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Abstract

The execution of untrusted bytecode programs can produce undesired behavior. A proof
on the bytecode programs can be generated to ensure safe execution. Automatic techniques to
generate proofs, such as certifying compilation, can only be used for a restricted set of proper-
ties such as type safety. Interactive verification of bytecode is difficult due to its unstructured
control flow. Our approach is verify programs on the source level and then translate the proof
to the bytecode level. This translation is non-trivial for programs with abrupt termination.
We present proof transforming compilation from Java to Java Bytecode. This paper formalizes
the proof transformation and present a soundness result.

Keywords: Trusted Components, Proof-Carrying Components, Proof-Transforming Com-
piler.
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1 Introduction

Proof-Carrying Code (PCC) [13, 14] has been developed with the goal of solving the problems
produced by the unsafe execution of mobile code. In PCC, the code producer provides a proof, a
certificate that the code does not violate the security properties of the code consumer. Before the
code execution, the proof is checked by the code consumer. Only if the proof is correct, the code
is executed.

The certificate proves the properties that are satisfied by the bytecode program. With the goal
of generating certificates automatically, Necula [?] has developed certifying compilers. Certifying
compilers are compilers that take a program as input and produce bytecode and its proof. Unfor-
tunately, certifying compilers only work with a restricted set of provable properties such as type
safety.

Another approach to solve the problem caused by mobile code is interactive verification of
bytecode. This approach is applicable to a wide range of properties, but is difficult due to the
bytecode’s unstructured control flow. Contrary, source verification is simpler, but does not generate
a certificate for the bytecode program.

The approach we propose here is the use of a Proof - Transforming Compiler (PTC). PTCs are
similar to certifying compilers in PCC, but take a source proof as input and produce the bytecode
proof. Figure [1l shows the architecture of this approach. The code producer develops a program.
A proof of the source program is developed using a prover. Then, the PTC translates the proof
producing the bytecode and its proof, which are sent to the code consumer. The proof checker
verifies the proof. If the source proof or the translation were incorrect, the checker would reject
the code.

An important property of Proof-Transforming Compilers is that they do not have to be trusted.
If the compiler produces a wrong specification or a wrong proof for a component, the proof checker
will reject the component. This approach has the strengths of both above mentioned approaches.

If the source and target languages are close, the proof translation is simple. However, if they
are not close and the compilation function is complex, the translation can be hard. For example,
proof-transformation from a subset of Java with try-catch, try-finally and break statements to
Java Bytecode is not simple. Compiling these statements in isolation is simple, but the compilation
of their interplay is not.

A try-finally statement is compiled using code duplication: the £inally block is put after the
try block. If try-finally statements are used inside of a while loop, the compilation of break
statements first duplicates the finally blocks and then inserts a jump to the end of the loop.
Furthermore, the generation of exception tables is also harder. The code duplicated before the
break may have exception handlers different from those of the enclosing try block. Therefore, the
exception table must be changed so that exceptions are caught by the appropriate handlers. In
this paper, we present the first PTC that handles these complications.

Source prog.
+ contracts

=4 [ﬁylm.ud:J
PTC |

+ praot

Proof Checker

+

Code Producer Code Consumer

Figure 1: General architecture.

Outline. A PTC consist of five elements: a source language, a logic for the source language,
a bytecode language, a logic for the bytecode and the translation functions. The source language
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is presented in section 2. We present the logic for COOL in section 3. We present the Bytecode
language and its bytecode logic in sections 4] and |5, resp. In the section 6/ we present the proof
translation rules from the source language to Bytecode. Two examples of the application of while
and try-catch translation are presented in section 7. The conclusions and future work are presented
in section [10. Appendix (Al presents the soundness proof of the translation. Appendix B! presents
the logic and its translation for C#.

2 The source language

The source language is similar to a subset of C#, Eiffel and Java called COOL (Common Object-
Oriented program Language). The COOL language includes basic statements like assign, conditional
and compositional; while loops and break statements; object-oriented features such as cast, new,
read and write field, and method invocation; and exception handling.

Following, we present a short description of the language constructs that are part of COOL:

e methods:

nonstatic methods with one parameter. There is no return statement. The return value
of a method has to be assigned to a special variable result

— abstract methods

— nonstatic attributes

a list of local variable declarations at the beginning of a block
o statements:

— assign statement
— conditional statement if then else and if then
— compositional statement

— The object-oriented statements of COOL are cast, new object, write field, read field and
invocation of methods

— throw and break statements. Break statements are unlabelled breaks and the language
does not have neither labelled break nor continue.

— try catch statements. We assume that every try block has exactly one catch block

— finally statement. Every try block has at most one finally block
e expressions:

— Expressions are side-effect-free expressions. Furthermore, expressions cannot throw an
exception.

— Cast may not appear within expressions.

3 The logic for COOL

In this section we present the logic for the source programming language. The logic is based on
the programming logic presented in [19]. We modify it and propose new rules for break, try catch
and finally (subsection [3.4] and [3.5] resp.).

A method implementation T@m represents the concrete implementation of method m in class
T. A virtual method T:m represents the common properties of all method implementations that
might by invoked dynamically when m is called on a receiver of static type T, that is, impl(T,m)
(if T:m is not abstract) and all overriding subclass methods.

Properties of methods and method bodies are expressed by Hoare triples of the form {P} comp
{Q}, where P, Q are sorted first-order formulas and comp is a method implementation T@m, a
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virtual method T:m or a method body p. We call such a triple method specification. The triple
{P} comp {Q} expresses the following refined partial correctness property: if the execution of
comp starts in a state satisfying P, then (1) comp terminates in a state in which Q holds, or (2)
comp aborts due errors or actions that are beyond the semantics of the programming language (for
instance, memory allocation problems), or (3) comp runs forever.

The state of our COOL programs consists of local variables, parameters and the object store $.
The object store models the heap. It describes the states of all objects in a program at a certain
point of execution. We use the object store presented in [23]. Following we present a short list of
the operation we use for the object store.

e instvar : Value x FieldDeclld — InstVar: It returns the instance variable lookup.

e $ < f:=wv > ObjectStore x InstVar x Value — ObjectStore: It returns the object
store after an instance variable update.

o $(f): ObjectStore x InstVar — Value: It returns the instance variable load.

e $ < T >:ObjectStore x ClassTypeld — ObjectStore. It returns the object store after the
allocation of a new object of type T'.

e new($,T) : ObjectStore x ClassTypeld — Value: it returns a new object of type T

X is a program variable used to describe the current status of the program. This is required to
treat jumps and abrupt termination appropriately. The possible values of X’ are: normal, break,
and exc. The value break indicates that we are currently processing a break jump. exc indicates
that an exception has been thrown and normal for normal execution.

We assume that the source logic is normalized. We assume that every precondition is written
as P where P consists of tree parts: the normal condition, the break condition and the exception
condition. The break and the exception condition are false. And the normal condition (P,) does
not have occurrences of the variable X'. This means that the precondition is a normal precondition.
Formally,

(X =normal = P,) A
P= (X =break = false) A
(X = exc = false)

Also, we assume that the postcondition is written as @ where @Q consists of three parts (Q,
Qp and Q. resp.), where Q,,, @, and Q. do not have occurrences of variable X. Formally,

(X =normal = Q) A
Q= (X =break = Qp) A
(X = exc = Q.)

To make the logic easy to read and understand, we write the Hoare triples as:

(X =normal = Qn) A
{ P, } s1 (X = break = Q) A
(X = exc = Q.)

but it means:
(X =normal = P,) A (X = normal n) A

= Q
(X =break = false) A 51 (X =break = Qp) A
(X =exc = false) (X =exc = Q)
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3.1 Assign, conditional and compositional statements

3.1.1 Assign Statement

(X =normal = P) A
{ P,le/x] } r=e (X =break = false) A
(X = exc = false)

3.1.2 Conditional Statement

(X =normal = Qn) A
{ P, Ne } S1 (X = break = Q) A
(X = exc = Q.)

(X =normal = Qn) A
{ P, N —e } S (X = break = Q) A
(X = exc = Q.)

(X =normal = Qn) A
{ P, } if (e) then sy else sq (X =break = Qp) A
(X = exc = Q.)

3.1.3 Compositional Statement

In the composition statement, we need to check whether the statement has been executed normally
or not. First, the statement s; is executed and after that we check whether it finishes in normal
execution or not. We execute the statement ss if only if s; finished in normal execution.

(X =normal = Qn) N
{ P} st { (X=break = Ry A
(X = exc = R.)

(X =normal = Ry,) A
{ Qn } S9 (X = break = Ry) A
(X = exc = R.)

(X =normal = Rp) A
{ P, } 81; S2 (X =break = Rp) A
(X = exc = R.)
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3.2 Rules for object-oriented features

3.2.1 Cast

(T(e) = T A P,le/x] )V
(e) 2 TN
$ < CastExc > /$,
[ new($, CastExc)/excV

(X =normal = P) A
x=(T)e (X =break = false) A
(X = exc = Q)

3.2.2 New Object

(X =normal = P,) A
{ Pulnew(s.T)/x.$ <T> /8] } s=newT() { (X=break = false) A
(X = exc = false)

3.2.3 Read Field

ll P, [$(inst , 5@
(y #null A Py[$(instvar(y, SQa))/z]) V (X = normal = Py) A
$ < NullPExc > /$,

=null A Q. = y.5@ X = break Ise) A
(y=nu @ new($, NullPExzc)/excV ) v Yo ( rea = false)
(X = exc = Q)

3.2.4 Write Field

(y # null A Pyo[$ < instvar(y, SQa) :=e > /$]) V

(X =normal = P,) A
$ < NullPExc > /$, :|)

y.5Qq =e (X =break = false) A
(X = exc = Q)

=null A Qe
w @ new($, NullPExc)/excV

3.2.5 Invocation

(X =normal = Qn) A
{ P, } T : m(p) (X = break = false) A
(X = exc = Q)

(y #null N Pply/this,e/p]) V

$ < NullPE $ (X =normal = Qnlz/result]) A
(y=null A Q.| ° = NullPEwe> /8, }) @ =y.T : me)

(X = break = false) A
new($, NullPExc)/excV
(X = exc = Q)
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3.3 Methods

3.3.1 Implementation rule

(X =normal = Qn) A
{ P, } body(T@m) (X =break = false) A
(X = exc = Q.)

=normal = Q) A
=break = false) A
X = exc = Q.)

(X
{ P} TOm { (%
(

3.3.2 Class rule

m is method in class T (i.e. impl(T, m) is defined)
(X =normal = Qn) A
{ T(this) =T A P, } impl(T,m) (X =break = false) A
(X = exc = Q.)
(X =normal = Qn) A
{ T(this) <T N P, } T:m (X =break = false) A
(X = exc = Q)

(X =normal = Qn) A
{ P, } T:m (X =break = false) A
(X = exc = Q.)

3.3.3 Subtype rule

(X =normal = Qn) N
{ P, } S:m (X =break = false) A
(X =exc = Q.)

(X =normal = Q) A
{ T(this) = S AN P, } T:m (X =break = false) A
(X =exc = Q)
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3.3.4 Block rule

(X =normal = Q) A
{ P, AN vy =init(Th) N ... A\ v, = init(Ty) } s (X =break = false) A
(X =exc = Q)

(X =normal = Qn) A
{ P, } T vl; ... Ty, v s (X = break = false) A
(X =exc = Q.)

3.4 While statement including breaks and exceptions
The execution of the statement s; can produce three possible results:

e cither s; finishes in normal execution and I,, holds, or

e 51 executes a break statement and @Qp holds, or

e s throws an exception and R, holds.

The while’s postcondition is either the while finishes in a normal execution and ( (I,A—e)V Q)
holds or it finishes with an exception and R, holds. After the while, we set X = break to false
because if a break statement was executed in s; after the while we have normal execution.

(X =normal = I,) A
{ e NI, } 51 (X = break = Q) A
(X = exc = R.)

(X =normal = (I, A—e)V @Qp) A
{ I, } while (e) s1 (X =break = false) A
(X = exc = R.)

3.4.1 Break statement

In this rule, we change the value of X to break.

(X =normal = false) A
{ P, } break; (X = break = P, A
(X = exc = false)

3.5 Exception Handling

The logic for try catch statements has one rule covering all possible results of the statements s;
and s5. The execution of the statement s; can produce four different results:

1. sy finishes in normal execution and (Q,, holds. In this case, the statement s, is not executed
and the postcondition of the try-catch is the postcondition of s1 (X = normal = Q).
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2. s1 terminates with a break and @, holds. In this case, sy is again not executed and the
postcondition of the try-catch is X = break = Q.

