Proof-Transforming Compilation of
Eiffel Programs

Martin Nordio!, Peter Miiller?, and Bertrand Meyer?

L ETH Zurich, Switzerland
{martin.nordio,bertrand.meyer}@inf.ethz.ch
2 Microsoft Research, USA
mueller@microsoft.com

Abstract. In modern development schemes the processing of programs
often involves an intermediate step of translation to some intermediate
bytecode, complicating the verification task. Expanding on the ideas of
Proof-Carrying Code (PCC), we have built a proof-transforming com-
piler which translates a contract-equipped program and its proof into
bytecode representing both the program and the proof; before execution
starts, the program will be run through a proof checker. The proofs ad-
dress not only security properties, as in the original PCC work, but full
functional correctness as expressed by the original contracts. The task
of the proof-transforming compiler is made particularly challenging by
the impedance mismatch between the source language, Eiffel, and the
target code, NET CIL, which does not directly support such important
Eiffel mechanisms as multiple inheritance and contract-based exceptions.
We present the overall proof-transforming compilation architecture, the
issues encountered, and the solutions that have been devised to bridge
the impedance mismatch.

Key words: Software verification, program proofs, Proof-Carrying Code,
proof-transforming compiler, Eiffel, CIL

1 Introduction

The problem of software verification, hard enough in a traditional context, takes
on new twists as advances in computing, designed to bring convenience and
flexibility to users, also bring further headaches to verifiers. The work reported
here addresses one such situation: verifying mobile code and other programs
deployed through intermediate formats such as bytecode.

The problem arises because of the increased sophistication of our computing
architectures. Along with new modes of computing arising from the role of the
Internet, new modes of software deployment have emerged. Once we have written
a program in a high-level language, instead of compiling it once and for all into
machine code for execution on a given machine, we may generate intermediate
code, often called "bytecode” (CIL on .NET, or JVM bytecode) and distribute it
to numerous users who will execute it through either interpretation or a second
phase of compilation known as ”jitting”. What then can and should we verify?

If we trust the interpreter or the jitter, the verification effort could apply to
the bytecode; but this is a difficult proposition because typical bytecodes (CIL,
JVM) discard some of the high-level information, in particular about types and
control flow, that was present in the original and can be essential for a proof.
In addition, proofs in the current state of the art can seldom be discharged
in an entirely automatic fashion (for example by compilers, as a byproduct of
the compilation process): they require interactive help from programmers. But
then the target of the proof should be the program as written, not generated
code which means nothing to the programmer. This suggests sticking to the
traditional goal of proving correctness at the source level.

The problem now becomes to derive from a proof of the source code a guar-
antee of correctness of the generated bytecode. Unlike the interpreter or jitter,
the compiler is often outside of the operating system; even if it is trusted, there
is no guarantee against a third party tampering with the intermediate code. The
notion of Proof-Carrying Code (PCC) [8] was developed to address this issue,
with an original focus on safety properties: with PCC, a program producer de-
velops code together with a formal proof (a certificate) that it possesses certain
desirable properties. The program consumer checks the proof before executing
the code or, in the above scheme, before interpreting or jitting it.

The original PCC work uses a certifying compiler [12] to prove simple
safety properties automatically during the compilation process. The present
work addresses the entire issue of functional correctness by introducing a proof-
transforming compiler (PTC). The development scheme with this approach in-
volves the following steps:

— Verify the source program, taking advantage of proof technology at the pro-
gramming language level. This step can involve interaction with the program-
mer or verification expert.

— Translate both the source program and the proof into intermediate code, using
the PTC. This step is automatic.

— Before a user runs the code (through interpretation or jitting), check the proof.
This checking is again an automatic task; it can be performed by a simple
proof-checking tool.

Our proof-transforming compiler consists of two modules: (1) a specifica-
tion translator that translates Eiffel contracts to CIL contracts; and (2) a proof
translator that translates Eiffel proofs to CIL proofs. The specification transla-
tor takes an Eiffel contract (based on Eiffel expressions) and generates a CIL
contract (based on first order logic). The proof translator takes a proof in a
Hoare-style logic and generates a CIL bytecode proof.

Proof-transforming compilation can be fairly straightforward if the source
and the target language are very similar. For example, PTCs have been devel-
oped from Java to bytecode [1, 3, 14]. The translation is more complex when the
subset is extended with finally and break statements [11]. But the difficulty
of the problem grows with the conceptual distance between the semantic models
of the source and target languages. In the present work, the source language is

Eiffel, whose object model and type system differ significantly from the assump-
tions behind CIL, the target language. In particular, Eiffel supports multiple
inheritance and a specific form of exception handling. This has required, in the
implementation of Eiffel for .NET (which goes through CIL code), the design of
original compilation techniques. In particular [5], the compilation of each Eiffel
class produces two CIL types: an interface, and an implementation class which
implements it. If either the source proof or the source specification expresses
properties about the type structure of the Eiffel program, the same property has
to be generated for the bytecode.

The translation of these properties raises challenges illustrated by the fol-
lowing example (interface only, implementation omitted) involving a reflective
capability: the feature type, which gives the type of an object.

1 merge (other: LINKED_LIST [G)):LINKED_LIST [G]
- - Merge other into current structure returning a new LINKED_LIST

3 require
is_linked_list : other.type.conforms_to (LINKED_LIST [G].type)
5 same_type: Current.type.is_equal(other. type)
ensure
7 result_type : Result.type. is_equal (LINKED_LIST [G].type)

The function merge is defined in the class LINKED_LIST. The precondition
of merge expresses that the type of other is a subtype of LINKED_LIST and
the types of Current and other are equal. The postcondition expresses that the
type of Result is equal to LINKED_LIST.

