
Julia

Reachability Analysis of Program Variables

Ðurica Nikolić1,2 and Fausto Spoto1

1. - Dipartimento di Informatica, University of Verona (Italy)
2. - Microsoft Research - University of Trento Centre for Computational and Systems Biology

June 29th, 2012

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 1 / 15

Introduction

Intuitive definition of Reachability

A A
f f
g g
h h

o1 o2

x

nullnull

null null
00

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?
x.f.m.n = y ⇒ x reaches y

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 2 / 15

Introduction

Intuitive definition of Reachability

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?

x.f.m.n = y ⇒ x reaches y

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 2 / 15

Introduction

Intuitive definition of Reachability

A A

B
m
n

B
m
n

f
g 10
h

null

o1

o3

o4

o2

x

null

45
null

f
g
h

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?
x.f.m.n = y

⇒ x reaches y

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 2 / 15

Introduction

Intuitive definition of Reachability

A A

B
m
n

B
m
n

f
g 10
h

null

o1

o3

o4

o2

x

null

45
null

f
g
h

y

Is there a sequence of fields f1, . . . , fk such that x.f1.. . . .fk = y?
x.f.m.n = y ⇒ x reaches y

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 2 / 15

Introduction

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

Shape Analysis

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 3 / 15

Introduction

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

Shape Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 3 / 15

Introduction

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

Shape Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 3 / 15

Introduction

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

Shape Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x

null

null

y

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 3 / 15

Introduction

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

Shape Analysis

A A

B
m
n

B
m
n

f f
g g10 45
h h null

o1

o3

o4

o2

x y

null

null

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 3 / 15

Introduction

Haven’t we solved this problem yet?
There is a lot of pointer analyses: [Hind01] surveys more than 75 papers

Sharing Analysis

Aliasing Analysis

Shape Analysis

REACHABILITY entails SHARING

SHARING entails REACHABILITY

ALIASING entails REACHABILITY

REACHABILITY entails ALIASING

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 3 / 15

Introduction

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

if x and y share
might happen

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

null

null

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

null

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 4 / 15

Introduction

Where can it be useful?
Cyclicity Analysis: An assignment y.h = x might make y cyclical?

if x and y share

if x reaches y
YES

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

null

null

A A

B
m
n

B
m
n

f f
g g10 45
h h

o1

o3

o4

o2

x

null

null

y

null

might happen

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 4 / 15

Introduction Julia static analyzer - www.juliasoft.com

Julia - a static analyzer for Java and Android

Reachability Analysis has been implemented inside Julia as a supporting analysis for

� Cyclicity Analysis
� Side-Effects Analysis
� Field Initialization Analysis
� Path-length Analysis


supporting analyses of

Nullness and Termination

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 5 / 15

Syntax and Semantics of Java Bytecode

Target language: Java bytecode

...
tmp.tail = list;

...

tmp ←→ l4
list ←→ l1

load 4 ListStudent
load 1 ListStudent
putfield ListStudent.tail: ListStudent

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 6 / 15

Syntax and Semantics of Java Bytecode

State

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ s0 s1

@`4 @`2

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

null

σ = 〈〈[@`2, 2,@`3,@`4]︸ ︷︷ ︸
L

‖ @`2 :: @`4︸ ︷︷ ︸
S

〉, µ〉

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 7 / 15

Definition of Reachability

Reachable locations and variables

Reachable locations Lσ(a)

Given a state σ = 〈ϕ, µ〉 and a location @`, locations reachable from @` in σ
are Lσ(@`) = lfp i≥0Li

σ(@`), where Li
σ(@`) represents the set of locations

reachable from @` in i steps, i.e.,

Li
σ(@`) =


{@`} if i = 0⋃
@`1∈Li−1

σ (@`)

(rng(µ(@`1).φ) ∩ L) ∪ Li−1
σ (@`) otherwise.

Reachability of variables a σb

We say that a variable b is reachable from a variable a in σ, and we denote it
a σb iff ϕ(a), ϕ(b) ∈ L and ϕ(b) ∈ Lσ(a).

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Definition of Reachability

Reachable locations and variables

Reachable locations Lσ(a)

Given a state σ = 〈ϕ, µ〉 and a location @`, locations reachable from @` in σ
are Lσ(@`) = lfp i≥0Li

σ(@`), where Li
σ(@`) represents the set of locations

reachable from @` in i steps, i.e.,

Li
σ(@`) =


{@`} if i = 0⋃
@`1∈Li−1

σ (@`)

(rng(µ(@`1).φ) ∩ L) ∪ Li−1
σ (@`) otherwise.

Reachability of variables a σb

We say that a variable b is reachable from a variable a in σ, and we denote it
a σb iff ϕ(a), ϕ(b) ∈ L and ϕ(b) ∈ Lσ(a).