3. s1 raises an exception and the exception is not caught. The statement so is not executed and
the try-catch finishes in a exception mode. The postcondition is X = exc = (Q. A T(excV) A
T)

4. s1 raises an exception and the exception is caught. In the postcondition of s1, (QL A
T(excV) = T) expresses that the exception is caught. Finally we execute the sy statement
producing the postcondition. Note here, that the postcondition is not {X = normal = R}.
It is due to the s, statement can also throw an exception.

(X =normal = Qn) A
X = break = A
(n} ]! 2

(X = exc = (

(X =normal = Q,
{ QLle/excV] } 52 (X =break = Qp
(X = exc = R.

(X =normal = Q,) A
{ P, } try s1 catch (T e) so (X =break = Qp) A
(X = exc = R V (Qe N T(excV) A T))

3.5.1 Throw Statement

The rule for throw statement modifies the postcondition P by updating the exception component
of the state with the reference just evaluated.

(X =normal = false) A
{ P.lefexcV] } throw e (X =break = false) A
(X = exc = P,)

3.5.2 Finally Rule for Java

The logic for finally statements for Java is different from the logic for finally statements for C#. The
C# compiler does not allow to write break statements inside of finally clauses. The C# compiler
produces the Error CS0157 [12].

If an exception occurs in the body of the try clause, it will be re-raised after the statement so.
If both the body of try clause and the body of finally clause throw an exception, the second one
takes precedence. Let eT'mp be a fresh variable. We use eT'mp to store the exception occurred in
s1 because another might be raised and caught in so. After this, we still need to have access to the
first exception of s; because this exception is the overall result of that statement [19].

Let XT'mp be another fresh variable. We use XT'mp to store the status of the program after
the execution of s;. Depending of the status after the execution of s; we need to propagate an
exception or not or change the status of the program to break or not.

If an exception is raised in the statement s; then we have three possible cases:

1. the statement s, terminates normally, or

2. the statement sy terminates with a break, or
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3. the statement sy raises another exception.

In the first case, the statement s, finishes in the postcondition @, but due to an exception was
thrown in s1, the status of the program is X = exc.

The second case is may be, the strange one. sy executes a break statement then the status of
the program is changed to X = break and the exception is cleaned. The program finishes in the
postcondition X = break = Q.

In the last case, if sy thrown an exception, it takes precedence.

If there is not nether an exception nor a break statement in s; then the status of the program
will be the produced by the statement ss.

If a break statement is executed in s; then we have again three possible cases. If the statement
so finishes in normal execution, then the status of the program is X = break due to s; finished
in break status. If so executes another break, then the try-finally statement also finishes in break
status. But if sy throws an exception, then the try-finally finishes in an exception status.

(X =normal = Qn) A
{ P, } 51 (X = break = Qp) A

(X = exc = Q)
(Qn N XTmp = normal) V (QL, N XTmp = normal) V
(Qp N XTmp = break) V (X =normal = (Q, N XTmp = break) Vv ) A
(QeleTmp/excV] A 82 (QL, N XTmp = exc)
XTmp = exc A (X = break = Q) A
eTmp = excV) (X = exc = Q)

(X =normal = Q) A
{ P, } try s1 finally so (X = break = Q) A
(X = exc = Q)
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3.6 Language-independent rules

False axiom

(X =normal = false) A
{ false } s1 (X = break = false) A

(X = exc = false)
Strength Weak
(X =normal = Qn) A
{ P, } 51 { (X = break = Qp) A }
P, = P, (X =exc = Qe)
(X =normal = Qn) A Qn = Q)
{Pn} s1 {(X:b’reak: = Qp) A } Qp = Q)
(X = exc = Qe) Qe = QL
(X =normal = Qn) A (X =normal = Q) A
{ P} = {(X:break = Q) A } { P} = {(X:break = Q) A }
(X =exc = Qe) (X =exc = Q)
Invariant Substitution
(X =normal = Qn) A (X =normal = Qn) A
{ P, } s1 { (X = break = Qp) A } { P, } s1 { (X = break = Qp) A }
(X =exc = Qe) (X =exc = Qe)
(X =normal = Qn N W) A (X =normal = Qu[t/Z]) A
{Ponw} o« { (X =break = Qy A W) A } { Palt/z) } = { (X =break = Qult/Z]) A }
(X = exc = Qe A W) (X = exc = Qe[t/Z])
Conjunction Disjunction
(X =normal = QL) A (X =normal = QL) A
{ p} } s1 { (X = break = QH) A } { p} } s1 { (X = break = QhH A }
(X = exc = Q) (X =exc = Q)
(X =normal = Q2) A (X =normal = Q2) A
{ P2 } s1 { (X = break = Q) A } { P2 } s1 { (X = break = Q) A }
(X = emc = Q?) (X = exc = Q2
(X =normal = QL N Q%) A (X =normal = QL V Q%) A
[ PLAP2Y} o {(X:break = QLA QYA } {PLv P2}« {(X:break = Qv QYA
(X =exc = QI A Q?) (X =exc = QI Vv Q%
all-rule ex-rule
(X =normal = Qn) A =normal = Qn) A
{ Bly/z) } = { (X =break = Q) A } { Plvyz) } { X =break = Qb) }
(X = exc = Qe) = exc
(X =normal = VZ:Qn) A (X =normal = 3Z7: Qn ) A
{ Paly/z) } = { (X =break = YZ:Qp) A } { Baly/z) } = { (X =break = 37:Qp) A }
(X =exc = VZ:Qe) (X =exc = 3Z:Q.)

where Z, Y are arbitrary, but distinct logical variables. where Z, Y are arbitrary, but distinct logical variables.

———|
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3.7 Application of the COOL logic

In this subsection, we present three examples of the application of the logic for COOL. The first
example (subsection [3.7.1) shows the application of while and break rules. The second one (sub-
section [3.7.2)) shows the application of the logic for try catch and throw statements and also the
invocation rule. The last one (subsection [3.7.3) shows the application of the logic for try finally
statements inside of a loop body. Every example shows the source program and the proof.

3.7.1 Application of the logic for while and break statements

This example is a function that returns true if all elements ¢ of the array a are equals to the

summatory of the elements from 0 to i — 1. We can write a predicate such as:

Vi: 0<i<alength: (ali]= Za[j] )

/*x@
Q public normal_behavior
Q requires a != null && a.length>0;
Q ensures (\ result && (\forall int j; 0<=j && j<a.length;
@] alj] = (\sum int k; 0<=k && k<j; alk]) ) ) ||
Q ( !\ result && (\exists int j; 0<=j && j<a.length;
@] alj] '= (\sum int k; 0<=k && k<j; a[k]) ) )
@x/
public boolean example(int a []) {
int ind = 1;

int sum = q[0];
boolean result=true;
while (ind < a.length) {
if (alind] '= sum) {
result = false;
break;

sum = sum+afind];
ind = ind+1;

Figure 2: Source program for the application of while and break statement.

Table [1] shows the proof for the example figure 2.
Table 1: Proof for the example of figure [2.

public boolean example( int a [] ) {
{ a # null N\ alength >0 }
int ind=1;
{ a #null N alength >0 A ind=1 }
int sum=al[0];
{ ind=1 A sum = a[0] }
boolean result=true;

{ ind=1 A sum =al0] A result =true }

Continued on next page
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while (ind < a.length) {
{ X =normal = (ind < a.length A I) }
if (alind] !'= sum) {
{ X =normal = (ind < alength A I A alind] # sum) }
result=false;
{ X =normal = (ind < alength N I A alind] # sum A result = false) }
=
{ X =normal = result = False A 3j: 0<j < alength: (a[j] # 31} _o alk]) }
break;
{ X =break = (result= False AN 3j: 0<j<alength: (alj] #>i_t alk])) }
}
X =normal = (ind < alength N I A alind] = Zfo_l a[k] ) A
{ X =break = (result = False\ 3j: 0<j <a.length: (alj ]#Zk o alk
sum=sum+a[ind] ;
sum = (X1 alk]) + alind] A

X = normal =
Tesult/\(V].OSj<ind:(a[j]:Z oalk])

0 <ind < a.length
X =break = (result= False AN 3j: 0<j<alength: (a[j] # > i_} alk])
ind=ind+1;
X =normal = I A
{ X =break = (result= False A 3j: 0<j<alength: (a[j] #>1_} alk

ind < a.length A alind] = Zfo_l alk] A }

}
X = normal = (result A ¥V j: 0<j<alength: (alj]=31_¢alk]
(result = False A 3 j: 0<j <a.length: (aj] # Z alk])
}
where
I= (res ANMG:0<j<ind: (alj] =i balk] ) A sum =" alk] A 0<ind < a.length)

3.7.2 Application of the logic for try catch and throw statements

This example shows the application of the logic for try catch statements. The method exampleTry
invokes the method myMet inside of a try catch statement. If the method myM et throws an excep-
tion, then the result is result = 1 otherwise (in normal execution) result = 0. The method myMet
terminates normally and returns an exception if the value of the variable b is false otherwise it
terminates abruptly and it throws an exception.
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/%@

Q public normal_behavior

Q requires true;

@] ensures ('b && \result=0) || (b && \result=1);
Qx/

public int exampleTry (boolean b ) {
int result;
FException auxFzxc;
try {
aurExc = myMet (b);
result =0;

catch (Exception e) {

result =1;
}
}
/*Q
Q public normal_behavior
Q requires 'b;
@ ensures \ fresh (\ result ) && \typeof(\result)=\TYPE(Exception);
@ also
Q public exceptional_behavior
Q requires b;
Q signals_only Exception;
Q@sx/
public Ezception myMet(boolean b) throws java.lang. Exception {
if (b)
throw new Exception();
else
result=new FEzception();
}

Figure 3: Source program of the application of try-catch statement.

Table 2: Proof of the example figure 13/ .
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public int exampleTry (boolean b ) {
int result;
Exception auxExc;
{bv=Bnro0s=5}
try {
auxExc = myMet (Db);
(X =normal = (auzExc = new($, Exception) N $ =8 < Exception > A —-B) ) A
{ (X =exc= B)
result =0;
(X = normal = (auzExzc = new($, Exception) N =B A result =0) ) A
{ (X =exc= B) }
}
catch (Exception e) {
{ X =normal = B }
result=1;

{ X =normal = (B A result=1 }

}

18
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Continued on next page
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(aurExzc = new($, Exception) A =B A result =0) V
X = normal =
(B A result =1)

public Exception myMet(boolean b) throws java.lang.Exception {
{b=Bnro0s=5}
if (b)
{ X =normal = (B A OS =39) }
throw new Exception();
{ X =exc= B }
else
{ X =normal = (-B A OS =39) }
result = new Exception();

{ X =normal = (result = new($, Exception) A $ =% < Exception > A —B) }

( X =normal = (result = new($, Exzception) A $ =$ < Exception > A —=B) ) A
(X =exc= B)

3.7.3 Application of the logic for try finally statements

This example shows the application of the logic for try finally statements. We assign result = 5
inside of the second try statement and then we execute a break statement if a[i] > 0. The two
finally statements will be executed assigning result + 4 but the assignment result = result + 20
will not be executed in the same case. The result for this case is result = 7 and normal execution
after the while statement. In the second case, we assign result = 10 and then result = result + 20,
result + +, result + + and i + 4. The postcondition is result = 32.