The compilation of the class LINKED_LIST produces the CIL interface
LINKED_LIST_INTERF and the implementation class LINKED_LIST_IMP. A
correct PTC has to map the type LINKED_LIST in the clause is_linked_list
(line 4) to the CIL interface LINKED_LIST_INTERF because in the target
model decedents of the Eiffel class LINKED_LIST inherit from the interface
LINKED_LIST_INTERF in CIL and not from LINKED_LIST_IMP. To trans-
late the postcondition, we use the implementation class LINKED_LIST_IMP be-
cause this property expresses that the type of Result is equal to LINKED_LIST.
Thus, the PTC has to map Eiffel classes to CIL interfaces or Eiffel classes to
CIL classes depending of the function used to express the source property.

This example illustrates that the proof-transforming compiler cannot always
treat Eiffel in the same way: while in most circumstances it will map them to
CIL interfaces, in some cases (such as this one, involving reflection) it must use
a CIL class.

The main problems addressed in this paper are the definition of contract
translation functions and proof translation functions from Eiffel to CIL. These
translations are complex because CIL does not directly support important Eiffel
mechanisms such as multiple inheritance and exceptions with rescue blocks. To
be able to translate both contracts and proofs, we use deeply-embedded Eiffel
expressions in the contracts and the source proof. The main contributions of this
paper are: (1) a contract translation function from Eiffel to CIL which handles

the lack of multiple inheritance in CIL; (2) a proof translation function from
Eiffel to CIL which maps rescue blocks into CIL instructions.

The rest of this paper explores the translation of programs and associated
proofs: issues such as the above example, and the solutions that we have adopted.

Section 2 surveys the semantics of the source language, Eiffel, by presenting a
Hoare-style logic; section 3 does the same for the target language, CIL. Section 4
presents the specification translator. Section 5 defines the proof transformation
process. Section 6 illustrates this transformation through an example. Section 7
introduces a soundness theorem. Section 8 discusses related work, and Section 9
summarizes the result and describes future developments.

2 Source language and logic

In this section, we present the Eiffel subset used in this paper and summarize
the logic that is used for the verification of Eiffel programs.

2.1 Basics

The source language is a subset of Eiffel [8] with the following syntax:
exp ::= literal | var | exp op exp

instr =z := exp | instr;instr

| from instr until exp loop instr end
| if exp then instr else insir end
routine ::= name (var : Type) : Type is
require boolExp
[local var : Type,... |
do
mnstr
[rescue
instr |
ensure boolExp
end

Once routines are not included. Exceptions are, but expression evaluation
cannot cause an exception.

Since exceptions raise some of the most interesting translation problems, the
following reminder of Eiffel exception semantics is in order. The ideas behind
exception handling in Eiffel (see [6]) are based on Design by Contract principles.
A routine execution either succeeds - meaning it achieves its contract - or fails,
triggering an exception. An exception is, more generally, an abnormal event
during that execution, due for example in turn to the failure of a routine that it
has called. The exception causes execution of the routine’s rescue clause (either
explicit or default). If at the end of the clause the variable Retry has value true,
the normal routine body (do clause) is executed again, in a new attempt to
satisfy the contract. If not, the routine execution failed, triggering an exception

that can be handled through the rescue clause of the caller. This scheme implies
a clear separation of roles between the do and rescue clauses: only the former
is charged with achieving the routine’s contract, as stated by the postcondition.
The rescue clause only concerns itself with trying to correct the situation that
led to the exception; in addition, it must, if it cannot Retry, re-establish the
class invariant so as to leave the object in a consistent state for future calls.

Note that this specification slightly departs from the current Eiffel standard,
where Retry is an instruction, not a variable. The change was suggested by
our semantic work [7] and will be adopted by a future revision of the language
standard. Assignments to Retry can appear in either a do clause or a rescue
clause; if its value is true at the end of exception processing the routine re-
executes its body, otherwise it fails, triggering a new exception.

2.2 Routine and instruction specifications

This paper focuses on the aspects of the translation framework that are most
interesting for the translation of proofs. A technical report [13] gives the details
for such other object-oriented mechanisms as object creation, attribute access,
and routine call.

The logic for the source language is based on the programming logic in-
troduced in [10, 16], adapted for Eiffel and extended with new rules for the
rescue/Retry exception mechanism.

Poetzsch-Heffter et al. [17] use a special variable x to capture the status of
the program, with values such as normal and exceptional. This variable is not
necessary in the bytecode proof since non-linear control flow is implemented via
jumps. To eliminate the variable, we use Hoare triples with two postconditions:
one for normal termination, the other for exceptions. This simplifies both the
translation and the presentation.

The specification of a routine, or more generally an instruction S, is a Hoare
triple of the form {P } S { Qn , Qe } , where P, @,, Q. are deeply-embedded
Eiffel expressions extended with universal and existential quantifiers, and § is
a routine or an instruction. The third component of the triple consists of a
normal postcondition (@) and an exceptional postcondition (Q.). We call such
a triple routine or instruction specification depending on whether S is a routine
or instruction.

