′n if σ.handler(r) = q ∧ {a1, . . . , an} , {}

w′0 if σ.handler(r) = q ∧ {a1, . . . , an} = {}

w.add(r, r) otherwise

σ′
de f
=


σ′n.update obj(σ′n.ref (o′0), o′n) if σ.handler(r) = q ∧ {a1, . . . , an} , {}

σ′0 if σ.handler(r) = q ∧ {a1, . . . , an} = {}

σ otherwise

A.25. STATE facade: environments 271

A.25 STATE facade: environments

A.25.1 Queries

envs : STATE → PROC 9 STACK〈ENV〉
σ.envs(p) require

σ.regions.procs.has(p)
axioms

σ.envs(p) = σ.store.envs(p)

A.25.2 Commands

push env with feature : STATE → PROC 9 FEATURE → REF
→ TUPLE〈REF, . . . ,REF〉9 STATE

σ.push env with feature(p, f , r0, (r1, . . . , rn)) require
σ.regions.procs.has(p)
f .formals.count = n
∀i ∈ {0, . . . , n} : ri , void ⇒ σ.heap.refs.has(ri)

axioms
σ.push env with feature(p, f , r0, (r1, . . . , rn)) =

σ.set(σ.regions, σ.heap, σ.store.push env(p, e))
where

w
de f
= new ENV .make
.update(f .formals(1).name, r1) . . .
.update(f .formals(n).name, rn)
.update(f .locals(1).name, void) . . .
.update(f .locals(f .locals.count).name, void)
.update(current.name, r0)

e
de f
=

{
w if f ∈ PROCEDURE
w.update(result.name, void) if f ∈ FUNCTION

pop env : STATE → PROC 9 STATE
σ.pop env(p) require

σ.regions.procs.has(p)
¬σ.store.envs(p).empty

axioms
σ.pop env(p) = σ.set(σ.regions, σ.heap, σ.store.pop env(p))

272 Appendix A. SCOOP 14 reference

A.26 STATE facade: writing and reading values

A.26.1 Queries

val : STATE → PROC 9 NAME 9 REF ∪ PROC
σ.val(p, n) require

σ.regions.procs.has(p)
¬σ.store.envs(p).empty
e.names.has(current.name)
e.names.has(n) ∨ ∃a ∈ o.class type.attributes : a.name = n

where

e
de f
= σ.store.envs(p).top

o
de f
= σ.heap.ref obj(e.val(current.name))

axioms

σ.val(p, n) =


if ∃a ∈ o.class type.attributes : a.name = n

o.att val(a)
otherwise

σ.store.envs(p).top.val(n)
where

o
de f
= σ.heap.ref obj(σ.store.envs(p).top.val(current.name))

a
de f
= o.class type.feature by name(n)

A.26.2 Commands

set val : STATE → PROC 9 NAME 9 REF ∪ PROC 9 STATE
σ.set val(p, n, v) require

σ.regions.procs.has(p)
¬σ.store.envs(p).empty ∧ σ.store.envs(p).top.names.has(current.name)
v ∈ REF ∧ v , void ⇒ σ.heap.refs.has(v)
v ∈ PROC ⇒ σ.regions.procs.has(v)

axioms

σ.set val(p, n, v) =


if ∃a ∈ o.class type.attributes : a.name = n

σ.update obj(σ.heap.ref (o), o.set att val(a, v))
otherwise

σ.set(σ.regions, σ.heap, s)
where

o
de f
= σ.heap.ref obj(σ.store.envs(p).top.val(current.name))

a
de f
= o.class type.feature by name(n)

s
de f
= σ.store.pop env(p).push env(p, σ.store.envs(p).top.update(n, v))

A.27. STATE facade: once routines 273

A.27 STATE facade: once routines

A.27.1 Queries

fresh : STATE → PROC 9 ID9 BOOLEAN
σ.fresh(p, i) require

σ.regions.procs.has(p)
axioms

σ.fresh(p, i) = σ.heap.fresh(p, i)
stable : STATE → PROC 9 ID9 BOOLEAN

σ.stable(p, i) require
σ.regions.procs.has(p)
¬σ.heap.fresh(p, i)

axioms
σ.stable(p, i) = σ.heap.stable(p, i)

stabilizer : STATE → PROC 9 ID9 PROC
σ.stabilizer(p, i) require

σ.regions.procs.has(p)
¬σ.heap.fresh(p, i)

axioms
σ.stabilizer(p, i) = σ.heap.stabilizer(p, i)

has failed : STATE → PROC 9 ID9 BOOLEAN
σ.has failed(p, i) require

σ.regions.procs.has(p)
¬σ.heap.fresh(p, i)

axioms
σ.has failed(p, i) = σ.heap.has failed(p, i)

once result : STATE → PROC 9 ID9 REF
σ.once result(p, i) require

σ.regions.procs.has(p)
¬σ.heap.fresh(p, i)

axioms
σ.once result(p, i) = σ.heap.once result(p, i)

274 Appendix A. SCOOP 14 reference

A.27.2 Commands

set once func not fresh : STATE → PROC 9 FEATURE 9 BOOLEAN → BOOLEAN
→ REF 9 STATE

