
Automaton-Based Array Initialization Analysis

Ðurica Nikolić and Fausto Spoto

Dipartimento di Informatica, Università di Verona, Italy
{durica.nikolic,fausto.spoto}@univr.it

Abstract. We define an automaton-based abstract interpretation of a
trace semantics which identifies loops that definitely initialize all the
elements of an array, a useful piece of information for the static analysis of
imperative languages. This results in a fully automatic and fast analysis,
that does not use manual code annotations. Its implementation inside
the Julia analyzer is efficient and precise.

1 Introduction

This work was born from a problem faced during the static analysis of Java and
Android programs. Fig. 1 shows an example: fields mOriginal and mRotated
hold arrays, initialized by readModel() and then read and dereferenced by other
methods. In this case the null-pointer analysis of Julia [12] issued spurious warn-
ings since it could not prove that the elements of these arrays were initialized.

We wanted to prove, automatically, that all elements of fields mOriginal and
mRotated are initialized at point *. Complete initialization of arrays to some value
is undecidable [2,9], but static analysis can often prove it. Typically, theorem prov-
ing or predicate abstraction are used [7,8]. However, not all techniques are auto-
matic; some require a previous manual annotation of the program with invariants;
others must be instantiated with different abstract domains (or predicate abstrac-
tions), depending on the specific program at hand; others have an overwhelming
cost. An impressive evaluation of those techniques has been done in [6]: its authors
implemented and compared them, with the result that very few are completely au-
tomatic and none efficient for real large software. Moreover, they present a new
technique based on abstract interpretation [3,4]: a fixpoint over an abstraction of
arrays into segments with strict or non-strict bounds. The abstraction of the ele-
ments of a single segment is given over an abstract domain, left parametric.

Our contributions are:

1. a new automaton-based abstract interpretation of execution traces, proving
that all elements of an array are definitely initialized at a program point;

2. a proof of correctness for the previous analysis;
3. experiments showing that the analysis is efficient (1 second on average for

large software) precise and scales to the analysis of more than 100, 000 lines.

Our static analysis is intraprocedural, but aware of interprocedural side-effects.
It is a whole-program analysis, hence it does not apply to classes in isolation nor
to libraries. We give definitions and proofs for an automaton spotting the full

A.-H. Dediu and C. Martín-Vide (Eds.): LATA 2012, LNCS 7183, pp. 420–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automaton-Based Array Initialization Analysis 421

private void readModel (S t r ing p r e f i x) {
. . . .
S t r i ng [] p =
int numpoints = p . l ength ;
this . mOriginal = new ThreeDPoint [numpoints] ;
this . mRotated = new ThreeDPoint [numpoints] ;

for (int i = 0 ; i < numpoints ; i++) {
this . mOriginal [i] = new ThreeDPoint () ;
this . mRotated [i] = new ThreeDPoint () ;
S t r ing [] coord = p [i] . s p l i t (” ”) ;
this . mOriginal [i] . x=Float . valueOf (coord [0]) ;
this . mOriginal [i] . y=Float . valueOf (coord [1]) ;
this . mOriginal [i] . z=Float . valueOf (coord [2]) ;

}
[po int ∗]
. . . .

}

Fig. 1. A snippet of code from the CubeWallpaper Android program by Google

initialization of monodimensional arrays, with a standard pattern of initialization
from element 0 upwards. This is, of course, a restriction, but covers the most
frequent situations, as confirmed by our experiments in Section 6. We have also
implemented some automata for full initialization of bidimensional arrays and
for other orders of initialization, but they are not presented here due to space
limitations, and we do not consider them a contribution of this paper.

Our abstract domain is rather simple: it contains only 5 elements. This permits
us to provide a fully detailed soundness proof of low complexity. The key to this
simplicity is abstract interpretation, that relates the semantics of the program
with the pattern recognition ability of the automaton. The analysis in [6] is
more general and precise than ours (for instance, it deals with out-of-order array
initializations, while we are not able to do it), but this comes at the cost of a
higher theoretical complexity. We could not perform an experimental comparison
with them, since we analyze Java bytecode while the Clousot analyzer of [6]
works for .NET. Also, the great precision of [6] largely depends on its specific
instantiation and available supporting aliasing analysis.

One can apply our analysis also to position-based collection classes such as
java.util.ArrayList. However, those Java classes have been devised in such a
way that elements can be read only if they have already been set, or an exception
is thrown. Hence, in Java, they are always fully initialized, potentially to null.

Proving full array initialization at a program point does not mean that the
array is initialized to some kind of values (e.g. to non-null values) and that
this remains true later, when the array is accessed, possibly in different methods
from the one which initializes it. The local initialization at a program point must
be lifted to a global property at all program points where the array is read. An
extended version of this paper [10] presents our solutions to these problems.