To make proof translation feasible in the presence of changes to the type
structure, it is essential that both preconditions and postconditions of the Hoare
triples be deeply-embedded Eiffel expressions. A deep embedding preserves the
syntactic structure of the expression, which we exploit during the translation of
Eiffel types to CIL types.

A specification {P} S { Qn, Q. } defines the following refined partial
correctness property [15]: if S’s execution starts in a state satisfying P, then one
of the following holds: (1) S terminates normally in a state where @, holds, or S
triggers an exception and Q. holds, or (2) S aborts due to errors or actions that
are beyond the semantics of the programming language, for instance, memory
allocation problems, or (3) S runs forever.

2.3 Axiomatic semantics

The axiomatic semantics consists of the axioms and rules for instructions and
routines, as well as several language-independent rules such as the rule of conse-
quence, allowing the strengthening of preconditions and weakening of postcon-
ditions. Figure 1 shows the rules for compound instructions, loops and rescue
clauses. The compound and loop rules are standard. The rescue rule is one of
the contributions of this paper.

In a compound, s; executes first; then sy executes if and only if s1 has ter-
minated normally. In a loop, s; executes. If s; causes an exception then the
postcondition of the loop is the postcondition of s; (R.). If s; terminates nor-
mally and the condition e does not hold, then the body of the loop (s2) executes.
If so terminates normally then the invariant I holds. If sy triggers an exception,
R, holds.

The rescue rule applies to any routine with a rescue clause. The following
informal reminder of the Eiffel exception mechanism: if s; terminates normally
then the rescue block is not executed and the postcondition is @, . If s; trig-
gers an exception, the rescue block executes. If the instruction sy terminates
normally and the Retry variable is true then control flow transfers back to the
beginning of the routine and I, holds. If sy terminates normally and Retry is
false, the routine triggers the ”routine failure” exception and R, holds. If both
s; and sy trigger an exception, the last one takes precedence, and R, holds.

This rule interprets a rescue clause as a loop that iterates from s; loop s2; 51
until s; causes no exception or Retry is set to false. Note that the loop body is
executed only if s triggers an exception. The invariant I, is the loop invariant,
called retry invariant in this context.

Compound Rescue clause

(7} o (o n) (1} » o)

{Qn} S2 {Rn,Re} {Qe} S92 {Retry:>1r/\—|Retry:>Re,Re}

{P} S1; 82 {R",Re} {P} do s; rescue S {Qn,Re}

e)
{ﬁe/\[} 52 {I,Re}

{P} from s; until e loop sz end {(I A e), Re}

Fig. 1. Rules for compound, rescue clause, and loop.

3 Bytecode language and logic

The bytecode language consists of interfaces and classes. Each class consists of
methods and fields. Methods are a sequence of labeled bytecode instructions,
which operate on the operand stack, local variables, arguments, and the heap.

3.1 Bytecode basics

The bytecode language we use is a slight variant of CIL. We treat local variables
and routine arguments using the same instructions. Instead of using an array of
local variables like in CIL, we use the name of the source variable. Furthermore,
to simplify the translation, we assume the bytecode language has a type boolean.
The bytecode instructions and their informal description are the following:

— Idc v: pushes constant v onto the stack

— Idloc z: pushes the value of a variable z onto the stack

— stloc z: pops the topmost element off the stack and assigns it to the local variable z

— biney: removes the two topmost values from the stack and pushes the result of ap-
plying bin,, to these values

— br I: transfers control to the point [

— brfalse [: transfers control to the point [if the topmost element of the stack is false
and unconditionally pops it

— rethrow: takes the topmost value from the stack, assumed to be an exception, and
rethrows it

— leave [: exit from the try or catch block to the point [

3.2 Method and instruction specifications

The bytecode logic we use is the logic developed by Bannwart and Miiller [1].
It is a Hoare-style program logic, which is similar in its structure to the source
logic. In particular, both logics treat methods in the same way, contain the
same language-independent rules, and triples have a similar meaning. These
similarities make proof transformation feasible.

Properties of methods are expressed by method specifications of the form
{P} T.mp {Qy, Q.} where @, is the postcondition after normal termination and
Q. is the exceptional postcondition. Properties of method bodies are expressed
by Hoare triples of the form {P} comp {Q}, where P, Q are first-order formulas
and comp is a method body. The triple {P} comp {Q} expresses the following
refined partial correctness property: if the execution of comp starts in a state
satisfying P, then (1) comp terminates in a state where @ holds, or (2) comp
aborts due to errors or actions that are beyond the semantics of the programming
language, or (3) comp runs forever.

Each instruction is treated individually in the logic since the unstructured
control flow of bytecode programs makes it difficult to handle instruction se-
quences. Each individual instruction I; in a method body p has a precondition
E;. An instruction with its precondition is called an instruction specification,
written as {E;} [: I.

The meaning of an instruction specification cannot be defined in isolation.
The instruction specification {E;} [: I; expresses that if the precondition E,
holds when the program counter is at position [, then the precondition of I;’s
successor instruction holds after normal termination of I;.

3.3 Rules

Assertions refer to the current stack, arguments, local variables, and the heap.
The current stack is referred to as s and its elements are denoted by non-negative
integers: element 0is the topmost element, etc. The interpretation [Ej]:
State x Stack — Value for s is defined as follows: [s(0)](S, (o, v)) = v and
[s(i + DS, (0,0)) = [s(1)](S, 0).