σ.set once func not fresh(p, f , st, hf , r) require
σ.regions.procs.has(p)
f ∈ FUNCTION ∧ f .is once
r , void ⇒ σ.heap.refs.has(r)

axioms
σ.set once func not fresh(p, f , st, hf , r) =

σ.set(σ.regions, σ.heap.set once func not fresh(p, f , st, hf , r), σ.store)
set once proc not fresh : STATE → PROC 9 FEATURE 9 BOOLEAN → BOOLEAN

→ STATE
σ.set once proc not fresh(p, f , st, hf) require

σ.regions.procs.has(p)
f ∈ PROCEDURE ∧ f .is once

axioms
σ.set once proc not fresh(p, f , st, hf) =

σ.set(σ.regions, σ.heap.set once proc not fresh(p, f , st, hf), σ.store)
set once rout fresh : STATE → PROC → FEATURE 9 STATE

σ.set once rout fresh(p, f) require
σ.regions.procs.has(p)
f .is once

axioms
σ.set once rout fresh(p, f) =

σ.set(σ.regions, σ.heap.set once rout fresh(p, f), σ.store)

A.28 STATE facade: locks

A.28.1 Queries

rq locked : STATE → PROC 9 BOOLEAN
σ.rq locked(p) require

σ.regions.procs.has(p)
axioms

σ.rq locked(p) = σ.regions.rq locked(p)

A.28. STATE facade: locks 275

rq locks : STATE → PROC 9 SET〈PROC〉
σ.rq locks(p) require

σ.regions.procs.has(p)
axioms

σ.rq locks(p) =

σ.regions.obtained rq locks(p).flat ∪ σ.regions.retrieved rq locks(p).flat
cs locks : STATE → PROC 9 SET〈PROC〉

σ.cs locks(p) require
σ.regions.procs.has(p)

axioms
σ.cs locks(p) =

{σ.regions.obtained cs lock(p)} ∪ σ.regions.retrieved cs locks(p).flat
passed : STATE → PROC 9 BOOLEAN

σ.passed(p) require
σ.regions.procs.has(p)

axioms
σ.passed(p) = σ.regions.passed(p)

A.28.2 Commands

lock rqs : STATE → PROC 9 SET〈PROC〉9 STATE
σ.lock rqs(p, l) require

σ.regions.procs.has(p)
∀x ∈ l : σ.regions.procs.has(x)
∀x ∈ l : σ.regions.rq locked(x) = false

axioms
σ.lock rqs(p, l) = σ.set(σ.regions.lock rqs(p, l), σ.heap, σ.store)

pop obtained rq locks : STATE → PROC 9 STATE
σ.pop obtained rq locks(p) require

σ.regions.procs.has(p)
¬σ.regions.obtained rq locks(p).empty
σ.regions.passed(p) = false

axioms
σ.pop obtained rq locks(p) =

σ.set(σ.regions.pop obtained rq locks(p), σ.heap, σ.store)

276 Appendix A. SCOOP 14 reference

unlock rq : STATE → PROC 9 STATE
σ.unlock rq(p) require

σ.regions.procs.has(p)
σ.regions.rq locked(p) = true
∀q ∈ σ.regions.procs : ¬σ.regions.obtained rq locks(q).flat.has(p)

axioms
σ.unlock rq(p) = σ.set(σ.regions.unlock rq(p), σ.heap, σ.store)

pass locks : STATE → PROC 9 PROC 9 TUPLE〈SET〈PROC〉, SET〈PROC〉〉
9 STATE

σ.pass locks(p, q, (lr, lc)) require
σ.regions.procs.has(p) ∧ σ.regions.procs.has(q)
∀x ∈ lr : σ.regions.obtained rq locks(p).flat.has(x)∨

σ.regions.retrieved rq locks(p).flat.has(x)
∀x ∈ lc : x = σ.regions.obtained cs lock(p)∨

σ.regions.retrieved cs locks(p).flat.has(x)
¬lr.empty ∨ ¬lc.empty⇒ ¬σ.regions.passed(p)

axioms
σ.pass locks(p, q, (lr, lc)) =

σ.set(σ.regions.pass locks(p, q, (lr, lc)), σ.heap, σ.store)
revoke locks : STATE → PROC 9 PROC 9 STATE

σ.revoke locks(p, q) require
σ.regions.procs.has(p) ∧ σ.regions.procs.has(q)
¬σ.regions.retrieved rq locks(q).empty∧
¬σ.regions.retrieved cs locks(q).empty

σ.regions.retrieved rq locks(q).top ⊆
σ.regions.obtained rq locks(p).flat ∪ σ.regions.retrieved rq locks(p).flat

σ.regions.retrieved cs locks(q).top ⊆
{σ.regions.obtained cs lock(p)} ∪ σ.regions.retrieved cs locks(p).flat

σ.regions.retrieved rq locks(q).top ∪ σ.regions.retrieved cs locks(q).top , {} ⇒
σ.regions.passed(p) = true

σ.regions.passed(q) = false
axioms

σ.revoke locks(p, q) = σ.set(σ.regions.revoke locks(p, q), σ.heap, σ.store)

A.29. STATE facade: failures 277

A.29 STATE facade: failures

A.29.1 Queries

has failed : STATE → PROC 9 BOOLEAN
σ.has failed(p) require

σ.regions.procs.has(p)
axioms

σ.has failed(p) = σ.regions.has failed(p)

A.29.2 Commands

set failed : STATE → PROC 9 BOOLEAN → STATE
σ.set failed(p, hf) require

σ.regions.procs.has(p)
axioms

σ.set failed(p, hf) = σ.set(σ.regions.set failed(p, hf), σ.heap, σ.store)