2 A Simple Imperative Language and Its Semantics

We present here a simplified imperative language, inspired by [5]. It exposes
only features relevant to our work. Namely, it has a minimal set of types, does

422 Ð. Nikolić and F. Spoto

E ::= n | x Integer / Variable B ::= true | false Truth/Falsity
| x .length Array length | ¬B1 Negation
| x [E] Array element | E1 � E2 � ∈ {<, ≤, =}
| E1 ⊕ E2 ⊕ ∈ {+, −, ∗, ÷, %} | B1 � B2 � ∈ {∧, ∨}

A ::= B Test C ::= L1 : A → L2; Command
| x := E Variable assignment
| x := new t [E] Creation of an array n ∈ Z, x ∈ Var, E, E1, E2 ∈ E,
| x [E] := E Array element assign B, B1, B2 ∈ B, A ∈ A, C ∈ C, t ∈ Type

Fig. 2. Abstract syntax of programs

not include classes, structures, procedures (our analysis is intraprocedural) nor
exceptions. The actual implementation of our analysis includes all features of
monothreaded Java bytecode such as classes, method calls and exceptions.

In our language, commands are labeled actions. These actions are executed
when the interpreter of the language is at a given, initial label and lead to an-
other, successor label. More actions can share the same initial label and hence
our language is, in general, non-deterministic. The exact nature of labels is ir-
relevant: we can assume, for instance, that they are integers.

Definition 1 (Syntax of Programs). A program is a finite set of commands,
with a distinguished initial command Cinit . C is the set of commands C of the
form L1 : A � L2;, where L1 and L2 are called initial and successor labels of
C, and A is the action executed by C. We define selectors ini�C� � L1, suc�C� �
L2 and act�C� � A. Actions can be Boolean expressions in B (whose definition
uses arithmetic expressions in E), creation of arrays and assignments to local
variables in Var or to array elements, and they are defined by the grammar in
Fig. 2. The set of types, Type, is the minimal set containing int and array of t
for every t �Type. We assume that every v �Var has a static type t�v�.

We assume programs well-typed. For instance, given an action x �y�3�� :� z ,
then t�y� � array of int and t�x � � array of t�z �. We let vars�D� stand for the
variables occurring in an expression or action D , and mod�A� � vars�A� for
the variables modified (i.e., assigned) by an action A. Namely, mod�B� � ∅,
mod�x :� E� � 	x
, mod�x :� new t�E�� � 	x
 and mod�x �E1� :� E2� � ∅.

1. i = 0; C0 1: i :� 0 � 2;
2.while (i < a.length) � C1 2: i � a.length � 3;
3. if(i % 3 == 0) � C2 2: ��i � a.length� � 9;
4. a[i]=...; C3 3: i%3 � 0 � 4;
4. � else � C4 3: ��i%3 � 0� � 5;
5. a[i]=...; C5 4: a	i
 :� ... � 8;
6. i++; C6 5: a	i
 :� ... � 6;
7. a[i]=...; C7 6: i :� i � 1 � 7;
7. � C8 7: a	i
 :� ... � 8;
8. i++; C9 8: i :� i � 1 � 2;
8.� C10 9: � � �
9. . . .

Example 1. The figure on
the left shows a Java loop
(left) initializing an array
a and its corresponding
transition system (right).
This code fragment is well-
typed with t�i� � int and
t�a��array of int.

At run-time, variables hold values which, in a programming language such as
Java, may be primitive or non-primitive; the latter include objects and arrays.
Def. 2 simplifies the picture by only considering integers as primitive values and

Automaton-Based Array Initialization Analysis 423

arrays as non-primitive values. That simplification does not limit the results of
this paper, that is only concerned about arrays and integer counters.

Definition 2 (Values). Values are elements of Val � Z�L�	null
, where L

is a finite set of memory locations. Arr is the set of arrays a��n, �v0, . . . , vn1�,
where n �N is the length of a and vi �Val are its elements, for i ��0..n��N. We
define a.length� n and a�i� � vi , for i � �0..n�. We also define the update of a
at i as a�i �� v � � �n, �v0, . . . , vi1, v , vi�1, . . . , vn1� �Arr, which is undefined
when i is outside the range of a. A memory is a partial map μ : L�Arr.

An environment represents the state of an interpreter of the language. It
provides a value for each variable and specifies the memory of the system.

Definition 3 (Environment). An environment is a pair e ��ρ, μ of a total
map ρ : Var � Val and a memory μ. As in Java, we ban dangling pointers,
i.e., �v � Var, if ρ�v� � L, then μ�ρ�v�� is defined, and for every a � Arr and
�i � �0..a.length�, such that a�i� � L, then μ�a�i�� is defined. We require static
types respected i.e., �v �Var we have ρ�v��µ t�v�, where (i) x�µ int iff x �Z; and
(ii) x�µ array of t iff x � null or (x �L and �i ��0..μ�x �.length�, μ�x ��i��µ t).
We let E be the set of all environments.