The functions shift and unshift define the substitutions that occur when
values are pushed onto and popped from the stack, respectively. Their definitions
are the following: shift(E) = E[s(i+1)/s(i) for all i € N] and unshift = shift~!.

The rules for instructions have the following form:

By = wp(L)
Al {El} l: Il

where wp(I;) denotes the local weakest precondition of instruction I;. The rule
specifies that E; (the precondition of I;) has to imply the weakest precondition
of I; with respect to all possible successor instructions of [;. The precondition
E; denotes the precondition of the instruction ;. The precondition Fj1; denotes
the precondition of I;’s successor instruction. Table 1 shows the definition of wp.

I wp (1)

Idc v unshift(Eiy1[v/s(0)])
Idloc z |unshift(Ei1[z/s(0)])
stloc =z |(shift(Ei+1))[s(0)/z]
bing, |(shift(Fiy1))[s(1) op 5(0)/5(1)]

br l, El’
brfalse I'|(s(0) = shift(Ei+1)) A (—s(0) = shift(Ey))
leave I |Ey

Table 1. Definition of function wp.

4 Specification translator

The specification translator translates Eiffel contracts into first order logic
(FOL). The challenging problem in the specification translator is produced by
the impedance mismatch between Eiffel and CIL. Due to CIL does not directly
support multiple inheritance, Eiffel classes are mapped to interfaces or imple-
mentation classes. To be able to translate contracts, we use deeply-embedded
Eiffel expressions.

4.1 Translation basics

In Hoare triples, pre- and postconditions may refer to the structure of the Eiffel
program. Therefore, in our logic, pre- and postconditions are deeply-embedded
Eiffel expressions, extended with universal and existential quantifiers. The proof
translation proceeds in two steps: first, translation of pre-and postconditions into
FOL using the translation function presented in this section; then, translation
of the proof using the functions presented in Section 5.

We have defined a deep embedding of the Eiffel expressions used in the
contract language. Then, we have defined translation functions to FOL. The
datatype definitions, the translation functions and their soundness proof are for-
malized in Isabelle. In this section, we present the most interesting definitions
and formalizations, for a complete definition see [13].

4.2 Datatype definitions

Eiffel contracts are based on boolean expressions, extended (for postconditions)
with the old notation. They can be constructed using the logical operators —
and V, equality, and the type functions ConformsTo or IsEqual. Expressions are
constants, local variables and arguments, attributes, routine calls, creation ex-
pressions, old expressions, boolean expressions, and Void. Arguments are treated
as local variables using the sort RefVar to minimize the datatype definition. Fur-
thermore, boolean variables are not introduced in the definition boolEzp. They
are treated as local variables using the sort RefVar. We assume routines have
exactly one argument.

datatype FEiffelContract = Require boolFExpr
| Ensure boolEzpr
datatype boolExpr = Const bool
| Neg boolExpr
| Or boolExpr boolExpr
| Eq expr expr
| Type typeFunc

datatype typeFunc = ConformsTo typeFxpr typeExpr
| IsEqual typeEzpr typeExpr
datatype typeEzpr = EType FEiffelType
| Type expr
datatype expr = ConstInt int
| RefVar var
| Att objID attrib
| CallR callRoutine
| Create EiffelType routine argument
| Old expr
| Bool boolExpr
| Void
datatype callRoutine = Call expr routine argument
datatype argument = Argument ezpr

FiffelTypes are Boolean, Integer, classes with a class identifier, or None. The
notation (cID : classID) means, given an Eiffel class c, cID(c) returns its classID.
datatype FiffelType = Boolean
| Integer
| EClass (cID : classID)
| None

Variables, attributes and routines are defined as follows:
datatype var = Var vID FiffelType

| Result EiffelType

| Current FEiffelType
datatype attrib = Attr (alD : attribID) EiffelType
datatype routine = Routine routinelD FEiffelType EiffelType

4.3 Object store and values

An object store is modeled by an abstract data type store. We use the object
store presented by Poetzsch-Heffter [15]. The Eiffel object store and the CIL
object store are the same. The following operations apply to the object store:
accessC(os, 1) denotes reading the location I in store os; alive(o, 0s) yields true
if and only if object o is allocated in os; new(os, C') returns a reference to a new
object in the store os of type C; alloc(os, C') denotes the store after allocating
the object store new(os, C); update(os,l,v) updates the object store os at the
location [with the value v:

accessC' :: store — location — value

alive :: value — store — bool
alloc :: store — classID — store
new :: store — classID — value

update :: store — location — value — store

The axiomatization of these functions is presented by Poetzsch-Heffter [15].
A value is a boolean, an integer, the void value, or an object reference.
An object is characterized by its class and an identifier of infinite sort objID.
datatype value = BoolV bool
| IntV int
| ObjV classID objID
| VoidV

4.4 Mapping Eiffel types to CIL

To define the translation from Eiffel contracts to FOL, it is useful first to de-
fine CIL types and mapping functions that map Eiffel types to the CIL types:
boolean, integer, interfaces, classes and the null type.
datatype CilType = CilBoolean

| Cillnteger

| Interface classID

| CilClass classID

| NullT

The translation then uses two functions that map Eiffel types to CIL:
(1) Vinterface maps an Eiffel type to a CIL interface; (2) V455 maps the type
to a CIL implementation class. These functions are defined as follows:

Vinterface + FiffelType — CilType Veiass 2 FiffelType — CilType

mterface(Boolean) = CilBoolean Vs(Boolean) = CilBoolean

mte,faw (Integer) = Cillnteger Vciass(Integer) = Cillnteger

Vinterface(EClass n) = Interface n p;agg(EClass n) = CilClass n
Vinterface(NODE) = NullT V ciass(None) = NullT

The translation of routine calls needs method signatures in CIL and a trans-
lation function that maps Eiffel routines to CIL methods. The function Vuterface
serves to map types ¢, and t; to CIL types.

datatype CilMethod = Method methodID CilType CilType

V., it routine — CilMethod

V.(Routine n t1 t2) = (Method n (Vinterface t1) (Vinterface £2))

4.5 Contract translation

The translation of the specification relies on five translation functions: (1) V,
takes a boolean expression and returns a function that takes two stores and a
state an returns a value; (2) V., translates expressions; (3) V, translates type
functions (conforms to and is equal); (4) V. translates a routine call; and
(5) Varg translates arguments. These functions use two object stores, the second
one is used to evaluate old expressions. state is a mapping from variables to
values (var — walue). The signatures of these functions are the following;:

Vi i boolExpr — (store — store — state — value)
Vewp 11 €xpr — (store — store — state — value)

V. i typeFunc — (store — store — state — value)

V catt i callRoutine — (store — store — state — value)
Varg i argument — (store — store — state — value)

The definition of the function Vy is the following:
Vi (Const b) = A (hi, ho :: store) (s :: state) : (BoolV b)
Vy(Neg b) =\ (h,ho :: store) (s :: state) :

(BoolV =(aB(Vs b hy hy s)))
Vi(Or by b2) = A (hy, ho :: store) (s :: state) :

(BOOZV (aB(Vb b1 h1 ho 5)) Vv (aB(Vb ba h1 he S)))
Vi(Eq e1 e2) = X (hy, ho :: store) (s :: state) :

(BoolV (al(Vewp €1 h1 h2 8)) = (al(Vezp €2 b1 h2 s)))
Vi (Type €) = X (h1, hg :: store) (s :: state) : (Vi e h ha s))

The function V; maps the Eiffel types to CIL. The Eiffel function ConformsTo
is mapped to the function <. (subtyping in CIL). Its types are translated to in-
terfaces using the function Vipierface- The function IsEqual is translated using
the function = (types equality in CIL). Its types are translated to CIL classes
using the function V uss. The function V; is defined as follows:

Vi(ConformsTo t; t2) = X\ (hu, he :: store)(s :: state) :

(BOOZV(mterface(vtypetl)) jc (vintm‘f(we (vf,ypth)))
Vi(IsEqual t; t) = X (hu, he :: store)(s :: state) :

(BOOZV(class(vtypetl)) = (vclass(vtypet2)))

The function V. given a type expression returns its Eiffel type:
Viype = typeExp — FEiffel Type

Viype (EType t) =t

V iype (Expression e) = (typeOf e)

The function V., translates local variables using the state s. Creation in-
structions are translated using the functions new and alloc. The translation
of old expressions uses the second store to map the expression e to CIL. The
definition is:

V cop(ConstInt 1)

V eap (RefVar v)

Veap (Att 0b a)

s i state) : (IntV 7)

(h1, he :: store)(
(ha, ho :: store)(s :: state) : (s(v))
(ha, ho :: store)(s :: state) :
(accessC h1 (Loc (alID a) ob))
A (ha, hs :: store)(s :: state) :

(call crt h1 h2 8)

Ve (Create t 1t p) = X\ (ha, he :: store)(s :: state) :
(
(
(
(
(
(

A
A
A

V ezp(CallR crt)

new (alloc hy (¢ID t)) (cID t))
A (ha, he :: store)(s :: state) :
Vm, e hz hz S)
V eap(Bool b) = X (h1, hy :: store)(s :: state) :
Vb b hl hz S)
A (ha, he :: store)(s :: state) : (VoidV)

Veap(Old €)

V eap (Void)

The function V .y is defined as follows:
Vear(Call €1 1t p) = X (h, he :: store)(s :: state) :
(CillnvokeVal hy (V. 1t) (Vewp €1 b1 h2 $)(Varg p b1 h2 8))

The function CillnvokeVal takes a CIL method m and two values (its ar-
gument p and invoker e;) and returns the value of the result of invoking the
method m with the invoker e; and argument p.

The definition of the function V., is the following:

Varg(Argument e) = A (hq, hy :: store)(s == state) : (Vegp € b1 ho)

4.6 Example translation

To be able to translate contracts, first we embed the contracts in Isabelle using
the above data type definitions. Then, we apply the translation function V,
which produces the contracts in FOL. Following, we present the embedding of
the contracts of the function merge presented in Section 1. Its precondition is
embedded as follows:

Type (ConformsTo (Type (RefVar other)) (EType LINKED_LIST[G]))
Type (IsEqual (Type (RefVar Current)) (Type (RefVar other)))

The deep embedding of merge’s postcondition is as follows:

Type (IsEqual (Type (RefVar Current)) (EType LINKED_LIST[G]))

The application of the function Vy to the precondition produces the following
expression:
A (ha, ho :: store)(s :: state) :
BoolV (typeOf other) =. (interface LINKED_LIST|G])
A (b1, he :: store)(s :: state) : BoolV (typeOf Current) = (typeOf other)

The result of the application of the function V; to the deep embedding of
merge’s postcondition is the following:
A (ha, he :: store)(s :: state) :
BoolV (typeOf Current) = (CilClass LINKED_LIST[G])

In the precondition, the type LINKED_LIST/G] is translated to the inter-
face LINKED_LIST[G] because the precondition uses the function ConformsTo.
However, in the postcondition, the type LINKED_LIST/G] is translated to the
class LINKED_LIST[G] because it uses the function IsEqual. The PTC can
translates these types because it takes deeply-embedded Eiffel expressions as
input.