A.30 STATE facade: passive processors

A.30.1 Queries

passive : STATE → PROC 9 BOOLEAN
σ.passive(p) require

σ.regions.procs.has(p)
axioms

σ.passive(p) = σ.regions.passive(p)
executes for : STATE → PROC 9 PROC

σ.executes for(p) require
σ.regions.procs.has(p)

axioms
σ.executes for(p) = σ.regions.executes for(p)

278 Appendix A. SCOOP 14 reference

A.30.2 Commands

set passive : STATE → PROC 9 BOOLEAN → STATE
σ.set passive(p, ip) require

σ.regions.procs.has(p)
ip⇒ σ.regions.executes for(p) = p
¬ip⇒ ¬∃q ∈ σ.regions.procs : (q , p ∧ σ.regions.executes for(q) = p)

axioms
σ.set passive(p, ip) = σ.set(σ.regions.set passive(p, ip), σ.heap, σ.store)

set executes for : STATE → PROC 9 PROC 9 STATE
σ.set executes for(p, q) require

σ.regions.procs.has(p)
σ.regions.procs.has(q)
p , q⇒ ¬σ.regions.passive(p) ∧ σ.regions.passive(q)

axioms
σ.set executes for(p, q) = σ.set(σ.regions.set executes for(p, q), σ.heap, σ.store)

A.31 Initial configuration
A program prg has the following initial configuration:

σ
de f
= new STATE.make

σ′
de f
= σ.add proc(σ.new proc) p

de f
= σ′.last added proc

σ′′
de f
= σ′.add proc(σ′.new proc) q

de f
= σ′′.last added proc

σ′′′
de f
= σ′′.add obj(q, σ′′.new obj(prg.settings.root class)) r

de f
= σ′′′.last added obj

〈p :: lock({q});
call(r, prg.settings.root procedure, ());
issue(q, unlock rq);
pop obtained locks | q ::, σ′′′〉

A.32 Issuing mechanism

Issue (non-separate)
q = p
¬σ.passed(p) ∧ σ.cs locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp, σ〉 → 〈p :: sw; sp, σ〉

A.33. Notification mechanism 279

Issue (separate)
q , p ∧ ¬σ.passed(q)
¬σ.passed(p) ∧ σ.rq locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sq; sw, σ〉

Issue (separate callback)
q , p ∧ σ.passed(q) ∧ ¬σ.passed(p) ∧ σ.cs locks(p).has(q)
¬σ.passed(p) ∧ σ.cs locks(p).has(q)

Γ ` 〈p :: issue(q, sw); sp | q :: sq, σ〉 → 〈p :: sp | q :: sw; sq, σ〉

A.33 Notification mechanism

Processors communicate over channels of type CHANNEL. A processor creates a
new channel a when using a transition rule with “a is fresh” in the premise.

Wait for result (non-separate)

Γ ` 〈p :: result(a, r); sw; wait(a, p); sp, σ〉 → 〈p :: sw; sp[r/a.data], σ〉

Wait for notify (non-separate)

Γ `〈p :: notify(a, hf); sw; wait(a, p); sp, σ〉 →

〈p :: sw; provided hf then fail else nop end; sp, σ〉

Wait for result (separate)

Γ ` 〈p :: sw; wait(a, q); sp | q :: result(a, r); sq, σ〉 → 〈p :: sw; sp[r/a.data] | q :: sq, σ〉

Wait for notify (separate)

Γ `〈p :: sw; wait(a, q); sp | q :: notify(a, hf); sq, σ〉 →

〈p :: sw; provided hf then fail else nop end; sp | q :: sq, σ〉

Wait for failure (separate)
σ.has failed(q)

Γ ` 〈p :: wait(a, q); sp | q :: sq, σ〉 → 〈p :: fail; sp | q :: sq, σ〉

280 Appendix A. SCOOP 14 reference

A.34 Locking and unlocking mechanism

Lock
¬∃qi ∈ {q1, . . . , qm} : σ.rq locked(qi)

σ′
de f
= σ.lock rqs(p, {q1, . . . , qm})

Γ ` 〈p :: lock({q1, . . . , qm}); sp, σ〉 → 〈p :: sp, σ
′〉

Unlock request queue
σ.rq locked(p)
∀q ∈ σ.procs : ¬σ.rq locks(q).has(p)

σ′
de f
= σ.unlock rq(p).set failed(p, false)

Γ ` 〈p :: unlock rq; sp, σ〉 → 〈p :: sp, σ
′〉

Pop obtained locks

σ′
de f
= σ.pop obtained rq locks(p)

Γ ` 〈p :: pop obtained locks; sp, σ〉 → 〈p :: sp, σ
′〉

A.35 Writing and reading mechanism

Write

(σ′, v′)
de f
=



if
ce∧
v ∈ REF ∧ v , void ∧ σ.ref obj(v).class type.is exp∧
σ.handler(v) = σ.executes for(p)

then
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ.add obj(σ.executes for(p), σ.ref obj(v).copy)

otherwise
(σ, v)

σ′′
de f
= σ′.set val(p, b.name, v′)