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Definition of Reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3
ListStudent

head

@`4

tail
null

Memory µ

local
variables

stack
elements

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Definition of Reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1
ListStudent

head

@`2

tail
Student

name

st2

@`3 @`4

tail
null

Memory µ

local
variables

stack
elements

ListStudent

head

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Definition of Reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

Student

name

st1

@`1 @`2 @`3

Memory µ

local
variables

stack
elements

ListStudent

head tail
null

Student

name

st2
tailhead

@`4
ListStudent

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Definition of Reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

@`1

Memory µ

local
variables

stack
elements

name

st1

Student

@`2 @`3 @`4

tail
ListStudent

head
ListStudent

null

Student

name

st2
head tail

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Definition of Reachability

Reachable locations and variables

l1 l2 l3 l4

@`2 2 @`3 @`4

Environment ϕ

@`1

Memory µ

local
variables

stack
elements

name

st1

Student

@`2 @`3 @`4

tail
ListStudent

head
ListStudent

null

Student

name

st2
head tail

which locations are reachable from @`4?

L0
σ(@`4) = {@`4}

L1
σ(@`4) = {@`2,@`3,@`4}

L2
σ(@`4) = {@`1,@`2,@`3,@`4} ⇒ Lσ(@`4) = {@`1,@`2,@`3,@`4}

ϕ(l4) = @`4 ⇒ l4 σl4
ϕ(l1) = @`2 ⇒ l4 σl1
ϕ(l3) = @`3 ⇒ l4 σl3

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 8 / 15

Reachability Analysis

Abstract Interpretation Framework [CousotCousot77]

C

A

α γ

C

A

f

f]

α γ

best correct approximation: f bca = α ◦ f ◦ γ
in practice: f] is less precise than f bca and

introduces over-approximation

concrete
domain

abstract
domain

abstraction
map

concretization
map

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 9 / 15

Reachability Analysis Abstract states

Concrete and Abstract Domains

Σ - set of all states

V - set of all variables

Concrete Domain: C = 〈℘(Σ),⊆〉

Abstract Domain: A = 〈℘(V × V),⊆〉

an abstract element R ∈ A represents those concrete states whose
reachability information is over-approximated by the pairs of variables in R
we write a b to denote 〈a, b〉

Concretization Map:

γ(R) = {σ ∈ Σ | ∀a, b ∈ V.a σb ⇒ a b ∈ R}

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 10 / 15

Reachability Analysis Abstract semantics

Constraint-based static analysis - example

Abstract Constraint Graph (ACG= 〈V ,E〉) gives rise to an
over-approximation of the reachability information
at each point of a program P.

the cfg of P gives rise to the nodes and arcs of the ACG,
i.e., there is a node for every bytecode and there is an arc between 2 nodes
if their corresponding bytecodes are adjacent in the CFG.

each node is decorated by an abstract element,
i.e., by a set of ordered pairs of variables representing an
over-approximation of the reachability information at that point.
arcs propagate approximations of the reachability of their sources,
i.e., they represent abstract semantics of bytecodes.

the reachability information of the initial node, corresponding to the
beginning of the main method is ∅, and it is propagated through the ACG.

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 11 / 15

Reachability Analysis Abstract semantics

Constraint-based static analysis - example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 11 / 15

Reachability Analysis Abstract semantics

Constraint-based static analysis - example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

ex
ce
pt
io
n

exit

node Anode C
catch

node 13
exception@〈init〉

node B
store 4 Student

node 10
exit@〈init〉

call ListStudent.〈init〉(Student, ListStudent) : void

node 1
load 0 ListStudent

node 2
call java.lang.Object.〈init〉() : void

node 3
load 0 ListStudent

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

node 7
load 2 ListStudent

node 8
putfield ListStudent.tail : ListStudent

node 9
return void

node 11
catch

node 12
throw java.lang.Throwable

]14

]16]16

]3

]16
]12

]12

]16

]7

]3

]3

]6

]3

]3

]6

]8

]10

]13

]13

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 11 / 15

Reachability Analysis Abstract semantics

Constraint-based static analysis - example

load 0 ListStudent
call java.lang.Object.〈init〉() : void

load 0 ListStudent
load 1 Student

putfield ListStudent.head : Student

load 0 ListStudent
load 2 ListStudent

putfield ListStudent.tail : ListStudent

return void

catch
throw java.lang.Throwable

ex
ce
pt
io
n

exit

node Anode C
catch

node 13
exception@〈init〉

node B
store 4 Student

node 10
exit@〈init〉

call ListStudent.〈init〉(Student, ListStudent) : void

node 1
load 0 ListStudent

node 2
call java.lang.Object.〈init〉() : void

node 3
load 0 ListStudent

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

node 7
load 2 ListStudent

node 8
putfield ListStudent.tail : ListStudent

node 9
return void

node 11
catch

node 12
throw java.lang.Throwable

]14

]16]16

]3

]16
]12

]12

]16

]7

]3

]3

]6

]3

]3

]6

]8

]10

]13

]13

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 11 / 15

Reachability Analysis Abstract semantics

Constraint-based static analysis - example

node 4
load 1 Student

node 5
putfield ListStudent.head : Student

node 6
load 0 ListStudent

]3

]6

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 11 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