Definition 4 (Value of Expressions). The evaluations A�E� : E � Val and
B�B� : E � 	true, false
 of expressions are partial maps defined as

A�n��ρ, μ� � n B�true�e � true
A�x��ρ, μ� � ρ�x� B�false�e � false

A�x .length��ρ, μ� � μ�ρ�x��.length B��B�e � �B�B�e
A�x �E���ρ, μ� � μ�ρ�x���A�E��ρ, μ�� B�E1�E2�e�A�E1�e�A�E2�e

A�E1	E2��ρ, μ��A�E1��ρ, μ�	A�E2��ρ, μ� B�B1�B2�e�B�B1�e�B�B2�e.

Both maps are undefined when their defining expression is undefined or when
any of of their arguments is undefined.

The execution of an action maps an initial environment into one of its successors.

Definition 5 (Semantics of Actions). The semantics of an action A is a
partial map S�A� : E � E defined as

S�B�e �

�
e if B�B�e � true

undefined otherwise

S�x :� E��ρ, μ� � �ρ�x
� A�E��ρ, μ��, μ�

S�x �E1� :� E2��ρ, μ� �

�����
����
�ρ, μ�l
� μ�l��i
� A�E2��ρ, μ����

if l � ρ�x�, l � null
i � A�E1��ρ, μ� and 0 i � μ�l�.length

undefined otherwise

S�x :� new t�E���ρ, μ� � �ρ�x
� lf �, μ�lf
� �A�E��ρ, μ�, �def, . . . , def����,

where lf is a fresh location i.e., lf � dom�μ� and def is the default value for t .
This map is undefined when any of its arguments is undefined.

424 Ð. Nikolić and F. Spoto

Our operational semantics works over execution traces of states. A state is an
environment enriched with a component recording the next command to be
executed, similar to the program counter in an actual interpreter of the language.

Definition 6 (State). A state is a pair σ � �e, C � E � C. The set of states
is denoted by Σ. We define the selectors env�σ� � e and cmd�σ� � C.

A trace is a sequence of states that reflects an actual execution of the program.

Definition 7 (Trace). A finite partial trace τ of states is a finite sequence of
states �σ1, . . . , σn. For every 1� i�n, if σi��e, C, we require that S�act�C��e
is defined and that σi�1 � �S�act�C��e, C� with suc�C� � ini�C��. When n � 0,
the trace is empty and denoted by ε. Otherwise, we define first�τ� � σ1 and
last�τ� � σn . The set of traces is denoted by T . The concatenation � of two
traces is defined as τ1 � ε � τ1, ε � τ2 � τ2 and �σ1

1 , . . . , σ
1
n1
 � �σ2

1 , . . . , σ2
n2
 �

�σ1
1 , . . . , σ

1
n1

, σ2
1 , . . . , σ2

n2
 if the latter is a trace; it is undefined otherwise.

We define the operational semantics of our language as a transformer of sets of
traces: it expands every trace τ with a state whose next command to be executed
is a given command C that can be attached to τ according to Def. 7.

Definition 8 (Operational Semantics). Let C � C and �C : ℘�T � � ℘�T �
be defined as T�C 	τ � �e, C � τ �T � e �E � τ � �e, C is defined
. The opera-
tional semantics at C is the set @C of all possible traces that lead to C and start
with the execution of the distinguished command Cinit , that is, @C � 	τ �Tn �
�T1, . . . ,Tn � T .	ε
 �C1 T1 �

C2 T2 � � � �
Cn Tn � C1�Cinit � Cn�C
.

3 Regular Trace Approximation

We define here an approximation of the execution traces of a program through a
finite deterministic automaton. Its states are sets of traces and represent elements
of an abstract domain. This is defined through regular expressions specifying se-
quences of commands that can be executed to construct the traces. We prove that
the transition relation of the automaton is a correct approximation of the �C

operational relation. The automaton (Fig. 3) is designed for a pair of program
variables a, of type array, and i , of integer type. It is defined over the alphabet
Λ � 	0,�,�,�, I,R
 and has states S � 	INIT, START, WRITTEN, ACCEPT
. Its
transition relation is a function δ : S � Λ � S : given states p, q � S and λ � Λ,
if the automaton has a transition from p to q labelled by λ, then δ�p, λ� � q.

The alphabet is an abstraction of the commands of the program.

Definition 9 (Abstraction of Commands). Consider an array a and an
index integer variable i. The abstraction of commands, s : C�Λ, is defined as:
s��L1 : A � L2;� � λ, where the abstract value λ can be 0, �, � or �, if action
A is i :� 0, i :� i � 1, a�i� :� E or ��i � a.length� respectively. Otherwise, if A is
such that mod�A� � 	a, i
 � ∅, i.e., if the local variables assigned by A are not
a nor i, then λ � I. In all other cases, λ � R.