Γ ` 〈p :: write(b, v, ce); sp, σ〉 → 〈p :: sp, σ
′′〉

Read

Γ ` 〈p :: read(b, a); sp, σ〉 → 〈p :: sp[σ.val(p, b.name)/a.data], σ〉

A.36. Flow control mechanism 281

A.36 Flow control mechanism

Conditional (true)

y
de f
=


v if v ∈ BOOLEAN
σ.ref obj(v).att val(item) if v ∈ REF ∧ σ.ref obj(v).class type = boolean
false otherwise

y = true

Γ ` 〈p :: provided v then st else s f end; sp, σ〉 → 〈p :: st; sp, σ〉

Conditional (false)

y
de f
=


v if v ∈ BOOLEAN
σ.ref obj(v).att val(item) if v ∈ REF ∧ σ.ref obj(v).class type = boolean
true otherwise

y = false

Γ ` 〈p :: provided v then st else s f end; sp, σ〉 → 〈p :: s f ; sp, σ〉

Skip

Γ ` 〈p :: nop; sp, σ〉 → 〈p :: sp, σ〉

A.37 Failure anchor mechanism

Fail (without failure anchor overwrite)
∀i ∈ 1, . . . , n : ¬si ∈ FAILURE ANCHOR

Γ ` 〈p :: fail;
s1; . . . ; sn;
failure anchor false
final sfinal

normal snormal

rescue rescue srescue

retry sretry

failure ssfailure

end;
sp, σ〉 →

〈p :: fail rescue rescue srescue retry sretry failure sfailure end;
sp, σ〉

282 Appendix A. SCOOP 14 reference

Fail (with failure anchor overwrite)
∀i ∈ 1, . . . , n : ¬si ∈ FAILURE ANCHOR

Γ ` 〈p :: fail rescue rescue′ s′rescue retry s′retry failure s′failure end;
s1; . . . ; sn;
failure anchor false
final sfinal

normal snormal

rescue rescue srescue

retry sretry

failure ssfailure

end;
sp, σ〉 →

〈p :: failure anchor true
final sfinal

normal snormal

rescue rescue′ s′rescue
retry s′retry

failure s′failure

end;
sp, σ〉

Retry instruction
∀i ∈ {1, . . . , n} : ¬si ∈ FAILURE ANCHOR

Γ ` 〈p :: retry;
s1; . . . ; sn;
failure anchor true
final sfinal

normal snormal

rescue false srescue

retry sretry

failure ssfailure

end;
sp, σ〉 →

〈p :: sretry;
failure anchor false
final sfinal

normal snormal

rescue rescue true
retry sretry

failure sfailure

end;
sp, σ〉

A.38. Entity and literal expressions 283

Failure anchor

Γ ` 〈p :: failure anchor failure
final sfinal

normal snormal

rescue rescue srescue

retry sretry

failure sfailure

end;
sp, σ〉 →

〈p :: provided ¬failure then
sfinal; snormal

else

provided rescue then
srescue;
failure anchor failure
final sfinal

normal snormal

rescue false srescue

retry sretry

failure sfailure

end

else

sfinal; sfailure

end

end;
sp, σ〉

A.38 Entity and literal expressions

Entity expression
e ∈ ENTITY
a′ is fresh

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: read(e, a′); result(a, a′.data); sp, σ〉

284 Appendix A. SCOOP 14 reference

Literal expression
e ∈ LITERAL

σ′
de f
=

{
σ if e = Void
σ.add obj(σ.executes for(p), obj(e)) otherwise

r
de f
=

{
void if e = Void
σ′.last added obj otherwise

Γ ` 〈p :: eval(a, e); sp, σ〉 → 〈p :: result(a, r); sp, σ
′〉

A.39 Feature calls

Command instruction
∀i ∈ {0, . . . , n} : ai is fresh

Γ `〈p :: e0. f (e1, . . . , en); sp, σ〉 →

〈p :: eval(a0, e0); eval(a1, e1); . . . ; eval(an, en);
wait(a0, p); wait(a1, p); . . . ; wait(an, p);
call(a0.data, f , (a1.data, . . . , an.data));
sp, σ〉

Query expression
∀i ∈ {0, . . . , n} : ai is fresh
a′ is fresh

Γ `〈p :: eval(a, e0. f (e1, . . . , en)); sp, σ〉 →

〈p :: eval(a0, e0); eval(a1, e1); . . . ; eval(an, en);
wait(a0, p); wait(a1, p); . . . ; wait(an, p);
call(a′, a0.data, f , (a1.data, . . . , an.data));
result(a, a′.data);
sp, σ〉

Call runtime (raise)

Γ ` 〈p :: call(r0, raise, ()); sp, σ〉 → 〈p :: fail; sp, σ〉

Call runtime (set passive)
¬σ.rq locked(σ.handler(r1))

σ′
de f
= σ.set passive(σ.handler(r1), true)

Γ ` 〈p :: call(r0, set passive, (r1)); sp, σ〉 → 〈p :: sp, σ
′〉

A.39. Feature calls 285

Call runtime (set active)
¬σ.rq locked(σ.handler(r1))

σ′
de f
= σ.set passive(σ.handler(r1), false)