Table 3: Proof of the example figure 4/ .

public int exampleTryFinally (int [ ] a ) {
{ a# null A 0 < a.length }
int result=0;
{ a#null A 0 < a.length A result =0 }
int i=0;
{ a#null N 0 <a.length N result=0 A i=10 }
while (i< a.length ) {
{ i < a.length }
try {

try {
if (a[il>0) {

{ i < alength A afi] >0 }
result=5;

{ i < alength A afi] >0 A result =5 }

Continued on next page
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/*xQ

Q@ public normal_behavior

Q requires a != null && 0 < a.length ;
@] ensures \ result =32 || \ result =7;
@sx /

public int ezampleTryFinally (int [ | a ) {
int result=0;
int i=0;
while (i< a.length ) {
try {
try {
if (a[i]>0) {
result =>5;
break;
}

result =10;

}
finally {

result =result+1;
}
result =result4+20;

finally {
result =result+1;
}

1=1+41;

Figure 4: Source program of the application of try-finally statement.

break;

{ X =break = (i <alength A afi] >0 A result =5) }

}
result=10;
X =normal = (i < a.length A result = 10)
{ X =break = (i <alength A afi] >0 A result =5) }
}
finally {
(XTmp =normal A i < a.length A result =10) V
{ (XTmp = break A i < alength A afi] >0 A result =5) }
result=result+1;
(XTmp =normal A i < a.length A result=11) Vv
{ (XTmp = break A i< alength A ali] >0 A result =06) }
¥
X =normal = (i < a.length A result =11)
{ X =break = (i <alength A afi] >0 A result =06) }

result=result+20;

Continued on next page
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X =normal = (

X =normal = (i <a.length A result = 31)
{ X =break = (i <alength A afi] >0 A result =6) }
}
finally {
(XTmp = normal A i < a.length A result =31)V
{ (XTmp = break A i< a.length A ali] >0 A result =6) }

result=result+1;
(XTmp =normal A i < a.length A result =32) Vv
(XTmp = break A i < alength A afi] >0 A result=71T)

}
X =normal = (i < a.length A result = 32)
{ X =break = (i <alength A afi] >0 A result =7) }
i=i+1;
X =normal = (i <a.length N result = 32)
{ X =break = (i <alength A afi] >0 A result =7) }

(i = a.length A result = 32)V
(i < a.length A ali] >0 A result=7)

X =normal = (result =32V result =7) }

4 The Bytecode Language

The bytecode language consists of classes with fields and methods. Methods are implemented
as method bodies consisting of a sequence of labeled bytecode instructions. Bytecode instructions
operate on an evaluation stack (sometimes called operand stack), local variables (which also include
parameters), and the object store (heap). The following list gives an informal overview of the
instructions available in the bytecode language, the operational semantics is presented in [I} 2].

e pushc v: pushes a constant v onto the stack.

e pushv z: pushes the value of a local variable (or method parameter) = onto the stack.

e pop z: pops the top element off the stack and assigns it to the local variable x.

® 0p,p : assuming that op is a function that takes n input values to m output values, it removes
the n top elements from the stack by applying op to them and puts the m output values onto
the stack. We write bin,,, if op is a binary function.

e goto [: transfers the control flow to the point [.

e brtrue [: transfers the control flow to the point [ if the top element of the stack is true and
unconditionally pops it.

e brfalse [: transfers the control flow to the point [ if the top element of the stack is false and
unconditionally pops it.

e checkcast T: checks whether the top element is of type T or a subtype thereof.

e newobj T': allocates a new object of type T" and pushes it onto the stack.
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e invokevirtual M and call M : invokes the method M on an optional object reference and
parameters on the stack and replaces these values by the return value of the invoked method
(if M returns a value). call invokes non-virtual and static methods, invokevirtual invokes
virtual methods. The code depends on the actual type of the object reference (dynamic
dispatch).

e getfield F': replaces the top element by its field F.

e putfield F': sets the field F' of the object denoted by the second-topmost element to the top
element of the stack and pops both values.

e nop: has no effect.
e athrow: takes one argument from the stack (the exception type) and thrown an exception.
e iaload: pops index and arrayref of an integer array and pushes arrayrefindex].

e arraylength: pops objectref of an array and pushes its length of that array.

5 The Bytecode Logic

The Hoare-style program logic presented in this section allows one to formally verify that imple-
mentations satisfy interface specifications given as pre- and postconditions. For more detail of the
Bytecode logic see [1].

5.1 Method and Instructions Specifications

A method implementation T@m represents the concrete implementation of method m in class 7. A
virtual method T:m represents the common properties of all method implementations that might
by invoked dynamically when m is called on a receiver of static type T, that is, impl(T,m) (if T:m
is not abstract) and all overriding subclass methods.

Properties of methods and method bodies are expressed by Hoare triples of the form {P} comp
{Q}, where P, Q are sorted first-order formulas and comp is a method implementation T@m, a
virtual method T:m or a method body p. We call such a triple method specification. The triple
{P} comp {Q} expresses the following refined partial correctness property: if the execution of
comp starts in a state satisfying P, then (1) comp terminates in a state in which Q holds, or (2)
comp aborts due errors or actions that are beyond the semantics of the programming language (for
instance, memory allocation problems), or (3) comp runs forever.

The unstructured control flow of bytecode programs makes it difficult to handle instruction
sequences, because jumps can transfer control into and from the middle of a sequence. Therefore,
the logic treats each instruction individually: each individual instructions I; in a method body p
has a precondition F;. An instruction with its precondition is called an instruction specification,
written as {E;} : 1.

Obviously, the meaning of an instruction specification {E;} [ : I; cannot be defined in isolation.
{E;} 1 : I, express that if the precondition E; holds when the program counter is at position [, the
precondition Ej of I;’s successor instruction I’; holds after normal termination of I; [1].

5.2 Rules for Instruction Specifications

All rules for instructions, except for method calls, have the following form:
E = wpil,(Il)
Ak {El} l: Il

wp},([l) is the local weakest precondition of instruction I;. Such a rule express that the precon-
dition of I; has to imply the weakest precondition of I; w.r.t. all possible successor instructions of
1.
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The definition of wpzl) is shown in figure [5. Within an assertion, the current stack is referred to
as s, and its elements are denoted by non-negative integers: element 0 is the top element, etc. The
interpretation [E;] : State x Stack — Value for s is

[s(0)] < S, (o,v) > =v and

[s(i +1)] < S, (o,v) >=[s()] < S,0 >

The functions shift and unshift express the substitutions that occur when values are pushed
onto and popped from the stack, resp.:

shift(E)
unshift

= E[s(i+1)/s(i) for all i € N |
= shift™!

shift™ denotes n consecutive applications of shift.

I wp, (1)

pushc v unshift(Ej41[v/s(0)])

pushv x unshift(Ej+1]z/s(0)])

pop x (shift(Ei4+1))[s(0)/z]

binop (shi f(Ers1) [s(1)ops(0)/5(1)

goto I Ey

brtrue I’ (—=s(0) = shift(Ei+1)) A (s(0) = shift(Ey))

checkcast T’

Ei 1 AT(s(0)) XT

newobj T unshift(Ej41[new($,T)/s(0),$ < T > /9]

getfield TQa  E;141[3(iv(s(0),TQa))/s(0)] A s(0) # null

putfield TQa  (shift?(Ej41))[$ < iv(s(1),TQa) := s(0) > /$] A s(1) # null
return true

areturn (shift(Q))[s(0) /result] where Q is the method’s postcondition.
nop i

Figure 5: The values of the u/p}l7 function.

6 Proof transformation from O-O Programs to Bytecode

A proof-transforming compiler is based on transformation functions, Vg and Vg, for statements
and expressions, respectively. Both functions yield a sequence of Bytecode instructions and their
specification. Vg generates this sequence from a proof for a source statement and Vg generates
this from a source expression and a precondition for its evaluation. These functions are defined as
a composition of the translations of its sub-trees. The signatures are the following:

VE
Vs

: Precondition x Expression x Postcondition x Label — BytecodeProof
: ProofTree x Map|Event — Label] x List[Finally] x ExceptionTable —
[BytecodeProof x ExceptionT able]
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In Vg the label is used to the starting label of the translation.
ProofTree is a proof tree to translate. It is a derivation in the Hoare logic. For example

Treey Treesy
{r} s {Q} {Q} s2 {R}
{P} sis2 {R}
is a proof tree for the compositional rule where P, Q and R are preconditions and postconditions

(predicates in first order logic) and s1, s2 statements.
Map is a mapping function: Event — Label. The Fvent type is defined as:

Event := start | mnext | break

The meaning is the following:

e start — [4: It is used to know the starting label of the translation.

e next — I.: It is used to know next label of the translation. For example, it is used in the
translation of if else statements to know where to jump when the else translation finishes
(after the then part).

e break — lpreqr: It is used to process a unlabelled break statement. It means that we will
transfer the control flow to the label lp,¢qx When we process a break. For unlabelled breaks,
lpreak Tepresents the end of the loop we are processing.

In the mapping function Fvent — Label, the break labels are needed because in the beginning
of a loop we know the exact point to transfer the control flow (the end of the loop). But after that,
for example when we process a break instruction, we do not know where to transfer the control
flow (if we would not have these labels).

The type Finally is defined as a tuple of [ProofTree , ExceptionTable]. It is used only to
translate finally statements. When the javac compiler translates a break statement inside a try
block with finally statements, it duplicates the finally code before the break statement and then it
adds the break translation. We want to generate the same code as the javac compiler. So we use the
list of ProofTree to store the proof tree of each finally clauses and the ExceptionT able to store
the exception table of the finally block. When a break statement inside a try-finally statement is
found, we duplicate the finally code. Note that we have a list of Finally because we could have
several try-finally statements and then a break statement (see subsection 3.7.3| on page 19 for an
example).

The ExceptionT able type is defined as:

ExceptionTable := List|ExceptionLine]
ExceptionLine  := [Label, Label, Label, Type]

6.1 Notation

The translation functions are defined over the Hoare rules of the source language. Each translation
was derived by using the source proof and the wpzl) definition (figure [5)). To clarify the notation,
we use symbolic labels denoted by [, l;, etc; for pre and post conditions we use capital letters P,
Q, R, etc; for expressions e, ey, etc; and for statements sq, so, etc.

For example, when we translate

Let [Bg,,et1] and [Bg,, eta] be

Treeq

el =% (i

, m[next —>lb}, 1 et>

Trees

By ctal = Vs (M

, m[ start — ], f, et1>
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Treei Trees
{P} 51 {Q} {Q} s2 {R}
{P} sis2 {R}

VS , 1, f’ et = [le +B527et2]

It means that the next label of the last instruction of the first Vg is [, and there are not
instructions between them.

m | start — 1 |

means that we update the function m. start — [, means that we replace the value of the
parameter start by the label [;.

We use symbolic labels denoted by I, Iy, I etc where I, = m[start]; I, = succ(ly); le = suce(lp)
and succ is a function for the generation of new labels (succ : Label — Label).

6.1.1 Eliminating the variable X in the bytecode proof

The variable X is used to describe normal and abrupt termination (either exceptions or break
statements) of the source program. The bytecode language has instructions to transfer the control
flow (for example brtrue or goto). The bytecode logic does not need an special variable to express
the status of the program because for example either break statements or continue statements are
translated to unconditional jumps. In the case of exceptions (in the source logic), the variable X
is used both to express that an exception has been thrown and to simulate that the control flow
is transferred to either the catch block or the end of the method. On the bytecode logic, the only
information we need is whether an exception was thrown or not and the type of it. This information
is stored in the variable excV'.

6.2 Starting the translation

Our Proof-Transforming Compiler takes as input a list of classes with their proof. Each class
consists of a list of methods and its attributes. Each method consists of a proof tree. The PTC
takes the first class and for every method of the class it invokes the translation function Vg setting
the list of proof tree f to @ and the initial mapping function m as in the following example:
public class C {

public C {
Proof Tree of method C (PT-C)

public int m1 (int 7) {
Proof Tree of method m1 (PT-m1)

private String m2() {
Proof Tree of method m2 (PT-m2)



6 PROOF TRANSFORMATION FROM O-O PROGRAMS TO BYTECODE

public class C {
public C {
Code:

start — [,
Vs | PTe, m| next —1l, |, 0,0
break — 0

lp : return

}

public int m1 (int i) {

Code:
start — [,
Vs | PTni, m next — I, |, 0, 0
break — 0
lp : return result
}
private String m2() {
Code:
start — [,
Vs PT,,2, m next — 1 s @, 0
break — 0

lp : return result

}
}

where [, and [, are fresh labels.

26

In the following we present the translation rules. In subsection 6.3/ we present the expression
translation. In subsection 6.4, we present the translation of language-independent rules for the
source logic. In subsection (6.5 we present the translation for assign, conditional and composition
statements. The references, objects and method invocation translation are presented in subsections
6.6 and [6.7), resp. After that, we include the treatment of break and while statements in subsection
6.8. Finally, we present the translation for exception handling in subsection 6.9.

6.3 Expression Translation

In this section we present the definition of V g, the translation function for expressions. We consider

constants, variables, unary and binary expressions.
6.3.1 Constants
Ve( Q Aunshift(Plc/s(0)]), ¢ , shift(Q)AP, 1)
{Q A unshift(Plc¢/s(0)])} 14 : pushc ¢
6.3.2 Variables
Ve( QAunshift(Plz/s(0)]), = , shift(Q)AP, l,)
{Q A unshift(Plz/s(0)])} I, : pushv x

6.3.3 Expressions: e; op es

VEe( QAN unshift(Ple; op e2/s(0)]), e1 opes , shift(Q)AP , )
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Vie(Q A unshift(Pleiope2/s(0)]) , e , shift(Q) A P[s(0) op e2/s(0)] , la)
Ve( shift(Q) A Pls(0) op ea/s(0)], ex , shift?(Q) A shift P[s(1) op s(0)/s(1)], )
{ shift’(Q) A shift(P[s(1) op s(0)/s(1)]) } I : binopyy

6.3.4 Expressions: unop e;
Ve( QAN unshift(Plunop ¢/s(0)]) , unope , shift(Q)AP , l,) =

Ve(Q A unshift(Plunop e/s(0)]), e, shift(Q) A Plunop s(0)/s(0)], l,)
{shift(Q) N Plunop s(0)/s(0)]} I : unopep

6.4 Translation of language-independent Rules

In this section we summarize the translation of language-independent rules to Bytecode.