5 Proof translation

Our proof translator is based on two transformation functions, Vg and Vg, for
instructions and expressions, respectively. Each yields a sequence of bytecode
instructions and their specifications.

5.1 Transformation function basics

The function Vg generates a bytecode proof from a source expression and a
precondition for its evaluation. The function Vg generates a bytecode proof from
a source proof. These functions are defined as a composition of the translations
of the proof’s sub-trees. They have the signatures:

Vg : Precondition X Expression x Postcondition x Label — Bytecode_Proof
Vs @ Proof _Tree x Label x Label x Label — Bytecode_Proof

In Vg the label is used as the starting label of the translation. Proof_Tree is
a derivation in the source logic. In Vg, the three labels are: (1) start for the first
label of the resulting bytecode; (2) next for the label after the resulting bytecode;
this is for instance used in the translation of an else branch to determine where
to jump at the end; (3) exc for the jump target when an exception is thrown.
The Bytecode_Proof type is defined as a list of instruction specifications.

The proof translation will now be presented for the compound instruction,
loops, and rescue clauses. The definition of Vg is simple, it translates expres-
sions to CIL proofs. Due to space limitations, this definition is not presented
here (see our technical report [13]). Furthermore, in this technical report, the
translation also includes object-oriented features such as object creation and
routine invocation.

5.2 Compound Instruction

Compound instructions are the simplest instructions to translate. The transla-
tion of so is added after the translation of s; where the starting label is updated
to lp. Let Ts, and Tg, be the following proof trees:

Tree; Treea

{P} s {Qu. R} " {Q) ® {Re. R}

T5'1 = T52 =

The definition of the translation is the following:

vS 5 lstart7 lnezta lezc =
{ P } 815 82 { R, , R }

vS (TSU lstarta lbv lezc)
VS (TSy lb, lnezta lezc)

The bytecode for s; establishes (),, which is the precondition of the first
instruction of the bytecode for so. Therefore, the concatenation of the bytecode as
the result of the translation of s; and sy, produces a sequence of valid instruction
specifications. Section 7 will discuss soundness.

5.3 Loop Instruction

Let T, and Tg, be the following proof trees:

Treey Trees

SRy W {1 Ry T (mend) w (1R

The first step of translating the loop is to translate s; using Vg. Then,
control is transferred to l; where the loop expression is evaluated. The body of
the loop is translated with [.. The loop invariant holds at the begging of the
loop expression evaluation (at lg). The definition is:

Ts T
vS from s ulntil B = ’ lstarta lnemh leacc =
1
(P} loop s» end {I A e, Re}
VS (TSN lstarta lb7 lea:c)
{I} lb s br ld

VS(TSQ? lc; ld> lezc)
VE(Ia €, {Sh’tft(]) A 5(0) = 6}7 ld)
{shift(I) A s(0) = e} I, : brfalse [.

5.4 Rescue clause

The translation of rescue clauses to CIL is one of the most interesting trans-
lations. Since rescue clauses do not exist in CIL, this translation maps rescue
clauses to .try and catch CIL instructions. Let Ts, and Tg, be the following
proof trees:

Ty = Treei To = Trees
1 — 2 —
(@) o {Tm=in)

{L} s {Quv, Q}
—Retry = R, > ¢

First, the instruction s; is translated to a .try block. The exception label is
updated to [, because if an exception occurs in s, control will be transferred to
the catch block at I.. Then, the instruction sy is translated into a catch block.
For this, the exception object is first stored in a temporary variable and then
s2 is translated. In this translation, the Retry label is updated to I (the
beginning of the routine). Finally, between labels I, and [;, control is transferred
to lsiqre if Retry is true; otherwise, the exception is pushed on top of the stack
and re-thrown. The definition is:

VS TSl TS2 ; l.start7 lnemtu lemc =
{P} do s; rescue Sy {Qn , Re}

tryq{
VS (TS'1) lstart7 lba lretry; lc)
{Qn} Iy : leave lyeqs

}

catch System.FException {

{Qc N excV #null A s(0) = excV'} le : stloc last_exception
{Qe } Vs (TSmldalealaalewc)
{Retry = I, N ~Retry = R.} le : Idloc Retry

{Retry = I, AN —=Retry = R. A s(0) = Retry} I : brfalse [,

{Ir} lg . br lstart

{R. } I, : Idloc last_exception

{Re N s(0) = last_exception} ; © rethrow

o~
S

6 Example

The PTC processes a list of Eiffel classes. Every class consists of a sequence
of routines. Every routine consists of its pre- and postcondition and the source
proof. The PTC generates two CIL types per Eiffel class: the interface and the

implementation class. Then, for each routine, it translates the pre- and postcon-
dition using the functions defined in Section 4. Finally it translates the source
proof using the functions defined in Section 5.