Γ ` 〈p :: call(r0, set active, (r1)); sp, σ〉 → 〈p :: sp, σ
′〉

Call feature (command)

q
de f
= σ.handler(r0)

g
de f
=

{
p if σ.passive(q)
q otherwise

l
de f
=



if
g , p ∧ ∃i ∈ {1, . . . , n}, z, c : Γ ` f .formals(i) : (!, z, c)∧

σ.ref obj(ri).class type.is ref∧
(¬σ.passed(p) ∧ (σ.rq locks(p) ∪ σ.cs locks(p)).has(σ.handler(ri)))

then
(σ.rq locks(p), σ.cs locks(p))

if
g , p ∧ σ.passed(g) ∧ ¬σ.passed(p) ∧ σ.cs locks(p).has(g)

then
(σ.rq locks(p), σ.cs locks(p))

otherwise
({}, {})

σ′0
de f
= σ

∀i ∈ {1, . . . , n} : (σ′i , r
′
i)

de f
=

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) , q)
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ′i−1.import(q, ri)

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) = q)
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ′i−1.add obj(q, σ′i−1.ref obj(ri).copy)

otherwise
(σ′i−1, ri)

a is fresh

Γ `〈p :: call(r0, f , (r1, . . . , rn)); sp, σ〉 →

〈p :: issue(g, apply(a, r0, f , (r′1, . . . , r
′
n), p, l));

provided l , ({}, {}) then wait(a, g) else nop end;
sp, σ

′
n〉

286 Appendix A. SCOOP 14 reference

Call feature (query)

q
de f
= σ.handler(r0)

g
de f
=

{
p if σ.passive(q)
q otherwise

l
de f
=

{
(σ.rq locks(p), σ.cs locks(p)) if g , p
({}, {}) otherwise

σ′0
de f
= σ

∀i ∈ {1, . . . , n} : (σ′i , r
′
i)

de f
=

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) , q
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ′i−1.import(q, ri)

if ri , void ∧ σ′i−1.ref obj(ri).class type.is exp ∧ σ′i−1.handler(ri) = q
(σ∗, σ∗.last added obj)

where
σ∗

de f
= σ′i−1.add obj(q, σ′i−1.ref obj(ri).copy)

otherwise
(σ′i−1, ri)

Γ `〈p :: call(a, r0, f , (r1, . . . , rn)); sp, σ〉 →

〈p :: issue(g, apply(a, r0, f , (r′1, . . . , r
′
n), p, l)); wait(a, g); sp, σ

′
n〉

A.40 Feature applications

Apply feature (attribute)

w
de f
= σ.executes for(p)

σ′
de f
= σ.set executes for(p, σ.handler(r0))

f ∈ ATTRIBUTE
¬σ′.passive(σ′.handler(r0))⇒ σ′.handler(r0) = p
σ′.passive(σ′.handler(r0))⇒ ¬σ′.passed(p) ∧ σ′.rq locks(p).has(σ′.handler(r0))

σ′′
de f
= σ′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, ())

a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: eval(a′, f);
wait(a′, p);
return(a, f , a′.data, q, (lr, lc),w, false, false, false);
sp, σ

′′〉

A.40. Feature applications 287

Apply feature (non-once routine or fresh once routine)

w
de f
= σ.executes for(p)

σ′
de f
= σ.set executes for(p, σ.handler(r0))

f ∈ ROUTINE ∧ (f .is once⇒ σ.fresh(σ′.executes for(p), f .id))
¬σ′.passive(σ′.handler(r0))⇒ σ′.handler(r0) = p
σ′.passive(σ′.handler(r0))⇒ ¬σ′.passed(p) ∧ σ′.rq locks(p).has(σ′.handler(r0))

σ′′
de f
=



if f ∈ FUNCTION ∧ f .is once
σ′.set once func not fresh(σ′.executes for(p), f , false, false, void)

if f ∈ PROCEDURE ∧ f .is once
σ′.set once proc not fresh(σ′.executes for(p), f , false, false)

otherwise σ′

σ′′′
de f
= σ′′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

grequired rq and cs locks
de f
= {p}∪

{x ∈ PROC | ∃i ∈ {1, . . . , n}, g, c : Γ ` f .formals(i) : (!, g, c)∧
σ′′′.ref obj(ri).class type.is ref ∧ x = σ′′′.handler(ri)}

grequired cs locks
de f
=

{x ∈ grequired rq and cs locks | x = p∨
(x , p ∧ σ′′′.passed(x) ∧ ¬σ′′′.passed(p) ∧ σ′′′.cs locks(p).has(x)}

grequired rq locks
de f
= grequired rq and cs locks \ grequired cs locks

{g1, . . . , gm}
de f
= gmissing rq locks

de f
= {x ∈ grequired rq locks | ¬σ

′′′.rq locks(p).has(x)}
a′ is fresh

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: check pre and lock(a, f , q, (lr, lc), gmissing rq locks,w);
execute body(f , gmissing rq locks); check post and inv(f);
failure anchor false
final

issue(g1, unlock rq); . . . ; issue(gm, unlock rq);
pop obtained locks

normal

provided f ∈ FUNCTION then
read(result, a′); return(a, f , a′.data, q, (lr, lc),w, false, true, false)

else return(a, f , q, (lr, lc),w, false, true, false) end
rescue true execute rescue clause(f)
retry execute body(f , gmissing rq locks); check post and inv(f)
failure return(a, f , q, (lr, lc),w, true, true, false)

end; sp, σ
′′′〉

288 Appendix A. SCOOP 14 reference

Apply feature (not fresh once routine)

w
de f
= σ.executes for(p)