Automaton-Based Array Initialization Analysis 425

WRITTEN

0 R,+

I, 0

≥

=

R

I, =

0,+

≥
Λ�0

Λ�0

0

START

INIT ACCEPT

Fig. 3. Automaton detecting fully initialized arrays

START WRITTEN ACCEPT

INIT

∅

Fig. 4. The abstract domain A

Note that assignments to a�i� are abstracted into � but any assignment to any
other element of the array (such as to a�i � 1�) is considered irrelevant (I). This
abstraction is syntactical: a command with action i :� 0 is abstracted into 0; an-
other with action i :� 1� 1 into R. This does not affect correctness (Theorem 1)
but one might simplify and normalize the actions, making the abstraction more
semantical and precise. We have not implemented this improvement.

Definition 10 (Abstraction of Traces). The abstraction of traces is given by
β : T �Λ� and defined as β��σ1, . . . , σn1, σn��β��σ1, . . . , σn1�s�cmd�σn���
s�cmd�σ1�� . . . s�cmd�σn ��, for non-empty traces, with β�ε� � ε.

Since Λ contains abstractions of commands, the meaning of the states of the
automaton, S , becomes clearer. As we formalize below (Def. 11), INIT means
that nothing is known about the last executed commands; START means that
an assignment i :� 0 is executed, and potentially followed by an alternation
of assignments to a�i� and unitary increments of i ; WRITTEN means that an
assignment to a�i� has just been executed and the automaton is waiting to
match it with a corresponding unitary increment of i ; ACCEPT means that the
complete initialization of the array can be asserted. An arbitrary number of
irrelevant actions can always be executed between relevant actions.

Definition 11 (Abstract Domain A). The states of the automaton in Fig. 3
correspond to the following sets of traces defined by regular expressions over Λ:
INIT � �τ � T � β�τ � � Λ�� � T , START � �τ � T � β�τ � � Λ�0I����I����I����,
WRITTEN��τ � T � β�τ � � Λ�0I����I����I�����I����, ACCEPT��τ � T � β�τ � �

Λ�0I����I����I�����I�����, where � ��� means zero or more �at least one�
repetitions. We define the set A � 	INIT, START, WRITTEN, ACCEPT,∅
.

Proposition 1. A is a Moore family of ℘�T � i.e., it is an abstract domain
ordered by set inclusion (Fig. 4). As standard for Moore families, the induced
abstraction map α : ℘�T ��A is α�T ��

�
A�A,T�A A, for every T �T .

Proof. The last relevant instruction of any τ �T is 0 or �, if τ �START; is �, if
τ �WRITTEN; is �, if τ �ACCEPT. The intersection of these elements is ∅ � A.
Since INIT�T , we have that �a �A, a�INIT�a. Hence A is a Moore family. ��

Lemma 1 states a consistency or correctness relation [4] between the operational
semantics and the transitions of the automaton in Fig. 3.

Lemma 1. Let C � C and I, O � T . If I�C O then α�O� � δ�α�I�, s�C��.

426 Ð. Nikolić and F. Spoto

Proof. Let τ �O. By Def. 8, there exist τ �� I and e �E s.t. τ�τ � � �e, C�, and there-
fore β�τ ��β�τ ��s�C�. We proceed by case analysis. If α�I��START and s�C��0,
then τ �� I�α�I��START and therefore β�τ ��β�τ ��s�C�� Λ�0I����I����I���s�C�

�Λ�0I����I����I���0�Λ�0 � Λ�0I����I����I���. Hence, τ � START. Since τ
is arbitrary, O� START and hence α�O� � α�START� � START� δ�START,0� �
δ�α�I�, s�C��. All other cases are proved similarly, see [10] for the full proof. ��

I⇒C O

Iα(I)

α(O) O
δ(α(I), s(C))

The figure on the left illustrates this result: inner
circles (with no borders) are I and O. Shapes with
dashed borders are their abstractions through α.
The shape with a solid border is the abstract state
obtained by executing δ from α�I� and is, in gen-
eral, an approximation of α�O�.

4 The Static Analysis Algorithm

1: for all C ∈ C do
2: ϕ(C) := ∅;
3: end for
4: ws := [〈Cinit , INIT〉];
5: ϕ(Cinit) := {INIT};
6: while (!ws.isEmpty()) do
7: 〈C, σ�〉 := ws.pop();
8: for all C1 such that suc(C) = ini(C1) do

9: σ�
1 := δ(σ�, s(C));

10: if (σ�
1 /∈ ϕ(C1)) then

11: ws.push(〈C1, σ
�
1〉);

12: ϕ(C1) := ϕ(C1) ∪ {σ�
1};

13: end if
14: end for
15: end while

Fig. 5. The ArrayInit algorithm

We describe here a static analysis
that determines a subset of those
commands that are exactly at the
end of a loop performing a complete
initialization of an array. This sub-
set is in general strict, since iden-
tification of completely initialized
arrays is undecidable. The analy-
sis, intraprocedural but aware of
interprocedural side-effects, is de-
signed for a specific pair �a, i of
variables. Its result lets us com-
pute an under-approximation of the
points where a has been initialized
through a loop with index variable
i . We repeat the analysis for each
pair �a, i, but in practice, a pair

�a, i is significant only when a and i occur in actions a�i� :�E, which drastically
reduces the number of pairs to consider.