1 safe_division (z,y: INTEGER): INTEGER

local
3 z: INTEGER
do
5 {z=0or z=11}
Result := z // (y+2)
7 { zero and not_zero, z =0 }
ensure
9 zero: y = 0 implies Result = z

not_zero: y /= 0 implies Result =z // y
11 rescue

{ 2=0}
13 z:=1

{ 2=1, false }
15 Retry := true

{ Retry implies z=1 and not Retry implies false, false }
17 end

Fig. 2. Example of an Eiffel source proof.

Figure 2 and 3 illustrates the translation. Figure 2 presents the source proof.
The example function implements an integer division, which always terminates
normally. If the second operand is zero, it returns the first operand; otherwise
the result is equal to the integer division z//y. Line 7 uses zero and not_zero to
denote the properties expressed by the postcondition labeled with these names
(y = 0 implies Result = x and y/ = 0 implies Result = x//y). The bytecode
proof uses the same convention. The exceptional postcondition of the last in-
struction of the rescue block and the exceptional postcondition of the routine
are both false because the routine always terminates normally.

Figure 3 presents the bytecode proof. The generated bytecode for the body
of the routine is enclosed in a try block (lines 01 to 07). Since the routine always
terminates normally, the precondition of the instructions at labels 17 and 18 is
false.

7 Soundness theorems
To be able to execute mobile code in a safe way, a soundness proof is required

only for components of the trusted code base. Although PTCs are not part of the
trusted code base, from the point of view of the code producer, the PTC should

try {

{z=0Vvz=1} 01 : 1dloc z
{(z=0Vz=1)A s(0) ==z} 02 : 1dloc y
{(z=0Vz=1)A s(1)=z A s(0) =y} 03 : 1dloc z
{z=0Vvz=1)A s(1)=zA s(1)=yA s(0)=2z2} 04 : binop
{z=0Vvz=1)A s(1)=zA s(0)=y+ 2} 05 : binop,,
{(z=0Vvz=1)A s(0)=z//(y+ 2)} 06 : stloc Result
{zero and not_zero} 07 : leave 19

}

catch System.Exception {
{z=0AN excV # null A s(0) = excV} 09 : stloc last_exception
{z =0} 10: 1dc 1
{z=0A s(0) =1} 11 : stloc z
{z =1} 12 : 1dc true
{z=1A s(0) = true} 13 : stloc Retry
{—Retry = false N Retry = (z=1V z=0)} 14 : 1dloc Retry
{—Retry = false A
Retry = (z =1V z=0) A s(0) = Retry} 15 : brfalse 17
{z=1 Vvz=0} 16 : br 01
{false} 17 : 1dloc last_exception
{false A s(0) = last_exception} 18 : rethrow
{zero and not_zero} 19 : ldloc Result
{zero and not_zero A s(0) = Result} 20 : ret

Fig. 3. Bytecode proof generated by the PTC.

always generates valid proofs to avoid that the produced bytecode is rejected by
the proof checker.

It is thus desirable to prove the soundness of both the proof translator and
the specification translator. For the proof translator, soundness informally means
that the translation produces valid bytecode proofs. It is not enough, however,
to produce a valid proof, because the compiler could generate bytecode proofs
where every precondition is false. The theorem states that if (1) we have a valid
source proof for the instruction s;, and (2) we have a proof translation from
the source proof that produces the instructions I, ,...1;,,,, and their respec-
tive preconditions Ej, ,...E; ,, and (3) the normal postcondition in the source
logic implies the next precondition of the last generated instruction (if the last
generated instruction is the last instruction of the method, we use the normal
postcondition in the source logic), and (4) the exceptional postcondition in the
source logic implies the precondition at the target label [.;. but considering the
value stored in the stack of the bytecode, then every bytecode specification holds
(- {E;}). The theorem is the following:

Theorem 1

L Treeq A
o (e o)
T
([lmm "'Ilend) = VS e 5 lstart; lend+17 lea:c N

O (o)

(Qn = Elend+1) A

((Qe N excV #null N s(0)=excV) = E_) A
=

VI € lgart - long i {El} 1

The soundness proof of the specification translator has been formalized and
proved in Isabelle. First, we have defined evaluation functions from Eiffel expres-
sions to values. valuey, valuey, valueery, valuec and valueqy, evaluate boolean
expressions, Fiffel types, expressions, routine calls and arguments respectively.
The theorem expresses: given two heaps and a state, if the expression e is well-
formed then the value of the translation of the expression e is equal to the value
returned by the evaluation of e. The theorem is the following:

Theorem 2

Vb : boolExp, t: typeFunc, e : expr, c: CallRoutine, p : argument :

(wellFy b) = (valuey b hy ha s) = ((Vp b) hy ha s) and

(wellFy t) = (valuey t hy hy s) = ((V¢ t) by ha s) and

(wellFegp €) = (valueezp € k1 ha 8) = (Veap €) M1 ho s) and

(wellFcapp ¢) = (valueeqy ¢ b ha 8) = (Vear ¢) M ha 8) and

(wellFgrg p) = (valuegry p b1 ha 8) = (Varg p) M1 ho)
The full proofs can be found in our technical report [13]. The proof of theo-

rem 1 runs by induction on the structure of the derivation tree for { P} s; { Qn, Qc}-

The proof of theorem 2 runs by induction on the syntactic structure of the ex-

pression and it is done in Isabelle.

8 Related work

Necula and Lee [12] have developed certifying compilers, which produce proofs
for basic safety properties such as type safety. The approach developed here
supports interactive verification of source programs and as a result can handle
more complex properties such as functional correctness.