σ′
de f
= σ.set executes for(p, σ.handler(r0))

f ∈ ROUTINE ∧ f .is once ∧ ¬σ′.fresh(σ′.executes for(p), f .id)∧
(σ′.stable(σ′.executes for(p), f .id)∨
σ′.stabilizer(σ′.executes for(p), f .id) = σ′.executes for(p))

¬σ′.passive(σ′.handler(r0))⇒ σ′.handler(r0) = p
σ′.passive(σ′.handler(r0))⇒ ¬σ′.passed(p) ∧ σ′.rq locks(p).has(σ′.handler(r0))

σ′′
de f
= σ′.pass locks(q, p, (lr, lc)).push env with feature(p, f , r0, (r1, . . . , rn))

Γ `〈p :: apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 →

〈p :: provided σ′′.has failed(σ′′.executes for(p), f) then
fail

else

nop

end;
failure anchor false
final nop

normal

provided f ∈ FUNCTION then
return(a, f , σ′′.once result(σ′′.executes for(p), f .id),

q, (lr, lc),w, false, false, false)
else

return(a, f , q, (lr, lc),w, false, false, false)
end

rescue false nop
retry nop

failure return(a, f , q, (lr, lc),w, true, false, false)
end;
sp, σ

′′〉

A.40. Feature applications 289

Check precondition and lock

targets(e)
de f
=

{
{e0}
⋃

i=1,...,n targets(ei) if e = e0.h(e1, . . . , en)
{} otherwise

g
de f
= {x ∈ σ.procs | (∃y, z ∈ EXPRESSION : y ∈ targets(f .pre)
∧ z = controlling entity(Γ, y)) ∧ x = σ.handler(σ.val(p, z.name)) ∧ x , p}

a is fresh

cc
de f
= (p = q ∨ f ∈ FUNCTION ∨ (lr, lc) , ({}, {}))∧

(g ⊆ σ.rq locks(q) ∪ σ.cs locks(q))

Γ `〈p :: check pre and lock(a, f , q, (lr, lc), {g1, . . . , gm},w); sp, σ〉 →

〈p :: lock({g1, . . . , gm});
provided f .has pre then
eval(a, f .pre);
wait(a, p);
provided a.data then
nop

else

provided cc then
fail

rescue false nop
retry nop

failure return(a, f , q, (lr, lc),w, true, false, true)
end

else

issue(g1, unlock rq);
. . .

issue(gm, unlock rq);
pop obtained locks;
check pre and lock(a, f , q, (lr, lc), {g1, . . . , gm},w)

end

end

else

nop

end;
sp, σ〉

290 Appendix A. SCOOP 14 reference

Execute body
∀i ∈ {1, . . . , n} : ai is fresh

Γ `〈p :: execute body(f , {g1, . . . , gn}); sp, σ〉 →

〈p :: provided f ∈ FUNCTION ∧ f .is once then
f .body

[result := y; set not fresh(f)/result := y]
[create result.y; set not fresh(f)/create result.y]

else

f .body
end;
provided f .class type.program.settings.safe mode then
issue(g1, notify(a1, false)); wait(a1, g1);
. . . ;
issue(gn, notify(an, false)); wait(an, gn)

else

nop

end;
sp, σ〉

Execute rescue clause

Γ `〈p :: execute rescue clause(f); sp, σ〉 →

〈p :: provided f ∈ FUNCTION ∧ f .is once then
f .rescue clause

[result := y; set not fresh(f)/result := y]
[create result.y; set not fresh(f)/create result.y]

else

f .rescue clause
end;
sp, σ〉

Set not fresh
f ∈ FUNCTION ∧ f .is once
σ.envs(p).top.names.has(result.name)

σ′
de f
= σ.set once func not fresh(
σ.executes for(p), f , false, false, σ.val(p, result.name))

Γ ` 〈p :: set not fresh(f); sp, σ〉 → 〈p :: sp, σ〉

A.40. Feature applications 291

Check postcondition and invariant
ainv is fresh
apost is fresh

Γ `〈p :: check post and inv(f); sp, σ〉 →

〈p :: provided f .has post then
eval(apost, f .post); wait(apost, p);
provided apost.data then nop else fail end

else

nop

end;
provided f .class type.has inv ∧ f .is exported then
eval(ainv, f .class type.inv); wait(ainv, p);
provided ainv.data then nop else fail end

else

nop

end; sp, σ〉

Return (successful command)

σ′
de f
=



if f .is once ∧ snf
σ.set once proc not fresh(σ.executes for(p), f , true, false)

if f .is once ∧ sf
σ.set once rout fresh(σ.executes for(p), f)

otherwise
σ

σ′′
de f
= σ′.pop env(p).revoke locks(q, p).set executes for(p,w)

Γ `〈p :: return(a, f , q, (lr, lc),w, false, snf , sf); sp, σ〉 →

〈p :: provided (lr, lc) , ({}, {}) then notify(a, false) else nop end;
sp, σ

′′〉

292 Appendix A. SCOOP 14 reference

Return (successful query)

g
de f
=

{
w if p = q
σ.executes for(q) otherwise

(σ′, r′r)
de f
=



if rr , void ∧ σ.ref obj(rr).class type.is exp ∧ σ.handler(rr) , g
(σ∗, σ∗.last imported obj)

where
σ∗

de f
= σ.import(g, rr)

otherwise
(σ, rr)