Our analysis is formalized by the working set-based fixpoint algorithm in
Fig. 5. When the working set (ws) is empty (line 6), a fixpoint is reached. The
algorithm starts by applying the automaton in Fig. 3 from Cinit and the INIT

state (line 4). It reads and executes commands in any order allowed by the
labels of the program. Consequently, the state of the automaton evolves and the
algorithm records it just before executing a command. We use a map ϕ to that
purpose, initially empty (line 2) and updated at each command (line 12).

Example 2. We show the application of ArrayInit over the Java loop and its
corresponding transition system given in Example 1. We assume the working set
implemented as a stack. We write I, S, W and A for INIT, START, WRITTEN and

Automaton-Based Array Initialization Analysis 427

it. ws C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

0 〈C0, I〉 I ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 〈C1, S〉, 〈C2, S〉 I S S ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2 〈C2, S〉, 〈C3, S〉, 〈C4, S〉 I S S S S ∅ ∅ ∅ ∅ ∅ ∅

3 〈C3, S〉, 〈C4, S〉, 〈C10,A〉 I S S S S ∅ ∅ ∅ ∅ ∅ A
4 〈C4, S〉, 〈C10,A〉, 〈C5, S〉 I S S S S S ∅ ∅ ∅ ∅ A
5 〈C10,A〉, 〈C5, S〉, 〈C6, S〉 I S S S S S S ∅ ∅ ∅ A
6 〈C5, S〉, 〈C6, S〉 I S S S S S S ∅ ∅ ∅ A
7 〈C6, S〉, 〈C9,W〉 I S S S S S S ∅ ∅ W A
8 〈C9,W〉, 〈C7,W〉 I S S S S S S W ∅ W A
9 〈C7,W〉 I S S S S S S W ∅ W A
10 〈C8, S〉 I S S S S S S W S W A

Fig. 6. Application of ArrayInit on an array initialization loop

ACCEPT. Fig. 6 shows the evolution of ws and ϕ during the iterations. Column
Ci stands for the content of ϕ�Ci �. Initially, ws � ��C0, I� with C0 � Cinit ,
ϕ�C0� � 	I
 and ϕ holds the empty set elsewhere. Then we pop �C0, I from
ws and compute δ�I, s�C0�� � δ�I,0� � S. Since suc�C0� � ini�C1� � ini�C2�,
control passes to C1 and C2. Since S � ∅ � ϕ�C1� � ϕ�C2�, we push �C1, S and
�C2, S into ws and update ϕ at C1 and C2. Since ws is not empty, the algorithm
continues by popping �C1, S from ws and computes δ�S, s�C1�� � δ�S, I� � S.
Since suc�C1� � ini�C3� and S � ∅ � ϕ�C3�, we push �C3, S into ws and update
ϕ at C3. The algorithm continues similarly until the working set is empty. ��

Example 3. Fig. 7 shows another Java fragment, its transition system and itera-
tions of our algorithm. ArrayInit can identify even this unusual and non-trivial
array initialization as a complete initialization (continues in Example 4). ��

Proposition 2 (Soundness). Let C�C. ArrayInit ends with @C��ϕ�C�.

Proof. We prove a stronger property that entails the thesis: at the end of Ar-
rayInit, for every sequence of application of� of the form �ε� �C1 T1 � � � �

Cn Tn ,

. . .
1. i = 0 ;
2. while (i < a . l ength /(i +1)){
3. a [i] = 7 ;
4. i f (i > a [i]){
5. a [i] = i ;

}
6. i++;

}
7. while (i < a . l ength){
8. a [i] = 10 ;
9. i++;

}
10. . . .

C0 1 : i := 0 → 2;
C1 2 : i < a.length ÷ 2 → 3;
C2 2 : ¬(i < a.length ÷ 2) → 7;
C3 3 : a[i] := 7 → 4;
C4 4 : (i > a[i]) → 5;
C5 4 : ¬(i > a[i]) → 6;
C6 5 : a[i] := i → 6;
C7 6 : i := i + 1 → 2;
C8 7 : (i < a.length) → 8;
C9 7 : ¬(i < a.length) → 10;
C10 8 : a[i] := 10 → 9;
C11 9 : i := i + 1 → 7;
C12 10: · · ·

it. ws C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

0 〈C0, I〉 I ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 〈C1, S〉, 〈C2, S〉 I S S ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2 〈C2, S〉, 〈C3, S〉 I S S S ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