ListStudentStudentListStudentListStudent

initial approximation

l0 l0, l0 s0, l1 l1,
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

putfield ListStudent.head: Student
node 5

load 1 Student
node 4

s0

final approximation type environment

#3

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

ListStudent ListStudentListStudent

initial approximation

l0 l0, l0 s0, l1 l1,
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

putfield ListStudent.head: Student
node 5

load 1 Student
node 4

s0

final approximation type environment

#3

ListStudent ListStudentListStudent

l0 l1 l2 s0 s1

Student

Student Student

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

ListStudent ListStudentListStudent

initial approximation

l0 l0, l0 s0, l1 l1,
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

s0

final approximation type environment

#3

ListStudent ListStudentListStudent

l0 l1 l2 s0 s1

Student

Student Student

propagation rule• if l1 a at node 4,
then s1 a at node 5

• if a l1 at node 4,
then a s1 at node 5

• l1 s1, s1 l1, s1 s1

load 1 Student
node 4

putfield ListStudent.head: Student
node 5

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

ListStudent ListStudentListStudent

initial approximation
l0 l1 l2

type environment

l2 l2, s0 l0, s0 s0

putfield ListStudent.head: Student
node 5

load 1 Student
node 4

s0

final approximation type environment

#3

ListStudent ListStudentListStudent

l0 l1 l2 s0 s1

Student

Student Student

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

l0 l0, l0 s0, l1 l1,

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

• if a b at node 5
and a, b /∈{s0, s1},
then a b at node 6

• if a s0 and s1 b at node 5
and a, b /∈{s0, s1},
then a b at node 6

propagation rule

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

• if a b at node 5
and a, b /∈{s0, s1},
then a b at node 6

• if a s0 and s1 b at node 5
and a, b /∈{s0, s1},
then a b at node 6

propagation rule

l0 l0, l1 l1, l2 l2

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

type environment
ListStudentStudentListStudent

l0 l1 l2

• if a b at node 5
and a, b /∈{s0, s1},
then a b at node 6

• if a s0 and s1 b at node 5
and a, b /∈{s0, s1},
then a b at node 6

propagation rule

l0 l1

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

l0 s0

s1 l1

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Abstract semantics

Propagation rules - example

initial approximation type environment

ListStudentStudentListStudentListStudent

l0 l1 l2 s0
Student

s1

#6

l0 l0, l0 s0, l1 l1,
l1 s1, l2 l2, s0 l0,
s0 s0, s1 l1, s1 s1

load 0 ListStudent
node 6

putfield ListStudent.head: Student
node 5

final approximation type environment
l0 l0, l0 l1, l1 l1, l2 l2 ListStudentStudentListStudent

l0 l1 l2

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 12 / 15

Reachability Analysis Experimental evaluation

reachability
analysis

side-effects
analysis

field initializat.

analysis

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 13 / 15

Reachability Analysis Experimental evaluation

reachability
analysis

45.07%

side-effects
analysis

field initializat.

analysis

the ratio of pairs of variables 〈v, w〉 such that the
analysis concludes that v might reach w, over the
total number of pairs of variables of reference type:

the lower the ratio, the higher the precision

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 13 / 15

Reachability Analysis Experimental evaluation

reachability
analysis

45.07%

side-effects
analysis

−23.47%

field initializat.

analysis

which parameters p of a method might be affected
by its execution: the method might update a field of

an object reachable from p:
the lower the numbers, the better the precision

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 13 / 15

Reachability Analysis Experimental evaluation

reachability
analysis

45.07%

side-effects
analysis

−23.47%

field initializat.

analysis

+3.46%
the number of fields of reference type proven to be

always initialized before being read, in all
constructors of their defining class:

the higher the numbers, the better the precision

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 13 / 15

Reachability Analysis Experimental evaluation

reachability
analysis

45.07%

side-effects
analysis

−23.47%

field initializat.

analysis

+3.46%

runtime

nullness
analysis

−7.77%

termination
analysis

−1.62%
warnings −3.38% 0%

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 13 / 15

Conclusions

Goal: define, formally prove correct and implement a
Reachability Analysis of Program Variables for Java bytecode

1 definition a concrete operational semantics of Java bytecode;

2 formal definition a notion of reachability;
3 a constraint-based inter-procedural static analysis
based on abstract interpretation;

4 formal proof of correctness of the analysis;
5 implementation of our inter-procedural analysis for full Java bytecode;
6 experimental evaluation of our approach.

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 14 / 15

Conclusions

Thank You!!!

Ð. Nikolić, F. Spoto (IJCAR 2012) Reachability Analysis of Program Variables June 29th, 2012 15 / 15

	Introduction
	Julia static analyzer - www.juliasoft.com

	Syntax and Semantics of Java Bytecode
	Definition of Reachability
	Reachability Analysis
	Abstract states
	Abstract semantics
	Experimental evaluation

	Conclusions