6.4.1 Strength

In the strength transformation we need translate P, = P, and {P,} s1 {Q}. P, = P, can be
translated by using the nop instruction. To translate {P,} s;1 {Q} we use the Vg translation
function.

Let bnop and Bg, be

bnop = {PL} 14 :nop

Treei

[Bs,,et1] = Vg , m[ start — [, }, f, et

(X =normal = Qn) A
{ P, } S1 (X = break = Q) A

(X = exc = Q)
Treep
(X =normal = Qn) A
{ P, } $1 (X = break = Q) A
X = . /
- ( exc = Q) P = P, o foet | =
(X =normal = Q,) A
{ P} s (X =break = Qp) A
(X = exc = Q.)

[ bnOP + BSI , ety }
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6.4.2 Weak

Similar to strength rule, in weak rule we translate @, = @/, by using nop

Let Bg, and b,y be

[BS1 ) etl] =

bnop =

T
Vs reey

(X = exc

{Qn} 1y :nop

Tree;

(X =normal = Qn) A
{ P, } 1 (X = break

= Q) A
= Q)

Vs

(X =normal = Q)
{ P} s (X =break = Qp)
= Q

(X = exc

e)

A\
A

} Qn = Q)
Qv = Q)
Qe = Q.

) m7 f? et

6.4.3 Invariant

(X = normal

{ P, } s1 { (X = break

(X = exc

= Q) A
= Q) N

= Q)

[ le + bnop ) €t1 }

Treey
(X =normal = Q,) A
{ P, } $1 (X = break = Q) A
(X = exc = Q)
(X =normal = Qn N W) A
{Pn/\W} s1 (X = break = Qpy N W)A
(X =exc = Q. N W)

)m’ f7 et

)m’f7et =

We just add a conjunct W to every specification of the sequence produced by:

Vs

Treey

(X = normal
{ P} s (X = break

(X =exc

= Qn) A
@Qb)/\
= Q

e)

’m’ f7 Et
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6.4.4 Substitution

Treey
(X =normal =
{ P, } s1 (X = break =
(X = exc =
VS , M, fa et | =
(X =normal = Qn [t/Z]) A
{ P,[t/Z] } $1 (X = break = Qlt/Z]) A
(X =ezc = Qult/2))
As before, first we generate
vS T’reel , M, f7 et

(X =normal = Q)
{ P, } s1 (X = break = Q)
(X = exc = Q)

and then we replace Z by t in each specification and in all proofs for assertions.

6.4.5 Conjunction/disjunction

Conjunction and disjunction are treated identically, so we present only the conjunction rule.

Let T, be
Treey
(X =normal = QL) A
{ P} s (X =break = Q) A
(X = exc = Q)

and let T}, be

Trees

(X =normal = Q
{ P} s (X =break = Q
(X = exc = @

Vs Lo T y MM, f» et | =

(X =normal = QL N Q%) A
{ Pl A P? } 51 (X—break = QF AN QYH A
(

X = = Q! N QF)

Vs ( {P1} s1 {@1} {2} s1 {Q2}

{HA&MJQA@}““ﬁ@:

We create the two proofs

VS(TCH m, f7 et)

and

29
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VS(Tb, m[ start — [ }, 1 et)

The embedded instructions are by construction the same. With the two proofs, we assemble a
third proof as result by merging, for all instructions, their specification from:

({Aw} instr
and

({Bu} instr
we obtain

{A(l) A\ B(l)} instr

6.4.6 nops generated during the translation

The translation of language-independent rules produces nop instructions. javac compiler does not
generated nop instructions and we wish to generate the same code as javac. nop instructions can
be removed in a second pass though the bytecode proof. We replace nops instruction using the
knowledge of the implication. For example, we can replace the following bytecode proof:
{0<i<n} 00 : nop
{(0<i<n)Ay=y} O01:pushvi

by the following bytecode proof without nop instructions:
{0<i<n} 00:pushvi

6.5 Translation of Assign, conditional and compositional statements
6.5.1 Assign Statement
Let by and by be

B.= Vg (Pe/z], e , (shift(P.le/z]) N s(0)=ce), m[start])
bpop = { shift(Pyle/z]) A s(0)=e } 1,:popx

Vs , M, fa et :[Be+bpop7et]
(X =normal = P,) A

{ P,le/x] } rT=e (X =break = false) A
(X =exc = false)
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6.5.2 Conditional Statement

In this translation, we first obtain the translation for the expression e by using Vg. If e is true (e
is on the top of the stack), we jump to . and we obtain the translation for the subtree s; by using
V. Otherwise, we translate s, and then jump to the end (Iy).

Let T, be the following proof tree:

Ts, = Treey
(X =normal = Qn) A
{ P, ANe } 51 (X =break = Qp) A
(X = exc = Q.)
and Tg, be
T
T, = rees
(X =normal = Q) A
{ P, N —e } 59 (X =break = Qp) A
(X =exc = Q)
Let:
Be= Vg (P, e, (shift(P,) N s(0)=e), m[start])
bbrtrue = {Shlft(Pn> A 3(0) = 6} lb : brtrue le
start — [,
[Bs,,et1] = Vs | Ts,, m et
next — g4
bgoto = {Qn} lq : goto m[next]
[Bs,,eta] = Vg (Tsl, m{ start — [, }, fs etl)
T T
VS L % , M, f7 et =

(X =normal = Qn) A
{ P, } if (e) then sy else sq (X =break = Qp) A
(X =exc = Q)
[ Be + bortrue + Bs, + bgoto + Bs, , eta ]

6.5.3 Compositional Statement

Let T, be the following proof tree:

Treey
(X =normal = Qn) A
{ P, } 51 (X =break = Rp) A
(X =exc = R.)

T5’1 =
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and T, be

T, = Trees
(X =normal = R,) A
{ Qn } 82 (X =break = Rp) A
(X = exc = R.)

Let [Bs,,et1] and [Bs,, ets] be:

[Bs,,et1] = Vg (Tsl, m { next — I ] 1 et)

[Bs,,etz] = Vs (ng, m { start — [, } . f etl)

Ts, Ts,

Vs

, m, fa et = [BS1 +BSQ ) 6t2]
(X =normal = Ry,) A

{ P } S1; 82 (X =break = Rp) A
(X = exc = R.)

6.6 References and Objects Translation

In the following, we present the translation rules for cast, constructor, field-read and field-write
sentences.

6.6.1 Cast

Let Bm bcheckca8t7 prp be

B.= Vg({71(e) 2 TN Ppe/x]}, e, {r(e) X T A shift(P,[e/z]) N s(0)=-e}, m[start] )
beheckeast = 1 7(e) =X T A (shift(P,le/x]) N s(0)=¢e)} [p:checkcast T
bpop = { 7(e) 2 T A (shift(Pule/z]) A s(0)=e)} l.:popx

Vs

) m’ f7 et =
T = n
(7(e) = TN Pule/a] )V (X =normal = P,) A
(7(e) 2 TA
x=(T)e (X = break = false) A
$ < CastExzc > /8,
(X =exc = Q)

new($, CastExc)/excV
[ Be + bcheckcast + bpop ) et }
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6.6.2 New Object

Let bneu;obja bPOP be

bnewobj = {Pn[ne'UJ($,T)/l‘,$ <T> /$]} Za : newobj T
bpop = {(shift(P,)[s(0)/])} Iy : pop x

Vs , m, f, et
(X =normal = P,) A

{ P.new($,T)/z,$ < T > /%] } x = new T() (X = break = false) A
(X =exc = false)
[ bncwobj + bpop 3 et ]

6.6.3 Read Field

Let S be the following precondition:

(y # null A P,[$(instvar(y, SQa))/x]) V
$ < NullPExc > /$,
new($, NullPExc)/excV

n
Il

(y=null N Q
Let bpushv bgetfield, bpop be

bpush = {y #null A P,[$(iv(y, SQa))/x]} lo @ pushv y
byetfieta = {s(0) =y A Shift(P,[$(iv(y, SQa))/x])} Iy : getfield SQa
bpop = {5(0) = $(iv(y, SQa)) A Shift(P,[$(iv(y, SQa))/x])} I.: pop z

VS' , M, f7 et =
(X =normal = P,) A

{ S } x =y.5Qq (X =break = false) A
(X = exc = Q)
[ bpush + bgetfield + bpop ) et ]

6.6.4 Write Field
Let S be the following precondition:
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(y #null N P,[$ < instvar(y,SQa) :=e > /$]) V
S = $ < NullPExc > /$,

=null A
w @ new($, NullPExc)/excV

Let bpushv7 b€7 bputfield be

bpusho = {y #null A Pp[$ < iv(y, SQa) :=e > /3]} lq @ pushv y

B. Ve({s(0) =y A shift(P,[$ < iv(y,SQa) :=e > /$])}, e,

{s(l) =y A 5(0)=e A shift>(P,[$ < iv(y,SQa):=e > /$])}, l)

34

bputficta = {s(1) =y A s(0)=e A shift’(P,[$ <iv(y,SQa):=e> /9])} I.: putfield SQa

VS , M, fa et

(X =normal = P,) A
{ S } y.5Qa :=e (X = break = false) A
(X =exc = Q)
[ bpusho + Be + bput ficia » €t ]

6.6.5 Invocation

Let S be the following precondition:

(y Znull AN P,ly/this,e/p]) V
S = NullPE
(= null A Q, $ < NullPExc> /$,
new($, NullPExc)/excV

Let bpushva binvokevirtuah Be: bpop be

bpusho = {y #null N P,ly/this,e/p|} lo = pushv y
Be = Ve({shift(P.[y/this,e/p]) N s(0) =y}, e,
[shi fE2(Paly/this,efs]) A s(1) =y A s(0) = e}, Iy)
binvokevirtual = shift?(P,ly/this,e/p]) A s(1) =y A s(0) =e} . :invokevirtual T : m
bpop =  {Qn[s(0)/result]} lq:pop x

Treei

(X =normal = Qn) A
{ P, } T:mp) { (X =break = false) A
(X = ezxc = Q)

VS y T, f7 et

(X =normal = Qnlz/result]) A
{ S } z=y.T :m(e) (X = break = false) A
(X = exc = Qr)

[ bpushv + binvokevirtual + Be + bpop ) et ]
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6.7 Methods

In this section we present the translation for methods which includes proof translation of body
methods, and class and subtype rules.

6.7.1 Implementation rule

Let S be the following postcondition:

(X =normal = Qn) A

S=< (X =break = false) A
(X = exc = Q)
Let BS'7 b'r‘eturn be
Treey

[Bg,eta] = Vg , m[ next — 1, |, f, et

{ P, } body(T@m) { S }
breturn = { Qn } lp : return

Treep

{ P} vodyram) { s}
() 1 5]

[ BS + breturn ) et2 ]

VS , M, fa et | =

where Vi :i < #(body(T@Qm)) : body(T'@m); # return

6.7.2 Class rule

Let S be the following postcondition:

(X =normal = Qn) A

S=< (X =break = false) A
(X = exc = Q)
Let BS'7 b'r‘eturn be
Treey

[Bs, etg] = Vg

{T(this):T/\P} impl(T, m) {S} ’m[next _>lbj|1f, et

breturn =  { Qn } lp : return
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Treeq Trees

{ rthisy=7 A P } impir,m) { s} { renisy<T AP} Tim {5}
{P} T:m {S}

[ Bg + breturn » €tz ]

Vs

’m’f7et =

6.8 While and Break statements Translation

The use of break statements in loops allow us to transfer the control flow to the end of the loop.
In this section we discuss about the use of break instructions in loops.

In the source logic, we use the variable X to express the current status of the program. We
use it in a loop to express that a break instruction was executed and then we do not change the
postcondition because a break was executed. For example:

{ true }
while (i<20) {
{i<20}
if (b) {
{bAi<20}
i = 40;
{bAi=40}
break;
{ X =break = b A i=40 }
}
{ (X = normal = i < 20) A (X =break = b A i=40) } (¥)
i=1i+1

{ (X = normal = i < 20) A (X =break = b A i=40 ) } (*¥)

}
{ (X = normal = i = 20) A (X =break = b A i=40) }

When we prove (*) i = i+1 (**) we keep the postcondition i = 40 because we would not
execute 1 = i+1 if we have executed a break.