3 〈C3, S〉, 〈C8, S〉, 〈C9, S〉 I S S S ∅ ∅ ∅ ∅ S S ∅ ∅ ∅

4 〈C8, S〉, 〈C9, S〉, 〈C4,W〉, 〈C5,W〉 I S S S S S ∅ ∅ S S ∅ ∅ ∅

5 〈C9, S〉, 〈C4,W〉, 〈C5,W〉, 〈C10, S〉 I S S S S S ∅ ∅ S S S ∅ ∅

6 〈C4,W〉, 〈C5,W〉, 〈C10, S〉, 〈C12,A〉 I S S S S S ∅ ∅ S S S ∅ A
7 〈C5,W〉, 〈C10, S〉, 〈C12,A〉, 〈C6,W〉 I S S S S S W ∅ S S S ∅ A
8 〈C10, S〉, 〈C12,A〉, 〈C6,W〉, 〈C7,W〉 I S S S S S W W S S S ∅ A
9 〈C12,A〉, 〈C6,W〉, 〈C7,W〉, 〈C11,W〉 I S S S S S W W S S S W A
10 〈C6,W〉, 〈C7,W〉, 〈C11,W〉 I S S S S S W W S S S W A
11 〈C7,W〉, 〈C11,W〉 I S S S S S W W S S S W A
12 〈C11,W〉 I S S S S S W W S S S W A

Fig. 7. A pair of loops fully initializing an array and their analysis with ArrayInit

428 Ð. Nikolić and F. Spoto

with Tn ∅ and C1�Cinit , we have Tn ��ϕ�Cn� and, during the execution of
ArrayInit, there is a step where a pair �Cn , σ��, with α�Tn��σ�, is pushed on
the working set ws. The thesis follows from the definition of @C. We prove this
property by induction on the length n�1 of the sequence of applications of �.
Base case: In this case n � 1, hence we have a sequence �ε� �C1 T1 with
C1�Cinit . Line 5 of the algorithm and the fact that it never removes states from
the range of ϕ guarantee that at the end of the algorithm T1� INIT��ϕ�Cinit �.
Moreover, �Cinit , INIT� is pushed into ws at line 4, and α�T1� � INIT.
Induction: Assume that the result holds for some n � 1. We prove it for n�1. A
sequence of applications of � of length n�1 has form �ε� �C1 T1 � � � �

Cn�1 Tn�1,
with Tn�1 ∅ and C1�Cinit . Since Tn�1 ∅, we also have Tn ∅, by definition
of�. In a sequence �ε� �C1 T1 � � � �

Cn Tn , by inductive hypothesis we have that,
at the end of ArrayInit, Tn��ϕ�Cn� and, during the execution of ArrayInit,
there is a step at which �Cn , σ�� with α�Tn��σ� is pushed into ws. The algorithm
terminates only when ws is empty (line 6), so that pair must have been removed
from ws at some moment, at line 7. Tn�1 ∅, so suc�Cn �� ini�Cn�1�. Hence Cn�1

was considered in the loop at line 8, state σ�1�δ�σ�, s�Cn�� was computed at line
9 and compared against ϕ�Cn�1� at line 10. This might have had two outcomes:
1� if σ�1 � ϕ�Cn�1�, line 12 adds σ�1 to ϕ�Cn�1�, where it remains until the end of
ArrayInit. No state is ever removed from the range of ϕ, so σ�1��ϕ�Cn�1�. By
extensivity of α [4], Lemma 1 and monotonicity1 of δ, we have Tn�1�α�Tn�1��

δ�α�Tn�, s�Cn�� � δ�σ�, s�Cn�� � σ�1 ��ϕ�Cn�1�. Line 11 pushed �Cn�1, σ
�
1� into

ws and from Tn�1�σ�1 (shown above) we have α�Tn�1��α�σ�1��σ�1 since σ�1 �A.
2� if σ�1 �ϕ�Cn�1�, then it is still there at the end of ArrayInit. As above, we
can prove that Tn�1��ϕ�Cn�1� and α�Tn�1��σ�1. ��

Hence our algorithm supports a correct array initialization analysis.

Theorem 1. Consider a program P , variables a (array) and i (index) and the
automaton in Fig. 3 for a and i. At the end of the ArrayInit algorithm, for
every C � C such that ϕ�C� � 	ACCEPT
 we have that ini�C� is a point of P
where all elements of a have been initialized by a loop with index i.

Proof. By Proposition 2, @C��ϕ�C��ACCEPT i.e., every trace τ leading to C is
in the language of Λ�0I����I����I�����I����. Hence τ ends with an assignment
of 0 to i (0) followed by a repetition of at least an assignment to a�i� (�) and
then a single increment of i (�). At the end of τ , i holds the length of a. Since
only irrelevant actions are allowed in τ between those actions, a is definitely
completely initialized at the end of the execution represented by τ . ��

Example 4. From Fig. 6 we know that ϕ�C10��	ACCEPT
 at the end of the al-
gorithm. By Theorem 1, the array has been completely initialized when program
point 9� ini�C10� is reached. The same holds for program point 10 in Fig. 7. ��

1 It can be proven easily (see [10]) that ∅�p � q � δ�p, λ��δ�q, λ�.

Automaton-Based Array Initialization Analysis 429

5 Dealing with Implicit Upper Bounds and Side-Effects

Although the analysis of Sec. 3 and 4 determines where an array held in a local
variable is fully initialized, it has strong limitations. It identifies the comparison
between a loop index variable i and the size of an array a in a syntactical,
explicit way (Def. 9): it must have the form !�i � a.length�. This is not the
case in Fig. 1 and our analysis would fail there. Moreover, it works only for
arrays held in local variables. Again, this is not the case in Fig. 1, where they are
stored into instance variables i.e., fields. The problem with fields goes beyond the
extension of our language of expressions (Fig. 2) with a new expression x .field :
it actually requires careful attention to side-effects. For instance, method foo
in Fig. 8 recreates the array at each iteration. At the end of the loop, none of

int i = 0 ; x . f = this ;
while (i<this . a . l ength){

this . a [i++] = 2 ;
foo (x) ;

}
void f oo (x) {

y = x . f ;
y . a = new T [. . .] ;

}
Fig. 8. Side-effects hinder the
full initialization of this.a

its elements is initialized. A naive extension of
our analysis to arrays held in fields might easily
turn out to be unsound. We discuss below how
we overcome these two limitations.

Implicit Upper Bounds. We consider some
frequent implicit ways of expressing the upper
bound of an array. Often, a variable is used,
as numpoints in Fig. 1. To prove that it holds
the array length, we use the definite expression
aliasing analysis available in Julia, a traditional
available expression analysis [1] for bytecode:
bindings from variables to expressions are generated by assignments, that also
kill other bindings referring to the old value of the variables. In Fig. 1, the bind-
ing numpoints = this.mOriginal.length is generated by the first new and
never killed later, since this, numpoints and this.mOriginal are not updated.
Similarly for the binding numpoints = this.mRotated.length. Def. 9 is im-
proved: when A is !�i � var�, its abstraction is � if, there, we have the binding
var � a.length (a can be a local variable or a field).

In other cases, the upper bound is a numerical constant. This includes the case
when a final static integer field is used (i.e., a symbolic constant) since compilers
usually replace it with its numerical value and Julia analyzes the bytecode. Here,
we must be sure that the same constant is used for the array length wherever it is
created, also outside the method where the initialization loop occurs. Since there
might be more creation points for the objects stored inside the array variable,
that condition must hold for all of them. Here, we exploit the creation point
analysis available in Julia: for each variable at a given program point or field, it
over-approximates the set of program points where its content might be created.
This is a concretization of class analysis [11]. Def. 9 is improved: when A is
!�i � con� and con a numerical constant, its abstraction is � if all creation
points for a (the variable being initialized) have the form new T[con].

Side-Effects. When the array is stored in a field, as in x .field , we must strengthen
the notion of irrelevant action A (case I of Def 9): we must require that mod�A��
	x , i
 � ∅ and that A does not modify field . The only actions that might modify

430 Ð. Nikolić and F. Spoto

name vendor loc
total Array Initialization total
loc total detected time time

AbdTest Android Distribution 489 56334 1 1 2.36 121.73

AccelerometerPlay Android Distribution 306 46854 1 1 0.35 71.99

CubeWallpaper Android Distribution 370 25654 3 3 0.12 28.51

HoneycombGallery Android Distribution 948 71501 1 0 1.06 157.85

TicTacToe Android Distribution 607 59040 3 3 0.70 102.65

Snake Android Distribution 420 57075 1 0 0.36 117.49

Real3D Android Distribution 1228 74384 2 2 1.06 177.95

ChimeTimer Moonblink 4095 95781 9 7 0.80 383.45

Dazzle Moonblink 4376 100271 4 1 1.02 394.44

OnWatch Moonblink 9746 113368 10 6 2.91 525.15

Tricorder Moonblink 10410 106100 17 11 1.01 467.58

TestAppv2 Typoweather 377 58365 1 1 0.38 102.34

TxWthr Typoweather 2024 74441 7 1 0.42 179.78

JFlex 7681 40872 7 6 1.35 72.46

nti 2372 13098 4 4 0.09 13.55

plume 8587 43302 24 21 1.19 113.07

Fig. 9. Experiments with our array initialization analysis. loc is the number of non-
blank, non-comment program lines reached and hence analyzed by Julia; total loc is
the total number of analyzed lines, including java.* and android.* libraries; total is
the number of reachable loops in those programs (not in libraries) that fully initialize an
array, computed by manual check; detected is the number of them that our analysis
successfully spot as complete initializations of arrays; in principle, for the most precise
static analysis we have detected=total; time is the time in seconds of our array
initialization analysis; it is a small fraction of the total time (in seconds) of the
nullness analysis of Julia: the latter includes parsing of the class files, preprocessing,
aliasing, sharing, creation points, expression aliasing and side-effects analyses.

field are explicit assignments to y.field , for any y, and calls to non-pure meth-
ods (neither of them is in Fig. 2, but naturally a real language includes both).
Here, we use the side-effects analysis provided by Julia: for each method call, it
over-approximates the set of fields modified during the execution of the callee(s)
(and of the methods that the callees invoke, recursively).