σ′′
de f
=



if f .is once ∧ snf
σ′.set once func not fresh(σ.executes for(p), f , true, false, rr)

if f .is once ∧ sf
σ′.set once rout fresh(σ.executes for(p), f)

otherwise
σ′

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p).set executes for(p,w)

Γ ` 〈p :: return(a, f , rr, q, (lr, lc),w, false, snf , sf); sp, σ〉 → 〈p :: result(a, r′r); sp, σ
′′′〉

Return (failure)

σ′
de f
=



if f ∈ FUNCTION ∧ f .is once ∧ snf
σ.set once func not fresh(σ.executes for(p), f , true, true, void)

if f ∈ PROCEDURE ∧ f .is once ∧ snf
σ.set once proc not fresh(σ.executes for(p), f , true, true)

if f .is once ∧ sf
σ.set once rout fresh(σ.executes for(p), f)

otherwise
σ

σ′′
de f
=

{
σ′.set failed(p, true) if p , q ∧ f < FUNCTION ∧ (lr, lc) = ({}, {})
σ′ otherwise

σ′′′
de f
= σ′′.pop env(p).revoke locks(q, p).set executes for(p,w)

Γ `〈p :: return(a, f , q, (lr, lc),w, true, snf , sf); sp, σ〉 →

〈p :: provided p = q then fail else
provided f < FUNCTION ∧ (lr, lc) = ({}, {}) then
purge

else

notify(a, true)
end

end;
sp, σ

′′′〉

A.41. Creation instructions 293

Purge request queue unlock request

Γ ` 〈p :: purge; unlock rq; sp, σ〉 → 〈p :: unlock rq; sp, σ〉

Purge feature request

Γ ` 〈p :: purge; apply(a, r0, f , (r1, . . . , rn), q, (lr, lc)); sp, σ〉 → 〈p :: purge; sp, σ〉

Purge notification request

Γ ` 〈p :: purge; notify(a, false); sp, σ〉 → 〈p :: purge; sp, σ〉

A.41 Creation instructions

Creation instruction (separate)

(d, g, c)
de f
= type of (Γ, b)

g = >

q
de f
= σ.new proc

o
de f
= σ.new obj(c)

σ′
de f
= σ.add proc(q).add obj(q, o)

r
de f
= σ′.ref (o)

a is fresh

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: lock({q});
write(b, r, false);
b. f (e1, . . . , en);
provided f .class type.program.settings.safe mode then
issue(q, notify(a, false)); wait(a, q)

else

nop

end;
failure anchor false
final issue(q, unlock rq); pop obtained locks
normal nop

rescue false nop
retry nop

failure fail

end;
sp | q :: nop, σ′〉

294 Appendix A. SCOOP 14 reference

Creation instruction (existing explicitly specified processor)

(d, g, c)
de f
= type of (Γ, b)

(∃x ∈ ENTITY : g =< x >) ∨ (∃x ∈ ENTITY : g =< x.handler >)

q
de f
=

{
σ.val(p, x.name) if ∃x ∈ ENTITY : g =< x >
σ.handler(σ.val(p, x.name)) if ∃x ∈ ENTITY : g =< x.handler >

σ.procs.has(q)

o
de f
= σ.new obj(c)

σ′
de f
= σ.add obj(q, o)

r
de f
= σ′.ref (o)

w
de f
= q , p∧
¬(q , p ∧ σ′.passed(q) ∧ ¬σ′.passed(p) ∧ σ′.cs locks(p).has(q))∧
¬σ′.rq locks(p).has(q)

a is fresh

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: provided w then
lock({q})

else

nop

end;
write(b, r, false);
b. f (e1, . . . , en);
provided w then
provided f .class type.program.settings.safe mode then
issue(q, notify(a, false)); wait(a, q)

else

nop

end;
failure anchor false
final issue(q, unlock rq); pop obtained locks
normal nop

rescue false nop
retry nop

failure fail

end

else

nop

end;
sp, σ

′〉

A.41. Creation instructions 295

Creation instruction (non-existing explicitly specified processor)

(d, g, c)
de f
= type of (Γ, b)

∃x ∈ ENTITY : g =< x >

< x >
de f
= g

¬σ.procs.has(σ.val(p, x.name))

q
de f
= σ.new proc

o
de f
= σ.new obj(c)

σ′
de f
= σ.add proc(q).add obj(q, o)

r
de f
= σ′.ref (o)

a is fresh

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: write(x, q, false);
lock({q});
write(b, r, false);
b. f (e1, . . . , en);
provided f .class type.program.settings.safe mode then
issue(q, notify(a, false)); wait(a, q)

else

nop

end;
failure anchor false
final issue(q, unlock rq); pop obtained locks
normal nop

rescue false nop
retry nop

failure fail

end;
sp | q :: nop, σ′〉

Creation instruction (non-separate)

(d, g, c)
de f
= type of (Γ, b)

g = •

o
de f
= σ.new obj(c)

σ′
de f
= σ.add obj(σ.executes for(p), o)

r
de f
= σ′.ref (o)