It does not happen on bytecode level. We translate the break by a goto and we do not need an
extra variable to express that a break has been executed (because we use the goto and we jump
to the end of the loop). So, we always can consider normal execution on the bytecode side and we
can remove the variable X.

6.8.1 Break statement

When a break statement is found, first we translate the proof tree of finally clauses by using the list
of Finally f (if there is no finally cause, it is empty). Then, we transfer the control flow to the end
of the loop by using the mapping function m. f is a list of tuple [ProofTree , ExceptionTable],
f=rf+...+ fx where f; = [t;, et;] and

Tree;

{A) s {B}

t; =

Let
A fl = [ti,eti] S f (].]C) be :

[Bi,et;] = Vs <ti7 m; l

bena = {BF} lgt1: goto m[break]

start — lq,

y fiv1 + o+ fr, divide(et;_, et;[01Y, Lo, la;+1)
next —1

iyl

Let;]0] returns the first exception line of the exception table et;.
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, M, f7 6t6 =

Vs
(X =normal = false) A

{ P, } break; (X =break = P,) A
(X = exc = false)
[ Bi+ B+ ..By + bena , et} ]

where divide is a function: ExzceptionTable x ExceptionLinex Label x Label — ExceptionT able
that divides the exception table taken as first parameter using the exception line table and the
starting and finishing labels. It assume that the exception line is included in the exception table.

The definition is the following:

divide : ExceptionTable x ExceptionLine x Label x Label — ExceptionT able

divide - ([], y, ls, le) =[y]

divide : (‘T LIS, Y, 157 le) = [ T froms l.97 Ltarg, xtype] + [ l67 Ttoy, Ltarg, Ltype ]"’
divide(zs,y,ls,le) ifxCy AN x#y

|z:xs ifx=y

| z : divide(zs,y,ls,l.) otherwise

where

C : ExceptionLine x ExceptionLine — Boolean

c: ([xfrovm Ttoy Ltarg, 'rtype]a [yfroma Ytos Ytarg ytypeD = true if (yfrom < zfrom)

A (yto Z xto)
| false otherwise

and

= : FxceptionLine x ExceptionLine — Boolean

= ([xfromy Ttoy Ltargs xtype]v [yfrom7 Ytos Ytarg, ytype]) = true if (yfrom = xfrom) A (yto = xto)

A (ytarg = xtarg) A (ytype = 'rtype)
| false otherwise
Lemma 1
[(Ila"'llb)’ 6t/] = Vs ({P"} S {Q}a m,f, et ) A lstm*t < la < lb < lend

=
Vilgle i lp <lg <le <lepg:
(VT : Type : (T <X Throwable) V (T = any)) : et[lstarts lend, T) = et'[ls, 1, T))

Lemma 2
Let et = divide(ety,r,ls,1e). Let v = [lg,lp, 1, T| ¥V T : Type : ((T' =< Throwable) V (T = any)).
(r Cety) = etlls,le, T = r[T]

The proofs of lemma (1] and 2 are presented in appendix (Al
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6.8.2 Translation for while considering break statement and exceptions
Let:

bgoto = {In} l, : goto .

start —
Treey

[Bs,,et1]= Vg , M| next —le 0, et
(X =normal = I,) A
{e/\[n}s1 {(Xbreak :>Qb)/\}
(X = exc = Re)
B.= Vg (I, e (shift(I) A s(0)=¢e),l.)

bortrue = {shift(l,) N s(0)=e} lq: brtruel,

break — mnext]

Treeq

(X =normal = I,) A
{ e N I, } 51 (X =break = Qp) A

(X = exc = R.)
VS , M, f7 et | =
(X =normal = (I, A—e)V @Qp) A

{ I, } while (e) 1 (X = break = false) A
(X = exc = R.)

[ bgoto + Bs, + Be + bortrue 5 €t1 ]

6.9 Exception Handling Translation

Exceptions are exceptional states of a program giving rise to some non-normal mode of execution.
In the logic of the source language, exceptions are modeled by using a program variable X that
express the current status of the program.

In the bytecode logic, we define an exception table and variables to express whether an exception
was thrown or not. Let excV be the value of the exception exc and 7(excV) the type of exception
exc. When we translate either try catch statements or finally statements, we need to build the
exception table. The exception table map an exception type to source and destination labels. We
build the exception table at the end of each method.

6.9.1 Try catch translation

Let T, be the following proof tree:

Tree;

TS1 =

(X =normal = Qn) A
X = break = A
(n} ]! 2

(X = exc = <

9]

)
(Qe N T(excV) AT)V >)
Q. N T(excV) = T)

and T, be



6 PROOF TRANSFORMATION FROM O-O PROGRAMS TO BYTECODE 39

Trees
T52 =

(X =normal = Qn) A
{ QLle/excV] } 82 (X =break = Qp) A

(X = exc = R.)
Let:
[Bs,,et1] = Vg (Tsl, m{ next — 1, |, f, et+ [m[start],lb,lmT])
bgm‘,o = {Qn} lb : gOtO m[next]
shift(Q.) N
b excV # null l
= : pop e
ror A T(excV) =T c - Pop
A s(0) = excV
Bsaeto] = Vs (Too m| start —1a |, £, etr)
T T
VS Sl 52 b m’ f7 et -
(X =normal = Qn) A
{ P, } try s1 catch (T e) sz (& = break = Qo) A
Re vV
(X = exc = )
(Qe N T(excV) A T)
[ le + bgoto + bpop + B52 , etla ]
6.9.2 Throw Translation
Let by and by be
B, = VE( P,lefexcV], e, (shift(P.le/excV]) A s(0)=¢e), m[start] )
bathrow = { Shlft(Pn[e/ech]) A S(O) =€ } lb : athrow
Vs , m, f7 et | = [Be+bathrow y 615}

(X =normal = false) A
{ Pule/excV] } throw e (X =break = false) A
(X = exc = P,)

We assume that athrow instruction takes the expression e on the top of the stack, then assigns

it to the variable excV and finally jumps to the label where the exception is caught (it is defined
by the exception table).
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6.9.3 Translation of Finally statements for Java

We can translate the finally statements in two different ways. The first way is to use the call
of subroutines and the instruction jsr. The second one is to use code duplication. We use code

duplication to simplify the translation. Also, we generate the same code than the javac compiler.
Let S, T, U, V be

(X =normal = Qn) A
S=¢ (X=break = Q) A

(X = exc = Q)
(Qn N XTmp = normal) V
(Qy N XTmp = break) V
T= (QcleTmp/excV] A
XTmp = exc N
eT'mp = excV)
(Q,, N XTmp = normal) V
(X = normal = (Q, N XTmp = break) V ) A
U= (Q. N XTmp = exc)
(X = break = Ry) A
(X = exc = Q)

(X =normal = Q) A
V= (X =break = (Q, V Ry) ) A
(X=exc = Q.)

Let m1 be an mapping function, and et’, et” be exception tables

mi=m| next — I
t/ =et + [lay lbv ld? any]
et = get Exceptions(ly, Iy, et’)?

2getExceptions returns the exceptions of the exception table et’ between l, and lp. It returns at most one

exception line for every type.
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[Bs,,et1] = Vg Tree, , M1, Trees et | + f, et/
{r} s {s} {r}e{v}
tart l
[BS'QvetQ] = VS TTB@Q , M [ e o ‘| 9 fv ety
{T}S2{U} next — I,
bgoto = {Q1} l. : goto m[newt]
shift(Qe) A
bpop = excV # null lg : pop eI'mp
A s(0) = excV
tart le
[Bs,,ets] = Vg Trees m [ sart = ] , f, eta
{T}SQ{U} next — [
bpusho = { Q, VvV Q Vv Q. } l¢ : pushv eT'mp
! \/ / \/ /
bathrow = (Qn Qb Qe) lg : athrow
A s(0) = eTmp
Tree Trees
{r)ysf{sp {r}={v]
VS ) m7 f7 6t =

{ P, } try s1 finally so { \% }
[ le 4+ 352 + bgoto + bpop + B‘,Sz + bpush'u ~+ bathrow , €t ]

7 Application

In this section we present two examples that translate a source object-oriented program and a
proof to bytecode with its bytecode proof. The first example (section [7.1)) is the translation of
example of table [T presented in section [3.7.1l on page [15/. The second example (section [7.2)) is the
translation of the example of table 2| presented in section [3.7.2] on page [16.

7.1 Translation of while and break statements

In this section we present the translation from the proof of figure (1 to bytecode. To simplify the
proof, we suppose that the array a of length n is equal to n variables ag, a1, ... a,_1. Then we do
not, use the special instruction to load arrays and we use instructions such as pushv ag or pushv
a;nd Where ind is the index of the array. The code and proof for pushv a;,q is the following:

{0 < ind < sizeof(a) } log : pushv a \\ aistheamay

{s(0)=a A 0 < ind < sizeof(a)} lo1 : pushv ind \\ indis a index of an array

{s(1)=a A s(0) =ind A 0 < ind < sizeof(a) } lpz : iaload \\ ioad the value of the array a in the index ind
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Furthermore, the instruction pushv a.length is not present on the bytecode language. We also
use it to simplify the example. The real code and proof for this instruction is the following;:

{a#null } loo: pushv a \\aisthearay

{s(0)=a } lo1 @ arraylength \\ get the length of an array

7.1.1 Bytecode Proof

To check that a proof is a valid proof in the bytecode logic, we need to verify that each instruction
implies the local weakest precondition. For example, we have to prove:

{ind < a.length A I A aipg # sum} = wp;(lb% : pushc False)
ind < a.length A I N

{ ind < alength A I\ } lyos : pushc False s(0) = False A
Gind 7 SUM
Gind 7 SUM

By wp,, definition (figure [5) we get

{ind < a.length N I A ajnq # sum}
=

unshift(ind < alength A I N s(0) = False N ajnq # sum[False/s(0)])
= |[| by replacement |

unshift(ind < a.length N I AN False = False N ajnq # sum)
= [| by def unshift ||

ind < a.length A I N False = False N ajnq # sum)

|

7.2 Application of try catch and throw statements

Figure (7| presents the generated bytecode for the source program of figure |3. We present the
bytecode proof in figure 8.
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{a # null A a.length > 0}
{a # null A a.length>0 A s(0) =1}
{a # null A a.length >0 A ind=1}
{a #null A alength >0 A ind=1A s(0)=ao}
{a #null A alength>0 A ind=1A sum =ao}
{a #null A alength >0 A ind=1A sum =ao A s(0) =True}
|| begin body while ( ind < a.lenght)
{1}
| if alind] ! = sum then

{(ind < a.length N\ I}

{shift(ind < a.length A I) A s(0) = aina}

{shift?(ind < a.length A I) A s(1) = aima A s(0) = sum}
{shift(ind < alength N I) A $(0) = (aina # sum)}
{ind < a.length N I A
{ind < a.length N I A
{ind < a.length N I A
{ind < a.length N I A
{result = False A (3j: 0<j<alength: (alj] #3710 alk]) )}

| end afind] ! = sum

Qind = SUM}
Qind 7 sSum}
s(0) = False A aing # sum}

result = False A aing # sum}

| sum = sum + afind]; ind =ind +1
{(ind < a.length N I N aina = ildo_l ap) = P2}
{shift(P:) N s(0) = aina}t
{shift*(P2) A s(1) = aina A s(0) = sum}
{shift(P2) A s(0) = aina + sum}
{e}
[ shift(@) A $(0) =1}
{ shift’(Q) A s(1) =1 As(0) = ind}
{ shift(Q) A s(0) =1+ ind}

| end afind] =
(1}
{shift(I) N s(0)=ind}
{shift*(I) A s(1) =ind A s(0) = a.length}
{shift(I) A s(0) = (ind < a.length)}
|| end body while
{r}
{R A s(0) =result }
where I =result A (Vj: 0<j<ind: (alj]=>1_{alk]))

A sum =S alk] A 0 < ind < alength) }
_ < ind < a.length A alind] = > %1

and Q=

sum

o alk] Asum = (

and R

lyor :

lpoz2 :

lvo3

lboa :

lyos

lvoe :
lyor :

lbos :

lb10

lp11 :

lp12 :

ISES

lb1a

lp1s ¢

ly1e :

lo17

lp1s :

lcl :
leo @

lcg :

ldi

ly

I

ind—1
k=0

result A (Yj: 0<j<ind: (alj]=31_talk] ) A 0<ind< alength

(result AV j: 0<j<alength: (alj]=37_¢alk]))V
(result = False A 3j: 0<j < alength: (alj] # S I_5 a[k]))

=0

: pushc 1

: pop ind

: pushv ag

: pop sum

: pushc True

: pop result

: goto a1

pushv @ind
pushv sum

s binop #
brtrue lps

: goto lp11
pushc False
pop result
nop

: goto Iy

pushv a;ng
pushv sum
: binopy

: pop sum
pushc 1
pushv ind
: binop4+
pop ind

pushv ind
pushv a.length
binop <

brtrue lpo1

: pushv result

: areturn

alk]) + alind] A

Figure 6: Bytecode proof of the source proof of table [1.