6 Experiments

We implemented our analysis in the Julia tool: http://www.juliasoft.com.
Experiments in Figure 9 were performed on a quad-core Intel Xeon 64 bits
machine at 2.66GHz, with 8GB of RAM, Linux 2.6.27 and Sun jdk 1.6.
We analyzed the lexical analyzers generator JFlex (http://jflex.de), the

name
Nullness

ArrInit ArrInit

AccelerometerPlay 3 6
ChimeTimer 33 36

CubeWallpaper 0 3
TicTacToe 0 2

JFlex 57 65
OnWatch 82 85
Real3D 19 19
Tricorder 107 121
TxWthr 48 49

nti 15 15
plume 57 59

plume library by Michael D. Ernst
(http://code.google.com/p/plume-lib),
the non-termination analyzer nti by Éti-
enne Payet, programs from Google’s An-
droid 3.0 distribution and Android applica-
tions from public repositories (http://code.
google.com/p/moonblink and http://code.
google.com/p/typoweather).

While Figure 9 shows that our array initial-
ization analysis is fast and precise, the table on

Automaton-Based Array Initialization Analysis 431

the left shows that it is useful to a client analysis. In particular, it considers
those programs from Fig. 9 that contain at least a loop initializing an array of
reference type, since otherwise the array initialization analysis would be irrele-
vant for nullness analysis. It reports the number of null-pointer warnings with
(ArrInit) and without (ArrInit) our array initialization analysis. In the former
case, the precision of the nullness analysis is improved by 8.48% on average on
these programs and its cost is only 0.47% higher (compare time and total
time in Fig. 9).

When Julia fails to spot complete array initialization, the problem is related to
weaknesses in the supporting analyses rather than to our array initialization anal-
ysis. For instance, there is a complete array initialization in HoneycombGallery
that Julia fails to spot (Fig. 9). Here it is:

String[] items = new String[cat.getEntryCount()];
for (int i = 0; i < cat.getEntryCount(); i++)
items[i] = cat.getEntry(i).getName();

The loop upper bound is cat.getEntryCount(), which does not fall in the cases
considered in Sec. 5. The use of a method call as loop upper bound is problematic
since the definite expression aliasing analysis must be able to prove that the value
of cat.getEntryCount() is constant between the creation of the array and the
check of the loop upper bound, also when the loop body has side-effects, as here.

7 Conclusion

Our new automaton-based abstract interpretation detects fully initialized arrays
held in local variables or fields. The implementation is efficient, precise and effec-
tive to support a client nullness analysis. We observe that our array initialization
analysis is not tailored to nullness, but can support any other client analysis.

References

1. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques and Tools.
Addison-Wesley (1986)

2. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s Decidable About Arrays? In: Emer-
son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc. of the
4th Symp. on Principles of Programming Languages, pp. 238–252. ACM (1977)

4. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: Proc.
of the 6th Symposium on Principles of Programming Languages (POPL 1979), pp.
269–282. ACM (1979)

5. Cousot, P., Cousot, R.: Systematic design of program transformation frameworks
by abstract interpretation. In: Proc. of the 29th Symposium on Principles of Pro-
gramming Languages (POPL 2002), pp. 178–190. ACM (2002)

432 Ð. Nikolić and F. Spoto

6. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Proc. of the 38th Symposium
on Principles of Programming Languages, New York, USA, pp. 105–118 (2011)

7. Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: Proc.
of the 29th Symposium on Principles of Programming Languages (POPL 2002),
pp. 191–202. ACM (2002)

8. Graf, S., Saïdi, H.: Construction of Abstract State Graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

9. Habermehl, P., Iosif, R., Vojnar, T.: What Else Is Decidable about Integer Arrays?
In: Amadio, R.M. (ed.) FOSSACS 2008. LNCS, vol. 4962, pp. 474–489. Springer,
Heidelberg (2008)

10. Nikolić, D., Spoto, F.: Automaton-based array initialization analysis,
http://profs.sci.univr.it/~nikolic/download/LATA2012/LATA2012Ext.pdf

11. Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: Proceedings
of Object-Oriented Programming, Systems, Languages & Applications (OOPSLA
1991). ACM SIGPLAN Notices, vol. 26(11), pp. 146–161. ACM (1991)

12. Spoto, F.: Precise null-pointer analysis. Software and Systems Modeling 10(2),
219–252 (2011)

https://vpn.univr.it/~nikolic/download/LATA2012/,DanaInfo=profs.sci.univr.it+LATA2012Ext.pdf

	Automaton-Based Array Initialization Analysis
	Introduction
	A Simple Imperative Language and Its Semantics
	Regular Trace Approximation
	The Static Analysis Algorithm
	Dealing with Implicit Upper Bounds and Side-Effects
	Experiments
	Conclusion
	References