Foundational Proof-Carrying Code has been extended by the open verifier
framework for foundational verifiers [4]. It supports verification of untrusted code
using custom verifiers. As in certifying compilers, the open verifier framework
can prove basic safety properties.

Barthe et al. [3] show that proof obligations are preserved by compilation (for
a non-optimizing compiler). They prove the equivalence between the verification
condition (VC) generated over the source code and the bytecode. The translation
in their case is less difficult because the source and the target languages are closer.
This work does not address the translation of specifications.

Another development by the same group [2] translates certificates for op-
timizing compilers from a simple interactive language to an intermediate RTL
language (Register Transfer Language). The translation is done in two steps:
first, translate the source program into RTL; then, perform optimizations to
build the appropriate certificate. This work involves a language that is simpler
than ours and, like in the previously cited development, much closer to the target
language than Eiffel is to CIL. We will investigate optimizing compilers as part
of future work.

The Mobius project develops proof-transforming compilers [9]. They translate
JML specifications and proof of Java source programs to Java Bytecode. The
translation is simpler because the source and the target language are closer.

This work is based on our earlier effort [11] on proof-transforming compilation
from Java to bytecode. In that earlier project, the translation of method bodies is
more complex due to the generated exception tables in Java bytecode. However,
the source and the target langues are more similar than the languages used in
this paper. Furthermore, our earlier work did not translate specifications.

9 Conclusion

We have defined a proof-transforming compiler from a subset of Eiffel to CIL.
The PTC allows us to develop certificates by interactively verifying source pro-
grams, and then translating the result to a bytecode proof. Since Eiffel supports
multiple inheritance and CIL does not, we focused on the translation of contracts
that refer to type information. We showed that our translation is sound, that
is, it produces valid bytecode proofs. This translation can be adapted to other
bytecode languages such as JVML. The main difference to CIL is the use of an
exception table instead of .try and catch instructions as show in our previous
work [11].

To show the feasibility of our approach, we implemented a PTC for a sub-
set of Eiffel. The compiler takes a proof in an XML format and produces the
bytecode proof. The compiler is integrated into EiffelStudio, the standard Eiffel
development environment.

As future work, we plan to develop a proof checker that tests the bytecode
proof. Moreover, we plan to analyze how proofs can be translated using an
optimizing compiler.

References

1. F. Y. Bannwart and P. Miiller. A Logic for Bytecode. In F. Spoto, editor, Byte-
code Semantics, Verification, Analysis and Transformation (BY TECODE), volume

10.

11.

12.

13.

14.

15.

16.

17.

141(1) of ENTCS, pages 255-273. Elsevier, 2005.

. G. Barthe, B. Grégoire, C. Kunz, and T. Rezk. Certificate Translation for Opti-

mizing Compilers. In 13th International Static Analysis Symposium (SAS), LNCS,
Seoul, Korea, August 2006. Springer-Verlag.

G. Barthe, T. Rezk, and A. Saabas. Proof obligations preserving compilation. In
Third International Workshop on Formal Aspects in Security and Trust, Newcastle,
UK, pages 112-126, 2005.

B. Chang, A. Chlipala, G. Necula, and R. Schneck. The Open Verifier Framework
for Foundational Verifiers. In ACM SIGPLAN Workshop on Types in Language
Design and Implementation (TLDI05), 2005.

. B. Meyer. Multi-language programming: how .net does it. In 3-part article in

Software Development. May, June and July 2002, especially Part 2, available at
http://www.ddj.com/architect/1844148647

B. Meyer. Object-Oriented Software Construction. Prentice Hall, second edition,
1997.

B. Meyer, P. Miiller, and M. Nordio. A Hoare logic for a subset of Eiffel. Technical
Report 559, ETH Zurich, 2007.

B. Meyer (editor). ISO/ECMA Eiffel standard (Standard ECMA-367: Eif-
fel: Analysis, Design and Programming Language), June 2006. available at
http://www.ecma-international.org/publications/standards/Ecma-367.htm.
MOBIUS Consortium. Deliverable 4.3: Intermediate report on proof-transforming
compiler. Available online from http://mobius.inria.fr, 2007.

P. Miller. Modular Specification and Verification of Object-Oriented Programs,
volume 2262 of LNCS. Springer-Verlag, 2002.

P. Miiller and M. Nordio. Proof-transforming compilation of programs with abrupt
termination. In Sizth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), pages 39-46, 2007.

G. Necula and P. Lee. The Design and Implementation of a Certifying Compiler. In
Programming Language Design and Implementation (PLDI), pages 333-344. ACM
Press, 1998.

M. Nordio, P. Miiller, and B. Meyer. Formalizing Proof-Transforming Compilation
of Eiffel programs. Technical Report 587, ETH Zurich, 2008.

M. Pavlova. Java Bytecode verification and its applications. PhD thesis, University
of Nice Sophia-Antipolis, 2007.

A. Poetzsch-Heffter. Specification and verification of object-oriented programs.
Habilitation thesis, Technical University of Munich, 1997.

A. Poetzsch-Heffter and P. Miiller. A Programming Logic for Sequential Java.
In S. D. Swierstra, editor, Furopean Symposium on Programming Languages and
Systems (ESOP’99), volume 1576 of LNCS, pages 162-176. Springer-Verlag, 1999.
A. Poetzsch-Heffter and N. Rauch. Soundness and Relative Completeness of a
Programming Logic for a Sequential Java Subset. Technical report, Technische
Universitat Kaiserlautern, 2004.