)

43
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public int ezample Try(boolean b);

Code:

14:
FExcep
from
0

pushv b
invokevirtual myMet
pop auxFEzxc
pushc 0
pop result
goto 13
pop e
pushv 1
pop result
pushv result
areturn
tion table:
to target type
7 10  Class java/lang/ Exception

public java.lang. Exception myMet(boolean);
throws java/i0/I10Exception, java/lang/ Exception

Code:

0: pushv b

1: brfalse 12

4:  newobj java/lang/ Exception

11: athrow

12: newobj java/lang/ Exception

19: areturn

Figure 7: Bytecode of the example figure 3.

7.3 Application of try-finally, while and break

foo

0 {

int b;

{ true }

b=1;

{ b=1, false, false }

while (true) {

{ b=1, false, false }

try {

{ b=1, false, false }
b=b+1;
{ b=2, false, false }
throw new Exception();
{ false, false, b=2}

}
finally {
{ b=2 and Xtmp=exc }
b++;
{ b=3 and Xtmp=exc, false, false }
break;

{ false, b=3 and Xtmp=exc, false }

{ false, b=3, false }

}

{ b=3,false,false }
b++;

{ b=4, false, false }
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public int exampleTry(boolean b);

Code:
{b=B AN OS=%$} 0: pushv b
{b=B N OS=% A s5(0)=DB} 1: invokevirtual myMet

s(0) = new($, Exception) A
4: pop auxExc

$ =$ < Exception > A —-B

auxFExc = new($, Exception) N —B } 5: pushc 0
aurExc = new($, Exception) A =B A s(0) =0 } 6: pop result
aurExc = new($, Exception) A =B A result =0 } 7: goto 13
catch (Exception ¢)
B A excV # null A
{ (excV) = Exception N s(0) = excV } H0: pop e
{ B A e=excV } 11: pushv 1
{B AN s(0)=1} 12: pop result

13: pushv result
(B A result =1)

( auxE:Ec = new($, Exception) N -B A result =0) V }
( auxEzc = new($, Exception)
A =B A result=0)V A s(0) = result 14: areturn
(B A result=1)
Exception Table
From to target type

0 7 10 Class java/lang/Exception

public java.lang.Exception myMet(boolean);
throws java/io/IOException, java/lang/Exception

Code:
requires: {b =B A 0S = $}
{b=B AN 0OS=%} 0: pushv b
{b=B AN OS=8% A s(0)=B} 1: brfalse 12
{bANOS=8} 4: newobj java/lang/Exception

11: athrow

(s(0) = new($, Exception)
{ A$ =8 < Exception > A B) }
{-B ANOS=%} 12: newobj java/lang/Exception
{ (s(0) = new($, Exception) }

A $ =8 < Exception > A —B)

19: areturn

ensures:
(result = new($, Exception) N $ =8 < Exception > A -B) V
(excV £ null N B))

Figure 8: Bytecode proof of the example table [2.
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{true} loo : pushc 1
{s(0) =1} lo1 : pop b
{b = 1} loo : goto los

|| body while
{b=1} l10 : pushc 1
{b=1 A s(0)=1} l11 : pushv b
{b=1 A s(1)=1 A s(0) =b} l12 : binopy
{b=1 A s(0)=b+1} li3 : pop b
{b=2} l14 : pushc 1
{b=2 A s(0) =1} l15 : pushv b
{b=2 A s(1)=1 A s(0) =b} l16 : binopy
{b=2 A s(0)=b+1} li7 :pop b
{b = 3} l1s : goto los
{false} l19 : newobj Exception
{false} l2o : athrow

| code duplication finally
{false} l21 : pushc 1
{false} l22 : pushv b
{false} las : binopy
{false} l24 : pop b
{false} lo5 : pushv eT'mp
{false} lo6 : athrow
{b=1} los : pushc true
{b=1 A s(0) = true} loa : brtrue lqo

|| endwhile
{b=3} los : pushc 1
{b=3 A s(0) =1} los : pushv b
{b=3 A s(1)=1 A s(0) =b} lo7 : binopy
{b=3 A s(0)=1+1b} los : pop b

8 Soundness of the translation

We prove that the translation is correct. Before present the theorem, let us introduce some notation.

e m is a mapping function: Event — Label. m[start] returns the label stored in the event
start.

e Every bytecode instruction specification is written as: {E;} [ : I, where {E;} is the precondi-
tion, [ a label and I; a bytecode instruction. For example, E,,[¢zc_) Teturns the precondition
of the instruction at the label m[exc_T].

o Let et[lstart, lend, T] be a function: ExceptionTable x Label x Label x Type — Label defined as
etlla,lp, T] = getTarget Label(et, lsiart, lena, T) where getTargetLabel is defined as following:

getTargetLabel : ExceptionTable X Label x Label x Type — Label
getTargetLabel : (], ls, le, T") = lend_method
getTargetLabel -  ( ([l5, 10,1, T +et) ,ls,le, T) =1 if (IL<ls ANl.>1le N T=XT)
= getTargetLabel(et,ls,lc,T) otherwise

e Let et[T] be a function: ExceptionTable x Type — Label. This is a partial function defined
over the exceptions tables that satisfy (Vet; =7} + 72+ ...+ r™: (rlnrZn..0rm =10)).
Then to get the exception we only use the type. It is defined as following:

getTarget Label : ExceptionTable X Type — Label
getTargetLabel :  ([], T) = lend.method
getTargetLabel :  ( ([I5,10,1, T +et) , T) =1, if (TXT)
= getTargetLabel(et,T) otherwise
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e f*isalist of [ProofTree, ExceptionTable] possible empty f = fi+...+ fr where f; = [t;, et;].

This list is constructed only in the finally translation (section 6.9.3, on page40). So we know
that f has an special form. We always construct f with proof trees of the form:

_ Tree;
{A} s {B}

where A% and B® are in the normal form:

fi

et;| € f (lkj) :

(AL A XTmp = normal) V

(AL A XTmp = break) V
(AileTmp/excV] A
XTmp = exc A

Ai

eTmp = excV)

(B, A XTmp = normal) V
(X =normal = | (Bi A XTmp = break) V ) A
(B A XTmp = exc)
(X =break = Bp') A
(X =exc = B

The theorem expresses that

if we have a source proof for the statement s, and

we have a proof translation from the source proof that produces the instructions I;
and their respective preconditions FEj By and the exception table et and

start*"* 'Ilend

start® end?

the exceptional postconditon in the source logic implies the precondition at the target label
stored in the exception table for all type T such that (T < Throwable) V (T = any)) but
considering the value stored in the stack of the bytecode, and

the normal postcondition in the source logic implies the next precondition of the last gener-
ated instruction (if the last generated instruction is the last instruction of the method, we
use the normal postcondition in the source logic), and

if the break postcondition is not false then

— for every triple stored in f, the triple holds and the break postcondition of the triple
(denoted by Bj) implies the break precondition of the next triple (denoted by AZH
). And the exceptional postconditon B! implies the precondition at the target label
stored in the exception table et; but considering the value stored in the stack of the
bytecode. Furthermore, the break postcondition (Qp) implies the first break precondition
of the before mentioned triples. And the last postcondition of the triple implies the
postcondition stored on the mapping function m at the event break, and

— if f is empty then the break postcondition (in the source logic) implies the precondition
at the label stored in the mapping function at the type break (in the bytecode logic).

then we have to prove that every bytecode specification holds (- {E;} I;).
The theorem is the following:
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Theorem 1

L Treey A

(X =normal = Qn) A
{P} st { (X=break = Q)n
(X = exc = Q)

Tree start — lstart
(Tt Tions)s €t] = Vs 1 Sm Lo
(X =normal = Qn) A next  — lepd41
{ P } s1 4 (X =tbreak = Qp) A
(X = exc = Qe)

(VT : Type : (T < Throwable) V (T = any)) :
(Qe N excV #null N s5(0) =excV) = Eop,oidenat]) N

Qv = Empea)) A

-(Q» = false) =
(F{A} s (B} A (Bj= A7) A
(VT :Type: (T = Throwable) V (T = any)) :

f#A0 = Vi € 1.k: (B A excV #null A s(0) =excV) = Eet,ir) ) A
Qb= A)) A (Bf = BEnprear) A
Veti=ri+ri+. . +rm:(rinrZn..nrm=0) A(et; Cet'))

f=0 = (@ = Enprear))

=

V1 € luart o lona s F {E) T

The proof is done by induction on the structure of the derivation tree for { P} s {Q}. We present
the proof in the appendix [Al

9 Related Work

Necula and Lee [14] have developed certifying compilers, which produce proofs for basic safety prop-
erties such as type safety. Since our approach supports interactive verification of source programs,
we can handle more complex properties such as functional correctness.

The open verifier framework for foundational verifiers [6] verifies untrusted code using cus-
tomized verifiers. The approach is based on foundation proof carrying code. The architecture con-
sists of a trusted checker, a fixpoint module, and an untrusted extension (a new verifier developed
by untrusted users). However, the properties that can be proved are still limited.

A certified compiler [8] 20] is a compiler that generates a proof that the translation from the
source program to the assembly code preserves the semantics of the source program. Together with
a source proof, this gives an indirect correctness proof for the bytecode program. Our approach
generates the bytecode proof directly, which leads to smaller certificates.

Barthe et al. [4] show that proof obligations are preserved by compilation (for a non-optimizer
compiler). They prove the equivalence between the verification condition (VC) generated over
the source code and the bytecode. The source language is an imperative language which includes
method invocation, loops, conditional statements, try-catch and throw statements. However, they
do not consider try-finally statements, which make the translation significantly more comples.
Our translation supports try-finally and break statements.

Pavlova [17] extends the aforementioned work to a subset of Java (which includes try-catch,
try-finally, and return statements). She proves equivalence between the VC generated from

7f*’etl

A\
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the source program and the VC generated from the bytecode program. The translation of the
above source language has a similar complexity to the translation presented in this paper. How-
ever, Pavlova avoided the code duplication for finally blocks by disallowing return statements
inside the try blocks of try-finally statements. This simplifies not only the verification condition
generator, but also the translation and the soundness proof.

Furthermore, Barthe et al. [5] translate certificates for optimizing compilers from a simple in-
teractive language to an intermediate RTL language (Register Transfer Language). The translation
is done in two steps: first the source program is translated into RTL and then optimizations are
performed building the appropriate certificate. Barthe et al. use a source language that is simpler
than ours. We will investigate optimizing compilersas part of future work.

This work is based on Miiller and Bannwart’s work [?]. They present a proof-transforming
compiler from a subset of Java which includes loops, conditional statements and object oriented
features. We have extended the source language including exception handling and break state-
ments. Moreover, we have also proved soundness.

10 Conclusions

We have defined a proof transformation from a subset of C#, Eiffel and Java to Bytecode. The
source language includes the most important object-oriented languages features, including methods
invocation, subtyping, and exception handling. The PTC allows us to develop the proof in the source
language (which is simpler), and transforms it into a bytecode proof.

A proof checker can be used to verify wether the source program is safe or not. The proof
checker is the only trusted component. If the source proof or the translation were incorrect then
the checker would reject the code.

The generated bytecode is similar to the bytecode generated by javac compiler. Furthermore,
we proved that the translation is sound.

As future work, we plan to extend the source language including features such as multiple
inheritance, which requires more complex transformations. This extension will lead to a more
general transformation framework.
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A Appendix: Soundness proof

In this section we present the soundness proof of the translation. The proof is done by induction
on the structure of the derivation tree for { P} s {Q}. We present the proof for the most important
cases but the remaining cases are similar.