Γ `〈p :: create b. f (e1, . . . , en); sp, σ〉 →

〈p :: write(b, r, false);
b. f (e1, . . . , en);
sp, σ

′〉

296 Appendix A. SCOOP 14 reference

A.42 Flow control instructions

If instruction (with else)
a is fresh

Γ `〈p :: if e then st else s f end; sp, σ〉 →

〈p :: eval(a, e);
wait(a, p);
provided a.data then st else s f end;
sp, σ〉

If instruction (without else)
a is fresh

Γ `〈p :: if e then st end; sp, σ〉 →

〈p :: eval(a, e);
wait(a, p);
provided a.data then st else nop end;
sp, σ〉

Loop instruction
a is fresh

Γ `〈p :: until e loop sl end; sp, σ〉 →

〈p :: eval(a, e);
wait(a, p);
provided a.data then nop else sl; until e loop sl end end;
sp, σ〉

A.43 Assignment instructions

Assignment instruction
a is fresh

Γ ` 〈p :: b := e; sp, σ〉 → 〈p :: eval(a, e); wait(a, p); write(b, a.data, true); sp, σ〉

A.44 Parallelism

Parallelism
Γ ` 〈P, σ〉 → 〈P′, σ′〉

Γ ` 〈P | Q, σ〉 → 〈P′ | Q, σ′〉

A.44. Parallelism 297

	Introduction
	Prototyping method
	Thesis statement
	Contributions and main results
	Organization

	Informal description
	SCOOP in an example
	Programs
	Processors and objects
	Types
	Feature applications
	Feature calls
	Creation instructions
	Once routines

	Formal specification
	Intermediate representation of programs
	Abstract data types
	Basic abstract data types
	Programs and settings
	Class types
	Features
	Statements
	Expressions
	Types

	State specification
	Identifiers
	Objects and references
	Heap
	Processors and regions
	Environments and store
	State

	Execution specification
	Executions
	Initial configuration
	Issuing mechanism
	Notification mechanism
	Expression evaluation mechanism
	Locking and unlocking mechanism
	Writing and reading mechanism
	Flow control mechanism
	Entity and literal expressions
	Feature calls
	Feature applications
	Creation instructions
	Flow control instructions
	Assignment instructions
	Termination or blockage

	Executable specification
	Maude
	Abstract data types
	Transition rules
	Executing programs
	Rewrite and frewrite
	Strategies
	Search
	LTL model checker

	Other frameworks

	Testing
	Test suite
	Separate callbacks
	Flaw
	Clarification

	Separate once functions
	Flaw
	Clarification

	Lock passing for queries
	Flaw
	Clarification

	Lock passing and asynchrony
	Flaw
	Clarification

	Related work
	Testing of programming models
	Proofs for programming models

	Discussion

	Asynchronous exceptions
	Classification of approaches
	Accountability framework
	Accountability framework instantiations
	Accountability for C++
	Accountability for Erlang
	Accountability for SaGE

	Informal description
	Exceptions in non-concurrent SCOOP programs
	Accountability for SCOOP

	Formal specification
	Intermediate representation
	Heap and regions
	Failure anchor mechanism
	Notification mechanism
	Locking and unlocking mechanism
	Feature applications

	Testing
	Safe mode order
	Safe mode and creation procedures

	Related work
	Discussion

	Data sharing
	Informal description
	Formal specification
	Regions
	Writing and reading mechanism
	Literal expressions
	Feature calls
	Feature applications
	Creation instructions

	Testing
	Flaw
	Clarification

	Performance evaluation
	Comparison to active processors
	Comparison to low-level synchronization primitives

	Other applications
	Related work
	Discussion

	Performance analysis
	Performance metrics
	Using the metrics to diagnose issues and find solutions
	From traces to metric values
	Tool overview
	Processor view
	Feature view
	Using the tool to improve programs

	Evaluation
	Time overhead analysis
	Optimizing concurrent robotic control software

	Applicability to other concurrency models
	Related work
	Discussion

	Conclusion
	Defense of the thesis statement
	Future work
	Final remarks

	Bibliography
	List of figures
	List of tables
	SCOOP_14 reference
	ID
	NAME
	PROGRAM
	Queries
	Constructors

	SETTINGS
	Queries
	Constructors

	CLASS_TYPE
	Queries
	Constructors
	Instances

	FEATURE
	Queries
	Constructors
	Subtypes
	Instances

	ENTITY
	Queries
	Constructors
	Subtypes
	Instances

	STATEMENT and STATEMENT_SEQUENCE
	INSTRUCTION
	OPERATION
	EXPRESSION
	LITERAL
	QUERY
	Types
	REF
	Queries
	Constructors
	Instances

	OBJ
	Queries
	Commands
	Constructors

	HEAP
	Queries
	Commands
	Constructors

	PROC
	Queries
	Constructors

	REGIONS
	Queries
	Commands
	Constructors

	ENV
	Queries
	Commands
	Constructors

	STORE
	Queries
	Commands
	Constructors

	STATE
	Queries
	Commands
	Constructors

	STATE facade: mappings
	Queries
	Commands

	STATE facade: importing
	Queries
	Commands

	STATE facade: environments
	Queries
	Commands

	STATE facade: writing and reading values
	Queries
	Commands

	STATE facade: once routines
	Queries
	Commands

	STATE facade: locks
	Queries
	Commands

	STATE facade: failures
	Queries
	Commands

	STATE facade: passive processors
	Queries
	Commands

	Initial configuration
	Issuing mechanism
	Notification mechanism
	Locking and unlocking mechanism
	Writing and reading mechanism
	Flow control mechanism
	Failure anchor mechanism
	Entity and literal expressions
	Feature calls
	Feature applications
	Creation instructions
	Flow control instructions
	Assignment instructions
	Parallelism