A.1 Notation

To make the proof easier to read, we write

Vs ( AP} s1;82 {R}, m, f)

meaning:

Ts, Ts,

(X =normal = R,) A
{ P } $1; 89 (X = break = Ry) A
(X = exc = R.)

where Ts, and T, are the following proof trees:

T5’1 = Tl
(X =normal = Qn) A
{ P, } 51 (X =break = Rp) A
(X = exc = R.)
T
T52 = 2

(X =normal = R,) A
{ Qn } S2 (X = break = Ry) A
(X = exc = R.)

and we write

F{P,} s1;s2 {R}

meaning
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(X =normal = Q) A
{ P } 51 (X =break = Rp) A
(X = exc = R.)

(X =normal = Ry,) A
{ Q } S2 (X =break = Rp) A
(X = exc = R.)

(X =normal = Rp,) A
{ p } 51; 82 (X =break = Rp) A
(X =exc = R.)

We use this notation in each proof of theorem [1.

A.2 Proof of lemmas for divide
A.2.1 Proof of lemma (1

This proof is done by induction on Vg and case analysis over the exception table et’. Due to et’ is
returned by the translation Vg, it only can be: either et’ = et + et, where et, is a new exception
table created by Vg or et’ = divide(et,r,1],,1}) where et; is stored in f and l, <], <j <. This

is because Vg only adds new lines to the exception table taken as parameter (et) in the translation
of try-catch and try-finally and Vg only divides the table in the translation of break.

Case et’ = et + et,

The exception table et, is produced by Vg ({P,,} s {Q}, m, f, et ). The generated lines contains
labels between [, and [,. So et, only contains exception lines between [, and ;. We look for the
exception label between [; and [, where [, < Iy < l. < lonq. So, this exception cannot be defined
in the exception table et,. Then if we look for the target label in et[l, ., T| is equivalent to look
for in et[ls,l., T).

Due to V ls,le : I < ls < le < lepg we know that lgerm < Iy < le < leng. Then looking
for the target label between I; and I, (et[ls,l.,T]) is equivalent to looking for the target label
between lsiqrt and leng (€t[lstarts lend, T)). Then et[ls,lo, T = et[lstarts lend, T)- So, this proves that
et’[ls, le, T] = et[lstart, lenda T] O

Case et’ = divide(et,r,1/,1})

In this proof we use the definition of divide presented in section 6.8.1 on page 37.

There are two possible results after the execution of divide(et,r,1],,1}) either divide does not
divide the line in et[lstart, lend, T] (let call [lstare s lends, le, T] with lstartr < lstart and lepg < lend)
or it does.

If divide(et,r,1),1}) does not divide the line [s¢qrt/, lenar, i, T], then using a similar reasoning
to the above case, we can conclude that et’[ls, L., T] = et[lsiart, lend, T

If divide(et,r,1,,1;) divides the line [lstqre/s lenar, lt, T'] then it will be divided as [lstartr, lar, I, T
+ [loylendar» 1, T]. We are looking for the target label between s and l.. But we know [, <
ls <le <lepg and I, <1, <l <. Then et'[ls,l.,T] will return the target label in the di-
vided line [ly, lenar, lt, T] which target label is the same than et[lsiqrt, lend, T]. So we can conclude

et[lstartv lenda T] =et [lsa lca T] g

A.2.2 Proof of lemma 2

The proof is by induction on et;.
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Base case: et; =[]

By definition of divide, divide(] ],7,1s,lc) = [r]. Then the lemma holds.

Inductive Case: divide(r; + et!,r,ls,1.)

If » Z r; then divide either divides r; or not depending on whether (r.from > r;.to A r.to <
r;.to) holds or not. But it does not update r. Then by induction hypothesis we get divide(r; +
eth,rls,le)ls,le, T) = 7[T).

If » C r; then divide returns r; + et}. Then r; + et [ls,l., T] = r[T] because r C r; and divide
does not change 7;.

O

A.3 Compositional Statement

The translation of compositional statement was presented in section [6.5.3 on page 31.
We have to prove:

F{P.} s1;82 {R} A
tart —l,

[(Ila---llb)7 €t2] =Vg <{Pn} S1; S2 {R}, m swar ] s €t> A
nert — lp41

(VT : Type : (T = Throwable) V (T = any)) :

(Re N excV #null N 5(0) =excV) = Eqp,i,1) A
(Rn = Em[newt]) A
-(Ry = false) =

(F{A} s; {B'} A (Byj= AT A
(VT : Type : (T < Throwable) V (T = any)) :
f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr) A
Qb= A}) A (BY = Epjprear) N
Veti=rl+r2+..+rm:(rlnrZn..nrm=0) A(et; Cet))
f=0 = (Qv = Enpreak])

=
Vi el, ...lb:F{El}Il

Let m’ : Event — Label be a mapping function defined as:

m' =m|[ next — 1, |

case: {P} s1 {Q'}
By the first induction hypothesis, we get:
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F{Pa} 51 {Q} A

[(Ila"'lla,end)7 6t1] = VS ({Pn} S1 {Q/}, m’,f, et ) N

(VT : Type : (T = Throwable) V (T = any)) :

(Re N excV #null A s(0) =excV) = Eet[la,la,end,T]) A

(Qn = Elb) A

-(Ry = false) =
(F{A%} s, {B'} A (Bj= A" A
(VT : Type : (T = Throwable) V (T = any)) :

f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr)) A
(Qb = Ally) A (Bll: = Em’[break]) A
Veti=ri+r?+. .. +rm:(rinrZn..nrm=0) Alet; Cet))

I= 0 = (Qb = Em[break])

=
V1€ lyoloena: - {E} I,
where
(X =normal = Qn) A
Q =<( (X =break = Rp) A
(X =exc = R.)
We have:
F{P.} s1 {Q/}
Due to

e mlbreak] = m/[break],

we also know by theorem hypothesis that:

-(Ry = false) =
(H{A'} i {B'} A (Bi= A" A
(VT : Type : (T = Throwable) V (T = any)) :
f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr)) A
(Qo = Al%) A (‘Bl])C = Em’[b’reak]) A
Veti=rl+r2+. .. +rm:(rlnrZn..nrm=0) A(et; Cet))
f=0 = (Q = Enprear))

To be able to apply the first induction hypothesis we have to show that @, = Ej,. The
implication is true because Ej;, = @,. Furthermore, we have to prove:

(VT : Type : (T X Throwable) V (T = any)) :
(Re N excV #null A 5(0) =excV) = Eupu, i, naT])

We can prove this implication using the theorem hypothesis and the fact that I, _eng < I and
we get:

VI € ly ... lgena:F {El} I;
Case: {Qn} s2 {R}
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Now we have to prove the translation of the second statement (s2). Most of the proof is similar
to the above proof. But the interesting part is the following:

(VT : Type : (T = Throwable) V (T = any)) : (1)
(Re A excV #null A s(0) =excV) = Eeh[lb,lund,T])

where et is:

[b1,et1] = Vs (Tsl, m[ next — }, f,et)

From the hypothesis we know:
(VT : Type : (T % Throwable) V (T = any)) : )
(Re N excV #null N 5(0) =excV) = Eup,i,..01])
Applying lemma (1] on page [37 we prove 2. So, we get:

VI € ly...lpena:t {El} I

Finally, we join both result and we get:

VI e ly ... lpend: {El} I
O

A.4 Break statement

The translation of break statement was presented in section [6.8.1 on page 36.
We have to prove:

F{P,} break {Q} A
(I, ...11,), ety] = Vg ({Pn} break {Q}, m l start = Lo ] . fretg > A

nexrt — lp41
(VT : Type : (T = Throwable) V (T = any)) :
(false N excV #null A 5(0) =excV) = Eeoypu, 1) A
(false = Em[nem]) A
-(P, = false) =
(F{A"} s; {B'} A (Bi= At A
(VT : Type : (T < Throwable) V (T = any)) :
f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr) A
(Pn= A}) A (Bf = Enprear]) A
Veti=ri+r2+..+rm:(rinrin..nrm=0) Alet; Cet))
I= 0 = (Pn = Em[break])
=
Vi€ lyoly:F{E)

where

(X =normal = false) A
Q = (X =break = P,) A
(X = exc = false)
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We have to prove the theorem for all f;. We make the proof for:

start — g, .
[bi, et;] = Vs ( ti, my [ nezxt — ZZZH } s firr + oo+ [ d“”de(et;—heti7lawlai+1)>

and the remaining proofs are similar.
Let et = divide(et,_y, et;,lq,;,lq;+1). We have to prove:

F{A"} s; {B'} A

start — g,
I, ... 1 ‘
[ be faisa? next — la,,

et]] = Vg ( {A%} s; {B%}, m;

1 s firr + S €t> A

(VT : Type : (T = Throwable) V (T = any)) :
(B: A excV #null A s(0) =excV) = Eet[la“%HUﬂ) A

(BZ«L = Emi[neact]) A

(B} = false) =
(F{A7} s (B} A (Bl = A" A
(VT : Type : (T = Throwable) V (T = any)) :

f#0 = Vj € i+1l.k: (Bl A excV #null A 5(0) =excV) = Eerp ) A
(Bi= A A (BY = Buuprear) A
Veti=rl+r2+..+r:(rinrin.nrm=0) Alet; Cet))

f:@ = (Pn = Em[break])
=

VI € lay oo layy, i F{E} T,

We can prove:

(VT : Type : (T < Throwable) V (T = any)) :
(Bi A excV #null A 5(0) =excV) = Eetlla; lay,,T))

by using the hypothesis (case f # 0):

(VT : Type : (T = Throwable) V (T = any)) :
(B A excV #null A s(0) =excV) = Eer))

and lemma 2/ that says et[lo,,la,.,,T] = et;[T].

Due to m[next] = lo,,, then B) =  Epjner is equivalent to prove B), = B, .-
B, , =A™, then we have to prove B], = A"!. This is true because by the hypothesis we
know that B = A""! and also we know that Bj = B..

We can prove the finally proof f;... fx

=(Bi = false) = _ _
(F{A7} s {B/} A (B]=A]") A
(VT : Type : (T < Throwable) V (T = any)) :
f#0 = Vj € i+1l.k: (Bg N excV #null A 5(0) =excV) = Eem ) A
(Blz):> A;)Jrl) A (Bl]f = Em[break]) A
Veti=ri+r2+. .. +r:(rinren..nr=0) Aet; Cet))
f:® = (Pn = Em[break])

by hypothesis. In the translation, we change the list f by f;...fx. But from the hypothesis we
know that it holds for fi...fg.
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Now we can apply the hypothesis and get VI € o, ... lait1: F{E1} I

Finally, we have to prove that P,, = A;, and for all i: B} = A;)'H and B{f = FEnbreak]- This
holds by the hypothesis.

O

A.5 Translation for while considering break statement and exceptions

The translation of while statement was presented in section 6.8.2| on page 38.
We have to prove:

F{IL.,} while(e)s1 {Q} A
(L,..-I1,), et1] = Vg ({In} while (e) s1 {Q}, m l start = Lo ] fs et) A

nert — lgy1
(VT : Type : (T X Throwable) V (T = any)) :
(Re N excV #null N s5(0) =excV) = Eqp,i,1) A
((In A=€) V Qv) = Epneat) A
—(false = false) =
(F{A"} s; {B'} A (Bi= A" A
(VT : Type : (T < Throwable) V (T = any)) :
f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr) A
(false = A}) A (B = Erbreak]) N
Veti=ri+r2+..+rm:(rinrin..nrm=0) Alet; Cet))
F=0 = (false = Enreas)

=
Viel,. ..ly: H{E} I
where
(X =normal = (I, A=e)V Qp)) A
Q =4 (X=break = false) A

(X = exc = R.)

Let m’ : Event — Label be a mapping function defined as:

start — [
m =m| next —1I,
break — m[next]

and f/ =0
By the induction hypothesis, we get:
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Fle AT} s1 {Q} A

(I, I1, ...), eti] =Vs({e A I} s1 {Q'}, m/, f/et ) A

(VT : Type : (T = Throwable) V (T = any)) :

(Re N excV #null A s(0) =excV) = Eqp,i,1) N

((In A=e) V Qy) = Epeaty) A

-(Qp = false) =
(F{A} s; {B'} A (Bi= A" A
(VT : Type : (T = Throwable) V (T = any)) :

f7#0 = Vi € 1.k: (B A excV #£null A s(0) =excV) = Eery ) A
(In= A}) AN (Bf = Eporear)) N
Veti=ri+r?+ .. +rm:(rinrZn..nrm=0) Alet; Cet))

['=0 = (Qv = Enpreak))

=
VI € lyoolpena: F{EDY T
where
(X =normal = I,) A
Q =¢ (X=break = Qp A
(X = exc = R.)
We have:

Fl{e A I} s1{Q'}
Due to the exception table et is the same than the theorem hypothesis, we know:
(VT : Type : (T = Throwable) V (T = any)) :
(Re N excV #null N 5(0) =excV) = Eop, 1))

To be able to apply the induction hypothesis we have to show that Q, = E,/(prear] (Pecause
f/=0)and I, = E.

In the first implication we have Qp, = Eypreak] = Emfnest)- From the theorem hypothesis
we have (I, A—-e) V Qv ) =  Eppes Then Qp = Epjprear) holds because Qp =
(In Ame) V Qy) = Em[next]~

I, = E;, because E;, = I,.

Now, we can apply the induction hypothesis and we get:

VI € ly..lpena:t {El} 1

The last proof we have to prove is:
Vi € {la,lc,ld} : {El} I
This is simple, we have to apply the definition of wpll) (figure [5/ on page 23).

O

A.6 Try catch translation

The translation of try-catch statement was presented in section [6.9.1 on page [38.
Let S be the following postcondition:
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(X =normal = Qn) A
S=Q (X =break = Qp) A
= S

(X = exc e)
where
_ R, Vv
¢~ { (Qe N T(excV) A T) }
and
(X =normal = Q,) A
U=( (X =break = Q) A
(X = exc = U.)
where

(g mmzn)

We have to prove:

F{P.} try sicatch (T'e)ss {S} A
[(I,...I1,), eta] = Vg ({Pn} try sy catch (T'e) s2 { S}, m l start = lo ]  f et) A
next — lg+1
(VT : Type : (T < Throwable) V (T = any)) :
(Se N excV #null N s(0) =excV) = FEgy,1,1) A
Qv = Emfnes) A
-(Qy = false) =
(F{A} s {B'} A (Bj=A") A
(VT : Type : ((T = Throwable) V (T = any)) :
F#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr)) A
(Qn= A}) N (B} = Erfbreak)) N
Veti=ri+r?+. .. +rm:(rinrZn.nrm=0) Alet; Cet))
=0 = (Qv = Enprear))

=
Vi e l, ...ldll—{El}Il

Let m’ be a mapping function and et’ be an exception table defined as:
m' =m[ next — 1 |
et = et + [la,lp,lc, T

Case {P,} s; {U}
By the induction hypothesis, we get:




A APPENDIX: SOUNDNESS PROOF 60

= {Pn} S1 { U } AN

[(Ila"'lla,end)7 6t1] =Vg ({Pn} S1 { U }, m/, f,et’ ) A

(VT : Type : (T = Throwable) V (T = any)) :

(Ue N excV #null N 5(0) =excV) = Eepp,i,1) N

(Qn = Em’[nemt}) A

-(Qp = false) =
(F{A%} s, {B'} A (Bj= A" A
(VT : Type : (T = Throwable) V (T = any)) :

f#£0 = Vi e 1.k: (B A excV #null A s(0) =excV) = Egr) A
(Qn = All;) A (Bll;C = Em’[break]) A
Veti=ri+r?+. . +rm:(rinrZn..nrm=0) Alet; Cet))

I= 0 = (Qb = Em/[break])

=
VI € ly...lgend: F {El} I

We have:
= {Pn} S1 {Q}
Due to

e mlbreak] = m/[break], and
® Lip/[next] = Elb = Qn then Qn = Qn
the only condition we have to prove to be able to apply the induction hypothesis is:

(VT : Type : (T = Throwable) V (T = any)) :
(Ue N excV #null A 5(0) =excV) = Eep,i,1)

c={ (A Te D) }

U, is defined as:

If 51 throws an exception and the type of the exception is not less than 7" then Q. A T(excV) A T
holds. Then Q. A 7(excV) AT = S.. And we know from the hypothesis:

(VT : Type : (T < Throwable) V (T = any)) :
(Se N excV #null N s(0) =excV) = FEep,i,.1)
Then
(VT : Type : (T = Throwable) V (T = any)) :
(Ue N excV #null A 5(0) =excV) = Eeup,1,1)

holds.
If 51 throws an exception and the type of the exception is less than T then Q. A 7(excV) X T
holds. et’ is defined as et + [lq, Iy, lc, T]. Then Eepy, 1, 1) = le. We have to prove that:

Q. N excV #null N T(excV) 2T A s(0) =excV = E|, (3)
(VT :Type — {T} : ((T 2 Throwable) V (T = any)) : (4)
(Ue N excV #null N 5(0) =excV) = Eep, i1
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(4) holds from the hypothesis. (3) holds because E;, = shift(QL) A excV # null A T(excV) <
T A s(0) = excV and shift(Q,) = Q. due to Q. does not refer to the stack.
Then, we can apply the induction hypothesis and we get:

VI € ly ... lgena:F {El} I;

Applying a similar reasoning we can apply the second induction hypothesis and we get:

Vi e {la . laena} : - {E} I

We can prove { @, } lp : goto m[next] by using the hypothesis. Finally we can prove
{ Ei. } pop e using wp, definition.
Joining the proofs, we get
Vi el, .. ldll—{El} I

O

A.7 Throw Translation

The translation of throw statement was presented in section 6.9.2 on page [39.
We have to prove:

F{P.le/excV]} throwe {Q} A

[(I,...I,), et1] = Vs ({Pn[e/ea:cV]} throwe {Q}, m l start = la ] fs et) A

nexrt — lp41
(VT : Type: (T = Throwable) V (T = any)) :
(Qe N excV #null A 5(0) =excV) = Eupu, 1) A
(false = Em[newt]) A

=
Viel,. .y H{E} T
where

(X =normal = false) A
Q =< (X=break = false) A

(X = exc = P,)

= {E1,} I, holds because of the definition of wp}. F {Ey,} Ij, holds by theorem hypothesis and
also the definition of wp,.
O

A.8 Translation of Finally statements for Java

The translation of finally statement was presented in section [6.9.3 on page 40.
We have to prove:
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F{P,} try si finallyss {V } A

[mw%xaﬂ=w<wwtwaﬁmww{th{“”t*h yﬁd>A

next — lg41
(VT : Type : (T 2 Throwable) V (T = any)) :
Q. N excV #null A 5(0) =excV) = Egupu,u,m) A
(@ = Emneat]) A
-((Qy vV Ry) = false) =
(F{A} si (B} A (By= A7) A
(VT : Type : (T < Throwable) V (T = any)) :
f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr) A
(Q) v R) = AD A (BE = Boipreats) A
Veti=rl+r2+. .. +rm:(rlnrZn..nrm=0) A(et; Cet))
f=0= ((Q, vV R) = Enprear])

=
Vi e l, ...lg:F{El}Il

Let m’ : Event — Label be a mapping function defined as:

m' =m[ next — 1 |

Let f’ be a list of Finally defined as:

f' =T} s2 {U}, getExceptions(ly,ly,et)] + f

Let et’ be an exception table defined as:

et = et + [la, lp, lq, any]
By the induction hypothesis, we get:

F{P.,} s1 {S} A

[(I,.Ti, ...), et1] =Vs({Py} s1 { S}, m/ flet’ ) A

(VT : Type : (T = Throwable) V (T = any)) :

(Qe N excV #null A 5(0) =excV) = Eepp,i,1) A

(Qn = Ey,) A

-(Qy = false) =
(F{A%} s, {B'} A (Bj= A" A
(VT : Type : ((T = Throwable) V (T = any)) :

f#0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Eer) A
Qv = A}) A (Bf = Epjprear)) N
Veti=ri+r2+ .. +rm:(rinrZn.nrm=0) Alet; Cet))

=0 = Qv = Eniprear))

=
VI e ly...lgenag: F {El} I

62
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We have:
F{P.} s1{S}
Due to et’ = et + [la, lp, la, any], then et'[l,, 1y, T] = 1q,¥V T : Type : (T 2 Throwable) vV (T =
any)). Then we have to prove that:

Qe N T(excV) T A shift(Q.)[eTmp/excV] A
excV # null N s(0) = excV) = LA elI'mp = excV

The implication holds due to Q. does not refer to the stack and then shift(Q.) = Q..
To be able to apply the first induction hypothesis, we need to prove:

-(Qy = false) =
(F{A"} s {B'} A (Bi= A" A
(VT : Type : (T < Throwable) V (T = any)) :
f#£0 = Vi € 1.k: (BL A excV #null A s(0) =excV) = Egr) A
(Qb = Allw) A (Bl’: = Errﬂ[break]) A
Veti=ri+r?+. .. +rm:(rinrZn.nrm=0) Alet; Cet))
f= 0 = Qv = Em’[break])
Let et! be the exception table for the current finally block. et! = getExceptions(la, sy, et).
Using the definition of f’, we need to prove:

2. B{f = Em’[break]
3. B) = A}

(VT : Type : (T = Throwable) V (T = any)) :
(B A excV #null A 5(0) =excV) = Egrir))

5. (Vet! =rl4+rZ+. . +rm:(rinr?n..nrm=0) A(et! Cet))
1. Qp = AY holds due to A) = Q.

2. B{f = Ev[break) holds because Bl’f is the same than the theorem hypothesis and the
implication holds in the theorem hypothesis.

3. BY = A}: from theorem hypothesis, we know that (@} V Ry) = A}. B) = Q) then
Q, = 4
(VT :Type: (T < Throwable) V (T = any)) :
(Qe A excV #null A s(0) =excV) = Eerr
because B) = Q.. We get the exceptions lines of et from et. Then the implication can be
proved by hypothesis.

4. We have to prove

5. This holds from the definition of get Exzceptions because it returns different exception lines.
Now, we can apply the first induction hypothesis and we get:

VI € ly ... lgenda:F {El} I;

Applying a similar reasoning than the proof for try and catch statements we get:

VI € {lb, lg} : {El} I

Joining the proofs, we get
Viel,. .. lyg:H{E} I

O



B APPENDIX: LOGIC FOR FINALLY STATEMENTS IN C# AND ITS TRANSLATION 64

B Appendix: Logic for finally statements in C# and its
translation

B.1 Finally Rule for C#

As we mentioned in section [3.5.2) the C# compiler does not allow one to write break statements
inside of finally clauses. Due to this, we do not need to consider that the statement ss executes
a break. The postcondition of sy for the break case, is always X = break = false. The rule is
similar to the rule presented in [3.5.2 (finally statements in Java) but sy never executes a break.

(X =normal = Qn) A
{ P } S1 (X = break = Q) A

(X =exc = Q)
(Qn N XTmp = normal) V (Qn N XTmp = normal) V
(Qv N XTmp = break) V (X =normal = (Q, A XTmp = break) V ) A
(QeleT'mp/excV] A S2 (QL. N XTmp = exc)
XTmp = exc A (X = break = false) A
eT'mp = excV) (X = exc = Q)

(X =normal = Q) A
{ P } try s1 finally sa (X =break = Q) A
(X = exc = QL)

B.2 Translation of finally statements for C#
Let S, T, U, V be

(X =normal = Qn) A
S = (X =break = Qp) A
(X =exc = Q.)

(@Qn N XTmp = normal)

(Qy N XTmp = break)

(QeleTmp/excV] A
XTmp = exc A
eT'mp = excV)

~
Il

S~ <

(Q, N XTmp = normal) V
X =normal = | (Q, N XTmp = break) v A
(Q, N XTmp = exc)

(¥ =exc = R.)
(X =normal = Q) A

V= (X =break = Q) A
(X=exc = (Q. V R.))

Let m; be an mapping function, and et’, et” be exception tables
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mlzm[ next — I ]
et' =et + [la7 lln lda any]
et” = getExceptions(ly, ly, et')?

Treeq Treey P ,
Bg,,et1] = V , my et + f, et
[31 1} S( {Pn}sl{S} 1 {T}s2{U}
Trees start — [, }
B ,et = V , m s I et
[Bs,, eta] S({T}SQ{U} [next ol f 1)
bgoto = {Q1} l. : goto m[next|
shift(Qe) A
bpop = excV # null lg : pop eT'mp
A s(0) = excV
Treeg start — [
B/ 7€t = V , ¢ ) ) et
(B, ets] S<{T}82{U} {next *)lf:|f 2)
bpushv = { Q/n V Q/b Vv Q/e } lf : pUShV eTmp
_ J @V @,V Q) .
bathrow - { A 8(0) _ eTmp lg : athrow
Treey Trees
{pya{s) {r}={v}
VS ) m7 f7 6t =

{ P, } try s1 finally so { \% }

[ le =+ BS2 + bgoto + bpop + B‘,Sz + bpushv + bathrow ) 6t3 ]

Proof of theorem [1: case finally statements for C#
The proof is similar to the proof of finally statements for Java.
O

3getExceptions returns the exceptions of the exception table et’ between l, and lp. It returns at most one
exception line for every type.



